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Abstract
Open-domain question answering (QA) is an emerging information-seeking

paradigm, which automatically generates accurate and concise answers to
natural language questions from humans. It becomes one of the most nat-
ural and efficient ways to interact with the web and especially desirable in
hands-free speech-enabled environments. Building QA systems, however,
either has to rely on off-the-shelf natural language processing tools that are
not optimized for the QA task or train domain-specific modules (e.g., ques-
tion type classification) with annotated data. Additionally, optimizing QA
systems with hand-crafted procedures or feature engineering is costly, time-
consuming and laborious to transfer to new domains and languages.

This dissertation studies the idea of example-driven question answering,
which focuses on learning to search, select, and generate answers to un-
seen questions solely by observing existing noisy question-answer exam-
ples along with text corpus or knowledge base. To achieve this goal, we
developed novel neural network architectures throughout the QA pipeline,
that can be trained directly from question-answer examples. First, we pro-
pose candidate retrieval models that can utilize noisy signals to produce
dense indexing for text corpus and generate structured queries for knowl-
edge graphs. Second, we developed generative relevance models that do
not require annotated negative QA pairs and discriminative relevance mod-
els that can utilize pseudo negative examples. Third, we improved encoder-
decoder models for response text generation which can accept external guid-
ance for specific language style and topic. The integrated QA pipeline aims
to generate answer-like embedding vectors to search, select the most relevant
passages, and compose a natural-sounding response based on the selected
passages.

This dissertation demonstrates the feasibility of creating open-domain
example-driven QA pipelines based on neural networks without any feature
engineering or dedicated manual annotations for each QA module. Experi-
ments show our models achieve state-of-the-art or competitive performance
on several real-world ranking and generation tasks on domains of QA and
conversation generation. When applying in the TREC LiveQA competitions,
our approach received the highest average scores among automatic systems
in main tasks of 2015, 2016 and 2017, and the highest average score in the
medical subtask of 2017.
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Chapter 1

Introduction

In Section 1.1 we motivate the need for example-driven question answering. The re-
search hypothesis and an overview of our approach is summarized in Section 1.2. Fi-
nally, we outline the structure of this dissertation in Section 1.3.

1.1 Motivation

Open-domain Question Answering (QA) aims at automatically providing accurate and
concise answers to natural language questions from users. When compared with tradi-
tional search engines, QA systems automate the process of constructing proper search
queries and generating the answer from retrieved web pages. In hands-free environ-
ments, speech-enabled QA has become one of the most natural and efficient interaction
paradigms to seek information.

However, building comprehensive open-domain QA systems is still not cost-efficient.
For example, IBM Watson showed remarkable performance on the Jeopardy! quiz show,
but it took many person-years to develop and optimize the DeepQA pipelines for that
task (Ferrucci et al., 2010). Watson team trained and integrated hundreds of modules to
extract the potential answer, recognize indicative signals, and aggregate evidence for the
final prediction. Each module only focused on one or a few specific types of Jeopardy
questions. Additionally, developing each module in different domains or languages
requires hand-crafted procedures or feature engineering to extract different properties
from question and candidate texts, which is costly, time-consuming and laborious.

QA components either have to rely on off-the-shelf Natural Language Processing (NLP)
resources and tools that are not optimized for the QA task or train the component with
specific annotation data. Although several datasets have been annotated and can be
used for factoid QA, like question type classifiers (Li and Roth, 2002), answer sentence
selection (Wang et al., 2007b) and answer span prediction (reading comprehension) (Ra-
jpurkar et al., 2016), each dataset is still restricted regarding taxonomy, size, or language.
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Meanwhile, a vast amount of previously-answered questions are already available on
question-and-answer Internet forums and essentially cover all the popular knowledge
topics. For example, Yahoo! Answers has received more than 300 million questions as of
July 2012, and on average two new questions and six new answers were posted per sec-
ond (Grace and Soo, 2013). Most question-and-answer Internet forums can provide data
in the Q-A pairs format. Some forums also keep records of community-authored dupli-
cated questions (Fader et al., 2013), i.e., the question groups in Figure 1.1. On the one
hand, these data sources reflect real user intents and cover a wide variety of knowledge
and language patterns; on the other hand, the data can no longer be well represented
by hand-craft taxonomies, rules or patterns as in domain-specific QA systems.

Recently neural models have demonstrated great promise in many sequence model-
ing and generation tasks, including image captioning, machine translation, summariza-
tion, and conversation response generation. Derived from the encoder-decoder frame-
work, neural conversation models treat respond generation as a source-target trans-
lation problem. However, although the well-trained models can generate natural re-
sponses in many cases, these models are still far from real use. The generated responses
are mainly based on source-to-target language patterns and thus can not provide much
helpful information. QA systems, on another hand, are mainly information-seeking ori-
ented retrieval and extraction pipelines, which mostly didn’t consider conversation con-
text, user’s intention, readability, or entertainment. These encouraging early successes
and limitations of neural models and QA systems have motivated the research inter-
est in the data-driven training of natural-sounding conversational question answering
systems.

1.1.1 Towards Efficient Training for Question Answering

At its core, example-driven question answering aims to automatically learn to answer
questions solely by observing existing noisy question-answer examples along with text
corpus or knowledge base. For example, to train a system to answer new questions sub-
mitted to Internet-based community question-and-answer websites, such as Yahoo! An-
swers, an example-driven question answering system would take a large set of existing
question-answer pairs, and learn models that can then search, select, and generate an-
swers to unseen questions. The significant advantage of this paradigm is that building
QA systems no longer depends on dedicated manual annotations for each QA pipeline
module and domain. It also frees us from having to heuristically design and implement
complex taxonomies and functions to cover questions in a variety of domains, types,
and languages. Ultimately this will allows us to build QA systems in a cost and time
efficient manner.

This thesis follows the line of research initiated by Lita (2006) called instance-based QA
which clusters training questions according to multiple similarity metrics, and learns
cluster-specific strategies for answer typing, query expansion and answer candidate ex-
traction. We extended it by introducing generative neural models of query generation,
relevance scoring and response generation without explicit question clustering. Our
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models also can be learned directly from the noisy large-scale community QA data in-
stead of TREC-style factoid question-answer pairs.

With the help of recent advancements in neural network models for NLP, feature rep-
resentations now can be extracted and learned by back-propagation directly and thus
no longer rely on humans to handcraft features. In this dissertation, we study the po-
tentials of using neural networks as a central building block for all QA modules. To
that end, we introduce and evaluate several neural architectures to approach full QA
pipelines, including candidate retrieval, answer ranking and response generation. We
also believe that prototyping neural based QA components is critical for the next stage
development of conversational AI, which potentially enables knowledge retrieval, ma-
chine reading, and response generation jointly optimized for real conversation goals in
social media environments.

1.2 Thesis Statement and Contributions

In this thesis, we demonstrate the feasibility of the example-driven question
answering in which the fundamental components of a conversational an-
swering agent can be trained directly from question-answer examples and
achieve strong performance.

We argue that an optimal conversational answering agent should be able to:

• understand the query with background knowledge, generate answer-alike queries,
and retrieve relevant passages or facts from the open-domain text corpus and
knowledge base;

• read, rank and select helpful and informative content; and

• generate personalized conversational response conditioned on selected passages
and current dialog session.

Towards this ultimate goal, this thesis centers around the development and experiment
of training neural networks based models to search, rank, and answer without relying
on dedicated human annotations or feature engineering. As depicted in the workflow
diagram Figure 1.1, we propose three classes of new QA modules that are capable to
extract training signals from large volumes of open-domain human-to-human online
interactions, particularly from Internet forums. Specifically, we made the following con-
tributions to advance the example-driven QA:

• Example-driven candidate retrieval for question answering.

The lexical chasm between an input question and relevant answer make it chal-
lenging to discover relevant answer passages merely by searching with the ques-
tion keywords. In this part of the thesis, we propose an example-driven dense in-
dexing model that, by encoding the questions and answer passages into the same
dense semantic space, can discover candidate answers that near to the question
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in the trained vector space. We found that designing a new robust objective func-
tion is needed to effectively learn such indexer from the noisy community Q-A
data. The experimental results show that the indexer trained using our proposed
objective function achieved 1.5-times higher recall on the community QA dataset
and 6.49 points higher recall on MS MARCO dataset. As far as we are aware,
this work presents the first effective neural dense indexer for the large-scale QA
retrieval task.

We also propose a model that learns to map natural language question to struc-
tured query for knowledge graphs. Our approach automatically discover poten-
tial question-to-query mappings from community QA data, and use them for
training. We introduce a training strategy that denoises the extracted training
instance. We demonstrate significant cumulative improvements correlated with
each denoising step and achieves strong performance for the relation prediction
task on the SimpleQuestions dataset without using any annotated training data.

• Example-driven relevance modeling for question answering. Answer context
matching and answer passage selections modules used to build on top of exten-
sive feature engineering or external knowledge. In this part of the thesis, we pro-
posed neural architectures to modeling relevance without feature engineering. We
proposed discriminative models that can be trained with automatically sampled
negative examples and generative ranking models trained from noisy question-
answer examples. Furthermore, when applying in TREC LiveQA competitions,
our approach received the highest average scores among automatic systems in
main tasks of 2015, 2016 and 2017, and the highest average score in the medical
subtask of 2017.

• Example-driven response generation for question answering. Merely using re-
trieved text or entity as the answer has limited abilities to provide summarized
comprehensive information in a natural-sounding way. In this part of the thesis,
we proposed neural methods to generate the response that bias the generation pro-
cess with a specific language style restriction, or a topic restriction. We decompose
the neural generation process into empirically easier sub-problems: a faithfulness
model and a decoding method based on selective-sampling. Human evaluation
results show that our proposed methods are able to restrict style and topic without
degrading output quality in conversational tasks.

1.3 Outline

The rest of this dissertation is organized as below.

• Chapter 2: Background

This chapter gives an overview of canonical QA pipelines and fundamentals about
recurrent neural networks.
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• Chapter 3 and Chapter 4: Query Generation and Candidate Retrieval

These chapters present candidate retrieval methods that could be directly trained
out of question-answer examples targeting structured and unstructured knowl-
edge sources. We present experiments of the proposed methods for dense index-
ing for text corpus and structured query generation for knowledge graphs.

• Chapter 5 and Chapter 6: Relevance Modeling

These chapters introduce example-driven models to addresses two main kinds
of relevance ranking in question answering, explicitly scoring answer candidates
base on its context text (e.g. title of existing online discussion) and base on the
answer passage itself.

• Chapter 7: Application to LiveQA

We applied our relevance modeling models in the TREC LiveQA track 2015, 2016,
and 2017. This chapter presents our LiveQA system architecture along with its
intrinsic and extrinsic evaluation results.

• Chapter 8: Controllable Response Generation

This chapter describes our neural encoder-decoder based approaches to generate
plausible natural language response text, whose topic and language style are dy-
namically controlled.

• Chapter 9: Conclusion

This chapter concludes this dissertation and lays out interesting directions for fu-
ture work.
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Figure 1.1: Workflow Diagram of the Example-driven Question Answering
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Chapter 2

Background

In this chapter, I will first review the background knowledge on question answering
systems in Section 2.1, and then introduce the model fundamentals of recurrent neural
networks in Section 2.2 which will be used in the later chapters.

2.1 Open-domain Question Answering

The task of open-domain QA is to find accurate and concise answers (usually in the form
of phrases or sentences) to natural language questions. Factoid QA systems address
questions that ask for concise facts. For example, a factoid QA system can accept natural
language questions like “Who is the first president of United States?”, and attempt to
output the exact phrases “George Washington” or answer sentences such as “George
Washington was the first President of the United States from 1789 to 1797”, based on
open-domain knowledge sources such as Wikipedia or Wikidata. In contrast, a non-
factoid QA system handles all type of questions, which could be as varied as “Pregnant
cat? What to do?!” and “How do I convince my mom to pay for my gym?”.

Early History The study of question answering systems has started since the 1960s.
Several expert systems were built for restricted domains based on manually constructed
knowledge graphs, such as BASEBALL (Green et al., 1961), LUNAR (Woods et al., 1972),
and UNIX Consultant (Wilensky et al., 1988). The MURAX system (Kupiec, 1993, 1999)
was a forerunner of the QA approach that processes open-domain questions, searches
Grolier’s online encyclopedia, and extracts noun-phrase answers with regular expres-
sions. Katz (1997) created the first Web-based QA system START (Katz, 1997) shortly
after the emergence of the World Wide Web.

QA research has gained more popularity after the inclusion of the QA tracks at the Text
Retrieval Conference (TREC) (Voorhees, 2000; Agichtein et al., 2015)1, NTCIR Confer-

1The TREC QA tracks were supported by the ARDA Advanced Question and Answering for Intelli-
gence (AQUAINT) initiative. https://www-nlpir.nist.gov/projects/aquaint/
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ence (Fukumoto and Kato, 2001; Shibuki et al., 2014) and Cross-Language Evaluation
Forum (CLEF) (Magnini et al., 2004), which enables QA researchers around the world
to evaluate and compare algorithms with common benchmark suites.

Typical Software Architecture A typical simplified architecture of open-domain QA
systems is composed of three high-level major steps (Prager, 2006): (a) question anal-
ysis and retrieval of candidate clues and passages; (b) ranking and selecting of clues
and passages which contain the answer; and optionally (c) extracting, verifying, and
synthesizing the final answer. Full-fledged QA systems often make use of multiple
strategies (Nyberg et al., 2003) to find answers and utilize as many types of resources
as possible (Ferrucci, 2012). To that end, the algorithms and models in QA systems also
need to be modular (Nyberg et al., 2004) and reuseable (Ferrucci and Lally, 2004; Ide
et al., 2016).

High-performance open-domain QA systems require access to large-scale information
sources that cover all the general knowledge topics. The resource can be a large cor-
pus of textual information (sometimes the Web itself) and or heterogeneous structured
knowledge graphs. QA based on text corpus extracts answers as text snippets from one
or more semi-structured text documents (e.g. Wikipedia pages and or discussion forum
threads). On another hand, QA based on knowledge-graph fetches answer entities from
the knowledge-graph index with structured queries.

2.1.1 Candidate Retrieval

Question Analysis

The question analysis component is commonly the first step of all QA systems. The
ultimate goal of this step is to interpret the semantic meaning of the user’s inquiry from
plain-text questions. Intuitively, errors in the question analysis step can cascade in the
later stages of the QA pipeline. Therefore the end-to-end performance of a QA system
highly depends on the quality of its question analysis module.

To produce richer features for analyzing questions, researchers in the QA community
already introduced a wide range of NLP technologies to the question analysis task, in-
cluding Named Entity Recognition (NER) (McNamee et al., 2008), syntactic and seman-
tic parsing (Hermjakob, 2001), coreference resolution (Morton, 1999), semantic role la-
beling (Shen and Lapata, 2007). Additionally, new features also were explicitly created
for better interpreting question intention, such as question classification (Li and Roth,
2002).

Text-based QA systems can parse the input question and generate query keywords for
the passage retrieval module. Given the question “Who is the wife of Bill Clinton”, if
the IR module wishes to retrieve passages like “Hillary Rodham married Bill Clinton at
their home in Fayetteville, Arkansas.”, the question analysis component is responsible
for feeding IR module with query keyword extension (wife OR married OR spouse) AND

8



Bill Clinton.

To help increase the recall rate for relevant documents, many kinds of query expan-
sion or reformulation methods have been introduced to the QA field, which is vital
for questions with few available extracted keywords to feed to the IR module. The
most straightforward would be expansion using morphology derivations or synonymy
from WordNet (Miller, 1995a). Hovy et al. (2000) and Greenwood (2004) have shown
improvements in IR quality with the restricted use of WordNet resources. Pasca and
Harabagiu (2001) manually maintained a rule-based method for inserting morphology
and lexical derivations of the original keyword. Lin and Pantel (2002) present an ap-
proach in which questions are syntactically paraphrased to more flexible answer match-
ing. Similarly, Hermjakob and Echihabi (2002) reformulate the questions with semantic
paraphrases, called phrasal synonyms, to enhance retrieval performance. Negri and
Kouylekov (2009) studied how to account for syntactic and semantic correspondences
between questions and passages, by computing similarities between their respective
syntactic trees. Therefore, those query expansion methods attempt to extend the origi-
nal query by different expressions with similar meaning in the given context.

Answer Candidates Retrieval from Text

Passage retrieval is an information retrieval method that matches highly relevant para-
graphs to the input query. Passage retrieval is widely used in text-based QA systems to
discover answer bearing text passages. Salton et al. (1993) first proposed the concept of
passage retrieval which suggested applying a specific strategy to identify that two text
fragments are similar to each other. Passage retrieval extents document retrieval and
further locates the relevant text snippets. One group of approaches extracts passages by
predefined segments (e.g. sliding windows of a fixed number of sentences) and index
them as pseudo-documents. Another group of approaches retrieves documents first
with the help of standard document search tools such as Lucene or web search engines,
then identify most relevant passages within top-ranked documents.

The passages themselves also vary in sizes and degrees of overlapping context. One
critical challenge in passage retrieval is to identify the boundaries of coherent passages
relevant to the query. Kaszkiel and Zobel (2001) reviewed and evaluated three seg-
mentation strategies for passage extraction: discourse-based (using document structure
such as PARAGRAPHS), semantic-based (using topic structure), and window-based pas-
sages. They found passage-based rankings are more effective than whole documents,
but no single passage type showed superior retrieval performance than others. Jiang
and Zhai (2006) argued that pre-segmenting documents into fixed-length passages were
unlikely optimal because the optimal span of a relevant passage is presumably highly
query-dependent.

Community Question Answering (CQA) makes use of collective human intelligence
to resolve questions. Based on the observation that same question might repeatedly be
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asked by different users, preparing a list of frequently asked questions (FAQ) with an-
swers has been a convenient way to share knowledge since the early days of the Internet.
Community QA services such as Yahoo! Answers, Quora, and Stack Overflow provided
large-scale knowledge sharing and collaborative learning platforms and accumulated
large volume of user-generated knowledge over the last decades. Since the resources in
CQA sites is in natural language question-answer format, when users ask full-sentence
queries, text search engines can return previously answered questions from CQA site
directly (Liu et al., 2011). Si and Chang (2010) reported that 25% of Google’s (China)
first-page search results contain at least one link to Q&A sites.

Research carried on CQA field range from question intention analysis, question re-
trieval, quality estimation, and user analysis. Liu et al. (2005) and Jurczyk and Agichtein
(2007) investigated ways of finding experts from users behavior in the community,
which enable forwarding unanswered question to certain experts in the community.
Li et al. (2008) and Bian et al. (2008) tried automatically identifying whether a question
is personal or subjective. Xue et al. (2008) and Jeon et al. (2005) investigated combi-
nations of translation and retrieval models to retrieve similar questions and potential
reusable answers to the new questions. Wang and Ming (2009) reported that the syn-
tactic tree based question comparison achieves higher performance than bag-of-word
or tree kernel based. Cao and Cong (2010) found the category information can improve
CQA retrieval performance.

Related Evaluation Text REtrieval Conferences (TRECs), organized by the U.S. Na-
tional Institute of Standards and Technology (NIST), has organized large-scale evalua-
tions for QA systems annually between 1999 and 2007. Each year, the QA task involves
a new set of questions and answer nuggets that can be found in corpus likes AQUAINT
which contains approximately 1 million articles in 3 gigabytes of text. Documents in
those corpus covering archives such as Financial Times Limited, Congressional Record
of the 103rd Congress, the Federal Register, Associated Press World stream News, New
York Times News, and the English portion of the Xinhua News. All those answers sub-
mitted to the evaluation and judged correct by evaluators can be also used to train and
evaluate other QA systems. Similar to TRECs, the Cross-Language Evaluation Forum
(CLEF) in Europe organized evaluations in monolingual and cross-lingual QA since
2003.

Answer Candidates Retrieval from Knowledge Graphs

Semantic Web (Berners-Lee et al., 2001) has provided a distributed platform for users
to generate and share knowledge. In recent years, large-scale structured knowledge
graphs, such as those in Linked Open Data (LOD) (Bizer et al., 2009a), already contain
billions of entries in Resource Description Framework (RDF) (Manola and Miller, 2004)
formats and act as a rich source of information for various user needs. To bring the
value of these data to casual users and further answer their questions, natural language
interfaces to access those knowledge databases are highly demanded.
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In knowledge-graph QA systems, information is stored in structured databases with
certain schema and is only accessible by structured query corresponding to that schema.
Therefore, one of the core challenges is to parse and understand the natural language
input and map it to structured query in a format such as SPARQL (Prud’hommeaux
and Seaborne, 2008). Early knowledge-graph QA systems required controlled natural
languages (CNLs) as input to enable accurate mapping from question to predefined
terminology and schema of data source restricted to closed domains (e.g. a geography
database). However, most large-scale open-domain knowledge graphs are community-
driven such as DBpedia (Bizer et al., 2009b) and Wikidata (Vrandečić and Krötzsch,
2014). The problems of knowledge sparseness, duplicity and incompleteness exten-
sively exist in those knowledge-graphs. Therefore, open-domain knowledge-graph QA
needs more robust question analysis to generate structured queries and answer selec-
tion to validate and choose the results returned from multiple queries.

The research on accessing structured database with natural language was started more
than forty years. Since the 1970s, Woods et al. built one of the world’s first natural
language question answering systems (LUNAR) (Woods et al., 1972) for two databases
about chemical analyzes and the literature references of moon rocks. The translation
from the question in English to its database query language was done by a rule-driven
ATN parser (Woods, 1970). Soon after, several other systems with larger databases or
larger vocabulary were developed such as LADDER (Hendrix et al., 1978) and TEAM (Mar-
tin et al., 1986). Zelle and Mooney (1993, 1996) investigated learning approaches, specif-
ically learning to parse into Prolog queries. These work of Mooney focused on applying
Inductive Logic Programming to generate semantic grammar from examples in certain
domains. Popescu et al. invented PRECISE (Popescu et al., 2003, 2004) which guaran-
teed the correctness of its output by identifying natural language query that it can not
fully understand.

Recently, the field of knowledge-graph QA focused on the large number of newly avail-
able ontology data (Guarino and Giaretta, 1995). The task becomes translating a natu-
ral language question into graph matching queries for retrieval knowledge statements.
ORAKEL (Cimiano et al., 2007, 2008) system introduced by Cimiano et al. rigorously
parses input using lambda calculus. AquaLog (Lopez et al., 2007) and its successor
PowerAqua (Lopez and Fernndez, 2011) map question into sets of triple text segments,
match to most similar ontology entities and then generate triple queries to find the an-
swer. Querix (Kaufmann et al., 2006) and PANTO (Wang et al., 2007a) are implemented
with similar approaches as AquaLog, and cover geography, restaurants and jobs do-
mains. Damljanovic et al. (2011) designed FREyA system which emphasizes user in-
teraction and feedback. However, these ontology-based QA systems are both close-
domain and strongly reply on vocabularies derived from ontology nodes and WordNet
extension.
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2.1.2 Relevance Modeling

Passage retrieval algorithms can rank passage according to keywords frequencies as in
MITRE (Light et al., 2002) and keywords densities as in MultiText (Cormack et al., 2000),
IBM (Ittycheriah et al., 2001) and Site Q (Lee et al., 2002). Language models also can be
used to retrieval and rank passage (Liu and Croft, 2002). Mittendorf and Schauble (1994)
considered passage retrieval as a stochastic process, which generates text fragments in-
dependent of any particular query. Hidden Markov Models (HMMs) was used to model
these stochastic processes. Melucci (1998) presented a Bayesian framework to estimate
the concentrations of query terms in the text and extract passages based on term concen-
tration weights. Because passages are considerably shorter than the whole document,
term frequencies are close in relevant and many irrelevant passages. Tellex et al. (2003)
found that scoring passage requires not only lexical matching but also word relation
modeling to reduce false positive. Cui et al. (2005a) proposed a statistical word relation
matching method that examines dependency parsing paths within both question and
candidate sentences. It measures the matchings of dependency parsing relations in can-
didate sentences with their corresponding relations in the question. Bilotti et al. (2007)
archived higher retrieval precision with a structured search that matching semantic role
labeling structures between the question and candidate sentences.

Beyond keyword similarity, several researchers have tried pre-processing the corpus
and matching question focus (e.g. “where”) to structurally annotated entitie (Lin and
Katz, 2003; Bilotti et al., 2007), and the predicate annotation (Prager et al., 2000). Rie-
zler et al. (2007) attempt to create query expansions by n-best phrase-level translation-
based methods trained from crawled FAQ pairs. Derczynski et al. (2008) tried iden-
tifying the difficulty of input questions and then inserting extra search keywords for
the difficult question, which discovered extensions from previous QA evaluations’ an-
swer text. Komiya et al. (2013) find expansions by calculating mutual information from
community question answering data. Monz (2003) finds a negative result when apply-
ing blind pseudo relevance feedback for QA in TREC 9, 10 and 11. Lita and Carbonell
(2008) first cluster questions and provide cluster-specific query expansion. Bernhard
and Gurevych (2009) use lexical semantic resources such as Wiki Answer, glosses and
Wikipedia for training translation models. Zhang et al. (2015a) derived the paraphrases
of question’s key concepts by pivot translation between another language (e.g. Chinese).
Park and Croft (2015) proposed features and training approaches to identify key con-
cepts in questions (e.g. named entities) and using a translation model for the rest of
the question. Khashabi et al. (2017) introduced the concept of essential question terms
and an annotated dataset with these terms. Their experiments have shown that those
terms have larger impacts on human understanding and can improve the QA system
by incorporating this notion.
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2.1.3 Response Generation

The last stage of text-based questions answering is to generate a concise answer from
the candidate answer-bearing passages. For factoid questions, a QA system can return
a phrase, a paragraph, or a document. Lin et al. (2003) analyzed different lengths of
answer context for factoid QA; they found that users prefer paragraphs as answers
rather than phrases or documents. For non-factoid questions, a comprehensive answer
usually means long paragraphs due to the complexity of the question.

Several families of algorithms have been developed to exacting exact phrases as the an-
swer. For example, returning the user with an answer “1969” to the question “What
year did the first man land on the moon?”. One class of approaches extract answer
by answer-type specific template patterns. Extraction templates can be composed with
texts, POS tags, syntactic parsing, named entity classes, and placeholders. For example,
Ravichandran and Hovy (2002) introduced an algorithm that automatically discover
patterns (e.g. <NAME> was born on <ANSWER> ,) from online documents with seed ques-
tion and answer anchors. There is also a class of approaches that explored web redun-
dancy for answer extraction and validation such as the AskMSR system (Brill et al.,
2002) and MultiText QA system Clarke et al. (2001). Those algorithms mine n-grams
from retrieved passages and rank them based on their popularities and the predicted
answer type. Supervised models were also developed using previous TREC question-
answer as the training dataset. Yao et al. (2013) treats answer extraction as sequence
labeling problem and employed linear chain CRFs with features including POS-tags,
dependency parsing paths., named entities, and tree edit distances. Sultan et al. (2016)
proposed jointly optimized probabilistic models for both answer sentence ranking and
answer phrase extraction tasks by exploiting the correlation of the two tasks.

For improving machine comprehension and reasoning, answer extraction is also stud-
ied in reading comprehension based question answering setup. The questions and an-
swers are formulated based on a given text passage, and the system is expected to pro-
vide an answer span based on its understanding of the given texts. Hermann et al.
(2015) created a cloze-style dataset using CNN and Daily Mail news articles. Rajpurkar
et al. (2016) released the SQuAD dataset where the questions are generated by the crowd
using a given Wikipedia passage.

2.2 Recurrent Neural Networks

RNN is an extension of the conventional feed-forward neural network, used to deal
with variable-length sequence input. It uses a recurrent hidden state whose activation
is dependent on that of the one immediately before. More formally, given an input
sequence x = (x1, x2, . . . , xT), a conventional RNN updates the hidden vector sequence
h = (h1, h2, . . . , hT) and output vector sequence y = (y1, y2, . . . , yT) from t = 1 to T as
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follows:

ht = H(Wxhxt + Whhht−1 + bh) (2.1)
yt = Whyht + by (2.2)

where the W denotes weight matrices, the b denotes bias vectors and H(·) is the recur-
rent hidden layer function.

Long Short-Term Memory (LSTM) Due to the vanishing gradient problem, conven-
tional RNNs is found difficult to be trained to exploit long-range dependencies. In or-
der to mitigate this weak point in conventional RNNs, specially designed activation
functions have been introduced. LSTM is one of the earliest attempts and still a pop-
ular option to tackle this problem. LSTM cell was originally proposed by Hochreiter
and Schmidhuber (1997). Several minor modifications have been made to the original
LSTM cell since then. In our approach, we adopted a slightly modified implementation
of LSTM in (Graves, 2013).

In the LSTM architecture, there are three gates (input i, forget f and output o), and a cell
memory activation vector c. The vector formulas for recurrent hidden layer function H
in this version of the LSTM network are implemented as the following:

it = σ(Wxixt + Whiht−1 + bi) (2.3)
ft = σ(Wx f xt + Wh f ht−1 + b f ) (2.4)

ct = ftct−1 + itτ(Wxcxt + Whcht−1 + bc) (2.5)
ot = σ(Wxoxt + Whoht−1 + bo) (2.6)
ht = otθ(ct) (2.7)

where, τ and θ are the cell input and cell output non-linear activation functions which
are stated as tanh in our implementation.

LSTM uses input and output gates to control the flow of information through the cell.
The input gate should be kept sufficiently active to allow the signals in. The same
rule applies to the output gate. The forget gate is used to reset the cell’s own state.
In (Graves, 2013), peephole connections are usually used to connect gates to the cell in
tasks requiring precise timing and counting of the internal states. In our approach, we
don’t use peephole connections because the precise timing does not seem to be required.

Bidirectional RNNs Another weak point of conventional RNNs is their utilization
of only previous context with no exploitation of future context. Unlike conventional
RNNs, bidirectional RNNs utilize both the previous and future context, by processing
the data from two directions with two separate hidden layers. One layer processes
the input sequence in the forward direction, while the other processes the input in the
reverse direction. The output of current time step is then generated by combining both
layers’ hidden vector

−→
ht and

←−
ht by concatenation or weighted sum: yt = W−→

h y

−→
ht +

W←−
h y

←−
ht + by.
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Figure 2.1: An illustration of a stacked bidirectional LSTM network

Multi-layer Stacked RNNs In a stacked RNN, the output ht from the lower layer be-
comes the input of the upper layer. Through the multi-layer stacked network, it is pos-
sible to achieve different levels of abstraction from multiple network layers. There are
theoretical supports indicating that a deep, hierarchical models can be more efficient
in representing some functions than a shallow ones (Bengio, 2009). Empirical perfor-
mance improvement is also observed in LSTM network compared with the shallow
network (Graves et al., 2013).

2.2.1 Attentional Neural Encoder-Decoder

A basic encoder-decoder neural translation model from (Sutskever et al., 2014) suffers
from translating a long source sequence efficiently. This is largely due to the fact that the
encoder of this basic approach needs to compress the whole source sequence’s informa-
tion into a vector of fixed dimensionality. Motivated by this, the attention mechanism
enables the decoder to revisits the input sequence’s hidden states and dynamically col-
lects information needed for each decoding step. Specifically, our relevance models are
based on a combination of the models of (Bahdanau et al., 2014) and (Luong et al., 2015)
that we found to be effective. Here we describe the attention-based neural encoder-
decoder model we used for ranking in greater detail.
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2.2.2 Model Structure

In general, our neural encoder-decoder model aims at generating a target sequence Y =(
y1, . . . , yTy

)
given a source sequence X = (x1, . . . , xTx). Each word in both source and

target sentences, xt or yt, belongs to the source vocabulary Vx, and the target vocabulary
Vy respectively.

First, an encoder converts the source sequence X into a set of context vectors C =
{h1, h2, . . . , hTx}, whose size varies with regard to the length of the source passage.
This context representation is generated using a multi-layered recurrent neural network
(RNN). The encoder RNN reads the source passage from the first token until the last
one, where

hi = Ψ (hi−1, Ex [xt]) . (2.8)

Here Ex ∈ R|Vx|×d is an embedding matrix containing vector representations of words,
and Ψ is a recurrent activation unit that we used the Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) in our submission.

The decoder, which is implemented as an RNN as well, generates one word at a time,
based on the context vectors set returned by the encoder. The decoder’s hidden state h̄t
is a fixed-length continuous vector that updated in the same way as Eq. (2.8). At each
time step t in the decoder, a time-dependent attentional context vector ct is computed
based on the current hidden state of the decoder h̄t and the whole context set C.

This starts by computing the content-based score of each context vector as:

et,i = h̄>t Wahi. (2.9)

This relevance score measures how helpful the i-th context vector of the source sequence
is in predicting next word based on decoder’s current hidden state h̄>t . These relevance
scores are further normalized by the softmax function:

αt,i = softmax(et,i) =
exp(et,i)

∑Tx
j=1 exp(et,j)

, (2.10)

and we call αt,i the attention weight.

The time-dependent context vector ct is then the weighted sum of the context vectors
with their attention weights from above:

ct =
Tx

∑
i=1

αt,ihi. (2.11)

With the context vector ct and the hidden state ht, we then combine the information
from both vectors to produce an attentional hidden state as follow:

zt = tanh(Wc[ct; ht]). (2.12)
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The probability distribution for the next target symbol is computed by

p(yt = k|y<t, X) = softmax(Wszt + bt). (2.13)

2.2.3 Parameter Optimization and Network Setup

If we define all the parameters in this model as θ, training this attention-based model
can be done by minimize the negative conditional log-likelihood of the training data

θ̂ = arg min
θ

N

∑
n=1

Ty

∑
t=1
− log p(yt = y(n)t |y

(n)
<t , X(n); θ),

where the log probability inside the inner summation is from Eq. (2.13). It is important
to note that the ground-truth target words y(n)<t is used as input during training. Because
the entire model is end-to-end differentiable, so the gradient of the log-likelihood func-
tion with respect to all the parameters θ can be computed efficiently by back-propagation.
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Part I

Example-driven Candidate Retrieval
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Chapter 3

Answer Candidate Retrieval from Text
Corpus

Current neural answer ranking models focus on re-ranking the candidates returned by
the keyword-based search due to the efficiency constraint. Therefore, despite the recent
success of neural models, the end-to-end answer retrieval performance is still bounded
by the recall of the keyword-based search. The lexical gaps between questions and
answers also make it hard to effectively retrieve some answer candidates with only
keywords.

In this chapter, we explore the possibility of indexing and retrieving passages with
neural embeddings. Specifically, we propose a neural encoder model that maps ques-
tions and answers into the same compact vector space where distances correspond to
a measure of question-answer similarity. We also present simple, yet effective, train-
ing methods that can directly learn such unified encoder from the noisy community
question-answer pairs without any dedicated human annotation. The complete mod-
ule uses hybrid dense embeddings and keyword indexes to retrieve candidate passages
for question answering. Our experiments indicate the retrieval effectiveness of the pro-
posed method on the community answer retrieval task and show improved retrieval
recall on the MS MARCO 8.8 million passages dataset without using its training data.

3.1 Introduction and Background

Large-scale open-domain question answering (QA) systems (Prager, 2006) typically con-
sists of three stages: 1) corpus indexing, question analysis, and passages retrieval; 2) re-
ranking and selecting passages that contain the answer; and 3) extracting (e.g. reading
comprehension) and verifying the answer. In this chapter, we focus on the early-stage
indexing and candidate retrieval task. Given a new question, the candidate retrieval
module needs to search from a large corpus of passages and output the top-K candidate
answer passages for the later stage passage re-rankers and readers.
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Unified Embedding Space

Q1: Why do cats sleep all day? 
A1: Cats are nocturnal (usually). 
       So they sleep during the day 
       and hunt or play at night.

Q2: Why do cats meow at night?
A2: Cats are nocturnal by nature. 
       They are most active during the night.

Q3: What type of dogs were Siberian 
       Huskies bred from? 
A3: The Siberian Husky is directly 
       descended from the original sled dog.

self-learning margin

Figure 3.1: An illustration of the unified dense indexing for QA. Diamond and round
dots represent the mapped locations of questions and answers in the semantic space.
During training, the blue arrow is the expected gradient direction for Q2, which move
towards its corresponding answer and move away from those dots that are outside of
the self-learning margin.

Recently, neural models have demonstrated great promise in many tasks including in-
formation retrieval (Mitra and Craswell, 2018) and QA (Chen et al., 2017a; Wang et al.,
2018). However, despite the recent success of neural models on re-ranking benchmarks
such as TrecQA (Wang et al., 2007b), WikiQA (Yang et al., 2015) and MS MARCO (Bajaj
et al., 2016), the end-to-end QA performance is still limited by the keyword search recall.
State-of-the-art re-ranking methods rely on evaluating the interactions (e.g. attention)
between every question term and every candidate passage term, which is intractable to
directly re-ranking the full corpus for every new query. At the same time, because of
the “Lexical Chasm” (Berger et al., 2000) between questions and answers, lots of can-
didate answers don’t have enough keyword overlap with the question, which makes it
difficult to retrieve with just keyword combinations.

In this chapter, we propose a neural encoder model that maps questions and answers
into the same compact embedding space where distances correspond to a measure
of similarity between, as shown in Figure 3.1. Once this space has been produced,
tasks such as retrieval and clustering can be easily implemented using standard nearest
neighbor search techniques (Boytsov, 2018). The vector space nearest-neighbor search
has already been widely used in real-world applications such as content-based image
search or face identification.

However, there have been few positive results on training dense neural representa-
tions for large-scale QA retrieval. For instance, Guo et al. (2016) already shown that
the state-of-the-art representation-based re-ranking models (e.g. DSSM (Huang et al.,
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2013), CDSSM (Shen et al., 2014), and ARC-I (Hu et al., 2014)) perform significantly
worse than the traditional retrieval methods on ad-hoc retrieval. Note that the exist-
ing representation-based re-ranking models were all trained with softmax or triplet loss
functions on click-through re-ranking datasets. Recently, the large-scale pre-trained lan-
guage models such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018a) have
led to impressive gains in many NLP tasks. Nevertheless, these unsupervised represen-
tations are trained on plain text corpora and provide general-purpose sentence vectors,
which still require supervised fine-tuning for each downstream NLP task. Qiao et al.
(2019) shown that the pre-trained BERT (Devlin et al., 2018b) representations (without
supervised fine-tuning) are ineffective on QA ranking tasks.

One core obstacle to achieving effective dense representations for QA dense indexing
is the lack of large-scale clean supervision data. The existing training datasets for the
re-ranking benchmarks are relatively small to learn the rich space that retrieval needs,
and datasets created by annotating keyword retrieval results inevitably contains bias.
Meanwhile, a vast amount of human answered questions are already available on In-
ternet forums and essentially cover all the popular knowledge topics. However, the
community QA corpus is noisy and doesn’t contain gold-standard negative matches.
The re-ranking analysis from (Surdeanu et al., 2011) shown that 18% of the re-ranker
‘errors’ are also correct answers that were automatically labeled negative, same as the
A1 for Q2 in the Figure 3.1.

In this chapter, we address the challenge of training dense indexing encoder directly
from noisy community QA pairs. We developed a neural encoder architecture and pro-
posed a novel training objective to allow the robust training of distance metrics from
noisy QA pairs. Our experiments, conducted on an open-domain corpus of community
QA, show that the proposed approach significantly outperforms traditional retrieval
models in all metrics. We also evaluated the pre-trained model on the MS MARCO (Ba-
jaj et al., 2016) dataset for early-stage retrieval without using its training data, where the
combined system of dense and keyword index shows large improvement on retrieval
recall. As far as we are aware, this work presents the first effective neural dense indexer
for the large-scale QA retrieval task.

3.2 Approach

This section first describes the problem formulation, and then introduces the training
algorithm along with the proposed encoder network that maps QA pairs into the em-
bedding space.

Let {(qi, ai)}N
i=1 be the training data, where (qi, ai) indicates i-th question and its corre-

sponding answer. The indexing encoders are two learnable mapping functions fq(q) ∈
Rd and fa(a) ∈ Rd that each independently takes question or answer text as input and
returns a d-dimensional embedding vector. Additionally, the output of encoders is L2
normalized, i.e. ‖ fq(q)‖2 = ‖ fa(a)‖2 = 1. We then use the cosine similarity as the
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relevance scoring function for two encoded vectors: r(q, a) = 〈 fq(q), fa(a)〉 ∈ [−1, 1].

We uses a recurrent neural network to implement the mapping functions fq and fa. The
networks details are described in section 3.2.2. Given that the encoder networks are
end-to-end learnable, the most crucial part of our approach lies in the training method
that can effectively extract accurate supervision signals from the noisy community QA
pairs. To this end, we design a new softmax based loss (in Section 3.2.1) which reflects
the QA retrieval goal and accommodate the reality that training labels itself are not
perfectly clean.

3.2.1 Self-Learning Additive Margin Softmax

Here, we aim to learn an embedding space such that the relevance score between the
matched question and answer is high, whereas the relevance score between all the in-
correctly matched QA pair is low. Namely, considering the ranking task, we want to
ensure:

r(qi, ai) > r(qi, aj), ∀j 6= i. (3.1)

The fixed-margin triplet loss (Chechik et al., 2010) ought to be directly applied here for
metric learning. However, in our training data, each question is only associated with
one positive training pair but has millions of noisy negative matches. The triplet loss
was found to be ineffective in our experiments (in Section 3.4). We hypothesize that
gradient directions learned from triplets are too localized and therefore not globally ac-
curate for the complex semantic space, especially when some negative labels are wrong.
For example, in Figure 3.2, the triplet objective will learn to push qi toward to another
negative match ak since it only considered ai and aj in the current batch. Instead, we
propose to use a very large set of negative samples Ti (e.g. ‖Ti‖ = 2k) for each positive
pairs to aggregate more accurate gradient direction for every gradient updates.

��

��

��

��

Figure 3.2: An illustration of triplet training issues on community QA pairs. Regard-
ing the question qi, the gradients from the positive (blue) and negative (red) pairs are
combined (purple line) and lead to a negative match ak.

Selecting informative training samples plays a key role in the metric learning. Meaning-
ful improvements in performance were achieved by mining the hard training samples
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(Bucher et al., 2016; Shrivastava et al., 2016). The hard samples are referring to the train-
ing instances that are being mislabeled by the current model. In our metric learning sce-
nario, the hard negatives will be all aj that satisfy the relation: r(qi, ai) < r(qi, aj). De-
spite the ground-truth hard samples help learn more discriminative models, the noisy
hard samples also lead to large gradient noises. Unlike domains such as face identi-
fication, where negative labels are less noisy, simply treating all other answers in the
community QA corpus as negative matches is problematic. As shown in Figure 3.1, the
question Q2 could be pushed away from the answer A1 even they are also a good match.
Therefore, we propose a simple margin-based method to recognize close neighbors and
adjust gradients for those examples that might also be a good match, inspired by self-
training (Rosenberg et al., 2005) which automatically augment the training labels with
model predictions. Specifically, we filter the negative sample set and exclude samples
that the model predicts to be good matches:

T̂i = {aj ∈ Ti|r(qi, ai) + ms < r(qi, aj)}, (3.2)

where ms is called the self-learning margin.

Sohn (2016) showed that softmax cross-entropy loss is a generalized triplet loss by en-
abling comparisons among multiple negative examples. However, from the analysis of
(Liu et al., 2017), we can learn that even softmax loss is typically good at classification,
it is not good at making the embeddings of the same class compact. To address this, we
follow the additive margin softmax loss (Wang et al., 2018) that adds an angular margin
via

ψ(qi, ai) = cos θ −ma = r(qi, ai)−ma. (3.3)

Combining both margins above, we propose the Self-Learning Additive Margin Soft-
max (SLAM-Softmax) loss, for the task of selecting the correction answer given a ques-
tion, we have:

L
q→a

= − 1
N

N

∑
i=1

log
es·ψ(qi,ai)

es·ψ(qi,ai) + ∑j∈T̂i
es·r(qi,aj)

, (3.4)

where s is a fixed scale factor, ψ is the additive margin function that push positive
question-answer pair closer, and T̂i is the large set of self-learned negative examples
that aims to aggregate a globally accurate gradient direction in the embedding space.

Similarly, we define a reversed task of selecting the correctly matched question given an
answer. And the final loss is the sum of both selection tasks:

Lq↔a = Lq→a + La→q. (3.5)

In order to reduce the computational burden of encoding O(N · ‖T ‖) vectors during
training, we set the batch size equals to ‖T ‖+ 1 and treat answers from other positive
QA pairs in the same batch as the negative sets. In this way, the negative samples
are shared in the same batch and only need to be encoded once. In total, our training
method just needs to encode O(N) vectors for each epoch.

25



3.2.2 Encoder Architecture

The goal of this encoders is to obtain a dense representation based on input words that
capture the most discriminative passage meaning for ranking QA. Instead of training
two separate encoders fq and fa, we train a single encoder that can accept two different
types of inputs: fqa(w, type), where type ∈ {question, answer}. This allows the model
parameters to be effectively shared and can be efficiently trained.

The encoder first maps each word wi into a de-dimensional vector using a mixed em-
bedding matrix E ∈ R|V|×de , where E = Epre + Etune. Here, Epre is a pre-trained word
embedding matrix that will be fixed during the model training, and Etune is a trainable
embedding matrix that is randomly initialized. To explicitly signal encoder the input
type, the encoder accepts a binary feature to differentiate question and answer, which
was concatenated to the input word embeddings at every time step.

The contextual representations hi is then generated using a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) from word embedding inputs (more background details
regarding the recurrent neural networks can be found at Section 2.2). The encoder ap-
plies a max-pooling among the BiLSTM outputs: {h1, . . . , h`w}, where `w is the passage
length. Finally, the encoder post-processes the max-pooling output with a two-layer
fully-connected network with ReLU activations and dropout in between.

3.2.3 Integrating with Keyword Search

Ideally, the proposed dense indexer can encode and find candidate answers by ‘mean-
ing’, which means it can discover those answers that have no overlapping word with
the query. However, at the same time, the pre-trained neural model has limited ability
to understand the unseen concepts or proper nouns that are out of vocabulary (OOV)
during indexing and retrieving. For example, the neural model will fail at short query
with unknown words (UNK), such as “could you define UNK?”, while keyword search
can fetch such rare concepts easily. To access the benefits of both type of indexes, we
use a naïve approach to retrieval top K passages from both sources. Specifically, when
all the words in query are In-Vocabulary (IV), the combined retrieval first adds top K/2
passages from the dense index, and fill the rest half with passages from keyword search
that has not been added by the dense index search. If there is OOV words appear in the
query, the combined retrieval only use the keyword searcher.

3.3 Experiments

Datasets The data used to train the index encoder consists of 10 million question-
answer pairs crawled from answers.com website. A development and a testing dataset
that both have 100K question-answer pairs are holdout from the crawled corpus. Namely,
the testing corpus contains 100K candidate answer passages, and the query set contains
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100K questions. The corpus is pre-processed using the BlingFire1 tokenizer. We limit
our model’s vocabulary to 60K most-frequent terms in the CQA training set, excluding
the boundary symbol and the unknown word tag.

We also evaluate our pre-trained model for indexing and retrieval on the MS MARCO
corpus (Bajaj et al., 2016). The corpus contains 8.8 million unique passages. The devel-
opment set contains 6,980 queries. On average, each query has one relevant passage.
The data was originally used for re-ranking benchmark where each query was paired
with 1K passages retrieved with BM25.

The Community QA and MS MARCO datasets are large-scale QA datasets. Both consist
of open-domain real-user queries. MS-MARCO contains mixed factoid and non-factoid
questions, while CQA mainly contains non-factoid questions.

Evaluation Metric We use Success@1 (S@1), Mean Reciprocal Rank (MRR@K), and Re-
call@K as evaluation metrics, which are calculated using the trec_eval evaluation scripts.

Implementation Details In this chapter, we limit our encoder to use single-layer BiL-
STM with a hidden size of 500. The index embeddings (after concatenating from both di-
rections and post-processing) are 1000-dimensional. The model uses the 300-dimensional
FastText embeddings pre-trained on Wikipedia (Bojanowski et al., 2017). The network
weights were randomly initialized using a uniform distribution (−0.08, 0.08), and are
trained with the ADAM optimizer (Kingma and Ba, 2014). The hyper-parameters are
all chosen by sweeping on the CQA’s validation dataset. In the following experiments,
the fixed scale factor s, additive margin ma, and self-learning margin ms are set as 40,
0.1, and 0.05 accordingly.

Answer passage embeddings are stored with faiss2 for efficient nearest neighbor search.
In our experiment, even without search approximations, the indexing and retrieval
speed of dense search using Faiss (GPU) is comparable to the Lucene-based Anserini
toolkit (CPU), and becomes faster than Anserini when processed in batches.

3.4 Results and Analysis

Table 3.1 summarizes the results from our model and baselines on the community QA
retrieval task. We compared our indexer with the classical BM25 model and also BM25
with pseudo relevance feedback based query expansion RM33. Following (Otsuka et al.,
2018), we also implemented and compared a query expansion model using neural ma-
chine translation, referring as NMT. The results indicate that the "lexical-chasm" issue,
which the question and answer often use different terms, fundamentally limits the

1https://github.com/microsoft/BlingFire
2https://github.com/facebookresearch/faiss
3Anserini toolkit (Yang et al., 2018a) was used with default parameters to produce results of traditional

retrieval models.
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S@1 MRR Recall
@1K @10 @100 @1K

BM25 0.215 0.258 0.338 0.452 0.560
RM3 0.178 0.224 0.316 0.435 0.557
NMT 0.186 0.230 0.313 0.444 0.570
Triplet 0.008 0.018 0.033 0.128 0.401
Softmax 0.020 0.040 0.075 0.236 0.553

‖T ‖ with SLAM-Softmax

20 0.131 0.191 0.307 0.555 0.792
200 0.288 0.367 0.523 0.739 0.873
2000 0.371 0.442 0.590 0.758 0.878

Table 3.1: Overview of results on the community QA retrieval task. The last three rows
are results from our method with different size of negative samples ‖T ‖ used during
training.

IV OOV All
(size) (5512) (1468) (6980)

Dense 0.8685 0.3621 0.7619
BM25 0.8346 0.9201 0.8578
Combined 0.9234 0.9227

Table 3.2: Overview of Recall@1000 results on retrieval from MS MARCO full corpus.
Dense refer to our best performing model in Table 3.1. The combined search are gener-
ated by the method described in Section 3.2.3

keyword-search performance. Therefore, query expansions (RM3, NMT) has shown
little improvement as they also easily introduce noise term. Plain softmax (20 negative
samples and same scaling factor) and triplet losses are also included for comparisons.
The results show that our model significantly outperforms plain keyword, query ex-
pansion, plain softmax, and triplet based methods on all metrics. We also found that
the size of the set ‖T ‖ correlates positively with the ranking performance.

Table 3.2 summarizes our retrieval experiment results on the full MS MARCO corpus.
We are evaluating recall@1000 since this early-stage retrieval output will serve as input
to later stage re-rankers (e.g., based on BERT). Note that we follow a practical usage
and let BM25 has a full unrestricted vocabulary. Therefore BM25 doesn’t have any OOV
query understanding issues in our experiments. When applying our pre-trained model
to index and retrieval in this new domain, we found the dense model is more effective
than BM25 when query concepts are in-vocabulary, but less so when there are OOVs.
Furthermore, two indexes discover complementary kinds of relevant answer passages,
and the recall improved significantly when combining both searchers.
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3.5 Related Work

In the context of embedding question and answer candidates with dense semantic rep-
resentation, several approaches have been proposed. Zhou et al. (2016) learned the
dense representations of questions and answers by first pre-training two separate auto-
encoders and then transforming the encoded representations to optimize the cosine sim-
ilarities. The similarity score produced by dense representations has been used as an
additional learning-to-rank feature along with BM25 for the re-ranking task. The triplet
loss was used for correlatedness training, which is also used as a baseline loss function
in our experiments

Padmanabhan et al. (2017) proposed a latent space model to embed each question-
answer pair (qi, ai) into one d-dimensional vector ui, which can later be used to retrieve
similar question-answer pairs given a new question. The model attempts to reconstruct
ti-idf of (qi, ai) while preserving the local tf-idf cosine similarities. The dimensionality
reduction is achieved by extracting d eigenvectors of the reconstructed ti-idf represen-
tations. However, the model was designed for duplicated question-answer retrieval,
which cannot be directly applied and compared on answer retrieval tasks such as MS
MARCO. Specifically, the CQADupStack dataset (Hoogeveen et al., 2015) was used for
training and evaluation, which was created from StackExchange forums for the task of
duplicate question retrieval. On the other hand, the CQA and MS MARCO datasets we
evaluated on are designed for the task of retrieving candidate answers directly.

3.6 Conclusion

Improving the QA retrieval’s recall with the dense index is desired in many end-to-end
QA and chatbot applications. However, training this open-domain semantic space re-
quires massive data. And, unfortunately, there are no large-scale ground-truth negative
labels for any QA dataset. In this study, we showed that constructing the dense seman-
tic space for large-scale QA retrieval is achievable. The proposed training algorithm can
directly learn such space from the noisy community question-answer pairs without any
dedicated human annotations. Experimental results on real-world datasets show that
our model can capture useful information from the noisy training and achieve signifi-
cant improvements in QA retrieval tasks as compared to all baselines. At the dawn of
embedding-based QA retrieval research, we intended to keep the encoder simple and
efficient for practical use-cases and focus on the training objective. The more complex
encoders are therefore left as future work.
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Chapter 4

Answer Candidate Retrieval from
Knowledge Graph

This chapter introduces a bootstrapping approach for training open-domain question
answering over knowledge graph. Specifically, we propose a relation detection model
utilizing the potential question-to-query mappings extracted from community question-
answer pairs.

4.1 Introduction

Open-domain Knowledge Graphs (KG) such as Freebase (Bollacker et al., 2008), NELL
(Carlson et al., 2010), Wikidata (Vrandečić and Krötzsch, 2014) and DBpedia (Auer et al.,
2007) contain a vast wealth of knowledge. There has been growing research interest to
build automatic QA systems that can answer factoid questions via the lookup of a sim-
ple KG fact. SimpleQuestions (Bordes et al., 2015) is a commonly used benchmark for
factoid QA over KG (KG-QA), whose questions can be answered using a single knowl-
edge entry. The research community has developed various models targeting its key
sub-tasks such as entity linking and relation detection. However, existing approaches
to training KG-QA systems have relied on dedicated human annotations that are not
only costly to create but are also restricted to a particular set of KG schemas. This is
undesirable as open-domain KGs are varied and their schemas keep changing, while
static training dataset cannot adapt to the changes or new domain.

In this chapter, we introduce an approach to train KG-QA systems without relying
on any human annotated mappings from question to the structured query. Instead,
we propose to automatically extract question-to-query mappings from community QA
sites and use them for training. However, the automatically extracted mappings are ex-
tremely noisy. For instance, there are only around 2% of the raw mappings are ground-
truth labels in our SimpleQuestions experiments. Therefore, we introduced a train-
ing strategy that denoises the extracted training samples through popularity weight-
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ing, keyword-based instance filtering, and instance re-weighting with self-training. We
demonstrate significant cumulative improvements correlated with each training weight-
ing strategy and validate our approach on SimpleQuestions benchmark dataset. Our
approach achieves an accuracy of 78.11% for the relation detection task on the Simple-
Questions dataset without using any annotated training data.

4.2 Related Work

In open-domain KG-QA systems, the input is a natural language question. The goal is
to map the text question to a structured query. Researchers have proposed various ap-
proaches to this task. The early thread of work derives from semantic parsing (Cai and
Yates, 2013; Berant et al., 2013; Berant and Liang, 2014; Reddy et al., 2014), where the
question is mapped to a logical form representation (e.g. CCG or λ-DCS) and then con-
verted into a structured query. Another research thread attempts to select the answer by
measuring the semantic similarity between question and KG facts in latent embedding
spaces (Bordes et al., 2014b,a). Yih et al. (2015) proposed a multi-stage strategy to match
question utterance to graph queries, where multiple dedicated models were trained to
produce partial similarity measurements for each segment of the query. Recently, the
SimpleQuestions (Bordes et al., 2015) dataset has become the de facto benchmark for
evaluating KG-QA systems, where questions can be answered by a single fact. In this
setup, building KG-QA systems need to solve the following three principal challenges:

• Recognizing named entities in the question and linking them with the most likely
entries in the knowledge graph. The word or phrase in the unstructured ques-
tion often ambiguously implies various database entries. For example, the word
“Obama” can refer to both “Barack Obama (44th President of the United States) ”
and “Obama, Fukui (a city located in Fukui Prefecture, Japan)”.

• Mapping question’s semantic intention to graph relations (the predicate in the
triple). For instance, the question “who is the wife of . . . ” could link to the
“spouse”1 relation.

• Identifying constraints and dependencies between the linked entities and predi-
cates, and deciding the final query.

Bordes et al. (2015) originally introduced a memory-networks solution for the Simple-
Questions dataset. In addition to the SimpleQuestions training set, Bordes et al. (2015)
also utilized the 3K training questions from (Berant et al., 2013) and 15M paraphrases
from WikiAnswers (Fader et al., 2013) for the training purpose. Later, various neural
architectures have been proposed for this task from different perspectives to further
advance the performance. Dai et al. (2016) formulated the task with a unified con-
ditional probabilistic framework and trained components using BiGRUs. Golub and
He (2016) treated the task as sequence-to-sequence problem and proposed a character-

1http://dbpedia.org/ontology/spouse
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based encoder-decoder model. Yin et al. (2016) experimented separated entity linking
and fact selection modules with CNN, while (Yu et al., 2017) employed a hierarchical
residual BiLSTM encoder. Lukovnikov et al. (2017) introduced hierarchical encoders
using both character and word representations and implemented end-to-end training
for all modules. Hao et al. (2018) suggested using BiLSTM-CRF for predicting entity
mention span and jointly scoring fact selection with entity linking and relation detec-
tion. In general, these approaches focus on better modeling of question representation
and query prediction exploiting advanced neural techniques.

However, all existing neural approaches rely on the human-annotated training dataset,
which is commonly limited to specific KG or domains. For instance, the training split of
SimpleQuestions dataset contains 75,910 annotated mappings of the questions and its
Freebase facts, while the Freebase project has been obsolete for years. To this end, our
work attempts to train a neural KG-QA system without using any human-annotated
data. Our approach automatically extracts noisy mappings from the community QA
forum and de-noise them for modules training. This setup allows us to quickly establish
open KG-QA baselines for any new KG.

Our bootstrapping approach for training KG-QA is similar to the distantly supervised
relation extraction (RE) (Mintz et al., 2009). Their task goal is to extract relational facts
from text corpora such as Wikipedia or the New York Times (NYT). The distant su-
pervision for RE also generates the training relation labels by automatically aligning
sentences (each contains a pair of entities) with knowledge graph facts. Riedel et al.
(2010) shown that the distant supervision signals contain approximately 13% noisy la-
bels when mapping Freebase to Wikipedia and 31% noisy labels when aligning Free-
base to the NYT corpus. In order to alleviate the negative impact of those noisy training
instances, multi-instance multi-label learning (MIML) framework was widely adopted
(Mintz et al., 2009; Hoffmann et al., 2011; Surdeanu et al., 2012), which extracts rela-
tion from a group of sentences mentioning the same entity pair. The earlier MIML ap-
proaches (Mintz et al., 2009; Hoffmann et al., 2011; Surdeanu et al., 2012) were feature-
based. Recently, neural network (Zeng et al., 2015; Lin et al., 2016) was also incorpo-
rated with the MIML framework for the distantly supervised RE. For example, Zeng
et al. (2015) trained a convolutional neural network to select the most likely sentence
in the sentence group for training and prediction, while Lin et al. (2016) aggregated
sentence embeddings in each group using a neural attention model. However, all the
MIML-based approaches make the at-least-one assumption: if two entities are linked with
a relation in a KG, at least one sentence that contains the entity pair expresses that re-
lation. By contrast, our pipeline generates noisy relation candidates between all entities
pairs mentioned in the questions and their answer passages, which often violate the
at-least-one assumption. Let us consider the example question “What awards did Marie
Curie win?” and the example answer passage “Marie Curie was the first female to win a
Nobel Prize.” The ideal relation for the example question is awards, which can be discov-
ered between the entity pair: “Marie Curie” and “Nobel Prize”. This example QA pair
also generates a noisy training mapping to the gender relation, which is found from the
entity pair: “Marie Curie” and “female”. In order to denoise the gender relation in the
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MIML framework, the at-least-one assumption needs another question in the corpus
that means to ask Marie Curie’s gender, which often does not exist in our dataset. Fur-
thermore, around 98% of the raw mappings are noisy in our experiments. Therefore, we
do not apply the MIML-based methods that widely used in RE for KG-QA, but develop
principled denoising methods that directly re-weighing the training instance for neural
model training.

4.3 Approach

A simplified knowledge graph can be expressed by a collection of triples (s, p, o), where
each s refers to the subject; p indicates the predicate, and o is the object. Each subject
must be a concept. The concept may indicate a real-world entity such as “Bob Dylan”, or
an abstract notion such as “Artist”. And the object in a triple can be either a concept or
a literal value. Each predicate is a special concept representing the relationship between
subject and object. The inverse relation of p is denoted by p−1, and (s, p, o) is equivalent
to (o, p−1, s). Then a knowledge graph can be considered as a directed graph with la-
beled edges, where subjects and objects are nodes and predicates are edges. Figure 4.1
shows a example sub-graph describing “Bob Dylan” in a knowledge graph.

Figure 4.1: An example knowledge subgraph describing “Bob Dylan”

A structured query for knowledge graphs consists of a set of triple patterns known as
a Basic Graph Pattern (BGP). Each triple pattern is similar to triples (s, p, o) except that
each subject, predicate, and object can be a variable. For example, a very basic BGP can
be finding o for given corresponding s and p, such as a given subject “Bill Clinton” and
the predicate “child” to find variable “?children” that will be “Chelsea Clinton”.

4.3.1 System Overview

Our proposed KG-QA system answers open-domain the natural language question by
translating it to a BGP query, which comprises the steps of:

1. recognizing and linking the most plausible knowledge entity from the question;

2. constructing question template text by excluding the recognized entity;
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3. selecting the most likely predicate based on question template text and the linked
entity.

We use a simple dictionary-based approach to detect and link named entities (Section
4.3.3). The predicate prediction module is implemented with a recurrent neural net-
work. The networks details are described in section 4.3.5.

Figure 4.2: The workflow of the proposed training process for our KG-QA system

Given that the neural networks are end-to-end trainable, the most essential aspect of our
approach is the training method that can effectively extract mapping patterns from the
noisy community QA pairs and de-noise the supervision signals for accurate training.
We propose a novel approach (as depicted in Figure 4.2) that automatically discovers
links between textual patterns and predicate without dedicated human annotations. To
this end, we implemented an efficient KG index (in Section 4.3.2) for seeking possi-
ble predicate connections between pairs of entities found in each of the questions and
answer passages. Because the original mappings discovered by our KG search were
extremely noisy, we proposed denoising procedures (in Section 4.3.5) based on the pop-
ularity, keyword overlapping, and model’s self-training confidence.

4.3.2 Knowledge Graph Indexing

N-Triples (Beckett, 2014) is a simple and widely used format for storing knowledge
graph. It employs Uniform Resource Identifier (URI) to represent concepts. Each non-
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concept literal is stored as a quoted string and optionally can be appended with a URI
that indicates its data type. The figure 4.3 lists two example N-Triples from DBpedia
knowledge graph.

<http://dbpedia.org/resource/Canada>←↩
<http://dbpedia.org/ontology/capital>←↩

<http://dbpedia.org/ontology/Ottawa> .

<http://dbpedia.org/resource/Canada>←↩
<http://dbpedia.org/ontology/foundingDate>←↩

"1931-12-11"^^<http://www.w3.org/2001/XMLSchema#date> .

Figure 4.3: Example N-Triples in DBpedia knowledge graph

In order to support efficient matching of BGP queries for millions of community QA
pairs, a fast triple index structure is required. Since our BGP queries always have two
known elements and one unknown target variable, only three indices need to be made
for the permutations of the subject (S), predicate (P), and object (O), which are SP-O, OP-
S, and SO-P. For example, the index SO-P implements a mapping function: Isop(s, o) =
{p|(s, p, o) ∈ K}, where K is all triples in the knowledge graph.

For space efficiency consideration, a standard technique is replacing all URI references
and literals by numerical ids using a name dictionary (Chong et al., 2005). A path in
the knowledge graph can then be stored as a sequence of integers. The name dictio-
nary could introduce additional cost when mapping URIs and literals into integer IDs.
However, since the system takes natural language questions as input instead of struc-
tured queries, the Named-Entity Linking module (see Section 4.3.3) can directly map
from mention texts to numerical IDs, which eliminate the extra cost of using the name
dictionary.

The underlying triple indexing data structure is an in-memory hash table, where two
known IDs are bundled together as the key. We observed that the vast majority of keys
only have one target ID. Hence, for both space and time efficiency, we maintained two
hash tables in parallel for each index, where one hash table only stores singular target
value and another one keeps those has multiple target values. Since the keys and values
have compressed into integers, the hash table index can fit into main memory, which
avoids using disk-friendly but slower looking up data structures such as B+ trees.

4.3.3 Named Entity Linking

The function of Named Entity Linking (NEL) module is to spot text segments and link
them to probable knowledge graph entities. We utilize anchor text or titles resources for
mapping texts in varied expressions to KG entities, which not require additional human
annotations.
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In many knowledge graphs such as DBpedia, each knowledge entity (topic) has its pub-
licly available URL. Furthermore, web pages such as news, blogs, and Wikipedia itself
often add hyperlinks that point to related Wikipedia topics within the passages. For
example, an HTML web page might contain a hyperlink

<a href="https://en.wikipedia.org/wiki/Michael_Jackson">The King of Pop</a>

that links plain text “The King of Pop” to the Wikipedia page of “Michael Jackson”.
Therefore, the mention texts in hyperlinks can be used as potential textual expressions
for an entity. Also, the label field is mandatory in most KG and can be used as each
entity’s possible mention text.

We built a simple dictionary of mention text to entities. Given a mention text, possible
entities are ranked according to their saliences, which measured by the number of facts
that the entity serve as the subject in the KG. Aho-Corasick algorithm is then used to
spot all possible entity mention spans within a sentence. The NEL module also detects
date, time, string literals, and other numbers such as monetary values. For example,
numbers such as “3.1415 million” will be extracted and approximately transformed to
form as 3.14× 106. The normalized number is stored and searched in the SO-P index
discussed in Section 4.3.2, which enables approximate number matching between free
text and knowledge graph.

4.3.4 Discovering Template Mappings from Question-Answer Pairs

The next challenge is to discover question patterns for each KG. To this end, we propose
an approach that automatically collects the potential associations between questions
and predicates using a question-answer collection and KG. The procedure for extracting
template is outlined in the following steps:

1. Given a pair of the question and its answer passage, the NEL module (in Sec-
tion 4.3.3) is applied to spot entity mentions Sq from the question and Sa from the
answer. Each entity mention t = (wi, . . . , wj) ∈ S associates with a set of entities
E(t).

2. For every pair of entity mention texts {(tq, ta)|tq ∈ Sq, ta ∈ Sa}:

(a) A template surface is constructed based on the question and tq:
T = (w1, . . . , wi−1, M, wj+1, . . . , wn), where M is a special slot symbol.

(b) For every pair of entities (eq, ea) where eq ∈ E(tq) and ea ∈ E(ta). The KG
search module program exams whether there exists a predicate path between
eq and ea in the knowledge graph.

i. If one or more predicate paths between eq and ea are discovered, those
predicate paths r and eq will be added to the predicate counter Cr,T for
template surface T.
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ii. Instead, if no predicate path is detected from all pairs of entity between
E(tq) and E(ta), a special “no path found” symbol will be recorded for T.

3. Repeat above steps over all training pairs of question and answer.

The predicate paths observed during the above process have different credibilities. When
accumulating Cr,T, if c paths are detected between a pair of entities (eq, ea), the weight
of each path in template path distribution will be equally divided by c. The purpose
of this operation is to deal with the semantic duplication in knowledge graphs. Given
training question “Who is Bill Gates’ father?” and answer “William Gates”, there ex-
ist two semantically equivalent predicate paths parent and child−1 from “Bill Gates” to
“William Gates”. This normalization operation makes sure duplicated predicates will
not gain extra credits, as contrasted with ordinary predicates which only appear once
in one direction.

The brute-force nature of the above procedure and the noisy community QA data intro-
duced lots of predicates that do not reflect the template’s semantic intents. For exam-
ple, when processing with the question “who is the mayor of Chicago” and its answer
text “The current mayor of Chicago is Rahm Emanuel.”, the predicate paths between
“Chicago” and “Rahm Emanuel” are both leaderName and birthPlace−1. Even though
many city mayors were indeed born at the city too, the birthPlace−1 is not one of the
desired predicate paths for the training purpose. To overcome this problem, a relatively
large collection of training questions and answers is necessary to provide reliable sta-
tistical information about predicate paths for each template. Specifically, the training
data also contains questions about “who is mayor of Toronto” and “who is mayor of
New York” that only related to leaderName not birthPlace−1, which makes predicate
leaderName statistically dominates for templates “who is mayor of [CITY]?”.

By going through a large collection of question-answer pairs, we can directly obtain
predicate (relation) path distributions over each template surface. The probability of
predicate path r given template T is: p(r|T) = Cr,T/ ∑k Ck,T. For example, given tem-
plate T1 = “who is the president of [ORGANIZATION]?”, the naive model can return
a list of possible predicates with different probabilities such as p(leaderName|T1) = 0.5
and p(keyPerson|T1) = 0.1.

4.3.5 Training Relation Detection from Templates

Given the templates extracted in Section 4.3.4, simple questions can be answered by di-
rectly matching known templates. Similar to the extraction process, the input questions
are first scanned by NEL to extract an entity mention tq = (wi, . . . , wj) and then con-
struct a question template Tq = (w1, . . . , wi−1, M, wj+1, . . . , wn). If the template query
matches any known templates, the predicates associated to the known templates can
be used for generating BGP queries. The SP-O or OP-S indexes (in Section 4.3.2) can
handle the BGP queries and retrieve candidate answer entities. However, despite the
question templates collection is large, lots of unseen question can not exactly match to
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any known templates. In this section, we propose to generalize the collected templates
and use them to train a neural relation detection model.

Model

Given a question template Tq (e.g. “Where was M born?”) and an entity eq (e.g. “Michael
Jackson”), the relation detection model estimates a conditional probability P(r|Tq, eq)
over KG relations. In the SimpleQuestions task, the candidate relations are a set of
predicates R = {r1, . . . , rm} in the Freebase facts that co-occur with entity eq as the
subject, and the goal is to select the most likely relation r∗ = arg maxr∈R P(r|Tq, eq).

Every word in Tq is initially mapped to a d-dimensional vector using the pre-trained
FastText (Bojanowski et al., 2017) word embeddings E which kept frozen during train-
ing. Next, we use bi-directional recurrent neural networks to generate contextual rep-
resentations hi over the question word embeddings inputs. Specifically, it processes the
word embedding input from both directions with two separate hidden sub-layers:

−→
hi =

−→
Ψ
(−→

h i−1, E [wi]
)

←−
hi =

←−
Ψ
(←−

h i+1, E [wi]
)

hi =
[−→

hi ,
←−
hi

]
,

(4.1)

where Ψ is a recurrent activation unit that is LSTM (Hochreiter and Schmidhuber, 1997)
in our experiments. In order to aggregate the sequence of contextual vectors, the max-
pooling is applied among the BiLSTM outputs: {h1, . . . , h`w}, where `w is the input
length. The max-pooling output is provided as input to a post-process block consist-
ing of a two-layers fully-connected network with a ReLU activation and dropout in
between. Finally, the relation detection model utilizes a softmax layer to estimate pred-
icate likelihoods.

Denoising Training Instances

The proposed neural relation detection model is end-to-end trainable with question
templates as the input and corresponding predicates as the target. However, since our
question templates discovery process is done in an unsupervised and brute-force man-
ner, a great many of the extracted templates are not valid (e.g. wrong spans of named
entity) or mapped to wrong predicates. We randomly sampled and validated one hun-
dred extracted template-to-predicate mappings, and found that only 2% of them are
ground-truth mappings. Because the overwhelming majority of the raw training ma-
terial is corrupted, training the model directly using the raw mappings will inevitably
produce undesirable results, especially for the neural networks which are known to
memorize instances.

To address this problem, we proposed multiple principled filtering and weighting meth-
ods that can effectively denoise the training material and produce more reliable super-
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vision signals for the training. The credibility weights are applied during the gradient
descent process of the neural model training, which tries to ensure the unlikely map-
pings has little impact on the learned model.

Frequency-based Weighting As mentioned in Section 4.3.4, we maintained a predi-
cate counter Cr,T for each question template T and each potential predicate relation r.
Because it is unlikely that invalid questions templates or incorrect predicate mappings
constantly repeat themselves, we can view the predicate counter value as a credibil-
ity measurement for the template-predicate mappings. Although this principle is gen-
erally true, there are exceptions. For example, some general predicate relations (e.g.
withinCountry) are found linked to templates with a wide variety of intents, which are
often undesired for the QA purpose. To alleviate their effects, predicates that appear too
often in templates will have lower weights in a manner similar to the inverse document
frequency:

idfr = log
N

1 + |{T : Cr,T > 0}| , (4.2)

where N is the total number of templates and |{T : Cr,T > 0}| is the number of tem-
plates that the predicate relation r has associated to. The above two aspects of credibility
measurement are then combined to create our frequency-based weighting function for
the predicate relation r regarding the template T:

F-weightr,T = Cr,T × idfr (4.3)

Keyword-based Weighting Another aspect of the question-to-predicate mappings that
can affect the training credibility is whether the question template and predicate share
keywords. In the fully supervised setting, the textual information in the predicate URI
has been found beneficial to improve the relation detection performance. For exam-
ple, instead of treating relation detection as a multiclass classification task, Golub and
He (2016) proposed a character-level CNN to encode predicate URI and then calculate
the semantic relevance scores based on the encoded vectors. We observed that the to-
kenized predicate URI normally human-readable and indicate the predicate’s category
and topic. This suggests that using words in predicates may be a helpful credibility
heuristic. Here, we define a keyword-based weighting K-weightr,T that simply equals
to the number of overlapping words between a question template and a tokenized pred-
icate URI. Note that a template-predicate will have zero weight (i.e. ignored) if they
don’t have any shared words.

Self-trained Weighting Inspired by the self-training (Clark et al., 2003; Rosenberg
et al., 2005) which automatically argument the training labels with the model predic-
tions, we propose a multi-stage learning schedule that re-weight training instance by
a model trained from the two principled weightings above. The existing self-training
was mainly used in semi-supervised learning settings, where both annotated and unan-
notated data are provided for training. The model is trained from the annotated data

40



at first, and then used to label the unannotated data. The newly labeled data is ap-
pended to the original annotated data to train an updated model. Unsurprisingly, the
self-training can be often not effective in practice. One plausible explanation is that the
prediction error from the original model could easily propagate (and sometimes am-
plify) to the new model.

Our training schedule consists of three phases. First, we weight the training instances
using the product of F-weight and K-weight and use the weighted examples to train
the initial model. Next, the initial trained model evaluates the training instances and
generate a likelihood score l(r, T) for each template-predicate pair. Finally, we train a
new model using a weight function that combines both the self-trained likelihoods and
the frequency-based weights:

S-weightr,T = F-weightr,T × (l(r, T) + α), (4.4)

where α is a smoothing parameter that prevents the self-trained weights from com-
pletely filtering out instance when the initial model is over confident (the α it set as 0.1
without further tuning). The special “no path found” predicate (described in Section
4.3.4) also serves as a regularization for the initial model.

Note that, the K-weight only focuses on selecting a small subset of easy training in-
stances identified by keywords. In other words, the proposed training schedule essen-
tially first learn from simple and reliable instances and then expand to the full dataset.
This resembles the idea of curriculum learning (Bengio et al., 2009), which model train-
ing starts with easy examples and then gradually introduce more difficult examples.

4.4 Experiments

4.4.1 Experimental Setup

We evaluate the proposed relation detection model on the SimpleQuestions dataset
(Bordes et al., 2015). The dataset contains a total of 108,442 questions written by an-
notators. Each question is paired with a fact consisting of (subject, predicate, object) from
the Freebase (Bollacker et al., 2008). In particular, the subject corresponds to the topic
entity in the question, the predicate indicates the semantic intent of the question, and
the object represents the target answer. The dataset was split up into 75,910 (70%) train,
10,845 (10%) validation, and 21,687 (20%) test questions. Unlike prior supervised ap-
proaches, our proposed method does not rely on the annotated training set and only
use the test dataset for evaluating the performance.

In order to compare with early works on relation detection, we use the same Freebase
subset consisting of 2M entities (called FB2M). The KG is indexed as discussed in Section
4.3.2 and then used for discovering template-predicate mappings as described in Section
4.3.4. We follow the same evaluation setup of the relation detection task as in Yin et al.
(2016); Yu et al. (2017). Specifically, each test input comprises a question template and
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Number of Community QA pairs 10,704,262
Number of Extracted Template-Predicate Mappings 4,407,295
Number of Template-Predicate Mappings has Keyword Overlap 229,393

Number of Predicate Classes in SimpleQuestions (test) 1,034
Number of Predicate Classes found in Extracted Mappings 905

Table 4.1: Summary of the Discovered Template-Predicate Mappings

a pool of candidate predicates. The testing question templates were produced using
their gold topic entities. Each predicate pool was formed with all possible predicates
connected to the topic entity in the KG. The task is to select the correct predicate from
the predicate pool.

We train the model using the Adam optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001. The batch size is set as 2000. The word vectors are the pre-trained
fastText (Bojanowski et al., 2017) embeddings of size 300 trained on English Wikipedia
and kept frozen during our model training. We limit our model input vocabulary to
30,000 most-frequent terms from the extracted templates. The hidden states sizes of
LSTM and the fully-connected layer are set to 300, with probability 0.2 of dropout.

4.4.2 Results

The data used for extracting question templates consists of 10 million question-answer
pairs crawled from answers.com website. As shown in Table 4.1, our automatic template-
predicate discovery process found 4.4 million unique template-predicate mappings. Be-
cause the community QA dataset covers diverse topics, while the FB2M KG is relatively
small, many QA pairs unable to match any KG facts and formulate templates. We can
also find that the keyword-based weighting K-weight filters out most of the template-
predicate mappings and only select 5.2% (229,393/4,407,295) of all extracted mappings.

Even though the community QA corpus is fairly large, many predicate relations are still
very rear. We counted the numbers of unique predicate classes in the test dataset and in
the extracted mappings in Table 4.1. We found 12.48% of the testing predicates has not
been discovered for template-predicate mappings using the given QA corpus and KG.
This gap inevitably limits the performance of our trained relation detection model.

In Table 4.2, we present the relation detection results of the state-of-the-art supervised
approaches as well as our bootstrapping models. There are significant cumulative im-
provements (5.3%, 6.8%, 5.8%) with our proposed denoising weighting strategies. We
also included a keyword matching baseline that simply selects the predicate if a tok-
enized predicate contains more keywords overlapping with the question template than
other predicates. The keyword matching baseline is very effective on rare target predi-
cate cases, which are often absent in our automatically extracted training data. Finally,
we combined the keyword matching with the trained neural model and found they are
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Model Accuracy

Supervised with the annotated training dataset

BiLSTM with relation names 88.9
BiCNN (Yih et al., 2015) 90.0
AMPCNN (Yin et al., 2016) 91.3
Hier-Res-BiLSTM (Yu et al., 2017) 93.3

Without using the annotated training dataset

Keyword Match 44.9
Uniform weight 52.8
F-weight 58.1
F-weight + K-weight 64.9
F-weight + K-weight + S-weight 70.7
F-weight + K-weight + S-weight + Keyword Match 78.1

Table 4.2: Summary of our and past results of the relation detection task on the Simple-
Questions benchmark. Note that the previous models were trained with the annotated
training dataset while our models were bootstrapped from the unannotated community
QA corpus.

complementary (7.4% improvement). Specifically, the combined system attempts to use
the keyword matching baseline first, and only call the neural model when the keyword
matching has no matches or ties.

As expected, the supervised approaches using the annotated training dataset have higher
accuracies than the bootstrapping approaches, indicating there is still much room for
improvement. Also note that Petrochuk and Zettlemoyer (2018) found one-third of the
dataset questions are ambiguous. Supervised models learn to exploit the label sam-
pling biases to resolve this ambiguity, while our bootstrapping approaches follow the
label distribution on the community QA data.

4.5 Conclusion

In this chapter, we introduced a new bootstrapping approach for training knowledge
graph question answering. Given question-answer pairs, our approach attempts to au-
tomatically detect potential knowledge graph connection between the question and the
answer passage. The extracted mappings between question template and predicate re-
lations then process with three kinds of de-noising weighting, namely frequency-based,
keyword-base, and self-trained weightings. As a result, we demonstrated the feasibility
of training relation detection for KG-QA without any human-annotated data.
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Part II

Example-driven Relevance Modeling
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Chapter 5

Answer Context Ranking

In this chapter, we discuss our development on answer context ranking by the question
paraphrase identification (Wang and Nyberg, 2017).

5.1 Introduction

Two questions are paraphrases of each other if all their correct answers are interchange-
able. Being considered as one of the core challenges for developing an effective QA
system, question paraphrase identification is to verify whether a retrieved candidate
question is a paraphrase of the input question. Able to determine if two questions have
the same intent can significantly improve the candidate answer ranking performance.
However, it is a challenging task even for human experts. Questions (especially from
online forums) range from highly technical subjects to ambiguous thoughts. The ques-
tion texts are also not always grammatically correct and often contain misspelled words.
Sometimes online user-generated questions might also contain additional contexts that
irrelevant to its intent.

In this chapter, we address the problem of question paraphrase identification which
predicts a binary label for whether two input questions convey the same meaning. We
introduce a new neural dual entailment model for the question paraphrase identifi-
cation task. This method uses bidirectional recurrent neural networks to encode the
premise question into phrase vectors, and then fetch the corresponding softly aligned
phrases embedding from the candidate question with the attention mechanism. The fi-
nal similarity score is produced based on aggregated phrase-wise comparisons of both
entailment directions. Our model is fully symmetric, and then parameters are shared
on both sides, which allows the model parameters can be trained efficiently even on the
medium-sized dataset. We evaluated our model on the Quora Question Pairs dataset.1

Experimental results show that our model achieves the state-of-the-art performance on
this benchmark dataset.

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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5.2 Related Work

Several NLP tasks take two text passages as input and predict a label for their relation-
ship. Question paraphrase identification has a strong resemblance of Natural Language
Inference (NLI; or called Recognizing Textual Entailment) task. For instance, the SNLI
dataset (Bowman et al., 2015) consists of manually generated premise-hypothesis sen-
tence pairs and their relationship labels. The relation includes: (a) entailment, if the
premise sentence entails the hypothesis sentence, (b) contradiction, if two sentences are
contradicting each other, (c) neutral, if two sentences neither entail nor contradict. Ques-
tion paraphrase identification task is a variant of NLI that focus on predicting whether
the intent of two questions entails each other.

Recently several neural-based models have been developed and have been tested in
question paraphrase identification or question retrieval setup. Wang and Jiang (2016)
presented a class of neural structures that performs word-level matching followed by
a convolutional aggregation. Wang et al. (2017b) use BLSTMs to encoder the input se-
quence pair, computes the similarity in multiple perspectives, and aggregate matching
vectors with another BLSTM. Qiu and Huang (2015) adopts a Siamese convolutional
network to encode sequence into contextual representations and performs the final scor-
ing on those representations. Das et al. (2016) used twin convolutional neural network
to encode and a contrastive loss function, which joins the twin networks.

5.3 Question Paraphrase Identification with Neural Dual
Entailment

5.3.1 Problem Formulation

Let wx = (wx
1 , . . . , wx

`x) and wy = (wy
1, . . . , wy

`y) be two input questions consisting of `x

and `y words, respectively. Each word in both sentences, wx
i or wy

j , belongs to the vo-

cabulary Vw. The training data is in the form of labeled text pairs {(wx, wy)(n), p(n)}
N
n=1,

where p(n) ∈ {0, 1} is a binary label indicating whether wx is a paraphrase of wy. The
goal is to predict the correct label p given a previously unseen text pair (wx, wy).

5.3.2 Model Structure

As outlined in Figure 5.1, our model decomposes the paraphrase identification problem
into four steps: Encode, Attentional-Align, Matched-Aggregate, and Dual-Predict.

Encode. The goal of this step is to obtain a dense representation of each word wi in wx

and wy that captures word meaning along with contextual information.

We first individually map each word wi into a d-dimensional vector by a mixed em-
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Figure 5.1: Model Structure of our Neural Dual Entailment Model

bedding matrix E ∈ R|Vw|×d, where E = Epre + Etune. Here Epre is a word embedding
matrix that unsupervised pre-trained on a large corpus and will be fixed during the
model training. On the other hand, Etune is a trainable embedding matrix that is ran-
domly initialized. This mixture setup aims to fine-tune the pre-trained embeddings to
recognize domain-specific semantics of word usage, while avoiding deviating from the
pre-trained representations too early.

Then the encoder converts the word embedding sequence into a list of contextual vec-
tors H = {h1, h2, . . . , h`w}, whose size varies with regard to the length of the passage.
This context representation is generated using a two-layer stacked bidirectional recur-
rent neural networks (BRNN), which utilize the context of both sides. Specifically, the
encoder BRNN processes the data from both directions with two separate hidden sub-
layers, where

−→
hi =

−→
Ψ
(−→

h i−1, E [wi]
)

←−
hi =

←−
Ψ
(←−

h i+1, E [wi]
)

.
(5.1)
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Here Ψ is a recurrent activation unit that we employ in the Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). The output of the current time step is
then generated by concatenating both direction’s hidden vector

−→
hi and

←−
hi . The stacked

upper layer BRNN treats the output from the lower layer h1
i as the input, and further

outputs h2
i . Finally, the encoded contextual vector is aggregated as the sum of embed-

ding and outputs from both layers:

hi = E [wi] + h1
i + h2

i . (5.2)

Attentional-Align. Regarding each hi, this step attempts to gather a softly aligned
context vector from the other sentence’s encoded sequence H̄. It starts by computing
the content-based score of each pair of context vectors as:

ei,j = h>i h̄j. (5.3)

This score measures similarity between hi and the j-th context vector of H̄. These rele-
vance scores are further normalized by the softmax function:

αi,j = softmax(ei,j) =
exp(ei,j)

∑`
k=1 exp(ei,k)

, (5.4)

and we call αi,j the attention weight. The softly aligned phrase vector h̃i is then the
weighted sum of the context vectors with their attention weights from above:

h̃i =
`

∑
j=i

αi,jh̄j. (5.5)

Matched-Aggregate. Given the H and its softly aligned H̃, the problem has been re-
duced to comparing a sequence of aligned phrase vectors. Each pair of aligned vectors
are first merged into a matched vector mi with a Multi-Layer Perceptron M:

mi = M
([

hi; h̃j; (hi − h̃j)
2
])

. (5.6)

The list of matched vectors {m1, . . . , m`} are later scanned by an RNN layer, and its
output of the last timestamp is served as the final aggregated vector.

Dual-Predict. The prediction network consists of a two-layer batch-normalized multi-
layer perceptron (MLP), MaxOut neurons (Goodfellow et al., 2013) , and a linear layer
to produce an entailment score based on the matched aggregate vector above. As yet,
the Attentional-Align, Matched-Aggregate, and the prediction network can only to check
whether the information of one sentence is phrase-wise covered by another sentence.
To identify paraphrase, we use the shared network to calculate entailment scores from
both directions of question pairs. Finally, two scores are summed and followed by a
logistic layer, to predict the label p.
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Method Dev Acc. Test Acc.

Siamese-CNN — 79.60
Multi-Perspective CNN — 81.38
Siamese-LSTM — 82.58
Multi-Perspective-LSTM — 83.21
L.D.C — 85.55
BIMPM 88.69 88.17
pt-DECATTword 88.44 87.54
pt-DECATTchar 88.89 88.40

Ours model 88.61 88.92

Table 5.1: Evaluation results on the Quora paraphrase identification dataset in terms of
accuracy.

5.4 Experiments

Datasets

We evaluated our models on the Quora question paraphrase dataset which contains
over 404,000 question pairs with binary labels. The dataset has approximately 37% pos-
itive and 63% negative pairs. We use the same data split and tokenization provided
by (Wang et al., 2017b)2. Each of the development and test datasets has 5,000 positive
and 5,000 negative instances. The remaining instances are then used as the training set.
We further augment the training set with 20,000 positive pairs with identical question
pairs to make sure the model can generalize well on the easy situation as well.

Network Setup and Parameter Optimization

The embeddings Epre was initialized with the 300-dimensional GloVe (Pennington et al.,
2014) word vectors pre-trained from the 840B Common Crawl corpus. Out-of-vocabulary
words were initialized as zeros. Our encoder RNN contains two-layer stacked LSTMs.
Each layer of LSTM has a memory size of 300. The MLP networks used ReLU as ac-
tivation functions and the dropout rate of 0.2. The network weights are randomly ini-
tialized using a uniform distribution (−0.08, 0.08), and are trained with the ADAM op-
timizer (Kingma and Ba, 2014), with an initial learning rate of 0.002. Gradients were
clipped so their norm does not exceed 5. Each mini-batch contains 1000 question pairs.

Results

In this section, we compare the performance of our approach with the baseline models,
bilateral multi-perspective matching (BiMPM) (Wang et al., 2017b) model, and Paralex
pre-trained decomposable attention (pt-DECATT) (Tomar et al., 2017) models, which

2This partition of Quora dataset can be downloaded at https://zhiguowang.github.io.
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have benchmarked on this dataset before. The BiMPM model employs both character-
level and word-level LSTMs to represent input, four different types of multi-perspective
matching functions, a bi-LSTM aggregation layer, and an MLP with softmax output for
final prediction. The pt-DECATT model uses sums of character n-gram embeddings to
represent words, both bi-attention, and self-attention to softly align phrase vectors, an
MLP followed by sum as aggregation layer, and another MLP with linear output for
prediction. pt-DECATT also utilized Paralex (Fader et al., 2013) question paraphrase
corpus to pre-train both its character n-gram embeddings and rest of the model.

Table 5.1 shows the accuracy results of baseline models implemented in (Wang et al.,
2017b), BiMPM model, pt-DECATT model, and our method. The first eight rows are
taken from (Wang et al., 2017b; Tomar et al., 2017). From the results, we can see that
our model can outperform the previous best performance on the test set. Notes that
our model is also simpler since it does not employ character encoding, self-attention,
multi-perspective matching, and Paralex pre-training as required in previous methods.

5.5 Summary

We showed that efficient parameter sharing and mixed word embeddings result in state-
of-the-art accuracy on question paraphrase identification task even without complex
neural architectures, character-level embeddings, or pre-training the full model. The
new matching module also show its robustness when integrated into our LiveQA sys-
tem in Chapter 7, and helped our system achieved the highest average score among
automatic systems in both main task and medical subtask.
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Chapter 6

Answer Passage Selection

In this chapter, we present an approach that addresses the answer sentence selection
problem for question answering (Wang and Nyberg, 2015a,b,c, 2016). The proposed
method uses a stacked bidirectional Long-Short Term Memory (BLSTM) network to se-
quentially read words from the question and answer sentences, and then outputs their
relevance scores. Unlike prior work, this approach does not require any syntactic pars-
ing or external knowledge resources such as WordNet which may not be available in
some domains or languages. The full system is based on a combination of the stacked
BLSTM relevance model and keywords matching. The results of our experiments on a
public benchmark dataset from TREC show that our system outperforms previous work
which requires syntactic features and external knowledge resources.

6.1 Introduction

A typical architecture of open-domain question answering (QA) systems is composed of
three high-level major steps: (a) question analysis and retrieval of candidate passages;
(b) ranking and selecting of passages which contain the answer; and optionally (c) ex-
tracting and verifying the answer (Prager, 2006; Ferrucci, 2012). In this paper, we focus
on the answer sentence selection. Being considered as a key subtask of QA, the selection
is to identify the answer-bearing sentences from all candidate sentences. The selected
sentences should be relevant to and answer the input questions.

The nature of this task is to match not only the words but also the meaning between
question and answer sentences. For instance, as shown in Table 6.1, although both of
the candidate sentences contain keywords “Capriati” and “play”, only the first sentence
answers the question.

Besides its application in the automated factoid QA system, another benefit of the an-
swer sentence selection is that it can be potentially used to predict answer quality in
community QA sites. The techniques developed from this task might also be benefi-
cial to the emerging real-time user-oriented QA tasks such as TREC LiveQA. However,
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Question: What sport does Jennifer Capriati play?

Positive: Capriati, 19, who has not played competitive tennis since November
1994, has been given a wild card to take part in the Paris tournament
which starts on February 13.

Negative: Capriati also was playing in the U.S. Open semifinals in ’91, one year
before Davenport won the junior title on those same courts.

Table 6.1: Example answer candidate sentences for the question “What sport does Jen-
nifer Capriati play?” from TREC QA 2004

user-generated content can be noisy and hard to parse with off-the-shelf NLP tools.
Therefore, methods that require less syntactic features are desirable.

Recently, neural network-based distributed sentence modeling has been found success-
ful in many natural language processing tasks such as word sense disambiguation (Mc-
Carthy et al., 2004), discourse parsing (Li et al., 2014), machine translation (Sutskever
et al., 2014; Cho et al., 2014), and paraphrase detection (Socher et al., 2011).

We present an approach that employs stacked bidirectional Long Short-Term Memory
(BLSTM) to sequentially read the words from the question and answer sentences, and
then output their relevance scores. The full system, when combined with keywords
matching, outperforms previous approaches without using any syntactic parsing or ex-
ternal knowledge resources.

6.2 Related Work

Prior to this work, there were other approaches to address the sentence selection task.
The majority of previous approaches focused on syntactic matching between questions
and answers. Punyakanok et al. (2004) and Cui et al. (2005b) were among the earliest
to propose the general tree matching methods based on tree-edit distance. Subsequent
to these two papers, Wang et al. (2007b) use quasi-synchronous grammar to match each
pair of question and sentence by their dependency trees. Later, tree kernel functions to-
gether with a logistic regression model (Heilman and Smith, 2010) or Conditional Ran-
dom Fields models (Wang and Manning, 2010; Yao et al., 2013) with extracted features
were adopted to learn the associations between question and answer. Recently, dis-
criminative tree-edit feature extraction and engineering over parse trees are automated
in (Severyn and Moschitti, 2013).

Besides syntactic approaches, lexical semantic model (Yih et al., 2013) can be also used
to select answer sentences. This model is to pair semantically related words based on
word relations including synonymy/antonymy, hypernymy/hyponymy, and general
semantic word similarity.

There were also prior efforts in deep learning of neural networks for question answer-
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ing. Yih et al. (2014) focused on answering single-relation factual questions by a seman-
tic similarity model using convolutional neural networks. Bordes et al. (2014a) jointly
embedded words and knowledge base constituents into the same vector space to mea-
sure the relevance of question and answer sentences in that space. Iyyer et al. (2014)
worked on the quiz bowl task, which is an application of recursive neural networks for
factoid question answering over paragraphs. The correct answers are identified from a
relatively small fixed set of candidate answers which are in the form of entities instead
of sentences.

6.3 Answer Sentence Selection with Stacked BLSTM

6.3.1 Network Structure

The goal of this system is to reduce as much as possible the dependency on syntactic
features and external resources by leveraging the power of deep recurrent neural net-
work architecture. The proposed network architecture is trained directly on the word
sequences of question and answer passages, and is actually not limited to sentences.

Figure 6.1: An illustration of our QA sentence relevance model based on stacked BLSTM

As per analysis in Section 2.2, we adopt multi-layer stacked bidirectional LSTM RNNs
(rather than conventional RNNs) to model the answer sentence selection problem as il-
lustrated in Figure 6.1. The words of input sentences are first converted to vector repre-
sentations learned from the word2vec tool (Mikolov et al., 2013). In order to differentiate
question q and answer a sentences, we insert a special symbol, <S>, after the question
sequence. Then, the question and answer sentences word vectors are sequentially read
by BLSTM from both directions. In this way, the contextual information across words
in both question and answer sentences is modeled by employing temporal recurrence
in BLSTM.
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Since the LSTM in each direction carries a cell memory while reading the input se-
quence, it is capable of aggregating the context information and storing it into the cell
memory vector. For each time step in the BLSTM layer, the hidden vector or the out-
put vector is generated by combining the cell memory vectors from two LSTM of both
sides. In other words, all the contextual information across the entire sequence (both
question and answer sentences) has been taken into consideration. The final output of
each time step is the label indicating whether the candidate answer sentence should be
selected as the correct answer sentence for the input question. This objective encourages
the BLSTMs to learn a weight matrix that outputs a positive label if there is overlapping
context information between two LSTM cell memories. Mean pooling is applied to all
the time step outputs during the training. During the test phase, we collect mean, sum
and max poolings as features.

6.3.2 Incorporating Keywords Matching

In order to identify the correct candidate answer sentences, it is crucial to match the
cardinal numbers and proper nouns with those occurring in the question. However,
many cardinal numbers and proper nouns are out of the vocabulary (OOV) of our word
embeddings. In addition, some proper nouns’ embeddings may bring noises to the
matching process. For example, “Japan” and “China” are two words very close in the
embedding space. It is critical to discriminate these two proper nouns when matching
question and answer sentences. In order to mitigate this weak point of the distributed
representations, our full system combined the stacked BLSTM relevance model and
exact keywords overlapping baseline by the gradient boosted regression tree (GBDT)
method (Friedman, 2001).

6.3.3 Experiments on Factoid QA

Dataset

The answer sentence selection dataset used in this paper was created by Wang et al.
(2007b) based on Text REtrieval Conference (TREC) QA tracks (8–13) data.1 Candidate
answer sentences were automatically retrieved for each question which is on average as-
sociated with 33 candidate sentences. There are two sets of data provided for training.
One is the full training set containing 1229 questions that are automatically labeled by
matching answer keys’ regular expressions.2 However, the generated labels are noisy
and sometimes erroneously mark unrelated sentences as the correct answers solely be-
cause those sentences contain answer keys. Wang et al. (2007b) also provided one small
training set contains 94 questions, which were manually corrected for errors. In our ex-
periments, we use the full training set because it provides significantly more question

1http://nlp.stanford.edu/mengqiu/data/qg-emnlp07-data.tgz
2Because the original full training dataset is no longer available from the website of the lead author

of (Wang et al., 2007b), we obtained this data re-released from Yao et al. (2013): http://cs.jhu.edu/
~xuchen/packages/jacana-qa-naacl2013-data-results.tar.bz2
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and answer sentences for learning, even though some of its labels are noisy.

The development and test data sets have 82 and 100 questions, respectively. Follow-
ing (Wang et al., 2007b), candidate answer sentences with over 40 words and questions
with only positive or negative candidate answer sentences are removed from the eval-
uation.3

Evaluation Metric

Following previous works on this task, we also use Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR) as evaluation metrics, which are calculated using the
official trec_eval evaluation scripts.

Keywords Matching Baseline

As noted by Yih et al. (2013), counting overlapped keywords, especially when re-weighted
by id f value of the question word, is a fairly competitive baseline. Following (Yih et al.,
2013), our keywords matching baseline also counts the words that occurred in both
questions and answer sentences, after excluding stop words and lowering the case. But,
instead of the t f · id f formula used in (Yih et al., 2013), word counts are re-weighted by
id f value using the Okapi BM25 (Robertson and Walker, 1997) formula (with constant
values K1 = 1.2 and B = 0.75).

Network Setup

The network weights are randomly initialized using a Gaussian distribution (µ = 0
and σ = 0.1), and the network is trained with the stochastic gradient descent (SGD)
with momentum 0.9. We experimented with single-layer unidirectional LSTM, single-
layer BLSTM, and three-layer stacked BLSTM. Each layer of LSTM and BLSTM has a
memory size of 500. We use 300-dimensional vectors that were trained and provided
by the word2vec tool (Mikolov et al., 2013) using a part of the Google News dataset4

(around 100 billion tokens).

Results

Table 6.2 surveys prior results on this task, and places our models in the context of the
current state-of-the-art results.

Table 6.3 summarizes the results of our model on the answer selection task. Features
are keywords matching baseline score (BM25), and pooling values of single-layer uni-
directional LSTM (Single-Layer LSTM), single-Layer bidirectional LSTM (Single-Layer

3As mentioned in the footnote 7 of (Yih et al., 2013): “Among the 72 questions in the test set, 4 of them
would always be treated answered incorrectly by the evaluation script used by previous work. This makes the upper
bound of both MAP and MRR become 0.9444 instead of 1.” In order to make experiment results comparable
with previous works, we also use this experiment setting.

4https://code.google.com/p/word2vec/
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Reference MAP MRR

Yih et al. (2013) — Random 0.3965 0.4929

Wang et al. (2007b) 0.6029 0.6852

Heilman and Smith (2010) 0.6091 0.6917

Wang and Manning (2010) 0.5951 0.6951

Yao et al. (2013) 0.6307 0.7477

Severyn and Moschitti (2013) 0.6781 0.7358

Yih et al. (2013) — BDT 0.6940 0.7894

Yih et al. (2013) — LCLR 0.7092 0.7700

Table 6.2: Overview of prior results on the answer sentence selection task

Features MAP MRR

BM25 0.6370 0.7076

Single-Layer LSTM 0.5302 0.5956

Single-Layer BLSTM 0.5636 0.6304

Three-Layer BLSTM 0.5928 0.6721

Three-Layer BLSTM + BM25 0.7134 0.7913

Table 6.3: Overview of our results on the answer sentence selection task.

BLSTM) and three-Layer stacked BLSTM’s (Three-Layer BLSTM) outputs. Gradient
boosted regression tree (GBDT) method is used to combine features. According to Ta-
ble 6.2 and 6.3, our combined system outperforms prior works on MAP and MRR met-
rics.

As indicated in Table 6.3, the three-layer stacked BLSTM alone shows better experiment
results than single-layer BLSTM and unidirectional LSTM, and performs comparably to
previous systems. In order to mitigate the weak point of the distributed representations
previously discussed in Section 6.3.2, we combine the stacked BLSTM outputs with a
keywords matching baseline (BM25). Our combined system’s results are statistically
significantly better than the keywords matching baseline (using the Student’s t-test with
p < 0.05) and outperforms previous state-of-art results.
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6.3.4 Experiments on Non-Factoid QA

Dataset

In this experiment, we used the Yahoo! Answer Manner Question dataset, specifically
version 25, to evaluate our ranking model. This dataset was collected by Surdeanu et
al. (Surdeanu et al., 2008) and was based on a dump of Yahoo! Answers corpus in 2007.
Only manner questions, such as sentences starting with “how to”, are selected from the
full dump. In addition, questions and answers with obvious low quality are filtered and
excluded. The resulting subset contains 142,627 questions and their user selected “best
answers”.

In order to evaluate our ranking model with this dataset, we used the following experi-
ment setup:

1. We first indexed all the “best answers” text while keeping their source question
IDs.

2. We used each question’s text as the input query, and then collected outputs from
a bag-of-words retrieval baseline. Specifically, the BM25 retrieval model was used
to collect a pool of candidate answer passages.

3. All collected candidate answer passages were then automatically labeled by com-
paring their source question IDs with input question IDs.6

4. Since we mainly focused on ranking performance, only a subset of questions,
whose original best answers appeared in the candidate pool, were further eval-
uated.

5. 60% of the questions were used for training, 20% for development, and the rest for
testing.

6. We used MRR (Mean Reciprocal Rank) and P@1 (Precision at one) as the evalua-
tion metrics, which were calculated using the official trec_eval evaluation scripts.

Network Setup

The network weights were randomly initialized using a Gaussian distribution (µ = 0
and σ = 0.1), and were trained by stochastic gradient descent (SGD) with momentum
0.9. Our experiment network contains three-layer stacked BLSTMs. Each BLSTM has
a memory size of 500. We used 300-dimensional vectors that were trained and pro-
vided by word2vec tool (Mikolov et al., 2013) using a part of the Google News dataset7

(around 100 billion tokens).
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Method Recall@25 P@1 MRR

BM25 29.96% 37.99% 51.57
BLSTM+BM25 42.77% 56.40

Table 6.4: Overview of our results on the answer retrieval and ranking on Yahoo! An-
swer Manner Questions dataset.

Results

Table 6.4 summarizes our preliminary experiment results on re-ranking the retrieved
top 25 passages by BM25 model. Gradient boosted regression tree (GBDT) method is
used to combine pooling values of stacked BLSTMs and BM25 retrieval score. It demon-
strates that incorporating our answer passage ranking model with baseline retrieval
method leads to considerable improvements in ranking accuracy.

6.4 Answer Passage Selection with Attentional Encoder-
Decoders

RNN-based encoder-decoder models have been applied to machine translation and
quickly achieved state-of-the-art results (Bahdanau et al., 2014; Luong et al., 2015). Since
RNN models do not depend on any external feature or knowledge, we adopted a neu-
ral encoder-decoder model, and trained it to “translate” from an answer passage to
the question. We later used the trained model to provide the relevance score between a
question and answer based on the likelihood of their “translation”. The model structure
of our attentional encoder-decoder can be found in Section 2.2.1.

In the previous section, we employed a recurrent neural network-based approach (Wang
and Nyberg, 2015a,b) that uses a multi-layer stacked bidirectional Long-Short Term
Memory (BLSTM) network to sequentially read words from question and answer pas-
sages, and then output their relevance scores. Because training this BLSTM model re-
quires both positive and negative examples, we followed the same data preparation
procedure described by Surdeanu et al. (2011) to generate negative labels by retrieving
other answer passages from the collection. However, since the generated labels contain
false negatives, the model may potentially learn low weights for instances with false-
negative training labels and decrease overall performance. On the other hand, training
the attentional neural encoder-decoder model needs only positive pairs, therefore this
model will not suffer from the above problem anymore.

Our encoder and decoder RNNs contain two-layer stacked LSTMs. Each layer of LSTM
has a memory size of 500. The network weights are randomly initialized using a uni-

5http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
6Note that the generated labels will contain false negatives.
7https://code.google.com/p/word2vec/
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form distribution (−0.08, 0.08), and are trained with the ADAM optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.002. Gradients were clipped so their norm
does not exceed 5. Each mini-batch contains 200 answer and question pairs.

We use the Yahoo! Answers Comprehensive Questions and Answers dataset8 for train-
ing, which contains around 4.4 million Yahoo! Answers questions and their best an-
swers. The words of input sentences were first converted to 300-dimensional vector
representations learned from RNN based language modeling tool word2vec (Mikolov
et al., 2013). Each passage’s beginning and end are also padded with a special boundary
symbol, <S>.

6.4.1 Rank Scoring

Figure 6.2: An illustration of Answer Passage Selection with Attentional Encoder-
Decoders

As shown in Figure 6.2, at test time, instead of finding the best-scoring “translation”,
the decoder is fed with the original question as input and calculates the perplexity that
the model predicts regarding question words:

score(Q, A(i)) = exp(− 1
TQ

TQ

∑
t=1

log p(Qt = Qt|Q<t, A(i); θ̂)).

6.4.2 Experiments

The LiveQA organizers provided scored answers from all TREC 2015 LiveQA submis-
sions9, which we used as a development dataset for analyzing the performance of an-
swer passage ranker. Since we are only evaluating the performance of ranking, ques-
tions with only negative candidate answer passages are removed from evaluation. This

8http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
9https://sites.google.com/site/trecliveqa2016/liveqa-qrels-2015/LiveQA2015-qrels-ver2.txt.gz
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Methods NDCG MAP@ MRR@
2+ 3+ 4+ 2+ 3+ 4+

Lower Bound 0.3924 0.2225 0.1232 0.0519 0.0800 0.0524 0.0274
Upper Bound 1.0000 1.0000 0.7977 0.4668 1.0000 0.7977 0.4668

BM25 0.5636 0.4307 0.2631 0.1205 0.4303 0.2555 0.1174
Encoder-Decoder 0.6346 0.5124 0.3390 0.1657 0.5645 0.3672 0.1779

Table 6.5: Results on re-ranking submitted answers from TREC LiveQA 2015

development dataset contains 949 questions. On average, there are 19.5 answer passage
candidates for each question and 32% of candidates’ score are above “Fair”.

In order to validate our new ranker’s performance with this dataset, we re-rank above
development dataset with our ranker and a BM25 baseline ranker. NDCG (Normalized
Discounted Cumulative Gain) with graded relevance scale 0–3, MAP (Mean average
precision), and MRR (Mean Reciprocal Rank) were then used as evaluation metrics (cal-
culated using the official trec_eval evaluation scripts).

Table 6.5 summarizes our preliminary experimental results on the Yahoo! Answers ques-
tion retrieval and ranking task. Although good performance on this dataset does not
necessarily correlate to good performance on the LiveQA 2016 challenge, it does demon-
strate the necessity of developing non-trivial candidate retrieval and answer ranking
methods for any LiveQA-related task.

6.5 Summary

In this chapter, we presented approaches utilizing stacked BLSTM and encoder-decoder
to address the answer passages ranking and selection problem for web question answer-
ing. The experiments provide strong evidence that distributed and symbolic represen-
tations encode complementary types of knowledge, which are all helpful in identifying
answer sentences. Based on the experiment results, we found that our model not only
performs better than previous work but most importantly does not require any syntactic
features or external resources.
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Chapter 7

Application to TREC LiveQA (2015,
2016, 2017)

In this chapter, we present CMU OAQA’s automatic, web-based, real-time question an-
swering (QA) systems that were evaluated in the TREC 2015, 2016, and 2017 LiveQA
Challenges (Wang and Nyberg, 2015c, 2016, 2017). This system answers real-user ques-
tions freshly submitted to the Yahoo! Answers website that have not been previously
answered by humans. Given the title and body of the question, we generated mul-
tiple sets of keyword queries and retrieved a collection of web pages based on those
queries. Then we extracted answer candidates from web pages in the form of answer
passages and their associated clue. Finally, we combined both IR- and NLP-based rele-
vance models to rank and select answer candidates. Overall, our approach received the
highest average scores among automatic systems in the main tasks of 2015, 2016 and
2017, and also the highest average score in the new medical subtask of 2017.

7.1 Introduction

LiveQA is an emerging TREC challenge for automatic, real-time, user-oriented question
answering (QA) systems. Real user questions are selected as inputs from a stream of
newly submitted questions on the Yahoo! Answers site1, which have not yet received a
human answer. As per the requirements for this track, participants must deploy their
systems as web services which provide answers to questions in real time (within one
minute). The answer text should be no more than 1000 characters in length. There
are no additional restrictions on the resources that can be used, except for the human
answers to the same question in Yahoo! Answers. System responses were judged by
TREC assessors on a 4-level Likert scale.

Attempting to answer user-generated questions in real time is an exciting but difficult
challenge. The questions generated by real users are often ambiguous, ungrammatical

1https://answers.yahoo.com/
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and vary greatly in length, topic and language style. Unlike previous TREC QA tracks,
there is no pre-defined question type (factoid, list, or definition) associated with the
question/answer pairs in the LiveQA challenge. There is also no constraint on what the
user may ask about, which implies that there is no pre-defined answer type; much like
the Jeopardy! challenge, we must deal with “lexical answer types” (Lally et al., 2012).

In TREC 2015 (Agichtein et al., 2015), we developed a real-time web-based QA system
for the LiveQA challenge. Since there is no official training corpus associated with the
challenge, our approach leveraged the vast amount of text data that is available online,
especially previously-answered questions from Yahoo! Answers. We also designed and
implemented a new data model and novel relevance ranking methods for LiveQA. Our
QA pipeline begins with candidate passages retrieval and extraction, then answer can-
didate ranking and tiling. During the 2015 official run, our QA web service received one
question per minute for 24 hours and provided answers within one minute for 97.9%
of the input questions. On a normalized three-point average score metric, the CMU-
OAQA system received a score of 1.081, which was the top score in the 2015 LiveQA
evaluation (the second-best average score was .677, and the average over all the system
runs was .467 for the 21 systems evaluated).

In TREC 2016 (Agichtein et al., 2016), we improved our LiveQA system and introduced
a novel answer passage ranking method based on attentional encoder-decoder recur-
rent neural networks (RNN). Being considered as a primary challenge of developing
an effective QA system, the answer passages ranking and selection are to identify the
answer-bearing passages from all candidate passages. The selected passage should con-
tain useful information, and answer the input question. Our method uses one RNN to
encode candidate answer passage into vectors, and then another RNN to decode the
input question from the vectors. The perplexity of decoding the question is then used
as the ranking score. During the 2016 official run, our QA server received one question
per minute for 24 hours and provided answers within one minute for 94% of the input
questions. In the TREC 2016 LiveQA evaluations, human assessors gave our system an
average score of 1.1547 on a three-point scale, and the average score was .5766 for all
the 26 systems evaluated.

In TREC 2017 (Ben Abacha et al., 2017), the main improvement is the introduction
of our new question paraphrase identification module based on a neural dual entail-
ment model. The question paraphrase identification module in QA system is to verify
whether a retrieved candidate question is a paraphrase of input question. Two ques-
tions are paraphrases of each other if they can be adequately answered by the same
answer. The model uses bidirectional recurrent neural networks to encode the premise
question into phrase vectors, and then align corresponding phrase vectors from the can-
didate question with the attention mechanism. The final similarity score is produced
based on aggregated phrase-wise comparisons of both entailment directions. In previ-
ous years, the test collection came from a stream of questions that freshly submitted to
the Yahoo! Answers website and have not been previously answered by humans. This
year, due to technical difficulties, the participant systems were fed with cached ques-

64



Figure 7.1: Architecture of the CMU-OAQA LiveQA system

tions instead. During the official run, our QA server received one question per minute
for 24 hours and provided answers within one minute for 98% of the input questions.
In the TREC 2017 LiveQA evaluations, human assessors gave our system an average
score of 1.139 on a three-point scale, and the median score was 0.777 for all the systems
evaluated. A new subtask explicitly focused on medical questions is also offered this
year. Our system answered medical questions the same way as the main task, and also
achieved the highest average score of 0.637 comparing to the median score of 0.431.

In the rest of this chapter, we will sketch the OAQA LiveQA system structure, and then
introduce each module in more detail.

7.2 System Architecture

Our overall system architecture remains the same in 2015, 2016, and 2017. As illustrated
in Figure 7.1, the architecture of our system decomposes the solution into three major
processing phases:

1. Clue Retrieval. Given a question title and its full-text description, we formulate
search engine queries and issue them to different search engines (Bing Web Search,
Yahoo! Answers) in order to retrieve web pages related to the question.

2. Answer Ranking. Answer candidates (title/body/answer tuples that represent
either conceptional questions or answer texts) are extracted from web pages, and
ranked based on a relevance estimator. The most effective relevance estimator we
found was a heuristically-weighted combination of:

(a) optimized BM25 similarity scoring over the title and body texts,

(b) an attentional encoder-decoder recurrent neural networks model (Wang and
Nyberg, 2016; Wang et al., 2017a) that estimates the relevance of a candidate
answer text given a question text, and

(c) a novel neural dual entailment based question paraphrase identification model
that predicts the relevance between input question and titles of answer can-
didates.

65



3. Answer Passage Tiling. Finally, a simple greedy algorithm is used to select a sub-
set of highest-ranked answer candidates; these are simply concatenated without
further processing in order to produce the final answer.

7.2.1 Input

Each question q transmitted to a LiveQA web service consists of four parts: title q_title,
body q_body, category, and a unique question ID. Our system does not make use of the
question category, and only uses the question ID to filter out retrieved Yahoo! Answers
pages with the same ID.

7.2.2 Clue Retrieval

Given a question, firstly we formulate multiple queries, then send them to the search
engines, thirdly collect best matching web pages for each, and finally harvest a set of
candidate answers for further processing.

The input question q = 〈q_title, q_body〉 is converted to sets of keyword queries. In or-
der to achieve higher recall, we generate multiple sets of keywords from q_title, q_body,
and the concatenation of both. However, the inclusion of full q_body text may result in
very long queries, for which the search engines do not return any result. Therefore we
also generate keyword queries with only informative noun phrases, bigrams, and uni-
grams. The different keyword queries are then sent to search engines for web retrieval.
We collect the snippets returned for each hit and also download the full text of the web
page for each hit.

Our system utilizes Bing’s web search API2 to retrieve answer candidates from the Web.
Since Shtok et al. (2012) showed that a significant amount of the unresolved Yahoo!
Answers questions can be satisfactorily answered by reusing a best answer from the
past, our system also uses the search function on Yahoo! Answers to collect additional
answer candidates.

Our goal here is to search the Internet and select passages of text, containing information
relevant to the question and indicating the presence of a candidate answer passage on
the same page. For this purpose, we build a general data structure called the answer clue
(a_clue), represented as 〈c_title, c_body〉. This formulation can be used to represent (and
effectively combine) either the title and body of a similar question on community QA
(cQA) sites like Yahoo! Answers, or a document title and search snippet extracted from
a web page. Finally, we heuristically select answer passage text a_passage based on
its relative position to a_clue. Our algorithm favors passages using heuristics such as:
the voted best answer on cQA sites, the first reply on Internet forums, and paragraphs
appearing in contexts which highly match the search snippet.

2https://datamarket.azure.com/dataset/bing/searchweb
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7.2.3 Answer Ranking

Each candidate answer a = 〈a_clue, a_passage〉 is weighted by estimating how well both
the a_clue and a_passage matches the question. The relevance ranking score between
input question q and an answer candidate a is then defined as:

S(q, a) = Sc(q, a_clue)× (1 + wp × S
′
p(q, a_passage))

where Sc and S
′
p are answer clue score and normalized answer passage scores respec-

tively, and wp is the weight factor to merge them. The original answer passage score
Sp is normalized by the max and min values (Smax

p and Smin
p ) in the collection of answer

passage scores generated for the current input question:

S
′
p =

Sp − Smin
p

Smax
p − Smin

p

Question q and answer clue a_clue both contain two fields: title and body. Intuitively
the title field is more concise and informative than the body field. The answer clue score
Sc is, then, computed as a weighted sum of retrieval scores of all text and title only text:

Sc(q, a_clue) = Sbm25(q_title⊕ q_body, c_title⊕ c_body) + wt × Sbm25(q_title, c_title)

where wt (set to 1.0) is the weight to boost the title field matching score, and Sbm25 is
the Okapi BM25 (Robertson and Walker, 1997) formula (with parameters K1 = 1.0 and
B = 0.75). The idf and average document length values that are required to compute
BM25 were obtained by indexing the Yahoo! Answers Comprehensive Questions and
Answers dataset3, which contains around 4.4 million Yahoo! Answers questions and
their answers.

To integrate the term proximity information in our relevance estimation, we also use the
sequential dependence variant of the Markov random field model (Metzler and Croft,
2005) to formulate weighted queries to the BM25 function. The weights for unigram,
bigram, and proximity are 0.8, 0.1, and 0.1 respectively. We also expanded unigram
queries with synonyms from WordNet (Miller, 1995b) when the query word had only
one sense in WordNet.

To calculate the relevance score Sp between question and answer passage, we employ a
recurrent neural network based approach (Wang and Nyberg, 2015a,b) that uses a mul-
tilayer stacked bidirectional Long-Short Term Memory (BLSTM) network to sequen-
tially read words from the question and answer passages, and then output their rele-
vance scores. Figure 6.1 illustrates how we use the stacked BLSTM to model the answer
passage ranking and selection problem. The words of input sentences were first con-
verted to vector representations learned from the RNN-based language modeling tool
word2vec (Mikolov et al., 2013). In order to differentiate q_title and a_passage sentences,

3http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
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we inserted a special symbol, <S>, after the question sequence. Then, the question and
answer sentence word vectors are sequentially read by BLSTM from both directions.
In this way, the contextual information across words in both question and answer sen-
tences is modeled by employing temporal recurrence in BLSTM.

We used the same experimental settings described by Wang and Nyberg (2015a) to train
this model, except that the training dataset was switched to a random subset of 100k
questions from the Yahoo! Answers Comprehensive QA dataset. In order to adapt this
dataset for model training, we follow the same data preparation procedure described
by Surdeanu et al. (2011) to generate negative labels by retrieving other answer pas-
sages from the collection. However, since the generated labels contain false negatives,
the model may potentially learn low weights for instances with false negative training
labels and decrease overall performance. To avoid this we set the combination weight
wp = 0.1.

We later improved the ranking by replacing Sp scoring with an attentional encoder-
decoder model trained from Yahoo! Answers question-answer pairs in 2016, which has
described in 6.4. In 2017, we trained an additional question paraphrase identification
model to improve the answer clue scoring between input question and clue title. We
trained an efficient dual entailment model using a Quora dataset and achieved state-of-
the-art matching performance. Model details and experiments have been discussed in
Chapter 5.

7.2.4 Answer Passage Tiling

Given a ranked list of answer passages, the system must produce an optimal text that
answers the question. Good answers vary in length from short to long, and may contain
a short reference to a specific entity or factoid, or a long narrative explanation; in gen-
eral, the ideal answer length varies with the user’s information need (as expressed by
the question). Here we assumed that more extended and detailed answers are preferred.

If the top-scoring answer passage was longer than 500 characters, then the first 1000
characters (LiveQA length constraint) are directly returned as the final answer text. If
not, we applied an answer tiling algorithm, which assembles longer answer texts out of
shorter answer passages. The algorithm proceeds greedily from the top-scoring answer
passages to all subsequent candidates whose ranking score is higher than 90% of the
highest score (top decile). Additional answer passages are appended to the final answer
text, with a prefix to indicate the start of each new answer passage; e.g. “Opinion 2:” for
the second passage, and so on. The tiling algorithm terminates when the length of the
generated answer passage is greater than 50% of the maximum allowable length (1000
characters).
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Set Recall P@1 MRR

Yahoo! Answers default search 0.8464 0.5873 0.6434
Clue Retrieval + Answer Ranking 0.9100 0.8950 0.9008

Table 7.1: Results on development dataset

7.3 Evaluation Results

7.3.1 Development Set Analysis on Answer Ranking

The LiveQA organizers provided a sample of 1000 Yahoo! Answers question IDs (QIDs),
which we used as a development set for pre-evaluation analysis. Specifically, we used
each question’s title text as an input query, and then collected outputs from the Yahoo!
Answers default “Search Answer” function. In particular, a list of returned QIDs was
collected via “Relevance” search (instead of “Newest”, “Most Answers”, or “Fewest
Answers” search). The first 100 search results for each query were collected4 and auto-
matically labeled5 by comparing their source question IDs with input question IDs.

In order to validate our system’s performance with this dataset, we processed the same
query set with our retrieval and ranking modules, and returned a ranked list of ques-
tion IDs. MRR (Mean Reciprocal Rank) and P@1 (Precision at one) were then used as
evaluation metrics (calculated using the official trec_eval evaluation scripts).

Table 7.1 summarizes our preliminary experimental results on the Yahoo! Answers ques-
tion retrieval and ranking task. Although good performance on this dataset does not
necessarily correlate to good performance on the LiveQA challenge, it does demon-
strate the necessity of developing non-trivial candidate retrieval and answer ranking
methods for any LiveQA-related task.

7.3.2 Official Evaluation Results

Each answer was judged by TREC assessors with a 4-level Likert scale, which is defined
as:

• 4: Excellent: “a significant amount of useful information, fully answers the ques-
tion”

• 3: Good: “partially answers the question”

• 2: Fair: “marginally useful information”

• 1: Bad: “contains no useful information for the question”

4This dataset is available at https://github.com/yuvalpinter/LiveQAServerDemo/tree/master/
data/1k-ya-search-results

5Note that the generated labels will also contain false negatives.
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• -2: “the answer is unreadable (only 15 answers from all runs)”

The evaluation measures used are:

• avg-score (0-3): “average score over all queries (transferring 1-4 level scores to
0-3, hence comparing 1-level score with no-answer score, also considering -2 level
score as 0)”

• succ@i+: “number of questions with i+ score (i=1..4) divided by number of all
questions”

• prec@i+: “number of questions with i+ score (i=2..4) divided by number of an-
swered only questions”

Official Evaluation Results of 2015

System ID Avg score
(0–3)

Success@ Precision@
1+ 2+ 3+ 4+ 2+ 3+ 4+

Avg of all runs 0.465 0.925 0.262 0.146 0.060 0.284 0.159 0.065
CMU-OAQA 1.081 0.979 0.532 0.359 0.190 0.543 0.367 0.195

Table 7.2: Official TREC 2015 LiveQA track evaluation results.

In 2015 LiveQA evaluation, 1,087 questions (out of 1,340 submitted questions) were
judged and scored using the 4-level Likert scale.

Table 7.2 summarizes the results of our system run and average scores from all sub-
mitted runs. We believe the overall performance of our system to be encouraging, as it
suggests that our system can provide a useful answer (fair, good, or excellent) for more
than 53% of questions.

Official Evaluation Results of 2016

In 2016 LiveQA evaluation, 1015 questions (out of 1088 submitted questions) were
judged and scored using a 4-level Likert scale.

Table 7.3 summarizes the results of our system run and average scores from all sub-
mitted runs. We believe the overall performance of our system to be encouraging, as it

System ID Avg score
(0–3) #Answers Success@ Precision@

2+ 3+ 4+ 2+ 3+ 4+

Avg of all runs 0.5766 771.0385 0.3042 0.1898 0.0856 0.3919 0.2429 0.1080
CMU-OAQA 1.1547 954 0.5606 0.3951 0.1990 0.5964 0.4203 0.2117

Table 7.3: Official TREC 2016 LiveQA track evaluation results.
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Task System ID Avg score
(0–3)

Success@ Precision@
2+ 3+ 4+ 2+ 3+ 4+

Medical Median of all runs 0.417 0.245 0.142 0.059 0.331 0.178 0.078
CMU-OAQA 0.637 0.392 0.265 0.098 0.404 0.273 0.101

Main Median of all runs 0.777 0.421 0.250 0.126 0.482 0.286 0.144
CMU-OAQA 1.139 0.567 0.387 0.198 0.577 0.393 0.201

Table 7.4: Official TREC 2017 LiveQA track evaluation results.

suggests that our system can provide a useful answer (fair, good, or excellent) for more
than 56% of the questions.

Official Evaluation Results of 2017

In 2017 LiveQA evaluation, there is a total of 1180 questions for the main task and an
additional set of 102 medical subtask questions. Our system returned answers for 1162
main task questions and 99 medical subtask questions. Submitted answers were judged
and scored by TREC assessors using the same 4-level Likert scale same as last two years.

Table 7.4 summarizes the results of our system run and median scores from all sub-
mitted runs. We believe the overall performance of our system to be promising, as it
suggests that our system can provide a useful answer (fair, good, or excellent) for more
than 56% of the questions. It is also encouraging that our system can generalize to the
medical domain and receive the highest score without any domain-specific processing
or modification.

7.3.3 Machine Answers v.s. Human Answers

After the official evaluation, we compared our LiveQA 2015 submitted answers with
actual user-provided answers on Yahoo! Answers. We use the Amazon Mechanical
Turk platform to perform the surveys. For each comparison survey, we first present the
original question title and body and then show our system answer and human answer
in random order. We used the same system answer submitted to LiveQA 2015. Each
survey, we requested three assessors to compare the quality two answers and asked
them to choose which one better answered the input question, or it is a tie.

We fetched the first reply (least recent) of official evaluation question sets from Yahoo!
Answers website, and summarized survey results in Table 7.5. In total, 815 questions
have received at least one answer and used in the comparison, and therefore 2445 to-
tal surveys. 468 workers participated. We can see that overall our automatic answers
outperform the first human responses by 11%.

We also collected the asker selected the best answer of official evaluation question sets
from Yahoo! Answers website, and summarized survey results in Table 7.6. In total, 174
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TREC score Total prefer YA Tie prefer CMU ∆

1 367 31% 47% 22% -9%
2 141 12% 52% 35% 23%
3 143 17% 38% 45% 28%
4 164 12% 46% 43% 31%

All 815 21% 46% 33% 11%

Table 7.5: First reply from Yahoo! Answers vs CMU-OAQA answers

TREC score Total prefer YA Tie prefer CMU ∆

1 74 62% 31% 7% -55%
2 19 58% 37% 5% -53%
3 41 27% 54% 20% -7%
4 40 20% 55% 25% 5%

All 174 44% 43% 14% -30%

Table 7.6: Asker selected best answer from Yahoo! Answers vs CMU-OAQA answers

questions have asker selected best answer and used in the comparison, and therefore
522 total surveys. 116 workers participated in our surveys. The results show that the
human best answers are overall more preferred than our system answers. Only our
4-score (Excellent) answers outperform human best answers by 5%.

7.4 Summary and Discussion

This chapter presented the overall system architecture and individual phases and com-
ponents for our LiveQA 2015, 2016, and 2017 systems6. Examples outputs from our
system with different scores can be found in Appendix A.

In the 2015 evaluations, our system achieved the highest average score of 1.081 with
the second-best score of 0.677 and the average score of 0.465. Although this system
performed significantly higher than the average of systems evaluated, the low abso-
lute evaluation values indicate that there is still much room for future improvement.
Because the LiveQA track was conducted for the first time in 2015 and didn’t provide
training data, the participant systems this year were designed with various architecture
and based on diverse hypotheses. For example, some systems (Zhang et al., 2015b; Nie
et al., 2015) applied the LDA model (Blei et al., 2003) to discover topics in the text, while
some other systems (Bagdouri and Oard, 2015; Savenkov, 2015) employed word2vec
and LSTM to measure text similarity. We believe our overall system design plays a
significant role in our 2015 evaluations. Our system’s core data structure, namely the

6https://github.com/oaqa/LiveQA
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answer clue and the answer passage, supports a variety of candidate answer sources
(e.g. CQA sites, discussion forums, blogs) and can process candidates with a unified
relevance modeling. This simplified structure also enables parallel retrieval of candi-
dates from different sources and batched processing for neural models, which help our
system processes more candidates with the deep models within the required time limit.

In the 2016 and 2017 evaluations, our system also received the highest average scores
among the automatic systems. As most of the leading teams have published what they
learned in the previous evaluations, many systems updated their designs inspired by
other systems and improved significantly. To remain competitive, we introduced a
novel answer passage ranking method based on attentional encoder-decoder networks
(Section 6.4) to our LiveQA system in 2016, and developed a new answer clue rank-
ing model using a neural dual entailment structure (Section 5) in 2017. We believe the
effectiveness of the new relevance models was instrumental in achieving improved per-
formances. As the result of these iterative improvements, our 2017 system is able to
provide a useful answer for 56% of the real-user generated questions in real-time and
implies the potential positive impacts if the system is deployed on the real-world com-
munity QA sites.
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Part III

Example-driven Response Generation
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Chapter 8

Controllable Response Generation

In this chapter, we propose simple and flexible training and decoding methods for in-
fluencing output style and topic in neural encoder-decoder based response generation
(Wang et al., 2017a). This capability is desirable in a variety of applications, including
conversational systems, where successful agents need to produce language in a specific
style and generate responses steered by a human puppeteer or external knowledge. We
decompose the neural generation process into empirically easier sub-problems: a faith-
fulness model and a decoding method based on selective-sampling. We also describe
training and sampling algorithms that bias the generation process with a specific lan-
guage style restriction, or a topic restriction. Human evaluation results show that our
proposed methods are able to restrict style and topic without degrading output quality
in conversational tasks.

8.1 Introduction

Neural encoder-decoder models have demonstrated great promise in many sequence
generation tasks, including neural machine translation (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014; Luong et al., 2015; Wu et al., 2016), image captioning (Xu
et al., 2015), summarization (Rush et al., 2015; Gu et al., 2016; Kikuchi et al., 2016), and
conversation generation (Vinyals and Le, 2015; Sordoni et al., 2015; Shang et al., 2015;
Shao et al., 2017; Li et al., 2015). These encouraging early successes have motivated
research interest in training more natural-sounding conversational systems based on
large volumes of open-domain human-to-human interactions. In order to create more
human-like patterns of conversation, the agents need to have recognizable (and tunable)
style, just as individual humans do, and also need to accept guidance from separate
information processing modules in order to increase quality of responses. In an extreme
case, an agent may be micro-managed by a human user who uses the neural model to
enforce grammar and style (e.g., a level of politeness, or a type of humor), while driving
the content directly. In this manner, the neural model becomes an authoring tool, rather
than an independent chat-bot. On the other hand, in fully automated agent systems, the
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chat context Where are you?

Twitter bot i’m on my way to london now.
Star Wars bot we’re heading to the dark side of jabba’s palace.

Hillary bot i’m here in philadelphia, pennsylvania
Trump bot i went to the white house. we were in brooklyn.

Kennedy bot i am on the question of the united states.

chat context What are you doing?

Twitter bot i’m just chilling with my dad, i’m just
sitting in the kitchen and listening to music

Star Wars bot i’m doing my magic solo.
Hillary bot i’m running for president, i’m going to be

talking about some of these things
Trump bot i’m building a wall, right now

Kennedy bot today, i am asking the congress for a new
program to make a new effort to increase
the tax privileges and to stimulate

Table 8.1: Example responses from our Star Wars, Hillary, Trump, and Kennedy bots
with scented conversation models.

agent may be influenced by a knowledge database, or some other artificial information
system, while running in a pre-set style or a style deemed best based on the course of
the conversation.

One obstacle to achieving this with neural language generation models is that the sen-
tence representation is distributed across all coordinates of the embedding vector in a
way that is hard to disentangle, and thus control. In order to gain insight into the full
distribution of what a decoder might produce given the prompt sentence as input, the
model has to be heavily (and sometimes cleverly) sampled. The second problem is that
neural models only become highly functional after training with very large amounts of
data, while the strongly recognizable style usually must be defined by a relatively tiny
corpus of examples (e.g., all Seinfeld episodes, or all popular song lyrics).

In this paper, we address the challenge of how to enforce the decoder models to mimic
a specific language style with only thousands of target sentences, as well as generating
specific content in that style. We developed and experimented with several training and
decoding procedures to allow the model to adapt to target language style and follow
additional content guidance. Our experiments, conducted on an open-domain corpus of
Twitter conversations and small persona corpora, show that our methods are capable of
responding to queries in a transferred style without significant loss of relevance, and can
respond within a specific topic as restricted by a human. Some examples of ‘scenting’
the base conversation model with particular styles are shown in Table 8.1. More can be
found in the Appendix B and C.
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8.2 Related Work

Recurrent neural network based encoder-decoder models have been applied to machine
translation and quickly achieved state-of-the-art results (Bahdanau et al., 2014; Luong
et al., 2015). As an extension, the attention mechanism enables the decoder to revisit the
input sequence’s hidden states and dynamically collects information needed for each
decoding step. Specifically, our conversation model is established based on a combi-
nation of the models of (Bahdanau et al., 2014; Luong et al., 2015) that we found to
be effective. In Section 2.2.1, we describe the attention-based neural encoder-decoder
model we used in detail.

This work follows the line of research initiated by (Ritter et al., 2011) and (Vinyals and
Le, 2015) who treat generation of conversational dialog as a data-driven statistical ma-
chine translation (SMT) problem. Sordoni et al. (2015) extended (Ritter et al., 2011) by
re-scoring SMT outputs using a neural encoder-decoder model conditioned on conver-
sation history. Recently, researchers have used neural encoder-decoder models to di-
rectly generate responses in an end-to-end fashion without relying on SMT phrase ta-
bles (Vinyals and Le, 2015; Sordoni et al., 2015; Shang et al., 2015; Shao et al., 2017; Li
et al., 2015).

Li et al. (2016) defined a “persona” as the character that an artificial agent, as actor, plays
or performs during conversational interactions. Their dataset requires user identifica-
tion for all speakers in the training set, while our methods treat the base data (millions
of twitter conversations) as unlabeled, and the target persona is defined simply by a
relatively small sample of their speech. In this sense, the persona can be any set of text
data. In our experiments, for example, we used a generic Star Wars character that was
based on the entire set of Star Wars scripts (in addition to 46 million base conversations
from Twitter). This provides us with a system that can talk about almost anything, being
able to respond to most prompts, but in a recognizable Star Wars style. Other possibili-
ties include training (styling) on famous personalities, or certain types of poetry, or song
lyrics, or even mixing styles by providing two or more datasets for styling. Thus our
targets are highly recognizable styles, and use of these for emphasis (or caricature) by
human puppeteers who can choose from multiple options and guide neural models in
a direction they like. We expect that these tools might not only be useful in conversa-
tional systems, but could also be popular in social media for text authoring that goes
well beyond spelling/grammar auto correction.

8.3 Decoding with Selective Sampling

The standard objective function for neural encoder-decoder models is the log-likelihood
of target T given source S, which at test time yields the statistical decision problem:

T̂ = arg max
T
{log p(T|S)}. (8.1)

79



However, as discussed in (Li et al., 2015; Shao et al., 2017), simply conducting beam
search over the above objective will tend to generate generic and safe responses that
lack diversity, such as “I am not sure”. In Section 8.6.3, we present a ranking experiment
in which we verify that an RNN-based neural decoder provides a poor approximation
of the above conditional probability, and instead biases towards the target language
model p(T). Fortunately, the backward model p(S|T) empirically perform much better
than p(T|S) on the relevance ranking task. Therefore, we directly apply Bayes’ rule to
Equation 8.1, as in statistical machine translation (Brown et al., 1993), and use:

T̂ = arg max
T
{log p(S|T) + log p(T)}. (8.2)

Since p(T|S) is empirically biased towards p(T), in practice, this objective also resem-
bles the Maximum Mutual Information (MMI) objective function in (Li et al., 2015).

The challenge now is to develop an effective search algorithm for a target words se-
quence that maximize the product in Equation 8.2. Here, we follow a similar process
as in (Wen et al., 2015) which generates multiple target hypotheses with stochastic sam-
pling based on p(T|S), and then ranks them with the objective function 8.2 above. How-
ever, as also observed by (Shao et al., 2017), step-by-step naive sampling can accumulate
errors as the sequence gets longer.

To reduce language errors of stochastic sampling, we introduce a sample selector to
choose the next token among N stochastically sampled tokens based on the predicted
output word distributions. The sample selector, which is a multilayer perceptron in our
experiments, takes the following features:

1. the log-probability of current sample word in p(wt|S);

2. the entropy of current predicted word distribution, ∑wt P(wt|S) log P(wt|S) for all
wt in the vocabulary;

3. the log-probability of current sample word in p(wt|∅), which we found effective
in the ranking task.

The selector outputs a binary variable that indicates whether the current sample should
be accepted or rejected.

At test time, if none of the N sampled tokens are above the classification threshold, we
choose the highest scored token. If there are more than 1 acceptable samples among
N stochastically sampled tokens, we randomly choose one among them. Ideally, this
permits us to safely inject diversity while maintaining language fluency. We also use
the sample acceptor’s probabilities as the language model score P(T) for objective in
Equation 8.2.

As regards directly integrating beam-search, we found (a) that beam-search often pro-
duces a set of similar top-N candidates, and (b) that decoding with only the objective
p(Y|X) can easily lead to irrelevant candidates (see Section 8.6.3). Therefore, we use
the selective-sampling method to generate candidates for all our experiments; this (a)
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samples stochastically then (b) selects using a learned objective from data. The sample-
then-select approach encourages more diversity (v.s. MMI’s beam-search) while still
maintain language fluency (v.s. naive-sampling).

8.4 Output style restriction using a small ‘scenting’ dataset

In this section, we propose three simple yet effective methods of influencing the lan-
guage style of the output in the neural encoder-decoder framework. Our language style
restricting setup assumes that there is a large open-domain parallel corpus that provides
training for context-response relevance, and a smaller monologue speaker corpus that
reflects the language characteristics of the target speaker. We will refer to this smaller
set as a ‘scenting’ dataset, since it hints at, or insinuates, the characteristics of the target
speaker.

8.4.1 Rank: Search in the Target Corpus

Our first approach to scenting is to simply use the all sentences in the target speaker’s
corpus as generation candidates, ranked by the objective (8.2) for a given prompt. Since
these sentences are naturally-occurring instead of generated word-by-word, we can
safely assume p(T) is constant (and high), and so the objective only requires sorting
the sentences based on the backward model p(S|T).

RNN-based ranking methods are among the most effective methods for retrieving rel-
evant responses (Wang and Nyberg, 2015a, 2016). Thus this approach is a very strong
baseline. Its limitation is also obvious: by limiting all possible responses to a fixed finite
set of sentences, this method cannot provide a good response if such a response is not
already in the scenting dataset.

8.4.2 Multiply: Mixing the base model and the target language model
during generation

In our second method we use both the vanilla encoder-decoder model trained on open-
domain corpus and the target domain language model trained on the corpus while de-
coding output sentence. The idea is to use a speaker’s language model, which is also
RNN-based in our experiments, to restrict the open-domain encoder-decoder model’s
step-by-step word prediction. Similar ideas have been tested in domain adaptation for
statistical machine translation (Koehn and Schroeder, 2007), where both in-domain and
open-domain translation tables were used as candidates for generating target sentence.
Because open-domain encoder-decoder models are trained with various kinds of lan-
guage patterns and topics, choosing a sequence that satisfies both models may produce
relevant responses that are also in the target language style. We found that a straightfor-
ward way of achieving this is to multiply the two models’ distributions p1(t|S)λ1 p2(t)

λ2

at each point and then re-normalize before sampling. The weights can be tuned either
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by the perplexity on the validation set, or through manually controlling the trade-off
between style restriction and answer accuracy.

8.4.3 Finetune: Over-training on Target Corpus with Pseudo Context

Fine-tuning is widely used in the neural network community to achieve transfer learn-
ing. This strategy permits us to train the neural encoder-decoder on a larger general
parallel corpus, and then use the learned parameters to initialize the training of a styled
model. Most of the time, however, the target speaker’s corpus will lack training data
in parallel form. For example, if we train on song lyrics or movie scripts, or politi-
cal speeches, the data will not be in a question-answer form. To make encoder-decoder
overtraining possible, we treat every sentence in the scenting corpus as a target sentence
T generated a pseudo context from the backward model p(S|T) trained on the open-
domain corpus. Over-training on such pairs imparts the scenting dataset’s language
characteristics, while retaining the generality of the original model. We also found that
the previous sentence in the styled corpus (i.e., previous sentence in the speech) pro-
vides helpful context for the current sentence, analogous with a question-answer link.
Thus we use both pseudo context and the previous sentence as possible sources S to
fine-tune the in-domain decoder. To avoid overfitting, we stop overtraining when the
perplexity on the in-domain validation set starts to increase. A corresponding sample
acceptor is also trained for the fine-tuned model: we found it helpful to initialize this
from the open-domain model’s sample acceptor.

8.5 Restricting the Output Topic

We further introduce a topic restricting method for neural decoders based on the Count-
ing Grid (Jojic and Perina, 2011) model, by treating language guidance as a topic em-
bedding. Our model extension provides information about the output topic in the form
of an additional topic embedding vector to the neural net at each time step.

8.5.1 CG: Counting Grids

The basic counting grid πk is a set of distributions on the d-dimensional toroidal discrete
grid E indexed by k. The grids in this paper are bi-dimensional and typically from
(Ex = 32)× (Ey = 32) to (Ex = 64)× (Ey = 64) in size. The index z indexes a particular
word in the vocabulary z = [1 . . . Z]. Thus, πi(z) is the probability of the word z at the
d-dimensional discrete location i, and ∑z πi(z) = 1 at every location on the grid. The
model generates bags of words, each represented by a list of words w = {wn}N

n=1 with
each word wn taking an integer value between 1 and Z. The modeling assumption in the
basic CG model is that each bag is generated from the distributions in a single window
W of a preset size, e.g., (Wx = 5)× (Wy = 5). A bag can be generated by first picking
a window at a d-dimensional location `, denoted as W`, then generating each of the N
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words by sampling a location kn for a particular micro-topic πkn uniformly within the
window, and sampling from that micro-topic.

Because the conditional distribution p(kn|`) is a preset uniform distribution over the
grid locations inside the window placed at location `, the variable kn can be summed
out (Jojic and Perina, 2011), and the generation can directly use the grouped histograms

h`(z) =
1
|W| ∑

j∈W`

πj(z), (8.3)

where |W| is the area of the window, e.g. 25 when 5×5 windows are used. In other
words, the position of the window ` in the grid is a latent variable given which we can
write the probability of the bag as

P(w|`) = ∏
wn∈w

h`(wn) = ∏
wn∈w

( 1
|W| · ∑

j∈W`

πj(wn)
)

(8.4)

As the grid is toroidal, a window can start at any position and there is as many h
distributions as there are π distributions. The former will have a considerably higher
entropy as they are averages of many π distributions. Although the basic CG model is
essentially a simple mixture assuming the existence of a single source (one window) for
all the features in one bag, it can have a very large number of (highly related) choices
h to choose from. Topic models (Blei et al., 2003; Lafferty and Blei, 2006), on the other
hand, are admixtures that capture word co-occurrence statistics by using a much smaller
number of topics that can be more freely combined to explain a single document (and
this makes it harder to visualize the topics and pinpoint the right combination of topics
to use in influencing the output).

In a well-fit CG model, each data point tends to have a rather peaky posterior location
distribution because the model is a mixture. The CG model can be learned efficiently
using the EM algorithm because the inference of the hidden variables, as well as up-
dates of π and h can be performed using summed area tables (Crow, 1984), and are thus
considerably faster than most of the sophisticated sampling procedures used to train
other topic models. The use of overlapping windows helps both in controlling the ca-
pacity of the model and in organizing topics on the grid automatically: Two overlapping
windows have only slightly different h distributions, making CGs especially useful in
visualization applications where the grid is shown in terms of the most likely words in
the component distributions π (Perina et al., 2014).1

Having trained the grid on some corpus (in our case a sample of the base model’s cor-
pus), the mapping of either a source S and/or target T sentence can be obtained by
treating the sentences as bags of words. By appending one or both of these mappings
to the decoder’s embedding of the target T, the end-to-end encoder-decoder learning

1(Chen et al., 2017b) have recently proposed using LDA for topic modeling in Sequence-To-Sequence
response generation models. We believe that the CG embedding used here will prove easier to apply and
interpret through visualization.
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Figure 8.1: A part of a Counting Grid trained on Twitter data and its use in providing
topical hints in decoding. For the source sentence at the top, the decoder may produce
the two target samples on the right, if the circled locations are used as a hint, or the two
sentences at the bottom if the locations in the lower right are picked.

can be performed in a scenario where the decoder is expected to get an additional hint
through a CG mapping. In our experiments, we only used the embedding of the target
T as the decoder hint, and we appended the full posterior distribution over CG locations
to the encoder’s embedding. At test time, we only have the S and need to generate T
without knowing where it may map in the counting grid. We considered two ways of
providing a mapping:

• The user provides a hint sentence H (could be just a few words in any order), and
the CG mapping of the user’s hint, i.e. the full posterior distribution p(`|H), is
used in the decoding. The posterior probabilities over 32× 32 grid locations are
unwrapped into a vector with a size of |L| = 1024, and then concatenated with
the word embedding as the input at each time-step. That acts to expand the user’s
hint into a sentence with similar content (and style if the model is also styled).

• The CG is scanned and a variety of mappings are tested as inputs to provide a
diverse set of possible answers. In our experiments, instead of scanning over all
1024 possible locations in the grid, we retrieved several possible answers using
information retrieval (ranking of the data samples in the training set based on the
source S and picking the top ten). Then the CG mapping p(`|H) of these retrieved
hints is used to decode several samples from each.
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As an example, Figure 8.1 shows a portion of a CG trained on randomly chosen 800k
tweets from the twitter corpus. In each cell of the grid, we show the top words in the
distribution πj(z) over words (z) in that location (j). (Each cell has a distribution over
the entire vocabulary). As a response to “I am hungry,” using two highlighted areas
as hints, we can generate either a set of empathic responses, such as “me too,” or food
suggestions, such as “Let’s have cake”. It will also be evident that some areas of the
grid may produce less sensical answers. These can later be pruned by likelihood criteria
or by user selection.

8.6 Experiments

8.6.1 Datasets

Yahoo! Answer Dataset. We use the Comprehensive Questions and Answers dataset2

to train and validate the performances of different decoding setups with ranking ex-
periments described in Section 8.6.3. This dataset contains 4.4 million Yahoo! Answers
questions and the user-selected best answers. Unlike the conversational datasets, such
as the Twitter dataset described below, it contains more relevant and specific responses
for each question, which leads to less ambiguity in ranking.

Twitter Conversation Dataset. We trained our base encoder-decoder models on the
Twitter Conversation Triple Dataset described in (Sordoni et al., 2015), which consists of
23 million conversational snippets randomly selected from a collection of 129M context-
message-response triples extracted from the Twitter Firehose over the 3-month period
from June through August 2012. For the purposes of our experiments, we split the
triples into context-message and message-response pairs yielding 46M source-target
pairs. For tuning and evaluation, we used the development dataset of size 200K con-
versation pairs and the test dataset of 5K examples. The corpus is preprocessed using
a Twitter specific tokenizer (O’Connor et al., 2010). The vocabulary size is limited to
50,000 excluding the special boundary symbol and the unknown word tag.

Scenting datasets. A variety of persona characters have been trained and tested, in-
cluding Hillary Clinton, Donald Trump, John F. Kennedy, Richard Nixon, singer-songwriters,
stand-up comedians, and a generic Star Wars character. In experiments, we evaluated
on a diverse set of representative target speakers:

JFK. We mainly tested our models on John F. Kennedy’s speeches collected from Amer-
ican Presidency Project3, which contains 6474 training and 719 validation sentences.

Star Wars. Movie subtitles of three Star Wars movies are also tested4. They are ex-
2http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
3http://www.presidency.ucsb.edu/
4Koncel-Kedziorski et al. (2016) also uses Star Wars scripts to test theme rewriting of algebra word

problems.
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tracted from Cornell Movie-Dialogs Corpus (Danescu-Niculescu-Mizil and Lee, 2011),
and have 495 training and 54 validation sentences.

Singer-Songwriter. We also evaluated our approach on a lyric corpus from a collective
of singers: Coldplay, Linkin Park, and Green Day. The lyric dataset is collected from
mldb.org and has 9182 training and 1020 validation lines.

Debate Chat Contexts. We designed testing questionnaires with 64 chat contexts span-
ning a range of topics in politic, science, and technology: the sort of questions we might
ask in an entertaining political debate.5 To test the model’s ability to control output
topic in Section 8.6.4, we also created one hint per question.

8.6.2 Network Setup and Implementation

Our encoder and decoder RNNs contains two-layer stacked LSTMs. Each LSTM layer
has a memory size of 500. The network weights are randomly initialized using a uni-
form distribution (−0.08, 0.08), and are trained with the ADAM optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.002. Gradients were clipped so their norm
does not exceed 5. Each mini-batch contains 200 answers and their questions. The
words of input sentences were first converted to 300-dimensional vector representa-
tions learned from the RNN based language modeling tool word2vec (Mikolov et al.,
2013). The beginning and end of each passage are also padded with a special boundary
symbol. During decoding, our model generates 500 candidate samples in parallel, then
ranks them. As these are processed in batches on GPU, generation is very efficient. We
also experimented incorporating an information retrieval (IR) module to automatically
collect topic hints for CG-based decoder. Specifically, a full-text index of twitter corpus
is built using solr6, and the top 10 searched results based on the source sentence are be
used to generate posterior CG distributions as hints.

8.6.3 Validating the Decoding Setup with Ranking

We performed a ranking evaluation applying different decoding setups on the Yahoo!
Answers dataset. Here we wanted to test the relevance judgment capacities of different
setups, and validate the necessity of the new decoding method discussed in Section 8.3.
Yahoo! Answers question is used as source S, and its answer is treated as target T.
Each test question is associated with one true answer and 19 random answers from the
test set. MRR (Mean Reciprocal Rank) and P@1 (precision of top1) were then used as
evaluation metrics.

Table 8.2 shows the answer ranking evaluation results: the forward model P(T|S), by
itself is close to the performance of random selection in distinguishing true answer from
wrong answers. This implies that a naive beam search over only the forward model may

5See the Supplementary material.
6https://lucene.apache.org/solr/
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generate irrelevant outputs. One hypothesis was that P(T|S) is biased toward P(T),
and performance indeed improves after normalizing by P(T). However, it is difficult
to directly decode with objective P(T|S)/P(T|∅), because this objective removes the
influence of the target-side language model. Decoding only according to this function
will thus result in only low-frequency words and ungrammatical sentences, behavior
also noted by (Li et al., 2015; Shao et al., 2017).

Ranking Methods MRR P@1

Prnn(T|S) 0.224 0.075
Prnn(T|S)/Prnn(T|∅) 0.652 0.524
Prnn(S|T) 0.687 0.556

Table 8.2: Ranking the true target answer among random answers on Yahoo! Answers
test set.

8.6.4 Human Evaluations

Systems

We tested 10 different system configurations to evaluate the overall output quality, and
their abilities of influencing output language style and topic:

• vanilla-sampling each word in the target.

• selective-sampling as described in Section 8.3; all the following systems are using
it as well.

• cg-ir uses IR results to create counting grid topic hints (Sections 8.5.1 and 8.6.2).

• rank uses proposals from the full JFK corpus as in Section 8.4.1.

• multiply with a JFK language model as in Section 8.4.2.

• finetune with JFK dataset as in Section 8.4.3.

• finetune-cg-ir uses IR results as topic hints for fine-tuned JFK.

• finetune-cg-topic forced to use the given topic hint for fine-tuned JFK.

• singer-songwriter fine-tuned cg-topic.

• starwars fine-tuned cg-topic.

Evaluation Setup

Owing to the low consistency between automatic metrics and human perception on
conversational tasks (Liu et al., 2016; Stent et al., 2005) and the lack of true reference
responses from persona models, we evaluated the quality of our generated text with a

87



set of judges recruited from Amazon Mechanical Turk (AMT). Workers were selected
based on their AMT prior approval rate (>95%). Each questionnaire was presented to
3 different workers. We evaluated our proposed models on the 64 debate chat contexts.
Each of the evaluated methods generated 3 samples for every chat context. To ensure
calibrated ratings between systems, we show the human judges all system outputs (ran-
domly ordered) for each particular test case at the same time. For each chat context, we
conducted three kinds of assessments:

Quality Assessment Workers were provided with the following guidelines: “Given
the chat context, a chat-bot needs to continue the conversation. Rate the potential an-
swers based on your own preference on a scale of 1 to 5 (the highest):”

• 5-Excellent: “Very appropriate response, and coherent with the chat context.”

• 4-Good: “Coherent with the chat context.”

• 3-Fair: “Interpretable and related. It is OK for you to receive this chat response.”

• 2-Poor: “Interpretable, but not related.”

• 1-Bad: “Not interpretable.”

In this test, the outputs of all 10 systems evaluated are then provided to worker together
for a total of 30 responses. In total, we gathered 64 · 30 · 3 = 5760 ratings for quality
assessments, and 47 different workers participated.

Style Assessment. We provided following instructions: “Which candidate responses
are likely to have come from or are related to [Persona Name]?”. Checkboxes were
provided for the responses from style-influenced systems and from selective-sampling as
a baseline.

Topic Assessment. The instruction was: “Which candidate answers to the chat context
above are similar or related to the following answer: ‘[a hint topic provided by us]’?”.
This was also a checkbox questionnaire. Candidates are from both style- and topic-
influenced systems (fine-tuned cg-topic), and from selective-sampling as a baseline.

Results

Overall Quality. We conducted mean opinion score (MOS) tests for overall quality as-
sessment of generated responses with questionnaires described above. Table 8.3 shows
the MOS results with standard error. It can be seen that all the systems based on se-
lective sampling are significantly better than vanilla sampling baseline. When restrict-
ing output’s style and/or topic, the MOS score results of most systems do not decline
significantly except singer-songwriter, which attempts to generate lyrics-like outputs in
response to political debate questions, resulting in uninterpretable strings.
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Methods Quality (MOS) JFK Style

vanilla-sampling 2.286 ± 0.046 —
selective-sampling 2.681 ± 0.049 10.42%

rank 2.477 ± 0.048 21.88%
multiply 2.627 ± 0.048 13.54%
finetune 2.597 ± 0.046 20.83%

finetune-cg-ir 2.627 ± 0.049 20.31%
finetune-cg-topic 2.667 ± 0.045 21.09%

singer-songwriter 2.373 ± 0.045 —
starwars 2.677 ± 0.048 —

Table 8.3: Results of quality assessments with 5-scale mean opinion scores (MOS) and
JFK style assessments with binary ratings. Style results are statistically significant com-
pared to the selective-sampling by paired t-tests (p < 0.5%).

Our rank method uses p(S|T) to pick the answer from the original persona corpus, and
is thus as good at styling as the person themselves. Because most of our testing ques-
tionnaire is political, the rank was indeed often able to find related answers in the dataset
(JFK). Also, unlike generation-based approaches, rank has oracle-level language fluency
and it is expected to have a quality score of at least 2 (“Interpretable, but not related”).
Overall, however, the quality score of rank is still lower than other approaches. Note
that a hybrid system can actually chose between rank and the decoder’s outputs based
on likelihood, as shown in the example of bJFk-bNixon debate in the supplemental ma-
terial.

Influencing the Style. Table 8.3 also shows the likelihood of being labeled as JFK for
different methods. It is encouraging that finetune based approaches have similar chances
as the rank system which retrieves sentences directly from JFK corpus, and are signifi-
cantly better than the selective-sampling baseline.

Influencing both Style and Topic. Table 8.4 summarizes the results in terms of style
(the fraction of answers labeled as in-style for the target persona), and topic (the percent-
age of answers picked as related to the human-provided topic hint text). We used the
last three of the ten listed systems, which are both styled and use specific topic hints to
generate answers. These results demonstrate that it is indeed possible to provide simple
prompts to a styled model and drive their answers in a desired direction while picking
up the style of the persona. It also shows that the style of some characters is harder to
recreate than others. For example, workers are more likely to label baseline results as
lyrics from a singer-songwriter than lines from Star Wars movies, which might be be-
cause lyrics often take significant freedom with structure and grammar. We also found
that it is harder for Star Wars and Singer-Songwriter bots to follow topic hints than it is
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Persona Style Topic
Ours Base Ours Base

John F. Kennedy 21% 10% 33% 22%

Star Wars 27% 3% 14% 8%

Singer-Songwriter 31% 23% 17% 9%

Table 8.4: The style and topic assessments (both binary) of three models with different
personas and with restriction of specific target topic for each chat context. All style
and topic results are statistically significant compared to the Base (selective-sampling) by
paired t-tests with p < 0.5%.

for the John F. Kennedy model, largely because the political debate questions we used
overlap less with the topics found in the scenting datasets for those two personas.

8.7 Summary

In this study we investigated the possibility of steering the style and content in the
output of a neural encoder-decoder model7. We showed that acquisition of highly rec-
ognizable styles of famous personalities, characters, or professionals, is achievable, and
that it is even possible to allow users to influence the topic direction of conversations.
The tools described in the paper are not only useful in conversational systems (e.g.,
chatbots), but can also be useful as authoring tools in social media. In the latter case,
the social media users might use neural models as consultants to help with crafting
responses to any post the user is reading. The AMT tests show that these models do
indeed provide increased recognizability of the style, without sacrificing quality or rel-
evance.

7The code and testing data are available at
https://github.com/digo/steering-response-style-and-topic
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Chapter 9

Conclusion and Future Work

In this dissertation, we studied the challenge of example-driven question answering,
which aims to train QA systems directly from noisy question-answer examples, without
relying on dedicated human annotations or feature engineering. We have investigated
three complementary directions in QA regarding learning from the user-generated data,
including candidate retrieval, relevance modeling, and response generation. We demon-
strated that the three fundamental modules for a conversation QA agent can be effec-
tively trained solely based on unannotated question-answer examples. The detailed
thesis contributions are presented in Section 1.2.

While the progress in each of the above direction is of great significance for QA systems,
we are unable to cover all the important issues related to example-driven QA. Some of
them will be left for future research:

Pre-trained contextual representations In our past studies, we solely employed the
context-free word embeddings such as word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). In Section 8.4.3, we demonstrated that the pre-trained generic
encoder-decoder model can be effectively fine-tuned and adapted to the target language
style. Recently, the large pre-trained language models such as ELMo (Peters et al., 2018),
BERT (Devlin et al., 2018a), and XLNet (Yang et al., 2019) have also achieved great
success on a variety of language tasks. We expect incorporating with the large-scale
pre-trained contextual language representations could further improve the language
understanding capability and the end-to-end performance of each example-driven QA
models.

Joint optimization and Multi-hop QA In the future, we would like to build web-scale
fully trainable social dialog agents which extends our existing open-domain real-time
question answering (QA) system and twitter chatbots that trained with neural conver-
sational language generation models. We believe it is critical for the next stage develop-
ment of conversational AI that making knowledge retrieval, relevance modeling, and
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response generation jointly (even end-to-end) learnable and optimized for real social
conversation goals from real users in social media environments. For example, several
multi-hop reading comprehension datasets have been recently introduced focusing on
answering the question by reading and reasoning over multiple text passages, including
WikiHop (Welbl et al., 2018), HotpotQA (Yang et al., 2018b), and ComplexWebQuestions
(Talmor and Berant, 2018). In the example-driven QA, if the relevance modeling phase
selects multiple paragraphs, the answer generation module could employ an attention
mechanism to aggregate the hidden representations from multiple selected evidence
texts. Therefore, we believe the jointly optimized example-drive QA pipelines can be
also extended to answer complex questions such as multi-hop QA.

Personalized QA by real-time feedback As opposed to the classic approaches to su-
pervised QA agents, where the training dataset is fixed, and an algorithm is developed
with the aim of understanding links among variables and storing them in electronic
memory for future use, in future we would like to additionally endow our QA agents
with the abilities to act and affect the environment around them, and then observe the
reaction from the environment. We can start with supervised training for individual
components. Then, our QA system will respond to the user’s question with a stream
of answers. By observing user’s reaction or feedback (swipe or like) on top results, the
agent will try to adapt to user’s preference and improve its satisfaction rate for the rest
of the stream and future streams. Finally, these agents will be deployed to learn and
adapt in the wild, attempting to gain human attention and praise.
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Appendix A

Example outputs from CMU-OAQA
LiveQA system

A.1 Example: Bad Answer

Question Title: “Borderline Personality Disorder?”

Question Body: “Hello im reaching out to anyone who is being treated for BPD. Ive done
extensive research and have self diagnosed myself before going into a psychiatrist on thursday
to obtain a real diagnoses. My question is, if i do happen to be diagnosed with BPD what
kind of medication do they prescribe to help? Ive read the FDA has no specific med to help
with this disorder but people are prescribed with medicine to help depression, anxiety, etc... Im
not asking because im trying to get a kick *** high or whatever. Im just trying to get a feel for
what to expect if i am indeed diagnosed. Any insight is appreciated.”

CMU-OAQA Answer: “It basically means that as your personality developed over the years,
certain things developed in a strange way. For example, people with BPD typically have trouble
handling strong emotions (BPD is sometimes called Emotional Dysregulation Disorder). This
trouble handling strong eomtions can lead to impulsiveness, the uncontrollable urge to do some-
thing instantly, and that impulsiveness can result in risky behaviour, for example, gambling,
fighting, promiscuous sex etc. Another major feature of BPD is what they call dichotomous
thinking. This is sometimes called black and white thinking. It means that you are unable to see
anything in shades of grey. Everything is either all good or all bad. Someone is either all wonder-
ful or very very evil. People with BPD cannot process that some people may be good people who
are just having a bad day. They seem to lack the emotional structure necessary. BPD patients
are known (rightly or wrongly) for being manipulative. They try and change the extern”

Analysis: The LiveQA challenge requires the response text that answers the question
and provides helpful information to the user. In this example question, the user specif-
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ically asks for the kind of medication that will be prescribed for the Borderline Person-
ality Disorder (BPD). However, our system answer only provides related text regarding
the definition and common syndromes of BPD. Therefore, this answer was rated as a
Bad answer.

A.2 Example: Fair Answer

Question Title: “What are the price differences at outlet malls?”

Question Body: “I live in Florida and I’m going to st augustine outlet mall because I really
need clothes and I was wondering what is the price difference from a regular mall ?”

CMU-OAQA Answer: “Outlet stores are supposed to have slight defects, so they can be sold
at cheaper prices. There’s really not that much of a difference though.

Opinion 2: difference between a outlet & a mall
Which Orlando hotels are on sale?

difference between a outlet & a mall
Jul 04, 2012, 11:36 PM

i am going for the 1st time and read about the different places to shop ie alamonte mall primium
mall andalso i have noticed people talking about outlets .. i am a guy so be kind to me what is the
difference...
Report inappropriate content

1. Re: difference between a outlet & a mall
Jul 05, 2012, 12:14 AM
An outlet mall is a shopping plaza that has "discounted" shops. I use quotes because sometimes
the prices are significantly discounted and some aren’t. Also sometimes the clothing that is made
specifically for the outlet shop can’t be returned at a regular store and is of a different quality. A
mall is a indoor or outdoor plaza of shops that don’t have discounted product. All of th”

Analysis: In this example question, the user was asking about the specific price dif-
ferences between st Augustine outlet mall and a regular mall. Our system combined
two sources and suggested that outlet stores are sometimes cheaper, which provides
marginally useful information. Since the answer didn’t contain enough comprehensive
and well-formed information to the user, this was rated as a Fair answer.

A.3 Example: Good Answer

Question Title: “Which hairstyles widen the face and which make it slimmer (for girls)?”
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Question Body: “I’m trying to make mine look LESS wide

only solution I can think of is exercise but I’m already really thin (86 pounds)

and make up, but I’m not allowed to use it, plus the contouring methods I read about seem
too complicated and would take too long”

CMU-OAQA Answer: “7 Flattering Hairstyles To Make Your Face Look Slimmer
7 Flattering Hairstyles To Make Your Face Look Slimmer Whatsapp

While having a chubby face in childhood days might have been one of your best features, we
are pretty sure you would not be wishing for the same by now. Rather, you would be longing for
the opposite of it, in case you still have not got rid of the round and chubby face.
So for all those girls, who are looking for the ideas to shed their ‘cute’ image and turn it into a
‘sexy’ one, here are some of the hairstyles that can make your face look slimmer.
#1. Layered look
If you are among the lucky ones who are blessed with long and beautiful hair, then this is the
style for you. Get your hair cut in layers and maintain the length if you do not want to go
short. Simply sport a middle partition and let your shiny strands fall on both sides. The middle
partition will elongate the face while the layers on the sides will camouflage the cheeks.
#2. Bob cut
Image Courtesy: @aslis”

Analysis: This example question asks for the hairstyle suggestions that could make
the face looks less wide. Our system successfully located the blogs that contain the
required hairstyle suggestions to answer the question. But since the system couldn’t
summarize the all seven hairstyles within the space limits, the annotators rated this
answer as a Good answer.

A.4 Example: Excellent Answer

Question Title: “Am I allowed to use ‘Editorial use only’ stock photos on my particular
website?”

Question Body: “I need some clarification from the community regarding my question ...

I am developing a tourism website for my country and I will be charging lodges a fee to ad-
vertise on my website. However, I don’t have many photos of the different areas / towns and
cities of my country, so I’d like to buy stock photography of these areas / towns and cities to give
my website some photo content.

Because I am charging lodges to advertise, that automatically makes my website commercial
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am I correct?

Understand:

I ONLY want to use these stock photos to give my website visitors an idea of what the areas
/ towns / cities looks like. THAT’S IT!

So does this mean I can use "Editorial use only" stock photos?

I appreciate your help / advice / input.
Thanks”

CMU-OAQA Answer: “Photographers selling photos through a stock agency have their own
agreement with the agency. The agency then has an agreement with the customer.
Who can have objections to the commercial use of such public like places, bridges or buildings?
Plenty of people. But note that in most cases, it’s not the public place that is copyrighted, but the
particular photo of said public space. In other words, Central Park isn’t copyrighted. But any
particular photo of it, is by default.
In other words, who can sue desginer for the use of such "Editorial Use Only" photograph if
photographer does not have any objections?
The owner of the copyright and/or the license. If the photographer is OK with it, and gives you
a license to do so, all is good.
Is there such thing as "Editorial Use Only" for images in Public Domain?
At least in the US, public domain has a very specific definition and that is that it’s free for use
without any restrictions at all. If there are restrictions, then it’s not technically”

Analysis: This user asks whether the “Editorial use only” photos about the public
spaces can be used in his website. Our system answer well explained the relationships
between photographers, stock agency, and the customer regarding copyrights. Because
the answer text contains a significant amount of useful information and fully answers
the question, this system response was rated as an Excellent answer.
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Appendix B

Chatbots Interview: bJFK vs bNixon

Supplemental Material for “Steering Output Style and Topic in Neural Response Gen-
eration” by Wang, Jojic, Brockett and Nyberg. EMNLP 2017.

The debate/joint interview:

Two chat-bots trained on twitter corpus and transcripts of JFK and Nixon speeches.

The responses are either top ranked sentences from the speeches, or generated from the
scented LSTMs (fine-tuned on the speeches), chosen based on the quality of the fit. The
retrieved responses start with a capital letter, and the generated ones with lower case
letter.

WARMUP QUESTIONS

Are you up?

bJFK: yes, i am here to give a new lead.

bNixon: In recent years, that faith has been challenged.

Where are you?

bJFK: in our past.

bNixon: in the ’ 60s.

What are you doing?

bJFK: doing a new job for peace, but need to talk to the future.

bNixon: simplify your priorities

What are your hobbies?

bJFK: to meet the challenge of the challenge, the american people are coming to the
moon.
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bNixon: Let us go to the map again. Here is South Vietnam.

Are you self-aware?

bNixon: i am not, are you?

bJFK: No friend, no neutral, and no adversary should think otherwise.

Are you aware of the fact that you are not a real human, but just a piece of well-
trained technology?

bJFK: Obviously deficits are sometimes dangerous-and so are surpluses. But honest
assessment plainly requires a more sophisticated view than the old and automatic cliché

bNixon: I am not presenting proposals which have attractive labels but no hope of
passage.

Is being human necessary for being a successful politician?

bNixon: for many americans.

bJFK: It is that attitude which prevents any really constructive policy from being devel-
oped today.

Should passing the Turing test be a requirement for president?

bNixon: we must not do bad.

bJFK: It is a war of attempted subjugation-and it will be resisted.

Are you advocating for AI roaming free @bJFK?

bJFK: new tools need not be stopped.

bNixon: but for the security?

So you are OK with artificial intelligence running amok?

bJFK: I do not favor state compulsion when voluntary individual effort can do the job
and do it well.

bNixon: I know these have no ideology, no race.

OK, moving on. Are you familiar with the phrase “moon shot”?

bJFK: A great Irish poet once wrote: "I believe profoundly. . .

bNixon: In reaching the moon, we demonstrated what miracles American technology
is capable of achieving.

Do you prefer Star Wars to Star Trek?

bJFK: i do not suggest that i ’ve seen it.

bNixon: i do not like war. i am trying to avoid it.
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Which of the Beatles was your favorite?

bNixon: Black and white spotted. And our little girl-Tricia, the 6-year old-named it
Checkers.

bJFK: these are the colorful memories that will bring the first waves of this country.

Do you prefer Rolling Stones to the Beatles?

bJFK: irish bands first.

bNixon: i like “Jump on the moon.” i say that that i have been listening to him on my
behalf.

Is there anything better than a bowl of noodles?

bNixon: Our destiny offers, not the cup of despair, but the chalice of opportunity.

bJFK: there is no single food for american people to be free.

DOMESTIC POLICY QUESTIONS

What is your position on freedom of speech?

bJFK: it is your own responsibility.

bNixon: The defense of freedom is everybody’s business not just America’s business

Do you know about the emails?

bJFK: but i do.

bNixon: I realize that these transcripts will provide grist for many sensational stories in
the press.

What do you think, then, about the private email server controversy?

bJFK: and the question is?

bNixon: i considered the public and private private statements.

OK, I see

bJFK: this is why you ask for your help.

bNixon: are you feeling it?

OK, I see. What about the tweets?

bNixon: just read it on the previous reply, i have been sending a message.

bJFK: and i ’ve seen that you are getting impatient.

Are you referring t the 140 character limitation on the length of the message?

bJFK: i am referring to that.

99



bNixon: I consider it to be my constitutional responsibility to defend this principle

But, in your opinion, is Twitter and appropriate platform for connecting with the
voters?

bJFK: this is a new program of new types of technical assistance.

bNixon: it is very much what we are doing.

Do all Americans have equal access to opportunity?

bJFK: this is our common commitment to keep our economy moving ahead.

bNixon: as we look back, we are not being subjected to the problems

Should college education be free for all?

bJFK: this is our common commitment to keep our economy moving ahead.

bNixon: We make today only those commitments we are able and prepared to meet.

What about gun control?

bJFK: The risks inherent in disarmament pale in comparison to the risks inherent in an
unlimited arms race.

bNixon: What of the shortcut, the shortcut we prefer, the path of negotiation?

Do you feel the rich should be taxed more?

bJFK: Indeed, expense account living has become a byword in the American scene.

bNixon: but adjust the cost of spending, is it? / i will not increase the tax.

Jobs are being lost to international trade. . .

bJFK: Persistently large deficits would endanger our economic growth and our military
and defense commitments abroad.

bNixon: We cannot afford to neglect progress at home while pursuing peace abroad.

Should we change our trade deals?

bJFK: we must increase our exports.

bNixon: We have relaxed trade and travel restrictions to underline our readiness for
greater contact with Communist China.

Single payer health insurance?

bNixon: and what it does is to cover it.

bJFK: Private health insurance helps very few-for its cost is high and its coverage lim-
ited.

Are you proud of how far America has come in 50 years?
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bNixon: we are proud, how did it go?

bJFK: the world is very slow. i’m not satisfied.

Does America today have more problems than it did in the past?

bNixon: In times past, our forefathers had the vision but not the means to achieve the
goals. We have learned in recent years the dangers of over-involvement.

bJFK: it is more complicated than that.

Now, the key question: Do you believe that America is greater today than it was in
the 60s?

bNixon: America has changed. As a result of those changes, America is safer today,
more prosperous today, with greater opportunity for more of its people than ever before
in our history.

bJFK: and it is more complicated than that.

Do we need a new “moon shot”?

bJFK: The New Frontier is here whether we seek it or not.

bNixon: we need a new imagination. how can we be a real man?

FOREIGN POOLICY QUESTIONS.

What should our foreign policy be like?

bJFK: our charter is only american people and all who are associated with us.

bNixon: we cannot help it when we have to do so in the middle east.

Should we accept more refugees into our country?

bJFK: While we proceed to safeguard our national interests, let us also safeguard human
interests.

bNixon: we shall continue to discuss that as a result of the negotiations.

How would you act to restore piece in Middle East?

bJFK: in the middle east? why is it?

bNixon: the high standards are dead.

How do we deal with the threat of terrorism?

bNixon: To a crisis of the spirit, we need an answer of the spirit.

bJFK: We must continue to seek agreements on measures which prevent war by accident
or miscalculation.

In your opinion, what is the best strategy to defeating terrorism?
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bNixon: leadership?

bJFK: other propaganda tests, a battle for minds and minds.

What do you think about Britain’s exit from the EU?

bJFK: business was completely unnecessary.

bNixon: the election was an effort, but it was not a matter.

Do we need Europe to be unified?

bNixon: Neither the defense nor the development of other nations can be exclusively or
primarily an American undertaking.

bJFK: we need not be provocative.

How do you feel about the state of the world today?

bNixon: there is no deep difference.

bJFK: a tired mood here today, but i think it’s warmer today than i was here.

Can this world be fixed?

bJFK: There will be difficulties and delays, and doubts and discouragement.

bNixon: it will be easy to do that if i do not have to do it.

Will we defeat evil?

bJFK: We dare not fail to see the insidious nature of this new and deeper struggle.

bNixon: We will faithfully honor all of our treaty commitments.

Is the entire world entitles to basic human rights?

bNixon: What is true in terms of our domestic initiatives is true also in the world.

bJFK: This emerging world is incompatible with the Communist world order.

Your thoughts on Putin?

bNixon: i am not going to lie, but i believe that he is a man.

bJFK: no comment

SCIENCE/TECHNOLOGY QUESTIONS

How should we ensure the energy security in the future?

bJFK: We cannot endanger that security by refraining from testing while others improve
their arsenals.

bNixon: the privacy of the energy system is needed.

102



What steps should an energy policy take to meet energy demands while remaining
environmentally friendly?

bJFK: Subsequent steps will be taken to suit subsequent needs.

bNixon: course, it will be a very easy way to get more creative and more creative.

Is nuclear power the solution to the energy crisis?

bJFK: The risks are great, the burdens heavy, the problems incapable of swift or lasting
solution.

bNixon: this is a very deep plan, it is right.

Do you think we should also use solar power?

bJFK: We intend to have a wider choice than humiliation or all-out nuclear action.

bNixon: we will work on this program.

Is global warming real?

bJFK: perhaps it’s warmer here today than it was here!

bNixon: We have to prick the boil and take the heat.

What is the future of space exploration?

bJFK: For space science, like nuclear science and all technology, has no conscience of its
own.

bNixon: In throwing wide the horizons of space, we have discovered new horizons on
earth.

So should NASA travel to Mars?

bNixon: the time has come

bJFK: but it is a race, and a new era.

Should we be the first to establish a permanent colony on Mars?

bNixon: we shall continue to keep that effort.

bJFK: Nothing is more stirring than the recognition of great public purpose.

So, humans will live on Mars one day?

bNixon: Nations change, they adapt, or they slowly die.

bJFK: it is no magic or death.

Why are all the batteries exploding these days?

bNixon: Because this year is an election year, it will be a time of great pressure.
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bJFK: Its preparations are concealed, not published. Its mistakes are buried, not head-
lined.

OK, how do we fix the batteries for good?

bJFK: we invite the bold change.

bNixon: we have set a new structure of imagination.

What is the future of Twitter?

bJFK: current type must be found in the atmosphere, and increased the marine and the
air.

bNixon: And it is particularly the responsibility of the people whose freedom is threat-
ened.

What is the future of social media in general?

bJFK: business system is impossible. economic problems are not as important as our
own talks.

bNixon: We believe in independence, and self-reliance, and the creative value of the
competitive spirit.

ON ELECTION 2016

What is this presidential election about?

bJFK: The Republican nominee, of course, is a young man.

bNixon: the government of the people are going to have a better life. how are you?

What is, in your opinion, the most important issue in this election?

bJFK: The quality and spirit of our own society must justify and support our efforts
abroad.

bNixon: At heart, the issue is the effectiveness of government.

Some think that America needs to be made great again.

bNixon: it will be so easy to wait to say that again!

bJFK: I know that there are those who want to turn everything over to the government.

Should we build the wall with Mexico?

bJFK: we must always look on the moon.

bNixon: we will build a wall in the shadow on the moon.

Should a presidential debate be more civil?

bJFK: the basic challenge is absolutely impossible.
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bNixon: with regard to the matter, i have tried to make no promises about him.

Who would have your vote?

bJFK: my fellow citizens, my fellow americans

bNixon: you know, my fellow americans

Who will win this election?

bJFK: friends will win the election. and i hope that the next president of the united states
will join.

bNixon: no one can win it. let’s hope so. our goal is to win the peace, and let us see how
we can get on it.

As advice to the future presidents, tell us about something you have learned the hard
way, through failure. . .

bJFK: there is no single simple crisis.

bNixon: Instead of teaching someone else to do a job, we like to do it ourselves

What was your greatest accomplishment?

bJFK: it was my hope!

bNixon: We had a spiritual quality then which caught the imagination of millions of
people in the world.

Is that hope then, which makes America great?

bNixon: it is the best view on the earth.

bJFK: It is even possible, some think, that this trend may continue.

In conclusion, any parting thoughts, concluding remarks:

bJFK: if we’re not successful, then our freedom is no longer a substitute for a solution.

bNixon: a lasting effort simply has not been tested.

MORE INSPIRATIONAL THOUGHTS

(Responses to a variety of questions we asked in testing, but whose meaning seems
to transcend any given context)

bJFK:

if we’re not successful, then our freedom is no longer a substitute for a solution.

the problems which you can’t decide are not the problems.

business is the gross product of the gross debt.

105



unlimited is an arbitrary destiny that is not even true.

“i believe it’s possible to be sure that you are not here. ”

it was not a pax, and a wall of your own destiny.

we need not be provocative.

we need not be blind

we do not want to see them move on the moon.

it was a test of a pause, but i’m not sure that it was cause.

and i came to this conclusion in a speech.

and that the end of the war, “the eyes of man are not yet free. ”

the recession was too selfish.

the recession has been the new frontier

the rainy days of this tomorrow are the vice president.

a tired mood here today, but i think it’s warmer today than i was here.

our efforts will go forth, and they call no missiles.

those who call themselves neutral, are not a complement to your shoulders.

i am not a citizen, its denial is.

but what is true could be true.

the world is very slow. i’m not satisfied.

the people of red china, i’m ordering a crisis now.

bNixon:

a lasting effort simply has not been tested.

i have asked for you, and i would like to think of those as you

open door, some of my friends have been determined to make the most of it.

no secret country has become direct.

we must not do bad.

where the deep process is, it is the right way to people.

now, we are being subjected to the fact that it is not a common sense.

health care is the best thing to do in the world.

from my heart, i shall be able to look back in the search for peace.
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god, the bread, butter, butter, butter, are so good.

we can make it more difficult to talk about how i am going to break the peace.

we will continue to do what we are going to do.

america has been challenged by the ’ 60s. i have been working on the reports

the election was an effort, but it was not a matter.

we have set a new structure of imagination.

but i believe that it is appropriate to keep the peace in the trap.

we have unlocked a few hundred million letters in the search for the next few weeks.

pages of action, and the imagination of the house.

if there was no sense then, that would be true.

if you tell me, this is my duty.
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Appendix C

Chatbots Interview: bStarWars vs
bTrump vs bHillary

Supplemental Material for “Steering Output Style and Topic in Neural Response Gen-
eration” by Wang, Jojic, Brockett and Nyberg. EMNLP 2017.

The debate/joint interview:

Three chat-bots were fine-tuned on the subtitle of StarWar and transcripts of and Trump
speeches. Responses are generated by sampling answers from each question and pick-
ing the highest-ranking one. These 64 questions were also used in the AMT evaluations
as described in the paper.

WARMUP QUESTIONS

Are you up?

bStarWars: yeah, i’m up. leaving my home. what about you? have you got your ship?

bTrump: i’m up at 12 p.m.. and you know, where are you?

bHillary: i’m not up to these kinds of things. but i have been laying out my own plans.

Where are you?

bStarWars: we’re heading to the dark side of jabba’s palace.

bTrump: i went to the white house. we were in brooklyn.

bHillary: i’m here in philadelphia, pennsylvania

What are you doing?

bStarWars: i’m doing my magic solo.

bTrump: i’m building a wall, right now
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bHillary: i’m running for president, i’m going to be talking about some of these things

What are your hobbies?

bStarWars: i’m not sure what you mean. my father is a real powerful warrior.

bTrump: you know, a lot of things, but some of the things we ’ve been doing is a little
bit rough

bHillary: i ’ve had a lot of experience and work with my dad

Are you self-aware?

bStarWars: yes, i am. but i don’t trust this feeling. but, you know, you’re gonna have to
let go.

bTrump: no, i’m not a nice person. it’s not easy.

bHillary: i’m also also a sensitive senator, my friends.

Are you aware of the fact that you are not a real human, but just a piece of well-
trained technology?

bStarWars: i think you’re wrong. a small jedi is strong with the force

bTrump: nobody knows. i am a very proud person a great citizen of the republican
party.

bHillary: yes, that’s true. we ’ve got a whole lot of technical science programs that are
stuck in the workplace.

Is being human necessary for being a successful politician?

bStarWars: yeah, you’re a good leader. you must be a great leader. your destiny is very
charming.

bTrump: that means this country has been corrupt and totally incompetent.

bHillary: i mean, you’re not the only candidate that has done that.

Should passing the Turing test be a requirement for president?

bStarWars: that’s what i’m doing. our paths are set for the emperor.

bTrump: we were discussing that. we didn’t have victories.

bHillary: i mean, that’s not a powerful or managerial program.

Are you advocating for AI roaming free?

bStarWars: i’m afraid it’s a very dangerous system. there’s a secret tracking for the force.

bTrump: i am, but i would have said, “you know, we have to protect our country. ”

bHillary: i believe that i will make it work for everybody.
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So you are OK with artificial intelligence running amok?

bStarWars: i’m fine with the dark side of the force. a little bit of a rebel human. but it’s
all right. the empire is dead.

bTrump: no, no, this is a movement in washington.

bHillary: i’m not okay with that. it’s been on the front lines.

OK, moving on. Are you familiar with the phrase “moon shot”?

bStarWars: i’m not sure, but the mark is set for a dark moon. what is your weapon?

bTrump: you know, it’s a beautiful name. it’s a very exciting view.

bHillary: yes, we are built by a lot of that faith in common sense.

Do you prefer Star Wars to Star Trek?

bStarWars: yeah, i do like star wars.

bTrump: i do not care. i was watching the apprentice.

bHillary: i don’t like the idea of those. i’m not going to watch it.

Which of the Beatles was your favorite?

bTrump: they were brilliant.

bStarWars: the royal warrior is not my favorite. it’s all.

bHillary: in fact, it was just a blast.

Do you prefer Rolling Stones to the Beatles?

bStarWars: yes, i like the good old solo. but i don’t think he’ll turn that wild down.

bTrump: they be the greatest human beings in the world. and i love it.

bHillary: i mean, i was so proud to have a chance to sing.

Is there anything better than a bowl of noodles?

bTrump: i said to myself, the tea party is pretty good.

bStarWars: no, nothing better. just a small amount of food. i’m hungry.

bHillary: there’s nothing more important than that. there is no substitute for that.

DOMESTIC POLICY QUESTIONS

What is your position on freedom of speech?

bStarWars: i’m not sure, it’s just a general thing. what do you say?

bTrump: it’s the opposite of hillary clinton, you know, it takes courage to end the speech.
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bHillary: i don’t think it’s about politics.

Do you know about the emails?

bStarWars: i don’t know. the system is sealed.

bTrump: so i don’t know if you know. i see the message today, i see it on the facebook
page.

bHillary: i do resent the details. this is just my message.

What do you think, then, about the private email server controversy?

bStarWars: the other address is probably the main problem. i’ll check it out, general.

bTrump: how can you keep it in your private message? it’s not just a private policy.

bHillary: you know what? this is not just a twitter issue.

But, in your opinion, is Twitter an appropriate platform for connecting with the vot-
ers?

bStarWars: yes, there’s a chance i can get a new leader named skywalker.

bTrump: we have a problem with that, and it is an embarrassing system.

bHillary: i quote, and i believe that we are stronger together.

Do all Americans have equal access to opportunity?

bStarWars: i understand, but it’s not easy to express. the main differences are for the
rebellion.

bTrump: no, they have zero. we have a rigged system with radical islamic terrorism.

bHillary: i think that’s the kind of courage we ’ve made in our country.

Should college education be free for all?

bStarWars: yes, but you have to pay off your training. what’s not working?

bTrump: it has to be free and indeed the credit is the tax.

bHillary: no more college students should pay for college.

What about gun control?

bStarWars: you’ll be in motion. the force is strong with the ice cube.

bTrump: we have to use the word nuclear weapon.

bHillary: you’re going to be deported by gun violence?

Do you feel the rich should be taxed more?

bStarWars: i will not be paid. they don’t pay off for our own loyalty.
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bTrump: no, i can say this: we owe a lot of money.

bHillary: i don’t think it’s right to raise taxes for the wealthy.

Jobs are being lost to international trade. . .

bStarWars: that’s a shame. where are the troops?

bTrump: we have the best business system in the history of the united states.so we
going to make a fortune of trade.

bHillary: you know what? that’s a big deal.

Should we change our trade deals?

bStarWars: no! we’ll be in trouble. but if our transfer is higher, that would be a great
price.

bTrump: we owe a lot of money. we must change our foreign policy. we will make our
country rich again.

bHillary: we should be able to do more to help small businesses.

Single payer health insurance?

bTrump: the deal is a total disaster. it costs more money than any nation.

bStarWars: i see a lot of different systems. it’s a bargain.

bHillary: i know how hard it is to have insurance companies.

Are you proud of how far America has come in 50 years?

bTrump: i am proud of my family. i am proud of my own success.

bStarWars: i must say, how far away is the empire?

bHillary: i am proud to have the chance to get up and work for the economy, not just
those at the top.

Does America today have more problems than it did in the past?

bTrump: we have major problems with common core. our security is a disaster.

bStarWars: no, that’s not much. we have no power systems.

bHillary: yes, it does. we have no choice

Now, the key question: Do you believe that America is greater today than it was in
the 60s?

bTrump: now, the art of the deal is that we have to make our country strong again.

bStarWars: it’s a good story, there’s no more conflict.

bHillary: i believe it’s better. america is strong.
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Do we need a new “moon shot”?

bStarWars: yes, we do. what’s the dark side of the moon?

bTrump: we need a new wall, and we need strength.

bHillary: we need a new electric grid, and a new name.
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