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Abstract

Voice transformation (also known as voice conversion or voice morphing) is a
name given to techniques which take speech from one speaker as input and attempt
to produce speech that sounds like it came from another speaker. One compelling
argument for good voice transformation is that it reduces the difficulty in creating
additional synthetic voices with new identities and styles once an existing voice has
been created based on a full-sized corpus. There are further voice transformation
applications for security, privacy, and assistive technologies.

Although current voice transformation techniques perform well in the sense that
humans typically judge transformed speech to sound more like the target speaker than
the source speaker, there is still room for improvement.

We investigate the use of articulatory position data to improve voice transforma-
tion. When a person speaks, motions of the articulators affect the shape of the vocal
tract, which affects the produced sound. Recently, data that includes measurements of
the positions of various articulators along with recordings of the produced speech has
been made publicly available. This articulatory position data gives us new informa-
tion about the production of speech and has already been used successfully to predict
quantities such as Mel-frequency cepstral coefficients [Toda et al., 2004a]. Such data
gives us a different source of information from typical features derived from speech
signals and enables promising new approaches to voice transformation.

One of the current challenges of using articulatory position data is that it is dif-
ficult to collect, so little is available. In order for it to be useful for more than a few
speakers, some strategy must be devised to estimate it for other speakers. We present
a number of techniques to do this and demonstrate that they are plausible by show-
ing that artificial estimates of articulatory positions can be used to improve phonetic
feature predictions similar to actual articulatory positions. Then we proceed to the
question of using articulatory position features for voice transformation. Modifying
the voice transformation process and representation of the articulatory data enables
us to show improvement according to an objective metric. Then we demonstrate that
artificial articulatory position estimates can also be used to improve voice transforma-
tion for speakers for whom no articulatory position data has been collected, according
to this same objective metric.

As we are attempting to improve voice transformation, we give further consid-
eration to what this actually means. Although a number of objective and subjective
tests have been used to judge voice transformation quality, the best way to evaluate it
is still an open question. We present new subjective and objective measures for voice
transformation and report the results and our observations.
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Chapter 1

Introduction

1.1 Basic Terminology

Voice Transformation (also called Voice Conversion or Voice Morphing by some) is a
name given to techniques which take speech from one speaker as input and attempt to pro-
duce speech that sounds like it came from another speaker. One particularly compelling
argument for good Voice Transformation is that it reduces the difficulty in creating syn-
thetic voices with new identities and styles. Once a full-sized corpus has been collected
from a source speaker, the amount of additional data needed to produce a new voice is
much smaller than what is necessary to produce a new voice based on typical concatena-
tive synthesis techniques alone.

Voice transformation is a branch of speech synthesis, which is concerned with the
automatic production of speech. As speech is a complicated phenomenon, it has proven
useful to analyze it from the perspective of speech models, which are parametric represen-
tations of features which are hypothesized to be important to the task at hand. The typical
voice transformation process is thus based on the source and target speakers’ parameters
according to an underlying speech model and a mapping between these parameters. In
the case of voice transformation, the goals for the underlying speech model are to produce
speech that is natural, intelligible, and has the identity of the target speaker.

1



1.2 Problem

Although current voice transformation techniques appear to perform well in the sense that
humans typically judge transformed speech to sound more like the target speaker than the
source speaker, there is still room for improvement.

We propose the use of articulatory position data to improve voice transformation.
When a person speaks, motions of the articulators affect the shape of the vocal tract, which
affects the produced sound. Recently, data that includes measurements of the positions of
various articulators along with recordings of the produced speech has been made publicly
available. This articulatory position data gives us new information about the production of
speech and has already been used successfully to predict quantities such as Mel-frequency
cepstral coefficients and acoustic-phonetic features [Toda et al., 2004a],[Toth, 2005]. Such
data gives us a different source of information from typical features derived from speech
signals and enables new approaches to voice transformation.

As we are attempting to improve voice transformation, we will need to consider what
this actually means, Although a number of objective and subjective tests have been used
to judge voice transformation quality, the best way to evaluate it is still an open question.
For this reason, we will also be investigating methods of voice transformation evaluation.

1.3 Scope and limitations of investigation

Currently, there are a number of techniques used to perform voice transformation. The
ones investigated in this thesis are based on Gaussian Mixture Model mappings whose pa-
rameters are learned from “parallel” speech examples, where there are acoustic waveforms
of both speakers reading the same text. This is currently the most prominent approach to
voice transformation, though some techniques based on frequency warping [Erro et al.,
2008] and Hidden Markov Model speaker adaptation [Zen et al., 2007] are gaining popu-
larity.

At this point, voice transformation techniques focus primarily on transforming the
acoustic characteristics between speakers, with some effort to modify short-term prosodic
features. This appears to mainly be due to our better knowledge of how to model these
lower-level speech quantities and difficulties with data sparsity that would occur with
higher-level features that span greater time intervals. Our work continues along these lines
and does not address the transformation of higher-level features such as prosodic contours
(except incidentally through local modifications) or word choice.

2



A number of methods have been used to record articulatory position data. This thesis
only uses articulatory data that was collected using an Electro-Magnetic Articulograph
(EMA) on continuous read speech [Wrench, 1999]. There is other existing data that was
created using X-ray technology [Lenzo and Fujimura, 2001], but it was often recorded for
single (and sometimes nonsense) words, and is less appropriate for our work. Furthermore,
only a small amount of it is available.

1.4 Thesis Statement

Over time, the dominant speech synthesis techniques have progressed from physical and
acoustic models to data-driven methods, This has enabled the creation of synthetic voices
that sound more natural and have more recognizable identities, but the flexibility of such
systems is limited by the amount and type of collected data. Now that there has been
some success with data-driven techniques, there is a desire to reincorporate some of the
flexibility of model-based techniques in an effort to reduce the amount of necessary data.
Articulatory positions present a tangible way to help parametrize speech data that differs
from traditional methods that are based on analysis techniques from Digital Signal Pro-
cessing (DSP) applied to acoustic waveforms. In addition to allowing the modification of
parameters in a different space, articulatory positions are also subject to static and dynamic
physical constraints that can be incorporated into models of speech to make them more re-
alistic. New methods for analyzing speech based on modeling of articulatory positions can
be used to improve voice transformation. Voice transformation can be improved in terms
of intelligibility, naturalness of speech, and identity of speaker. Also, new evaluation tech-
niques can be created that provide more insight into the quality of voice transformation.

1.5 Contributions

The primary contributions of this work are:

1. an investigation of using articulatory position data to improve voice transformation,

2. improvement of voice transformation, and

3. new subjective and objective evaluation techniques for voice transformation.

3



1.6 Thesis Overview

Chapter 2 describes speech models and provides descriptions of some of the most common
models used for voice transformation. It is essentially a literature survey focused on the
historical line of models that led to the current ones that are popular in voice transforma-
tion. The popular speech model techniques are divided into three main categories: linear
prediction, Fourier analysis, and cepstral analysis. Using these basic techniques, a range
of speech models is described.

Chapter 3 describes voice transformation based on speech models discussed in Chapter
2. It is essentially a literature survey that focuses on the historical line of voice transfor-
mation models that led to the ones used in this thesis. It includes an in-depth description
of the baseline voice transformation system that is the point of departure for our further
experiments. The historical development of “linear” voice transformation is traced from
Abe’s early work with codebooks through the GMM-based mappings of Stylianou, Kain,
and Toda.

Chapter 4 describes articulatory position data and attempts to use it to improve the
voice transformation system described in Chapter 3. A range of experiments from our
SSW6 paper [Toth and Black, 2007] is described here. They begin with straightforward
extensions of the feature vectors to include articulatory position data and then present
various modifications to improve voice transformation according to the objective Mel-
Cepstral Distortion (MCD) metric. The modifications included attempting to remove
noise from the data, attempting to modify the transformation procedure when certain steps
seemed less appropriate for the additional features, and using derived features based on
a combination of articulatory positions. The final result was a very small positive result
when a combination of these techniques was used.

Chapter 5 describes using articulatory position data from one speaker with another
speaker. It is currently difficult to collect articulatory position data, so if the small amount
that is available is to be useful, there must be strategies to make it more generally help-
ful. The first part of this chapter is based on our Interspeech 2005 paper [Toth, 2005].
First, it presents results on using articulatory position data to predict phonetic features,
and then it demonstrates that using articulatory position data can improve performance
over traditional spectral features. Next, cross-speaker articulatory position predictions,
which are articulatory position estimates for speakers, are investigated and also show the
ability to improve phonetic feature performance over traditional spectral features. After
this demonstration of the viability of cross-speaker articulatory positions for phonetic fea-
ture prediction, the second part of the chapter concerns itself with their application to voice
transformation.

4



Chapter 6 describes attempts to measure voice transformation using Speaker IDenti-
fication (SID) systems. There is a discussion of how measuring identity, along with nat-
uralness and intelligibility, is important in the evaluation of voice transformation. There
is a discussion of how speaker identification systems can be used to measure the identity
of transformed speech and a description of two different speaker identification systems
that we used for this task: a GMM-based systems and phonetic system. The rest of the
chapter is based on experiments from our ICASSP 2008 paper [Jin et al., 2008]. There is a
description of data used for the experiments followed by attempts to fool the SID systems
with VT in a couple contexts. then there is a description of our novel approach to using
the SID scores as a metric for VT and a comparison to the scores for recorded speech and
two types of synthesizers, which are also described.

Chapter 7 is the conclusion which summarizes the results and discusses the contribu-
tions. It also discusses future directions, placing this work in a broader context.
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Chapter 2

Speech Models

2.1 Introduction

A speech waveform is a function of sound pressure versus time that describes speech.
Although speech waveforms are typically thought of as continuous, their computer repre-
sentations consist of discrete samples. This is not a problem as a sufficiently high sample
rate combined with a sufficiently large quantization space captures as much information
as is necessary to enable production of a sound that is indistinguishable from the origi-
nal speech waveform to the human ear. This is possible due to limitations in the range
of frequencies that humans can hear and in their ability to distinguish amplitude levels.
Amplitude is the amount of sound pressure in the speech waveform at a particular point
in time.

When representing speech in computational algorithms, there are factors which can
make the discretely sampled waveform an inconvenient representation. Speech is pro-
duced through a physical process that combines numerous factors that contribute in dif-
ferent ways to the final waveform. The speaker’s lungs, vocal folds, velum, tongue, teeth,
and lips all influence the speech waveform in their own ways. Speech is perceived through
another physical process that is based on other factors. The listener’s ears respond to dif-
ferent parts of the speech waveform based on their anatomy. The connection between
these factors and speech waveforms is often complicated, and computation is necessary
to determine or estimate them. In speech synthesis, it is desirable to represent these pro-
cesses and their contributions to the production or perception of the speech waveform,
because it provides the ability to produce and modify new speech waveforms based on
these processes.
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A speech model is a way of representing speech based on quantities called features
and an interpretation of those features. The process of producing values for a speech
model’s features from a waveform is called analysis, and the process of producing a wave-
form from the values of a speech model’s features is called synthesis. It should be noted
that this use of the word synthesis should not be confused with speech synthesis, which
does produce waveforms, but can include numerous additional processes, such as textual
analysis. Synthesis, in the speech model sense, is often the last step of a speech synthesis
process.

Earlier attempts to find suitable representations for speech were often based on con-
siderations of reducing the size of the speech data for more efficient transmission. These
techniques are part of the field of speech coding. Although reducing the size of speech
data is often desirable in speech synthesis, it usually has lower priority than properties
such as the naturalness or intelligibility of the synthesized speech. Having a compact rep-
resentation of speech, however, still has benefits in that it can be more efficient, and that it
may lead to fewer problems with data sparsity if the speech model data is used to train a
statistical model. The difference in goals and emphases in speech synthesis led to further
refinements of speech coding techniques and even new techniques.

As this work is concerned with the sub-discipline of speech synthesis called voice
transformation, the rest of this chapter will describe some of the main speech models
that have been used in its implementation. Voice transformation, itself, will be the topic
of Chapter 3. For this chapter, it is sufficient to note that, in addition to the typical speech
synthesis goals of naturalness and intelligibility, voice transformation has the goal of accu-
rately representing a speaker’s identity. These goals have influenced the choices of speech
models used for voice transformation. At this point, the most prevalent speech models
used for this task are based on linear prediction, Fourier analysis, and cepstral anal-
ysis, which will be described in Section 2.2, Section 2.3, and Section 2.4 respectively.
These sections will contain some general information about the techniques and descrip-
tions of representative speech models that are commonly used in voice transformation.1

In practice, some of the speech models use more than one of these techniques, so there
is some level of arbitrariness in where they can be described. In most cases, however,
one technique is used more heavily than the others. The descriptions of the speech mod-
els will include their sets of features and the analysis and synthesis processes used with
them. Some details from signal processing will be included in these descriptions, but a
full explanation of the background signal processing theory is beyond the scope of this

1As these sections describe work by other people in detail, for brevity, the references have been men-
tioned once near the beginnings of the sections. The techniques and equations are assumed to be from these
primary references unless explicitly specified otherwise.
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document.

2.2 Linear Prediction

According to Markel and Gray Jr. [1976], linear prediction was first applied to speech by
Saito and Itakura [1966] and by Atal and Schroeder [1967], while some of the underlying
mathematics were performed by Gauss as early as 1795 [Sorenson, 1970]. The underly-
ing assumption of linear prediction is that each element of a sequence of values can be
predicted as a linear combination of a finite number of preceding values. The number
of preceding values used in the linear combination is known as the order of the linear
predictive model. In equation form, a linear predictive model looks as follows:

s̃[n] =
P∑
p=1

aps[n− p] (2.1)

where s[n] is the value of the nth sample of the signal, in this case a speech waveform;
s̃[n] is an estimate of s[n]; P is the order of the analysis; and the aps are coefficients that
are selected during analysis.

2.2.1 Features

When processing speech, it is common to treat it as a number of frames, which are por-
tions of speech that are short enough to capture the local phenomena being studied. For
each frame of speech that is represented by a linear prediction model, the features include
a set of ap coefficients as in Equation 2.1, and an excitation. The excitation is an input
signal that is added to the linear combination in Equation 2.1. It can be considered an in-
put signal to the model. A non-zero excitation is necessary for a linear predictive model to
produce non-zero output. The excitation, itself, may be represented in a number of ways.
Three popular choices are:

1. a gain estimate and a voiced/unvoiced decision with pitch period estimates for voiced
regions of speech, which can be expanded by rules to create a signal

2. a voiced/unvoiced decision with multiple pulses for each voiced region

3. a residual or error signal that is derived after solving for the ap coefficients.
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2.2.2 Analysis

One common goal among different variations of linear predictive analysis is to find values
for the ap coefficients that produce the most accurate estimates of the original speech
signal. One way to formulate this problem is in terms of minimizing the squares of the
error, which is the difference between the original signal, s[n], and the estimates, s̃[n],over
a range of samples. Two popular methods of selecting coefficients, based on minimizing
squared error, are the autocorrelation method and the the covariance method. A third
popular method, which belongs to a class of lattice methods based on a different set-up, is
used to produce partial correlation, PARCOR, or reflection coefficients. This particular
lattice method is solvable in a manner similar to the autocorrelation method.

Minimizing Squared Error

The squared error can be minimized using the typical procedure from calculus of equating
derivatives with zero and solving. In the specific case of a linear predictive model, where
we are considering a range of samples indexed by the variable, m, we get an equation for
each coefficient, ai, where 1 ≤ i ≤ p:

∂

∂ai

∑
m

(s[m]− s̃[m])2 = 0 (2.2)

∂

∂ai

∑
m

(
s[m]−

P∑
p=1

aps[m− p]

)2

= 0 (2.3)

∑
m

∂

∂ai

(
s[m]−

P∑
p=1

aps[m− p]

)2

= 0 (2.4)

∑
m

2

(
s[m]−

P∑
p=1

aps[m− p]

)
∂

∂ai

(
s[m]−

P∑
p=1

aps[m− p]

)
= 0 (2.5)

∑
m

2

(
s[m]−

P∑
p=1

aps[m− p]

)
(−s[m− i]) = 0 (2.6)

∑
m

(
s[m]−

P∑
p=1

aps[m− p]

)
s[m− i] = 0 (2.7)

∑
m

s[m− i]s[m] =
P∑
p=1

ap
∑
m

s[m− i]s[m− p] (2.8)
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At this point, it is typical to define a function, φ, as follows:

φ(i, p) =
∑
m

s[m− i]s[m− p] (2.9)

and to rewrite Equation 2.8 as:

p∑
p=1

apφ(i, p) = φ(i, 0) (2.10)

This resulting system of equations from considering 1 ≤ i ≤ p can be represented in
matrix form as follows:

φ(1, 1) φ(1, 2) φ(1, 3) · · · φ(1, p)
φ(2, 1) φ(2, 2) φ(2, 3) · · · φ(2, p)
φ(3, 1) φ(3, 2) φ(3, 3) · · · φ(3, p)

...
...

... . . . ...
φ(p, 1) φ(p, 2) φ(p, 3) · · · φ(p, p)




a1

a2

a3
...
ap

 =


φ(1, 0)
φ(2, 0)
φ(3, 0)

...
φ(p, 0)

 (2.11)

This equation can be written more compactly by substituting variable names for the
corresponding matrix and vectors as follows:

Φa = ψ (2.12)

Up to this point, the range of the index of summation, m, has not been specified.
One possibility may be to let m range over an entire speech waveform, but that would
provide information on the entire waveform and would not give any insight into the local
variations in the waveform. When performing linear prediction analysis, it is typical to
consider smaller segments of a waveform in separate analyses. This leads to different
choices for m, which lead to different solutions of the system of equations represented by
Equation 2.12.

Autocorrelation Method

In the autocorrelation method, the index of summation, m, is chosen to range from
−∞ to ∞, but the waveform, s[n], is assumed to be zero when n < 0 or n ≥ N for
some fixed value N . Given this assumption, it can be shown that φ(i, j) = φ(k, l) when
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|i− j| = |k − l|. As a result, the Φ matrix in Equation 2.12 can be written as:

Φ =


φ(1, 1) φ(1, 2) φ(1, 3) · · · φ(1, p)
φ(1, 2) φ(1, 1) φ(1, 2) · · · φ(1, p− 1)
φ(1, 3) φ(1, 2) φ(1, 1) · · · φ(1, p− 2)

...
...

... . . . ...
φ(1, p) φ(1, p− 1) φ(1, p− 2) · · · φ(1, 1)

 (2.13)

The resulting Φ matrix can be seen to be Toeplitz, which means that along any (upper-left
to lower-right) diagonal, all the values are the same. Furthermore, this matrix is symmet-
ric. The value in any position is equal to the value in the position with the row and column
swapped. Due to these constraints on the Φ matrix, Equation 2.12 can be solved using an
efficient algorithm called Levinson-Durbin recursion. This procedure only requires on
the order of p2 operations to solve for the a vector, where a typical approach involving a
general matrix inversion would require on the order of p3 operations.

Covariance Method

In the covariance method, the index of summation, m, is limited to the range of 0 <=
m < N for some fixed value N , but the speech waveform values outside this range are
used when necessary, and not set to zero as in the autocorrelation method. Given this as-
sumption, it can be shown that φ(i, k) = φ(k, i). As a result, the Φ matrix in Equation 2.12
can be written as:

Φ =


φ(1, 1) φ(1, 2) φ(1, 3) · · · φ(1, p)
φ(1, 2) φ(2, 2) φ(2, 3) · · · φ(2, p)
φ(1, 3) φ(2, 3) φ(3, 3) · · · φ(3, p)

...
...

... . . . ...
φ(1, p) φ(2, p) φ(3, p) · · · φ(p, p)

 (2.14)

The resulting Φ matrix is symmetric and positive definite, which means that for any non-
zero vector (of appropriate length), v, vTΦv > 0. Due to the special form of the Φ matrix
in this case, an algorithm called Cholesky decomposition can be used to simplify the pro-
cedure of solving for the a vector. This usually takes about half the time of an approach
involving a general matrix inversion, but still requires on the order of p3 operations, so it
is usually less efficient than the Levinson-Durbin recursion, which is used in the autocor-
relation method.
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Lattice Methods

Lattice methods include a number of techniques that formulate the problem of minimiz-
ing the error by solving for values in a structure known as a lattice filter. Although this
general approach includes solutions which optimize quantities other than the squared er-
ror, the commonly used approach that produces reflection coefficients through partial
correlation or PARCOR analysis is actually equivalent to the autocorrelation method,
and its parameters, though different from autocorrelation parameters, can also be produced
through Levinson-Durbin recursion. Thus, this commonly used form of lattice method can
also be performed on the order of p2 operations.

Excitation Parameters

Regardless of the method used to determine the ap coefficients in Equation 2.12, it is still
necessary to represent an excitation to represent the entire speech waveform.

The excitation used in a linear prediction model is x[n] in the following equation:

s̃[n] =
P∑
p=1

aps[n− p] + x[n] (2.15)

The calculation of the excitation parameters for each analyzed segment of speech de-
pends on the choice of the excitation representation.

One popular model for the excitation is to treat it as a gain parameter, G, multiplied by
a signal, u[n], which is either a periodic train of unit impulses or white noise:

x[n] = Gu[n] (2.16)

In this model, an external algorithm is necessary to provide decisions for whether the
speech segment is voiced or unvoiced. An external algorithm is also necessary to estimate
the pitch period, or number of samples after which the waveform approximately repeats,
for segments that are judged to be voiced. The area of algorithms for judging voicing and
estimating pitch periods is quite large and is a topic in itself [Hess, 1983]. Whatever meth-
ods are chosen, features will be necessary for voicing and pitch periods. The remaining
feature in this model is gain, which can be estimated by the formula

G =

√√√√R(0)−
P∑
p=1

apR(p) (2.17)
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where the aps are the coefficients from Equation 2.12, and R(k) =
∑N−1−k

m=0 s[m]s[m+ k]
[Rabiner and Schafer, 1978].

Another approach is to represent the excitation with a set of multiple pulses for each
pitch period. The locations and amplitudes of the pulses are typically determined through
an analysis-by-synthesis method [Atal and Remde, 1982].

A third approach that is popularly used in speech synthesis, due to the quality of the
output is to set the excitation equal to the residual, or error signal, after determining the ap
coefficients in Equation 2.12:

x[n] = s[n]− s̃[n] = s[n]−
P∑
p=1

aps[n− p] (2.18)

Storing the residual requires one value for every sample in the original speech signal, but
there are still cases where it is a useful representation of the excitation. It does allow re-
covery of the original signal, and if the linear prediction model matches the original signal
well, the residual values will cover a smaller range and can most likely be compressed
better than the original signal Press et al. [1992].

2.2.3 Synthesis

After linear predictive analysis has been performed on the segments of a speech waveform
and coefficients have been extracted, synthesis consists of the following steps:

1. producing an excitation for each speech segment

2. filtering the excitation based on the linear prediction coefficients

3. combining the synthesized speech segments into one waveform

Producing an Excitation

The production of the excitation depends on the choice of representation. If, during anal-
ysis, it was treated as a gain multiplied by an impulse train or white noise, the following
steps are taken:

1. Check the voicing decision
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2. For voiced speech, generate an impulse train where the impulses are spaced accord-
ing to the pitch period

3. For unvoiced speech, generate white noise.

4. Multiply the resulting signal (impulse train or white noise) by the gain.

If during analysis, the excitation was represented by multiple pulses or a residual, just
produce those.

Filtering the Excitation

After the excitation, x[n], is produced, take the ap coefficients and calculate the following
equation over the samples, n, in the current speech segment:

s̃[n] =
P∑
p=1

aps[n− p] + x[n] (2.19)

Combining Speech Segments

After speech segments are synthesized by, there are a number of choices for connecting
them. One possibility is to simply concatenate them. This may lead to discontinuities
where the segments are joined. Another possibility is to use some form of interpolation.
This can be performed by synthesizing regions that are larger than the original analysis
segments and using an overlap-and-add approach with appropriate windows.

2.2.4 Line Spectral Frequencies

During applications, such as voice transformation, it is necessary to predict speech model
features, in some cases producing new values which weren’t seen in the original data.
Although linear prediction coefficients can effectively be used to model speech, small
changes in the values of coefficients, even when they were derived from recorded speech,
can lead to large changes in the quality of synthesized speech, even leading to a loss
of stability, in the sense that the output of a linear prediction filter may no longer be a
bounded function of the input. One way around this difficulty is to move the values of
the linear prediction coefficients into a space that is easier to work with by converting
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them into line spectral frequencies, which are the complex roots of the following pair of
equations:

P (z) = A(z)− z−K+1A(z−1) (2.20)
Q(z) = A(z) + z−K+1A(z−1) (2.21)

where K is the order of the linear prediction analysis, and A(Z) = 1 +
∑K

k=1 akz
−k. The

line spectral frequencies have numerous convenient properties. They all lie on the unit
circle. As the angle is increased while traveling around the unit circle, the roots of P (z)
and Q(z) alternate. Stability is preserved when the angles are changed.

2.3 Fourier Analysis-Based Speech Models

The harmonic sinusoidal [McAulay and Quatieri, 1986] and harmonic plus noise [Stylianou,
1996] models are two speech models that have been used in voice transformation systems.
They are based on a mathematical technique called Fourier analysis, and can be seen as
two of the more recent developments in a line of speech models that goes back at least as
far as Homer Dudley’s channel vocoder [Dudley, 1939].

As a proper understanding of these speech models depends on knowledge of short-time
Fourier analysis, some relevant background material on this topic will be provided first.
It should be noted, however, that the fields of Fourier analysis and signal processing are
large, and covering them in great detail is beyond the scope of this document.

2.3.1 Fourier Analysis

Fourier analysis is a powerful mathematical technique that has been used on a variety of
problems including the modeling of speech signals. Among its numerous appealing char-
acteristics are its ability to represent periodicities at different frequencies in signals. As the
human ear uses a substructure called the cochlea to detect different frequencies, analyzing
the frequencies in a speech waveform seems to be a natural way to extract information that
people use to perceive speech.

Another compelling property of Fourier analysis is that an efficient algorithm for han-
dling discrete-time signals in a discrete frequency sense, called the Fast Fourier Trans-
form (FFT), has been discovered. This, in turn, has allowed the creation and exploration
of a number of more complicated speech models that are in part based on Fourier Analysis.
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Fourier Transforms

Fourier analysis is based on different types of Fourier Transforms, which are specific
types of mathematical mappings from one function to another. When handling discrete-
time signals, where values are known only at certain fixed-time intervals, the Discrete-
Time Fourier Transform, or DTFT, is used. If a discrete-time signal is represented by a
function, x[n], which maps an integer, n, to a complex value, the DTFT of x[n] is:

X(ejω) =
∞∑

n=−∞

x[n]e−jωn (2.22)

where j is the imaginary unit, and ω is a frequency.

When the DTFT exists, the original signal can be retrieved from it through the rela-
tionship:

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω (2.23)

Although a signal can be represented in this way, it is not a convenient representation
for speech synthesis. Taking the DTFT of a speech signal will provide information about
the frequencies in the entire signal, which can be composed of many different types of
sounds that have different frequency characteristics. Looking at all the frequencies present
in the entire signal does not describe the relative powers at different frequencies at different
times and how they change over time. This information is important for analyzing speech
signals.

One type of Fourier Transform that can be used to analyze frequency information on
shorter pieces of a signal, albeit with some drawbacks, is the discrete-time Short-Time
Fourier Transform (STFT). The discrete-time STFT is performed by applying a win-
dowing function, which emphasizes local samples, to the DTFT. The discrete-time STFT
for a signal x[n] at sample, n, is:

X(n, ω) =
∞∑

m=−∞

w[n−m]x[m]e−jωm (2.24)

where w[n] is the window function. There are a variety of choices for the window, though
it is typical to use one which has non-zero values only for a short interval around zero.
Picking a specific window function can have a great effect on the properties of the discrete-
time STFT, including whether the original signal can be recovered from it. If w[0] 6= 0,
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then the original signal can be recovered from the discrete-time STFT through the formula:

x[n] =
1

2πw[0]

∫ π

−π
X(n, ω)ejωndω (2.25)

A fuller description of the considerations for selecting an appropriate window for the
discrete-time STFT can be found in Chapter 6 of Rabiner and Schafer [1978]. The impor-
tant thing to note is that it is possible to choose a window which will allow the original
signal to be recovered exactly. In some sense, the representation can still contain all the
information from the original signal.

Considering the points mentioned above, the discrete-time STFT may look like a good
candidate for a speech model, and indeed numerous speech models have been based on
it. Examining a few historical and prominent ones will give a sense of some of the issues
involved. The first speech model that is arguably related to these principles is the Chan-
nel Vocoder. Though technically, it was based on bandpass filters and did not perform
Fourier analysis, it influenced later speech models which did use Fourier analysis. Over
20 years later, it was followed by the Phase Vocoder, which attempted to correct some of
its deficiencies.

Although the discrete-time STFT treats time discretely, it still treats signal values con-
tinuously. This was reasonable for older speech models based on analog hardware, but as
digital computers became more powerful, it was typically more convenient to treat the sig-
nal values discretely as well. When both time and values are treated as discrete quantities,
another transform called the Discrete Fourier Transform (DFT) is used:

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N (2.26)

where N is the number of points where the frequency is sampled. An associated discrete
STFT is useful for analyzing signals with properties that vary over time and is built by
applying a windowing function to the DFT:

X(n, k) =
∞∑

m=−∞

w[n−m]
N−1∑
n=0

x[m]e−j2πkm/NRN(k) (2.27)

Here, the function RN(k) equals 1 when 0 ≤ k < N and 0 otherwise. 2

2This RN function is also implicitly in the DFT equation, which is only summed from 0 to N − 1.
For a fuller description of related issues for DFTs see Chapter 8 of Oppenheim et al. [1999]. For a fuller
description of Short-Time Fourier Transforms, see Chapter 6 of Lim and Oppenheim [1988].
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As time progressed, not only did computers become much more powerful, but a more
efficient way of performing the DFT and its inverse, called the Fast Fourier Transform
(FFT), was discovered. This led to the construction of numerous software-based speech
models. Some of the more prominent ones were Multi-Band Excitation, the Harmonic
Sinusoidal model, and Harmonic plus Noise Models (HNM). These models will be dis-
cussed in the following sections.

2.3.2 Channel Vocoder

In 1939, before computers were available, and long before the FFT was used on computers,
Homer Dudley created the channel vocoder, which was the earliest speech coding device
[Rabiner and Schafer, 1978],

Features

The channel vocoder’s features are: voicing decisions, pitch estimates, and spectrum,
which is in the form of magnitude outputs of bandpass filters in a finite set of frequency
bands.

Analysis

The original channel vocoder was built from electrical circuits [Dudley, 1939]. Deriving
features from speech waveforms meant producing new electrical signals from a signal
representing the original speech waveform.

The circuitry to produce a pitch signal consisted of multiple steps. First, a frequency
discriminator circuit greatly attenuated contributions at low frequencies, which were not
plausible as fundamental frequencies for human speech, and progressively attenuated fre-
quencies above a certain level so contributions in a plausible range for fundamental fre-
quencies would tend to dominate the signal. Then, the output of this circuit was passed
to a frequency meter circuit based on gas tubes that was developed by Hull [1929] [Hull,
1933] and modified by Riesz [Dudley, 1939]. The frequency meter circuit created a series
of electrical pulses at a rate proportional to the detected frequency. Next, the frequency
meter output is put through a low-pass filter to produce the final pitch signal.

Voicing is coded in the pitch signal. Regions without pulses are considered unvoiced.

Spectrum estimation is performed after a pre-distorting equalizer is applied to boost the
contributions of higher frequency components. This is very much like the pre-emphasis
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filters used in many current speech analysis techniques. Then, the signal is split into 10
signal bands by passing it through 10 bandpass filters in parallel. The first bandpass filter
is for frequencies from 0-250Hz, and the others each have bandwidths of 300Hz and are
successively placed to cover up to a maximum frequency of 2950Hz.3 The output of each
bandpass filter is sent through a rectifier to measure the power (phase is not measured),
and the resulting signal is low-pass filtered. The resulting signals are the spectral features.

A few interesting things to note about channel vocoder analysis are:

1. The idea of separating the pitch from the spectrum in speech, akin to the concept of
source-filter models, was present at least as early as 1939.

2. The idea of using a filter to emphasize higher frequencies before spectral analysis,
akin to pre-emphasis, was also preseent at least as early as 1939.

3. Combining pitch and voicing decisions into one stream, where a 0 pitch meant un-
voiced speech was done at least as early as 1939.

4. The production of an explicit signal for pitch and voicing enabled easy pitch and
voicing modification.

5. The spectral features did not attempt to measure phase.

Synthesis

The channel vocoder synthesizes speech by the following process. Part of the signal rep-
resenting the pitch is sent to a relay which selects either a “buzz” source for voiced speech
when there are pulses or a “hiss” source for unvoiced speech when there are no pulses.
The remaining part of the pitch feature signal is sent through a relaxation oscillator which
controls the frequency of the “buzz” source for voiced speech. One consequence is that
the “hiss” source is used during silence, and the spectral features are needed to drive the
output to zero in this case.

For each frequency band, the source signal is sent through a band-pass filter with the
same pass-band as the one used during analysis.4 For each frequency band, a balanced
modulator is used to essentially multiply the band-limited source signal by the magnitude
signal that is produced by the spectral analysis. The resulting parallel signals for the 10

3In later versions, different numbers and placements of bands were tried [Gold and Rader, 1967].
4Some later variations use smaller bandwidths in the synthesis band-pass filters than the ones used in the

analysis band-pass filters in order to compress the signal[Gold and Rader, 1967]
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bands are then combined into one signal, and a restoring filter is applied to undo the spec-
tral distortion caused by the pre-distorting equalizer during the analysis of the spectrum.

In the opinion of Dudley [1939], intelligibility is most related to the spectrum and
emotion is most related to the pitch.

According to Rabiner and Schafer [1978], some of the issues with the channel vocoder
are that the synthesized speech is reverberant due to the way adjacent frequency bands are
merged, formants can be highly distorted through quantization, and the system depends
on pitch and voicing estimates, which are difficult to accurately predict.

2.3.3 Phase Vocoder

Flanagan and Golden [1966] introduced the Phase Vocoder in 1966. One of the main
motivating factors was the belief that the synthesis quality from previous speech models
could be improved through better handling of the excitation. Instead of explicitly tracking
pitch and voicing like the channel vocoder, the Phase Vocoder extracts phase information
from the signal, in terms of its derivative. At this stage in time, a computer was used to
implement the Phase Vocoder, but the implementation was considered to be a simulation.

Features

The phase vocoder features are spectral amplitudes and phase derivatives.

Analysis

The amplitudes and phase derivatives are calculated at various frequency and time lo-
cations by first estimating quantities a and b, which amount to essentially the real and
imaginary parts of the discrete STFT:

a(ωn,mT ) = T
m∑
l=0

f(lT )[cosωnlT ]h(mT − lT ) (2.28)

b(ωn,mT ) = T
m∑
l=0

f(lT )[sinωnlT ]h(mT − lT ) (2.29)

where ωn is the nth frequency that is sampled, m is the number of the speech sample,
T is the sampling interval of the speech signal, and h is a window function. From these
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quantities, the magnitudes, |F | at the ωn sample frequencies and mT sample times are
calculated as:

|F (ωn,mT )| = (a2 + b2)
1
2 (2.30)

For convenience the arguments of a and b have been left out, but they match the arguments
of |F |.

The discrete phase derivative estimates, ∆φ
T

, at the same points are calculated as:

∆φ

T
(ωn,mT ) =

1

T

b∆a− a∆b

a2 + b2
(2.31)

where the ∆s are the change in function values with respect to a change in sample time,
T .

∆a = a(ωn, (m+ 1)T )− a(ωn,mT ) (2.32)
∆b = b(ωn, (m+ 1)T )− b(ωn,mT ) (2.33)

Some of the original parameter choices were T = 10−4 seconds, h was a sixth-order
Bessel filter, the number of frequency channels was 30, and ωn = 2πn(100) rad/sec. The
ωn values were chosen so the spectrum was analyzed from 50 Hz to 3050 Hz.

Synthesis

Synthesis is performed by synthesizing each frequency channel and adding all the synthe-
sized channels together. Each individual channel, f̃n, was synthesizing by performing the
following calculation:

f̃n = |Fn(ωn,mT )|cos

(
ωnmT + T

m∑
l=0

∆φ(ωn, lT )

T

)
(2.34)

According to Rabiner and Schafer [1978], speech synthesized by a phase vocoder can
be reverberant due to a lack of absolute phase information. The reason its creators decided
to use the phase derivative instead of the absolute phase was because the absolute phase
was unbounded.

Numerous variations on the phase vocoder appeared in the literature, including a method
of basing the calculations on the FFT [Portnoff, 1981].

One additional point about phase vocoder synthesis is that the model can be manipu-
lated to modify time and frequency properties of the speech signal. These operations can
be useful in speech synthesis.
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2.3.4 Harmonic Sinusoidal Models

Sinusoidal coding, or harmonic sinusoidal modeling, was introduced by McAulay and
Quatieri [1986]. It differs from models such as the channel vocoder and phase vocoder in
that instead of using a set of fixed frequency bands to represent the speech signal, it uses
a set of sinusoids whose frequencies are multiples of the fundamental frequency, which
varies over time.

Features

The underlying assumption is that each frame, s(n), of a speech signal can be represented
adequately by the following expression:

s(n) =
L∑
l=1

Alcos(nlω0 + φl) (2.35)

where L is the number of harmonics, Al is the amplitude of the lth harmonic, ω0 is the
fundamental frequency, and φl is the phase of the lth harmonic. These quantities at each
frame are the features of the harmonic sinusoidal model.

Analysis

First a pitch estimation procedure is used to select a fundamental frequency for each frame.
Then, for each frame, the following function, which is a type of STFT, is calculated for
the harmonic frequencies:

S(ω) =

N/2∑
n=−N/2

s(n) exp(−jnω) (2.36)

The amplitude and phase for each harmonic, lω0, are the magnitude and arg of S(lω0),
respectively.

Synthesis

Earlier synthesis processes used with this model involved attempting to match harmonics
from frame to frame and using a linear function to interpolate amplitudes and a cubic
function to interpolate phases. This approach was superseded by a much simpler overlap
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add (OLA) technique which gave results that were essentially indistinguishably by human
listeners [McAulay and Quatieri, 1988] [B. and Paliwal, 1995].

To synthesize using the overlap add technique, each frame, ŝ(n) is synthesized accord-
ing to the following equation:

ŝk(n) =
Lk∑
l=1

Akl cos(nω
k
l + θkl ) (2.37)

where the k superscripts represent the kth frame, and the Akl , ωkl , and θkl values are the as-
sociated amplitudes, frequencies, and phases. The output values for samples for n ranging
from the location of frame k − 1 to frame k are given by:

ŝ[n] = ws(n)ŝk−1(n) + ws(n− T )ŝk(n− T ) (2.38)

where ws is a window subject to the following constraint:

ws(n) + ws(n− T ) = 1 (2.39)

2.3.5 Multiband Excitation Vocoder

[Griffin and Lim, 1988] introduced the multiband excitation vocoder which was also
based on harmonics, but used a voicing decision for each harmonic and a different excita-
tion strategy accordingly. This approach was used in an attempt to reduce the amount of
“buzziness” that typically occurs in vocoded speech due to the replacement of noise in the
original speech with periodic energy.

Features

The features of the multiband excitation are a pitch period for each frame, an amplitude
and a binary voicing decision for each harmonic, and a phase for each voiced harmonic.

Analysis

The analysis occurs in two steps. The first step is an analysis by synthesis method which
attempts to estimate pitch period and spectral envelope features by considering the error
between the spectrum of the original speech and the estimated synthetic spectrum. The
second step makes a binary voicing decision for each harmonic based on how close the
spectra of the original and synthetic speech are at that harmonic.
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Synthesis

Three possible synthesis methods are mentioned in the original paper, but the third one,
which is based on processing in the time domain is the one selected for implementation.
For each frame, the voiced and unvoiced harmonics are synthesized separately and added
together.

The voiced portion of the synthetic speech, ŝv is produced by summing sinusoids for
the harmonics that were judged voiced:

ŝv(t) =
∑
m

Am(t)cos(θm(t)) (2.40)

The amplitudes, Am, are linearly interpolated between frames and considered 0 in un-
voiced frames. The phase functions, θm(t), are described by the following formula:

θm(t) =

∫ t

0

ωm(ξ)dξ + φ0 (2.41)

where φ0 is an initial phase, and ωm(t) is called a “frequency track” and is linearly inter-
polated between consecutive frames as follows:

ωm(t) = mω0(0)
S − t
S

+mω0(S)
t

S
+ ∆ωm (2.42)

where S is the frame advance, and ω0(0) and ω0(S) are the fundamental frequencies that
were estimated for the frames. There are a number of additional steps to handle various
boundary cases involving transitions for voiced regions to unvoiced regions and vice versa.

The first step of synthesizing the unvoiced portion of the synthetic speech is to window
white noise, and apply an FFT to it. Then the samples from the FFT are normalized to
have magnitude 1 in each unvoiced region and the resulting transform is multiplied by a
spectral envelope that is constructed by interpolating between the envelope samples from
the analysis phase. The weighted overlap add method is used on the resulting transform to
produce the unvoiced portion of the synthetic speech.

2.3.6 Harmonic Plus Noise Models

Stylianou [1996] describes three Harmonic Plus Noise Models (HNM)s. The first one,
called HNM1 is the most tractable of the three and has been used in speech synthesis
and voice transformation. The basic premise behind HNMs is that speech frames can be
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divided into two frequency bands, where the lower band consists of voiced frequencies and
the upper band consists of unvoiced frequencies. The boundary between the two bands is
allowed to move between frames, and can be considered to be at 0 for unvoiced frames.
The voiced/unvoiced patterns that are allowable in HNMs can be seen as a subset of the
possibilities for the multiband excitation model.

In a HNM, the lower band is represented by a sum of sinusoids at harmonic frequen-
cies, and the upper band is represented by white-noise-excited LPC.

Features

For each frame, HNM features include a binary voicing decision and parameters for an
LPC analysis of the frame. If the frame is voiced, they also include a fundamental fre-
quency, a maximum voiced frequency, and amplitudes and phases for all harmonics up to
the maximum voiced frequency.

Analysis

Analysis consists of a fixed-frame portion followed by a pitch-synchronous portion. The
fixed-frame step estimates the pitch every 10 ms using a pitch estimation technique that
is similar to the one used in the multiband excitation vocoder. The following voicing
decision for each frame is performed by creating a synthetic spectrum based on harmonic
sinusoids, comparing it to the original frame, and deciding based on the size of the error.
The synthetic spectrum, Ŝ, is created by summing sinusoids whose frequencies are integer
multiples of the fundamental frequency estimate derived from the pitch estimate and whose
amplitudes and phases are taken from samples from a DFT of the original signal, S.5

The error is calculated based on the following function, which compares the synthetic
spectrum to the original spectrum in a band from a little below the fundamental frequency
estimate,f̂0, to a little above four times the fundamental frequency estimate.:

E =

∫ 4.3f̂0

0.7f̂0
(|S(f)| − |Ŝ(f)|)2∫ 4.3f̂0

0.7f̂0
|S(f)|2

(2.43)

5In practice, using a longer frame increases the frequency resolution and typically enables finding DFT
samples closer to the harmonics. Stylianou [1996] pads the frame with zeros to a length of 4096 before
applying the FFT.
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In practice, these values are calculated as discrete sums.6 If the error is less than -15dB,
the frame is considered voiced; otherwise it is considered unvoiced. The frequencies in
neighborhoods of the harmonics are then tested according to various thresholds to deter-
mine what is the maximum voiced frequency, i.e. the boundary between the voiced and
unvoiced frequency bands. After this is performed, the fundamental frequency estimates
for the voiced frames are refined using the voiced frequencies. The refined fundamental
frequency estimate for a frame is:

f̂0 = arg min
fi

Lm∑
i=1

|fi − if̂0|2 (2.44)

where Lm is the number of voiced frequencies in the frame, and the fis are the voiced
frequencies.

The pitch-synchronous portion of the analysis begins by using the pitch estimates from
the fixed-frame portion to determine the time points in the signal to be analyzed. They are
chosen by advancing the length of the pitch period for the voiced frames and by 10ms
for the unvoiced frames. It is assumed that the fundamental frequencies and maximum
voiced frequencies vary little over the short term, so the pitch synchronous time analysis
points use these values from the closest fixed-frame analysis points. Then the amplitudes
and phases for each pitch-synchronous frame are calculated by attempting to minimize a
least squares error criterion between the original speech frame and the frame that would
be produced by a sum of harmonic sinusoids with those amplitudes and phases. This min-
imization can be performed using linear algebra, and the solution involves the inversion of
a Toeplitz matrix. If the additional assumption that the interaction among the harmonics
is insignificant is made, the solution can be simplified, and the amplitudes can be found
using the following formula:

Ak =

∑ta+N
t=ta−N w

2(t)s(t)e−j2πkf0t∑ta+N
t=ta−N w

2(t)
(2.45)

where Ak is the complex coefficient for the kth harmonic, i.e. the amplitude is |Ak| and
the phase is arg(Ak); ta is the analysis time point; N is the pitch period; w2(t) is the
square of the window function; s(t) is the original speech sample at time t; and f0 is the
fundamental frequency.

The rest of the pitch-synchronous analysis consists of determining parameters for the
unvoiced portion of the speech. This consists of performing LPC analysis on each frame
and storing normalized lattice filter coefficients along with the estimated variance for each
analysis time point.

6It is very important to include the frequency effect of the window when creating the synthetic spectrum.
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Synthesis

HNM synthesis involves producing signals for the lower frequency bands, based on har-
monics, producing signals for the upper frequency bands, based on white-noise excited
LPC synthesis, and adding the signals.

The basic idea for the synthesis of the harmonic part is to generate it from the following
equation:

ĥ(t) =

L(ts)∑
k=0

ak(ts)cos(φk(ts)) + k2πf0(ts)t) (2.46)

where ts is the synthesis time point, L(ts) is the associated number of harmonics, ak(ts)
is the amplitude of the kth harmonic at that time, φk(ts) is the phase of the kth harmonic
at that time, and f0(ts) is the fundamental frequency at that time. In practice, synthesizing
each frame in this manner and concatenating them can cause undesirable audio artifacts
due to the discontinuous changes in the parameters. A few techniques for handling this
problem are:

1. interpolation of the amplitudes and phases between synthesis points,

2. performing overlap-add to combine the frames, and

3. improving phase coherence by using a global center-of-gravity assumption [Stylianou].

These techniques can be used singly or in combination.

The synthesis of the noise part proceeds by generating white noise, using it as the
excitation of the normalized LPC filter for the frame, and multiplying it by the variance
that was stored by the frame. If the frame is voiced, a high-pass filter is then applied with
a cut-off at the maximum voiced frequency for the frame, and a time-domain envelope is
applied. For unvoiced frames, these additional steps are not performed. Finally, overlap-
add is used to combine the noise parts from different frames.

2.4 Cepstral Analysis

Another popular representation of speech is cepstral coefficients. The original definition
of the power cepstrum was given by Bogert et al. [1963] as the power spectrum of the
logarithm of the power spectrum, though there are a number of variations [Childers et al.,
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1977]. A typical definition of cepstral coefficients used in speech models is the magnitude
of the inverse DFT of the logarithm of the magnitude of the DFT. Cepstral parameters can
also be derived from linear prediction coefficients and can be based on warped frequency
scales that correspond more closely to human perception.

2.4.1 LPCC

The following recursive algorithm that derives cepstral coefficients from linear prediction
coefficients [Rabiner and Juang, 1993]:

c0 = ln(σ2) (2.47)

cm = am +
m−1∑
k=1

k

m
ckam−k, 1 ≤ m ≤ p (2.48)

cm =
m−1∑
k=1

k

m
ckam−k,m > p (2.49)

where cm is the mth cepstral coefficient, σ2 is the gain parameter from the LPC analysis,
and am is the mth linear prediction coefficient. The coefficients derived by this process
are called Linear Prediction Cepstral Coefficients (LPCC).

2.4.2 MFCC

The mel scale is an experimentally derived measure of humans’ perceptions of pitch that
was described by Stevens and Volkmann [1940], who give a conversion formula:

mel = 1127.01048 log(f/700 + 1) (2.50)

where f is the original frequency. This scale is popular among the ones that have been
used to warp frequencies during cepstral analysis. One common way of creating Mel-
Frequency Cepstral Coefficients (MFCC) is to create a bank of triangular filters that is
evenly spaced along the mel scale, and to use the output powers of the filters on speech
input as follows [Rabiner and Juang, 1993]:

c̃n =
K∑
k=1

(logS̃k)cos

[
n

(
k − 1

2

)
π

K

]
(2.51)

where cn is the nth MFCC, and Ŝk is the power from applying the kth filter to the speech
signal.
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2.4.3 Mel Log Spectral Approximation Filter

The Mel Log Spectral Approximation Filter (MLSA) was introduced by Imai [1983].
This filter has been used in Hidden Markov Model-based speech synthesis [Tokuda et al.,
2000], and is also used in the baseline voice transformation system used in this thesis. The
parameters from the MLSA are based on a frequency scale that is warped by an all-pass
filter and approximates the mel scale. The analysis algorithm derives a “true” envelope by
adjusting the MLSA parameters so their derived spectrum goes through the peaks of the
original spectrum. This is supposed to make the MLSA parameters more closely match
the spectral envelope of the original speech than the traditional MFCCs do.

2.5 Summary

When automatically processing speech for tasks, such as voice transformation, it is nec-
essary to have a convenient, tractable representation of speech. The representation of the
speech is a speech model, which consists of features, and the methods of producing the
features from the speech and producing the speech from the features are called analysis
and synthesis, respectively.

Three basic techniques that have demonstrated convenience and tractability for creat-
ing speech models for a wide range of speech applications are linear prediction, Fourier
analysis, and cepstral analysis. In practice, these techniques can be used in combination,
so they shouldn’t be considered distinct categories of speech models, but distinct tools that
can be used to build them. It is, however, possible to trace the development of various
speech models and see how they refine the use of these techniques.

Three speech models that will be of particular interest in the following chapter on
voice transformation are LSF, HNM, and MLSA. The current chapter described the build-
ing blocks for these models. LSF is based on a transformation from the linear prediction
features. HNM comes from a family of techniques originally based more on methods
inspired by Fourier analysis and eventually came to include some linear prediction tech-
niques. MLSA is a form of cepstral analysis. Cepstral analysis, itself, is based on spectral
analysis, which is typically performed using Fourier analysis or linear prediction.
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Chapter 3

Voice Transformation

3.1 Introduction

In this document, voice transformation, also known as voice conversion and voice mor-
phing, is defined as the process of making speech from one speaker sound as if it had been
spoken by another. These speakers are called the source speaker and target speaker,
respectively.

Voice transformation is important for both scientific and practical reasons. On a fun-
damental level, the study of mappings of speech from one person to another is the study
of how speech differs among people. Implicit in this investigation is the consideration of
which parts of the speech signal reflect general features shared among speakers for a par-
ticular language (and in some cases, even across languages) and which parts reflect specific
features that relate to an individual’s identity. From the practical perspective, mappings
from one speaker to another enable or simplify numerous applications, some of which will
be discussed in Section 3.2.

The task of transforming speech from one identity to another is difficult and the best
way to pursue this goal is still an open question. In a general sense, speech from two people
can vary in many ways, including word choice, prosody, phonetics, and acoustics. Word
choice differs among speakers when they use alternate words to convey the same or similar
meanings. Prosody differs among speakers who speak at different pitches and volumes.
It also differs when speakers speak at different rates and use different relative durations
for various speech sounds. Phonetics differ in speech when people pronounce the same
word using different phonemes. Acoustics differ among speakers who have vocal tracts
of different sizes and shapes that change the audible waveforms they produce when they
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speak.

Due to the difficulty of the general problem of voice transformation, it is typical to
limit the scope by focusing on certain levels. Current voice transformation techniques pri-
marily address the acoustic level, and to a lesser extent, the prosodic level, although there
have been occasional attempts to more fully model the prosodic level and to incorporate
the phonetic level into models [Abe, 1991]. The typical focus on the acoustic level with
a minimal use of prosodic features owes to the strengths of current speech models, which
are usually source-filter models. In this context, the source includes pitch and power infor-
mation, which would most closely correspond to the prosodic level in a linguistic sense,
and the filter includes spectral information, which would be most closely related to the
acoustic level in a linguistic sense. Furthermore, whatever features that are chosen for
modeling speakers are also subject to the constraint that inter-speaker mappings for these
features must be feasible. A discussion of some features and models that have been used
for voice transformation by various researchers, with a view towards the techniques used
in our work, is in Section 3.3. More specific details about the baseline voice transformation
technique used in the experiments in this document is in Section 3.4.

One common practice that simplifies the problem of voice transformation by limit-
ing its scope is to have the source and target speakers read the same text, though there
are systems which do not depend on this [Sündermann et al., 2006]. When the speakers
read the same material, differences in word choice are not even considered and further
differences that might manifest themselves in spontaneous, conversational speech are also
ignored. Another way of limiting the scope is to reduce prosodic differences by having
target speakers attempt to mimic source speakers [Kain, 2001].

Regardless of the scope of the transformation, there is always the question of how good
a voice transformation actually is. Numerous ways of evaluating voice transformation have
been devised. This is the topic of Section 3.5.

3.2 Applications

Voice transformation has many applications. One that is frequently mentioned in the lit-
erature is the ability to more easily build synthetic voices with new identities and styles
[Kain, 2001]. Without voice transformation, the typical approach to building a concatena-
tive speech synthesizer involves recording a person reading thousands of sentences. This
size is necessary to cover the majority of phonetic cases that would be necessary for new
synthetic utterances. In addition to difficulties from the time and effort involved in read-
ing that many sentences, most people are not able to read that quantity in a consistent
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manner, and inconsistencies in speakers’ deliveries can decrease quality in the final syn-
thesizers. With the standard approach to concatenative speech synthesis, the construction
of every new voice requires a person to read the entire corpus of thousands of sentences.
Another approach to the problem of creating a synthetic voice with a new identity is to
take an existing synthesizer and apply voice transformation to its output so it sounds like
a new speaker. This approach is appealing because voice transformation training requires
recording far fewer sentences. One estimate is that recording 50 sentences per speaker is
sufficient for GMM-based voice transformation [Mesbahi et al., 2007]. Using a corpus of
this size greatly reduces the cost of building a new synthetic voice and lessens the burden
on speakers who will have an easier time being consistent.

Another application of voice transformation is to try to defeat speaker identification
(SID) systems [Pellom and Hansen, 1999] [Masuko et al., 2000] [Jin et al., 2008]. SID
systems take input speech and attempt to determine whether it was spoken by a particular
person. Such systems have security applications. Voice transformation can be used to
impersonate a speaker in an attempt to fool an SID system. Another related application
involves privacy. Voice transformation techniques can be used to de-identify speech by
making it difficult for people and SID systems to determine who is speaking [Jin et al.,
2009].

In his dissertation, Kain [2001] lists a number of additional applications. One is to
provide an identity to speech coded at such a low bandwidth that its identity has been
removed [Schmidt-Nielsen and Brock, 1996]. Another is to apply a speaker’s identity to
speech in an unknown foreign language, for example in speech-to-speech machine trans-
lation or movie-dubbing [Abe et al., 1991] [Abe et al., 1990b]. Yet another is to improve
the intelligibility of acoustically impaired speech [Abe et al., 1991] [Mizuno and Abe]
[Stylianou et al., 1998] [Kain et al., 2004]. A more recent effort in this last area includes
the transformation of Non-Audible Murmur (NAM) speech to regular speech [Toda and
Shikano, 2005]. Such technology could allow people to have public conversations and yet
be nearly unheard by others.

3.3 Related Voice Transformation Work

The amount of literature on Voice Transformation is sizable and goes back to at least 1985
[Childers et al., 1985]. One of the main lines of research has been the investigation and
subsequent refinement of linear mappings between clusters of source and target speaker
spectral features. Earlier work in this area used Vector Quantization (VQ) codebook-
based techniques to create hard clusters of spectral features [Abe et al., 1990a]. These
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techniques were superseded by Gaussian Mixture Model (GMM) mapping-based tech-
niques which created soft clusters of spectral features [Stylianou et al., 1995a]. Origi-
nally, a GMM was learned for the source speaker data only, but a later refinement was to
learn a GMM on the joint space of features from both speakers [Kain, 2001]. Later work
tried to compensate for the excessive smoothing of the GMM mapping-based technique
by creating a hybrid approach with Dynamic Frequency Warping (DFW) [Toda, 2003].
More recent developments include using maximum likelihood estimation to find model
parameters, modeling dynamic features to improve estimated spectral feature trajectories,
and incorporating global variance into the models to again compensate for the excessive
smoothing of the original model [Toda et al., 2007].

3.3.1 VQ Codebook-Based Techniques

Abe et al.

A Voice Transformation technique based on VQ codebooks was introduced by Abe et al.
[1988]. The process for learning a mapping between the codebooks for two different
speakers went as follows:

1. Extract LPC coefficients from frames from words recorded by source and target
speakers.

2. Use VQ on the resulting LPC coefficient vectors.

3. Align each word between speakers using Dynamic Time Warping (DTW).

4. Create histograms for the vector correspondence between speakers.

5. Create a mapping codebook that uses the histograms to create linear combinations
of the target speaker’s vectors.

6. Repeat the DTW, histogram creation, and mapping codebook creation until the map-
ping codebook is considered to be good enough.

Mapping codebooks were also created for pitch and power, but the procedures were slightly
different as the values were scalars, and the maximum histogram occurrence was used in
creating the pitch mapping codebook.

Transformation was performed by extracting the LPC coefficients, pitch, and power
from a new recording by the source speaker, decoding them using the previously learned
mapping codebooks, and synthesizing from the resulting values.
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In the analysis of their experimental results, the authors concluded that both pitch and
spectrum were necessary for the individuality of the speech, and that neither alone was
sufficient for good voice transformation. All of the male-to-female transformed speech
was judged female by listeners, and 65% of the male-to-male transformed speech was
judged more similar to the target speaker than the source speaker by listeners. Although
this represented some level of success, there was still much room for improvement. One of
the problems with the original codebook based technique was that it led to a mapping that
had many step-like discontinuities, which degraded the quality of the transformed speech.

3.3.2 GMM Mapping-Based Techniques

A few techniques were tried to smooth out the discontinuities inherent in the original
codebook mapping technique. The most prevalent one is to replace the codebook map
with a Gaussian Mixture Model (GMM) map. The underlying idea is that a GMM, which
is continuous probability distribution that is described in more detail below, can be used
to model the feature vectors from the source speaker or both speakers. Various algorithms
can then use this GMM to perform voice transformation.

In order to understand a Gaussian Mixture Model, it is necessary to first understand
the multi-dimensional Gaussian distribution. A p-dimensional Gaussian distribution, N ,
is a continuous probability distribution over Rn that is parametrized by a p-dimensional
mean vector, µ, and a p-by-p covariance matrix, Σ. The probability density function of a
p-dimensional Gaussian distribution for x ∈ Rn is:

N (x;µ,Σ) =
|Σ|−1/2

(2π)p/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
A GMM is a weighted sum of Gaussian probability density functions subject to con-

straints and defines a probability distribution function, p(x), for a vector, x ∈ Rn, as
follows:

p(x) =
M∑
i=1

αiN (x;µi,Σi)

where M is the number of Gaussian components, µi is the mean of the ith Gaussian, Σi is
the covariance matrix of the ith Gaussian, and the αi weights are subject to the constraints
that

∀i, αi ≥ 0
M∑
i=1

αi = 1
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The parameters of a GMM are typically learned by taking a number of data vectors that
are assumed to have been generated by the GMM and using the EM algorithm [Dempster
et al., 1977] to estimate parameters that will maximize the likelihood of the data vectors. In
the following approaches, these data vectors consist of features derived both from source
and target speakers.

Different researchers have devised various ways to use GMMs to perform transforma-
tions from source speakers to target speakers. Such methods are described below in more
detail.

Yannis Stylianou et al.

The approach of using GMMs for Voice Transformation appears to have originated with
Yannis Stylianou and his coauthors [Stylianou et al., 1995a] [Stylianou and Cappé, 1998].
In this work, acoustic features were derived from a Harmonic + Noise Model (HNM)
[Stylianou et al., 1995b]. This model divides speech into a low band modeled by harmonically-
related sine waves, and a high band modeled by noise modulated by a time-domain am-
plitude envelope. This representation was chosen because modifications to duration and
pitch seemed to be relatively straightforward to perform and of high-quality. For voice
transformation, the HNM was simplified a little to make processing more convenient. The
maximum voiced frequency, which is the cutoff between the frequency bands, is allowed
to vary with time in the original HNM, but in the version used with voice transformation,
it was fixed at 4 kHz voiced frames. Also the analysis was changed so HNM parameters
were collected at a fixed rate of 10ms between analysis points, which is different from the
pitch-synchronous approach used in the original HNM.

Features were extracted from the low band by converting the harmonic frequencies
to a Bark frequency scale and then extracting cepstral coefficients using a regularization
technique [Cappé et al., 1995]. The 1st through 20th coefficients from the source and
target speaker speech were then aligned using Dynamic Time Warping (DTW).

The low and high bands were converted separately, and the cutoff was fixed at 4 kHz.
The low band was converted using a GMM mapping, and the high band was converted
using two different filters. One filter was for voiced frames, and the other was for unvoiced
frames.

The transformation function was not based on a proper statistical model, but was con-
structed by analogy to the solution of the minimum mean square estimation function for
the case where a single Gaussian distribution was used to model the features for each
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speaker. For a source speaker feature vector, x, the transformation function had the form:

F(x) =
M∑
i=1

P (Ci|x)[νi + ΓiΣ
−1
i (x− µi)] (3.1)

where P (Ci|x), Σ, and µ were taken from a GMM that had been previously learned on the
source speaker’s training data. Σ was the covariance matrix, µ was the mean, and P (Ci|x)
was the conditional probability density of the ith Gaussian class given data vector x:

P (Ci|x) =
αiN (x;µi,Σi)∑M
j=1 αjN (x;µj,Σj)

(3.2)

where ai is the weight of the ith class.

The νi and Γi values were determined from the data by minimizing the mean squared
error of the transformed vectors with respect to the target speaker feature vectors on the
training set:

{ν̂i, Γ̂i} = arg min
{νi,Γi}

∑
t

||yt −F(xt)||2 (3.3)

where t is an index vector over the alignments of source and feature vectors, and xt is a
source speaker feature vector aligned with a target speaker feature vector, yt.

In the single Gaussian case this was based on, there would have only been one class, so
the P (C1|x) factor would have been unnecessary as it would have always equaled 1, and a
minimum mean squared error solution based on a proper statistical model would have set
ν1 to the target speaker’s feature vector mean, and Γ1 to the cross-covariance matrix of the
aligned source and target vectors: Γ1 = E[(y − ν1)(x − µ1)T ]. In the multiple Gaussian
case that was used for voice transformation, the νi and Γi values were determined by
solving a more complicated system of linear equations and do not necessarily correspond
to means and cross-covariances.

A listening evaluation was performed with 20 people. One test was an “XAB” test
(called an “ABX” test in other literature [Kain, 2001]) which provided an example “X” of
converted speech and asked listeners to compare it with examples “A” and “B” of source
and target speech and decide which was more similar. Listeners overwhelmingly found
the voice conversion technique with 16 Gaussians in the mixture model to perform better
than a technique which only modified prosody, and further improvements occurred when
64 Gaussians were used and the same sentence was used for all three examples. In this
last example, 97% of the converted utterances were considered to be closer to the target
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speech. This demonstrated that converting spectral characteristics in addition to prosodic
characteristics improves the quality of Voice Transformation in terms of speaker identity.
Another test called an “opinion” test (called a pair comparison test by Kain [2001]) in-
volved presenting listeners with pairs of utterances where they could be actual speech,
converted speech, or prosodically-modified speech. The listeners were then asked to rate
the similarities of the pairs on a scale from 0 meaning “identical” to 9 meaning “very
different”. The results of this test corroborated the results from the “XAB” test.

Alex Kain’s Ph.D. Dissertation

Alex Kain’s Ph.D. dissertation [Kain, 2001] extended the idea of using GMM mappings in
Voice Transformation in a few more directions. He tried different acoustic features, used
a different alignment strategy, and also attempted to predict residuals based on his model.

In this work, speech was parametrized in a different way. Instead of spacing frames
every 10ms, they were spaced pitch synchronously. Unvoiced speech was assumed to have
a constant pitch of 125 Hz. Speech was represented using a harmonic sinusoidal model.
Then, the frequencies were warped according to the Bark scale, and Linear Predictive Cod-
ing (LPC) coefficients were calculated. Because LPC coefficients are difficult to modify
in a stable manner, Line Spectral Frequencies (LSF) [Itakura, 1975] were then computed
from the LPC coefficients. These Line Spectral Frequencies were used as features in the
Gaussian Mixture Model.

Alignment of source and target features proceeded differently from Stylianou’s DTW
approach. “Time marks” were created by performing HMM-based forced alignment on
the source and target speech using phonetic transcriptions. The HMM states were aligned,
and frames were repeated in or deleted from the target speech to match the length of the
source speech.

Although the transformation function, like Stylianou’s, was based on a GMM, the
transformation function used the GMM differently. Instead of only being trained on the
source speaker’s feature vectors, the GMM was trained on joint vectors that included fea-
tures from both the source and target speakers from aligned frames. This meant that the
GMM classes were based on both speakers and not just the source speaker. A different
transformation function was also used. For a source speaker feature vector, x, the trans-
formed feature vector was:

F(x) =
M∑
i=1

P (Ci|x)[µy,i + Σyx,iΣ
−1
xx,i(x− µx,i)] (3.4)

where µy,i was the mean of the target speaker feature vectors in the ith class, Σyx,i was
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the lower left quadrant of the joint GMM covariance matrix representing the covariance
between the target and source speaker features, Σxx,i was the upper left quadrant of the
joint GMM covariance matrix representing the covariance of the source speaker features,
and µx,i was the mean of the source speaker feature vectors.

This transformation function differed from Stylianou’s in that all terms were derived
from training a GMM on the joint feature space, and no additional system of linear equa-
tions had to be solved after the GMM training. It did, however require training a GMM on
vectors with twice the number of dimensions as were in a single speaker’s feature vectors.
Also, synthesis proceeded differently due to differences in the speech models and frame
selection.

One of this dissertation’s major contributions was the idea of attempting to predict the
LPC residual for the target speaker. This was performed by deriving cepstral coefficients
from the LPC coefficients and training a GMM classifier for deciding class membership
for vectors of such cepstral coefficients. Classifications from the GMM were used to create
a codebook of residuals, where residuals were represented as 100-point samples. In order
to predict a residual for a vector of LPC cepstral coefficients, the GMM parameters and
residual codebook were used to produce a weighted sum of residual codebook vectors,
which was the estimate. Residual prediction was found to improve the speaker identity of
transformed speech in subjective evaluations.

Tomoki Toda’s Ph.D. Thesis

Part of Tomoki Toda’s Ph.D. Thesis [Toda, 2003] was concerned with using GMM map-
ping techniques with Voice Transformation. He created a Voice Transformation technique
that used a combination of GMM mapping and Dynamic Frequency Warping (DFW). Sub-
jective evaluations supported the conclusion that the quality of the synthesized speech was
improved while the speaker identity remained just as good, when compared to a conven-
tional GMM mapping technique that did not use DFW.

The acoustic features, analysis, and synthesis in this thesis differed from the ones in
the other approaches. For the acoustic features, STRAIGHT [Kawahara et al., 1999] anal-
ysis was used to produce a smoothed spectrum, and MFCCs were calculated from this
spectrum at a fixed interval. Alignment of source and feature vectors was performed by
removing silence frames and then using a Dynamic Time Warping algorithm on the re-
maining frames. Then an iterative process was used to improve the alignment. First, a
GMM mapping was trained on the source and target speakers’ features. Then alignment
was performed again using the transformed version of the source speaker’s features and
the target speaker’s features. This process was repeated iteratively until the change in the
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Mel-Cepstral Distortion was less than a threshold.

Toda et al.

Later innovations by Tomoki Toda and coauthors included using the EM [Dempster et al.,
1977] algorithm to produce maximum likelihood estimates of the target features instead
of just using expectations, using additional “dynamic features” (weighted windows of fea-
tures), and changing the optimization function from maximum likelihood to a weighted
mixture of maximum likelihood and global variance [Toda et al., 2007].

One of the problems with the previous approaches to voice transformation was that
they were only focused on predicting features for one frame at a time. They did not
attempt to model the frame-to-frame dependencies of features. Toda and coauthors created
a GMM mapping based approach based that included dynamic features in the estimation
procedure. These dynamic features were created by weighting the feature values of a small
number of frames around the current frame and summing them.

Although a GMM was still used in the creation of a transformation function that was
used with these additional dynamic features, a new technique for constructing the trans-
formation function was created. Instead of focusing on minimizing mean squared error,
the objective was to maximize the likelihood of the target speaker’s feature vectors. The
attempted to estimate a sequence of target speaker vectors, ŷ, according to the following
formula:

ŷ = arg max
y

P (Y|X, λ) (3.5)

where y was a sequence of target speaker feature vectors, Y was the corresponding se-
quence of target speaker feature vectors augmented with their dynamic features, X was
the sequence of source speaker feature vectors augmented with their dynamic features for
the aligned frames, and λ was the set of GMM parameters. The solution to this equation
was estimated by assuming the conditional probability took the form of a GMM, using
the EM algorithm to search for a local maximum, and using linear algebra to relate y to
Y. The conversion procedure based on this transformation function was called Maximum
Likelihood Parameter Generation (MLPG) [Toda et al., 2007].

An approximate solution that was more efficient to calculate was also created by chang-
ing the procedure to first estimate and fix the sequence of mixture components. It was
found that this did not lead to a large difference in the accuracy of the transformation
function.

Another problem with previous voice transformation techniques was that they tended
to smooth out too much of the variation in speech. For this reason, Toda et al. [2007]
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created a regularization strategy based on including a Global Variance (GV) term in the
function to be optimized. An additional term was added to the likelihood function from
the MLPG approach, which was a probability based on the sequence of sample variances
of the target speaker feature vectors. Furthermore, an extra parameter was added to en-
able relative weighting between the original likelihood factor, and the new global variance
factor. The objective function became:

P (Y|X, λ)ωP (v|κ) (3.6)

where Y, X, and λ have the same meanings as in the MLPG case, ω controls the rela-
tive weight of the likelihood and the global variance probabilities, v is the sequence of
variances of the target speaker feature vectors, and κ is a set of parameters for a single
Gaussian, which is used to model the variances. Another procedure involving EM was
created to use this new objective function to transform feature vectors. In addition, a
more efficient version using an approximate solution based on estimating and fixing the
sequence of mixture components. Again, it was found that this did not affect performance
significantly.

It was found that using global variance in these led to improved quality of transformed
speech based on human listening tests, but worsened its score according to a calculated
measure.

One thing to note is that the choice of a Gaussian to model for the variances seems a
bit unusual as variances must be non-negative, and have Chi-square distributions.

3.4 Festvox Voice Transformation Scripts

The FestVox distribution [Black and Lenzo, 2000] includes scripts written by Tomoki
Toda that perform voice transformation. They are described here in more detail because
the voice transformation experiments in this thesis were based on modified versions of
these scripts.

3.4.1 Training Process

The baseline voice transformation training process is depicted in Figure 3.4.1 and de-
scribed below.

41



Figure 3.1: Baseline Voice Transformation Training Process

Extract Parameters

For all of the source speaker and target speaker audio files in the training set, produce
estimates of the fundamental frequency (F0) on 25ms frames with an advance of 5ms. If a
frame is judged unvoiced, record a 0 for its fundamental frequency.

For all of the source speaker and target speaker audio files in the training set, extract 24
MCEPs, which are the MLSA parameters which approximate MFCCs, per frame. Again,
the framesize is 25ms and there is an advance of 5ms between frames.

Calculate F0 Statistics

Take the logarithms of the non-zero F0 values for the source and target speaker training
utterances, and record the means and standard deviations for each speaker.

Train Spectral Conversion Function

Of the steps in the overall voice transformation process, the most complicated is the train-
ing of what is called the spectral conversion function in the FestVox scripts. This is the
GMM that is used to map the filter features from the source speaker to the target speaker.
By default these features are MCEPs and features derived from them. This map does not
account for prosodic features such as pitch, power, and duration. These are either handled
separately (pitch) or implicitly (power and duration).

Dynamic features are features that are derived from a combination of MCEP vectors
sampled at different times. They are used to model changes in MCEPs over time. The
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Figure 3.2: Baseline Voice Transformation Training Process

baseline formulation of dynamic features is that they are a linear combination of an MCEP
vector with the previous (sampled 5ms earlier) and following (sampled 5ms later) MCEP
vector with the coefficients specified in the following formula:

− 0.5Mtf−1
+Mtf + 0.5Mtf+1

(3.7)

where Mtf denotes the MCEP vector at the time of frame f .

Different people speak at different rates. Furthermore, the time spent on corresponding
sounds in utterances differs from speaker to speaker. A time warping function is used to
match parts of one speaker’s utterance with another speaker’s utterance. It is a mapping
from times in one utterance to times in another. This, of course, leads to the question of
how the map is derived in the first place. First, it is assumed that there is a reasonable
metric for comparing the similarity of MCEP vectors from the different speakers. In this
case, Mel-Cepstral Distortion (MCD) between a source speaker feature vector, x, and a
target speaker feature vector, y, is used:
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MCD(x, y) =
10

ln 10

√√√√2
N∑
i=1

(xi − yi)2 (3.8)

where N is the number of dimensions in the feature vector, msi
is the ith value in a

source speaker’s MCEP vector, and mti is the ith value in a target speaker’s MCEP. In this
step, the feature vector for each frame consists of 24 MCEP values plus 24 corresponding
dynamic features for a total of 48 dimensions.

Once there is an adequate measure, there is still the question of how this relates to
finding the best path through all the vectors. The naive consideration of all paths sepa-
rately would lead to a search through a number of possibilities that is exponential in the
length of an utterance. Fortunately, there is an efficient method to find the best path called
Dynamic Time Warping (DTW) [Itakura, 1975]. The use of DTW in the baseline voice
transformation scripts is based on the assumption that the closeness of a path of vectors
from the source speaker to a path of vectors from a target speaker can be determined by
considering only the combination of the distance between the source and target vectors
with the scores for a few paths that go through previous time samples.

The specific rule used in the baseline voice transformation scripts for determining the
score of a path through source and target speakers is defined recursively such that at time
t, the score is

min( MCD(xt−2, yt−1) +MCD(xt−1, yt) +MCD(xt, yt), (3.9)
MCD(xt−1, yt−2) +MCD(xt, yt−1) +MCD(xt, yt), (3.10)

MCD(xt−1, yt−1) + 2MCD(xt, yt)) (3.11)

The DTW rule is applied according to the following procedure:

1. Create a matrix that has the width of the x utterance and the height of the y utterance
and initialize all values to infinity. The columns correspond to frames from the x
utterance, with the first frame on the left. The rows correspond to frames from the y
utterance, with the first frame on the bottom.

2. Calculate the MCD between the initial frames, x0 and y0, of each utterance and
record that value in the corresponding lower-left matrix entry.
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Figure 3.3: Rule Used for Dynamic Time Warping

3. Consider the next matrix column to the right, which corresponds to the next frame in
the x utterance. For each entry in this column that can be reached by an application
of the DTW rule, in the sense that a finite minimum value can be calculated based
on entries in columns to the left, record the minimum value for the rule.

4. Repeat the previous step through the rightmost matrix column.

If the upper-right corner of the matrix is reached, the DTW successfully aligned the
two utterances. It should be noted that use of our particular DTW rule will fail in cases
where one utterance is more than twice as long as the other. If the DTW succeeded, the
alignment between the utterances is found by using the minimum scores to reconstruct the
path that led from the lower-left corner of the matrix to the upper-right corner.

Figure 3.4.1 depicts the various paths through the matrix that are considered by the
DTW rule in the determination of the value at position (xt, yt).

The following steps in the process to learn a spectral conversion function are iterated
three times by default.

The time warping function is used to create vectors from the joint feature space of the
source and target speakers. Corresponding 48-dimensional feature vectors from the source
and target speakers are combined to create 96-dimensional feature vectors. These consist
of 24 source speaker MCEPs, followed by 24 source speaker dynamic features, followed
by 24 target speaker MCEPs, followed by 24 target speaker dynamic features.

Vector quantization is performed on all of these joint feature vectors using the LBG
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algorithm [Linde et al., 1980] to create codebooks, which will be used to provide initial
parameters for the GMM during training.

At this point, a GMM is trained using the EM algorithm. The default is to use 64
Gaussian components in the mixture.

After the training process for the GMM has converged, Maximum Likelihood Pa-
rameter Generation (MLPG) is used to predict target speaker MCEPs from the source
speaker MCEPs (temporarily ignoring the actual target speaker MCEPs that are included
in the training data). Dynamic features are generated from the predicted target speaker
MCEPs, a new time warping function is constructed by applying the same DTW rule be-
tween the source target features and the predicted target speaker features, and this function
is used to align source speaker features with actual target speaker features in the next round
of iteration.

The GMM parameters from the third iteration are stored for use during voice transfor-
mation.

Calculate Global Variance Statistics

For each target speaker training utterance, calculate the variance of the MCEPs. Then
calculate and store the mean and variance of these variances.

Copy Parameter Files

Collect the locations of the various mapping and statistics files that were created during
the training process and record them in a standard place so they can be accessed easily
during testing.

3.4.2 Test Voice Transformation

The previous steps in this process were all concerned with training. After the training
procedure estimates parameters, they can be used to transform new utterances from the
source speaker so they hopefully sound like they were spoken by the target speaker. The
following procedure performs this voice transformation.

First, F0 estimates for the source speaker utterance are made every 5ms. These esti-
mates are z-score mapped based on the logF0 means and standard deviations to produce
estimates for the target speaker. The z-score map from a source value, xs, to a target value,
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xt, is defined by the formula

xt = (xs − xs)
σxt

σxs

+ xt (3.12)

where x is the mean of the values of some variable, x, and σx is the standard deviation
of the values of some variable, x. During training, the means and standard deviations
were calculated over the logF0 estimates, so there is a small modification to the z-scoring
procedure. The logs of the source speaker F0 estimates are taken, the z-score mapping
computes estimates of the logs of the target F0 values, and these are converted to the target
speaker F0 estimates through exponentiation.

Next, the 0th through 24th MCEPs are extracted from the source speaker utterance
every 5ms. The 0th order MCEPs from the source speaker will be used unchanged in
the transformed speech to preserve the average power. Dynamic features are extracted
from the 1st to 24th MCEPs, and the combination of the two is used with the GMM-based
spectral conversion map to predict and MLPG using Global Variance to predict MCEPs for
the target speaker utterance. The 0th order MCEPs from the source speaker are combined
with the predicted 1st through 24th MCEPs for the target speaker, and the MLSA filter
uses the target speaker F0 estimates with them to produce a synthetic speech waveform.

3.5 Evaluation

3.5.1 Qualities

What would be considered successful voice transformation? We posit that in order to be
successful, voice transformation must be good in terms of naturalness, intelligibility,
and identity. Naturalness is how human the produced speech sound. Intelligibility is
how possible it is to correctly understand the words that were said, and identity is the
recognizability of the individuality of the speech.

3.5.2 Measures

Different methods have been devised to measure naturalness, intelligibility, and identity.
Some are objective measures, which can automatically be computed from audio data.
Others are subjective measures, which are based on the opinions expressed by humans in
listening evaluations or on other human behavior.
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Figure 3.4: Goals of Various Speech Applications

Objective Measures

Objective measures are ones that can be automatically computed from data. Their advan-
tage is that they are typically faster and cheaper to compute as they don’t involve human
experiments. Their disadvantage is that the ones we have do not directly mimic human
perception, which is typically1 the standard for judging qualities such as naturalness, in-
telligibility, and identity. Fortunately, the previously mentioned objective measure called
mel-cepstral distortion does appear to correlate with human perception of the quality of
transformed speech, though it does not match it perfectly.

Subjective Measures

Subjective measures are based on collecting human opinions and analyzing them. Their
advantage is that they are directly related to human perception, which is typically the
standard for judging the quality of transformed speech. Their disadvantages are that they
are time-consuming, expensive, and difficult to interpret. The opinions of numerous people
must be collected to evaluate a subjective measure, because opinions vary among people.

Two popular identity tests are ABX and pair comparison tests. In ABX tests, listeners
are asked whether transformed utterances sound more like source speaker or target speaker
utterances. In pair comparison tests, listeners are given pairs of utterances, and asked to
rank their similarities on a numeric scale. Some consider the basic type of ABX test,
where listeners are only asked to specify whether example “A” or example “B” is closer to
example “X”, inferior to pair comparison tests because it does not account for the possi-

1In some cases, human perception may not be the standard, because people may exhibit fallibility while
performing a task with an external standard of correctness. For example, a person may be asked to identify
which speakers spoke certain utterances, but limitations in the person’s ability to distinguish speakers or
knowledge of the specific speakers might prevent the person from correctly identifying the speakers.
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bility that the transformed utterance may not sound like it was produced by either speaker
[Kain, 2001]. However, pair comparison tests are more difficult to interpret because the
information from the various pairs must be combined into one coherent whole that can be
interpreted. Two techniques for this are Multi-Dimensional Scaling [Abe et al., 1988] and
Transformation Triangle Diagrams [Toth and Black, 2006].

3.6 Summary

Voice transformation, the process of making speech from one person sound like it came
from another, is an area of speech synthesis that has scientific implications and has numer-
ous practical applications. One prominent line of voice transformation research is based on
using speech models, as described in the previous chapter, to produce features for source
and target speakers and to use statistical techniques to derive mappings from the source
speaker features to the target speaker features. This line of work can be traced back to the
codebook-based techniques of Abe through the GMM mapping technique of Stylianou,
which was further refined by Kain and Toda. Our baseline system is based on the work of
Toda, and is described in this chapter.
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Chapter 4

Using Articulatory Position Data with
Voice Transformation

4.1 Introduction

One of the main goals of this document, as mentioned in the introductory chapter, is the
investigation of the use of articulatory position data to improve voice transformation. In
particular, this chapter presents the use of such data to modify the baseline voice transfor-
mation system from the previous chapter.

Articulatory position data is information on the location of articulators during speech.
1 As articulatory position data provides direct information on the physical production of
speech, there is hope that it can be used to improve models for speech. In many cases,
current speech models are based on features derived from the audio signal through signal
processing techniques such as LPC, cepstra, or mel-cepstral coefficients. Such features
are arguably either more related to the perception of speech than the production of speech
or represent an attempt to indirectly reconstruct information about production. Articula-
tory position data is exciting in that it gives direct information about production, but it is
not without its limitations. One difficulty is that it may not fully represent the important
parts of production. The Electro-Magnetic Articulograph (EMA) data, which is used as
the articulatory position data in the following experiments, consists of recordings of the
positions of seven articulators in the midsagittal plane. Seven points in a plane may not
be sufficient to represent lateral effects, constrictions in the vocal tract, or the shape of
the tongue. Information about pitch and power will not be directly represented. However,

1This chapter is adapted from a workshop paper [Toth and Black, 2007].
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Figure 4.1: Transformation of Articulatory and Speech Data
Speaker 1 Speaker 2

Articulatory Features Articulatory Features

Speech Signal Features Speech Signal Features

there may still be usable information even though the information is not complete, and
there is evidence, at least for speech recognition, that it can help [Wrench and Richmond,
2000] [Uraga and Hain, 2006].

Another difficulty is that articulatory position data is hard to collect and this makes
it fairly rare. In most cases, audio recordings of speech made by microphones are not
accompanied by corresponding articulatory position data. Thus, there is the additional
question of whether a limited amount of articulatory position data, which was collected
for only a few speakers, can be used with audio recordings from speakers from whom
articulatory position data was not collected. There has been some work in this area as well
[Toth, 2005], which will be discussed in the following chapter. In this context, it is natural
to ask whether using articulatory position data can provide useful modeling information
beyond what is available from the audio signal and for what tasks is it helpful.

The following experiments attempt to extend the use of articulatory position data to
voice transformation. A high-level view of the approach taken in this chapter can be seen
in Figure 4.1. The general idea is that, in addition to mapping features derived from the
speech signal data from one speaker to another, we can also map features derived from
articulatory data from one speaker to another. In these experiments we focus on comparing
joint mappings of the speech signal and articulatory features from one speaker to another
and how they compare to mappings that use only speech signal features.

4.2 MOCHA Database

The particular articulatory position data investigated in this document is the freely avail-
able MOCHA database [Wrench, 1999], which includes recordings of the 460-sentence
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Figure 4.2: Articulatory Positions Recorded in the MOCHA Database

British TIMIT corpus along with coordinates in the midsagittal plane for the upper and
lower lip, the lower incisor, three points on the tongue, and the velum of each speaker.
These points are depicted in Figure 4.2, which represents the midsagittal view of the artic-
ulators of a person facing to the left.

The MOCHA database also supplies laryngograph files and electropalatograph files,
which were not used in our experiments. At the time the following experiments were
conducted, full data was available for two speakers, labeled msak0 and fsew0. The msak0
speaker is male and has a northern English accent. The fsew0 speaker is female and has a
southern English accent.

The following experiments are based on features derived from the audio files and the
EMA files. The audio files contain 16 bit samples at a rate of 16kHz. The EMA files
contain samples at a rate of 500Hz of the x and y coordinates in the midsagittal plane
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Figure 4.3: Voice Transformation Training
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of the positions of 7 different articulators, for a total of 14 values per sample. These 7
articulators include the upper and lower lip, the lower incisor, three points on the tongue,
and the velum. The EMA files also contain additional coordinates for the bridge of the
nose and the upper incisor, but they are only used for calibrating the positions of the other
articulators and are not used as features in the following experiments.

4.3 Baseline Voice Transformation

The baseline voice transformation used in these experiments is based on the FestVox
scripts that were described in Chapter 3. For summary and reference, Figure 4.3 depicts
the training process, and Figure 4.4 depicts the transformation process.

4.3.1 Error Measure

The same general Mel-Cepstral Distortion (MCD) measure that was described in the pre-
vious chapter in the context of Dynamic Time Warping (DTW) is used in the following
experiments as an objective error measure to compare transformed utterances to reference
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Figure 4.4: Voice Transformation
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utterances recorded by the target speaker. MCD correlates with results from subjective lis-
tening evaluations and has been used to measure the quality of voice transformation results
in other work [Toda et al., 2004a]. MCD is essentially a weighted Euclidean distance, and
in this case is calculated on only the MCEP features and not their dynamic features (unlike
during the DTW performed during voice transformation):

MCD =
10

ln 10

√√√√2
24∑
d=1

(m
(t)
d −m

(r)
d )2

wherem(t)
d is the dth MCEP of a frame of transformed speech, andm(r)

d is the dth MCEP of
the corresponding frame in the reference utterance recorded by the target speaker. DTW
is used to align the utterances before computing the MCDs, because they will probably
differ in length.

MCD is more related to filter characteristics of the vocal tract. Although characteris-
tics such as power and fundamental frequency are also important to the quality of voice
transformation output, the use of MCD for these experiments seems appropriate as the
articulatory positions are expected to be most closely related to the filter characteristics of
the vocal tract.

For the following results, no power thresholding was performed on frames before cal-
culating MCDs, and the transformed MCEPs were used, as opposed to MCEPs rederived
after synthesizing waveforms.
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4.4 Adding Articulatory Position Data

Numerous experiments were conducted which added articulatory position data to the base-
line MCEP features within the same general framework. The baseline voice transformation
scripts were modified to allow the use of articulatory position features instead of or in ad-
dition to MCEP features. The rest of the processing continued in the same basic manner,
with the exception that the error measure for the combination of articulatory position data
and MCEPs was based solely on the MCEP subset. In the following descriptions, EMA
will be used to refer to the articulatory position data, because it is the abbreviation for
Electro-Magnetic Articulograph, which is the specific type of articulatory position data
that we used. Similarly, EMAMCEP will be used to refer to the combined use of EMA
and MCEP data.

The EMA data from the MOCHA data had to be processed before combination with
the MCEPs because it was sampled every 2ms instead of every 5ms, and the durations
of the EMA files did not always match the durations of the audio files. Resampling was
performed with the ch track program from the Edinburgh Speech Tools [Taylor et al.,
1998], and EMA or MCEP features were truncated when the lengths didn’t match.

The experiments include transformations from each of the two MOCHA speakers,
msak0 and fsew0, to the other. The data was split into a training set of 414 utterances and
a test set of 46 utterances. Most of the voice transformations were trained on a subset of
50 utterances due to the amount of time necessary to process the entire training set and
the similarity of the results between using the entire training set and the subset in some
preliminary experiments.

Finally, there were some additional pragmatic considerations for the GMM training.
The original EMA values were measured in thousandths of centimeters, and in some cases
exceeded 5,000. Using these original values led to overflow errors with the training pro-
gram, so we z-scored the EMA values to put them in a manageable range. Also, the
number of Gaussian components in the GMM could affect whether training succeeded. In
some cases the training program was unable to estimate parameters for the GMM due to a
lack of parameter convergence during the EM training. In the following tables, the results
for such trials will be marked as N/A (Not Applicable).

We experimented with multiple numbers of Gaussian components in the mixture mod-
els to determine a range of success and also to track where increasing the number of
components improved performance. After the initial trials, our basic choices were 16, 32,
64, or 128 components. These generally appeared to capture the range where results first
improved and then worsened, presumably due to overtraining, or training even failing.
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Table 4.1: MCEP vs. EMAMCEP MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M MCEP EMAMCEP MCEP EMAMCEP
1 6.33(1.62) 6.88(1.61) 5.59(1.59) 5.95(1.68)
2 5.84(1.95) 6.34(1.97) 5.51(1.59) 5.79(1.71)
4 5.67(1.94) 6.25(2.06) 5.57(1.42) 5.81(1.64)
8 5.74(1.78) 6.60(1.65) 5.31(1.55) 5.95(1.62)

16 5.58(1.79) 6.09(1.89) 5.20(1.58) 5.46(1.62)
32 5.74(1.79) N/A 5.06(1.62) 5.66(1.50)
64 5.74(1.70) N/A 5.01(1.63) N/A
128 N/A N/A N/A N/A

4.5 Experiments

4.5.1 Baseline Experiments

The first experiment was a comparison of only using MCEP features with using a combina-
tion of MCEP and EMA features. The only change made to the GMM mapping procedure
for the initial trials including EMA was to include the EMA values in the feature vectors
as well as the MCEP values. Performance was measured by calculating the MCD be-
tween transformed utterances and recorded reference utterances from the associated target
speaker, based only on the 1st through 24th MCEP features. The means and standard devi-
ations of the Mel-cepstral distortions are in Table 4.1. Smaller values are better. The best
result among the msak0 to fsew0 trials and the best result among the fsew0 to msak0 trials
are both indicated in boldface. MCD means and standard deviations will also be used to
report results in the rest of the tables in this chapter.

Adding all the EMA features directly as z-scored x and y coordinates in the midsagittal
plane did not help in any of the trials, so it was necessary to investigate the data and the
learning process more closely.

4.5.2 Attempts to Remove Noise from the Data

One possible cause for the lack of improvement was the presence of noise in the EMA
data. Some potential causes were:

• The electrical apparatus originally used to collect the data
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• The alignment of the MCEP with the EMA

• The resampling of the EMA data to match the default MCEP sampling rate

It has been noted by others [Uraga and Hain, 2006] that there appears to be line noise
at 50Hz in the MOCHA data. For that reason and also assuming that the motions of the
articulators would be slow enough at our sampling rate, we tried applying two different
low-pass filters with cut-offs of 45Hz and 10Hz to the MOCHA data using the sigfilter
program from the Edinburgh Speech Tools [Taylor et al., 1998]. For both cut-offs, adding
the low-pass filtered EMA data to the MCEP data failed to reduce the average MCD when
compared to only using the MCEP data for voice transformation.

Another possible problem with the MOCHA data is that the means of the feature po-
sitions appear to vary over time more than what would be expected based on the dif-
fering phonetic contexts alone, according to other researchers [Richmond, 2001] [Shiga,
2005]. Although these sources were not certain whether this “drift” came from the Electo-
Magnetic Articulograph or the adjustment of speakers to the probes used to measure them,
they found for their tasks that it was useful to try to compensate for it. We tried applying
the “drift correction” strategy from the latter reference to the EMA data. This consisted of
treating the mean values per utterance of the EMA features as signals, low-pass filtering
these signals forward and backward with a FIR filter of length 100 and cut-off of 0.04π
radians, and subtracting the resulting per-utterance “drift” values from the corresponding
EMA features in the corresponding utterances. Adding the resulting drift-corrected data
to the MCEP data failed to reduce the MCD error when compared to using the MCEP data
alone for voice transformation, as can be seen by comparing the “Drift” columns in Ta-
ble 4.2 and Table 4.3 with the “Baselines” columns, which repeat the appropriate baseline
figures from Table 4.1 for reference. Table 4.2 gives figures for transformations from the
fsew0 speaker to the msak0 speaker, and Table 4.3 gives figures for transformations from
the msak0 speaker to the fsew0 speaker.

Another possible problem was that the EMA data was not aligned with the MCEP data.
We experimented by shifting the EMA data one frame by repeating the first EMA frame.
The results of these experiments are in the “Delay” columns of Table 4.2 and Table 4.3.

This only made a minor change to the results and demonstrated that shifting the EMA
by repeating the first EMA frame did not help. A companion experiment was performed
where the first EMA frame was removed from each utterance. Shifting the EMA frames
in that direction did not lead to an improvement in the results for trials using EMA data
either. The results of these experiments are in the “Advance” columns in Table 4.2 and
Table 4.3. In both of these experiments, due to differences in the truncation of the feature
files after alignment, there are small differences in the results for the trials which only used
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Table 4.2: VT (fsew0 to msak0) with EMA: Noise Compensation: MCD Means (Std.
Devs.)

Baselines Drift Delay Advance
M MCEP EMAMCEP EMAMCEP EMAMCEP EMAMCEP
16 5.20(1.58) 5.46(1.62) 5.58(1.59) 5.49(1.62) 5.47(1.59)
32 5.06(1.62) 5.66(1.50) 5.31(1.78) 5.45(1.71) 5.69(1.67)
64 5.01(1.63) N/A N/A N/A N/A

128 N/A N/A N/A N/A N/A

Table 4.3: VT (msak0 to fsew0) with EMA: Noise Compensation: MCD Means (Std.
Devs.)

Baselines Drift Delay Advance
M MCEP EMAMCEP EMAMCEP EMAMCEP EMAMCEP
16 5.58(1.79) 6.09(1.89) 6.09(1.73) 6.16(1.84) 6.15(1.79
32 5.74(1.79) N/A N/A N/A N/A
64 5.74(1.70) N/A N/A N/A N/A

128 N/A N/A N/A N/A N/A

MCEP data.

4.5.3 Attempts to Refine the Transformation Process

The baseline script that was used to perform voice transformation was based on techniques
that were refined over time to handle MCEP data. It was unclear whether parts of this pro-
cess were still appropriate when adding EMA data to the MCEP vectors. We investigated
the following areas more closely:

• Dynamic Time Warping (DTW) used for alignment of the two speakers

• Use of the Maximum Likelihood Parameter Generation (MLPG) algorithm

• Use of multiple iterations of DTW during training

In the baseline voice transformation system, DTW was performed over all features and
their derived dynamic features to align feature vectors between speakers. Using a distance
metric that treated all features equally did not seem appopriate, because the MCEP and
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Table 4.4: VT (fsew0 to msak0) with EMA: Process Changes: MCD Means (Std. Devs.)

Baselines MCEP DTW MCEP DTW/no MLPG
M MCEP EMAMCEP EMAMCEP EMAMCEP MCEP
16 5.20(1.58) 5.46(1.62) 5.35(1.73) 4.97(1.86) 4.95(1.57)
32 5.06(1.62) 5.66(1.50) 5.31(1.77) 4.97(1.83) 4.91(1.59)
64 5.01(1.63) N/A N/A N/A 5.10(1.69)

128 N/A N/A N/A N/A N/A

Table 4.5: VT (msak0 to fsew0) with EMA: Process Changes: MCD Means (Std. Devs.)

Baselines MCEP DTW MCEP DTW/no MLPG
M MCEP EMAMCEP EMAMCEP EMAMCEP MCEP
16 5.58(1.79) 6.09(1.89) 5.84(1.81) 5.49(1.56) 5.39(1.78)
32 5.74(1.79) N/A 5.90(1.76) 5.50(1.81) 5.60(1.78)
64 5.74(1.70) N/A N/A N/A 5.76(1.84)

128 N/A N/A N/A N/A N/A

z-scored EMA values were not of the same scale. For this reason, we ran experiments
that only considered the MCEP values during DTW when additional EMA features were
used. The results are in the “MCEP DTW” columns of Table 4.4 and Table 4.5. Table 4.4
gives figures for transformations from the fsew0 speaker to the msak0 speaker, and Ta-
ble 4.5 gives figures for transformations from the msak0 speaker to the fsew0 speaker. In
both tables, the “Baselines” columns repeat the relevant baseline MCEP and EMAMCEP
figures from Table 4.1 for comparison. As can be seen, this approach did not give better
results than using MCEP data alone for the entire process. It did, however, improve over
the baseline EMAMCEP performance, so this technique was retained in later experiments.

One other thing to note is that basing the DTW only on MCEP features in the trials that
also include EMA data leads to the same source speaker and target speaker frames being
aligned across the different trials. This is not guaranteed when the DTW in the trials using
EMA data also uses EMA values, because the additional EMA values will be included in
the calculations of the distances between frames and will change the values in the DTW
matrix.

In the baseline voice transformation system, the MLPG program, mentioned in the
previous chapter, is used to take the GMM estimates of the target speaker’s MCEP and
MCEP dynamic feature means and covariances to try to estimate final MCEP values that
form a good path. It was unclear whether including EMA features in this process was
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appropriate. We ran another set of experiments where we used the means of the MCEP
features for predictions and did not use MLPG (in addition to using the abovementioned
strategy of only considering MCEP and MCEP dynamic feature values during DTW). The
results of these experiments are in the “MCEP DTW/no MLPG” columns of Table 4.4 and
Table 4.5. Adding EMA data helped in the trial that used 32 Gaussian components for the
transformation from msak0 to fsew0, which can be seen by comparing the boldface entries
in the table row for 32 Gaussian components. However, this was not a global best result
for this transformation direction as the 16 Gaussian trial using only MCEP data still had
better results. This global best result is also indicated in boldface.

After applying a number of techniques to refine the voice transformation process, we
were able to improve the results including EMA values over the straightforward extension
that was considered in the baseline strategy which included EMA values, but the best over-
all results still came from using MCEP values alone. This led us to try other approaches
involving the representation of the EMA features.

4.5.4 Representation of EMA Features

Another possible problem with the previous experiments was that the x and y coordinates
in the EMA data may have been a poor match for voice transformation in general or even
the GMM mapping technique in particular. Perhaps there is more relevant information in
features that are derived from these coordinates. After all, the x and y coordinate values are
related to each other, both in terms of pairs being related to the same articulators, and in the
sense that the positions of some articulators can pose constraints on the positions of others.
Furthermore, the positions of some articulators relative to others provide information on
constrictions in the vocal tract, which influence the filter characteristics. We investigated
the following types of derived EMA features:

• Distances between the lips

• 1st order differences

• Projections onto lines of best-fit for each articulator

One type of vocal tract constriction that seemed reasonable to measure from the 7
articulators available in the MOCHA database was the distance between the lips. The
two-dimensional Euclidean distance between the lips was used as a derived feature. The
results for this experiment are in the “Lip Distance” columns of Table 4.6 and Table 4.7,
with the “MCEP DTW/no MLPG” results from Table 4.4 and Table 4.5 serving as new,
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Table 4.6: VT (fsew0 to msak0) with EMA: Derived Features: MCD Means (Std. Devs.)

MCEP DTW/no MLPG Lip Distance 2-D Distances Projection
M MCEP EMAMCEP EMAMCEP EMAMCEP EMAMCEP
16 4.95(1.57) 4.97(1.86) 5.40(1.78) 5.21(1.73) 5.01(1.85)
32 4.91(1.59) 4.97(1.83) 5.25(1.80) 5.14(1.80) 5.00(1.86)
64 5.10(1.69) N/A 5.19(1.81) N/A N/A

128 N/A N/A 5.19(1.89) N/A N/A

Table 4.7: VT (msak0 to fsew0) with EMA: Derived Features: MCD Means (Std. Devs.)

MCEP DTW/no MLPG Lip Distance 2-D Distances Projection
M MCEP EMAMCEP EMAMCEP EMAMCEP EMAMCEP
16 5.39(1.78) 5.49(1.56) 5.64(1.96) 5.47(1.99) 5.60(1.78)
32 5.60(1.78) 5.50(1.81) 5.55(2.00) 5.62(2.01) 5.36 (1.97)
64 5.76(1.84) N/A 6.07(2.08) 5.56(2.02) N/A

128 N/A N/A 6.01(2.11) N/A N/A

improved baselines for comparison. Although adding the single feature of lip distance
to the MCEPs gave a better MCD than the original baseline when transforming from the
msak0 voice to the fsew0 voice with 32 Gaussian components in the GMM, it did not
improve upon the new MCEP baseline.

Another hypothesis was that capturing information about the motion of the articulators
in two-dimensional space might supply more information. We ran experiments where
the two-dimensional Euclidean distances were calculated between (x, y) coordinate pairs
from frame to frame. This constructed 7 EMA derived features that could be added to
the MCEP data. These trials were performed using only the MCEP and MCEP dynamic
features for DTW and did not use MLPG. The results of these experiments are in the “2-D
Distances” columns of Table 4.6 and Table 4.7. As can be seen by comparison with the
new MCEP baseline, adding these EMA derived distance features helped in the case of
using 64 Gaussian components for the transformation from msak0 to fsew0. This result
is indicated in boldface in the table. However, this was not a global positive result for the
msak0 to fsew0 transformation as it did not perform as well as the 16 and 32 Gaussian
component trials which only used MCEP data.

One problem with using 2-dimensional distances as features is that it does not include
any notion of directionality, which seems like it should be important. There is a ques-
tion of how to include this directionality in a meaningful way in the vectors used in the
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GMM mapping strategy. Although the articulator positions were measured in two dimen-
sions, in many cases it appeared that individual articulators moved more along certain
directions than others. For example, the lower incisor data showed more motion along
the y-dimension than the x-dimension. In an attempt to capture some of this informa-
tion, we derived features from the EMA data by running linear regression on the (x, y)
coordinate pairs in the training set for individual articulators to create best-fit lines, pro-
jecting the EMA (x, y) pairs onto these lines, and determining how far along these lines
the articulators were. This is similar to using the first component from Principal Compo-
nent Analysis (PCA) [Pearson, 1901]. The results of using these projected EMA features
are in the “Projection” columns of Table 4.6 and Table 4.7. Again, in these trials, only
the MCEP features were used for DTW and MLPG was not used. By comparison with
the new MCEP baseline figures in the MCEP columns, it can be seen that not only does
adding the projected EMA features improve the trial using 32 Gaussians for the transfor-
mation from msak0 to fsew0, but that this is a global positive result as it is better than all
the other trials for transforming msak0 to fsew0, including the ones that only use MCEP
data. Finally, using a strategy that combined a modification of the voice transformation, in
addition to a change in the EMA feature representation led to a positive result, in the sense
that the average MCD was smaller. This result, however, was not statistically significant.
We collected the average MCDs over the frames for each test utterance produced by these
two systems, and performed a paired t-test. The null hypothesis, that the data came from
the same distribution, could not be rejected at a 5% level of significance.

A different approach to investigating the possibility of the data being a mismatch for
the model is to switch the model instead of changing the features. To this end, we tried
using wagon, the Classification And Regression Tree (CART) program from the Edinburgh
Speech Tools [Taylor et al., 1998], instead of GMM mapping and MLPG smoothing, to
perform the mapping between speakers. Using a step size of 100, CART predicted MCEPs
from MCEPs in the fsew0 to msak0 direction with a MCD mean of 4.71 and standard
deviation of 1.71. Using the combination of EMA data with MCEPs from the fsew0
speaker to predict MCEPs for the msak0 speaker gave a MCD mean of 5.22 and standard
deviation of 1.90. Even with a different learning algorithm, adding EMA data failed to help
improve voice transformation in terms of MCD. Although the numbers for the individual
trials were better than for the GMM mapping baseline, there was the same general trend
of the MCEP-only trial performing better than a trial that added EMA x and y coordinates
directly.
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4.6 Summary and Conclusions

A number of strategies were applied to the problem of trying to use EMA data to im-
prove a fairly standard GMM mapping based voice transformation technique in terms of
Mel-Cepstral Distortion. For the most straightforward extension of the baseline voice
transformation technique, none of the experimental trials that used additional EMA data
directly as x and y coordinates improved the Mel-Cepstral Distortion. We made a num-
ber of attempts to use the EMA data to improve results. These attempts focused on the
following three areas:

1. Removing noise from the data

2. Modifying parts of the voice transformation process that no longer appeared appro-
priate when using a combination of EMA and MCEP data

3. Finding a better way of representing EMA information in the model

In the first case, attempts to remove noise through filtering and realigning the EMA
data, among other things, did not appear to help. In the second case, changing the way
DTW was performed and not using MLPG led to results for the trials that used EMA to
improve to the point where there was a trial where adding the EMA data led to better
performance than using MCEP data alone. However, this was still not a global positive
result as there was an MCEP trial with a different number of Gaussian components that
outperformed it. In the third case, there was another positive result that came from using
the distance between the lips, and finally, the first global positive result appeared in the
case of using features derived from EMA by projecting the coordinates onto lines fit to the
data through linear regression. In this case, the strategies of basing the DTW only on the
MCEP data and not using MLPG were also followed. As this single global positive result
was not statistically significant, this approach was not considered successful.

It appears that the use of EMA data to improve voice transformation is not very
straightforward. One additional thing to note is that all of the positive results occurred
while transforming from msak0 to fsew0. There were none in the other direction. This
appears to be another case of asymmetry in voice transformation. Asymmetric results have
also been noted in identity perception for voice transformation [Toth and Black, 2006].

There are numerous areas for further investigation. Maybe the Mel-Cepstral Distortion
metric is not good enough for this task, even though it shows some correlation to subjec-
tive listening tests. Perhaps the information necessary for voice transformation is already
present in MCEPs and EMA provides nothing additional. It is also possible that EMA
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features need to be combined or represented in a different space before they will be useful.
Further experimentation will be necessary to tell.
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Chapter 5

Cross-Speaker Articulatory Positions

5.1 Introduction

One of the problems with using articulatory position data, such as that found in the
MOCHA database, is that it is difficult to collect. In addition to requiring access to an
Electro-Magnetic Articulograph, it requires attaching probes to a person’s articulators and,
for older models of the device, restraining the person’s head movements. As a result, most
of the experiments performed with it have been very small scale experiments limited to a
few speakers. If articulatory position data is to become useful for speech applications in
general, it either needs to become much easier to collect, or some way of leveraging ex-
isting articulatory position data for use with other speakers must be found. In this chapter,
we explore the latter technique to create what we call “cross-speaker articulatory fea-
tures” or “pseudo-articulatory features”, which, in the present formulation, are EMA
feature predictions based on MCEP features. These features can be seen as a different
representation of Mel-cepstral coefficients.

The first part of this chapter verifies the plausibility of cross-speaker pseudo-articulatory
features by demonstrating that they can be helpful in the external task of phonetic feature
prediction.1 The second part then applies these features to voice transformation.

1The sections in this chapter on phonetic feature prediction are adapted from a conference paper [Toth,
2005].
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5.2 Acoustic, Articulatory, and Phonetic Features

The primary parametrizations of speech used in automatic speech recognition and syn-
thesis are based on DSP techniques. MFCC, LPCC, and derived features can be readily
extracted from acoustic signals and allow the construction of relatively high-performance
speech systems. However, these features (though related) are a bit removed from the ac-
tual physical process of speaking. When a person speaks, the produced sound is the result
of respiration and voicing, combined with the motions of articulators, which affect the
shape of the vocal tract. The locations of these articulators should also be useful for the
parametrization of speech, and should enable the construction of new models. So far, EMA
data has been used to perform a variety of experiments. Some concern relationships be-
tween articulatory positions and acoustic features derived from speech signals [Richmond,
2001] [Hiroya and Honda, 2002] [Shiga and King, 2004] [Toda et al., 2004a] [Toda et al.,
2004b] Toda et al. [2008]. Others use articulatory positions to aid in speech recognition
[Markov et al., 2003] [Markov et al., 2004].

At the same time, there have been other lines of work concerned with what have tra-
ditionally been called “acoustic-phonetic” features [Rabiner and Juang, 1993], but are oc-
casionally referred to as “articulatory” features [Metze and Waibel, 2002] [Frankel et al.,
2004] [Wester et al., 2004]. These features are categorial and describe phones when taken
together. Some examples include voicing and placement of articulation. To minimize
confusion, we will refer to such features as “phonetic” features in this document. Recent
work has included an attempt to go beyond the “beads-on-a-string” approach to modeling
speech [Ostendorf, 1999] to models based on parallel streams of phonetic features. Such
an approach has been demonstrated to improve speech recognition [Metze and Waibel,
2002].

As many of the traditional phonetic features are related to notions of placement in
the vocal tract, it seems natural to consider the connection between them and actual po-
sitions of articulators as measured by an EMA. The following sections discuss a number
of experiments investigating this relationship. It is hoped that mappings from articulatory
positions to phonetic features will enable the extension of current speech models and the
construction of new ones.
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5.3 Predicting Phonetic Features from Articulatory Posi-
tions

5.3.1 Phonetic Features

In order to predict phonetic features from articulatory positions, it is first necessary to de-
termine which phonetic features to predict. One strategy is to use a set of multi-valued
features, such as the manner, place, voicing, rounding, front-back, and static features de-
scribed in a paper by Frankel et al. [2004]. A potential complication of this approach is
that such multi-valued phonetic features are typically conceived of in a hierarchical man-
ner. For instance, some features such as high and low are typically considered only for
vowels, while other features such as labial and velar are typically considered only for con-
sonants. In the paper by Frankel et al. [2004], all of these values are possible for the place
feature. The model used in the paper approaches this problem by conditioning the place
value on the manner value, which can be vowel, silence, or one of a number of consonant
types. Without some sort of hierarchy, though, place values associated with vowels may
be confusable with place values for consonants. This may degrade performance.

Another strategy is to use a set of binary features that are either present or absent as in
the speech recognition work by Metze and Waibel [2002]. In this approach, a hierarchy
of features is not necessary, but one potential complication is that many more features are
needed to describe the phone set, and the cross-product of the values can be quite large.
Based on how the features are used, however, this may not be a problem.

5.3.2 Articulatory Position Features

After selecting the phonetic features, it is necessary to decide which articulatory position
features to use. Again, we used data from the msak0 and fsew0 speakers from the MOCHA
database [Wrench, 2001].

5.3.3 Model

Stepwise CART [Hocking, 1976] was used to construct models for predicting the 18 binary
phonetic features listed in the first column of Table 5.1 from the articulatory positions. This
was fewer than the full set of 76 binary features used in the paper by Metze and Waibel
[2002] but sufficient for the purpose of demonstrating a relationship between the phonetic
and articulatory position features.

69



Stepwise CART was chosen as a model because it can ignore predictor features when it
does not find a high correlation with the predictee. This was considered important because
it is believed that the positions of some articulators may be irrelevant to the values of some
phonetic features. For example, the position of the velum is probably unrelated to the labial
binary phonetic feature. The stop-size for the trees was determined by cross-validation.
For each speaker, 8/10 of the utterances were used for training, with an additional 1/10
used as a held-out set for the stepwise processing. The remaining 1/10 were used for test-
ing. A few utterances were not used due to corrupt data. During training, as suggested
by Metze and Waibel [2002], only the center frames of the phones were used in order to
minimize the effects of co-articulation. The centers of the phones were derived by auto-
matically labeling the boundaries with SphinxTrain [Carnegie Mellon University, 2001].
The center of each phone was labeled with the phone’s canonical phonetic features.

Other work [Metze and Waibel, 2002] has used MFCCs to predict binary phonetic
features. This work used different corpora that weren’t “phonetically balanced” like the
MOCHA data and only provided overall accuracies for the phonetic feature recognizers,
so the results cannot be compared. However, this work does demonstrate that MFCCs
have predictive value for phonetic features.

As our baseline voice transformation system uses MCEPs, which are approximations
to MFCCs, we decided to conduct experiments to predict phonetic features from MCEPs
and from a combination of articulatory positions and MCEPs. Because MCEPs are read-
ily derived from the speech signal, using articulatory positions to predict phonetic features
would only be useful in cases where the performance was improved or the speech sig-
nal was not available. The trials in the following experiments used the 0th through 24th
MCEPs.

5.3.4 msak0 Phonetic Feature Prediction Results

The results of the trials for the msak0 utterances from the MOCHA database are listed in
Table 5.1. The listed results are F-scores that were derived by combining precision and
recall according to the formula:

F =
2 ∗ p ∗ r
p+ r

(5.1)

where F is the F-score, p is the precision, and r is the recall. χ2 tests were used to
compare the true-positive/false-positive/true-negative/false-negative breakdowns for each
phonetic feature between the MCEP trials and the other trials. Boldface entries in the
“EMA” and “Both” columns represent trials where the breakdowns were different from
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Table 5.1: msak0 Binary Phonetic Feature Prediction F-scores

Feature MCEP EMA Both
unvoiced 0.683 0.203 0.683
stop 0.386 0.254 0.573
vowel 0.511 0.407 0.511
lateral 0.028 0.136 0.136
nasal 0.280 0.234 0.287
fricative 0.447 0.507 0.515
labial 0.175 0.457 0.457
palatal 0.037 0.368 0.037
velar 0.088 0.550 0.408
glottal undef. undef. undef.
high vow. 0.270 0.132 0.132
mid vow. 0.205 0.197 0.205
low vow. 0.333 0.201 0.259
front vow. 0.198 0.184 0.406
back vow. 0.062 0.141 0.062
diphthong 0.072 0.182 0.072
round 0.154 0.139 0.256
alv. fric. 0.586 0.338 0.601

the corresponding trials in the “MCEP” column at a significance of 0.05. Italic entries
in the “EMA” and “Both” columns represent trials where the χ2 test was not considered
valid because at least one of the breakdowns for either the trial in that column or the
corresponding trial in the “MCEP” column had fewer than 5 examples.

For the 18 features that were tried, 5 were better predicted from MCEPs (unvoiced,
vowel, high vowel, mid vowel, low vowel), 6 were better predicted from articulatory po-
sitions (lateral, labial, palatal, velar, back vowel, diphthong), and 6 were better predicted
from a combination of the two (stop, nasal, fricative, front vowel, round, alveolar frica-
tive). While predicting the glottal feature, none of the approaches had a true-positive,
which is a prediction that the feature value is true when it actually is true, so the prediction
of the glottal feature was considered unsuccessful.

The experimental results demonstrate that the prediction of some phonetic features
was indeed improved by using articulatory positions as predictors. Most of the features
that were better predicted by articulatory positions were related to placement, which was
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expected. The MCEPs were much better at predicting whether a phone was unvoiced. This
is not surprising because voicing is controlled by the larynx, which was not treated as an
articulator in these experiments.

5.4 Cross-Speaker Articulatory Positions

As mentioned previously, articulatory position data would be more useful if there were
a way to use it with speakers for whom it has not been collected. To these ends, we
experimented with approaches to map from one speaker’s MCEPs to another speaker’s
articulatory positions and back. Then these predicted articulatory positions could be used
in other models.

5.4.1 Corpora

In order to map between two speakers, we needed data from them. For our initial cross-
speaker experiments, we chose the previously mentioned msak0 data and the Facts and
Fables (FAF) data [Zhang et al., 2004]. The FAF data is quite different from the msak0
data. The FAF corpus consists of 107 utterances of paragraph or multi-paragraph length
which contain a total of around 14,000 words. The utterances consist of public domain text
from Project Gutenberg [Hart]: excerpts from Aesop’s Fables and the CIA World Factbook
(2000). The speaker was a male with a Midwestern American accent. For each utterance,
there was a 16-bit acoustic file sampled at 16kHz, but no EMA file. This corpus was
created to study prominence and super-sentential prosody, so it is a bit different from the
MOCHA msak0 and fsew0 corpora.

5.4.2 Cross-Speaker Mapping Approaches

We experimented with a few novel approaches to map from one speaker’s acoustic data
to another speaker’s articulatory position data. We called these approaches the baseline
approach, the z-score mapping approach, and the DTW direct approach.

Baseline Cross-Speaker Mapping

In the baseline approach, the MCEPs of one speaker were treated as being in the same
space as those of another, and thus mappings between MCEPs and articulatory positions
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trained on only one speaker could then be applied to the MCEPs of another.

Z-Score Mapping Cross-Speaker Mapping

In the z-score mapping approach, the MCEPs of one speaker were z-score mapped to the
range of the other speaker before single-speaker MCEP-to-articulatory-position mappings
were applied.

DTW Direct Cross-Speaker Mapping

In the DTW direct approach, DTW was first used to align the source and target speaker
utterances using Euclidean distances between the MCEPs with the Itakura rule Itakura
[1975]. Aligning the utterances was necessary, because they typically had different lengths.
After the alignment, mappings were learned directly between the MCEPs from the source
speaker’s frames and the articulatory positions from the target speaker’s aligned frames.

5.4.3 Cross-Speaker MCEP/Articulatory Position Results

Table 5.2: Cross-Speaker MCEP/Articulatory Position Mappings

Baseline Z-Score DTW
FAF MCEP to msak0 EMA RMSE (mm)
Lin. Reg. 2.30 2.13 2.26
CART 2.49 2.21 2.23
msak0 EMA to FAF MCEP MCD mean ± std
Lin. Reg. 9.43 ± 2.73 7.63 ± 2.29 7.90 ± 3.05
CART 9.48 ± 2.78 7.87 ± 2.40 7.89 ± 3.16
FAF MCEP to msak0 EMA to FAF MCEP MCD mean ± std
Lin. Reg. 9.38 ± 2.44 7.27 ± 2.13 7.40 ± 2.55
CART 10.03 ± 2.46 9.92 ± 2.43 7.41 ± 2.69

The three cross-speaker mapping approaches were tried using both linear regression
and CART for the mappings between MCEPs and articulatory positions. The mappings
were performed between utterances from the Facts and Fables (FAF) database and the
msak0 speaker from the MOCHA database. Because the Facts and Fables text was dif-
ferent, a unit-selection synthesizer based on the Facts and Fables recordings was used to
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Table 5.3: Cross-Speaker Mappings vs. Single-Speaker Mappings

Cross-Speaker (FAF and msak0) Single-Speaker (msak0)
MCEP to EMA RMSE (mm)
Lin. Reg. 2.13 2.07
CART 2.21 1.95
EMA to MCEP MCD mean ± std
Lin. Reg. 7.63 ± 2.29 6.14 ± 2.63
CART 7.87 ± 2.40 5.61 ± 2.49
MCEP to EMA to MCEP MCD mean ± std
Lin. Reg. 7.27 ± 2.13 5.54 ± 2.44
CART 9.92 ± 2.43 5.30 ± 2.23

produce British TIMIT utterances to match the msak0 data. The results are reported in
Table 5.2. Average RMSE per articulator is used as the error metric for trials that predict
articulatory positions, and Mel-Cepstral Distortion (MCD) mean and standard deviation
are used as the error metric for MCEPs. These measures are used and described in [Toda
et al., 2004a] [Toda et al., 2004b].

Table 5.3 compares the best cross-speaker results from Table 5.2 with the results from
using only msak0 data, but there are some inherent difficulties. For the mappings from
FAF MCEPs to msak0 articulatory positions, it is possible to compare the results to single-
speaker mappings from msak0 MCEPs to msak0 articulatory positions, but it is harder to
determine what the true values should be. Questions arise such as: “Where should one
person’s articulators be when another person speaks?” For the mappings from msak0
articulatory positions to FAF MCEPs, there are similar considerations. When considering
the “roundtrip” mapping from FAF MCEPs to msak0 articulatory positions and back to
FAF MCEPs, there is a notion of truth for the final result, because we want the output
of the composed map to match the input, but that alone is not sufficient for good results,
because we would like the intermediate results to behave like articulatory positions. It
would be possible to construct an identity map that would give perfect end results, but not
produce anything useful for articulatory positions. For these reasons, it would be good to
have another measure of the quality of articulatory position predictions. If there is another
quantity that is correlated with articulatory positions, this may potentially be used as a
measure.
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5.5 Cross-Speaker Phonetic Feature Prediction

Phonetic feature prediction is one possible candidate for measuring the usefulness of cross-
speaker articulatory position prediction because articulatory positions have been demon-
strated to be useful for predicting some phonetic features in the single-speaker case.

We investigated this possibility by conducting experiments using the fsew0 and FAF
data to predict msak0 articulatory positions, which were then used to predict phonetic
features.

5.5.1 fsew0 Phonetic Feature Prediction

Table 5.4: fsew0 Binary Phonetic Feature Prediction F-scores

Feature MCEP fsew0 EMA MCEP+EMA pEMA MCEP+pEMA
unvoiced 0.645 0.356 0.598 0.318 0.681
stop 0.580 0.198 0.569 0.183 0.550
vowel 0.603 0.519 0.653 0.428 0.603
lateral 0.060 0.067 0.060 undef. 0.040
nasal 0.088 0.209 0.481 0.099 0.400
fricative 0.562 0.466 0.539 0.217 0.496
labial 0.052 0.436 0.429 0.097 0.053
palatal 0.429 0.145 0.595 0.047 0.086
velar 0.136 0.328 0.460 0.016 0.042
glottal 0.067 undef. undef. undef. undef.
high vow. 0.383 0.254 0.339 0.102 0.383
mid vow. 0.273 0.194 0.273 0.197 0.273
low vow. 0.298 0.377 0.298 0.262 0.411
front vow. 0.379 0.446 0.451 0.130 0.310
back vow. 0.206 0.082 0.206 0.130 0.206
diphthong 0.047 0.163 0.047 0.081 0.045
round 0.086 0.052 0.086 0.058 0.027
alv. fric. 0.705 0.514 0.680 0.269 0.705

For the first cross-speaker phonetic feature prediction experiments, pseudo-articulatory
positions were created and used to predict fsew0 phonetic features. The pseudo-articulatory
positions were created by using the z-score mapping technique to predict msak0 articula-
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tory positions from fsew0 MCEPs. These pseudo-articulatory positions and their associ-
ated fsew0 phonetic features were split into a training set, consisting of 90% of the data,
and a test set, containing the other 10%. The training set was used to learn decision trees
which predicted phonetic features from the pseudo-articulatory positions. The pseudo-
articulatory features from the test set were then used with these decision trees to predict
phonetic features. The results are compared to prediction of fsew0 phonetic features based
on actual fsew0 articulatory positions in Table 5.4. The results listed in the EMA col-
umn were for predictions from actual fsew0 articulatory positions from the 7 EMA (x,y)-
coordinate pairs. The results listed in the pEMA column were predicted from articulatory
position predictions for the msak0 speaker based on the fsew0 MCEPs using the z-score
mapping cross-speaker approach. Again, the reported results are F-scores based on pre-
cision and recall, and χ2 tests were used to compare the true-positive/false-positive/true-
negative/false-negative breakdowns for each phonetic feature between the MCEP trials
and the other trials. Boldface entries in the columns to the right of the “MCEP” column
represent trials where the breakdowns were different from the corresponding trials in the
“MCEP” column at a significance of 0.05. Italic entries in the columns to the right of the
“MCEP” column represent trials where the χ2 test was not considered valid because at
least one of the breakdowns for either the trial in that column or the corresponding trial in
the “MCEP” column had fewer than 5 examples.

For the cases using actual fsew0 articulatory positions, four phonetic features were
best predicted by articulatory position data alone (lateral, labial, low vowel, diphthong).
This was similar to the msak0 trials in Table 5.1 where lateral, labial, and diphthong were
also best predicted by articulatory position data alone. Although palatal and velar were
best predicted by articulatory positions alone for msak0, they were best predicted by the
combination of articulatory positions and MCEPs for fsew0. Of the phonetic features best
predicted by articulatory position alone for msak0, only back vowel was best predicted by
MCEPs alone for fsew0. However, actual articulatory data predicted low vowel better than
MCEPs for fsew0, which was not the case for msak0.

Considering the cases that used cross-speaker articulatory position predictions, labial,
diphthong and round were the only cases where only using cross-speaker predicted ar-
ticulatory positions was not improved by adding actual fsew0 MCEPs. The combination
of cross-speaker predicted articulatory positions and actual MCEPs gave the best results
overall for unvoiced and low vowel. In the cases of high vowel, mid vowel, back vowel,
and alveolar fricative, this combination tied the best performance, but that was because
the MCEPs were responsible for that performance, and the cross-speaker articulatory po-
sitions were allowed to be ignored in the CART framework.
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5.5.2 FAF Phonetic Feature Prediction

Table 5.5: FAF Binary Phonetic Feature Prediction F-scores

Feature MCEP pEMA Both
unvoiced 0.291 0.237 0.237
stop 0.179 0.180 0.180
vowel 0.431 0.421 0.431
lateral 0.051 0.022 0.022
nasal 0.124 0.082 0.082
fricative 0.186 0.116 0.116
labial 0.083 0.125 0.125
palatal 0.109 0.125 0.125
velar 0.113 0.051 0.113
glottal 0.133 0.111 0.111
high vow. 0.110 0.130 0.130
mid vow. 0.240 0.247 0.247
low vow. 0.168 0.044 0.044
front vow. 0.124 0.112 0.112
back vow. 0.161 0.099 0.099
diphthong 0.123 0.079 0.079
round 0.135 0.044 0.044
alv. fric. 0.096 0.045 0.045

For the next round of cross-speaker phonetic feature experiments, pseudo-articulatory
positions were created and used to predict FAF phonetic features. These pseudo-articulatory
positions were created by using the z-score mapping technique to predict msak0 articula-
tory positions from the FAF MCEPs. Again, the pseudo-articulatory positions were then
used to learn decision trees that predicted phonetic features. The F-score results are listed
in Table 5.5. Again, χ2 tests were used to compare the true-positive/false-positive/true-
negative/false-negative breakdowns for each phonetic feature between the MCEP trials
and the other trials. Boldface entries in the columns to the right of the “MCEP” column
represent trials where the breakdowns were different from the corresponding trials in the
“MCEP” column at a significance of 0.05. Italic entries in the columns to the right of the
“MCEP” column represent trials where the χ2 test was not considered valid because at
least one of the breakdowns for either the trial in that column or the corresponding trial in
the “MCEP” column had fewer than 5 examples.
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These experiments differed from the fsew0 experiments in that no actual articula-
tory position data was available for the FAF utterances. Thus the results listed in the
“pEMA” and “Both” columns used cross-speaker articulatory position predictions. The
cross-speaker articulatory features were better at predicting stop, labial, palatal, high vowel,
and mid vowel, and the MCEPs were better at predicting the remaining features. For FAF,
there weren’t any cases where the combination outperformed the individual feature sets.

5.6 Discussion

Overall, it appears that articulatory position data can be used to improve the prediction
of phonetic features. For one speaker (msak0), the addition of articulatory position data
improved the recognition of 12 out of 18 phonetic features. For another speaker (fsew0), its
addition improved the recognition of 9 out of 18 phonetic features. There is a considerable
degree of overlap between the phonetic features that were best predicted for both speakers
by adding articulatory position data.

These experiments introduce some novel techniques for leveraging articulatory posi-
tion data for use with speakers for whom it has not been collected. One of these approaches
was used to predict phonetic features for two speakers (fsew0 and FAF) based on the artic-
ulatory position of a third speaker (msak0) and mappings between the speakers’ data. For
one speaker (fsew0), adding cross-speaker articulatory positions gave the best results for 2
out of 18 phonetic features. For another speaker (FAF), adding cross-speaker articulatory
features gave the best results for 5 out of 18 phonetic features. This demonstrated that
cross-speaker articulatory position data can indeed be used to improve phonetic feature
prediction.

5.7 Voice Transformation with Cross-Speaker Articula-
tory Position Features

The ability of cross-speaker articulatory position features to sometimes help in the predic-
tion of phonetic features raises the question of whether they can be used to improve voice
transformation. To test this, we constructed pseudo-articulatory features for a pair of fe-
male speakers and a pair of male speakers and used them to create pseudo-lip distance
features. Then voice transformation trials were run between the speakers in each pair,
both using the baseline MCEP features and using the MCEP features with the additional
lip distance features. The lip distance feature was chosen because in the experiments in
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the previous chapter involving real articulatory position data, one of the trials with the lip
distance was the first one to demonstrate a positive result for EMA data improving voice
transformation.

5.7.1 Data

The speech used in these experiments was from the CMU ARCTIC database [Kominek
and Black, 2003]. The female speakers had ids clb and slt, and the male speakers had
ids jmk and rms. Speaker jmk had a Canadian English accent, while the other speak-
ers had standard American English accents. For each speaker, 50 utterances from arc-
tic a0001.wav through arctic a0050.wav were used for the training set, and 10 utterances
from arctic a0101.wav through arctic a0110.wav were used for the test set.

MCEP and EMA data was also collected from the two MOCHA speakers, fsew0 and
msak0. The training and test sets for the MOCHA speakers were split the same way as
before.

5.7.2 Features

Cross-speaker articulatory features were constructed by using the previously described
z-score mapping technique with linear regression, as that appeared to be the best of the
mappings according to the results of the “round-trip” experiments in Table 5.2. In this
way, the MCEPs of the female ARCTIC speakers were mapped to the EMA values of the
female MOCHA speaker (fsew0), and the MCEPs of the male ARCTIC speakers were
mapped to the EMA values of the male MOCHA speaker (msak0).

After pseudo-articulatory position features were generated for the ARCTIC speakers,
distances were calculated between the upper and lower lips, using their predicted x and y
coordinates. These pseudo-lip distances were used as features.

5.7.3 Results

The results of the female speaker trials are in Table 5.6, and the results of the male speaker
trials are in Table 5.7. These tables list the means and standard deviations of the Mel-
cepstral distortions between the transformed utterances and reference utterances from the
corresponding target speakers. The M columns in these two tables list the number of Gaus-
sian components in the mixture models, and the MCEP columns list results for trials using
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Table 5.6: Pseudo Lip Distance MCD Means (Std. Devs.)

clb to slt slt to clb
M MCEP pEMAMCEP MCEP pEMAMCEP
16 5.38(1.66) 5.34(1.66) 5.35(1.87) 5.36(1.85)
32 5.34(1.72) 5.39(1.73) 5.32(1.88) 5.30(1.86)
64 5.36(1.76) 5.37(1.75) 5.32(1.90) 5.33(1.85)

128 5.39(1.80) 5.32(1.88)

Table 5.7: Pseudo Lip Distance MCD Means (Std. Devs.)

jmk to rms rms to jmk
M MCEP pEMAMCEP MCEP pEMAMCEP
16 6.34(2.77) 6.31(2.79) 6.25(2.69) 6.22(2.67)
32 6.30(2.81) 6.28(2.80) 6.20(2.69) 6.19(2.72)
64 6.33(2.86) 6.32(2.82) 6.20(2.75) 6.24(2.75)

128 6.41(2.90) 6.36(2.84) 6.32(2.76) 6.31(2.75)

only MCEP features for the spectral mapping. The pEMAMCEP columns list results for
trials using both MCEP features and the pseudo-EMA lip-distance feature for the spectral
mapping.

For both speaker pairs, and in both transformation directions, the best results came
from using lip distances generated from pseudo-articulatory data in addition to the MCEP.
Using pseudo-articulatory information did appear to help according to the objective mea-
sure, but the improvements were very small and were not statistically significant according
to paired t-tests that used MCD averages for each utterance. The null hypotheses could
not be rejected at a 5% level of significance.

5.8 Conclusions

There are numerous future directions for this work. One possibility is to see how well
articulatory features can predict multi-valued phonetic features. As mentioned earlier, the
model would probably need to be augmented to allow for some notion of hierarchy. An-
other possible direction is to expand the number of articulatory features. Perhaps using
positions alone is not enough. It may be more important in some cases to consider dis-
tances between different articulators or even features that consider the locations of multiple
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articulators. Yet another direction is the improvement of cross-speaker mappings. Perhaps
the GMM mapping technique from voice transformation could be used to improve cross-
speaker mappings by improving the step that takes one speaker’s MCEPs to the other’s.
Finally, there is the question of what can be done with phonetic features. As mentioned
in Section 5.1, phonetic features can be used to improve speech recognition performance
[Metze and Waibel, 2002]. This and other applications for phonetic feature recognition
not only serve as potential benchmarks for the quality of cross-speaker articulatory posi-
tion predictions, but may demonstrate examples where articulatory position data can be
leveraged for general use with speakers for whom it has not been collected.
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Chapter 6

Evaluation of Voice Transformation

6.1 Introduction

The previous chapters discussed our efforts to improve voice transformation using MCD
as an objective metric. Although lower MCD scores do correlate with better voice transfor-
mation quality, neither MCD nor any other automatic voice transformation metric perfectly
corresponds to subjective measures, and there is still room for improvement. This chap-
ter investigates some new approaches to measuring voice transformation, both in terms of
subjective and objective measures.

6.2 Measuring Voice Transformation

One natural question to ask about voice transformation techniques is how to measure their
quality. Intelligibility, naturalness, and speaker recognizability are factors that are com-
monly measured in the assessment of voice transformation quality [Kain, 2001]. Further-
more, attempts to measure these factors consist both of “objective” and “subjective” tests
[Kain, 2001]. Objective tests provide metrics that can be calculated from the output speech
and reference speech directly. Subjective tests involve collecting opinions from people in
listening experiments and analyzing the results. The strength of objective tests is that they
can be performed quickly and automatically. However, when it comes to measuring the
quality of voice transformation, the “gold standard” is human perception, and subjective
tests are based on it. When objective tests are employed, they are typically used in con-
junction with subjective tests and some attempt to correlate the results of the tests is used
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to justify the objective tests.

6.3 Subjective Measures

Although subjective listening tests have the great advantage of being based on human
perception, they are, at their base, subjective.1 Their results are open to interpretation,
and factors which may influence the listeners’ opinions must also be taken into account.
This paper investigates one such factor: whether knowing the speaker pairs used in voice
transformation affects the listeners’ opinions in a subjective listening test concerning the
speaker recognizability in voice transformation. We proposed a new type of diagram,
called a Transformation Triangle Diagram (TTD) to aid in visualizing the results of
such a subjective listening test.

6.4 Listening Experiment Design

Two groups of people, called Group A and Group B, consisting of speakers and listen-
ers, were selected for a voice transformation listening experiment based on the following
criteria:

• Each group had 1 pair of male speakers and 1 pair of female speakers.

• When selecting speakers, priority was given to speakers with similar voices based
on our subjective opinions.

• The listeners in each group knew the speakers in their group and did not know the
speakers in the other group.

For Group A, the female speakers were clb and slt, and the male speakers were ehn and
ref. For Group B, the female speakers were hb and jm, and the male speakers were mo
and rf. Each speaker was recorded reading the first 30 sentences of the CMU ARCTIC
corpus [Kominek and Black, 2003], which was a typical amount of data used for voice
transformation at the time. Then voice transformation models were trained in both direc-
tions for each of the speaker pairs (1 male pair and 1 female pair for each group for a total

1The sections of this chapter on subjective measures are adapted from a conference paper [Toth and
Black, 2006].
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of 4 pairs). Voice transformation was performed by scaling pitch estimates, using a Gaus-
sian Mixture Model mapping to transform mel-cepstral coefficients, and using a MLSA
filter [Imai, 1983] for synthesis as described in [Toda, 2003].

For each speaker pair, a pair comparison evaluation with 10 trials was constructed. The
utterances in each pair had different text to avoid confusion from the unmodified portions
of source speaker prosody, such as power, that were carried over to the transformed speech.
Some trials consisted of recordings from different speakers, some consisted of transformed
speech in different directions between the speakers, and some consisted of a recording and
transformed speech. The original recordings were analyzed and resynthesized using the
same MLSA filter technique [Imai, 1983] employed by the voice transformation process,
in order to minimize differences perceived from artifacts due to the vocoding process used
during transformation. Listeners were asked to rate the similarity of the speakers in each
trial on a scale from 1 to 5, where 1 meant the speakers were very similar and 5 meant
the speakers were very different. How the listeners were to judge speaker similarity and
difference was left to them. In total, 10 listeners (5 from each group) listened to 40 ut-
terance pairs (10 utterance pairs for each of 4 speaker pairs). With this setup we were
able to collect data to investigate whether knowing the speakers made a difference in the
judgment of speaker recognizability for voice transformation.

6.5 Data Analysis

One thing we wanted to know immediately was whether the voice transformation was
“successful.” One measure of this was whether the transformed speech was consistently
judged as being more similar to the target speaker than the source speaker. This, indeed,
was the case when considering the average similarity scores for each speaker pair across all
listeners. These averages are shown in Figure 6.1, where “s1” stands for the first speaker
in each pair, “s2” stands for the second speaker in each pair, “s1→s2” stands for trans-
formed speech with the first speaker as the source and the second speaker as the target,
and “s2→s1” stands for transformed speech with the second speaker as the source and the
first speaker as the target. The scores comparing the target speakers with the transformed
speech (s2,s1→s2 and s1,s2→s1) were lower, and thus more similar, than the scores com-
paring the source speakers with the transformed speech (s1,s1→s2 and s2,s2→s1).

Looking at the bars in Figure 6.1, a few more trends become apparent. Moving from
the leftmost group of bars to the rightmost group, the bars for each speaker pair tend to
get higher, showing greater differences in the compared speech. It appears that as the
speakers are themselves judged further apart, the transformed speech is also judged as
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Figure 6.1: Similarities by Speaker Pair

being further from the speakers. The Group A male speakers stand out as having the only
exceptions to this general rule. Interestingly, there is a strong asymmetry with the Group
A male speakers. The bar comparing the transformation s2→s1 with its target speaker, s1,
is much shorter than the bar comparing the transformation s1→s2 with its target speaker,
s2. This suggests that the transformation from speaker s2 to s1 was much more successful
than the transformation from speaker s1 to s2.

The next question was whether knowing the speakers made a difference. A breakdown
of the results according to whether the listeners knew the speakers is given in Figure 6.2.
Not only did the same general trend appear, where the transformed speech was judged as
being more similar to the target speech than the source speech, but the scores for each type
of compared speech were very close regardless of whether the listeners knew the speakers.

6.6 Transformation Triangle Diagrams

As we looked at numerous graphs similar to the ones in Figure 6.1 and Figure 6.2, we
realized that we wanted a better way to summarize multiple bars in the graphs and show
how their values were related to each other. This led us to create Transformation Trian-
gle Diagrams (TTDs) for each speaker pair. Some examples of these are in Figure 6.3,
Figure 6.4, Figure 6.5, and Figure 6.6. TTDs can be interpreted as follows:
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Figure 6.2: Similarities by Knowledge of Speaker

• The numbers in the diagrams are calculated by subtracting 1 from the similarity
scores to compute 0-based similarity “distances” where 0 is most similar and 4 is
most different.

• The distance between speech from the two speakers in a pair is represented by a
horizontal line, with the names of the speakers listed at either end.

• Each diagram is composed of two directed triangles. The upper triangle represents
comparisons made using the left speaker in the TTD as the source for voice trans-
formation and the right speaker as the target. The lower triangle represents compar-
isons made using the right speaker as the source for voice transformation and the
left speaker as the target. The arrows serve as reminders for the directions of the
transformations.

• The vertices that are off the horizontal baseline represent transformed speech, and
the remaining triangle edges represent the distances from the speakers’ speech to
the transformed speech. For example, in the first TTD in Figure 6.3, the distance
between speaker a1 and speech transformed from a1 to a2 is 1.9, the distance be-
tween speech transformed from a1 to a2 and speaker a2 is 0.7, the distance between
speaker a2 and speech transformed from a2 to a1 is 2.1, and the distance between
speech transformed from a2 to a1 and speaker a1 is 0.5
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Figure 6.3: Transformation Triangle Diagram Example 1

Figure 6.4: Transformation Triangle Diagram Example 2

• It should be noted that TTDs make no attempt to compare transformed speech using
one speaker as the source with transformed speech using the other speaker as the
source.

A few examples of TTDs are given in Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6.
Figure 6.3 represents a pair of speakers called a1 and a2, where both transformations were
mostly successful in that the transformed speech was considerably closer to the targets
than the sources in both cases.

Figure 6.4 represents a pair of speakers called b1 and b2, where both transformations
were fairly unsuccessful in that the transformed speech was closer to the source than the
target. As transformation becomes more successful, the TTDs tend to skew so the upper
triangle is crushed to the right and the lower triangle is crushed to the left.

However, distance from a vertex representing transformed speech to the horizontal
baseline can make a difference as well. In Figure 6.5 representing speakers c1 and c2 and
in Figure 6.6 representing speakers d1 and d2, the vertices representing the transformed
speech would project to the same location on the horizontal baselines, but the transforma-
tions between c1 and c2 were more successful than the ones between d1 and d2 because
the transformed speech is closer to the targets. One additional point is that the length of
the horizontal baselines vary according to the similarity of the speakers. The more similar
the speakers are, the narrower the baseline is.
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Figure 6.5: Transformation Triangle Diagram Example 3

Figure 6.6: Transformation Triangle Diagram Example 4

In the ideal case, both transformations would coincide with their targets, and the TTD
would collapse to a horizontal line with arrowheads pointing outward at each end. In a
case where the transformation was completely unsuccessful and the transformed speech
sounded like the source voice, the TTD would again collapse to a horizontal line, but there
would be inward pointing arrows as well.

It is important to note that the distances in these diagrams may not actually be dis-
tances in a Euclidean sense, and it may not be possible to construct triangles for some
combinations of scores if the lengths of the edges do not satisfy the triangle inequality.
One pathological case would be when the horizontal bar is longer than the sum of the
other two sides of a triangle. That would mean that the distance between the source and
target speakers is actually greater than the combined distances of the transformed speech
to both the source and target speakers. The other pathological case would be when the
distance from the transformed speech to one of the speakers was greater than the sum of
the distance from the transformed speech to the other speaker plus the distance between
the two speakers themselves. In such a case, it would also be impossible to construct a
triangle. However, it should be noted that for all the examples we tried based on our data,
we were able to construct triangles
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TTDs are not the first attempt to try to represent distances between speech in voice
transformation. Others have used Multi-Dimensional Scaling (MDS) techniques to accom-
plish this [Abe et al., 1988]. In MDS, distances are calculated among multiple quantities in
a multi-dimensional space, and the results are projected onto a plane for comparison. Al-
though MDS is an interesting and useful technique for analyzing data, we find that TTDs
are a compact, simpler-to-understand way of depicting the specific relationships we are
trying to compare in voice transformation.

6.7 Evaluating Voice Transformation with TTDs

The TTDs for results from our listening experiment broken down by speaker pair are in
Figure 6.7. These results correspond to the four speaker pairs from the graph in Figure 6.1.
Looking at these TTDs, a number of things become readily apparent. First of all, the
transformations were mostly successful in the sense that the triangles are skewed so the
transformed speech is closer to the target speech than the source speech in each case.
Another point is that the speakers in the first pair were considered much more similar
than the others based on the widths of the diagrams. One interesting thing that appears
in the third pair is that the transformation from ref to ehn is much more successful than
the transformation from ehn to ref, as shown by the asymmetry in the diagram. This is
another visual depiction of the same asymmetry mentioned earlier in the section on Data
Analysis.

6.8 Subjective Measures Discussion

In our listening experiment, we found that whether the listeners knew the speakers did
not appear to significantly affect how they judged speaker similarity. This knowledge will
guide us in designing further experiments of this nature because we will not be concerned
with finding listeners who either know or don’t know the speakers. We have also cre-
ated a new type of diagram called a Transformation Triangle Diagram (TDD) that was
useful in representing certain relationships in a compact, understandable manner. Future
work will involve investigating further methods of visualizing voice transformation results.
While this paper investigates the area of speaker recognizability, there are other areas of
voice transformation evaluation, such as intelligibility and naturalness, where different
forms of analysis may be necessary.
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Figure 6.7: Transformation Triangle Diagrams by Speaker Pair
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6.9 Automatic Speaker Identification for Measuring VT

We also explored new techniques for objective VT measures. Numerous publications
mention the possibility of using VT to fool speaker verification, but only a few give results
[Pellom and Hansen, 1999] [Masuko et al., 2000] [Perrot et al., 2005]. We performed some
basic experiments in this area and then investigated novel approaches of using Speaker
IDentification (SID) systems to measure the quality of the identity of transformed speech.
SID systems are typically composed of speaker models which score the closeness of
test speech qualities to a particular speaker’s characteristics. Many traditional speaker
identification tasks are essentially classification tasks, and the test speech is scored by
numerous speaker models before deciding which one is the best match. We did indeed
perform such experiments with transformed speech under closed-set conditions, where test
speech had to be classified as coming from one of a given set of speakers and there was no
option to reject the speech as being from none of them. With transformed speech, however,
we are primarily interested in how well it matches the target speaker’s characteristics,
and competing transformation and synthesis techniques can be compared against a model
based on the target speaker’s speech. Instead of scoring one target speaker according to
many speaker models, as in typical SID tasks, multiple types of target speech with the
same target identity are scored against a single model in this approach.

When evaluating transformed speech, it may also be desirable to know whether its
identity is closer to the target speaker than the source speaker. In this case, it would be
appropriate to consider scores from two speaker models, one for the source speaker and
one for the target speaker. This, however, would not help when comparing the transformed
speech with types of synthetic speech where data from only one speaker is used to con-
struct the synthetic voice.

The question of measuring speaker identity is discussed in Section 6.10. A description
of the speaker identification systems used in this work is in Section 6.11. Our first exper-
iments to test the general properties of the speaker identification systems on transformed
speech are described in Section 6.13. From there, we proceed to using SID systems to
score VT and compare it with speech synthesis approaches. The speech synthesizers we
consider and their resulting scores are described in Section 6.14.1 and Section 6.14.2. The
results of all these experiments are discussed generally in Section 6.15.2

2The work in this chapter involving SID systems was performed in collaboration with Qin Jin, Tanja
Schultz, and Alan Black. Qin ran the SID systems to score various speech data I produced. Some figures in
this chapter were produced by Qin Jin and Tanja Schultz.
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6.10 Measuring Identity

The speaker identity of transformed speech is typically measured through subjective lis-
tening tests involving human judgments, but these tests are costly and time consuming.
Furthermore, the two most popular identity tests used for VT, ABX tests and pair com-
parison tests, are difficult to interpret [Kain, 2001] [Abe et al., 1988] [Sündermann et al.,
2006] [Toth and Black, 2006]. For these reasons, we seek an automatic measure of identity
that can be performed without the costs of human experiments.

One possibility is to use scores from Speaker Identification (SID) systems typically
used for recognizing the identity of an unknown speaker. These scores represent distances
between speakers.

6.11 Speaker Identification Systems

The following experiments use two SID systems, which were both created by Qin Jin [Jin
et al., 2008]. One is a GMM-based SID system that is an example of the most prevalent
method of performing SID [Reynolds and Rose, 1995] [Reynolds et al., 2000]. The other
is a newer, competitive approach called Phonetic SID [Jin et al., 2002].

6.11.1 GMM-based SID System

In the GMM-based SID system, a speaker model is created for each speaker by training a
GMM on spectral features. More specifically, 13-dimensional mel-cepstral features are ex-
tracted from a training set of speech, and the parameters for a GMM with 256 components
are estimated using the EM algorithm. The resulting GMM for a speaker is the speaker
model. Test speech is scored by extracting mel-cepstral features from it and measuring its
likelihood based on a speaker model.

6.11.2 Phonetic SID System

In the phonetic SID system, a speaker model is created based on phone recognizers built
in multiple languages using external data. In our experiments, the phone recognizers
were built for 12 different non-English languages using data from the GlobalPhone project
[Schultz and Waibel, 1997]. A speaker model was created by learning a Language Spe-
cific Phonetic Model (LSPM) for each of the 12 languages for a speaker. An LSPM was
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constructed by taking one of the phone recognizers trained on GlobalPhone data for a spe-
cific language, using it to decode non-English phones on the English SID training data for
a particular speaker, and building an n-gram language model based on the recognition
results.

Test set speech was scored by decoding it with the 12 GlobalPhone phone recognizers
to produce phone sequences for the 12 different languages, measuring the likelihoods of
these decoded phone sequences according to the corresponding LSPM trained for the spe-
cific speaker, and combining the likelihood results from the 12 LSPMs for that speaker.
The current technique of combining the LSPM results for a single speaker is to sum the
LSPM likelihoods.

Although it may seem a bit peculiar that the phone recognizers were trained on lan-
guages other than the one in which the test data was recorded, the Phonetic SID System has
been shown to perform well on standard SID tasks [Jin et al., 2002]. The underlying intu-
ition is that the multi-lingual phonetic units still exist in a space where useful distinctions
about the test language phones can be captured and that their distributions characterize
different speakers.

6.12 Data

The data used in these experiments came from the LDC CSR-I (WSJ0) Complete corpus
[Linguistic Data Consortium, 1993]. We extracted features from the recorded speech and
manually corrected the provided transcripts. The speakers spoke General US English, and
the recordings had little noise. After removing duplicate sentences from the corpus, we
chose the 24 speakers who had at least 55 remaining sentences. For each speaker, 50
sentences were used for training and 5 for testing.

The VT trials required additional source speakers. We used synthesized utterances
made with the kal-diphone voice [Lenzo and Black, 2000] from the Festival Speech Syn-
thesis System distribution [Black and Taylor, 1997b] and new recordings from a General
US English speaker. We chose the kal-diphone voice for its consistent quality and the fact
that it is freely available, which makes it easier for others to duplicate our experiments.
The utterances for all 24 speakers were synthesized, but due to time constraints, we only
created new recordings of the utterances for 8 of them.

94



6.13 Speaker Identity Experiments

6.13.1 Recorded Speech

The first experiments we performed were for confirming that our SID systems performed
reasonably in terms of recorded speech. For both SID systems, speaker models were
created based on the training set recordings from all 24 speakers. Then the test sentences
were evaluated based on these models. For both SID systems and for all speakers, the
models corresponding to the actual speakers gave the highest likelihood scores for the test
sentences. This confirmed that both the GMM-based and Phonetic SID systems were able
to successfully distinguish among the 24 speakers.

6.13.2 Single-Model Experiments

One basic question we had was how transformed speech would be classified according to
speaker models based on recorded speech. We called these experiments single-model ex-
periments because, for a SID system, there was one speaker model per original speaker.
For each of the 24 recorded speakers, we used our baseline VT system to construct a syn-
thetic version of the test set by using kal-diphone synthetic speech for the source speaker
and recorded speech for a target speaker. Using synthetic speech for the source speaker is
convenient as it does not require recording additional sentences. Also, it matches the sce-
nario of one of the desirable applications for voice transformation: using a small amount
of additional recorded data to modify a synthetic voice based on a larger amount of data.

The two SID systems gave different results for the transformed speech. The confusion
diagram for the GMM-based SID system is in Figure 6.8, and the confusion diagram for
the Phonetic SID system is in Figure 6.9.3 In both diagrams, the horizontal axis represents
the target of the transformed speech. “V01” through “V24” represent transformed speech
with target speakers 1 through 24. In both diagrams, the vertical axis represents the speaker
from whose utterances the speaker model was created. “S01” through “S24” represent
recorded speech from speakers 1 through 24.

For the GMM-based system, the transformed speech was always judged to be most
like the actual speech of the corresponding target speaker. In a sense, it can be said that the
VT system fooled the GMM-based SID under closed-set conditions. On the other hand,
the Phonetic SID system, except for one case, always judged the transformed speech to
be most like one of two recorded speakers, regardless of the VT target. In a sense, it can

3Both diagrams were created by Tanja Schultz for our ICASSP 2008 paper [Jin et al., 2008].
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Figure 6.8: Confusion Matrix for Single-Model Experiments with Transformed Speech
and GMM-based SID

..

..............

V01 V24. . . . . . . . . . . . . . . . . . . . . .

S24

S01

S17
..

S20

Figure 6.9: Confusion Matrix for Single-Model Experiments with Transformed Speech
and Phonetic SID
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be said that the VT system failed to fool the Phonetic SID system. Further investigation
showed that utterances created using the kal-diphone synthetic voice were judged by the
Phonetic SID system to be closest to the same two recorded speakers as the transformed
speech. This suggests that from the perspective of the Phonetic SID system, the transfor-
mation was unsuccessful as the identity was judged to be like the source speaker instead
of the target speaker.

6.13.3 Dual-Model Experiments

Another question we had was what would happen if we extended our experiments to in-
clude speaker models based on transformed speech as well. We called these experiments
dual-model experiments because, for each original speaker there were two speaker mod-
els: one based on recorded speech and another based on transformed speech.

For the GMM-based system, transformed speech was always judged to be most like the
model based on transformed speech with the same target, but the model based on speech
recorded from the target speaker almost always was a top-5 hypothesis. For the Phonetic
based system, transformed speech was always judged to be most like the model based on
transformed speech with the same target, and the model based on the speech recorded from
the target speaker was never a top-5 hypothesis. Though neither SID system appeared to
be fooled by the transformed speech, consideration of the top-5 hypotheses suggests that
the Phonetic SID system is more robust when attacked with transformed speech.

6.14 Experiments With Measuring Identity

We performed experiments to score how well the transformed speech matched the target
speakers and compare these results with synthetic speech created from the target speaker
data without using source speaker data. Two different types of synthesizers, CLUSTER-
GEN statistical parametric synthesis [Black, 2006] and cluster unit selection [Black and
Taylor, 1997a], were compared to voice transformation. The normalized scores for the
GMM-based SID system are shown in Figure 6.10, and the normalized scores for the Pho-
netic SID system are shown in Figure 6.11.4 The synthesizers and results are discussed in
the following sections.

4These two figures were created by Qin Jin with my help.
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Figure 6.10: Normalized GMM-based SID Scores for Various Types of Speech. Smaller
values represent being closer to the target speaker and are better. “Real” is recorded
speech, “VT” is voice transformed speech, “CG” is CLUSTERGEN synthetic speech,
and “CL” is cluster unit selection synthetic speech.

Figure 6.11: Normalized Phonetic SID Scores for Various Types of Speech. Smaller values
represent being closer to the target speaker and are better. “Real” is recorded speech, “VT”
is voice transformed speech, “CG” is CLUSTERGEN synthetic speech, and “CL” is cluster
unit selection synthetic speech.
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6.14.1 CLUSTERGEN Synthesizer

CLUSTERGEN [Black, 2006] is a statistical parametric speech synthesis technique [Black
et al., 2007], similar to the HMM-generation synthesis techniques found in HTS [Zen et al.,
2007]. Its advantage is that it can work better than many other synthesis techniques with
small amounts of data. Another potential advantage is that it makes predictions in phonetic
contexts, and the incorporation of phonetic level information may be helpful when identity
is evaluated by Phonetic SID. One disadvantage is that the final production of the audio
signal can sound unnatural due to signal processing artifacts.

CLUSTERGEN voices were created with training data from the 24 WSJ speakers, and
were evaluated with the GMM-based and Phonetic SID systems. for the GMM-based
system, for all synthetic CLUSTERGEN voices, the speaker model trained on recordings
from the corresponding WSJ speaker gave the best score. For the Phonetic SID system,
in 11 cases, the speaker model trained on recordings from the corresponding WSJ speaker
gave the best score, which was an improvement when compared to the transformed speech.

6.14.2 Cluster Unit Selection Synthesizer

Cluster unit selection [Black and Taylor, 1997a] is a concatenative speech synthesis tech-
nique. It splits training files into smaller segments which are reassembled in different
orders to form synthetic utterances. One advantage of this technique is that the output
segments are actual speech and do not suffer from unnatural signal processing artifacts,
though the places where the segments are joined can sound unnatural. Also, the audio seg-
ments are longer than individual frames, and this may be an advantage over VT in Phonetic
SID evaluation. One disadvantage is that it tends to require more data than CLUSTER-
GEN. In fact, one of the utterances in the test set could not be synthesized by the Cluster
unit selection approach because there was insufficient phonetic coverage in the training
set.

Cluster unit selection synthetic voices were created with the training data from the 24
WSJ speakers and evaluated with both the GMM-based and Phonetic SID systems. for
the GMM-based and Phonetic SID systems. for the GMM-based SID systems, for each
synthetic voice test, the speaker model trained on recordings from the corresponding WSJ
speaker was the closest, and in one case (speaker S02) was even closer to the synthetic
voice than the speaker model trained on the synthetic training data. For the Phonetic SID
system, in 20 cases, the speaker model trained on recordings from the corresponding WSJ
speaker gave the best score, and in two cases was even closer to the synthetic voice than
the model trained on the synthetic training data. Thus cluster unit selection performed

99



better in terms of identity then CLUSTERGEN with respect to the two SID systems.

6.15 Objective Measure Discussion

Returning to the original question of what SID systems tell us about the identity of VT and
synthetic speech, we find a number of answers. From the perspective of a GMM-based
SID system, VT and two types of synthetic speech are closer in identity to the real speech
SID models than additional real speech from the same speakers. It appears that the models
used in VT and the synthetic voices capture characteristics of the training data so well,
from the perspective of the GMM-based SID system, that the variation between speech
generated from the model is even less than the variation within the recorded speech from a
single speaker, going from training set to test set. Furthermore, CLUSTERGEN synthesis
performed better than cluster unit selection, and both scored worse than VT, but better than
real speech. However, from the perspective of the Phonetic SID system, the rankings with
real speech being closer in identity to the real speech SID models than the two types of
synthetic and VT speech tells us the opposite.

How can it be that two SID systems which give completely consistent results on clas-
sifying a set of recorded speakers give such completely different results when ranking VT
and speech synthesis? The answer appears to be that speaker identity is a complicated
quality that is based on multiple components, and that the GMM-based and Phonetic SID
systems emphasize different aspects. The GMM-based SID system focuses on statistics
from short frames of speech and does not consider longer audio units. In contrast, the Pho-
netic SID system focuses on statistics from sequences of phones, which in themselves are
typically longer than frames. What SID systems tell us about VT and speech synthesis is
that they are deficient in terms of the longer range statistics that are processed in Phonetic
SID systems.

As processes for creating synthetic speech improve, SID systems will need to improve
to defend against impostor attacks based on them. These new SID systems, in turn, will
provided new metrics for evaluating synthetic speech. Thus the two types of systems
can be used to improve each other. However, the SID systems must correlate with an
independent identity judgment, so the competition does not optimize an unrelated quantity.

In addition to identity, naturalness and intelligibility are important to synthetic speech.
In informal listening tests, we found the synthetic speech examples in these experiments
unnatural and difficult to understand, yet these examples fared well against SID systems.
When speaker data is limited, there appears to be a trade-off between speaker identity
and naturalness [Fernandez et al., 2006]. Given the starting points here, it appears that
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either naturalness and intelligibility of speech synthesis need to be improved, which may
be difficult or impossible using a small training set, or the additional external data used in
VT that can help with naturalness and intelligibility needs to be used without interfering
with identity.
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Chapter 7

Conclusions

7.1 Summary

This thesis explored the possibility of using articulatory position data to improve voice
transformation. Chapter 2 presented background material on speech models, which are
necessary components of voice transformation systems. They are discussed, both in their
historical context and with respect to which ones are used most commonly in voice trans-
formation. In Chapter 3, voice transformation was described, and the line of work that
led to what is currently the most prominent voice transformation technique was explored.
In addition, the baseline voice transformation system used in numerous experiments in
later chapters was explained in detail. Chapter 4 showed the use of EMA data to improve
the baseline voice transformation system described in Chapter 3. The most straightfor-
ward modifications to the system did not help. Finally, after attempting a combination
of changes, both to the voice transformation process and the use of the data, there was a
small positive improvement for one direction of voice transformation. Chapter 5 investi-
gated the question of whether articulatory position data from a speaker could be used with
another speaker. This is important because articulatory position data is difficult to col-
lect and in most cases probably will not be available for a specific speaker. Experiments
showed that pseudo-articulatory data, produced by mappings from MCEP features, could
be used to improve some phonetic feature predictions and some voice transformations.
Finally, in Chapter 6, the question of how to evaluate the quality of voice transformation
was explored. An experiment showed that the results of a subjective listening test were not
affected by whether the listeners knew the speakers whose voices were transformed. Also,
a new method of visualizing results from a subjective pair comparison test was presented.
New objective metrics, based on automatic speaker identification systems were also inves-
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tigated. They demonstrated that GMM-mapping based voice transformation systems have
specific strengths and weaknesses in comparison to various other synthesis techniques.

7.2 Contributions

• An investigation of extending GMM-mapping based voice transformation with ar-
ticulatory position data

• Creation of techniques that allow the use of articulatory position data from one
speaker with another

• Demonstration that cross-speaker articulatory position prediction techniques can be
used to improve phonetic feature prediction and voice transformation

• Showed that it does not matter whether listeners in a pair comparison test for voice
transformation know the speakers

• Created a new way of visualizing pair comparison tests for voice transformation

• Produced a novel way of measuring the identity of transformed speech using auto-
matic speaker identification systems

7.3 Future Work

There is still much room for improvement in voice transformation, and in the use of ar-
ticulatory position data. Some of the future challenges for voice transformation are to
incorporate more higher-level features, such as a more sophisticated prosodic model and
word choice. Some of the future challenges involving articulatory position data involve
making it easier to collect more consistent and more complete data. As for the evaluation
of voice transformation, there is still a desire to create objective measures that are more
consistent with subjective measures. Such objective measures would greatly simplify the
evaluation of voice transformation and might also be useful measures during the transfor-
mation process itself.
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