
Language-Independent Class Instance

Extraction Using the Web

Richard C. Wang

CMU-LTI-09-020

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

Thesis Committee

William W. Cohen (Chair)

Robert E. Frederking

Tom M. Mitchell

Fernando C. N. Pereira (Google Research)

Submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Language and Information Technologies

Copyright c 2009 December, Richard C. Wang

mailto:rcwang@cs.cmu.edu
http://www.lti.cs.cmu.edu
http://www.cs.cmu.edu
http://www.cmu.edu

Abstract

The World Wide Web is a vast and readily-available repository of fac-

tual information, such as semantic classes (e.g., fruits), their instances

(e.g., orange, banana), and relations between them. There are many semi-

structured documents on the web that provide evidence about these facts.

The thesis of this work is that many of these facts can be revealed using

tools built on set expansion. More generally, we believe that statistics,

aggregation, and simple analysis of the documents are enough to discover

frequent common classes in not only English, but other languages as well.

In this thesis, we formulate the discovery of semantic classes as set ex-

pansion, in which the user issues a query consisting of a small number of

example instances (e.g., orange, banana) where each instance is a member

of some target semantic class (e.g., fruits). The answer to the query is a

listing of other probable instances of the class (e.g., apple, cherry).

We also illustrate that semi-structured documents provide more evidence

and information than free text for discovering class instances. In addition,

we propose a novel graph-based approach to set expansion that exploits

semi-structured characteristics of web documents at character-level in a

language-independent fashion. Furthermore, we develop a novel approach

for our system to handle noisy instances, which allows it to be utilized

as a tool for other applications, including question answering and Word-

Net extension. We show di�erent techniques and strategies for enhancing

the quality of expanded instances, including supervised, unsupervised, and

bilingual methods. Lastly, we present an approach to perform relational set

expansion using similar techniques.

This thesis is dedicated to my family for their love and support.

Acknowledgements

There are many people I would like to thank { this thesis could not be

completed without their help. I would like to start by thanking my advisors

William Cohen and Robert Frederking for their support, guidance, and free-

dom to work on this thesis. I would also like to thank my committee, Tom

Mitchell and Fernando Pereira, for all the generous comments and support

during my thesis. Furthermore, I would like to thank Eric Nyberg and Nico

Schlaefer for their e�orts during collaboration on the question answering

paper. I would also like to thank Teruko Mitamura for the guidance on

the development of the named entity translation system. Lastly, thanks to

everyone who have tested my online system and provided me feedback.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Research Contributions . 3

1.3 Thesis Organization . 5

2 Set Expander for Any Language 7

2.1 Introduction . 7

2.2 System Architecture . 9

2.3 The Extractor . 10

2.3.1 Semi-Structured Documents . 11

2.3.2 Identifying Wrappers for Unary Relations 11

2.3.3 Free-Text Wrappers . 16

2.4 The Ranker . 18

2.4.1 Analyzing the Problem . 18

2.4.2 Building a Graph . 18

2.4.3 Random Walk with Restart . 19

2.5 Evaluation . 21

2.5.1 Baseline System . 21

2.5.2 Alternative Rankers . 21

2.5.2.1 PageRank . 21

2.5.2.2 Bayesian Sets . 22

2.5.2.3 Wrapper Length . 23

iii

CONTENTS

2.5.3 Alternative Extractors . 24

2.5.4 Evaluation Datasets . 25

2.5.5 Evaluation Method . 25

2.5.6 Evaluation Results . 27

2.6 Comparison to Prior Work . 31

2.6.1 Talukdar et al., 2006 . 31

2.6.2 Ghahramani et al., 2005 . 32

2.7 Summary . 34

3 Noise Resistant SEAL (for List Question Answering) 35

3.1 Introduction . 35

3.2 Ephyra Question Answering System . 36

3.3 Proposed Approach . 36

3.3.1 Aggressive Fetcher . 37

3.3.2 Lenient Extractor . 37

3.3.3 Hinted Expander . 38

3.4 Experiments . 39

3.4.1 Experiment with Ephyra . 40

3.4.2 Experiment with Top QA Systems 43

3.5 Summary . 45

4 Iterative SEAL 47

4.1 Introduction . 47

4.2 Iterative SEAL . 48

4.2.1 Iterative Supervised Expansion 49

4.2.1.1 Fixed Seed Size . 49

4.2.1.2 Increasing Seed Size . 50

4.2.2 Bootstrapping . 51

4.2.2.1 Fixed Seed Size . 51

4.2.2.2 Increasing Seed Size . 52

4.3 Experimental Setting . 52

4.4 Experimental Results . 53

4.5 Summary . 61

iv

CONTENTS

5 Automatic Set Instance Acquisition 63

5.1 Introduction . 63

5.2 Related Work . 66

5.3 Proposed Approach . 67

5.3.1 Noisy Instance Provider . 67

5.3.2 Noisy Instance Expander . 70

5.3.3 Bootstrapper . 72

5.4 Experimental Results . 73

5.5 Comparison to Prior Work . 75

5.5.1 Kozareva et al., 2008 . 75

5.5.2 Pa�sca, 2007b . 76

5.5.3 Van Durme & Pa�sca, 2008 and Talukdar et al., 2008 78

5.5.4 Snow et al., 2006 . 79

5.6 Summary . 81

6 Bilingual SEAL 85

6.1 Introduction . 85

6.2 Proposed Approach . 85

6.3 Named Entity Translation . 87

6.4 Experiments . 89

6.4.1 Experimental Setting . 89

6.4.2 Experimental Results . 90

6.5 Summary . 93

7 Relational SEAL 95

7.1 Introduction . 95

7.2 Identifying Wrappers for Binary Relations 96

7.3 Experiments . 98

7.3.1 Experimental Setting . 98

7.3.2 Experimental Results . 99

7.4 Comparison to Prior Work . 101

7.5 Summary . 102

v

CONTENTS

8 Related Work 105

8.1 Semi-Structured Documents . 105

8.2 Unstructured Documents . 107

8.3 Combination of Both . 110

9 Conclusion and Future Work 111

9.1 Conclusion . 111

9.2 Future Work . 113

References 115

A The 36 Unary Datasets 121

B The 5 Binary Datasets 133

C List Questions for TREC 13-15 139

vi

List of Figures

2.1 Examples of SEAL's input and output. English instances are reality TV

shows, Chinese are popular Taiwanese food, and Japanese are famous

cartoon characters. 8

2.2 Flow chart of the SEAL system. 9

2.3 The context tries and the seed instance list constructed given the mock

document and the seeds: Ford, Nissan and Toyota. 14

2.4 Example graph built by Random Walk. Notice that every edge from

node x to y actually has an inverse relation edge from node y to x (e.g.,

mi is extracted by wi). 20

2.5 Performance (MAP) of alternative rankers on various number of web

pages using two seeds. 31

4.1 MAP of rankers using supervised expansion with �xed seed size (FSS). . 55

4.2 MAP of rankers using supervised expansion with increasing seed size (ISS). 55

4.3 MAP of rankers using bootstrapping with �xed seed size (FSS). 56

4.4 MAP of rankers using bootstrapping with increasing seed size (ISS). . . 56

4.5 MAP of Random Walk using various iterative methods. 57

4.6 MAP of Bayesian Sets using various iterative methods. 57

4.7 MAP of Wrapper Length using various iterative methods. 58

4.8 MAP of PageRank using various iterative methods. 58

4.9 MAP of Google Sets using various iterative methods. 60

5.1 Examples of ASIA's input and output. Input class for Chinese is \holi-

days" and for Japanese is \dramas". 64

5.2 Flow chart of the ASIA system. 65

vii

LIST OF FIGURES

5.3 Examples of snippets, excerpts, and chunks. 65

5.4 Hyponym patterns in English, Chinese, and Japanese. In each pattern,

<C> is a placeholder for the semantic class name and <I> is a placeholder

for a list of instances. 68

5.5 The 36 datasets and their semantic class names used as inputs to ASIA

in our experiments. 73

5.6 Real example inputs and outputs of ASIA in Japanese and Chinese.

From left to right, the semantic class names are \Dramas", \Anima-

tions", \Tainan Small Eats", and \Attractions". 84

6.1 An illustration of our proposed approach. 86

6.2 Examples of snippets, excerpts, and chunks. 87

6.3 Flow chart of the ANET system. 88

6.4 Performance of bilingual and monolingual bootstrapping in Chinese and

English. CBB and CMB are the Chinese results in bilingual and monolin-

gual bootstrapping respectively. EBB and EMB are the English results

in bilingual and monolingual bootstrapping respectively. 91

6.5 Performance of bilingual and monolingual bootstrapping in Japanese

and English. JBB and JMB are the Japanese results in bilingual and

monolingual bootstrapping respectively. 91

viii

List of Tables

2.1 Examples of wrappers constructed from web pages and their extracted

contents (candidate instances) given the seeds: Ford, Nissan, and Toyota. 12

2.2 Pseudo-code for constructing wrappers. 15

2.3 A portion of HTML source code from http://www.curryauto.com . . . 17

2.4 Wrappers induced from http://www.curryauto.com and their extracted

contents (candidate instances) given the seeds: Ford, Nissan, and Toyota. 17

2.5 All possible source node types and their relations with some target node

types. 19

2.6 Regular expressions illustrating character restrictions for our proposed

extractor (PE) and the four types of HTML-based wrappers (H1-H4). . 25

2.7 The 36 evaluation datasets; 12 in each of the following languages: En-

glish, Chinese and Japanese. 26

2.8 Statistics of the 36 evaluation datasets, which includes the number of

semantic classes, instances, and synonyms, as well as the average number

of instances per class and average number of synonyms per instance. . . 26

2.9 Performance (MAP) of Google Sets and various con�gurations of SEAL

using three seeds. 29

2.10 Performance (MAP) of Google Sets, our proposed extractor (PE), and

the four types of HTML-based wrappers (H1-H4) using 200 web pages

and only two seeds. 30

2.11 Set Comparison: Watch Brands . 32

2.12 Set Comparison: Children's Movies . 33

2.13 Set Comparison: NIPS Authors . 33

ix

http://www.curryauto.com
http://www.curryauto.com

LIST OF TABLES

3.1 Example queries and their quality given the seeds Boston, Seattle and

Carnegie-Mellon, where Carnegie-Mellon is assumed to be irrelevant. . . 37

3.2 Wrappers learned by SEAL's extractor when given the passage above

and the seeds: Boston, Seattle, and Carnegie-Mellon. 38

3.3 Mean average precision of Ephyra, its top four answers, and various

SEAL con�gurations, where LE is Lenient Extractor, AF is Aggressive

Fetcher, and HE is Hinted Expander. The last column shows the best-

con�gured SEAL's relative improvements over Ephyra. 41

3.4 Average F1 of Ephyra, its top four answers, and various SEAL con�g-

urations when using an optimal threshold for each question. The last

column shows the best-con�gured SEAL's relative improvements over

Ephyra. 41

3.5 Average F1 of Ephyra, the best-con�gured SEAL (SEAL+LE+AF+HE),

and the hybrid system, along with thresholds trained by 5-fold cross

validation. The last column shows Hybrid's relative improvements over

Ephyra. 42

3.6 Average F1 of the top QA systems, their top four answers, Google Sets,

the best-con�gured SEAL (SEAL+LE+AF+HE), the hybrid system,

and their relative improvements over the QA systems. 43

3.7 Example of SEAL being penalized for �nding correct answers (all are

correct except the last one). Answers found in the answer keys are

marked with \+". All four answers from \lccPA06" were used as seeds. 44

3.8 Example demonstrating SEAL's ability to handle noisy input seeds. All

four answers from \NUSCHUAQA1" were used as seeds. Again, SEAL

is penalized for �nding correct answers (all answers are correct). 44

4.1 MAP of set expansion using various rankers and various number of seeds

on our development set. Note that four seeds maximize the set expansion

performance. 48

4.2 Performance (MAP) averaged over all �ve rankers for each iterative

method. 54

4.3 Performance (MAP) of relative improvements (1st to 10th iteration) using

bootstrapping with increasing seed size (ISS). 54

x

LIST OF TABLES

4.4 Performance (MAP) of various rankers at 1st and 10th iteration using

bootstrapping with increasing seed size (ISS). 59

5.3 Performance (MAP) of various system con�gurations for each dataset,

where NP is the Noisy Instance Provider and BS is the Bootstrapper.

NE1 is the Noisy Instance Expander that implements the noise-resistant

expansion approach described in Section 3.3.2, and NE2 is a variant of

NE1. 74

5.4 Set instance extraction performance compared to Kozareva et al. We re-

port our precision for all semantic classes and at the same ranks reported

in their work. 76

5.5 Set instance extraction performance compared to Pasca. We report our

precision for all semantic classes and at the same ranks reported in his

work. 77

5.6 Precision at rank 100 for all three systems (i.e., Talukdar et al., Van

Durme & Pa�sca, and ASIA) on �ve semantic classes. 79

5.7 A comparison of number of (R)ight and (W)rong instances, precision,

and relative recall between Snow's Wordnet (+30k) and ASIA. 80

5.8 Real example inputs and outputs from ASIA in English. 83

6.1 Precisions of translation pairs generated 1) as by-products from the

bilingual bootstrapping, and 2) by directly translating the source words

in the by-product dictionaries using ANET to serve as baselines. . . . 90

6.2 Performance (MAP) of monolingual and bilingual bootstrapping in Chi-

nese and English at 1st and 5th iteration for each language, as well as

the relative improvement of bilingual bootstrapping over monolingual

bootstrapping at the 5th iteration. 92

6.3 Performance (MAP) of monolingual and bilingual bootstrapping in Japanese

and English at 1st and 5th iteration for each language, as well as the

relative improvement of bilingual bootstrapping over monolingual boot-

strapping at the 5th iteration. 92

xi

LIST OF TABLES

7.1 Regular expressions illustrating character restrictions for our proposed

relational extractor (RE) and the four types of HTML-based relational

wrappers (R1-R4). 99

7.2 The description and language of each instance in the �ve relational

datasets for evaluating Relational SEAL. 99

7.3 Performance of our proposed relational extractor (RE) and various types

of HTML-based relational wrappers (R1-R4) on the �ve relational datasets

after �rst iteration. 100

7.4 Performance of our proposed relational extractor (RE) and various types

of HTML-based relational wrappers (R1-R4) on the �ve relational datasets

after tenth iteration. 100

xii

Chapter 1

Introduction

1.1 Background

Automatic acquisition of class instances (e.g., president names, disease names, maga-

zine names, and movie names) has been a well-studied problem. Comprehensive and

accurate class-instance information has been proven useful in many applications, includ-

ing relation learning from the web [5, 15, 31], feature generation for concept-learning

[9] and co-reference resolution [23], dictionary construction for named entity recogni-

tion [2, 11, 25, 39, 41], query re�nement in web search [26], enhancement of list-type

answers [50] and document retrieval [32] for question answering, extensions to Word-

Net [38, 48], collaborative �ltering [10], and similarity computation between attribute

values in autonomous databases [52].

Class-instance information is contained in many textual documents, whether they

are structured, semi-structured, or unstructured. Structured documents are text that

conforms to �xed pre-determined schema; they are often found in databases. Semi-

structured documents are texts that do not conform with the formal structure of tables

and data models associated with databases but contain tags or other markers to sep-

arate semantic elements and hierarchies of records and �elds within the text, such as

HTML, XML, tab-separated, and comma-separated text. Unstructured documents (or

free text) are text that have no markers and structure at all; such as newswire articles,

conference publications, forum postings, web blogs, search engine query logs, and web

pages stripped of HTML tags. Unlike structured documents, which often exist only

1

1. INTRODUCTION

in proprietary databases, many semi-structured documents and free text are readily-

available on the web.

As a result, most research on class instance acquisition has been conducted using

evidence from either semi-structured documents, free text, or a combination of both

[8, 15, 42]. There are systems that utilizes semi-structured documents such as Wikipedia

[38, 40, 54] and HTML web pages [6, 15, 25, 42]. There are many more systems

that utilize unstructured free text such as Grolier's American Academic Encyclopedia

[16, 17], British National Corpus [51], EachMovie corpus [16], the NIPS authors corpus

[16], newswire articles from the MUC-4 [34], TREC-5 [38], and TREC-9 corpora [32],

retrieved text snippets from search engines [20], web search query logs [27, 28], and the

most popular repository { web pages stripped of HTML tags [8, 14, 15, 26, 29, 34, 38,

42].

Over the past few years, many research systems have been developed to extract

class instances with various inputs. Some require only semantic class names (e.g.,

car makers) [15, 32], some require only example instances (e.g., Ford, Nissan, Toyota)

[25, 27, 28, 34], and many require both [20, 38, 42, 51]. There are also systems that

require no inputs at all but a handful of hand-crafted patterns [14, 17, 26]. However, all

the abovementioned research systems have been shown to work only with documents

written in English and not other languages; this is because they all rely on either

capitalization, English part-of-speech taggers, English named entity recognizers, and/or

English parsers.

For those research systems that utilize semi-structured documents, all of their meth-

ods focus only on the HTML structure and handle only HTML web pages (by using

HTML renderers or parsers), which dramatically reduces their extraction recall, since

they are ignoring many other semi-structured documents on the web such as XML and

comma-separated documents, and also ignoring many useful hidden patterns occurring

in web pages such as in URLs, �le names, and HTML attributes.

2

1.2 Research Contributions

1.2 Research Contributions

The World Wide Web is a vast and readily-available repository of factual information;

such as semantic classes (e.g., fruits), their instances (e.g., orange, banana), and re-

lations between them. There are many semi-structured documents on the web that

provide evidence about these facts. The thesis of this work is that many of these facts

can be revealed using tools built on set expansion. More generally, we believe that

statistics, aggregation, and simple analysis of the documents are enough to discover

frequent common classes in not only English, but other languages as well.

In this thesis, we formulate the discovery of semantic classes as set expansion, in

which the user issues a query consisting of a small number of example instances x1, x2,

. . . , xk (e.g., orange, banana) where each xi is a member of some target set S (e.g.,

fruits). The answer to the query is a listing of other probable elements of S (e.g., apple,

strawberry, and cherry). Google Sets1 [44] is a well-known example of a web-based set

expansion system.

Although Google Sets has been used for a number of purposes in the research

community, including deriving features for named-entity recognition [37] and evaluation

of question answering systems [33], unfortunately it is a proprietary system that may

be changed at any time, so research results based on Google Sets cannot be reliably

replicated. Hence, one contribution of this thesis is an open-source and documented

version of Google Sets.

In this thesis, we developed a set expansion system that is based on our novel graph-

based approach which exploits semi-structured characteristics of web documents at the

character-level [46]. Through this system, we illustrate that semi-structured documents

provide more evidence and information than free text for discovering class instances.

Over the past few years, free text has remained as a popular common type of corpora

for many instance extraction systems [14, 20, 28, 38, 41, 42]; however, we show that our

approach achieves higher precision and recall than those free-text systems by utilizing

semi-structured documents.

Unlike free text, semi-structured documents do not require language-speci�c pre-

processing (e.g., parsing, tokenizing, sentences splitting, and part-of-speech tagging) to

1http://labs.google.com/sets

3

http://labs.google.com/sets

1. INTRODUCTION

determine noun phrase boundaries; hence, we are able to make our approach indepen-

dent of human language (e.g., English) of the documents. Since our approach utilizes

character-level patterns, it is also independent of mark-up language (e.g., HTML) of

the documents. We show that set expansion at the character-level performs better than

at the HTML-level on semi-structured documents [49].

In addition, we illustrate that our set expansion system can be utilized as a tool

for improving the accuracy of list-type answers from question answering systems [50]

and for extending WordNet by using semantic class names as input [48]. However,

when our system is being utilized as a tool by other automated systems, the instances

input to our system are often noisy (i.e., containing mixture of relevant and irrelevant

instances). To overcome this problem, we developed novel techniques for performing

set expansion on noisy instances and show dramatic improvement in the quality of the

expanded set, or expansion quality, over the noisy instances [48, 50].

Furthermore, we show di�erent techniques and strategies for enhancing the expan-

sion quality. We present supervised and unsupervised strategies to improve expansion

quality by expanding instances iteratively [47]. We show that our unsupervised itera-

tive (bootstrapping) approach is e�ective, and that our proposed graph-based ranking

scheme is more robust to noisy instances than other state-of-the-art ranking schemes.

We also present a novel technique to improve expansion quality by exploiting redun-

dant information of classes in di�erent languages. This is achieved by bootstrapping

instances in two languages alternately, of which the instances in di�erent languages are

bridged together by a simple named entity translator.

Our set expansion approach was initially designed to extract only unary relations

(e.g., x is a CEO). In this thesis, we present a variation of our approach to perform set

expansion on binary relations (e.g., x is the CEO of company y). An example of input

instances to our (binary) relational set expansion system is \Bill Gates /Microsoft" and

\Larry Page / Google", of which our system produces other instance pairs of the same

relation such as \Larry Ellison / Oracle". We show that our relational set expansion

approach at character-level is e�ective and also performs better than HTML-based

methods [49].

4

1.3 Thesis Organization

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents our set expansion sys-

tem that uses our proposed character-level instance extraction and graph-based ranking

approach. Chapter 3 presents our noise-resistant set expansion approach for expanding

noisy instances, and shows that the approach improves question answering systems on

list-type questions. Chapter 4 illustrates several iterative strategies to handle arbitrary

number of input instances, and to improve expansion quality by bootstrapping. Chap-

ter 5 describes an instance extraction system which takes as input a semantic class name

and automatically outputs instances of the input class. Chapter 6 explains a technique

for improving expansion quality by expanding instances in two languages alternately.

Chapter 7 illustrates a relational set expansion approach that expands instance pairs

with the same binary relation. Finally, related work is discussed in Chapter 8, and

conclusions and future directions are presented in Chapter 9.

5

1. INTRODUCTION

6

Chapter 2

Set Expander for Any Language

2.1 Introduction

Have you ever wanted to �nd out the names of reality TV shows similar to the ones

you regularly watch? In this chapter, we describe a set expansion system called the

Set Expander for Any Language1 (SEAL) that expands a given partial set of objects

into a more complete set. It takes as inputs a few example seeds (e.g., Survivor) of

a user-desired class (e.g., reality TV shows) and outputs more examples of that class

(e.g., The Apprentice). More speci�cally, SEAL accepts input elements (seeds) of some

target set S and automatically �nds other probable elements of S in semi-structured

documents such as web pages. SEAL also works on unstructured text (as described

later in Section 2.3.3), but its extraction mechanism bene�ts from structuring elements

(e.g., HTML tags). Unlike other published research work [15], SEAL focuses on �nding

small closed sets of instances (e.g., Disney movies) rather than large and more open

sets (e.g., scientists). Examples of SEAL's input and output are shown in Figure 2.1.

As we will detail below, SEAL works by automatically �nding semi-structured web

pages that contain \lists" of candidate items, and then aggregating these \lists" so that

the \most promising" items are ranked higher in the �nal output. SEAL's output is

a ranked list because it is extremely di�cult for machines to perfectly understand the

information needs of users, and thus, to determine a perfect cut-o� point in the ranked

list. Unlike earlier work, the algorithm implemented in SEAL is simple enough to be

easily described and replicated. It is independent of the human language (e.g., English,

1http://rcwang.com/seal

7

http://rcwang.com/seal

2. SET EXPANDER FOR ANY LANGUAGE

Figure 2.1: Examples of SEAL's input and output. English instances are reality TV

shows, Chinese are popular Taiwanese food, and Japanese are famous cartoon characters.

Chinese, Japanese) from which the seeds are taken, and is also independent of the

markup language (e.g., HTML, XML, CSV) used to annotate the semi-structured doc-

uments. Extensive experiments have been conducted with SEAL, based on 36 bench-

mark problems from three languages, each of which consists of a moderate-sized set of

instances that is semantically well-de�ned (e.g., constellations, major-league baseball

teams). With randomly constructed three-seed queries from these domains, SEAL ob-

tains a mean average precision (MAP) of more than 94% for English-language queries,

more than 93% for Japanese queries, and nearly 95% for Chinese queries by using three

seeds. MAP performance is more than double that of Google Sets.

In more detail, SEAL is based on two separate research contributions. To �nd

\lists" of items on semi-structured pages, SEAL uses a novel technique to automatically

construct wrappers (i.e., page-speci�c extraction rules) for each page that contains the

seeds. Every wrapper is de�ned by two character strings, which specify the left-context

and right-context necessary for an instance to be extracted from a page. These strings

are chosen to be maximally-long contexts that bracket at least one occurrence of every

seed string on a page. The use of character-level wrapper de�nitions means that SEAL

is completely language-independent: it is not even necessary to be able to tokenize the

target language.

Most of the wrappers that SEAL discovers will be \noisy" - i.e., they will extract

some instances not in the user's target set. Thus, it is important to rank instances,

so that the instances most likely to be in the target set are ranked higher. To rank

instances, SEAL uses another novel approach: a graph is built containing all seeds,

all constructed wrappers, and all extracted candidate instances. Candidates are then

8

2.2 System Architecture

Figure 2.2: Flow chart of the SEAL system.

ranked by \similarity" to the seed instances, according to a certain measure of similarity

in the graph. The similarity metric is de�ned by aggregating the results of many

randomly-selected walks through the graph, where each walk is de�ned by a particular

random process.

Information is organized in many di�erent ways on the web. For instances that

belong to the same class, we observed that they are frequently being placed within

the same \list" on web pages. By extracting candidate instances that share the same

contexts as the seeds, we are able to �nd those instances associated with the seeds by

web users. We consider these instances to be similar to the seeds. We also observed

that the more often an instance appears in the same list as the seeds, the more probable

that the instance belongs to the same class as the seeds. By constructing a graph that

models the relations between instances, wrappers, and documents, we are able to rank

the instances based on how commonly they are being associated with the seeds, or how

similar they are to the seeds.

In this chapter, Section 2.2 illustrates the architecture of SEAL. Section 2.3 de-

scribes how wrappers are constructed. We explain our ranking scheme based on graph

walk in Section 2.4. Section 2.5 presents our evaluation methods and results, and we

conduct qualitative comparisons to some previous work in Section 2.6. We summarize

this chapter in the last section Section 2.7.

2.2 System Architecture

SEAL is comprised of three major components: the Fetcher, the Extractor, and the

Ranker. The Fetcher is responsible for fetching web documents, and the URLs of the

9

2. SET EXPANDER FOR ANY LANGUAGE

documents come from top results retrieved from Google using the concatenation of all

seeds as the query (each seed is quoted, to require that it occur as an exact phrase).

This ensures that every fetched web page contains all seeds.

The Extractor then learns and automatically constructs \wrappers" (i.e. page-

speci�c extraction rules) for each page that contains the seeds. Every wrapper comprises

two character strings that specify the left and right contexts necessary for extracting

candidate instances. These contextual strings are maximally-long contexts that bracket

at least one occurrence of every seed string on a page. All other candidate instances

bracketed by these contextual strings derived from a particular page are extracted from

the same page. The Extractor often extracts most of its candidate instances from semi-

structured data pages found on the web. The character-level heuristics used to �nd

wrappers often �nd candidate instances in parts of a web page that are not even easily

visible to the end user (e.g., in pull-down menus of an HTML form).

After the instances are extracted, the Ranker constructs a graph that models all the

relations between documents, wrappers, and candidate instances. The Ranker performs

Random Walk with Restart [43] on this graph (where the initial \restart" set is the set

of seeds) until all node weights converge, and then ranks candidate instances globally

based on the weights computed in the graph walk; thus instances are weighted higher

if they are connected to many seed nodes by many short, low fan-out paths. Figure 2.2

shows the architecture of SEAL. In this section, we describe the Extractor and Ranker

in detail.

2.3 The Extractor

The extractor must learn wrappers instantly and automatically from only a few training

examples (the seeds). In this section, we explain the semi-structured characteristics

of web documents that SEAL requires, and describe an unsupervised approach for

automatic construction of wrappers. The wrappers that are constructed are page-

dependent - i.e., they are intended to be applied only to a single web page. However,

the approach that we use to learn wrappers is both domain- and language- independent.

10

2.3 The Extractor

2.3.1 Semi-Structured Documents

We assume information in semi-structured web documents will be formatted quite

di�erently on di�erent documents, but fairly consistently within a single document.

For example, each movie name in a HTML web page containing a list of Disney movies

might be embedded with \<tr><td>" (to the left) and \</td></tr>" (to the right)

in one page, and \Disney:" and \" in another. This observation suggests

that items belonging to the same class (i.e. movies) will be linked by appearing in

similar contexts (formatting structures) on the same document. This occurs not only

in HTML documents, but also in other semi-structured documents such as XML (.xml),

comma-separated (.csv), tab-separated (.tsv), latex (.tex), etc.

This characteristic of semi-structured web documents can be exploited for expand-

ing some set of given seeds. Suppose initially, a couple of seeds are provided from a

reliable source (i.e., a human), and documents that contain all of these seeds are re-

trieved. Then it is very likely that each of these documents will contain other instances

that are embedded in the same contexts as the seeds, and also belong to the same

semantic class as the seeds. The section below explains in detail the algorithm for

constructing wrappers utilizing the semi-structured characteristics of semi-structured

documents.

2.3.2 Identifying Wrappers for Unary Relations

When SEAL performs set expansion, it accepts a small number of seeds from the user

(e.g., \Ford", \Nissan", and \Toyota"). It then uses a web search engine to retrieve

some documents that contain these instances, and then analyzes these documents to

�nd candidate wrappers (i.e., regular structures on a page that contain the seed in-

stances). Strings that are extracted by a candidate wrapper (but are not equivalent to

any seed) are called candidate instances. SEAL then statistically ranks the candidate

instances (and wrappers), using the techniques outlined below, and outputs a ranked

list of instances to the user.

One key step in this process is identifying candidate wrappers. In SEAL, a candidate

wrapper is de�ned by a pair of left and right character strings, ` and r. A wrapper

\extracts" items from a particular document by locating all strings in the document

that are bracketed by the wrapper's left and right strings, but do not contain either of

11

2. SET EXPANDER FOR ANY LANGUAGE

URL: http://www.shopcarparts.com/

Wrapper: .html" CLASS="shopcp">[...] Parts

Content: acura, audi, bmw, buick, cadillac, chevrolet, chevy, chrysler, daewoo, daihatsu,

dodge, eagle, ford, ...

URL: http://www.allautoreviews.com/

Wrapper:
 <a href="auto_reviews/[...]/

Content: acura, audi, bmw, buick, cadillac, chevrolet, chrysler, dodge, ford, gmc, honda,

hyundai, in�niti, isuzu, ...

URL: http://www.hertrichs.com/

Wrapper: <li class="franchise [...]"> <h4>

Content: buick, chevrolet, chrysler, dodge, ford, gmc, isuzu, jeep, lincoln, mazda,

mercury, nissan, pontiac, scion, ...

URL: http://www.metacafe.com/watch/1872759/2009_nissan_maxima_performance/

Wrapper: videos">[...] <a href="/tags/

Content: avalon, cars, carscom, driving, ford, maxima, nissan, performance, speed, toyota

URL: http://www.worldstyling.com/

Wrapper: '>[...] Accessories</option><option value='

Content: chevy, ford, isuzu, mitsubishi, nissan, pickup, stainless steel, suv, toyota

Table 2.1: Examples of wrappers constructed from web pages and their extracted contents

(candidate instances) given the seeds: Ford, Nissan, and Toyota.

the two strings. In SEAL, wrappers are always learned from, and applied to, a single

document.

Table 2.1 illustrates some candidate wrappers learned by SEAL. (Here, a wrapper

is written as `[...]r, with the [...] to be �lled by an extracted string.) Notice that

the instances extracted by wrappers can and do appear in surprising places, such as

embedded in URLs or in HTML tag attributes. Our experience with these character-

based wrappers lead us to conjecture that existing heuristics for identifying structure

in HTML are fundamentally limited, in that many potentially useful structures will

not be identi�ed by analyzing HTML structure only. We also conjecture that the

less constrained character-level methods will produce more candidate wrappers than

HTML-based techniques, and a larger number of candidate wrappers will lead to better

performance overall. We investigated our conjectures by using page analysis techniques

constrained to identify only HTML-related wrappers in Section 2.5 and present exper-

imental results in Table 2.10.

SEAL uses the following rule to �nd wrappers. Each candidate wrapper `; r is a

12

http://www.shopcarparts.com/
http://www.allautoreviews.com/
http://www.hertrichs.com/
http://www.metacafe.com/watch/1872759/2009_nissan_maxima_performance/
http://www.worldstyling.com/

2.3 The Extractor

maximally long pair of strings that bracket at least one occurrence of every seed in a

document: in other words, for each pair `; r, the set of strings C extracted by `; r has

the properties that:

1. For every seed s, there exists some c 2 C that is equivalent to s; and

2. There are no strings `0; r0 that satisfy property (1) above such that ` is a proper

su�x of `0 and r is a proper pre�x of r0.

SEAL's wrappers can be found quite e�ciently using the algorithm described in

Table 2.2. As an example, below shows a mock document, written in an unknown mark-

up language, that has the seeds: Ford, Nissan, and Toyota located (and underlined).

There are two other car makers hidden inside this document. In this section, we show

how to automatically construct wrappers that reveal them.

GtpKxHNissanxjHJglekuDialcLBxKHFordxkrpW

NaCMwAAHOForduohdEXocUvaGKxHAcuraxjHjnOx

oToyotazxKHAudixkrOyQKxHToyotaxjHCRdmLxa

puRAPprtqOVKxHFordxjHaJAScRFrlaFordofwNL

WxKHToyotaxkrHxQKlacXlGEKtxKHNissanxkrEq

Given a set of seeds and a semi-structured document, the wrapper construction

algorithm starts by locating all strings equivalent to a seed in the document; these

strings are called seed instances below. (In SEAL, we always use case-insensitive string

matching, so a string is \equivalent to" any case variant of itself.) The algorithm then

inserts all the instances into a list and assigns a unique id to each of them (the id of

an instance is its position in the list.)

For every seed instance in the document, its immediate left context (starting from

the �rst character of the document) and right context (ending at the last character of

the document) are extracted and inserted into a left-context trie and a right-context

trie respectively, where the left context is inserted in reversed character order. Here, we

implemented a compact trie called a Patricia trie [24], which is a specialized set data

structure based on the trie that is used to store a set of strings. Unlike a regular trie,

the edges of a Patricia trie are labelled with sequences of characters rather than with

single characters. Every node in the left-context trie maintains a list of ids for keeping

track of the seed instances that follow the string associated with that node. Same thing

13

2. SET EXPANDER FOR ANY LANGUAGE

Figure 2.3: The context tries and the seed instance list constructed given the mock

document and the seeds: Ford, Nissan and Toyota.

applies to the right-context trie symmetrically. Figure 2.3 shows the two context tries

and the list of seed instances when provided the mock document with the seeds: Ford,

Nissan, and Toyota.

Provided that the left and right context tries are populated with all the contextual

strings of every seed instance, the algorithm then �nds maximally long contextual

strings that bracket at least one seed instance of every seed. The pseudo-code for

�nding these strings for building wrappers is illustrated in Table 2.2, where Seeds

is the set of input seeds and ` is the minimum length of the strings. We observed

that usually higher values of ` produce higher precision but lower recall. This is an

interesting parameter that is worth exploring, but for this thesis, we use a value of one

throughout the experiments. The basic idea behind the pseudo-code is to �rst �nd all

the longest possible strings from one trie given some constraints, then for every such

string s, �nd the longest possible string s0 from another trie such that s and s0 bracket

at least one occurrence of every given seed in a document.

The wrappers constructed as well as the items extracted given the mock document

and the example seeds are shown below. Notice that Audi and Acura are discovered.

Wrapper: xKH[...]xkr

Content: Audi, Ford, Nissan, Toyota

Wrapper: KxH[...]xjH

Content: Acura, Ford, Nissan, Toyota

14

2.3 The Extractor

Wrappers MakeWrappers(Trie `, Trie r)

Return Wraps(l; r) [Wraps(r; l)

Wrappers Wraps(Trie t1, Trie t2)

For each n1 2 TopNodes(t1, `)

For each n2 2 BottomNodes(t2, n1)

For each n1 2 BottomNodes(t1, n2)

Construct a new Wrapper(Text(n1), Text(n2))

Return a union of all wrappers constructed

Nodes BottomNodes(Trie t1, Node n
0)

Find node n 2 t1 such that:

(1) NumCommonSeeds(n, n0) == jSeedsj, and

(2) All children nodes of n (if exist) fail on (1)

Return a union of all nodes found

Nodes TopNodes(Trie t, int `)

Find node n 2 t such that:

(1) Text(n).length � `, and

(2) Parent node of n (if exist) fails on (1)

Return a union of all nodes found

String Text(Node n)

Return the textual string represented by the

path from root to n in the trie containing n

Integer NumCommonSeeds(Node n1, Node n2)

For each index i 2 Intersect(n1, n2):

Find the seed at index i of seed instance list

Return the size of the union of all seeds found

Integers Intersect(Node n1, Node n2)

Return n1:indexes \ n2:indexes

Table 2.2: Pseudo-code for constructing wrappers.

15

2. SET EXPANDER FOR ANY LANGUAGE

Table 2.1 shows real examples of wrappers constructed from some randomly selected

web pages given the seeds: Ford, Nissan, and Toyota. Examining more closely at one

particular web page, Table 2.3 shows a portion of the HTML source code of the web

page from http://www.curryauto.com with the seeds underlined, and Table 2.4 shows

some wrappers constructed as well as the candidate instances they extract from the

page. We have also observed instances extracted from plain text (.txt), comma/tab-

separated text (.csv/.tsv), latex (.tex), and even Word documents (.doc) for which the

wrappers have binary character strings. These observations support our claim that the

algorithm is independent of mark-up language. In our experimental results, we will

show that it is independent of human language as well.

2.3.3 Free-Text Wrappers

Unstructured documents (or free text) are text that have no markers and structure

at all; such as newswire articles, conference publications, forum postings, web blogs,

search engine query logs, and web pages stripped of HTML tags. Although our extrac-

tion mechanism bene�ts from structuring elements (e.g., HTML tags), we have often

observed that the contexts in our constructed wrappers contain only free text as well,

and most importantly, these wrappers extracted many relevant instances. Below, we

show some examples of free-text wrappers constructed by our approach given Ford,

Nissan, and Toyota as seeds.

\Used [...] Van Pricing"

\Used [...] Engines"

\Bell Road [...] "

\Alaska [...] dealership"

\www.sunnyking[...].com""

\engine [...] used engines"

\accessories, [...] parts"

\is better [...] or"

We estimated that these free-text wrappers consist of 10-20% of all wrappers con-

structed by our proposed approach. This observation shows that there are meaningful

patterns hidden in web pages that are usually being ignored by systems that utilize only

16

http://www.curryauto.com

2.3 The Extractor

<li class="ford">

<li class="last">

Curry Ford...

<li class="honda">

Curry Honda Atlanta...

Curry Honda...

<li class="last">

Curry Honda Yorktown...

<li class="acura">

<li class="last">

Curry Acura...

<li class="nissan">

<li class="last">

Curry Nissan...

<li class="toyota">

<li class="last">

Curry Toyota...

Table 2.3: A portion of HTML source code from http://www.curryauto.com

Wrapper: \n<li class="[...]"><a href="http://www.

Content: ford, honda, acura, kia, toyota, scion, nissan, buick, pontiac

Wrapper: /">\n<img src="/common/logos/[...]/logo-horiz-rgb-lg-dkbg.gif" alt="

Content: chevrolet, ford, kia, toyota, scion, nissan, pontiac, cadillac, hyundai

Wrapper: Curry [...]

Content: chevrolet, ford, honda atlanta, honda, honda yorktown, acura, subaru chicopee,

subaru, kia, toyota, scion, nissan, buick, pontiac, cadillac

Table 2.4: Wrappers induced from http://www.curryauto.com and their extracted con-

tents (candidate instances) given the seeds: Ford, Nissan, and Toyota.

17

http://www.curryauto.com
http://www.curryauto.com

2. SET EXPANDER FOR ANY LANGUAGE

HTML tags on web pages [6, 15, 25, 42]. In addition, it also shows that our approach

is capable of constructing wrappers from unstructured documents as well.

2.4 The Ranker

The set of candidates extracted by wrappers may contain noisy instances (i.e., instances

that are rarely associated with the seeds by popular consensus.) For example, Honda

Atlanta and Honda Yorktown extracted by the third wrapper in Table 2.4 are such

instances; these are unlikely to be members of the user's target set. Since it is extremely

di�cult for machines to perfectly understand the information needs of users, we choose

to rank the candidate instances in the set presented to the users. In this section, we

�rst analyze the problem of �nding similarity between seeds and candidate instances,

then we propose a graph walk method for ranking those instances.

2.4.1 Analyzing the Problem

In order to determine the similarity between candidate instances and seeds (or the

likelihood that they all belong to the same class based on contextual information), we

need to �rst understand how they are related globally. We know that seeds were used

as a query to �nd documents online, and the same instance can be extracted by more

than one wrapper. Also, we have observed that noisy instances are usually extracted

less frequently than non-noisy instances. Intuitively, the more non-noisy instances

extracted by a wrapper, the better quality the wrapper (and vice versa), and the more

high-quality wrappers derived from a document, the better quality the document (and

vice versa). In order to model these complex relations, we will use a graph which

encapsulates the relations between all objects of interest - web documents, wrappers,

and candidate instances. Similarity in the graph will then be used to rank candidate

instances.

2.4.2 Building a Graph

A graph G consists of a set of nodes and a set of labeled directed edges. Figure 2.4

shows an example graph where each node di represents a document, wi a wrapper, and

mi a candidate instance. A directed edge connects a node di to a wi if di contains wi,

a wi to a mi if wi extracts mi, and a di to a mi if di contains mi. Although not shown

18

2.4 The Ranker

Source Type Edge Relation Target Type

document contains wrapper

document contains instance

wrapper extracts instance

wrapper is contained by document

instance is contained by document

instance is extracted by wrapper

Table 2.5: All possible source node types and their relations with some target node types.

in the �gure, every edge from node x to y actually has an inverse relation edge from

node y to x (e.g., mi is extracted by wi) to ensure that the graph is cyclic. Table 2.5

shows all possible source node types and their relations with some target node types.

In order to explain the random walk equations in detail, we will use letters such as

x, y, and z to denote nodes, and x
r
�! y to denote an edge from x to y with labeled

relation r. Each node represents an object (document, wrapper, or instance), and each

edge x
r
�! y asserts that a binary relation r(x; y) holds.

2.4.3 Random Walk with Restart

We want to �nd candidate instance nodes that are similar to the seed nodes. We de�ne

the similarity between two nodes by random walk with restart [43]. The general idea,

however, is that nodes should be weighted higher if they are connected to many other

highly weighted (important) nodes. In this algorithm, to walk away from a source node

x, one �rst chooses an edge relation r; then given r, one picks a target node y such

that x
r
�! y. When given a source node x, we assume that the probability of picking

an edge relation r is uniformly distributed among the set of all r, where there exist a

target node y such that x
r
�! y. More speci�cally,

P (rjx) =
1

jr : 9y x
r
�! yj

We also assume that once an edge relation r is chosen, a target node y is picked

uniformly from the set of all y such that x
r
�! y. More speci�cally,

P (yjr; x) =
1

jy : x
r
�! yj

19

2. SET EXPANDER FOR ANY LANGUAGE

Figure 2.4: Example graph built by Random Walk. Notice that every edge from node x

to y actually has an inverse relation edge from node y to x (e.g., mi is extracted by wi).

In order to perform random walk, we will build a transition matrix M where each

entry at (x; y) represents the probability of traveling one step from a source node x to

a target node y, or more speci�cally,

Mxy =
X
r

P (rjx)P (yjr; x)

We will also de�ne a state vector ~vt which represents the probability at each node

after iterating through the entire graph t times, where one iteration means to walk one

step away from every node. The state vector at t+ 1 iteration is de�ned as:

~vt+1 = �~v0 + (1� �)M~vt

Since we want to start our walk from the seeds, we initialize v0 to have probabilities

uniformly distributed over the seed nodes. In each step of our walk, there is a small

probability � of teleporting back to the seed nodes, which prevents us from walking

too far away from the seeds. We iterate our graph until the state vector converges, and

rank the candidate instances by their probabilities in the �nal state vector. The �nal

expanded set contains all candidate instances in the graph, ranked globally by their

weights in the graph. In the experiments below, we use a constant � of 0.01, which

shows good performance in our development set. New statistics can be accumulated

easily by adding additional nodes and edges to the existing graph.

20

2.5 Evaluation

2.5 Evaluation

In this section, we describe a baseline system, alternative methods we attempted to

use, evaluation datasets, evaluation methods, and evaluation results.

2.5.1 Baseline System

We choose Google Sets1 [44] as our baseline system, mainly because it is a well-known

example of a web-based set expansion system that is publicly available. Google Sets

has been used for numerous purposes, including deriving features for named entity

recognition [37] and evaluation of question answering systems [33]. However, it is a

proprietary method that may be changed at any time, so research results based on

Google Sets cannot be reliably replicated.

Google Sets contains a list identi�er, a list classi�er and a list processor. The list

identi�er identi�es existing lists by a HTML tag (e.g., , , <DL>, <H1>-<H6>

tags), by items placed in a table, items separated by commas or semicolons, or items

separated by tabs. The list classi�er generates an on-topic model and determine con-

�dence scores that the existing lists were generated using the on-topic model. The list

processor forms a list from the items in the existing lists and the determined con�dence

scores associated with the existing lists.

2.5.2 Alternative Rankers

We conducted ablation studies using several alternative rankers for set expansion. In

this section, we present three alternative rankers used in our experiments, namely

PageRank (PR), Bayesian Sets (BS), and Wrapper Length (WL). A fourth ranker

used in our experiments is called Wrapper Frequency (WF), which simply ranks each

candidate instance i by the number of wrappers that extract i.

2.5.2.1 PageRank

Page et al. [30] proposed the PageRank algorithm that is being used extensively at

Google to score web pages. Although it was designed to rank hyperlinked set of doc-

uments (i.e., web pages), many research have shown that it can also be used to rank

other things [45, 53]. PageRank measures relative importance of each node within a

1http://labs.google.com/sets

21

http://labs.google.com/sets

2. SET EXPANDER FOR ANY LANGUAGE

graph; it interprets a link from node A to node B as a vote, by node A, for node

B. However, the weights of the votes are not the same. Votes cast by nodes that are

themselves important weigh more heavily and help to make other nodes important.

The graph that we use for PageRank is identical to the one shown in Figure 2.4,

except that edges are undirected and they do not have relations. In order to compute

PageRank scores, we will also build a transition matrix M where each entry at (x; y) is

the probability of traveling one step from a source node x to a target node y, or more

precisely,

Mxy =
1

jy : x �! yj

We also de�ne a state vector ~vt, and the state vector at t+ 1 iteration is de�ned as:

~vt+1 = �~u+ (1� �)M~vt

where ~u is a teleport vector with probabilities uniformly distributed over all nodes in

the graph. Unlike random walk, each node in PageRank has an uniform probability

� of teleporting to an arbitrary node in the graph; thus, v0 is not relevant. Page et

al. [30] uses a � of 0.15, which is also what we use in the experiments. We iterate the

graph until the state vector converges, and rank the candidate instances based on their

�nal node weights. Note that new statistics can be easily accumulated by attaching

new nodes and edges to the existing graph.

2.5.2.2 Bayesian Sets

Ghahramani and Heller [16] proposed a ranking algorithm called the Bayesian Sets,

which formulates the set expansion problem as a Bayesian inference problem. It uses

a model-based concept of a class and ranks items using a score which evaluates the

marginal probability that each item belongs to the class containing the seed items.

More speci�cally, having observed a set of seed items S belonging to some concept,

they measure the probability that an item i also belongs with S by p(ijS). However,

ranking items simply by this probability is not sensible because some items may be

more probable than others, regardless of S. To overcome this problem, they compute

the ratio:

score(i) =
p(ijS)

p(i)
=

p(i; S)

p(i)p(S)

22

2.5 Evaluation

which can be interpreted as the ratio of the joint probability of observing i and S, to

the probability of independently observing i and S. In order to compute the above

equation, they assume that the data points in the cluster all come independently and

identically distributed from a simple parameterized statistical model: p(ij�). They

assume each item i has an independent Bernoulli distribution, and they introduce two

hyperparameters � and � for the Beta distribution: p(�j�; �), which is the conjugate

prior for the parameters of a Bernoulli distribution. For all the assumptions they made

above, they show that there exists a closed-form solution.

We used Bayesian Sets by constructing one large two-dimensional feature table

where each column represents a particular feature, each row represents a particular

extracted item, and each entry (j; k) in the table indicates whether item ik possesses

the feature fj . We incorporate two important features: document containment and

wrapper extraction. For example, if an item is contained by a document dj or was

extracted by a wrapper wj , then entry (j; k) would be 1; otherwise 0. We tried using

either one of the features alone on our development set, but the results are worse. For

an extracted item ik, we calculate its score using the closed-form solution described in

their work:

log score(ik) = C+
X

j:(j;k)=1

�
log(�j+nj)� log(cmj)� log(�j+N�nj)+log(c(1�mj))

�

where C is some constant, mj is the mean value of column j, nj is the number of seeds

contained by dj or extracted by wj , N is the total number of seeds, and c is a parameter

which is set to 2, as also done by Ghahramani and Heller [16]. The basic concept is that

an item will have a higher score if it is a) extracted by many wrappers that extract few

items and b) extracted from many documents that contain few extracted items. Note

that new statistics can be accumulated with the existing ones simply by appending new

rows and columns to the feature table.

2.5.2.3 Wrapper Length

SEAL de�nes a wrapper, which extracts item i, as the maximally-long contextual

strings that i has in common with the input seeds in a document. We have observed

that the longer the common left and right contextual strings, the more likely that i is

correlated with the seeds in that document. Therefore, we propose a simple, fast but

ad hoc ranking algorithm called Wrapper Length as detailed below:

23

2. SET EXPANDER FOR ANY LANGUAGE

log score(i) =
X

j extracts i

log(length(wj))

log(length(dj))

where wj is the j
th wrapper composed of a pair of left and right contextual strings, dj

is the document of which wj is derived from, and the function length(s) returns the

character length of s (i.e., the total number of characters in a document or in the pair

of strings of a wrapper). This heuristic is based on the assumption that an item should

have a high score if it is extracted by many long wrappers. In this approach, new

statistics can be accumulated simply by summing up the quotient of the log of wrapper

and document lengths for every new item, and the memory size needed to store these

statistics is only proportional to the number of items.

2.5.3 Alternative Extractors

We also conducted ablation studies using several alternative extractors for set expan-

sion. In this section, we describe one simple extractor and four types of HTML-based

wrappers. The simple extractor, referred to as SE, �nds maximally-long contextual

strings that bracket all seed occurrences, instead of bracketing at least one occurrence

of every seed. This simpli�ed extractor is compared to our proposed extractor, referred

to as PE, in the evaluation results section.

PE builds character-based wrappers that do not have any restriction on the al-

phabets of their characters. We would like to determine whether character-based or

HTML-based wrappers are more suited for the task of set expansion. SEAL currently

does not use an HTML parser (or any other kinds of parser), so additional HTML

restrictions cannot be easily imposed. As far as we know, there is not an agreement

on what restrictions make the most sense or work the best. Therefore, we evaluate

performance by varying wrapper constraints from type 1 (less strict) to type 4 (more

strict) in our experiments. In order to do that, we introduce four types of HTML-based

wrappers, referred to as H1 to H4. The �rst type (H1) requires that each of the left

and right contextual strings must contain either < or >. The fourth type (H4) requires

that an item must be tightly bracketed by two complete HTML tags in order to be ex-

tracted. From H1 to H4, the allowable alphabets in a wrapper become more and more

restrictive as illustrated in Table 2.6, where H2 and H3 are intermediate points. Note

24

2.5 Evaluation

Left[...]Right

PE .+[...].+

H1 .*[<>].*[...].*[<>].*

H2 .*>[...]<.*

H3 .*<.+?>.*[...].*<.+?>.*

H4 .*<.+?>[...]<.+?>.*

Table 2.6: Regular expressions illustrating character restrictions for our proposed extrac-

tor (PE) and the four types of HTML-based wrappers (H1-H4).

that all pure HTML-based wrappers are type 4, possibly with additional restrictions

imposed [15, 25].

2.5.4 Evaluation Datasets

We manually constructed 36 evaluation datasets evenly across three di�erent languages:

English, Chinese, and Japanese; thus there are 12 datasets per language. The datasets

consist of 18 semantic classes, where half were constructed in all three languages and

the other half in one language only, as illustrated in Table 2.7. The intention is to

diversify the datasets such that some are culture-speci�c while some are not. A full

detailed list of instances contained in each of the datasets is presented in Appendix A.

Each dataset is a true list of a particular semantic class C, and each instance i 2 C

is represented by a list of synonyms (e.g., USA, America) of that particular instance

i. The statistics of semantic classes, instances, and synonyms for each language are

shown in Table 2.8.

2.5.5 Evaluation Method

Since the output of our system is a ranked list of extracted instances, we choose mean

average precision (MAP) as our evaluation metric. MAP is commonly used in the

�eld of Information Retrieval for evaluating ranked lists because it is sensitive to the

entire ranking and it contains both recall and precision-oriented aspects. The MAP for

multiple ranked lists is simply the mean value of average precisions calculated separately

for each ranked list. We de�ne the average precision of a single ranked list as:

25

2. SET EXPANDER FOR ANY LANGUAGE

Dataset ID Eng Chi Jap Dataset Description

1 disney-movies
p p p

Classic Disney movie names

2 constellations
p p p

Constellation names

3 countries
p p p

Country names

4 mlb-teams
p p p

Major League Baseball team names

5 nba-teams
p p p

National Basketball Association team names

6 n-teams
p p p

National Football League team names

7 car-makers
p p p

Popular car manufacturer names

8 us-presidents
p p p

United States president names

9 us-states
p p p

United States state names

10 cmu-buildings
p

Carnegie Mellon building names

11 diseases
p

Common disease names

12 periodic-comets
p

Periodic comet names

13 china-dynasties
p

Chinese dynasty names

14 china-provinces
p

Chinese province names

15 taiwan-cities
p

Taiwanese city names

16 japan-emperors
p

Japanese emperor names

17 japan-prime-mins
p

Japanese prime minister names

18 japan-provinces
p

Japanese province names

Table 2.7: The 36 evaluation datasets; 12 in each of the following languages: English,

Chinese and Japanese.

Language Class(C) Instance(I) Synonym(S) Avg. I/C Avg. S/I

English 12 1028 1500 86 1.5

Chinese 12 701 1744 58 2.5

Japanese 12 809 1696 67 2.1

Table 2.8: Statistics of the 36 evaluation datasets, which includes the number of semantic

classes, instances, and synonyms, as well as the average number of instances per class and

average number of synonyms per instance.

AvgPrec(L) =

jLjX
r=1

Prec(r)� isFresh(r)

Total # of Correct Instances

where L is a ranked list of extracted instances, r is the rank ranging from 1 to jLj,

Prec(r) is the precision at rank r, or the percentage of correct synonyms above rank

r (inclusively). The binary function isFresh(r) ensures that, if a list contains multiple

26

2.5 Evaluation

synonyms of the same instance, we do not evaluate that instance more than once. More

speci�cally, the function returns 1 if a) the synonym at r is correct, and b) it is the

highest-ranked synonym of its instance in the list; it returns 0 otherwise. Note that

the denominator of the equation is actually the total number of correct instances in the

evaluation dataset; otherwise, there is no sense of recall.

We evaluated SEAL by giving it some seeds randomly selected from the evaluation

datasets and then determine the quality of its output lists. More speci�cally, the

procedure for evaluating SEAL is, for each dataset:

1. Randomly select three instances and use their �rst listed synonym1 as seeds.

2. Expand the three seeds obtained from step 1.

3. Repeat steps 1 and 2 three times.

4. Compute MAP for the three resulting ranked lists.

Notice that there are several parameters that can be tuned to improve the recall and

precision of SEAL. For example, the recall could be improved by requesting more web

pages from the search engines at the expense of longer processing time. In addition, with

some sacri�ce of recall, the precision could be improved by, for example, a) requiring

each left and right context of a wrapper to contain certain HTML tags, or b) requiring

each instance to be extracted by more than one wrapper. In all the experiments we

conducted in this thesis (unless otherwise speci�ed), we did not enforce any restriction

on the contexts of the wrappers, and we also did not require each instance to be

extracted by a certain number of wrappers. However, in order to minimize runtime,

we did con�gure SEAL to retrieve only one hundred web pages.

2.5.6 Evaluation Results

Table 2.9 shows our experimental results using three seeds. Here, we refer to our

extractor proposed in Section 2.3.2 as PE and our random walk approach proposed

in Section 2.4.3 as RW. As shown, the baseline Google Sets (G.Sets) performed the

worst; even our simplest approach, Simple Extractor (SE) plus Wrapper Frequency

(WF), beats Google Sets by a substantial amount. When we requested only top 100

URLs per expansion from Google, our simplest approach (SE+WF) achieved an overall

average of around 82%. After replacing SE with our proposed extractor PE, the overall

1Most commonly-known name of the instance (e.g., \Bill Clinton" vs. \William Je�erson Clinton").

27

2. SET EXPANDER FOR ANY LANGUAGE

average improved to about 88% (a 6.3% improvement). When WF is replaced with

our proposed ranker RW, the overall average improved to about 93% (another 6.3%

improvement). We wanted to know whether the corpus size has any e�ect on the set

expansion performance. Therefore, we increased the number of web pages from 100

to 200 and 300, and we observed a slight improvement of 1.0% and 0.2% respectively

(from 93% MAP to 94.0% and 94.2% respectively). In brief, this table shows that our

proposed extractor PE is more e�ective than SE and that our proposed ranker RW is

more e�ective than WF. In addition, the results also show that the more web pages,

the better the quality of the expanded set of items.

In the �rst set of experiments, we have shown that PE is an e�ective extractor. In

the next set of experiments, we evaluated various alternative rankers as presented in

Section 2.5.2 with the extractor PE. To make the set expansion problem more chal-

lenging and accentuate di�erences between systems, we used only two seeds instead

of three. The experimental results are illustrated in Figure 2.5. As shown, no matter

how many web pages were being used, our proposed ranker RW is always superior than

other rankers, followed closely by Bayesian Sets (BS) and Wrapper Length (WL). The

ranker that has the worse performance is PageRank (PR). Note that BS did not per-

form well when the corpus size is small. Again, these results illustrated that the more

web pages, the better the set expansion results.

In the previous two sets of experiments, we have shown that RW is an e�ective

ranker. In the next set of experiments, we evaluated various alternative extractors as

presented in Section 2.5.3 with the ranker RW. Again, we evaluated using only two

seeds. From previous experiments, we observed that a maximum of 200 web pages

gives a good balance between performance and speed; therefore, we used a maximum

of 200 web pages in this set of experiments. The experimental results are presented in

Table 2.10. As shown, the more restrictive the wrappers, the worse the performance.

Our proposed approach (PE+RW) has the best performance because PE impose no

restriction on the wrappers. As a comparison, we included the performance of Google

Sets (G.Sets) using two seeds, which performed the worse, again.

28

2.5 Evaluation

Max. 100 Pages Max. 200 Max. 300

English G.Sets SE+WF PE+WF PE+RW PE+RW PE+RW

disney-movies 46.5 79.4 74.5 84.4 88.2 89.4

constellations 49.8 89.6 100.0 100.0 100.0 100.0

countries 22.3 96.0 97.9 98.2 98.7 98.5

mlb-teams 97.7 98.6 99.5 99.8 99.8 99.8

nba-teams 100.0 100.0 100.0 100.0 100.0 100.0

n-teams 100.0 99.2 100.0 100.0 100.0 100.0

car-makers 57.8 79.2 88.2 95.2 96.2 97.0

us-presidents 99.9 91.6 97.1 100.0 100.0 100.0

us-states 81.6 100.0 93.5 100.0 100.0 100.0

cmu-buildings 0.0 87.8 87.8 87.8 87.8 87.8

diseases 5.1 17.9 52.8 57.5 75.8 76.9

periodic-comets 0.0 69.2 79.0 84.8 84.8 84.8

Average 55.1 84.0 89.2 92.3 94.3 94.5

Chinese G.Sets SE+WF PE+WF PE+RW PE+RW PE+RW

disney-movies 3.3 80.7 91.2 91.7 91.7 91.7

constellations 22.8 92.0 96.3 100.0 100.0 100.0

countries 8.4 94.8 95.4 96.9 97.8 97.7

mlb-teams 59.2 94.4 84.0 100.0 100.0 100.0

nba-teams 0.0 90.3 95.0 99.9 100.0 100.0

n-teams 0.0 68.1 88.4 95.7 95.7 95.7

car-makers 4.8 71.4 83.3 94.4 94.5 94.6

us-presidents 0.0 62.8 82.6 93.0 94.2 94.2

us-states 6.6 98.5 97.1 99.5 99.5 99.5

china-dynasties 4.5 25.4 33.9 65.2 64.6 65.2

china-provinces 87.9 95.0 99.2 99.2 99.3 99.4

taiwan-cities 100.0 95.3 98.0 100.0 100.0 100.0

Average 24.8 80.7 87.0 94.6 94.8 94.8

Japanese G.Sets SE+WF PE+WF PE+RW PE+RW PE+RW

disney-movies 7.6 72.8 75.0 81.6 83.0 83.0

constellations 38.6 96.9 95.2 100.0 100.0 100.0

countries 24.0 97.3 90.5 98.7 99.2 99.2

mlb-teams 0.0 80.0 85.6 98.9 98.9 98.9

nba-teams 5.3 95.3 99.4 100.0 100.0 100.0

n-teams 0.0 92.8 93.9 99.0 99.0 99.1

car-makers 71.6 53.6 76.1 79.6 84.8 86.5

us-presidents 0.0 36.4 34.6 59.5 59.5 59.5

us-states 74.9 96.9 98.0 99.9 99.9 100.0

japan-emperors 0.0 95.9 99.1 99.2 99.2 99.2

japan-prime-mins 13.1 71.3 91.7 93.1 93.0 93.0

japan-provinces 100.0 99.4 100.0 100.0 100.0 100.0

Average 27.9 82.4 86.6 92.5 93.0 93.2

Overall Average 35.9 82.4 87.6 93.1 94.0 94.2

Table 2.9: Performance (MAP) of Google Sets and various con�gurations of SEAL using

three seeds.

29

2. SET EXPANDER FOR ANY LANGUAGE

English G.Sets PE+RW H1+RW H2+RW H3+RW H4+RW

disney-movies 25.0 78.2 75.7 76.5 53.1 52.3

constellations 28.9 100.0 100.0 100.0 99.9 99.9

countries 20.2 95.9 96.5 96.1 32.1 27.0

mlb-teams 94.0 100.0 100.0 100.0 91.1 82.1

nba-teams 100.0 100.0 100.0 100.0 76.7 66.9

n-teams 100.0 100.0 100.0 99.5 79.8 66.7

car-makers 57.0 93.0 93.2 93.4 46.1 33.0

us-presidents 92.1 100.0 100.0 100.0 99.7 99.7

us-states 80.8 100.0 100.0 100.0 99.2 98.6

cmu-buildings 7.9 48.8 30.9 30.9 28.6 28.6

diseases 6.6 20.9 20.0 19.5 15.1 14.5

periodic-comets 0.5 76.9 52.9 48.3 35.8 31.6

Average 51.1 84.5 80.8 80.4 63.1 58.4

Chinese G.Sets PE+RW H1+RW H2+RW H3+RW H4+RW

disney-movies 1.6 83.6 87.4 82.9 61.8 56.4

constellations 1.2 100.0 100.0 100.0 100.0 100.0

countries 9.3 96.5 96.6 96.6 93.2 93.7

mlb-teams 92.9 100.0 100.0 100.0 99.9 100.0

nba-teams 2.7 100.0 100.0 100.0 100.0 100.0

n-teams 0.6 99.7 99.2 99.1 84.5 84.5

car-makers 2.1 82.9 59.0 54.6 32.7 32.5

us-presidents 4.2 94.4 62.8 59.8 57.8 55.5

us-states 12.7 100.0 100.0 100.0 98.9 98.8

china-dynasties 4.9 62.9 64.3 63.3 40.6 40.6

china-provinces 81.0 98.9 99.0 99.3 94.5 93.3

taiwan-cities 99.3 100.0 100.0 100.0 99.2 98.7

Average 26.0 93.2 89.0 88.0 80.2 79.5

Japanese G.Sets PE+RW H1+RW H2+RW H3+RW H4+RW

disney-movies 14.4 77.2 75.5 70.0 79.8 75.9

constellations 1.6 100.0 100.0 100.0 100.0 100.0

countries 20.7 98.8 98.8 98.8 97.3 96.8

mlb-teams 2.7 99.6 99.7 99.8 99.8 99.7

nba-teams 20.0 100.0 100.0 100.0 99.8 99.3

n-teams 0.0 99.9 100.0 99.9 96.1 92.8

car-makers 41.0 90.3 89.5 88.4 85.3 83.1

us-presidents 1.0 97.1 95.2 94.1 96.5 96.6

us-states 58.4 100.0 100.0 100.0 99.8 99.8

japan-emperors 0.6 99.4 99.4 96.0 97.4 85.7

japan-prime-mins 4.8 95.0 99.3 99.3 85.8 82.1

japan-provinces 100.0 100.0 100.0 100.0 98.1 97.2

Average 22.1 96.4 96.5 95.5 94.6 92.4

Overall Average 33.1 91.4 88.8 87.9 79.3 76.8

Table 2.10: Performance (MAP) of Google Sets, our proposed extractor (PE), and the

four types of HTML-based wrappers (H1-H4) using 200 web pages and only two seeds.

30

2.6 Comparison to Prior Work

Figure 2.5: Performance (MAP) of alternative rankers on various number of web pages

using two seeds.

2.6 Comparison to Prior Work

We present side-by-side qualitative comparison of set expansion results obtained by

SEAL and published by two other research work: Talukdar et al. [41] and Ghahramani

et al. [16].

2.6.1 Talukdar et al., 2006

Talukdar et al. [41] present a context pattern induction method for named entity

extraction. They extracted a �xed number N (context window size) of tokens imme-

diately preceding and following the seed instances in their unlabeled data. From these

extracted contexts, their system automatically selects trigger words to mark the be-

ginning of a pattern, which is then used for bootstrapping from free text. By using

this method, they extended several classes of seed entity lists into larger lists. They

evaluated their approach on a newswire corpus which contains 31 million documents

and showed improvement in accuracy of a conditional random �eld-based named-entity

tagger.

31

2. SET EXPANDER FOR ANY LANGUAGE

Talukdar et al. SEAL

Rolex Piaget Omega Wittnauer

Fossil Raymond Weil Cartier Nike

Swatch Girard Perregaux Seiko Oris

Cartier Omega Tag Heuer Chopard

Tag Heuer Guess Ebel IWC

Super Bowl Frank Mueller Rado DKNY

Swiss Citizen Gucci Wenger

Chanel Croton Bulova Piaget

SPOT David Yurman Raymond Weil Timex

Movado Armani Movado ESQ

Ti�any Audemars Piguet Citizen Guess

Sekonda Chopard Breitling Patek Philippe

Seiko DVD Tissot Croton

TechnoMarine DVDs Pulsar Tommy Hil�ger

Rolexes Chinese Fossil Sector

Gucci Breitling Hamilton Invicta

Franck Muller Montres Rolex Rolex Oakley

Harry Winston Armitron Casio Skagen

Patek Philippe Tourneau Swatch Anne Klein

Versace CD Concord Armitron

Hampton Spirit NFL Swiss Army Zodiac

Table 2.11: Set Comparison: Watch Brands

Table 2.11 illustrates the top 42 set expansion results by Talukdar et al. on watch

brand names using 17 seeds. As comparison, we present our top 42 results in the right

column using only the �rst three of their 17 seeds (i.e., Corum, Longines, and Lorus).

By examining the top 42 extracted instances, their system returned noisy instances

(underlined items) towards the bottom of their list and achieved a precision of 85.7%;

whereas, SEAL achieved a precision of 100% by using only the �rst three of their 17

seeds. We also tried the three seeds on Google Sets but obtained no results other than

the seeds themselves.

2.6.2 Ghahramani et al., 2005

Ghahramani et al. [16] evaluated their Bayesian Sets algorithm on three datasets,

including the EachMovie dataset, consisting of movie ratings by users of the EachMovie

service, and the NIPS authors dataset, consisting of the text of articles published in

32

2.6 Comparison to Prior Work

Seeds: Mary Poppins, Toy Story

Google Sets Bayesian Sets SEAL

Toy Story Mary Poppins Mary Poppins

Mary Poppins Toy Story Toy Story

Mulan Winnie the Pooh Cinderella

Toy Story 2 Cinderella Hercules

Moulin Rouge The Love Bug The Lion King

Monsters Inc Bedknobs and Broomsticks Pocahontas

Man on the Moon Davy Crockett Pinocchio

Mummy The The Parent Trap Beauty and the Beast

Matrix The Dumbo The Jungle Book

Mod Squad The The Sound of Music Song of the South

Table 2.12: Set Comparison: Children's Movies

Seeds: L. Saul, T. Jaakkola

Bayesian Sets SEAL

L. Saul T. Jebara T. Jaakkola C. Bishop

T. Jaakkola W. Wiegerinck L. Saul M. I. Jordan

M. Rahim M. Meila B. Frey Z. Ghahramani

M. Jordan S. Ikeda P. Niyogi A. Smola

N. Lawrence D. Haussler M. J. Wainwright Y. Weiss

Table 2.13: Set Comparison: NIPS Authors

NIPS volumes 0-12. They pre-processed the EachMovie dataset by removing movies

rated by less than 15 people, and people who rated less than 200 movies. The dataset

was binarized so that a (person, movie) entry had a value of 1 if the person gave the

movie a rating above 3 stars (from a possible 0-5 stars). The NIPS author dataset was

pre-processed and binarized by column normalizing each author, and then thresholding

so that a (word, author) entry is 1 if the author uses that word more frequently than

twice the word mean across all authors.

Table 2.12 shows top 10 set expansion results on children's movies from Bayesian

Sets, as presented in Ghahramani et al. We provide results from Google Sets and SEAL

as comparisons. Note that Bayesian Sets used a movie-speci�c dataset: EachMovie.

As illustrated, both Bayesian Sets and SEAL systems perform well on �nding children

movies. Similar to Table 2.12, Table 2.13 shows top 10 results on NIPS authors from

Bayesian Sets as presented in Ghahramani et al.. We provide results from SEAL as

33

2. SET EXPANDER FOR ANY LANGUAGE

comparisons but not from Google Sets since it failed to return any result. Note that

Bayesian Sets, again, used a domain-speci�c dataset: the NIPS dataset. Although

the algorithm was shown to rank instances e�ectively, it solves only a particular sub-

problem of set expansion (i.e. the ranking problem), in which candidate instances (e.g.,

actor, movie, author names) are provided.

2.7 Summary

In this chapter, we have proposed a novel graph-based approach to set expansion using

semi-structured documents at the character-level. Based on our proposed approach,

we developed an open-source set-expansion system called SEAL that is independent of

both human and mark-up language. We have shown that SEAL is capable of handling

various languages such as English, Chinese, and Japanese. By conducting ablation

studies using SEAL, we have also shown that our random walk approach outperforms

four other alternative rankers, including Bayesian Sets and PageRank, for the prob-

lem of set expansion. The studies also show that our novel character-based wrapper

induction technique is more e�ective than a simpler technique that is often used by

other researchers. Our experimental results illustrate that character-based wrappers

are better suited than HTML-based wrappers for the task of set expansion. This is sup-

ported by the following two experimental results: 1) SEAL outperforms Google Sets,

a web-based set expansion system that exploits HTML structure, in terms of mean

average precision for the 36 datasets tested, and 2) the more we restrict wrappers to

HTML-based, the worse the set expansion performance.

34

Chapter 3

Noise Resistant SEAL (for List

Question Answering)

3.1 Introduction

Question answering (QA) systems are designed to retrieve precise answers to questions

posed in natural language. A list question1 expects a list as its answer, e.g. Name the

co�ee-producing countries in South America. The ability to answer list questions has

been tested as part of the yearly TREC QA evaluation [12, 13]. This chapter focuses on

the use of set expansion to improve list question answering. We explore the hypothesis

that a set expansion algorithm, when carefully designed to handle noisy inputs, can

be applied to the output from a QA system to produce an overall list of answers for a

given question that is better than the answers produced by the QA system itself.

We propose to exploit large, redundant sources of structured and/or semi-structured

data and use linguistic analysis to seed a shallow analysis of these sources. This is a

hard problem since the linguistic evidence used as seeds is noisy. More precisely, we

combine the QA system Ephyra [36] with the set expansion system SEAL to create a

hybrid approach that performs better than either system by itself when tested on data

from the TREC 13-15 evaluations. In addition, we apply our set expansion algorithm to

answers generated by the �ve QA systems that performed the best on the list questions

in the TREC 15 evaluation and report improvements in F1 scores for four of these

systems [50].

1See appendix C for all list-type questions used in our experiments.

35

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

In this chapter, Section 3.2 gives an overview of the QA system used for our experi-

ments. Section 3.3 describes how SEAL was adapted to deal with noisy seeds produced

by QA systems, and Section 3.4 presents the design and results of the experiments.

Lastly, we summarize this chapter in Section 3.5.

3.2 Ephyra Question Answering System

We chose the QA system Ephyra [35, 36] for our experiments because it scored well in

the TREC QA track [12, 13] and we have access to all its internal resources, including

con�dence scores for each candidate answer it produces, which are crucial elements

for our proposed approach. The system combines three answer extraction techniques

for list questions: (1) an answer type classi�cation approach; (2) a syntactic pattern

learning and matching approach; and (3) a semantic extractor that uses a semantic role

labeling system. The answer type based extractor classi�es questions by their answer

types and extracts candidates of the expected types. The Ephyra pattern matching

approach learns textual patterns that relate question key terms to possible answers

and applies these patterns to candidate sentences to extract factoid answers. The

semantic approach generates a semantic representation of the question that is based on

predicate-argument structures and extracts answer candidates from similar structures

in the corpus. The source code of the answer extractors is included in OpenEphyra, an

open source release of the system.1

The answer candidates from these extractors are combined and ranked by a sta-

tistical answer selection framework [18], which estimates the probability of an answer

based on a number of answer validation and similarity features. Validation features

use resources such as gazetteers and Wikipedia to verify an answer, whereas similarity

features measure the syntactic and semantic similarity to other candidates, e.g. using

string distance measures and WordNet relations.

3.3 Proposed Approach

We want to apply set expansion to answer candidates for list questions generated by

Ephyra and other TREC QA systems to �nd additional instances of correct answers

1http://www.ephyra.info/

36

http://www.ephyra.info/

3.3 Proposed Approach

that were not in the original candidate set. However, SEAL was originally designed

to handle only relevant input seeds. When provided with a mixture of relevant and

irrelevant answers from a QA system, performance su�ers. In this section, we propose

three modi�cations to SEAL to improve its ability to handle noisy input seeds.

3.3.1 Aggressive Fetcher

For each expansion, SEAL's fetcher concatenates all seeds and sends them as one query

to the search engines (i.e., Google and Yahoo!). However, when the seeds are noisy, the

documents fetched are constrained by the irrelevant seeds, which decreases the chance of

�nding good documents (i.e., documents containing correct answers). To overcome this

problem, we designed an aggressive fetcher (AF) that increases the chance of composing

queries containing only relevant seeds. It sends a two-seed query for every possible pair

of seeds to the search engines. If there are n input seeds, then the total number of

queries sent would be
�
n
2

�
.

For example, suppose SEAL is given a set of noisy seeds: Boston, Seattle and

Carnegie-Mellon (assuming Carnegie-Mellon is irrelevant), then by using AF, the queries

will be \Boston Seattle", \Boston Carnegie-Mellon", and \Seattle Carnegie-Mellon",

where one query (i.e., \Boston Seattle") will contain only relevant seeds (as shown in

Table 3.1). The documents are then collected and sent to SEAL's extractor for learning

wrappers.

Queries Quality

-AF #1: Boston Seattle Carnegie-Mellon Low

+AF

#1: Boston Seattle High

#2: Boston Carnegie-Mellon Low

#3: Seattle Carnegie-Mellon Low

Table 3.1: Example queries and their quality given the seeds Boston, Seattle and Carnegie-

Mellon, where Carnegie-Mellon is assumed to be irrelevant.

3.3.2 Lenient Extractor

SEAL's extractor requires the longest common contexts to bracket at least one instance

of every seed per web page. However, when seeds are noisy, such common contexts usu-

ally do not exist or are too short to be useful. To solve this problem, we propose a

37

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

lenient extractor (LE) which only requires the contexts to bracket at least one instance

of a minimum of two seeds, instead of every seed. This increases the chance of �nding

longest common contexts that bracket only relevant seeds. For instance, suppose SEAL

is given the seeds from the previous example (Boston, Seattle and Carnegie-Mellon) and

the passage below. Then the extractor would learn the wrappers shown in Table 3.2.

\While attending a hearing in Boston City Hall, Alan, a professor at Boston Uni-

versity, met Tina, his former student at Seattle University, who is studying at Carnegie-

Mellon University Art School and will be working in Seattle City Hall."

Learned Wrappers

-LE #1: at [...] University

+LE
#1: at [...] University

#2: in [...] City Hall

Table 3.2: Wrappers learned by SEAL's extractor when given the passage above and the

seeds: Boston, Seattle, and Carnegie-Mellon.

As illustrated, with lenient extraction, SEAL is now able to learn the second wrapper

because it brackets one instance of at least two seeds (Boston and Seattle). This can be

very helpful if the list question is asking for city names rather than university names.

The extractor then uses these wrappers to extract additional answer candidates, by

searching for other strings that �t into the placeholders of the wrappers. Note that the

example was simpli�ed for ease of presentation. The wrappers are actually character-

based (as opposed to word-based) and are likely to contain HTML tags when generated

from real web pages.

3.3.3 Hinted Expander

Most QA systems use keywords from the question to guide the retrieval of relevant

documents and the extraction of answer candidates. We believe these keywords are also

important for SEAL to identify additional instances of correct answers. For example, if

a question asks for all the U.S. presidents, and the seeds are George Washington, John

Adams, and Thomas Je�erson, then without using any context from the question,

SEAL would output a mixture of founding fathers and presidents of the U.S.A. To

38

3.4 Experiments

solve this problem, we devised a hinted expansion (HE) technique that utilizes the

context given in the question to constrain SEAL's search space on the Web. This is

achieved by appending keywords (e.g., presidents) from the question to every query that

is sent to the search engines. The rationale is that the retrieved documents will also

match the keywords, which may increase the chance of �nding those documents that

contain our desired set of answers. Preliminary experiments showed that we can obtain

a good balance between the amount and quality of the documents fetched by using

three question keywords as hint words. In particular, we select and use as hints the

question keywords that occur least frequently in a sample of the AQUAINT newswire

corpus used in the TREC evaluations.

Below, we show the question keywords, Ephyra's answers (�rst four were used as

seeds to SEAL), AF+HE's queries, and SEAL's results for TREC question #143.6. For

this question, the average precision of Ephyra's answers is 35.2% and SEAL's answers

is 48.3%.

Question: Who have been \scholars" at the Institute (American Enterprise Institute)?

Question Keywords: Institute, scholars, American Enterprise Institute

Ephyra's Answers: michael ledeen, sidney blumenthal, ronald reagan, norman orn-

stein, norm ornstein, christina ho� sommers, rosa delauro, christina hawke smith,

michael novak, robert bork, . . .

AF+HE's Queries:

1. \michael ledeen", \sidney blumenthal", Institute scholars American Enterprise Institute

2. \michael ledeen", \ronald reagan", Institute scholars American Enterprise Institute

3. \michael ledeen", \norman ornstein", Institute scholars American Enterprise Institute

4. \sidney blumenthal", \ronald reagan", Institute scholars American Enterprise Institute

5. \sidney blumenthal", \norman ornstein", Institute scholars American Enterprise Institute

6. \ronald reagan", \norman ornstein", Institute scholars American Enterprise Institute

SEAL's Answers: michael novak, michael ledeen, ronald reagan, norman ornstein,

christina ho� sommers, joshua muravchik, bill clinton, robert bork, sally satel, richard

perle, . . .

3.4 Experiments

We conducted experiments in two phases. In the �rst phase, we evaluated the set expan-

sion approach by applying SEAL to answers generated by Ephyra. In the second phase,

39

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

we evaluated the approach by applying SEAL to the output from QA systems that per-

formed the best on the list questions in the TREC 15 evaluation. In both phases, the

answers found by SEAL were retrieved from the Web instead of the AQUAINT corpus.

However, we rejected answers if they could only be found in the Web and not in the

AQUAINT corpus, to avoid giving SEAL an unfair advantage over the QA systems:

TREC participants were allowed to extract candidates from the Web (or any other

source), but they had to identify a supporting document in the AQUAINT corpus for

each answer, and thus could not return answers that were not covered by the corpus.

The candidate answers were evaluated by using the answer keys, composed of regular

expression patterns, obtained from the TREC website. These answer keys were served

as a reference and were not o�cially used in the TREC evaluation1, thus the baseline

scores we computed for Ephyra and other QA systems in our experiments are slightly

di�erent from those o�cially reported. Due to time constraint, we did not extend the

patterns with additional correct answers found in our experiments.

3.4.1 Experiment with Ephyra

We evaluated our set expansion approach on Ephyra using the list questions from

TREC 13, 14, and 15. The table below shows the number of questions present in each

TREC. For each question, the top four answer candidates from Ephyra were given as

input seeds to SEAL. Initial experiments showed that by adding additional seeds, the

e�ectiveness of our approach can be improved at the expense of a longer runtime.

TREC # of Questions ID Range

13 55 1�65

14 93 66�140

15 89 141�215

We report mean average precision (MAP) as well as F1 score, which is an evaluation

metric commonly used in the QA �eld. For the F1 scores, we drop answer candidates

with low con�dence scores by applying a cut-o� threshold: an answer candidate is

dropped if its con�dence score is below a threshold. Here, we de�ne an optimal threshold

for a question as the threshold that maximizes the F1 score for that particular question.

1The TREC evaluated candidate answers based on several factors, including human judgments and

an undisclosed set of correct answers.

40

3.4 Experiments

TREC Ephyra Ephyra's SEAL SEAL SEAL SEAL

Top 4 Ans +LE +LE+AF +LE+AF+HE

13 26.0 21.4 23.8 31.4 34.2 35.3 �35.9%

14 14.5 8.7 14.5 17.0 16.6 18.8 �30.2%

15 13.4 9.0 13.2 16.9 17.1 18.9 �41.2%

Avg 17.9 13.0 17.1 21.8 22.6 24.3 �35.7%

Table 3.3: Mean average precision of Ephyra, its top four answers, and various SEAL

con�gurations, where LE is Lenient Extractor, AF is Aggressive Fetcher, and HE is Hinted

Expander. The last column shows the best-con�gured SEAL's relative improvements over

Ephyra.

TREC Ephyra Ephyra's SEAL SEAL SEAL SEAL

Top 4 Ans +LE +LE+AF +LE+AF+HE

13 35.7 26.3 30.5 36.5 40.1 40.8 �14.1%

14 22.8 14.1 20.6 22.8 22.7 24.9 �9.0%

15 22.4 14.6 19.9 23.3 24.0 25.7 �14.4%

Avg 27.0 18.3 23.7 27.5 28.9 30.4 �12.8%

Table 3.4: Average F1 of Ephyra, its top four answers, and various SEAL con�gurations

when using an optimal threshold for each question. The last column shows the best-

con�gured SEAL's relative improvements over Ephyra.

For each TREC dataset, we conducted three experiments: (1) evaluation of answer

candidates using MAP; (2) evaluation using average F1 with an optimal threshold for

each question; and (3) evaluation using average F1 with thresholds trained by 5-fold

cross validation. For each of those 5-fold validations, only one threshold was determined

for all questions in the training folds.

In Tables 3.3 and 3.4, we present evaluation results for all answers from Ephyra, only

the top four answers, and various con�gurations of SEAL using the top four answers as

seeds. Table 3.3 shows the MAP for each dataset (TREC 13, 14, and 15), and Table 3.4

shows for each dataset the average F1 score when using optimal per-question thresholds.

The results indicate that SEAL achieves the best performance when con�gured with

all three proposed extensions. In terms of MAP, the best-con�gured SEAL improves

the quality of the input answers (relatively) by 65%, 116%, 110% for each dataset

respectively. In terms of optimal F1, SEAL improves the quality of the input answers

by 55%, 77%, 76% respectively. These results illustrate that SEAL performs the best

on noisy inputs when it is con�gured to incorporate all proposed modi�cations: AF,

41

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

TREC Ephyra Best SEAL Hybrid

Avg F1 Avg Thr Avg F1 Avg Thr Avg F1 Avg Thr �F1

13 25.5 0.381 30.7 0.326 29.0 0.080 13.7%

14 15.8 0.264 15.6 0.189 17.1 0.011 8.5%

15 15.2 0.119 15.6 0.258 16.5 0.012 8.4%

All 18.0 0.288 19.2 0.261 19.6 0.016 8.6%

Table 3.5: Average F1 of Ephyra, the best-con�gured SEAL (SEAL+LE+AF+HE), and

the hybrid system, along with thresholds trained by 5-fold cross validation. The last column

shows Hybrid's relative improvements over Ephyra.

LE, and HE. They also illustrate that a set expansion system is capable of improving a

QA system's performance on list questions, if we know how to select good thresholds.

In practice, the thresholds are unknown and must be estimated from a training

set. Table 3.5 shows evaluation results using 5-fold cross validation for each dataset

(TREC 13, 14, and 15) independently, and the combination of all three datasets (All).

For each validation, we determine the threshold that maximizes the F1 score on the

training folds, and we also determine the F1 score on the test fold by applying the

trained threshold. We repeat this validation for each of the �ve test folds and present

the average threshold and F1 score for each con�guration and dataset. The F1 scores

give an estimate of the performance on unseen data and allow a fair comparison across

systems. Here, we also introduce a hybrid system (Hybrid) that intersects the answers

found by both systems by multiplying their probabilistic scores.

Tables 3.3, 3.4, and 3.5 show that the e�ectiveness of the set expansion approach

depends on the quality of the initial answer candidates. The improvements are most

apparent for the TREC 13 dataset, where Ephyra has a much higher performance

compared to TREC 14 and 15. However, the best-con�gured SEAL did not improve

the F1 score on TREC 14, as reported in Table 3.5. We suspect that this is due

to the comparatively low quality of Ephyra's top four answers for this dataset. The

experiments also illustrate that by intersecting the answer candidates found by Ephyra

and SEAL, we can eliminate poor answer candidates and partially compensate for the

low precision of Ephyra on the harder TREC datasets. However, this comes at the

expense of a lower recall, which slightly hurts the performance on the comparatively

easier TREC 13 questions. We also evaluated Google Sets on top four answers from

42

3.4 Experiments

TREC 15 Baseline Top 4 Google Sets Best SEAL Hybrid

Systems Avg F1 Avg F1 Avg F1 �F1 Avg F1 �F1 Avg F1 �F1

lccPA06 45.0 32.7 37.9 -15.7% 40.0 -11.0% 45.3 0.8%

cuhkqaepisto 18.3 17.0 16.0 -12.7% 19.7 8.1% 19.1 4.7%

NUSCHUAQA1 18.4 15.0 16.7 -9.2% 18.7 1.9% 18.1 -1.8%

FDUQAT15A 19.7 14.3 18.8 -4.6% 19.8 0.4% 20.6 4.6%

QACTIS06C 17.5 15.2 17.0 -2.7% 18.4 5.3% 18.4 4.9%

Average 23.8 18.8 21.3 -10.5% 23.3 -1.8% 24.3 2.2%

Table 3.6: Average F1 of the top QA systems, their top four answers, Google Sets,

the best-con�gured SEAL (SEAL+LE+AF+HE), the hybrid system, and their relative

improvements over the QA systems.

Ephyra for TREC 13-15 and obtained F1 scores of 12%, 11%, and 9% respectively

(compared to 29%, 17%, and 16% for our hybrid approach with trained thresholds).

3.4.2 Experiment with Top QA Systems

We evaluated two set expansion approaches, SEAL and Google Sets, on the �ve QA

systems that performed the best on the list questions in TREC 15. For each ques-

tion, the top four answer candidates1 from those systems were given as input seeds to

SEAL and Google Sets. Unlike the candidates found by Ephyra, these candidates were

provided without con�dence scores; hence, we assumed they all have a score of 1.0.

In our experiments with SEAL, we �rst determined a single threshold that optimizes

the average of the F1 scores of the top �ve systems in both TREC 13 and 14. We

then obtained evaluation results for the top systems in TREC 15 by using this trained

threshold. When performing hinted expansion, the keywords (or hint words) for each

question were extracted by Ephyra's question analysis component. In our experiments

with Google Sets, we requested Small Sets of items and again measured the perfor-

mance in terms of F1 scores. We also tried requesting Large Sets but the results were

worse.

Table 3.6 shows F1 scores for the set expansion approach applied to the output from

the �ve QA systems with the highest performance on the list questions in TREC 15.

Again, Hybrid intersects the answers found by the QA system and SEAL by multiplying

their con�dence scores. Two thresholds were trained separately on the top �ve systems

1Obtained from http://trec.nist.gov/results

43

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

Question 154.6: Name titles of movies, other than \Superman" movies,

that Christopher Reeve acted in.

lccPA06 (F1: 75%) SEAL+LE+AF+HE (F1: 40%)

+Rear Window +Rear Window

+The Remains of the Day +The Remains of the Day

+Snakes and Ladders �The Bostonians

�Superman �Somewhere in Time

�Village of the Damned

�In the Gloaming

Table 3.7: Example of SEAL being penalized for �nding correct answers (all are correct

except the last one). Answers found in the answer keys are marked with \+". All four

answers from \lccPA06" were used as seeds.

Question 170.6: What are the titles of songs written by John Prine?

NUSCHUAQA1 (F1: 25%) SEAL+LE+AF+HE (F1: 44%)

+I Just Want to Dance With You +I Just Want to Dance With You

�Titled In Spite of Ourselves +Christmas in Prison

+Christmas in Prison +Sam Stone

�Grammy - Winning �Grandpa was a Carpenter

�Sabu Visits the Twin Cities Alone

+Angel from Montgomery

Table 3.8: Example demonstrating SEAL's ability to handle noisy input seeds. All four

answers from \NUSCHUAQA1" were used as seeds. Again, SEAL is penalized for �nding

correct answers (all answers are correct).

in both TREC 13 and 14; one for SEAL (0.2376) and another for Hybrid (0.2463). As

shown, the performance of Google Sets is worse than SEAL and Hybrid, but better

than the top four answers on average.

The results show that both SEAL and Hybrid are capable of improving four out of

the �ve systems. We observed that one reason why SEAL did not improve \lccPA06"

was the incompleteness of the answer keys. Table 3.7 shows one of many examples

where SEAL was penalized for �nding additional correct answers. As illustrated, Hybrid

improved all systems except \NUSCHUAQA1". The reason is that even though SEAL

44

3.5 Summary

improved the baseline, their overlapping answer set is too small, thus hurting the recall

of Hybrid substantially. Unfortunately, for the top TREC 15 systems we only had

access to the answers that were actually submitted by the participants, whereas for

Ephyra we could utilize the entire list of generated answer candidates, including those

that fell below the cuto� threshold for list questions. Nevertheless, the hybrid approach

could improve the baseline by more than 2% on average in terms of F1 score. Table 3.8

shows that the best-con�gured SEAL is capable of expanding only the relevant seeds

even when given a set of noisy seeds. Neither Google Sets nor the original set expansion

algorithm without the proposed extensions could expand these seeds with additional

candidates.

3.5 Summary

In this chapter, we have shown that SEAL is capable of improving the performance

of question answering (QA) systems on list questions by utilizing only their top four

answer candidates as seeds. We have also illustrated a feasible and e�ective method for

integrating a set expansion approach into any QA system. We would like to emphasize

that for each of the experiments we conducted in this chapter, all that SEAL received

as input were the top four noisy answers from a QA system and three keywords from

the TREC questions. We have shown that higher quality candidates support more

e�ective set expansion. In the future, we will investigate how to utilize more answer

candidates from the QA system and determine the minimal quality of those candidates

required for SEAL to make an improvement.

We have also shown that, in terms of F1 scores with trained thresholds, the hybrid

method improves the Ephyra QA system on all datasets and also improves four out of

the �ve systems that performed the best on the list questions in TREC 15. However,

the �nal list of answers only comprises candidates found by both the QA system and

SEAL. In future experiments, we will investigate other methods of merging answer

candidates, such as taking the union of answers from both systems. We expect further

improvements from adding candidates that are found only by the QA system, but it is

unclear how the con�dence measures from the two systems can be combined e�ectively.

We would also like to emphasize that SEAL is entirely language-independent, and thus

can be readily applied to answer candidates in other languages. In future experiments,

45

3. NOISE RESISTANT SEAL (FOR LIST QUESTION ANSWERING)

we will investigate its performance on question answering tasks in languages such as

Chinese and Japanese.

As pointed out previously, the performance of SEAL highly depends on the accuracy

of the seeds. However, QA systems are usually not optimized to provide few high-

precision results, but treat precision and recall as equally important. This leaves room

for further improvements, such as applying stricter answer validation techniques to the

seeds used for set expansion. We also plan to analyze the e�ectiveness of our approach

across di�erent question types and evaluate it on more complex questions such as the

rigid list questions in the new TAC QA evaluation, which ask for opinion holders and

subjects.

46

Chapter 4

Iterative SEAL

4.1 Introduction

Although SEAL works well given two or three seeds, it has a limitation on the number

of seeds it can handle. Table 4.1 shows the performance of SEAL (as the MAP score

averaged across 36 datasets) for four di�erent rankers when provided with two to six

supervised seeds (i.e., correct seeds) randomly selected from our development set. As

shown, SEAL performs the best when given four seeds, but its performance drops

substantially when given more than �ve seeds. One reason is that the more query

words submitted to a search engine, the fewer the returned web pages. Since SEAL's

�rst step is to retrieve web pages containing all seeds, the more seeds provided to SEAL,

the fewer the web pages it can analyze and utilize. To overcome this limitation, we

introduce a system called Iterative SEAL (iSEAL), which uses an (supervised) iterative

process that performs supervised expansion multiple times. In each iteration, iSEAL

invokes SEAL on a few supervised seeds, and statistics are accumulated from iteration

to iteration to obtain a �nal ranking.

Bootstrapping is an (unsupervised) iterative process in which a system continuously

consumes its own outputs to improve its own performance [15, 19, 25]. The advantage

of bootstrapping is that, if successful, the performance of a system can be greatly

improved with minimal supervision, so it is natural to explore bootstrapping using

iSEAL. We propose a bootstrapping technique that requires only two supervised seeds,

which are used to trigger the �rst expansion of the iterative process above. In each

iteration after the �rst, iSEAL expands a few unsupervised seeds (i.e., highly ranked

47

4. ITERATIVE SEAL

Seeds (seed size)

Ranker 2 3 4 5 6

Random Walk (RW) 77.1 83.9 84.5 83.7 78.9

PageRank (PR) 74.1 82.6 83.4 83.0 78.5

Bayesian Sets (BS) 77.0 84.1 84.8 84.0 79.3

Wrapper Length (WL) 77.5 83.2 83.3 82.2 78.0

Average 76.4 83.5 84.0 83.2 78.7

Table 4.1: MAP of set expansion using various rankers and various number of seeds on

our development set. Note that four seeds maximize the set expansion performance.

items obtained in the previous iteration of iSEAL), and again statistics are accumulated

from iteration to iteration.

Bootstrapping introduces a potential problem, as the self-provided seeds used in

bootstrapping may be incorrect, and prior results do not indicate how SEAL performs

with \noisy" seeds. We show that iSEAL, when used in bootstrap mode, is indeed

much more sensitive to the choice of rankers and number of seeds. We compare several

rankers, including Random Walk with Restart [43]; PageRank [30], which was designed

to rank hyperlinked documents; Bayesian Sets [16], which formulates the set expansion

problem as a Bayesian inference problem; and a fast but ad hoc ranking heuristic we

call Wrapper Length. Please refer to Section 2.4.3 for the details of Random Walk and

Section 2.5.2 for the three other rankers.

In this chapter, Section 4.2 presents Iterative SEAL. Section 4.3 describes the details

of the experimental design, and Section 4.4 presents the experimental results. We

summarize this chapter in Section 4.5.

4.2 Iterative SEAL

In this section, we present the Iterative SEAL (iSEAL) system and consider two di�er-

ent iterative processes: supervised expansion and bootstrapping. In our experiments,

both processes start their �rst iteration with two supervised seeds, which is the smallest

number of seeds required by the wrapper induction technique used in SEAL. In every

successive iteration, iSEAL expands a couple of seeds while accumulating statistics

from one iteration to another; thus no information is ever tossed away. This allows

48

4.2 Iterative SEAL

the expansion of seeds in the current iteration to have access to all statistics computed

in the past iterations. Below, we summarize the approach each ranker utilizes for ac-

cumulating statistics. Note that the ranker, Wrapper-Frequency (WF), simply ranks

each candidate instance i by the number of wrappers that extract i.

Ranker Approach for Accumulating Statistics

RW & PR Attach additional nodes and edges to the existing graph

BS Append new rows and columns to the existing feature table

WL Add new score to the existing score of an instance

WF Add new frequency count to the existing count of an instance

In every iteration, there are several ways to select seeds. For each process, we propose

two seeding (i.e., seed selection) strategies: Fixed Seed Size (FSS) and Increasing Seed

Size (ISS). In Section 4.4, we evaluate each ranker using the two iterative processes

(i.e., supervised and bootstrapping) and the two seeding strategies (i.e., FSS and ISS).

We show that the seeding strategy has signi�cant inuence on the overall performance

of the system, and that the ranker is more important when seeds are noisy.

4.2.1 Iterative Supervised Expansion

The iterative supervised expansion improves SEAL's performance by allowing it to

handle an unlimited number of supervised seeds. In each iteration, iSEAL expands a

couple of randomly selected supervised seeds while accumulating statistics from one

iteration to another. In this section, we present the two seeding strategies for this

process.

4.2.1.1 Fixed Seed Size

Fixed Seed Size (FSS) is a strategy that requires two seeds in every iteration. In

supervised expansion, the two seeds are randomly selected from a collection of seeds

provided by some reliable source (i.e., users). The pseudo-code for this strategy is

presented below:

49

4. ITERATIVE SEAL

stats ?

for i = 1 to M do

seeds select2(E)

stats expand(seeds; stats)

list rankr(stats)

end for

where M is the total number of iterations (inclusively), selectn(E) randomly selects n

di�erent seeds from the set E, E is a set containing supervised seeds, expand(seeds; stats)

expands the selected seeds using stats and outputs accumulated statistics, and rankr(stats)

applies the ranker r on the accumulated stats to produce a ranked list of candidate

instances. In our experiments, we evaluate the quality of the ranked list at each M .

4.2.1.2 Increasing Seed Size

Increasing Seed Size (ISS) is a strategy that starts the iterative process with two super-

vised seeds, then increments the number of seeds by one for every successive expansion,

until a maximum size of n is reached. After then, it continues to expand using n seeds.

We set n to be four based on results in Table 4.1, which shows that four seeds maximize

the set expansion performance. This number has also been used by Etzioni et al. [15]

and Nadeau et al. [25]. The pseudo-code for this strategy is presented below:

stats ?; used select1(E)

for i = 1 to M do

m = min(3; jusedj)

seeds selectm(used) [select1(E)

stats expand(seeds; stats)

list rankr(stats)

used used [seeds

end for

where used is a set that contains previously expanded seeds and min(x; y) returns

the minimum of x and y. All other notations are the same as those de�ned in the

last section. This strategy starts by expanding two supervised seeds. For the second

iteration, it expands three seeds: two previously-used seeds plus an additional new

supervised seed. For every successive iteration, it expands four seeds: three randomly

50

4.2 Iterative SEAL

selected previously-used seeds plus a new supervised seed. As a result, every iteration

introduces a new supervised seed, and every iteration after the second one consumes a

total of four seeds (three previously-used and one new seed).

4.2.2 Bootstrapping

Bootstrapping refers to iterative unsupervised set expansion. It is an iterative process

for a system to continuously improve its own performance by utilizing its own outputs.

Unlike supervised expansion, this process requires minimal supervision, but is very

sensitive to the system's performance because errors can easily propagate from one

iteration to another. For example, if the top ranked entities in the last iteration are

incorrect, then when they are chosen as seeds, the expansion results of the next iteration

could be worse. Carefully designed seeding strategies can minimize the propagated

errors. We present the two seeding strategies in the unsupervised mode.

4.2.2.1 Fixed Seed Size

As mentioned earlier, FSS is a strategy that requires two seeds in every iteration.

Unlike supervised expansion which expands supervised seeds, bootstrapping expands

unsupervised seeds that are the most con�dent new instances (i.e., instances that has

not been used as seeds) extracted from the last iteration. The pseudo-code for this

strategy is presented below:

stats ?; seeds select2(E)

for i = 1 to M do

if i > 1 then

seeds top2(list)

end if

stats expand(seeds; stats)

list rankr(stats)

end for

where top2(list) returns a new pair of instances which has the highest joint probabilistic

weights according to their con�dence scores in the ranked list of last iteration. More

speci�cally, for every successive ith iteration after the �rst expansion, this strategy

selects, from the results of (i � 1)th iteration, a new pair of instances to be used as

51

4. ITERATIVE SEAL

seeds for the ith iteration. Note that regardless of the number of iterations, the two

initial seeds are the only supervised seeds required.

4.2.2.2 Increasing Seed Size

In the unsupervised mode of ISS, the strategy is exactly the same as in the supervised

mode, except that after the �rst iteration, the new seed (i.e., the instance never used as

seed) at every ith iteration is the highest-ranked new instance in the (i� 1)th iteration.

The pseudo-code is presented below:

stats ?; used select2(E)

for i = 1 to M do

m = min(3; jusedj)

seeds selectm(used)

if i > 1 then

seeds seeds [top1(list)

end if

stats expand(seeds; stats)

list rankr(stats)

used used [seeds

end for

where top1(list) returns a new instance that has the highest weight in the ranked list

of last iteration. Again, the two initial seeds are the only supervised seeds required.

4.3 Experimental Setting

We evaluate the iterative processes using the datasets described in Section 2.5.4, the

evaluation metric { Mean Average Precision described in Section 2.5.5, the four alter-

native rankers { Bayesian Sets, PageRank, Wrapper Length, and Wrapper Frequency

described in Section 2.5.2, and our proposed ranker { Random Walk described in Sec-

tion 2.4.3. Wrapper Frequency is used as the baseline in the experimental results.

Each experiment evaluates a particular combination of iterative process, seeding

strategy, and ranker; we evaluated all 20 possible combinations. For each combination,

we performed ten iterative expansions on each of the 36 evaluation datasets indepen-

52

4.4 Experimental Results

dently three times; thus, at each of the ten iterations, there are 108 (3�36) ranked lists.

We then report the MAP of those ranked lists in the experimental results.

4.4 Experimental Results

We �rst examine the e�ect of supervised expansion. Figure 4.1 and 4.2 illustrate the

performance of various rankers using supervised expansion with FSS and ISS respec-

tively. The error bars in those �gures are the standard errors of the mean, and to

simplify the graph we only show error bars for Random Walk (standard errors for the

other methods are comparable). Although both strategies improve the performance of

the rankers, FSS improves faster than ISS. The reason is that FSS requires two new

supervised seeds at every iteration whereas ISS requires only one. From the two graphs,

we observe that Bayesian Sets (BS) performs the best, Random Walk (RW) is nearly as

good as Bayesian Sets, Wrapper Frequency (WF) is almost as good as Wrapper Length

(WL), and PageRank (PR) is the worst among the �ve rankers.

We then examine the e�ect of bootstrapping. Figure 4.3 and 4.4 illustrate the

performance of various rankers in bootstrap mode using FSS and ISS respectively.

As illustrated, ISS reliably improves with more seeds, but FSS failed to improve any

ranker other than Random Walk at the 10th iteration, and even this improvement was

modest. This result shows that bootstrapping set expansion is not a trivial task. The

ISS strategy was carefully designed to circumvent this performance problem. While ISS

uses only two supervised seeds, it is much more conservative about using self-generated

seeds: at every expansion, FSS boldly introduces two new seeds taken from the results of

the last iteration, whereas ISS conservatively introduces only one. Therefore, the chance

of FSS selecting an incorrect instance as seed is higher than that of ISS. Furthermore,

in every iteration, ISS has three prior seeds to support the newly chosen one, which

minimizes the chance of expanding seeds that are all incorrect.

Figure 4.3 shows that Random Walk is the most robust of the �ve rankers, followed

by Bayesian Sets and Wrapper Length. While all rankers performed poorly with noisy

seeds, only Random Walk improved (slightly at the 10th iteration). Figure 4.4 shows

that the performance of Random Walk increases monotonically when bootstrapping

using ISS. It also shows that Random Walk has the best performance, followed by

Bayesian Sets and Wrapper Length.

53

4. ITERATIVE SEAL

S. Expansion Bootstrapping

FSS ISS FSS ISS

Avg. MAP @ 1st 89.9 89.9 89.9 89.9

Avg. MAP @ 10th 97.1 96.4 89.4 93.3

Relative � MAP 7.9% 7.2% -0.6% 3.7%

Total # S. Seeds 20 11 2 2

� MAP / S. Seed 0.4% 0.7% -0.3% 1.9%

Table 4.2: Performance (MAP) averaged over all �ve rankers for each iterative method.

MAP @ 1st MAP @ 10th � MAP

Random Walk (RW) 90.3 93.9 3.9%

Bayesian Sets (BS) 90.3 93.7 3.7%

Wrapper Length (WL) 90.4 93.4 3.3%

Wrapper Frequency (WF) 89.8 93.1 3.7%

PageRank (PR) 88.8 92.4 4.0%

Average 89.9 93.3 3.7%

Table 4.3: Performance (MAP) of relative improvements (1st to 10th iteration) using

bootstrapping with increasing seed size (ISS).

Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 show the performance of Random

Walk, Bayesian Sets, Wrapper Length, and PageRank respectively, using four di�erent

con�gurations of iterative processes and seeding strategies. These �gures illustrate

that supervised expansion always performs better than bootstrapping. They also show

that, among the four con�gurations, the best one is always FSS in supervised mode

and the worst is also FSS but in bootstrapping mode. The two ISS con�gurations

fall between the two FSS con�gurations, with supervised expansion being better than

bootstrapping.

Table 4.2 summarizes the experimental results by averaging the performance of

all rankers for each iterative process and seeding strategy. Since supervised seeds are

di�cult to obtain, we analyze the amount of relative improvement (in MAP) per su-

pervised seed for each method. The table shows that supervised expansion using FSS

gives the most improvement (7.9%) and produces the highest score (97.1%); however,

it consumes 20 supervised seeds, resulting in a low improvement-per-seed ratio (0.4%).

The one that gives the highest ratio is bootstrapping using ISS (1.9%), which shows

54

4.4 Experimental Results

Figure 4.1: MAP of rankers using supervised expansion with �xed seed size (FSS).

Figure 4.2: MAP of rankers using supervised expansion with increasing seed size (ISS).

55

4. ITERATIVE SEAL

Figure 4.3: MAP of rankers using bootstrapping with �xed seed size (FSS).

Figure 4.4: MAP of rankers using bootstrapping with increasing seed size (ISS).

56

4.4 Experimental Results

Figure 4.5: MAP of Random Walk using various iterative methods.

Figure 4.6: MAP of Bayesian Sets using various iterative methods.

57

4. ITERATIVE SEAL

Figure 4.7: MAP of Wrapper Length using various iterative methods.

Figure 4.8: MAP of PageRank using various iterative methods.

58

4.4 Experimental Results

RW BS WL WF PR

English 1st 10th 1st 10th 1st 10th 1st 10th 1st 10th

disney-movies 74.1 83.7 74.9 84.2 71.0 83.4 73.5 83.4 72.1 83.7

constellations 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

countries 98.4 98.8 98.3 98.8 97.9 98.6 98.0 98.8 97.1 98.6

mlb-teams 98.5 98.6 98.0 98.6 97.5 98.6 98.0 98.7 98.3 98.7

nba-teams 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

n-teams 100.0 100.0 100.0 89.6 100.0 100.0 100.0 100.0 100.0 100.0

car-makers 74.4 86.9 75.4 86.9 86.8 89.5 74.8 82.6 64.1 74.0

us-presidents 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

us-states 99.5 100.0 99.5 100.0 99.9 100.0 99.8 100.0 97.0 100.0

cmu-buildings 77.3 85.0 82.0 84.6 77.0 82.8 78.4 84.2 77.7 82.8

diseases 16.5 42.1 16.9 44.3 13.6 41.4 15.1 32.5 16.0 33.5

periodic-comets 78.1 85.4 77.8 86.1 80.7 84.9 79.1 86.8 72.3 71.8

Average 84.7 90.0 85.2 89.4 85.4 89.9 84.7 88.9 82.9 86.9

Chinese 1st 10th 1st 10th 1st 10th 1st 10th 1st 10th

disney-movies 80.5 88.5 79.9 88.2 81.3 88.7 78.4 87.0 78.1 86.7

constellations 99.7 100.0 99.5 100.0 99.7 100.0 99.7 99.9 99.7 100.0

countries 97.2 96.4 97.3 96.4 96.8 96.0 97.5 97.0 96.5 95.8

mlb-teams 99.8 99.9 99.8 99.8 99.6 99.7 99.8 99.8 99.9 99.9

nba-teams 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

n-teams 95.8 99.1 97.3 99.2 97.2 91.9 92.1 98.1 94.9 98.9

car-makers 88.4 96.2 87.8 96.1 85.9 96.0 86.7 96.1 86.1 95.6

us-presidents 94.7 96.5 94.8 96.3 94.3 95.8 93.5 95.7 94.1 95.2

us-states 99.2 100.0 99.4 100.0 98.6 100.0 99.1 100.0 99.2 100.0

china-dynasties 40.7 66.6 38.9 66.7 42.3 63.1 38.0 63.1 30.4 61.4

china-provinces 97.7 98.5 97.6 98.2 97.8 97.9 98.5 98.5 97.3 97.5

taiwan-cities 99.0 99.5 98.8 99.5 98.7 99.6 99.0 99.4 98.7 99.4

Average 91.1 95.1 90.9 95.0 91.0 94.1 90.2 94.6 89.6 94.2

Japanese 1st 10th 1st 10th 1st 10th 1st 10th 1st 10th

disney-movies 78.2 80.7 77.8 80.8 75.5 79.9 76.8 79.3 77.5 80.0

constellations 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

countries 97.2 98.0 96.7 98.0 97.7 97.7 97.3 97.0 95.6 97.6

mlb-teams 100.0 100.0 100.0 100.0 99.9 100.0 99.8 100.0 99.9 100.0

nba-teams 99.9 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.9 100.0

n-teams 99.3 100.0 99.2 99.9 99.2 99.9 99.7 100.0 99.2 100.0

car-makers 88.1 90.4 86.7 90.3 88.0 90.2 87.3 89.9 83.3 89.4

us-presidents 94.1 95.8 93.0 95.5 91.7 94.7 92.5 92.4 92.5 95.0

us-states 99.7 100.0 99.6 100.0 99.2 99.9 99.6 100.0 99.3 99.9

japan-emperors 99.2 99.2 99.2 99.2 99.0 99.2 97.6 98.4 99.2 99.2

japan-prime-mins 91.7 95.0 90.7 94.8 91.6 93.8 91.6 93.2 89.7 92.3

japan-provinces 95.3 100.0 94.6 100.0 96.6 100.0 92.4 100.0 92.4 99.6

Average 95.2 96.6 94.8 96.5 94.9 96.3 94.6 95.9 94.0 96.1

Overall Average 90.3 93.9 90.3 93.7 90.4 93.4 89.8 93.1 88.8 92.4

Table 4.4: Performance (MAP) of various rankers at 1st and 10th iteration using boot-

strapping with increasing seed size (ISS).

59

4. ITERATIVE SEAL

Figure 4.9: MAP of Google Sets using various iterative methods.

that it is an e�ective bootstrapping method. Examining more closely at this particular

method, Table 4.4 presents a very detailed set of results for each ranker using this

method, while Table 4.3 summarizes and shows that each ranker's performance using

this method gives an relative improvement of about 3.7% in MAP. The results show

that this method is e�ective for every ranker, even for the ranker PageRank which has

the worst performance in every experiment. The results also indicate that Random

Walk is able to reach a MAP of nearly 94% at the 10th iteration using only two super-

vised seeds. This performance is even better than the MAP of 93% achieved by SEAL

using the same number of web pages (i.e., 100) but more supervised seeds (i.e., 3) as

presented in Table 2.9.

The graphs show that Wrapper Length is also an e�ective ranking algorithm. It is

comparable to the baseline Wrapper Frequency in supervised mode and is always better

in the bootstrap mode. We want to emphasize that Wrapper Length is a very simple

and light-weight algorithm: unlike graph-based rankers, the memory space needed is

proportional only to the number of extracted candidate instances. Furthermore, the

results suggest that if many supervised seeds are available, then supervised expansion

60

4.5 Summary

using FSS is more preferable, but if only a few are available, then bootstrapping using

ISS is more preferable. In terms of rankers, both Bayesian Sets and Random Walk

are good choices for supervised expansion, and Random Walk is the best choice for

bootstrapping.

Since Google Sets is publicly available online, it is natural for us to examine the

performance of Google Sets using the iterative set expansion methods presented in this

paper. Google Sets returns a list of items without their con�dence scores; thus, we

assume each item has a weight of 1� r�1
jLj , where r is the rank and L is the ranked list.

This gives the �rst item a weight of one and the last item a weight close to zero. When

we accumulate statistics, we simply sum up the weights for every item. Figure 4.9

shows the performance of iterative set expansion using Google Sets. For the supervised

expansion, Google Sets shows a monotonic increase of performance for both FSS and

ISS; however, it shows no improvement for either bootstrapping method. As mentioned

earlier, bootstrapping is sensitive to a system's performance. Since Google Sets has a

base performance (the performance at the �rst iteration) of only about 34% in MAP

(SEAL has 90%), its top ranked items are often incorrect, causing errors to propagate

easily and worsening the results.

4.5 Summary

In this chapter, we have presented a system called Iterative SEAL (iSEAL) to examine

various iterative processes and seeding strategies using di�erent rankers for the problem

of set expansion. We have shown that the performance of SEAL can improve monoton-

ically if we bootstrap the results using ISS and rank the results using Random Walk

with Restart. By using this method and only two seeds, the �nal result (94%) is even

better than that of using three supervised seeds (with same amount of web pages) as

presented in Section 2.5 (93%). We have also shown that in supervised mode, Random

Walk is comparable to the best ranker (Bayesian Sets), but in bootstrap mode, Ran-

dom Walk is the best due to its robustness to noisy seeds. We have also presented a

simple and light-weight ranker, Wrapper Length, that shows good performance in most

experiments. From the experimental results, we have learned that if there are many

supervised seeds, then the best way to improve performance is by supervised expan-

sion using FSS. However, if there are only a few supervised seeds, then the best way

61

4. ITERATIVE SEAL

is by bootstrapping using ISS. In the future, we would like to investigate whether or

not bootstrapping with ISS will continue to improve the performance of Random Walk

monotonically after ten iterations. In addition, we would like to examine in detail the

reason why Random Walk performs well while PageRank performs poorly compared to

other rankers.

62

Chapter 5

Automatic Set Instance

Acquisition

5.1 Introduction

An important and well-studied problem is the production of semantic lexicons for classes

of interest; that is, the generation of all instances of a set (e.g., \apple", \orange",

\banana") given a name of that set (e.g., \fruits"). This task is often addressed by

linguistically analyzing very large collections of text [15, 17, 20, 26, 32], using hand-

constructed or machine-learned shallow linguistic patterns to detect hyponym instances.

A hyponym is a word or phrase whose semantic range is included within that of another

word. The opposite of hyponym is hypernym. For example, apple is a hyponym of fruits

and fruits is a hypernym of apple because apple is a (kind of) fruits. More formally, x

is a hyponym of y and y is a hypernym of x if x is a (kind of) y.

In this chapter, we evaluate a novel approach to this problem, embodied in a system

called ASIA1 (Automatic Set Instance Acquirer). ASIA takes a semantic class name as

input (e.g., \car makers") and automatically outputs instances (e.g., \ford", \nissan",

\toyota"). Unlike prior methods, ASIA makes heavy use of a web-based set expansion

system, speci�cally, the SEAL system. SEAL has been extended to be robust to er-

rors in its initial set of seeds, as described in Chapter 3, and to use bootstrapping to

iteratively improve its performance, as described in Chapter 4. These extensions allow

ASIA to extract instances of sets from the Web, as follows. First, given a semantic class

1http://rcwang.com/asia

63

5. AUTOMATIC SET INSTANCE ACQUISITION

Figure 5.1: Examples of ASIA's input and output. Input class for Chinese is \holidays"

and for Japanese is \dramas".

name (e.g., \fruits"), ASIA uses a small set of language-dependent hyponym patterns

(e.g., \fruits such as ") to �nd a large but noisy set of seed instances. Second, ASIA

uses the extended version of SEAL to expand the noisy set of seeds. Figure 5.1 illus-

trates some real example inputs and outputs of ASIA in English, Chinese, and Japanese

(more examples are shown in Table 5.8 and Figure 5.6 at the end of this chapter).

ASIA's approach is motivated by the conjecture that for many natural classes, the

amount of information available in semi-structured documents on the Web is much

larger than the amount of information available in free-text documents; hence, it is

natural to attempt to augment search for set instances in free-text with semi-structured

document analysis. We show that ASIA performs extremely well experimentally. On

the 36 benchmarks presented in Section 2.5.4, which are relatively small closed sets

(e.g., countries, constellations, NBA teams), ASIA has excellent performance for both

recall and precision. On four additional English-language benchmark problems (US

states, countries, singers, and common �sh), we compare to recent work by Kozareva,

Rilo�, and Hovy [20], and show comparable or better performance on each of these

benchmarks; this is notable because ASIA requires less information than the work of

Kozareva et al (their system requires a concept name and a seed). We also compare

ASIA on twelve additional benchmarks from the extended Wordnet 2.1 produced by

Snow et al [38], and show that for these twelve sets, ASIA produces more than �ve

times as many set instances with much higher precision (98% versus 70%).

64

5.1 Introduction

Figure 5.2: Flow chart of the ASIA system.

Figure 5.3: Examples of snippets, excerpts, and chunks.

Another advantage of ASIA's approach is that it is nearly language-independent:

since the underlying set-expansion tools are language-independent, all that is needed

to support a new target language is a new set of hyponym patterns for that language.

In this chapter, we present experimental results for Chinese and Japanese, as well as

English, to demonstrate this language-independence.

This chapter is organized as follows. Section 5.2 describes our related work, and

Section 5.3 explains our proposed approach for ASIA. Section 5.4 presents the details

of our experiments, as well as the experimental results. A comparison of results to

prior work are illustrated and discussed in Section 5.5. We summarize this chapter in

Section 5.6.

65

5. AUTOMATIC SET INSTANCE ACQUISITION

5.2 Related Work

There has been a signi�cant amount of research done in the area of semantic class learn-

ing (aka lexical acquisition, lexicon induction, hyponym extraction, or open-domain

information extraction). However, to the best of our knowledge, there is not a system

that can perform set instance extraction in multiple languages given only the name of

the set (e.g., Disney movies).

Hearst [17] presented an approach that utilizes hyponym patterns for extracting

candidate instances. The approach presented in Section 5.3.1 is based on this work,

except that we extended it to two other languages: Chinese and Japanese. Pantel et

al. [32] presented an algorithm for automatically inducing names for semantic classes

and for �nding their instances by using \concept signatures" (statistics on co-occuring

instances). Pasca [26] presented a method for acquiring named entities in arbitrary

categories using lexico-syntactic extraction patterns. Etzioni et al. [15] presented

the KnowItAll system that also utilizes hyponym patterns to extract class instances

from the Web. All the systems mentioned above rely on either capitalization, English

tokenizers, English part-of-speech taggers, and/or English parsers; hence, they are

language-dependent.

Kozareva et al [20] illustrated an approach that uses a single hyponym pattern

combined with graph structures to learn semantic class from the Web. Section 5.5.1

shows that our approach is competitive experimentally; however, their system requires

more information, as it uses the name of the semantic set and a seed instance.

Pa�sca [27, 28] illustrated a set expansion approach that extracts instances from

Web search queries given a set of input seed instances. This approach is similar in

avor to SEAL but, addresses a di�erent task from that addressed here: for ASIA the

user provides no seeds, but instead provides the name of the set being expanded. We

compare to Pa�sca's system in Section 5.5.2.

Snow et al. [38] use known hypernym/hyponym pairs to generate training data

for a machine-learning system, which then learns many lexico-syntactic patterns. The

patterns learned are based on English-language dependency parsing. We compare to

Snow et al's results in Section 5.5.4.

66

5.3 Proposed Approach

5.3 Proposed Approach

ASIA is composed of three main components: the Noisy Instance Provider, the Noisy

Instance Expander, and the Bootstrapper. Given a semantic class name, the Provider

extracts a initial set of noisy candidate instances using hand-coded patterns, and ranks

the instances by using a simple ranking model. The Expander expands and ranks the

instances using evidence from semi-structured web documents, such that irrelevant ones

are ranked lower in the list. The Bootstrapper enhances the quality and completeness

of the ranked list by using an unsupervised iterative technique. The architecture of

ASIA is shown in Figure 5.2. Note that the Expander and Bootstrapper rely on SEAL

to accomplish their goals. In this section, we �rst describe the Noisy Instance Provider,

then the Noisy Instance Expander, followed by the Bootstrapper.

5.3.1 Noisy Instance Provider

The Noisy Instance Provider extracts candidate instances from free text (i.e., search en-

gine results) using the methods presented in Hearst's early work [17]. Hearst exploited

several patterns for identifying hyponymy relation (e.g., \such author as Shakespeare")

that are implemented in many current state-of-the-art systems [15, 20, 26, 32]. How-

ever, unlike all of those systems, ASIA does not use any NLP tool (e.g., parts-of-speech

tagger, parser) or rely on capitalization for extracting candidates (since we wanted

ASIA to be as language-independent as possible). This leads to sets of instances that

are very noisy; however, we will show that set expansion and re-ranking can improve

the initial sets dramatically. Below, we will refer to the initial set of noisy instances

extracted by the Provider as the initial set.

In more detail, the Provider �rst constructs a few queries of hyponym phrases by

using a semantic class name and a set of pre-de�ned hyponym patterns, which are shown

in Figure 5.4. For example, when given the semantic class name \periodic comets", the

queries are as follows:

67

5. AUTOMATIC SET INSTANCE ACQUISITION

Figure 5.4: Hyponym patterns in English, Chinese, and Japanese. In each pattern, <C>

is a placeholder for the semantic class name and <I> is a placeholder for a list of instances.

1. \periodic comets such as"

2. \such periodic comets as"

3. \periodic comets i.e."

4. \periodic comets e.g."

5. \periodic comets including"

6. \periodic comets like"

7. \and other periodic comets"

8. \or other periodic comets"

Below, we refer to each of the search results as a snippet, each of the phrases

delimited by \. . . " in a snippet as an excerpt, and each sequence of characters bounded

by punctuation marks or the beginning and end of an excerpt as a chunk. Figure 5.3

illustrates examples of snippets, excerpts, and chunks.

For every query, the Provider retrieves two hundred snippets from Yahoo!, and

parses each snippet into a structured format containing elements such as the title, page

URL, and list of excerpts (a snippet often contains multiple continuous excerpts from

its web page). For each excerpt, the Provider uses a regular-expression pattern, which

speci�es the allowable characters in a particular language, to extract all chunks in that

language. These chunks will then be used as candidate instances. Lastly, the Provider

ranks each candidate instance c based on its weight assigned by the simple ranking

model presented below:

weight(c) =
hf (c;H)

jHj
�
sf (c;S)

jSj
�
ef (c;E)

jEj
�
wcf (c;E)

jCj

where H is the set of hyponym patterns, S the set of snippets, E the set of excerpts,

68

5.3 Proposed Approach

and C the set of chunks. The function hf (c;H) is the hyponym pattern frequency of c

(i.e., the number of hyponyn patterns inducing c), the function sf (c;S) is the snippet

frequency of c (i.e., the number of snippets containing c), and ef (c;E) is the excerpt

frequency of c (i.e., the number of excerpts containing c). Furthermore, wcf (c;E) is

the weighted chunk frequency of c, which is de�ned as follows:

wcf (c;E) =
X
e2E

X
c2e

1

dist(c; e) + 1

where dist(c; e) is the number of characters between c and the hyponym phrase in

excerpt e. This model weights every occurrence of c based on the assumption that

chunks closer to a hyponym phrase are usually more important than those further

away. It also heavily rewards frequency, as our assumption is that the most common

instances will be more useful as seeds for SEAL.

As shown in Figure 5.4, there are two types of hyponym patterns: The �rst type are

the ones that require the class name C to precede its instance I (e.g., C such as I), and

the second type are the opposite ones (e.g., I and other C). In order to reduce irrelevant

chunks, when excerpts were extracted, the Provider drops all characters preceding the

hyponym phrase in excerpts that contain the �rst type, and also drops all characters

following the hyponym phrase in excerpts that contain the second type. For some

semantic class names (e.g., \cmu buildings"), there are no web documents containing

any of the hyponym-phrase queries that were constructed using the name. In this case,

the Provider turns to a back-o� strategy which simply treats the semantic class name

as the hyponym phrase, and then extracts and ranks all chunks co-occurring with the

class name in the excerpts.

Below, we show the top 20 chunks extracted and ranked by the Provider when given

the input semantic class name \periodic comets". Note that the ones that exist in our

evaluation dataset are marked with a `+'. Although the entire ranked list is very noisy

and has a low mean average precision of mere 2%, our noise-resistant set expansion

approach, described in the next section, will improve the quality of this list.

1. +Halley
2. �Comet Halley are seen to orbit on a regular path
3. �Halley's Comet once followed a much
4. +Wild 2
5. �this one are doomed to disintegrate

69

5. AUTOMATIC SET INSTANCE ACQUISITION

6. �die
7. �but without showing a cometary coma
8. +Tempel-Swift-LINEAR
9. �Comet Encke
10. +Neujmin
11. �but their periods are extremely long
12. �studying comet P
13. +Shoemaker-LINEAR
14. +Tempel 1
15. �McNaught P
16. �this one are doomed to
17. �R2
18. �Lagerkvist
19. �originate
20. �which moves in an elongated ellipse

5.3.2 Noisy Instance Expander

Chapter 3 illustrated that it is feasible to perform set expansion on noisy input seeds. It

also showed that the noisy output of any Question Answering system for list questions

can be improved by using a noise-resistant version of SEAL (An example of a list

question is \Who were the husbands of Heddy Lamar?"). However, unlike in the

Question Answering task, here we have an additional piece of information, that is,

the semantic class name of the desired list. This information allows us to use a more

e�cient approach for the Expander to expand noisy seeds.

The Expander performs set expansion on a collection of two hundred web pages.

This collection is fetched by sending one single query to Google and Yahoo! (each

returns one hundred pages); instead of
�
n
2

�
queries as done by the noise-resistant SEAL.

The query is composed of the input class name and a concatenated string of list words

(i.e, words that often co-occur with list-containing pages) for discovering web pages

that might contain lists of the input class. The table below shows the set of list words

we use in our experiments.

For example, when given the semantic class name \periodic comets", the search query

would be the following:

70

5.3 Proposed Approach

\periodic comets" (list OR names OR top OR best OR hot OR popular OR famous OR common)

The Expander expands the top 20 instances in the initial set, using a variant of

the noise-resistant set expansion approach described in Section 3.3.2. The previously-

described approach, referred to as NE1, requires the contexts to bracket at least one

instance of a minimum of two seeds per web page. However, this variant, referred to

as NE2, requires the common contexts that bracket the largest number of unique seeds

to be as long as possible per web page. More speci�cally, given some seeds S and a

document d, �nds all wrappers w such that all the following are true:

1. w covers seeds Sw in d where Sw 2 S and jSwj � 2

2. :9w0: w0 covers seeds Sw0 in d where jSw0 j > jSwj

3. :9w0: w0 covers seeds Sw in d where jw0j > jwj

This approach favors the coverage of wrappers; thus, although we observed that the

length of the constructed wrappers are generally shorter, we will show later that they

are actually more e�ective. The idea is based on the assumption that irrelevant in-

stances usually do not have common contexts; whereas relevant ones do. Both NE1

and NE2 were implemented using the trie-based method described in Section 2.3.2. The

ranking method used by the Expander is Random Walk with Restart [43], described in

Section 2.4.3, which was also shown to be the most robust to noisy seeds in Figure 4.4.

In our experimental results, we show that the performance of NE2 is better than NE1

on our evaluation datasets.

Below, we show the top 20 instances produced by the Expander when using as

seeds the top 20 instances extracted by the Extractor on the input class name \periodic

comets". Note that the ones that exist in our evaluation dataset are marked with a

`+', and the mean average precision of the entire ranked list is 74% (compared to the

previous 2%).

1. +Halley 11. +Biela
2. +Encke 12. �Hale-Bopp
3. +Wild 2 13. +Grigg-Skjellerup
4. +Borrelly 14. +Wirtanen
5. +Tempel 1 15. �Hyakutake
6. +Kohoutek 16. +Crommelin
7. +Churyumov-Gerasimenko 17. +Holmes

71

5. AUTOMATIC SET INSTANCE ACQUISITION

8. +Tuttle 18. +Tempel-Tuttle
9. +Giacobini-Zinner 19. +Chiron
10. +Whipple 20. +Peters-Hartley

5.3.3 Bootstrapper

Bootstrapping [15, 19, 25] is an unsupervised iterative process in which a system con-

tinuously consumes its own outputs to improve its own performance. Chapter 4 showed

that it is feasible to bootstrap the results of set expansion to improve the quality of

a list. The chapter introduces an iterative version of SEAL called iSEAL, which ex-

pands a list in multiple iterations. In each iteration, iSEAL expands a few candidates

extracted in previous iterations and aggregates statistics. The Bootstrapper utilizes

iSEAL to further improve the quality of the list returned by the Expander.

The Bootstrapper con�gures iSEAL to bootstrap with increasing seed size, as de-

tailed in Section 4.2.2.2. Recall that this seeding strategy starts with an empty set of

previously used seeds. However, since we want ASIA to run as fast as possible, used

was initialized to contain instances extracted by both the Extractor and the Expander

because we observed that those overlapping instances have high precision. Also, this

method starts by expanding four randomly-chosen instances from used, rather than two

(supervised) seeds. For every successive iteration, it expands three randomly-chosen in-

stances from used and one top (unsupervised) instance from the last iteration. However,

there is one limitation on this top instance { it must also be in the initial set extracted

by the Extractor in order to minimize the chance of selecting irrelevant instances to be

used as seeds.

At every iteration, this bootstrapping method retrieves one hundred pages from

Yahoo! by submitting a four-seed query, which is the number of seeds that maximizes

set expansion performance, as shown in Table 4.1. In order to keep the overall runtime

minimal, the iterative expansion process terminates when all possible seed combinations

have been consumed or �ve iterations have been reached, whichever comes �rst. Notice

that from iteration to iteration, statistics are aggregated by growing the graph originally

constructed by the Expander. We perform Random Walk on this graph to determine

the �nal ranking of the extracted instances.

When given the semantic class name \periodic comets", the used seed set was

initialized to contain the following intersected instances: Halley, Wild 2, Encke, and

72

5.4 Experimental Results

Figure 5.5: The 36 datasets and their semantic class names used as inputs to ASIA in

our experiments.

Kohoutek, which are all correct periodic comets. After bootstrapping, the quality of

the ranked list improved from 74% to 86% in mean average precision.

5.4 Experimental Results

We evaluate our proposed approach using the 36 evaluation datasets described in

Section 2.5.4 and the evaluation metric { Mean Average Precision presented in Sec-

tion 2.5.5. For each semantic class in our datasets, we take its corresponding class

name from the table shown in Figure 5.5 and provide the name to the Provider. The

Provider then produces a noisy list of candidate instances, which is then expanded by

the Expander and further improved by the Bootstrapper.

We present our experimental results in Table 5.3. As illustrated, NE2 performs

better than NE1 on our datasets, scoring 91% in MAP; whereas NE1 scored 84%.

Although the Provider performs badly, NE2 substantially improves the quality of the

initial list. On average, NE2 improves the performance of the Provider from 41% to 87%

for English, 26% to 92% for Chinese, and 17% to 95% for Japanese. In addition, the

results illustrate that the Bootstrapper is also e�ective. It improves the performance

of NE1 from 84% to 88% in overall average and the performance of NE2 from 91% to

93%. It even directly improves the performance of the Provider from 41% to 79% for

English, 26% to 40% for Chinese, and 17% to 35% for Japanese.

The simple back-o� strategy seems to be e�ective as well. There are two datasets

73

5. AUTOMATIC SET INSTANCE ACQUISITION

NP NP NP NP NP

English Dataset NP +BS +NE1 +NE1+BS +NE2 +NE2+BS

disney-movies 0.24 0.82 0.63 0.40 0.82 0.87

constellations 0.33 1.00 1.00 1.00 1.00 1.00

countries 0.64 0.97 0.97 0.97 0.99 0.98

mlb-teams 0.65 1.00 1.00 1.00 1.00 1.00

nba-teams 0.51 0.88 0.88 1.00 1.00 1.00

n-teams 0.69 1.00 1.00 1.00 1.00 1.00

car-makers 0.45 0.98 0.94 0.96 0.98 0.98

us-presidents 0.38 1.00 0.92 1.00 1.00 1.00

us-states 0.89 1.00 1.00 1.00 1.00 1.00

cmu-buildings 0.00 0.00 0.00 0.00 0.00 0.00

diseases 0.10 0.84 0.72 0.72 0.89 0.87

periodic-comets 0.02 0.00 0.38 0.38 0.74 0.86

Average 0.41 0.79 0.79 0.79 0.87 0.88

Chinese Dataset NP +BS +NE1 +NE1+BS +NE2 +NE2+BS

disney-movies 0.09 0.00 0.65 0.90 0.89 0.95

constellations 0.19 0.20 0.90 0.77 0.88 0.90

countries 0.36 0.86 0.56 0.93 0.82 0.89

mlb-teams 0.02 0.00 1.00 1.00 1.00 1.00

nba-teams 0.16 0.00 0.93 1.00 0.94 1.00

n-teams 0.05 0.00 0.93 0.68 0.98 0.96

car-makers 0.09 0.80 0.51 0.88 0.86 0.95

us-presidents 0.20 0.00 0.88 0.95 0.94 0.94

us-states 0.66 0.95 0.99 1.00 1.00 1.00

china-dynasties 0.06 0.00 0.80 0.78 0.74 0.86

china-provinces 0.72 0.94 0.89 0.98 1.00 1.00

taiwan-cities 0.50 1.00 1.00 1.00 1.00 1.00

Average 0.26 0.40 0.84 0.91 0.92 0.95

Japanese Dataset NP +BS +NE1 +NE1+BS +NE2 +NE2+BS

disney-movies 0.12 0.65 0.51 0.78 0.72 0.74

constellations 0.10 0.01 1.00 0.95 1.00 1.00

countries 0.28 0.95 0.97 0.98 0.98 0.98

mlb-teams 0.07 0.99 0.97 1.00 0.97 1.00

nba-teams 0.06 0.00 1.00 1.00 0.99 1.00

n-teams 0.04 0.00 0.92 0.92 0.92 0.92

car-makers 0.33 0.67 0.62 0.84 0.88 0.90

us-presidents 0.08 0.00 0.87 0.92 0.90 0.90

us-states 0.29 0.14 1.00 1.00 1.00 1.00

japan-emperors 0.07 0.00 1.00 1.00 1.00 1.00

japan-prime-mins 0.26 0.38 0.94 0.97 0.99 0.99

japan-provinces 0.37 0.42 1.00 1.00 1.00 1.00

Average 0.17 0.35 0.90 0.95 0.95 0.95

Overall Average 0.28 0.51 0.84 0.88 0.91 0.93

Table 5.3: Performance (MAP) of various system con�gurations for each dataset, where

NP is the Noisy Instance Provider and BS is the Bootstrapper. NE1 is the Noisy In-

stance Expander that implements the noise-resistant expansion approach described in Sec-

tion 3.3.2, and NE2 is a variant of NE1.

74

5.5 Comparison to Prior Work

(i.e., English \cmu-buildings" and Japanese \n-teams") for which their hyponym

phrases return no web documents. For those datasets, ASIA automatically uses the

back-o� strategy described in Section 5.3.1. This strategy failed for \cmu-buildings"

but works for \n-teams"; it scored 4% on this dataset, which is further improved to

92%.

5.5 Comparison to Prior Work

In this section, we compare the best-con�gured ASIA (NP+NE2+BS) against �ve other

published works.

5.5.1 Kozareva et al., 2008

Kozareva et al. [20] present an approach to weakly supervised semantic class learning

from search engine snippets, using a single hyponym pattern (i.e., CLASS NAME such

as INSTANCE and ?) combined with graph structures. They developed algorithms that

begin with just a class name and one seed instance and then automatically generate a

ranked list of new instances. In their extractor, for proper instance names, they extract

all capitalized words that immediately follow their learned patterns, but for common

noun instances, they extract just one word if it is not capitalized.

They report results on four semantic classes: US states, countries, singers, and

common �sh. We evaluated our results on those four classes automatically except for

singers, which we evaluated manually because we do not have a complete list of all

singers in the world. We used a list of common �sh from the Wikipedia1, which is also

used by Kozareva et al. The results indicate that ASIA outperforms theirs for all four

datasets that they reported. Note that the input to their system is a semantic class

name plus one seed instance; whereas, the input to ASIA is only the class name. In

terms of system runtime, for each semantic class, they reported that their extraction

process usually �nished overnight; however, ASIA usually �nished within a minute

running on a single CPU machine.

If ASIA was provided with a semantic class name and a seed instance, like the

system in Kozareva et al., then ASIA could utilize the seed instance in two ways {

a simple and a complicated way. The simple way is for the Expander to �lter out

1http://en.wikipedia.org/wiki/List_of_fish_common_names

75

http://en.wikipedia.org/wiki/List_of_fish_common_names

5. AUTOMATIC SET INSTANCE ACQUISITION

N Kozareva ASIA N Kozareva ASIA

US States Countries

25 1.00 1.00 50 1.00 1.00

50 1.00 1.00 100 1.00 1.00

64 0.78 0.78 150 1.00 1.00

200 0.90 0.93

300 0.61 0.67

323 0.57 0.62

Singers Common Fish

10 1.00 1.00 10 1.00 1.00

25 1.00 1.00 25 1.00 1.00

50 0.97 1.00 50 1.00 1.00

75 0.96 1.00 75 0.93 1.00

100 0.96 1.00 100 0.84 1.00

150 0.95 0.97 116 0.80 1.00

180 0.91 0.96

Table 5.4: Set instance extraction performance compared to Kozareva et al. We report

our precision for all semantic classes and at the same ranks reported in their work.

wrappers that did not extract the seed instance. The complicated way is to modify

the wrapper construction algorithm in the Expander, such that every newly extracted

instance must also occur in the same (left and right) contexts as the seed instance.

5.5.2 Pa�sca, 2007b

Pa�sca [28] present a set expansion approach from web search queries given a small

set of seed named entities, which is the same interface as SEAL. Nevertheless, we

will compare his system against ASIA, which requires less information than SEAL and

their approach. The show that search queries are highly valuable resource for web-based

named entity discovery. Their extraction method consists of �ve stages: identi�cation

of query templates that match the seed instances; identi�cation of candidate instances;

internal representation of candidate instances and seed instances; and instance ranking.

The input to their experiments is a random sample of around 50 million unique, fully-

anonymized queries in English submitted by users to the Google search engine in 2006.

We compare our system ASIA against Pa�sca and present comparison results in

Table 5.5. There are 10 semantic classes in his evaluation datasets. We input to ASIA

each of the class names shown in the left-most column of Table 5.5, and we manually

76

5.5 Comparison to Prior Work

evaluated every output instance from ASIA for each class (except for countries, which

was done automatically). The results show that ASIA has higher precision at each rank

reported in his work. For instance, ASIA has perfect precision at rank 50; whereas,

his system achieves 97%. At rank 250, ASIA achieves an average of 93% precision;

whereas, his system achieves 80%.

Precision @

Class Name System 25 50 100 150 250

Cities Pasca 1.00 0.96 0.88 0.84 0.75

ASIA 1.00 1.00 0.97 0.98 0.96

Countries Pasca 1.00 0.98 0.95 0.82 0.60

ASIA 1.00 1.00 1.00 1.00 0.79

Drugs Pasca 1.00 1.00 0.96 0.92 0.75

ASIA 1.00 1.00 1.00 1.00 0.98

Food Pasca 0.88 0.86 0.82 0.78 0.62

ASIA 1.00 1.00 0.93 0.95 0.90

Locations Pasca 1.00 1.00 1.00 1.00 1.00

ASIA 1.00 1.00 1.00 1.00 1.00

Newspapers Pasca 0.96 0.98 0.93 0.86 0.54

ASIA 1.00 1.00 0.98 0.99 0.85

Universities Pasca 1.00 1.00 1.00 1.00 0.99

ASIA 1.00 1.00 1.00 1.00 1.00

Movies Pasca 0.92 0.90 0.88 0.84 0.79

Comedy Movies ASIA 1.00 1.00 1.00 1.00 1.00

People Pasca 1.00 1.00 1.00 1.00 1.00

Jazz Musicians ASIA 1.00 1.00 1.00 0.94 0.88

Video Games Pasca 1.00 1.00 0.99 0.98 0.98

PSP Games ASIA 1.00 1.00 1.00 0.99 0.97

Pasca 0.98 0.97 0.94 0.90 0.80

Average ASIA 1.00 1.00 0.99 0.98 0.93

Table 5.5: Set instance extraction performance compared to Pasca. We report our preci-

sion for all semantic classes and at the same ranks reported in his work.

However, we should emphasize that for the last three classes: movie, person, and

video game, ASIA did not initially produce the correct instance list given the most

natural concept name. The input and (top 3) output from ASIA on those three classes

are shown below:

77

5. AUTOMATIC SET INSTANCE ACQUISITION

Movies: Comedy, Action, Drama, . . .

People: Musicians, Artists, Politicians, . . .

Video Games: PSP, Xbox, Wii, . . .

We addressed this problem by simply re-running ASIA with the �rst-returned class

name (i.e., \Comedy Movies", \Musicians", and \PSP Games"). However, \Musicians"

then returned \Jazz", \Rock", \Pop", and other kinds of music genres; thus, we re-ran

ASIA with the �rst-returned class again (i.e., \Jazz Musicians"). The result suggests

that future work is needed to support automatic construction of hypernym hierarchy

using semi-structured web documents.

5.5.3 Van Durme & Pa�sca, 2008 and Talukdar et al., 2008

Van Durme and Pa�sca [14] present a method for extracting large numbers of seman-

tic classes along with their corresponding instances, based on the recombination of

elements clustered through distributional similarity. The input to their algorithm is

a large collection of pairs of class names and instances. They claim that this collec-

tion can be extracted using pattern-based methods such as those presented by Hearst

[17]. Their experiments relied on the unstructured text available within a collection

of approximately 100 million web documents in English, available in a Web repository

snapshot from 2006 maintained by Google. The documents were cleaned of HTML,

tokenized, split into sentences, and part-of-speech tagged using the TnT tagger [3].

Talukdar et al. [42] present a graph-based semi-supervised label propagation al-

gorithm called \Adsorption" for acquiring open-domain labeled classes and their in-

stances from a combination of unstructured and structured text sources. They con-

struct a graph where each node represent either an instance or a class, and an edge

exist between an instance node and a class node if the instance belongs to that class.

The Adsorption label propagation algorithm is then applied to that graph to label all

nodes based on the graph structure, ultimately producing a probability distribution

over classes for each instance node. The unstructured text that they utilize was the

web documents prepared and used by Van Durme & Pa�sca, and the structured text

was the WebTables { a large database of 154 million HTML tables mined from the web

[6]. Note that Adsorption requires inputs of a class name and several seed instances

(�ve seeds per class were used in their experiments).

78

5.5 Comparison to Prior Work

We compare ASIA against both Van Durme and Talukdar's systems on �ve classes

randomly selected by Talukdar et al. from Van Durme's extraction outputs. Those

classes are: Book Publishers, Federal Agencies, NFL Players, Scienti�c Journals, and

Mammals. We present precision at rank 100 on the outputs from all three systems in

Table 5.6 presented below:

Precision at 100

Talukdar et al., Van Durme & ASIA

Class Names 2008 Pa�sca, 2008

Book Publishers 0.89 0.87 1.00

Federal Agencies 0.34 0.52 0.98

NFL Players 0.95 1.00 1.00

Scienti�c Journals 0.91 0.94 1.00

Mammals 0.86 1.00 0.98

Average 0.79 0.87 0.99

Table 5.6: Precision at rank 100 for all three systems (i.e., Talukdar et al., Van Durme

& Pa�sca, and ASIA) on �ve semantic classes.

Although the only input to ASIA is a class name, the results show that ASIA outper-

forms the other two systems, achieving an average precision of 99%, while Van Durme's

system achieved 87% and Talukdar's system achieved 79%. Notice that the aims of

ASIA and their work are di�erent. ASIA focuses on extracting instances of a particu-

lar given semantic class by analyzing only documents (a subset of the web) that contain

the seed words. However, in their work, they scan through every document on the web

and extract instances of every semantic class identi�able by their extraction patterns.

5.5.4 Snow et al., 2006

Snow [38] propose an approach that incorporates evidence from multiple classi�ers over

heterogenous relationships to optimize the entire structure of semantic taxonomies, us-

ing knowledge of a word's coordinate terms to help in determining its hypernyms. They

apply the algorithm on the problem of sense-disambiguated noun hyponym acquisition,

where they combine the predictions of hypernym and coordinate term classi�ers with

the knowledge in a pre-existing semantic taxonomy { WordNet 2.1. They extended

the WordNet by adding 10,000 entries (synsets) at a relatively high precision of 84%.

79

5. AUTOMATIC SET INSTANCE ACQUISITION

They have made several versions of the extended WordNet available1. For comparison

purposes, we selected the version (+30K) that achieved the best F-score (30.9%) in

their experiments.

Snow (+30k) Rel. ASIA Rel.

Class Name #R. #W. Prec. Rec. #R. #W. Prec. Rec.

Film Directors 4 4 0.50 0.01 457 0 1.00 1.00

Manias 11 0 1.00 0.09 120 0 1.00 1.00

Canadian Provinces 10 82 0.11 1.00 10 3 0.77 1.00

Signs of the Zodiac 12 10 0.55 1.00 12 0 1.00 1.00

Roman Emperors 44 4 0.92 0.47 90 0 1.00 0.96

Academic Departments 20 0 1.00 0.67 27 0 1.00 0.90

Choreographers 23 10 0.70 0.14 156 0 1.00 0.94

Elected O�cials 5 102 0.05 0.31 12 0 1.00 0.75

Double Stars 11 1 0.92 0.46 20 0 1.00 0.83

South American Countries 12 1 0.92 1.00 12 0 1.00 1.00

Prize�ghters 16 4 0.80 0.23 63 1 0.98 0.89

Newspapers 20 0 1.00 0.23 71 0 1.00 0.81

Average 15.7 18.2 0.70 0.47 87.5 0.3 0.98 0.92

Table 5.7: A comparison of number of (R)ight and (W)rong instances, precision, and

relative recall between Snow's Wordnet (+30k) and ASIA.

For the experimental comparison, we focused on leaf semantic classes from the

extended WordNet that have many hyponyms, so that a meaningful comparison could

be made: speci�cally, we selected nouns that have at least three hyponyms, such that

the hyponyms are the leaf nodes in the hypernym hierarchy of WordNet. Of these, 210

were extended by Snow. Preliminary experiments showed that (as in the experiments

with Pasca's classes above) ASIA did not always extracted instances of the intended

meaning; to avoid this problem, we instituted a second �lter, and discarded ASIA's

results if the intersection of hyponyms from ASIA and WordNet constituted less than

half of those in WordNet. About 50 of the 210 nouns passed this �lter. Finally, we

manually evaluated precision and recall of a randomly selected set of twelve of these 50

nouns.

We present the results in Table 5.7. We use a cut-o� threshold of 0.26 based on the

threshold trained by 5-fold cross validations on TREC 13-15 presented in Table 3.5 in

1http://ai.stanford.edu/~rion/swn/

80

http://ai.stanford.edu/~rion/swn/

5.6 Summary

order to truncate the ranked list produced by ASIA, so that we can compute precision.

Since only a few of these twelve nouns are closed sets, we cannot generally compute

recall; instead, we de�ne relative recall to be the ratio of correct instances to the union

of correct instances from both systems. As shown in the results, ASIA has much

higher precision (98% vs. 70%), and much higher relative recall (92% vs. 47%). When

we evaluated Snow's extended WordNet, we assumed all instances that were in the

original WordNet are correct (even though some are not). The three incorrect Canadian

provinces from ASIA are actually the three Canadian territories, and the one incorrect

prize�ghter is \World Boxing Council".

5.6 Summary

In this chapter, we have shown that ASIA, a SEAL-based system, extracts set in-

stances with high precision and recall in multiple languages given only the set name.

It obtains a high MAP score (93%) averaged over 36 benchmark problems in three lan-

guages (Chinese, Japanese, and English). ASIA's approach is based on web-based set

expansion using semi-structured documents, and is motivated by the conjecture that

for many natural classes, the amount of information available in semi-structured docu-

ments on the Web is much larger than the amount of information available in free-text

documents. This conjecture is given some support by our experiments: for instance,

ASIA �nds 457 instances of the set \�lm director" with perfect precision, whereas Snow

et al's state-of-the-art methods for extraction from free text extract only four correct

instances, with only 50% precision.

ASIA's approach is also quite language-independent. By adding a few simple hy-

ponym patterns, we can easily extend the system to support other languages. We have

also shown that Hearst's method works not only for English, but also for other lan-

guages such as Chinese and Japanese. We note that the ability to construct semantic

lexicons in diverse languages has obvious applications in machine translation. We have

also illustrated that ASIA outperforms �ve other English systems [14, 20, 28, 38, 42],

even though many of these use more input than just a semantic class name. In ad-

dition, ASIA is also quite e�cient, requiring only a few minutes of computation and

couple hundreds of web pages per problem. The ability to construct semantic lexicons

in diverse languages has obvious applications in machine translation. In the future,

81

5. AUTOMATIC SET INSTANCE ACQUISITION

we plan to investigate the possibility of constructing hypernym hierarchy automati-

cally using semi-structured documents. We also plan to explore whether lexicons can

be constructed using only the back-o� method for hyponym extraction, to make ASIA

completely language independent. We also wish to explore whether performance can be

improved by simultaneously �nding class instances in multiple languages (e.g., Chinese

and English) while learning translations between the extracted instances.

82

5.6 Summary

Time Travel Movies Simpsons Characters Nobel Prize Winners

the time machine marge simpson nelson mandela

back to the future krusty the clown woodrow wilson

time bandits bart simpson albert schweitzer

somewhere in time lisa simpson mother teresa

peggy sue got married homer simpson elie wiesel

time after time ralph wiggum mikhail gorbachev

millennium ned anders jimmy carter

frequency maggie simpson desmond tutu

the �nal countdown comic book guy linus pauling

timeline waylon smithers theodore roosevelt

donnie darko kent brockman willy brandt

the terminator apu nahasapeemapetilon aung san suu kyi

the philadelphia experiment carl carlson amnesty international

terminator chief wiggum elihu root

planet of the apes milhouse van houten yitzhak rabin

lost in space nelson muntz menachem begin

groundhog day groundskeeper willie henry kissinger

kate and leopold barney gumble shimon peres

ight of the navigator montgomery burns cordell hull

timecop sideshow bob shirin ebadi

buttery e�ect lenny leonard frank b. kellogg

happy accidents hans moleman andrei sakharov

army of darkness moe szyslak fridtjof nansen

time machine martin prince arthur henderson

star trek iv: the voyage home edna krabappel wangari maathai

black knight lionel hutz norman borlaug

freejack abraham simpson kim dae jung

apes troy mcclure carl von ossietzky

deja vu professor frink henri la fontaine

terminator 2: judgment day seymour skinner yasser arafat

Table 5.8: Real example inputs and outputs from ASIA in English.

83

5. AUTOMATIC SET INSTANCE ACQUISITION

Figure 5.6: Real example inputs and outputs of ASIA in Japanese and Chinese. From

left to right, the semantic class names are \Dramas", \Animations", \Tainan Small Eats",

and \Attractions".

84

Chapter 6

Bilingual SEAL

6.1 Introduction

Bootstrapping is an iterative process for a system to continuously improve its own per-

formance by utilizing its own outputs. As illustrated by our Iterative SEAL, or iSEAL,

in Chapter 4, bootstrapping may perform poorly if incorrect candidate instances are

chosen and used as seeds. In this chapter, we propose an approach that utilizes redun-

dant information to minimize the chance of choosing incorrect candidate instances, and

thus improving the overall performance. We introduce an extended version of SEAL

called Bilingual SEAL, which expands two sets of instances alternately by using two

separate instances of iSEAL. Both sets represent the same semantic class but each in

a di�erent human language (e.g., Disney movies in English and Chinese). To verify

the correctness of a candidate instance in one language (e.g., English), we translate the

instance to another language (e.g., Chinese) and ensure that its translation also exists

in the expanded set of that language (e.g., Chinese).

In this chapter, we describe our proposed approach in Section 6.2 and our translation

method in Section 6.3. In Section 6.4, we explain our experiments and present our

experimental results. We summarize this chapter in Section 6.5.

6.2 Proposed Approach

We con�gure iSEAL to bootstrap with increasing seed size (ISS) using Random Walk

[43], described in Section 2.4.3, because this con�guration has been shown experimen-

tally to be most robust to noisy seeds as illustrated in Figure 4.4. Our proposed

85

6. BILINGUAL SEAL

Figure 6.1: An illustration of our proposed approach.

approach requires an input of two seeds in one language `1 and two seeds in another

language `2 where both pairs of seeds are instances of the same semantic class (e.g.,

Disney movies). We bootstrap the two input pairs of seeds separately and alternately;

thus, the �rst iteration expands seeds in `1, the second expands seeds in `2, third ex-

pands seeds in `1, and so on. At every iteration, in order to choose a candidate instance

to be used as the new seed for the current ith iteration, we choose an instance from

(i � 2)th iteration, whose translation exist in (i � 1)th iteration, by utilizing a named

entity translator which is described in the next section. The basic idea is that we want

to ensure that the instance we choose as the new seed exists in one expanded set while

its translation exists in another. Note that each expansion for a language extends the

graph previously constructed for that language only; so there will only be two graphs

that expand alternately. At the end, there will be two expanded sets of instances, each

in a di�erent language.

Figure 6.1 illustrates an example of our approach. Suppose a user issues a two-seed

query, s1 and s2, in one language as well as a two-seed query, t1 and t2, in another

language, we �rst expand s1 and s2 to obtain a ranked list S1 and also expand t1 and t2

to obtain a ranked list T1. As we traverse down list S1, we translate every encountered

86

6.3 Named Entity Translation

Figure 6.2: Examples of snippets, excerpts, and chunks.

instance until we �nd an instance whose top-three translations exist in top-half of T1.

In the example, s4 is found to have a translation in T1 (i.e., t3); so it is used as the

new seed for the third expansion to obtain S2. Now, this time we traverse down T1 to

�nd an instance whose top-three translations exist in top-half of S2. In the example,

t6 is found to have a translation in S2 (i.e., s6); so it is used as the new seed for the

fourth expansion to obtain T2, and so on. These procedures are repeated until no new

instances emerge or until a �xed number of expansions has been reached.

6.3 Named Entity Translation

It is not trivial to automatically translate named entities since new names emerge all the

time. In this section, we introduce a component in the Bilingual SEAL called Automatic

Named Entity Translator (ANET), which automatically discovers the translation of

any given name using the Web. This is achieved by identifying words in the target

language that frequently and closely co-occur with the words in the source language

from bilingual search results returned by Yahoo! search engine. ANET's approach is

language-independent because it does not require any language-speci�c transliteration

models. However, its performance would su�er substantially if the character sets of

the source and target language are not disjoint (e.g., Chinese and Japanese) because it

cannot easily distinguish the language of a candidate name.

Below, we refer to each of the search results as a snippet, each of the sentences

87

6. BILINGUAL SEAL

Figure 6.3: Flow chart of the ANET system.

delimited by \. . . " in a snippet as an excerpt, and each sequence of characters bounded

by punctuation marks or foreign-language words as a chunk. These notions has been

introduced in Section 5.3.1 and illustrated by Figure 5.3, but for convenience, we include

the same �gure here as Figure 6.2. In addition, we denote a name in the source language

as s and the translation of the name in the target language as t.

Figure 6.3 illustrates the architecture of ANET, which follows the procedures de-

scribed below:

1. Send s as a query to Yahoo! and request documents written in the target lan-

guage.

2. Retrieve and parse the top one-hundred returned bilingual snippets.

3. Extract all chunks in the target language (to be used as translation candidates)

from the snippets.

4. Compute scores for and rank those candidates.

In the �rst step above, ANET attempts to retrieve bilingual snippets containing

both s and t, by sending s as a search query to Yahoo! along with a parameter specifying

Yahoo! to return only those web pages written in the target language. In the second

step, ANET parses each snippet into a structured format containing elements such as

the title, page URL, and list of excerpts. In the third step, ANET extracts a set of

translation candidates of s. A translation candidate of s is de�ned as a chunk in the

target language which co-occurs with s in any excerpt. Consider the example shown

in Figure 6.2 where the target language is English and the source word s is a famous

actor's name in Japanese:

since the chunk \Takuya Kimura" occurs in the same excerpt as s, it is a potential

translation candidate of s (in fact, it is a correct translation). In the fourth step,

88

6.4 Experiments

ANET ranks translation candidates by assigning each candidate c a weight determined

by using a function almost identical to the weight(c) presented in Section 5.3.1, which

is a heuristic score based on how frequently c co-occurs with s and how closely c occurs

with s in the excerpts. The only di�erence is that the hyponym pattern frequency is

removed from the equation. More speci�cally, the scoring function is de�ned as:

weight(c) =
sf (c;S)

jSj
�
ef (c;E)

jEj
�
wcf (c;E)

jCj

where S the set of snippets, E the set of excerpts, and C the set of chunks. The

function sf (c;S) is the snippet frequency of c (i.e., the number of snippets containing c),

and ef (c;E) is the excerpt frequency of c (i.e., the number of excerpts containing c).

Furthermore, wcf (c;E) is the weighted chunk frequency of c, which is de�ned as follows:

wcf (c;E) =
X
e2E

X
c2e

1

dist(c; e) + 1

where dist(c; e) is the number of characters between the candidate c and the source word

s in the excerpt e. This model weights every occurrence of c based on the assumption

that chunks closer to a source word are usually more important than those further

away. It also heavily rewards frequency since chunks that co-occur frequently with the

source word are more important than those that co-occur infrequently.

6.4 Experiments

6.4.1 Experimental Setting

We evaluated Bilingual SEAL by conducting two experiments. The �rst experiment was

in Chinese and English, and the second in Japanese and English. The reason that we

did not conduct a third experiment in Chinese and Japanese is because, as mentioned

earlier, ANET's performance su�ers substantially when the character sets of the source

and target language are not disjoint; it cannot easily distinguish the language of a

candidate name.

For each experiment, we created two instances of iSEAL, one for each language.

We initiated the bootstrapping process by providing each iSEAL with two supervised

seeds, and we con�gure iSEAL to bootstrap with increasing seed size using random

89

6. BILINGUAL SEAL

of Unique Baseline By-Product

Translations Precision Precision �

Eng to Chi 89 0.865 0.910 5.2%

Chi to Eng 85 0.635 0.788 24.1%

Eng to Jap 83 0.892 0.988 10.8%

Jap to Eng 88 0.477 0.886 85.7%

Average 86 0.717 0.893 24.5%

Table 6.1: Precisions of translation pairs generated 1) as by-products from the bilin-

gual bootstrapping, and 2) by directly translating the source words in the by-product

dictionaries using ANET to serve as baselines.

walk as described in Section 4.2.2.2. To make the problem more challenging and accen-

tuate di�erences between approaches, at every iteration, iSEAL retrieved only the top

ten web pages from Yahoo! and accumulated statistics by growing the graph required

by the random-walk ranking scheme. The evaluation metric used is the Mean Average

Precision (MAP), which is described in Section 2.5.5. As for the evaluation datasets,

since Bilingual SEAL expands instances of the same semantic class in multiple lan-

guages, we used only the �rst nine semantic classes listed in Table 2.7 because they

have datasets in multiple languages. In each experiment, we conducted ten bootstrap-

ping iterations (�ve per each language) independently three times for each class, and

present their average performance. As for baselines, we present results of monolingual

bootstrapping (i.e., without using ANET) for each language in each experiment.

6.4.2 Experimental Results

Figure 6.4 illustrates the results of the �rst experiment in Chinese and English, with

details shown in Table 6.2. Figure 6.5 presents the results of the second experiment in

Japanese and English, with details shown in Table 6.3. The error bars in those �gures

are the standard errors of the mean, and to simplify the graph we only show error

bars for the best-performing method (standard errors for the other methods are com-

parable). As illustrated, both experiments show that bilingual bootstrapping performs

better than monolingual bootstrapping. More speci�cally, in the �rst experiment, the

Chinese �nal results using bilingual bootstrapping are 11% better than using monolin-

gual bootstrapping (93.8% vs. 84.5%), and its corresponding English �nal results are

90

6.4 Experiments

Figure 6.4: Performance of bilingual and monolingual bootstrapping in Chinese and

English. CBB and CMB are the Chinese results in bilingual and monolingual bootstrap-

ping respectively. EBB and EMB are the English results in bilingual and monolingual

bootstrapping respectively.

Figure 6.5: Performance of bilingual and monolingual bootstrapping in Japanese and

English. JBB and JMB are the Japanese results in bilingual and monolingual bootstrapping

respectively.

91

6. BILINGUAL SEAL

Chi. Mono Bi Eng. Mono Bi

1st 5th 5th � 1st 5th 5th �

disney-movies 0.641 0.644 0.878 36.4% 0.482 0.576 0.773 34.1%

constellations 0.948 1.000 1.000 0.0% 0.867 0.868 0.864 -0.4%

countries 0.672 0.694 0.830 19.5% 0.598 0.673 0.859 27.6%

mlb-teams 1.000 1.000 1.000 0.0% 0.946 1.000 1.000 0.0%

nba-teams 0.818 0.986 0.999 1.3% 0.328 0.995 0.999 0.4%

n-teams 0.848 0.991 0.993 0.2% 1.000 1.000 1.000 0.0%

car-makers 0.202 0.493 0.857 73.6% 0.453 0.455 0.713 56.8%

us-presidents 0.791 0.809 0.888 9.7% 0.729 0.995 0.995 0.0%

us-states 0.945 0.987 0.995 0.8% 0.707 1.000 1.000 0.0%

Average 0.763 0.845 0.938 11.0% 0.679 0.840 0.911 8.5%

Table 6.2: Performance (MAP) of monolingual and bilingual bootstrapping in Chinese

and English at 1st and 5th iteration for each language, as well as the relative improvement

of bilingual bootstrapping over monolingual bootstrapping at the 5th iteration.

Jap. Mono Bi Eng. Mono Bi

1st 5th 5th � 1st 5th 5th �

disney-movies 0.523 0.697 0.753 8.2% 0.482 0.666 0.788 18.4%

constellations 0.977 1.000 1.000 0.0% 0.867 0.854 0.992 16.1%

countries 0.616 0.655 0.657 0.4% 0.598 0.835 0.927 11.1%

mlb-teams 0.944 0.999 0.996 -0.3% 0.946 1.000 1.000 0.0%

nba-teams 1.000 1.000 1.000 0.0% 0.328 1.000 1.000 0.0%

n-teams 0.971 0.995 0.995 0.0% 1.000 1.000 1.000 0.0%

car-makers 0.460 0.857 0.882 2.9% 0.453 0.512 0.707 38.2%

us-presidents 0.857 0.891 0.936 5.0% 0.729 0.995 1.000 0.5%

us-states 1.000 1.000 1.000 0.0% 0.707 1.000 1.000 0.0%

Average 0.817 0.899 0.913 1.6% 0.679 0.873 0.935 7.0%

Table 6.3: Performance (MAP) of monolingual and bilingual bootstrapping in Japanese

and English at 1st and 5th iteration for each language, as well as the relative improvement

of bilingual bootstrapping over monolingual bootstrapping at the 5th iteration.

92

6.5 Summary

9% better (91.1% vs. 84.0%). In the second experiment, the Japanese �nal results using

bilingual bootstrapping are 2% better (91.3% vs. 89.9%) and its corresponding English

�nal results are 7% better (93.5% vs. 87.3%). The results show that set expansion

performs better by using two languages than using only one language.

We collected the translation pairs (i.e., pairs of source and target words) that are

produced, as by-products, from the bilingual bootstrapping. These by-products could

be used as bilingual dictionaries for numerous purposes (e.g., machine translation).

For each experiment, we evaluated the precision of the by-product dictionaries, and

present the results in Table 6.1. For each experiment, we also evaluated the precisions

of baseline dictionaries generated by directly translating the source words in the by-

product dictionaries using ANET (i.e., without bilingual bootstrapping). The results

show that the precision of the by-product dictionaries have an average of 25% improve-

ment over the baseline dictionaries (72% vs. 89%). The results illustrate that named

entity translation also performs better by using two languages.

6.5 Summary

In this chapter, we have shown that the performance of set expansion can be improved

by exploiting redundant information of classes in di�erent languages. More speci�cally,

we illustrated that the performance of set expansion in Chinese and English can be im-

proved dramatically by coupling them together. This is achieved by bootstrapping in-

stances in these two languages alternately, of which the instances in di�erent languages

are bridged together by a simple named entity translator. Same results were observed

by coupling Japanese and English. In addition, we have also shown that the precision of

translation pairs generated as by-products from our bilingual-bootstrapping approach

has also improved dramatically for both Chinese-English and Japanese-English pairs.

93

6. BILINGUAL SEAL

94

Chapter 7

Relational SEAL

7.1 Introduction

SEAL was initially designed to handle only unary relationships (e.g., \x is a CEO").

In this chapter, we show that SEAL's character-level analysis techniques can be readily

extended to handle binary relationships (e.g., \x is the CEO of company y"). We

introduce a system called Relational SEAL, which is an extension of iSEAL to learn

binary relational concepts from a small number of seeds. An example of input instances

to our (binary) relational set expansion system is \Bill Gates / Microsoft" and \Larry

Page / Google", of which our system produces other instance pairs of the same relation

such as \Larry Ellison / Oracle".

In this chapter, we explore the impact on relational set-expansion performance of

one of the innovations in SEAL, speci�cally, the use of character-level techniques to

detect wrappers in semi-structured web pages. We show that, as with unary rela-

tionships, MAP performance is 26 points lower when wrappers are restricted to be

HTML-related. We also show that the Relational SEAL has good performance on our

binary evaluation datasets, which includes English and Chinese, thus demonstrating

language-independence. Furthermore, we illustrate that the learning of binary con-

cepts can also be bootstrapped by the strategy described earlier in Section 4.2.2.2 to

improve its performance.

Although some early systems for web-page analysis induce rules at character-level,

such as WIEN [21] and DIPRE [4], most recent approaches for extracting relations have

been conducted on free text requiring some language-dependent parsers or taggers for

95

7. RELATIONAL SEAL

English [1, 7, 29, 31, 38, 41]. Much research has also been done on extracting relations

from HTML-structured table [6, 15, 25, 44]; however, they all incorporated heuristics

by using HTML parsers for exploiting HTML structures; thus, they cannot handle

documents written in other mark-up languages.

In this chapter, Section 7.2 describes the method for extending SEAL to handle

binary relationships, Section 7.3 presents experimental results, and we compare our

results to a prior work in Section 7.4. Lastly, we summarize this chapter briey in

Section 7.5.

7.2 Identifying Wrappers for Binary Relations

We extend the wrapper construction algorithm described in Section 2.3.2 to support

relational set expansion. The major di�erence is that we introduce a third type of

context called the middle context that occurs between the left and right contexts of

a wrapper for separating any two instances. We execute the wrapper construction

algorithm described in Table 2.2, except that a seed instance in the algorithm is now a

seed instance pair bracketing some middle context (i.e., \s1�middle� s2").

Given some seed pairs (i.e., s1 and s2), the algorithm �rst locates the following two

strings in some given documents: \s1[...]s2" and its reversed version: \s2[...]s1",

where \[...]" is a wildcard matching any sequence of characters not containing any

of the two seeds. For every pair of seeds located, SEAL extracts their left, middle

(i.e., \[...]"), and right contexts. The left and right contexts are inserted into their

corresponding tries, while the middle context is inserted into a list. Every middle

context is assigned a ag indicating whether the two instances bracketing it were found

in the same or reversed order as the input seed pairs. Every entry in the seed instance

list now stores a pair of instances as one single string (i.e., \s1=s2"). An id stored in

a node now matches the index of an instance pair as well as a middle context. Shown

below is a mock example document of which all instances in the following three seed

pairs are located (and underlined): \Ford / USA", \Nissan / Japan", \Toyota / Japan".

96

7.2 Identifying Wrappers for Binary Relations

GtpKxHNissanoKpJapanxjHJgleTuoLpBlcLBxKH

FordEFcUSAxkrpWNapnIkAAHOFordawHDaUSAuoh

deQsKxHAcuraoKpJapanxjHdIjWnOxoToyotaVaq

JapanzxKHAudiEFcGermanyxkrOyQKxHToyotaoK

pJapanxjHCRdmtqOVKxHFordoKpUSAxjHaJASzEi

nSfrlaFordLMmpUSAofwNLWxKHToyotaEFcJapan

xkrHxQKzrHpoKdGEKtxKHNissanEFcJapanxkrEq

After performing the abovementioned procedures on this mock document, we now have

context tries that are much more complicated than those illustrated in Figure 2.3. We

also have a list of middle contexts of which a sample of it is shown below:

id Seed Pairs r Middle Context

0 Nissan/Japan No oKp

1 Nissan/Japan No EFc

2 Nissan/Japan Yes xkrHxQKzrHpoKd...

4 Toyota/Japan No oKp

6 Toyota/Japan Yes xjHdIjWnOxo

9 Ford/USA No EFc

13 Ford/USA Yes xkrpWNapnIkAAHO

where r indicates if the two instances bracketing the middle context were found in the

reversed order as the input seed pairs. In order to �nd the maximally long contextual

strings, the \Intersect" function in the wrapper construction pseudo-code presented in

Table 2.2 needs to be replaced with the following:

Integers Intersect(Node n1, Node n2)

De�ne S = n1:indexes \ n2:indexes

Return the largest subset s of S such that:

Every index 2 s corresponds to same middle context

which returns those seed pairs that 1) are bracketed by the strings associated with

the two input nodes and 2) have the same middle context. A wrapper for relational

set expansion, or relational wrapper, is de�ned by the left, middle, and right contex-

tual strings. The relational wrappers constructed from the mock document given the

97

7. RELATIONAL SEAL

example seed pairs are shown below. Notice that two additional instance pairs are

discovered: \Audi / Germany" and \Acura / Japan".

Wrapper: xKH[.1.]EFc[.2.]xkr

Content: audi/germany, ford/usa, nissan/japan, toyota/japan

Wrapper: KxH[.1.]oKp[.2.]xjH

Content: acura/japan, ford/usa, nissan/japan, toyota/japan

Below, we show real examples of wrappers constructed and candidate instances ex-

tracted from some randomly-sampled web pages given two instance pairs of car makers

and their headquartered countries: \Mazda / Japan" and \Venturi / France". More

examples are presented at the end of this chapter.

Seeds: Mazda / Japan, Venturi / France

URL: http://www.jrfilters.com/filtres/index.php?lng=en

Wrapper: &page=filtres&lng=en">[.1.] ([.2.])</option><option value="index.php?

URL: http://www.jrfilters.com/suspensions/index.php?famille=1&lng=en

Wrapper: &lng=en">[.1.] ([.2.])</option><option value="index.php?famille=1&rubrique1

URL: http://www.street-car.net/forums/forumdisplay.php?f=10

Wrapper: ">[.1.] </div> <div class="smallfont">Country of origin:[.2.].

URL: http://www.allcarcentral.com/

Wrapper: file.html">[.1.],[.2.]

Content: abarth / italy, acura / japan, alfa romeo / italy, aston martin / england, auburn

/ usa, audi / germany, austin healey / england, austin / england, auto union

/ germany, balwin / usa, bandini / italy, bentley / england, bmw / germany,

brabham / england, bricklin / usa, bristol / england, brm / england. . .

7.3 Experiments

For binary relations, we performed the same experiment as with unary relations de-

scribed in Section 2.5. Again, we investigated whether HTML-based relational wrappers

are more e�ective than character-based relational wrappers.

7.3.1 Experimental Setting

In Table 7.1, we introduce four types of HTML-based relational wrappers, referred to

as R1 to R4, which are extended from the HTML-based unary wrappers presented in

98

http://www.jrfilters.com/filtres/index.php?lng=en
http://www.jrfilters.com/suspensions/index.php?famille=1&lng=en
http://www.street-car.net/forums/forumdisplay.php?f=10
http://www.allcarcentral.com/

7.3 Experiments

Left[...] Middle [...]Right

RE .+[...] .+ [...].+

R1 .*[<>].*[...] .*[<>].* [...].*[<>].*

R2 .*>[...] <.*> [...]<.*

R3 .*<.+?>.*[...].*<.+?>.*[...].*<.+?>.*

R4 .*<.+?>[...] <.+> [...]<.+?>.*

Table 7.1: Regular expressions illustrating character restrictions for our proposed rela-

tional extractor (RE) and the four types of HTML-based relational wrappers (R1-R4).

Dataset Instance1 vs. Instance2 Lan1 Lan2 Size

us-governors US State/Territory vs. Governor Eng Eng 56

taiwan-mayors Taiwanese City vs. Mayor Chi Chi 26

nba-teams NBA Team (Chi) vs. NBA Team (Eng) Chi Eng 30

fed-agencies Fed. Agency Acronym vs. Full Name Eng Eng 387

car-makers Car Manufacturer vs. Headquartered Country Eng Eng 122

Table 7.2: The description and language of each instance in the �ve relational datasets

for evaluating Relational SEAL.

Table 2.6. These relational wrappers possess the same properties as the unary wrappers,

that is, they have increasing constraints from type 1 (less strict) to 4 (more strict). In

this section, we refer to our relational extractor proposed in Section 7.2 as RE.

In order to evaluate our approach, we manually constructed �ve relational datasets,

as described in Table 7.2. For the last two datasets, since there are too many instances,

we tried our best to make the lists as exhaustive as possible. Please refer to Appendix B

for the content of the �ve relational datasets.

To evaluate relational wrappers, we performed relational set expansion on randomly

selected seeds from the �ve relational datasets. For every dataset, we select two seeds

randomly and bootstrap the relational set expansion ten times, using the increasing

seed size (ISS) strategy described in Section 4.2.2.2. We repeat this step three times

for every dataset and present the average performance.

7.3.2 Experimental Results

The results after the �rst iteration are shown in Table 7.3 and after the tenth iteration

in Table 7.4. Before computing precision at 100 for each resulting list, we remove all

99

7. RELATIONAL SEAL

Mean Avg. Precision Precision@100

Dataset RE R1 R2 R3 R4 RE R1 R2 R3 R4

us-governors 97.4 89.3 89.2 89.3 89.2 55 50 51 50 50

taiwan-mayors 99.8 95.6 94.3 91.3 90.8 25 25 24 23 23

nba-teams 100.0 99.9 99.9 99.9 99.2 30 30 30 30 30

fed-agencies 43.7 14.5 5.2 11.1 5.2 96 55 20 40 20

car-makers 61.7 0.0 0.0 0.0 0.0 74 0 0 0 0

Average 80.5 59.9 57.7 58.3 56.9 56 32 25 29 25

Table 7.3: Performance of our proposed relational extractor (RE) and various types

of HTML-based relational wrappers (R1-R4) on the �ve relational datasets after �rst

iteration.

Mean Avg. Precision Precision@100

Dataset RE R1 R2 R3 R4 RE R1 R2 R3 R4

us-governors 98.9 97.0 95.3 94.1 93.9 55 55 54 53 53

taiwan-mayors 99.8 98.3 96.9 93.8 94.3 25 25 25 24 24

nba-teams 100.0 100.0 99.2 98.4 98.6 30 30 30 30 30

fed-agencies 65.5 54.5 27.9 55.3 30.0 97 97 61 95 69

car-makers 81.6 0.0 0.0 0.0 0.0 90 0 0 0 0

Average 89.2 70.0 63.9 68.3 63.4 59 41 34 40 35

Table 7.4: Performance of our proposed relational extractor (RE) and various types

of HTML-based relational wrappers (R1-R4) on the �ve relational datasets after tenth

iteration.

synonyms for every instance from the list and keep only the top-most-ranked synonym;

this ensures that every instance is unique in the list. Notice that for the \car-makers"

dataset, there exist no HTML-based wrappers, thus resulting in zero performance for

R1 to R4. In each table, the results indicate that character-based wrappers perform

the best, while those HTML-based wrappers that require tight HTML bracketing of

instances (i.e., R2 and R4) perform the worse.

In addition, the results illustrate that bootstrapping is e�ective for expanding re-

lational instance pairs. As illustrated in Table 7.4, the result of �nding translation

pairs of NBA team names is perfect, and it is almost perfect for �nding pairs of U.S.

states/territories and governors, as well as Taiwanese cities and mayors. In �nding

pairs of acronyms and full names of federal agencies, the precision at top 100 is nearly

100

7.4 Comparison to Prior Work

perfect (97%). The results for �nding pairs of car makers and countries is good as well,

with a high precision of 90%. For the last two datasets, we believe that MAP could

be improved by increasing the number of bootstrapping iterations. At the end of this

chapter, we include some example wrappers constructed and instances extracted using

our proposed character-based relational wrappers.

7.4 Comparison to Prior Work

Extracting relations at character-level from semi-structured documents has been pro-

posed [4, 21]. In particular, Brin's approach (DIPRE) is the most similar to Relational

SEAL. He presented a technique which exploits the duality between sets of patterns

and relations to grow the target relation starting from a small sample. He evaluated

his technique on extracting the relation of author name and book title from the web.

On this particular task, his system extracted 15,257 unique books with 19 of the 20

randomly-sampled books being correct (95% precision) by starting with �ve seed pairs.

As far as we know, he only veri�ed the correctness of the book titles but not the author

names and relations. The �ve seed pairs that he used are shown below:

Author Name / Book Title

Isaac Asimov / The Robots of Dawn

David Brin / Startide Rising

James Gleick / Chaos: Making a New Science

Charles Dickens / Great Expectations

William Shakespeare / The Comedy of Errors

One di�erence between his and our approach is that his approach requires maximally-

long contextual strings to bracket all seed occurrences. This technique has been ex-

perimentally illustrated to perform worse than SEAL's approach on unary relations as

shown in Table 2.9. To compare against his approach, we input the �rst two seed pairs

listed above (i.e., \Isaac Asimov / The Robots of Dawn" and \David Brin / Startide

Rising") into Relational SEAL, performed ten bootstrapping iterations (took about 3

minutes), and obtained 26,000 author name and book title instance pairs, of which

all extracted pairs in top 100 are correct (including book names, author names, and

relations). We randomly sampled 100 extracted pairs from the top 15,257 pairs (i.e.,

101

7. RELATIONAL SEAL

the size of Brin's results) and found that they are all correct. In the next page, we

show some top instance pairs extracted by Relational SEAL on the relation of author

name and book title.

7.5 Summary

In this chapter, we introduce a system called Relational SEAL that utilizes an additional

middle context for constructing relational wrappers. We showed that our relational set

expansion approach is language-independent; it can be applied to non-English and even

cross-lingual seeds and documents. In addition, we showed that our approach is e�ective

on �ve relational datasets. Lastly, we illustrated that our bootstrapping approach

described in Section 4.2.2.2 is also e�ective on expanding relational instances. At the

end of this chapter, we show some real examples of relational wrappers constructed and

candidate instances extracted.

102

7.5 Summary

Author Name / Book Title

1 David Brin / Startide Rising

2 David Brin / The Uplift War

3 Larry Niven / Ringworld

4 Dan Simmons / Hyperion

5 Orson Scott Card / Speaker for the Dead

6 Joe Haldeman / The Forever War

7 Isaac Asimov / Foundation's Edge

8 Frederik Pohl / Gateway

9 Isaac Asimov / The Gods Themselves

10 Arthur C. Clarke / Rendezvous with Rama

11 Dan Simmons / The Fall of Hyperion

12 Lois McMaster Bujold / Mirror Dance

13 William Gibson / Neuromancer

14 Orson Scott Card / Ender's Game

15 Neal Stephenson / The Diamond Age

16 Lois McMaster Bujold / Barrayar

17 Isaac Asimov / The Robots of Dawn

18 Kim Stanley Robinson / Green Mars

19 Kim Stanley Robinson / Blue Mars

20 Lois McMaster Bujold / The Vor Game

21 Connie Willis / Doomsday Book

22 Frank Herbert / Dune

23 Joe Haldeman / Forever Peace

24 David Brin / The Postman

25 Roger Zelazny / Lord of Light

26 Connie Willis / To Say Nothing of the Dog

27 Vernor Vinge / A Fire Upon the Deep

28 Kate Wilhelm / Where Late the Sweet Birds Sang

29 Philip K. Dick / The Man in the High Castle

30 Vernor Vinge / A Deepness in the Sky

31 James Blish / A Case of Conscience

32 Ursula K. Le Guin / The Dispossessed

33 Arthur C. Clarke / The Fountains of Paradise

34 Dan Simmons / The Rise of Endymion

35 Larry Niven / The Integral Trees

36 Ursula K. Le Guin / The Left Hand of Darkness

37 Joan D. Vinge / The Snow Queen

38 Robert A. Heinlein / Starship Troopers

39 Fritz Leiber / The Big Time

40 Gene Wolfe / The Claw of the Conciliator

41 John Brunner / Stand on Zanzibar

42 Greg Bear / Moving Mars

43 Frank Herbert / Children of Dune

44 William Gibson / Mona Lisa Overdrive

45 Fritz Leiber / The Wanderer

46 Robert A. Heinlein / Stranger in a Strange Land

47 Robert A. Heinlein / The Moon is a Harsh Mistress

48 Kim Stanley Robinson / Red Mars

49 John Varley / Titan

50 Robert A. Heinlein / Double Star

51 David Brin / Earth

52 Daniel Keyes / Flowers for Algernon

53 Neal Stephenson / Cryptonomicon

54 Isaac Asimov / The Caves of Steel

55 Stephen Baxter / The Time Ships

56 Alfred Bester / The Demolished Man

57 Lois McMaster Bujold / Memory

58 Lois McMaster Bujold / Falling Free

59 William Gibson / Count Zero

60 C. J. Cherryh / Cyteen

61 David Brin / Brightness Reef

62 Larry Niven / Protector

63 Vernor Vinge / Marooned in Realtime

64 Robert Silverberg / Lord Valentine's Castle

65 Frederik Pohl / Man Plus

66 Frederik Pohl / Beyond the Blue Event Horizon

67 Alexei Panshin / Rite of Passage

68 Ursula K. Le Guin / The Lathe of Heaven

103

7. RELATIONAL SEAL

Seeds: kentucky / steve beshear, north dakota / john hoeven

URL: http://wikifoia.pbworks.com/Alaska-Governor-Sarah-Palin

Wrapper: Governor [.2.]">[.1.] Governor

URL: http://blogs.suntimes.com/sweet/2008/02/sweet_state_dinner_for_

governo.html

Wrapper:

 The Honorable [.2.], Governor of [.1.]

URL: http://en.wikipedia.org/wiki/United_States_Senate_elections,_2010

Wrapper: " title="Governor of [.1.]">Governor <a href="/wiki/[.2.]" title="

URL: http://ballotbox.governing.com/2008/07/index.html

Wrapper: , [.1.]'s [.2.],

Content: alabama / bob riley, alaska / sarah palin, arizona / janet napolitano, arkansas

/ mike huckabee, california / arnold schwarzenegger, colorado / bill ritter, con-

necticut / mary jodi rell, delaware / ruth ann minner, orida / charlie crist,

georgia / sonny perdue, hawaii / linda lingle, idaho / butch otter. . .

Seeds: cia / central intelligence agency, usps / united states postal service

URL: http://www1.american.edu/dccampus/links/whitehouse.html

Wrapper: [.2.]

URL: http://www.usembassy.at/en/us/gov.htm

Wrapper: /" target="_blank">[.2.] ([.1.]) -

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies

Wrapper: The [.2.] ([.1.]) is

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies

Wrapper: [.1.]- <a href="/encyclopedia/[.2.]" onmouseover="pv(event, 2

Content: achp / advisory council on historic preservation, arc / appalachian regional com-

mission, cftc / commodity futures trading commission, cia / central intelligence

agency, cms / centers for medicare and medicaid services, exim bank / export

import bank of the united states, ntrc / national transportation research center. . .

104

http://wikifoia.pbworks.com/Alaska-Governor-Sarah-Palin
http://blogs.suntimes.com/sweet/2008/02/sweet_state_dinner_for_governo.html
http://blogs.suntimes.com/sweet/2008/02/sweet_state_dinner_for_governo.html
http://en.wikipedia.org/wiki/United_States_Senate_elections,_2010
http://ballotbox.governing.com/2008/07/index.html
http://www1.american.edu/dccampus/links/whitehouse.html
http://www.usembassy.at/en/us/gov.htm
http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies
http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies

Chapter 8

Related Work

Comprehensive and accurate class-instance information has been proven useful in many

applications, including relation learning from the web [5, 15, 31], feature generation for

concept-learning [9] and co-reference resolution [23], dictionary construction for named

entity recognition [2, 11, 25, 39, 41], query re�nement in web search [26], enhancement of

information retrieval [32] and list-type answers [50] for question answering, extension

of WordNet [38, 48], \pseudo-users" construction for collaborative �ltering [10], and

similarity computation between attribute values in autonomous databases [52].

As mentioned in Chapter 1, most research on class instance acquisition has been

conducted using evidence from either semi-structured documents, free text, or a com-

bination of both. In this chapter, we examine some of the research conducted using

each of these types of copora.

8.1 Semi-Structured Documents

Semi-structured documents are texts that do not conform with the formal structure of

tables and data models associated with databases but contain tags or other markers to

separate semantic elements and hierarchies of records and �elds within the text, such

as HTML, XML, tab-separated, and comma-separated text. In this thesis, we have de-

veloped a novel graph-based set expansion system that exploits semi-structured charac-

teristics of web documents at character-level [46] and have shown that semi-structured

documents provide more evidence and information than free text for discovering class

instances. In this section, we present other research work that has also exploit semi-

105

8. RELATED WORK

structured documents. Note that these techniques are more complex and less general

than our SEAL approach (e.g., they parse HTML web pages, identify lists and tables,

and �lter out noisy tables).

Google Sets [44] is a well-known example of a web-based set expansion system;

unfortunately, Google Sets is a proprietary method that may be changed at any time,

so research results based on Google Sets cannot be reliably replicated. Google Sets

contains a list identi�er, a list classi�er and a list processor. The list identi�er identi�es

existing lists by a HTML tag (e.g., , , <DL>, <H1>-<H6> tags), by items placed

in a table, items separated by commas or semicolons, or items separated by tabs. The

list classi�er generates an on-topic model and determine con�dence scores that the

existing lists were generated using the on-topic model. The list processor forms a list

from the items in the existing lists and the determined con�dence scores associated

with the existing lists. Since Google Sets is publicly available, we used it as a baseline

system for comparing against the basic SEAL in Section 2.5.6 and the Iterative SEAL

in Section 4.4, and show that it performs worse than both versions of SEAL.

Etzioni et al. [15] present the KnowItAll system which contains a List Extractor

(LE) component that is functionally similar to Google Sets and SEAL. The system

uses an HTML parser for identifying sub-trees of a parsed web page. For each selected

sub-tree, it �nds one contextual pattern that maximally matches all of the seeds. How-

ever, SEAL does not require any parsing, and it �nds all contextual patterns in the

whole document that maximally match at least one instance of every seed. Etzioni et

al. describe a number of possible variants of the LE component, but it is not clear

which variant was used in their experiment. They manually evaluated their system

and reported precisions and extraction sizes on their three sample problems, which are

cities (52% of 151,016), �lms (72% of 78,859), and scientists (64% of 15,907).

Nadeau et al. [25] present a wrapper-based set-expansion system that identi�es the

location of speci�c class of instances within a HTML web page when given some seed

instances. For example, a wrapper for identifying the location of car brands on a web

page might contain the rule: \A brand is an HTML node of type <a>, with text length

between 10 and 30 characters, in a table of depth 5 and with at least 3 other nodes

in the page that satisfy the same rule." These constructed wrappers are then used as

features for training a classi�er to identify the locations of other positive instances. By

106

8.2 Unstructured Documents

utilizing these instances, they show that it is feasible to train an e�ective named-entity

recognizer for extracting additional instances from free text.

Cafarella et al. [6] describe a system called WebTables that extracted 14.1 billion

HTML tables (i.e., those embedded by the <table> tag) from Google's general-purpose

web crawl, and used statistical classi�cation techniques to �nd the estimated 154 million

that contain high-quality relational data and class-instance information. They illustrate

an approach to provide search-engine-style access to this huge volume of structured data

and its applications { including schema auto-complete, attribute synonym �nding, and

join-graph discovery.

Suchanek et al. [40] present a system named YAGO, an ontological system that

builds on entities and relations, including the hypernym hierarchy as well as non-

taxonomic relations between entities (e.g., hasWonPrize). The facts have been au-

tomatically extracted from Wikipedia and uni�ed with WordNet, using a carefully

designed combination of rule-based and heuristic methods. They downloaded the En-

glish version of Wikipedia comprising of 1.6 million articles. The majority of Wikipedia

pages have been automatically assigned to one or more classes. For example, the page

about \Albert Einstein" is in the following classes: German Language Philosophers,

Swiss Physicists, and 34 more. They reported a precision of about 95% on the correct-

ness of their extracted facts, but they did not report the recall. Since they focus on

only one web site on the web (i.e., Wikipedia), we believe that their recall would not

be high.

8.2 Unstructured Documents

Unstructured documents (or free text) are text that have no meta-data and structure

at all; such as newswire articles, conference publications, forum postings, web blogs,

search engine query logs, and web pages stripped of HTML tags. Although we claim

that our set expansion approach works on semi-structured document, we have often

observed that the contexts in our constructed wrappers contain free text as well. Some

examples of free-text wrappers are shown in Section 2.3.3. We estimated that these free-

text wrappers consist of 10-20% of all wrappers constructed by our proposed approach.

This observation shows that our approach is capable of constructing wrappers from

unstructured documents as well. In this section, we are going to examine several

107

8. RELATED WORK

research works utilizing free text to extract class instances. Note that many of these

work utilize language-speci�c evidence and tools to pre-process their free-text corpora.

Talukdar et al. [41] present a context pattern induction method for named entity

extraction. They extracted a �xed number N (context window size) of tokens imme-

diately preceding and following the seed instances in their unlabeled data. From these

extracted contexts, their system automatically selects trigger words to mark the be-

ginning of a contextual pattern, which is then used for bootstrapping from free text.

By using this method, they extended several classes of seed entity lists into larger

lists. They evaluated their approach on a newswire corpus which contains 31 million

documents and showed improvement in accuracy of a conditional random �eld-based

named-entity tagger. As illustrated in Section 2.6.1, their system achieved a precision

of 85.7% on the top 42 extracted instances on watch brand names using 17 seeds. SEAL

achieved a precision of 100% at rank 42 by using only the �rst three of their 17 seeds,

as presented in Table 2.11.

Kozareva et al [20] illustrated an approach that uses a single hyponym pattern

(i.e., CLASS NAME such as INSTANCE and ?) combined with graph structures to

learn semantic class from search engine snippets. Their approach begins with just a

class name and one seed instance and then automatically generate a ranked list of new

instances. In their extractor, for proper instance names, they extract all capitalized

words that immediately follow their learned patterns, but for common noun instances,

they extract just one word if it is not capitalized. Section 5.5.1 shows that our ASIA

approach outperforms theirs for all four datasets that they reported; however, their

system requires more information, as it uses the name of the semantic class and a seed

instance while ASIA requires only the class name. In terms of system runtime, for each

semantic class, they reported that their extraction process usually �nished overnight;

however, ASIA usually �nished within a minute by running on a single CPU machine.

Pasca [28] illustrated a set expansion approach that extracts instances from web

search queries given a set of input seed instances, which is the same interface as SEAL.

They show that search queries are highly valuable resource for web-based named en-

tity discovery. Their extraction method consists of �ve stages: identi�cation of query

templates that match the seed instances; identi�cation of candidate instances; inter-

nal representation of candidate instances and seed instances; and instance ranking.

108

8.2 Unstructured Documents

The input to their experiments is a random sample of around 50 million unique, fully-

anonymized queries in English submitted by users to the Google search engine in 2006.

They evaluated their approach on 10 target classes, where each target class is speci-

�ed through �ve seed instances. We evaluated our ASIA approach on those 10 classes,

where each class is speci�ed through only its class name. Section 5.5.2 shows that ASIA

outperforms their system, with an average precision of 100% at rank 25 (vs. their 98%)

and 93% at rank 250 (vs. their 80%).

Van Durme and Pa�sca [14] present a method for extracting large numbers of se-

mantic classes along with their corresponding instances, based on the recombination

of elements clustered through distributional similarity. The input to their algorithm is

a large collection of pairs of class names and instances. They claim that this collec-

tion can be extracted using pattern-based methods such as those presented by Hearst

[17]. Their experiments relied on the unstructured text available within a collection of

approximately 100 million web documents in English, as available in a web repository

snapshot from 2006 maintained by Google. The documents were cleaned of HTML,

tokenized, split into sentences, and part-of-speech tagged using the TnT tagger [3].

In Section 5.5.3, we compare ASIA against Van Durme's system and show that ASIA

outperforms their system on �ve semantic classes randomly sampled by Talukdar et al.

[42]. ASIA achieved an average precision of 99% while Van Durme's system achieved

87%.

Snow [38] propose an approach that incorporates evidence from multiple classi�ers

over heterogenous relationships to optimize the entire structure of semantic taxonomies,

using knowledge of a word's coordinate terms to help in determining its hypernyms.

They apply the algorithm on the problem of sense-disambiguated noun hyponym acqui-

sition, where they combine the predictions of hypernym and coordinate term classi�ers

with the knowledge in a pre-existing semantic taxonomy { WordNet 2.1. They extended

the WordNet by adding 10,000 entries (synsets) at a relatively high precision of 84%.

They have made several versions of the extended WordNet available1. For comparison

purposes, we selected the version (+30K) that achieved the best F-score (30.9%) in

their experiments. The results presented in Section 5.5.4 show that instances extracted

by ASIA has much higher precision (98% vs. 70%) and much higher relative recall

(92% vs. 47%) than those in their extended WordNet.

1http://ai.stanford.edu/~rion/swn/

109

http://ai.stanford.edu/~rion/swn/

8. RELATED WORK

8.3 Combination of Both

In this section, we examine approaches that utilize evidence from both semi-structured

and unstructured documents. Note that they all focus on documents written in the

English language only.

Talukdar et al. [42] present a graph-based semi-supervised label propagation algo-

rithm called Adsorption for acquiring open-domain labeled classes and their instances

from a combination of unstructured and structured text sources. They construct a

graph where each node represent either an instance or a class, and an edge exists be-

tween an instance node and a class node if the instance belongs to that class. The

Adsorption label propagation algorithm is then applied to that graph to label all nodes

based on the graph structure, ultimately producing a probability distribution over

classes for each instance node. The unstructured text that they utilize was the web

documents prepared and used by Van Durme & Pa�sca as described above, and the

structured text was the WebTables [6] as also described above. Note that Adsorption

requires inputs of a class name and several seed instances (�ve seeds per class were used

in their experiments). In Section 5.5.3, we compare ASIA against their system on �ve

sample classes used in their paper, and we show that ASIA outperforms their system,

achieving an average precision of 99% while their system achieved 79%.

Carlson et al. [8] present an approach of using semi-supervised learning to ex-

tract instances of various classes (e.g., academic �elds, athletes) and relations (e.g.,

\<athlete> plays <sport>") from semi-structured and unstructured text. This paper

shows that a much higher accuracy in semi-supervised learning can be achieved by

a learner they call Meta-Bootstrap Learner (MBL), which couples the simultaneous

training of two extractors { a free-text pattern learner and our set-expansion system

SEAL. MBL couples the training of multiple extractors using a multi-view constraint

that requires them to agree. The input to MBL is a handful of labeled training exam-

ples of each category or relation, and the input to their pattern learner is 200 million

unlabeled web pages. They pre-process the web pages by �rst parsing the HTML, and

then �ltering out non-English pages and pages containing stop-words, web spam, and

adult content. The pages were then split into sentences, tokenized, and part-of-speech

tagged.

110

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, we have proposed a novel graph-based approach to set expansion using

semi-structured documents at the character-level. Based on our proposed approach, we

developed an open-source set-expansion system called Set Expander for Any Language

(SEAL) that is independent of both human and mark-up language. Throughout this

thesis, we have developed multiple variants of SEAL for various purposes. In this

section, we will review each variant developed and its contributions.

The basic version of SEAL is composed of a fetcher, an extractor, and a ranker. We

have shown that it is capable of handling various languages such as English, Chinese,

and Japanese. By conducting ablation studies using SEAL, we have also shown that

our random walk approach outperforms other state-of-the-art rankers for the problem

of set expansion. The studies also show that our novel character-based wrapper in-

duction technique is more e�ective than a simpler and more common technique. The

experimental results illustrate that character-based wrappers are better suited than

HTML-based wrappers for the task of set expansion.

The noise-resistant version of SEAL is capable of improving the quality of noisy

answers generated by QA systems on list questions. It is developed through the follow-

ing three changes to SEAL: 1) alter the fetcher so that it retrieves more documents, 2)

modify the extractor so that it is more lenient on inducing wrappers, and 3) append

hint words to search queries sent by the fetcher to retrieve more on-topic documents.

In our experimental results, we have also shown that the Noise-Resistant SEAL out-

111

9. CONCLUSION AND FUTURE WORK

performs Google Sets when given noisy seed instances (i.e., the top answers from QA

systems).

The iterative version of SEAL (iSEAL) executes SEAL in multiple iterations where

statistics are accumulated from iteration to iteration. By using iSEAL, we have shown

that set expansion performance can be improved monotonically if we bootstrap the

results using ISS (increasing seed size) and rank the results using random walk. By

conducting ablation studies using iSEAL, we have also shown that in supervised mode,

random walk is comparable to the state-of-the-art ranker, Bayesian Sets, but in boot-

strap mode, random walk is the best due to its robustness to noisy seeds.

The Automatic Set Instance Acquirer (ASIA) is capable of extracting class instances

in several languages given only the semantic class name. It utilizes three novel com-

ponents: 1) the Noisy Instance Provider, which extracts noisy instances using Hearst

patterns from search result snippets, 2) the Noisy Instance Expander, which expands

the noisy instances using a better variant of the Lenient Extractor in the Noise-Resistant

SEAL, and 3) the Bootstrapper, which bootstraps expanded instances using iSEAL.

In the experimental results, we have shown that ASIA achieves higher precision and

recall than many free-text systems (even though many of them require more inputs

than a class name). These results provide evidence towards our conjecture that semi-

structured documents provide more information than free text for discovering class

instances.

The bilingual version of SEAL calls two iSEALs alternately to bootstrap instances

of the same semantic class but in a di�erent language. The instances extracted in

di�erent languages are bridged together by ANET { a simple named-entity translator.

By using Bilingual SEAL, we have shown that the performance of set expansion can

be improved by exploiting redundant information of classes in di�erent languages. In

addition, the precision of translation pairs generated as by-products from the bilingual

approach has also been improved dramatically.

The relational version of SEAL is developed to expand binary relations by adding

a middle context to the wrappers induced by the Extractor of SEAL. Similar to SEAL,

Relational SEAL is independent of both human and mark-up language. The experi-

mental results indicate that its character-based approach is e�ective and also performs

better than HTML-based methods. The results also illustrate that Relational SEAL

112

9.2 Future Work

can be bootstrapped to improve its expansion results, using the same bootstrapping

technique implemented in iSEAL.

9.2 Future Work

In this thesis, the instances extracted by SEAL were never automatically validated for

their correctness. In the future work, we propose to examine these instances based on

their distributional similarity [22] in free text. For example, the sentences \Clinton

vetoed the bill" and \Bush vetoed the bill" suggest that Clinton and Bush may be

semantically related. We will use this measure to determine if all instances are coherent

to the expanded set, and if not, we will �lter out those that are least coherent.

The above described approach may also be used to partition the expanded instances

into subclasses, or clusters. For example, having an expanded set of car brands, we

can automatically partition it into clusters such as Japanese cars, luxurious cars, and

a�ordable cars. This can be achieved by using the contexts of the instances as features

and grouping together the instances that tend to appear in similar contexts.

Automatic identi�cation of concept names given some example instances (the oppo-

site task of that solved by ASIA) may be useful in some applications. For example, given

\Honda", \Nissan", and \Toyota", the probable semantic class names of these instances

include \Car Makers", \Car Manufacturers", \Car Brands", \A�ordable Cars", and

\Japanese Cars". These class names can be either discovered through meta-data in web

pages (e.g., list and table headers) or lexical evidence in free text (e.g., \CLASS NAME

such as Honda" suggest that CLASS NAME is a probable hypernym of Honda).

As mentioned in Section 5.5.2, ASIA sometimes output subclass names rather than

instance names (e.g., given \people", it outputs \writers", \actors", and \athletes").

One future work would be to identify subclass names from instance names. A simple

approach would be to identify subclasses based on capitalization, since instances names

are usually (capitalized) named entities while class names are not. A more complex

approach would be based on the occurrence frequency of some lexical patterns (e.g.,

\actors such as" occurs frequently while \Tom Cruise such as" does not).

If we combine all the abovementioned work with the work of this thesis, we can have

a system that automatically constructs a hypernym hierarchy. The procedure goes as

follows: Given a semantic class, we let ASIA extract all possible instances �rst. We

113

9. CONCLUSION AND FUTURE WORK

then partition these instances into clusters and assign each cluster its most probable

class name. Lastly, we repeat these procedures for every such class name until no more

clusters could be generated.

114

References

[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting Relations from

Large Plain-Text Collections. In Proceedings of the 5th ACM International Conference

on Digital Libraries, pages 85{94, 2000. 96

[2] Joohui An, Seungwoo Lee, and Gary Geunbae Lee. Automatic acquisition of

named entity tagged corpus from world wide web. In ACL '03: Proceedings of

the 41st Annual Meeting on Association for Computational Linguistics, pages 165{168,

Morristown, NJ, USA, 2003. Association for Computational Linguistics. 1, 105

[3] T. Brants. TnT { a statistical part-of-speech tagger, 2000. 78, 109

[4] Sergey Brin. Extracting Patterns and Relations from the World Wide Web.

In WebDB Workshop at 6th International Conference on Extending Database Technology,

EDBT98, pages 172{183, 1998. 95, 101

[5] Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni.

KnowItNow: fast, scalable information extraction from the web. In HLT '05:

Proceedings of the conference on Human Language Technology and Empirical Methods in

Natural Language Processing, pages 563{570, Morristown, NJ, USA, 2005. Association for

Computational Linguistics. 1, 105

[6] Michael J. Cafarella, Alon Halevy, Daisy Z. Wang, Eugene Wu, and Yang

Zhang. WebTables: exploring the power of tables on the web. Proceedings of the

VLDB Endowment, 1(1):538{549, 2008. 2, 18, 78, 96, 107, 110

[7] A. Carlson, J. Betteridge, E.R. Hruschka Junior, and T.M. Mitchell. Cou-

pling Semi-Supervised Learning of Categories and Relations. In NAACL HLT

Workshop on Semi-supervised Learning for Natural Language Processing, pages 1{9. As-

sociation for Computational Linguistics, 2009. 96

[8] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr., and T. M.

Mitchell. Coupled Semi-Supervised Learning for Information Extraction. In

Proceedings of the Third ACM International Conference on Web Search and Data Mining

(WSDM), 2010. 2, 110

115

file:citeseer.ist.psu.edu/article/brants00tnt.html
http://dx.doi.org/10.3115/1220575.1220646
http://dx.doi.org/10.1145/1453856.1453916

REFERENCES

[9] William W. Cohen. Automatically Extracting Features for Concept Learning

from the Web. In Pat Langley, editor, ICML, pages 159{166. Morgan Kaufmann,

2000. 1, 105

[10] William W. Cohen and Wei Fan. Learning Page-Independent Heuristics for

Extracting Data from Web Pages. Computer Networks, 31(11-16):1641{1652, 1999.

1, 105

[11] William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named

entity extraction: combining semi-Markov extraction processes and data in-

tegration methods. In Won Kim, Ron Kohavi, Johannes Gehrke, and William

DuMouchel, editors, KDD, pages 89{98. ACM, 2004. 1, 105

[12] H.T. Dang, D. Kelly, and J. Lin. Overview of the TREC 2007 Question An-

swering Track. Proceedings of the Sixteenth Text REtrieval Conference, 2007. 35, 36

[13] H.T. Dang, J. Lin, and D. Kelly. Overview of the TREC 2006 Question An-

swering Track. Proceedings of the Fifteenth Text REtrieval Conference, 2006. 35, 36

[14] Benjamin Van Durme and Marius Pasca. Finding Cars, Goddesses and En-

zymes: Parametrizable Acquisition of Labeled Instances for Open-Domain In-

formation Extraction. In Dieter Fox and Carla P. Gomes, editors, AAAI, pages

1243{1248. AAAI Press, 2008. 2, 3, 78, 81, 109

[15] Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsuper-

vised named-entity extraction from the Web: An experimental study. Arti�cial

Intelligence, 165(1):91{134, 2005. 1, 2, 7, 18, 25, 47, 50, 63, 66, 67, 72, 96, 105, 106

[16] Zoubin Ghahramani and Katherine A. Heller. Bayesian Sets. In NIPS, 2005. 2,

22, 23, 31, 32, 48

[17] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the 14th International Conference on Computational Linguistics, pages

539{545, 1992. 2, 63, 66, 67, 78, 109

[18] J. Ko, L. Si, and E. Nyberg. A Probabilistic Framework for Answer Selection

in Question Answering. Proceedings of NAACL-HLT, 2007. 36

[19] Zornitsa Kozareva. Bootstrapping Named Entity Recognition with Automati-

cally Generated Gazetteer Lists. In EACL. The Association for Computer Linguistics,

2006. 47, 72

[20] Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. Semantic Class Learning

from the Web with Hyponym Pattern Linkage Graphs. In Proceedings of ACL-

08: HLT, pages 1048{1056, Columbus, Ohio, June 2008. Association for Computational

Linguistics. 2, 3, 63, 64, 66, 67, 75, 81, 108

116

http://www.aclweb.org/anthology/P/P08/P08-1119
http://www.aclweb.org/anthology/P/P08/P08-1119

REFERENCES

[21] N. Kushmerick, D. Weld, and B. Doorenbos. Wrapper induction for informa-

tion extraction. In Proceedings of International Joint Conference on Arti�cial Intelli-

gence, 1997. 95, 101

[22] Dekang Lin and Patrick Pantel. Concept Discovery from Text. In In Proceedings

of Conference on Computational Linguistics, pages 577{583, 2002. 113

[23] J Mccarthy and Wendy G. Lehnert. Using Decision Trees for Coreference

Resolution. In Proceedings of the Fourteenth International Joint Conference on Arti�cial

Intelligence, pages 1050{1055, 1995. 1, 105

[24] Donald R. Morrison. PATRICIA{Practical Algorithm To Retrieve Informa-

tion Coded in Alphanumeric. J. ACM, 15(4):514{534, October 1968. 13

[25] David Nadeau, Peter D. Turney, and Stan Matwin. Unsupervised Named-

Entity Recognition: Generating Gazetteers and Resolving Ambiguity. In Luc

Lamontagne and Mario Marchand, editors, Canadian Conference on AI, 4013 of

Lecture Notes in Computer Science, pages 266{277. Springer, 2006. 1, 2, 18, 25, 47, 50,

72, 96, 105, 106

[26] Marius Pas�ca. Acquisition of categorized named entities for web search. In

CIKM '04: Proceedings of the thirteenth ACM international conference on Information

and knowledge management, pages 137{145, New York, NY, USA, 2004. ACM. 1, 2, 63,

66, 67, 105

[27] Marius Pas�ca. Organizing and searching the world wide web of facts { step

two: harnessing the wisdom of the crowds. In WWW '07: Proceedings of the 16th

international conference on World Wide Web, pages 101{110, New York, NY, USA, 2007.

ACM. 2, 66

[28] Marius Pas�ca. Weakly-supervised discovery of named entities using web search

queries. In CIKM '07: Proceedings of the sixteenth ACM conference on Conference on

information and knowledge management, pages 683{690, New York, NY, USA, 2007. ACM.

2, 3, 66, 76, 81, 108

[29] Marius Pas�ca, Dekang Lin, Jeffrey Bigham, Andrei Lifchits, and Alpa Jain.

Organizing and searching the world wide web of facts { step one: the one-

million fact extraction challenge. In AAAI'06: proceedings of the 21st national con-

ference on Arti�cial intelligence, pages 1400{1405. AAAI Press, 2006. 2, 96

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stan-

ford Digital Library Tech. Project, 1998. 21, 22, 48

117

http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/321479.321481
file:citeseer.ist.psu.edu/page98pagerank.html
file:citeseer.ist.psu.edu/page98pagerank.html

REFERENCES

[31] Patrick Pantel and Marco Pennacchiotti. Espresso: leveraging generic pat-

terns for automatically harvesting semantic relations. In ACL-44: Proceedings

of the 21st International Conference on Computational Linguistics and the 44th annual

meeting of the Association for Computational Linguistics, pages 113{120, Morristown, NJ,

USA, 2006. Association for Computational Linguistics. 1, 96, 105

[32] Patrick Pantel and Deepak Ravichandran. Automatically Labeling Semantic

Classes. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL

2004: Main Proceedings, pages 321{328, Boston, Massachusetts, USA, May 2 - May 7

2004. Association for Computational Linguistics. 1, 2, 63, 66, 67, 105

[33] John M. Prager, Jennifer Chu-Carroll, and Krzysztof Czuba. Question An-

swering Using Constraint Satisfaction: QA-By-Dossier-With-Contraints. In

ACL, pages 574{581, 2004. 3, 21

[34] Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction

by multi-level bootstrapping. In AAAI '99/IAAI '99: Proceedings of the sixteenth

national conference on Arti�cial intelligence and the eleventh Innovative applications of

arti�cial intelligence conference innovative applications of arti�cial intelligence, pages 474{

479, Menlo Park, CA, USA, 1999. American Association for Arti�cial Intelligence. 2

[35] N. Schlaefer, P. Gieselmann, and G. Sautter. The Ephyra QA System at

TREC 2006. Proceedings of the Fifteenth Text REtrieval Conference, 2006. 36

[36] N. Schlaefer, G. Sautter, J. Ko, J. Betteridge, M. Pathak, and E. Nyberg.

Semantic Extensions of the Ephyra QA System in TREC 2007. Proceedings of

the Sixteenth Text REtrieval Conference, 2007. 35, 36

[37] Burr Settles. Biomedical Named Entity Recognition using Conditional

Random Fields and Rich Feature Sets. In Nigel Collier, Patrick Ruch,

and Adeline Nazarenko, editors, COLING 2004 International Joint workshop on

NLPBA/BioNLP, pages 107{110, Geneva, Switzerland, August 28th and 29th 2004. COL-

ING. 3, 21

[38] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Semantic taxonomy induc-

tion from heterogenous evidence. In ACL '06: Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meeting of the ACL, pages

801{808, Morristown, NJ, USA, 2006. Association for Computational Linguistics. 1, 2, 3,

64, 66, 79, 81, 96, 105, 109

[39] Mark Stevenson and Robert Gaizauskas. Using corpus-derived name lists for

named entity recognition. In Proceedings of the sixth conference on Applied natural

language processing, pages 290{295, Morristown, NJ, USA, 2000. Association for Compu-

tational Linguistics. 1, 105

118

http://dx.doi.org/10.3115/1220175.1220190
http://dx.doi.org/10.3115/1220175.1220190
http://dx.doi.org/http://dx.doi.org/10.3115/1220175.1220276
http://dx.doi.org/http://dx.doi.org/10.3115/1220175.1220276

REFERENCES

[40] Fabian Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Core

of Semantic Knowledge - Unifying WordNet and Wikipedia. In Carey L.

Williamson, Mary Ellen Zurko, and Prashant J. Patel-Schneider, Peter

F. Shenoy, editors, 16th International World Wide Web Conference (WWW 2007), pages

697{706, Ban�, Canada, 2007. ACM. 2, 107

[41] Partha P. Talukdar, Thorsten Brants, Mark Liberman, and Fernando

Pereira. A Context Pattern Induction Method for Named Entity Extraction.

In Tenth Conference on Computational Natural Language Learning (CoNLL-X), 2006. 1,

3, 31, 96, 105, 108

[42] Partha Pratim Talukdar, Joseph Reisinger, Marius Pas�ca, Deepak Ravichan-

dran, Rahul Bhagat, and Fernando Pereira. Weakly-Supervised Acquisition

of Labeled Class Instances using Graph Random Walks. In EMNLP, pages 582{

590. ACL, 2008. 2, 3, 18, 78, 81, 109, 110

[43] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast RandomWalk with

Restart and Its Applications. In ICDM, pages 613{622. IEEE Computer Society, 2006.

10, 19, 48, 71, 85

[44] Simon Tong and Jeff Dean. System and methods for automatically creating

lists, 03 2008. 3, 21, 96, 106

[45] Jinghua Wang, Jianyi Liu, and Cong Wang. Keyword Extraction Based on

PageRank. In Zhi-Hua Zhou, Hang Li, and Qiang Yang, editors, PAKDD, 4426

of Lecture Notes in Computer Science, pages 857{864. Springer, 2007. 21

[46] Richard C. Wang and William W. Cohen. Language-Independent Set Expan-

sion of Named Entities Using the Web. In ICDM, pages 342{350. IEEE Computer

Society, 2007. 3, 105

[47] Richard C. Wang and William W. Cohen. Iterative Set Expansion of Named

Entities Using the Web. In ICDM, pages 1091{1096. IEEE Computer Society, 2008. 4

[48] Richard C. Wang and William W. Cohen. Automatic Set Instance Extraction

using the Web. In ACL-IJCNLP, Suntec City, Singapore, August 2009. 1, 4, 105

[49] Richard C. Wang and William W. Cohen. Character-level Analysis of Semi-

Structured Documents for Set Expansion. In Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing, pages 1503{1512, Singapore, August

2009. Association for Computational Linguistics. 4

[50] Richard C. Wang, Nico Schlaefer, William W. Cohen, and Eric Nyberg. Au-

tomatic Set Expansion for List Question Answering. In Proceedings of the 2008

Conference on Empirical Methods in Natural Language Processing, pages 947{954, Hon-

olulu, Hawaii, October 2008. Association for Computational Linguistics. 1, 4, 35, 105

119

http://www.patentlens.net/patentlens/patent/US_7350187/
http://www.patentlens.net/patentlens/patent/US_7350187/
http://www.aclweb.org/anthology/D/D09/D09-1156
http://www.aclweb.org/anthology/D/D09/D09-1156
http://www.aclweb.org/anthology/D08-1099
http://www.aclweb.org/anthology/D08-1099

REFERENCES

[51] Dominic Widdows and Beate Dorow. A graph model for unsupervised lexical

acquisition. In Proceedings of the 19th international conference on Computational linguis-

tics, pages 1{7, Morristown, NJ, USA, 2002. Association for Computational Linguistics.

2

[52] Garrett Wolf, Hemal Khatri, Yi Chen, and Subbarao Kambhampati. QUIC: A

System for Handling Imprecision & Incompleteness in Autonomous Databases

(Demo). In CIDR, pages 263{268. www.crdrdb.org, 2007. 1, 105

[53] Christopher C. Yang and K. Y. Chan. Retrieving multimedia web objects

based on PageRank algorithm. In Allan Ellis and Tatsuya Hagino, editors,

WWW, pages 906{907. ACM, 2005. 21

[54] Hugo Zaragoza, Henning Rode, Peter Mika, Jordi Atserias, Massimiliano

Ciaramita, and Giuseppe Attardi. Ranking very many typed entities on

wikipedia. In CIKM '07: Proceedings of the sixteenth ACM conference on Conference

on information and knowledge management, pages 1015{1018, New York, NY, USA, 2007.

ACM. 2

120

Appendix A

The 36 Unary Datasets

English Dataset: disney-movies

(1) Snow White And The Seven Dwarfs (2) Pinocchio (3) Fantasia (4) Dumbo (5) Bambi (6) Saludos Amigos (7) The Three

Caballeros (8) Make Mine Music (9) Fun And Fancy Free (10) Melody Time (11) The Adventures Of Ichabod And Mr. Toad,

Adventures Of Ichabod And Mr. Toad (12) Cinderella (13) Alice In Wonderland (14) Peter Pan (15) Lady And The Tramp (16)

Sleeping Beauty (17) 101 Dalmatians, One Hundred and One Dalmatians (18) The Sword In The Stone, Sword In The Stone

(19) The Jungle Book, Jungle Book (20) The Aristocats, Aristocats (21) Robin Hood (22) The Many Adventures Of Winnie The

Pooh, Winnie the Pooh (23) The Rescuers, Rescuers (24) The Fox And The Hound, Fox And The Hound (25) The Black Caul-

dron, Black Cauldron (26) The Great Mouse Detective (27) Oliver & Company, Oliver And Company (28) The Little Mermaid,

Little Mermaid (29) The Rescuers Down Under, Rescuers Down Under (30) Beauty And The Beast (31) Aladdin (32) The Lion

King, Lion King (33) Pocahontas (34) The Hunchback Of Notre Dame, Hunchback Of Notre Dame (35) Hercules (36) Mulan

(37) Tarzan (38) Fantasia 2000, Fantasia/2000 (39) The Emperor's New Groove, Emperor's New Groove (40) Atlantis: The Lost

Empire (41) Lilo & Stitch, Lilo And Stitch (42) Treasure Planet (43) Brother Bear (44) Home On The Range (45) Chicken Little

(46) Meet the Robinsons (47) American Dog (48) Rapunzel Unbraided (49) The Frog Princess

English Dataset: constellations

(1) Andromeda (2) Antlia (3) Apus (4) Aquarius (5) Aquila (6) Ara (7) Aries (8) Auriga (9) Bootes, Boot�es (10) Caelum (11)

Camelopardalis (12) Cancer (13) Canes Venatici (14) Canis Major (15) Canis Minor (16) Capricornus, Capricorn (17) Carina

(18) Cassiopeia (19) Centaurus (20) Cepheus (21) Cetus (22) Chamaeleon (23) Circinus (24) Columba (25) Coma Berenices (26)

Corona Australis (27) Corona Borealis (28) Corvus (29) Crater (30) Crux (31) Cygnus (32) Delphinus (33) Dorado (34) Draco

(35) Equuleus (36) Eridanus (37) Fornax (38) Gemini (39) Grus (40) Hercules (41) Horologium (42) Hydra (43) Hydrus (44)

Indus (45) Lacerta (46) Leo (47) Leo Minor (48) Lepus (49) Libra (50) Lupus (51) Lynx (52) Lyra (53) Mensa (54) Microscopium

(55) Monoceros (56) Musca (57) Norma (58) Octans (59) Ophiuchus (60) Orion (61) Pavo (62) Pegasus (63) Perseus (64) Phoenix

(65) Pictor (66) Pisces (67) Piscis Austrinus (68) Puppis (69) Pyxis (70) Reticulum (71) Sagitta (72) Sagittarius (73) Scorpius,

Scorpio (74) Sculptor (75) Scutum (76) Serpens (77) Sextans (78) Taurus (79) Telescopium (80) Triangulum (81) Triangulum

Australe (82) Tucana (83) Ursa Major (84) Ursa Minor (85) Vela (86) Virgo (87) Volans (88) Vulpecula

English Dataset: countries

(1) Afghanistan (2) Albania, Republic of Albania (3) Algeria, People's Democratic Republic of Algeria (4) Andorra, Principality

of Andorra (5) Angola, Republic of Angola (6) Antigua and Barbuda, Antigua & Barbuda (7) Argentina, Argentine Republic

(8) Armenia, Republic of Armenia (9) Australia, Commonwealth of Australia (10) Austria, Republic of Austria (11) Azerbai-

jan, Republic of Azerbaijan (12) Bahamas, The Bahamas, Commonwealth of The Bahamas (13) Bahrain, Kingdom of Bahrain

(14) Bangladesh, People's Republic of Bangladesh (15) Barbados (16) Belarus, Republic of Belarus (17) Belgium, Kingdom of

Belgium (18) Belize (19) Benin, Republic of Benin (20) Bhutan, Kingdom of Bhutan (21) Bolivia, Republic of Bolivia (22)

Bosnia and Herzegovina, Bosnia & Herzegovina (23) Botswana, Republic of Botswana (24) Brazil, Federative Republic of Brazil,

Brasil (25) Brunei, Negara Brunei Darussalam, Brunei Darussalam (26) Bulgaria, Republic of Bulgaria (27) Burkina Faso (28)

Burundi, Republic of Burundi (29) Cambodia, Kingdom of Cambodia (30) Cameroon, Republic of Cameroon (31) Canada (32)

Cape Verde, Republic of Cape Verde (33) Central African Republic (34) Chad, Republic of Chad (35) Chile, Republic of Chile

(36) China, People's Republic of China, PRC (37) Colombia, Republic of Colombia (38) Comoros, Union of the Comoros (39)

Congo, Democratic Republic of the Congo, Zaire (40) Congo, Republic of the Congo (41) Costa Rica, Republic of Costa Rica (42)

Cote d'Ivoire, Côte d'Ivoire, Republic of Cote d'Ivoire, Republic of Côte d'Ivoire (43) Croatia, Republic of Croatia (44) Cuba,

Republic of Cuba (45) Cyprus, Republic of Cyprus (46) Czech Republic (47) Denmark, Kingdom of Denmark (48) Djibouti,

Republic of Djibouti (49) Dominica, Commonwealth of Dominica (50) Dominican Republic (51) Ecuador, Republic of Ecuador

(52) East Timor, Timor-Leste, Democratic Republic of Timor-Leste (53) England (54) Egypt, Arab Republic of Egypt (55) El

Salvador, Republic of El Salvador (56) Equatorial Guinea, Republic of Equatorial Guinea (57) Eritrea, State of Eritrea (58)

Estonia, Republic of Estonia (59) Ethiopia, Federal Democratic Republic of Ethiopia (60) Fiji, Republic of the Fiji Islands (61)

121

A. THE 36 UNARY DATASETS

Finland, Republic of Finland (62) France, French Republic (63) Gabon, Gabonese Republic (64) Gambia, The Gambia, Republic

of The Gambia (65) Georgia (66) Germany, Federal Republic of Germany (67) Ghana, Republic of Ghana (68) Greece, Hellenic

Republic (69) Grenada (70) Guatemala, Republic of Guatemala (71) Guinea, Republic of Guinea (72) Guinea-Bissau, Republic

of Guinea-Bissau, Guinea Bissau (73) Guyana, Co-operative Republic of Guyana (74) Haiti, Republic of Haiti (75) Honduras,

Republic of Honduras (76) Hungary, Republic of Hungary (77) Iceland, Republic of Iceland (78) India, Republic of India (79)

Indonesia, Republic of Indonesia (80) Iran, Islamic Republic of Iran (81) Iraq, Republic of Iraq (82) Ireland (83) Israel, State

of Israel (84) Italy, Italian Republic (85) Jamaica (86) Japan (87) Jordan, Hashemite Kingdom of Jordan (88) Kazakhstan,

Republic of Kazakhstan (89) Kenya, Republic of Kenya (90) Kiribati, Republic of Kiribati (91) Korea, North Korea, Democratic

People's Republic of Korea (92) Korea, South Korea, Republic of Korea (93) Kuwait, State of Kuwait (94) Kyrgyzstan, Kyrgyz

Republic (95) Laos, Lao People's Democratic Republic (96) Latvia, Republic of Latvia (97) Lebanon, Republic of Lebanon (98)

Lesotho, Kingdom of Lesotho (99) Liberia, Republic of Liberia (100) Libya, Great Socialist People's Libyan Arab Jamahiriya

(101) Liechtenstein, Principality of Liechtenstein (102) Lithuania, Republic of Lithuania (103) Luxembourg, Grand Duchy of

Luxembourg (104) Macedonia, Republic of Macedonia (105) Madagascar, Republic of Madagascar (106) Malawi, Republic of

Malawi (107) Malaysia (108) Maldives, Republic of Maldives (109) Mali, Republic of Mali (110) Malta, Republic of Malta (111)

Marshall Islands, Republic of the Marshall Islands (112) Mauritania, Islamic Republic of Mauritania (113) Mauritius, Republic

of Mauritius (114) Mexico, United Mexican States (115) Micronesia, Federated States of Micronesia (116) Moldova, Republic

of Moldova (117) Monaco, Principality of Monaco (118) Mongolia (119) Montenegro, Republic of Montenegro (120) Morocco,

Kingdom of Morocco (121) Mozambique, Republic of Mozambique (122) Myanmar, Union of Myanmar, Burma (123) Namibia,

Republic of Namibia (124) Nauru, Republic of Nauru (125) Nepal, State of Nepal (126) Netherlands, The Netherlands, Kingdom

of the Netherlands (127) New Zealand (128) Nicaragua, Republic of Nicaragua (129) Niger, Republic of Niger (130) Nigeria,

Federal Republic of Nigeria (131) Northern Ireland (132) Norway, Kingdom of Norway (133) Oman, Sultanate of Oman (134)

Pakistan, Islamic Republic of Pakistan (135) Palau, Republic of Palau (136) Palestine, Palestinian State, State of Palestine (137)

Panama, Republic of Panama (138) Papua New Guinea, Independent State of Papua New Guinea (139) Paraguay, Republic of

Paraguay (140) Peru, Republic of Peru (141) Philippines, The Philippines, Republic of the Philippines (142) Poland, Republic of

Poland (143) Portugal, Portuguese Republic (144) Qatar, State of Qatar (145) Romania (146) Russia, Russian Federation (147)

Rwanda, Republic of Rwanda (148) Saint Kitts and Nevis, Saint Kitts & Nevis, St. Kitts & Nevis, St. Kitts and Nevis, Federa-

tion of Saint Christopher and Nevis (149) Saint Lucia, St. Lucia (150) Saint Vincent and the Grenadines, Saint Vincent & the

Grenadines, St. Vincent & The Grenadines, St. Vincent and The Grenadines (151) Samoa, Independent State of Samoa (152) San

Marino, Most Serene Republic of San Marino (153) Sao Tome and Principe, S~ao Tom�e and Pr��ncipe, Democratic Republic of Sao

Tome and Principe, Democratic Republic of S~ao Tom�e and Pr��ncipe (154) Saudi Arabia, Kingdom of Saudi Arabia (155) Scotland

(156) Senegal, Republic of Senegal (157) Serbia, Republic of Serbia (158) Seychelles, Republic of Seychelles (159) Sierra Leone,

Republic of Sierra Leone (160) Singapore, Republic of Singapore (161) Slovakia, Slovak Republic (162) Slovenia, Republic of

Slovenia (163) Solomon Islands (164) Somalia (165) South Africa, Republic of South Africa (166) Spain, Kingdom of Spain (167)

Sri Lanka, Democratic Socialist Republic of Sri Lanka (168) Sudan, Republic of the Sudan (169) Suriname, Republic of Suriname

(170) Swaziland, Kingdom of Swaziland (171) Sweden, Kingdom of Sweden (172) Switzerland, Swiss Confederation (173) Syria,

Syrian Arab Republic (174) Taiwan, Republic of China, ROC (175) Tajikistan, Republic of Tajikistan (176) Tanzania, United

Republic of Tanzania (177) Thailand, Kingdom of Thailand (178) Togo, Togolese Republic (179) Tonga, Kingdom of Tonga (180)

Trinidad and Tobago, Trinidad & Tobago, Republic of Trinidad and Tobago (181) Tunisia, Tunisian Republic (182) Turkey, Re-

public of Turkey (183) Turkmenistan (184) Tuvalu (185) Uganda, Republic of Uganda (186) Ukraine (187) United Arab Emirates,

Emirates, UAE (188) United Kingdom, United Kingdom of Great Britain and Northern Ireland, Britain, UK (189) United States,

United States of America, America, USA, U.S. (190) Uruguay, Eastern Republic of Uruguay (191) Uzbekistan, Republic of Uzbek-

istan (192) Vanuatu, Republic of Vanuatu (193) Vatican City, State of the Vatican City, Holy See (194) Venezuela, Bolivarian

Republic of Venezuela (195) Vietnam, Socialist Republic of Vietnam, Viet Nam (196) Wales (197) Western Sahara, Sahrawi Arab

Democratic Republic (198) Yemen, Republic of Yemen (199) Zambia, Republic of Zambia (200) Zimbabwe, Republic of Zimbabwe

English Dataset: mlb-teams

(1) Atlanta Braves, braves (2) Florida Marlins, marlins (3) New York Mets, mets (4) Philadelphia Phillies, phillies (5) Washing-

ton Nationals, nationals (6) Chicago Cubs, cubs (7) Cincinnati Reds, reds (8) Houston Astros, astros (9) Milwaukee Brewers,

brewers (10) Pittsburgh Pirates, pirates (11) St. Louis Cardinals, cardinals (12) Arizona Diamondbacks, diamondbacks (13)

Colorado Rockies, rockies (14) Los Angeles Dodgers, dodgers (15) San Diego Padres, padres (16) San Francisco Giants, giants

(17) Baltimore Orioles, orioles (18) Boston Red Sox, red sox (19) New York Yankees, yankees (20) Tampa Bay Devil Rays, Tampa

Bay Rays, devil rays, rays (21) Toronto Blue Jays, blue jays (22) Chicago White Sox, white sox (23) Cleveland Indians, indians

(24) Detroit Tigers, tigers (25) Kansas City Royals, royals (26) Minnesota Twins, twins (27) Los Angeles Angels of Anaheim,

Los Angeles Angels, angels (28) Oakland Athletics, athletics (29) Seattle Mariners, mariners (30) Texas Rangers, rangers

English Dataset: nba-teams

(1) Boston Celtics (2) New Jersey Nets (3) New York Knicks (4) Philadelphia 76ers (5) Toronto Raptors (6) Chicago Bulls (7)

Cleveland Cavaliers (8) Detroit Pistons (9) Indiana Pacers (10) Milwaukee Bucks (11) Atlanta Hawks (12) Charlotte Bobcats (13)

Miami Heat (14) Orlando Magic (15) Washington Wizards (16) Dallas Mavericks (17) Houston Rockets (18) Memphis Grizzlies

(19) New Orleans Hornets, New Orleans/Oklahoma City Hornets, Charlotte Hornets (20) San Antonio Spurs (21) Denver Nuggets

(22) Minnesota Timberwolves (23) Portland Trail Blazers (24) Oklahoma City Thunder, Seattle Supersonics (25) Utah Jazz (26)

Golden State Warriors (27) Los Angeles Clippers (28) Los Angeles Lakers (29) Phoenix Suns (30) Sacramento Kings

English Dataset: n-teams

(1) Bu�alo Bills, bills (2) Miami Dolphins, dolphins (3) New England Patriots, patriots (4) New York Jets, jets (5) Baltimore

Ravens, ravens (6) Cincinnati Bengals, bengals (7) Cleveland Browns, browns (8) Pittsburgh Steelers, steelers (9) Houston Tex-

ans, texans (10) Indianapolis Colts, colts (11) Jacksonville Jaguars, jaguars (12) Tennessee Titans, titans (13) Denver Broncos,

122

broncos (14) Kansas City Chiefs, chiefs (15) Oakland Raiders, raiders (16) San Diego Chargers, chargers (17) Dallas Cowboys,

cowboys (18) New York Giants, giants (19) Philadelphia Eagles, eagles (20) Washington Redskins, redskins (21) Chicago Bears,

bears (22) Detroit Lions, lions (23) Green Bay Packers, packers (24) Minnesota Vikings, vikings (25) Atlanta Falcons, falcons (26)

Carolina Panthers, panthers (27) New Orleans Saints, saints (28) Tampa Bay Buccaneers, buccaneers (29) Arizona Cardinals,

cardinals (30) St. Louis Rams, rams (31) San Francisco 49ers, San Francisco 49'ers, 49ers (32) Seattle Seahawks, seahawks

English Dataset: car-makers

(1) Acura (2) Alfa Romeo (3) Aston Martin, Aston-Martin (4) Audi (5) Bentley (6) BMW (7) Buick (8) Cadillac (9) Chevrolet,

Chevy (10) Chrysler (11) Citroen, Citro�en (12) Daewoo (13) Daihatsu (14) Dodge (15) Ferrari (16) Fiat (17) Ford, Ford Motor

Company (18) Geo (19) Honda (20) Hummer (21) Hyundai, Hyundai Motor Company (22) In�niti (23) Isuzu (24) Jaguar (25)

Jeep (26) Kia, Kia Motors (27) Lamborghini (28) Lancia (29) Land Rover, Land-Rover (30) Lexus (31) Lincoln (32) Lotus (33)

Maserati (34) Mazda (35) Mercedes-Benz, Mercedes Benz, Mercedes (36) Mercury (37) MINI (38) Mitsubishi (39) Nissan (40)

Oldsmobile (41) Opel (42) Peugeot (43) Plymouth (44) Pontiac (45) Porsche (46) Renault (47) Rolls-Royce, Rolls Royce (48)

Saab, Saab Automobile (49) Saturn (50) SEAT (51) Smart (52) Subaru (53) Suzuki (54) Toyota (55) Volkswagen, VW (56) Volvo,

Volvo Cars

English Dataset: us-presidents

(1) George Washington (2) John Adams (3) Thomas Je�erson (4) James Madison (5) James Monroe (6) John Quincy Adams,

John Q. Adams (7) Andrew Jackson (8) Martin Van Buren (9) William Harrison, William H. Harrison, William Henry Harrison

(10) John Tyler (11) James Polk, James K. Polk, James Knox Polk (12) Zachary Taylor (13) Millard Fillmore (14) Franklin

Pierce (15) James Buchanan (16) Abraham Lincoln (17) Andrew Johnson (18) Ulysses Grant, Ulysses S. Grant, Ulysses Simpson

Grant (19) Rutherford Hayes, Rutherford B. Hayes, Rutherford Bitchard Hayes (20) James Gar�eld, James A. Gar�eld, James

Abram Gar�eld (21) Chester Arthur, Chester A. Arthur, Chester Alan Arthur (22) Grover Cleveland, Stephen Grover Cleveland

(23) Benjamin Harrison (24) William McKinley (25) Theodore Roosevelt, Theodore Roosevelt II (26) William Taft, William H.

Taft, William Howard Taft (27) Woodrow Wilson, Thomas Woodrow Wilson (28) Warren Harding, Warren G. Harding, Warren

Gamaliel Harding (29) Calvin Coolidge, John Calvin Coolidge, John Calvin Coolidge Jr. (30) Herbert Hoover, Herbert C. Hoover,

Herbert Clark Hoover (31) Franklin Roosevelt, Franklin D. Roosevelt, Franklin Delano Roosevelt (32) Harry Truman, Harry S.

Truman (33) Dwight Eisenhower, Dwight D. Eisenhower, Dwight David Eisenhower (34) John Kennedy, John F. Kennedy, John

Fitzgerald Kennedy (35) Lyndon Johnson, Lyndon B. Johnson, Lyndon Baines Johnson (36) Richard Nixon, Richard M. Nixon,

Richard Milhous Nixon (37) Gerald Ford, Gerald R. Ford, Gerald Rudolph Ford, Gerald Rudolph Ford Jr. (38) Jimmy Carter,

James E. Carter, James Earl Carter, James Earl Carter Jr. (39) Ronald Reagan, Ronald W. Reagan, Ronald Wilson Reagan (40)

George Bush, George H. Bush, George H. W. Bush, George Herbert Walker Bush, George HW Bush, George H.W. Bush (41)

Bill Clinton, Bill J. Clinton, Bill Je�erson Clinton, William Clinton, William J. Clinton, William Je�erson Clinton (42) George

Walker Bush, George W. Bush, George Bush

English Dataset: us-states

(1) Alaska (2) Alabama (3) Arkansas (4) Arizona (5) California (6) Colorado (7) Connecticut (8) Delaware (9) Florida (10)

Georgia (11) Hawaii (12) Iowa (13) Idaho (14) Illinois (15) Indiana (16) Kansas (17) Kentucky (18) Louisiana (19) Massachusetts

(20) Maryland (21) Maine (22) Michigan (23) Minnesota (24) Missouri (25) Mississippi (26) Montana (27) North Carolina (28)

North Dakota (29) Nebraska (30) New Hampshire (31) New Jersey (32) New Mexico (33) Nevada (34) New York (35) Ohio (36)

Oklahoma (37) Oregon (38) Pennsylvania (39) Rhode Island (40) South Carolina (41) South Dakota (42) Tennessee (43) Texas

(44) Utah (45) Virginia (46) Vermont (47) Washington (48) Wisconsin (49) West Virginia (50) Wyoming

English Dataset: cmu-buildings

(1) Alumni House (2) Baker Hall (3) Boss House, Boss Hall (4) Bramer House (5) Cathedral Mansions (6) Collaborative Inno-

vation Center (7) College of Fine Arts (8) Cyert Hall (9) Doherty Apartments (10) Doherty Hall (11) Donner House, Donner

Hall (12) Facilities Management Services Building (13) Fairfax Apartments (14) Fraternity Quadrangle (15) Skibo Gymnasium,

Gymnasium (16) Hamburg Hall (17) Hamerschlag Hall (18) Hamerschlag House (19) Henderson House, Henderson Hall (20)

Hunt Library (21) Information Networking Institute (22) London Terrace Apartments (23) Margaret Morrison Apartments (24)

Margaret Morrison Carnegie Hall, Margaret Morrison (25) Margaret Morrison Sorority Houses (26) Marybelle Apartments (27)

McGill House, McGill Hall (28) Mellon Institute (29) Morewood Gardens (30) Mudge House (31) Neville Apartments (32) New

House (33) Newell-Simon Hall (34) Planetary Robotics Building (35) Porter Hall (36) Posner Center (37) Posner Hall, Tepper

School of Business (38) Publications/Printing Building, Publications and Printing Building (39) Purnell Center for the Arts, Pur-

nell Center (40) Resnik House (41) Roberts Engineering Hall, Roberts Hall of Engineering, Roberts Hall (42) Roselawn Terrace

(43) Saxony Apartments (44) Scaife Hall (45) Scobell House (46) Shady Oak Apartments (47) Shirley Apartments (48) Smith

Hall (49) Software Engineering Institute (50) Spirit House (51) Tech House (52) University Center (53) Warner Hall (54) Wean

Hall (55) Webster Hall (56) Welch Hall, Welch House (57) West Wing (58) Whit�eld Hall (59) Woodlawn Apartments

English Dataset: diseases

(1) Avadhi (2) Acne (3) Adenoma (4) Ageing (5) AIDS, Acquired Immune De�ciency Syndrome (6) Albinism (7) Alcoholic hepati-

tis (8) Alopecia (9) Alzheimer's disease, Alzheimer (10) Amblyopia (11) Amoebiasis, Amebiasis (12) Anemia (13) Aneurysm (14)

Anosmia (15) Anotia (16) Anthrax (17) Appendicitis (18) Apraxia (19) Argyria (20) Arteritis (21) Arthritis (22) Aseptic menin-

gitis (23) Asthenia (24) Asthma (25) Atherosclerosis (26) Athetosis (27) Athlete's foot (28) Atrophy (29) Autism (30) Beriberi

(31) Bipolar disorder (32) Bladder infection (33) Botulism (34) Brucellosis (35) Bubonic plague (36) Brain cancer (37) Calculi

(38) Campylobacter infection (39) Cancer (40) Candidiasis (41) Cardiac arrest (42) Chagas disease (43) Chalazion (44) Chan-

123

A. THE 36 UNARY DATASETS

croid (45) Cherubism (46) Chickenpox (47) Chlamydia (48) Cholera (49) Chordoma (50) Chorea (51) Chronic fatigue syndrome

(52) Cleft lip (53) Coccidioidomycosis (54) Cold sore (55) Colitis (56) Color blindness (57) Common cold (58) Condyloma (59)

Congestive heart disease (60) Coronary heart disease (61) Cowpox (62) Cretinism (63) Cystic �brosis (64) Dermatophytosis (65)

Diabetes mellitus (66) Diaper rash (67) Diphtheria (68) Ebola (69) E. coli poisoning (70) Encephalitis (71) Foodborne illness (72)

Genital warts (73) Gonorrhoea (74) Glandular fever (75) Hemophilia A (76) Hepatitis A (77) Hepatitis B (78) Hepatitis C (79)

Hepatitis E (80) Herpes (81) Huntington's disease (82) Hypertension (83) Headache (84) Ichthyosis (85) Inuenza (86) Interstitial

cystitis (87) Iritis (88) Iron-de�ciency anemia (89) Irritable bowel syndrome (90) Jaundice (91) Keloids (92) Keratosis pilaris (93)

Kuru (94) Kwashiorkor (95) Lazy eye (96) Lead poisoning (97) Legionellosis (98) Leishmaniasis (99) Leprosy (100) Leptospirosis

(101) Listeriosis (102) Leukemia (103) Loiasis (104) Lupus erythematosus (105) Lyme disease (106) Lymphogranuloma venereum

(107) Lymphoma (108) Malaria (109) Marburg fever (110) Measles (111) Melioidosis (112) Meniere's disease, M�eni�ere's disease,

Meniere, M�enier�e (113) Meningitis (114) Meningococcemia (115) Migraine (116) Multiple myeloma (117) Multiple Sclerosis (118)

Mumps (119) Muscular dystrophy (120) Myasthenia gravis (121) Myelitis (122) Myoclonus (123) Myopathy (124) Myopia (125)

Myxedema (126) Neoplasm (127) Non-gonococcal urethritis (128) Obsessive-compulsive disorder (129) Obesity (130) Osteoarthri-

tis (131) Pancreatitis (132) Paratyphoid fever (133) Parkinson's disease (134) Pelvic inammatory disease (135) Peritonitis (136)

Periodontal disease (137) Pertussis (138) Phenylketonuria (139) Pityriasis rosea (140) Plague, bubonic, septicemic, pneumonic,

pharyngeal (141) Pneumonia (142) Polio, Poliomyelitis (143) Porphyria (144) Progeria (145) Prostatitis (146) Psittacosis (147)

Psoriasis (148) Pubic lice (149) Q fever (150) Rabies (151) Raynaud's disease, Raynaud (152) Repetitive strain injury, RSI (153)

Rheumatic fever (154) Rheumatoid arthritis (155) Rickets (156) Rift Valley fever (157) Rocky Mountain spotted fever (158)

Rubella (159) Rheumatic heart disease (160) Salmonella poisoning (161) Salmonellosis (162) Scabies (163) Scarlet fever (164)

Sciatica (165) Schizophrenia (166) Scleroderma (167) Scurvy (168) Sepsis (169) SARS, Severe acute respiratory syndrome (170)

Shigellosis (171) Shingles (172) Shock (173) Sickle-cell disease (174) Siderosis (175) Silicosis (176) Stevens-Johnson syndrome

(177) Strabismus (178) Strep throat (179) Streptococcal infection (180) Synovitis (181) Syphilis (182) Tapeworm infection (183)

Tay-Sachs disease (184) Teratoma (185) Tetanus (186) Thalassaemia (187) Thrush (188) Tinnitus (189) Toxic shock syndrome

(190) Trichomoniasis (191) Trisomy (192) Tuberculosis (193) Tularemia (194) Tungiasis (195) Typhoid, Typhoid fever (196) Ty-

phus (197) Ulcerative colitis (198) Uremia (199) Urticaria (200) Uveitis (201) Varicella (202) Vasovagal syncope (203) Vitiligo

(204) Warkany syndrome (205) Warts (206) Yellow fever (207) Yaws

English Dataset: periodic-comets

(1) Halley (2) Encke (3) Biela (4) Faye (5) Brorsen (6) d'Arrest (7) Pons-Winnecke (8) Tuttle (9) Tempel, Tempel 1 (10) Tempel,

Tempel 2 (11) Tempel-Swift-LINEAR (12) Pons-Brooks (13) Olbers (14) Wolf (15) Finlay (16) Brooks, Brooks 2 (17) Holmes

(18) Perrine-Mrkos (19) Borrelly (20) Westphal (21) Giacobini-Zinner (22) Kop� (23) Brorsen-Metcalf (24) Schaumasse (25) Neu-

jmin, Neujmin 2 (26) Grigg-Skjellerup (27) Crommelin (28) Neujmin, Neujmin 1 (29) Schwassmann-Wachmann, Schwassmann-

Wachmann 1 (30) Reinmuth, Reinmuth 1 (31) Schwassmann-Wachmann, Schwassmann-Wachmann 2 (32) Comas Sola, Comas Sol�a

(33) Daniel (34) Gale (35) Herschel-Rigollet (36) Whipple (37) Forbes (38) Stephan-Oterma (39) Oterma (40) Vaisala, Vaisala

1, V�ais�al�a, V�ais�al�a 1 (41) Tuttle-Giacobini-Kres�ak, Tuttle-Giacobini-Kresak (42) Neujmin, Neujmin 3 (43) Wolf-Harrington

(44) Reinmuth, Reinmuth 2 (45) Honda-Mrkos-Pajdusakova, Honda-Mrkos-Pajdu�s�akov�a (46) Wirtanen (47) Ashbrook-Jackson

(48) Johnson (49) Arend-Rigaux (50) Arend (51) Harrington (52) Harrington-Abell (53) Van Biesbroeck (54) de Vico-Swift-

NEAT (55) Tempel-Tuttle (56) Slaughter-Burnham (57) du Toit-Neujmin-Delporte (58) Jackson-Neujmin (59) Kearns-Kwee (60)

Tsuchinshan, Tsuchinshan 2 (61) Shajn-Schaldach (62) Tsuchinshan, Tsuchinshan 1 (63) Wild, Wild 1 (64) Swift-Gehrels (65)

Gunn (66) du Toit (67) Churyumov-Gerasimenko (68) Klemola (69) Taylor (70) Kojima (71) Clark (72) Denning-Fujikawa (73)

Schwassmann-Wachmann, Schwassmann-Wachmann 3 (74) Smirnova-Chernykh (75) Kohoutek (76) West-Kohoutek-Ikemura (77)

Longmore (78) Gehrels, Gehrels 2 (79) du Toit-Hartley (80) Peters-Hartley (81) Wild, Wild 2 (82) Gehrels, Gehrels 3 (83) Russell,

Russell 1 (84) Giclas (85) Boethin (86) Wild, Wild 3 (87) Bus (88) Howell (89) Russell, Russell 2 (90) Gehrels, Gehrels 1 (91)

Russell, Russell 3 (92) Sanguin (93) Lovas, Lovas 1 (94) Russell, Russell 4 (95) Chiron (96) Machholz, Machholz 1 (97) Metcalf-

Brewington (98) Takamizawa (99) Kowal, Kowal 1 (100) Hartley, Hartley 1 (101) Chernykh (102) Shoemaker, Shoemaker 1 (103)

Hartley, Hartley 2 (104) Kowal, Kowal 2 (105) Singer Brewster (106) Schuster (107) Wilson-Harrington (108) Ci�reo, Ci�r�eo

(109) Swift-Tuttle (110) Hartley, Hartley 3 (111) Helin-Roman-Crockett (112) Urata-Niijima (113) Spitaler (114) Wiseman-Ski�

(115) Maury, Maury 1 (116) Wild, Wild 4 (117) Helin-Roman-Alu, Helin-Roman-Alu 1 (118) Shoemaker-Levy, Shoemaker-Levy

4 (119) Parker-Hartley (120) Mueller, Mueller 1 (121) Shoemaker-Holt, Shoemaker-Holt 2 (122) de Vico (123) West-Hartley

(124) Mrkos (125) Spacewatch, Spacewatch 1 (126) IRAS (127) Holt-Olmstead (128) Shoemaker-Holt, Shoemaker-Holt 1 (129)

Shoemaker-Levy, Shoemaker-Levy 3 (130) McNaught-Hughes (131) Mueller, Mueller 2 (132) Helin-Roman-Alu, Helin-Roman-Alu

2 (133) Elst-Pizarro (134) Kowal-Vavrova, Kowal-V�avrov�a (135) Shoemaker-Levy, Shoemaker-Levy 8 (136) Mueller, Mueller 3

(137) Shoemaker-Levy, Shoemaker-Levy 2 (138) Shoemaker-Levy, Shoemaker-Levy 7 (139) Vaisala-Oterma, V�ais�al�a-Oterma (140)

Bowell-Ski� (141) Machholz, Machholz 2 (142) Ge-Wang (143) Kowal-Mrkos (144) Kushida (145) Shoemaker-Levy, Shoemaker-

Levy 5 (146) Shoemaker-LINEAR (147) Kushida-Muramatsu (148) Anderson-LINEAR (149) Mueller, Mueller 4 (150) LONEOS,

LONEOS 3 (151) Helin (152) Helin-Lawrence (153) Ikeya-Zhang (154) Brewington (155) Shoemaker, Shoemaker 3 (156) Russell-

LINEAR (157) Tritton (158) Kowal-LINEAR (159) LONEOS, LONEOS 7 (160) LINEAR, LINEAR 43 (161) Hartley-IRAS (162)

Siding Spring, Siding Spring 2 (163) NEAT, NEAT 21 (164) Christensen, Christensen 2 (165) LINEAR, LINEAR 10 (166) NEAT,

NEAT 8 (167) CINEOS (168) Hergenrother, Hergenrother 1 (169) NEAT, NEAT 22 (170) Christensen, Christensen 4 (171) Spahr,

Spahr 2 (172) Yeung (173) Mueller, Mueller 5 (174) Echeclus (175) Hergenrother, Hergenrother 2 (176) LINEAR, LINEAR 52

(177) Barnard, Barnard 2 (178) Hug-Bell (179) Jedicke, Jedicke 1 (180) NEAT, NEAT 3 (181) Shoemaker-Levy, Shoemaker-Levy

6 (182) LONEOS, LONEOS 6 (183) Korlevic-Juric, Korlevi�c-Juri�c (184) Lovas, Lovas 2 (185) Petriew (186) Garradd

124

125

A. THE 36 UNARY DATASETS

126

127

A. THE 36 UNARY DATASETS

128

129

A. THE 36 UNARY DATASETS

130

131

A. THE 36 UNARY DATASETS

132

Appendix B

The 5 Binary Datasets

English Dataset: us-governors

(1) Alabama/Bob Riley (2) Alaska/Sarah Palin, Alaska/Frank Murkowski (3) American Samoa/Togiola Tulafono, American

Samoa/Togiola T.A. Tulafono (4) Arizona/Janet Napolitano, Arizona/Jan Brewer (5) Arkansas/Mike Beebe, Arkansas/Mike

Huckabee (6) California/Arnold Schwarzenegger (7) Colorado/Bill Ritter, Colorado/Bill Owens, Colorado/Bill Ritter Jr (8) Con-

necticut/M. Jodi Rell, Connecticut/Jodi Rell, Connecticut/Mary Jodi Rell (9) Delaware/Jack Markell, Delaware/Ruth Ann

Minner, Delaware/Ruth Minner (10) District of Columbia/Adrian Fenty (11) Florida/Charlie Crist, Florida/Jeb Bush (12)

Georgia/Sonny Perdue (13) Guam/Felix Camacho, Guam/Felix Perez Camacho (14) Hawaii/Linda Lingle (15) Idaho/Butch

Otter, Idaho/C.L. Butch Otter, Idaho/C.L. Otter, Idaho/Dirk Kempthorne (16) Illinois/Pat Quinn, Illinois/Rod Blagojevich,

Illinois/Rod R. Blagojevich (17) Indiana/Mitch Daniels (18) Iowa/Chet Culver, Iowa/Tom Vilsack (19) Kansas/Kathleen Se-

belius (20) Kentucky/Steve Beshear, Kentucky/Steven Beshear, Kentucky/Steven L. Beshear, Kentucky/Ernie Fletcher (21)

Louisiana/Bobby Jindal, Louisiana/Kathleen Blanco, Louisiana/Kathleen Babineaux Blanco (22) Maine/John Baldacci, Maine/John

E. Baldacci (23) Maryland/Martin O'malley, Maryland/Robert Ehrlich (24) Massachusetts/Deval Patrick, Massachusetts/Mitt

Romney (25) Michigan/Jennifer M. Granholm, Michigan/Jennifer Granholm (26) Minnesota/Tim Pawlenty (27) Mississippi/Haley

Barbour (28) Missouri/Jay Nixon, Missouri/Jeremiah Nixon, Missouri/Matt Blunt (29) Montana/Brian Schweitzer (30) Ne-

braska/Dave Heineman, Nebraska/David Heineman (31) Nevada/Jim Gibbons, Nevada/James Gibbons, Nevada/Kenny Guinn

(32) New Hampshire/John Lynch (33) New Jersey/Jon Corzine, New Jersey/John Corzine (34) New Mexico/Bill Richardson (35)

New York/David Paterson, New York/David A. Paterson, New York/Eliot Spitzer, New York/George Pataki, New York/George E.

Pataki (36) North Carolina/Beverly Perdue, North Carolina/Bev Perdue, North Carolina/Mike Easley, North Carolina/Michael

Easley, North Carolina/Michael F. Easley (37) North Dakota/John Hoeven (38) Northern Mariana Islands/Benigno Fitial, North-

ern Mariana Islands/Benigno R. Fitial (39) Ohio/Ted Strickland, Ohio/Bob Taft (40) Oklahoma/Brad Henry, Oklahoma/Brad

Jones (41) Oregon/Ted Kulongoski (42) Pennsylvania/Ed Rendell, Pennsylvania/Edward Rendell, Pennsylvania/Edward G. Ren-

dell (43) Puerto Rico/Luis Fortuno, Puerto Rico/Anibal acevedo vila (44) Rhode Island/Donald Carcieri, Rhode Island/Donald

L. Carcieri, Rhode Island/Don Carcieri (45) South Carolina/Mark Sanford (46) South Dakota/Mike Rounds, South Dakota/M.

Michael Rounds (47) Tennessee/Phil Bredesen (48) Texas/Rick Perry (49) United States Virgin Islands/John De Jongh, US

Virgin Islands/John de Jongh, Virgin Islands/John deJongh Jr, U.S. Virgin Islands/John de Jongh (50) Utah/Jon Huntsman,

Utah/Jon Huntsman Jr (51) Vermont/Jim Douglas, Vermont/James H. Douglas, Vermont/James Douglas (52) Virginia/Tim

Kaine (53) Washington/Christine Gregoire, Washington/Chris Gregoire (54) West Virginia/Joe Manchin III, West Virginia/Joe

Manchin (55) Wisconsin/Jim Doyle, Wisconsin/James Doyle (56) Wyoming/Dave Freudenthal, Wyoming/David Freudenthal

133

B. THE 5 BINARY DATASETS

English Dataset: fed-agencies

(1) ABMC/American Battle Monuments Commission (2) ACF/Administration for Children and Families (3) ACHP/Advisory

Council on Historic Preservation (4) ADD/Administration on Developmental Disabilities (5) ADF/African Development Foun-

dation (6) AFIS/American Forces Information Service (7) AFRICOM/United States African Command (8) AHRQ/Agency for

Healthcare Research and Quality (9) AID/Agency for International Development, USAID/Agency for International Development

(10) AMS/Agricultural Marketing Service (11) AMTRAK/National Railroad Passenger Corporation, NRPC/National Railroad

Passenger Corporation (12) ANA/Administration for Native Americans (13) AOA/Administration on Aging (14) AOC/Architect

of the Capitol (15) APHIS/Animal and Plant Health Inspection Service (16) ARB/Administrative Review Board (17) ARC/Appalachian

Regional Commission (18) ARS/Agricultural Research Service (19) ATF/Bureau of Alcohol (20) ATSDR/Agency for Toxic

Substances and Disease Registry, TSDR/Agency for Toxic Substances and Disease Registry (21) BBG/Broadcasting Board

of Governors (22) BCBP/Bureau of Customs and Border Protection (23) BCIS/Bureau of Citizenship and Immigration Ser-

vices (24) BEA/Bureau of Economic Analysis (25) BEP/Bureau of Engraving and Printing (26) BIA/Bureau of Indian Af-

fairs (27) BIS/Bureau of Industry and Security (28) BJA/Bureau of Justice Assistance (29) BJS/Bureau of Justice Statis-

tics (30) BLM/Bureau of Land Management (31) BLS/Bureau of Labor Statistics (32) BOP/Bureau of Prisons, BOP/Federal

Bureau of Prisons (33) BPA/Bonneville Power Administration (34) BPAI/Board of Patent Appeals and Interferences (35)

BPD/Bureau of Public Debt, BPD/Bureau of the Public Debt (36) BRB/Bene�ts Review Board (37) BTS/Bureau of Transporta-

tion Statistics (38) CB/Children's Bureau (39) CBO/Congressional Budget O�ce (40) CBP/Customs and Border Protection (41)

CCB/Child Care Bureau (42) CCR/Commission on Civil Rights, USCCR/Commission on Civil Rights (43) CDBG/Community

Development Block Grants (44) CDC/Centers for Disease Control and Prevention, CDC/Centers for Disease Control (45)

CDFI/Community Development Financial Institution Fund (46) CEA/Council of Economic Advisers (47) CEN/Bureau of the

Census (48) CIA/Central Intelligence Agency (49) CENTCOM/Central Command (50) CEQ/Council on Environmental Quality

(51) CFA/Commission of Fine Arts (52) CFBCI/Center for Faith-Based and Community Initiatives (53) CFOC/Chief Financial

O�cers Council (54) CFTC/Commodity Futures Trading Commission (55) CMS/Centers for Medicare and Medicaid Services

(56) CNCS/Corporation for National and Community Service, CNS/Corporation for National Service (57) CNCS/Corporation

for National and Community Service (58) CNPP/Center for Nutrition Policy and Promotion (59) COPS/Community Oriented

Policing Services (60) CPD/Community Planning and Development (61) CPSC/Consumer Product Safety Commission (62)

134

CREES/Cooperative State Research (63) CRS/Congressional Research Service (64) CSB/Chemical Safety and Hazard Investiga-

tion Board, USCSB/Chemical Safety and Hazard Investigations Board (65) CSCE/Commission on Security and Cooperation in

Europe (66) CSOSA/Court Services and O�ender Supervision Agency (67) DA/Department of the Army, USA/Department of

the Army, USA/United States Army (68) DARPA/Defense Advanced Research Projects Agency (69) DAU/Defense Acquisition

University (70) DCAA/Defense Contract Audit Agency (71) DCMA/Defense Contract Management Agency (72) DEA/Drug En-

forcement Administration, DEA/Drug Enforcement Agency (73) DeCA/Defense Commissary Agency (74) DFAS/Defense Finance

and Accounting Service (75) DHS/Department of Homeland Security, DHS/Homeland Security Department (76) DIA/Defense In-

telligence Agency (77) DISA/Defense Information Systems Agency (78) DLA/Defense Logistics Agency (79) DLSA/Defense Legal

Services Agency (80) DNFSB/Defense Nuclear Facilities Safety Board (81) DNI/Director of National Intelligence, ODNI/Director

of National Intelligence (82) DOC/Department of Commerce (83) DOD/Department of Defense, DOD/Defense Department, De-

fenseLINK/Department of Defense (84) DODEA/Department of Defense Education Activity (85) DOE/Department of Energy,

DOE/Energy Department, Energy/Department of Energy (86) DOI/Department of the Interior (87) DOJ/Department of Jus-

tice, USDOJ/United States Department of Justice, USDOJ/Department of Justice (88) DOL/Department of Labor, DOL/Labor

Department, Labor/Department of Labor (89) DOS/Department of State, State/Department of State (90) DOT/Department of

Transportation, DOT/Transportation Department (91) DPC/Domestic Policy Council (92) DRBC/Delaware River Basin Com-

mission (93) DSCA/Defense Security Cooperation Agency (94) DSS/Defense Security Service (95) DTIC/Defense Technical

Information Center (96) DTRA/Defense Threat Reduction Agency (97) EBSA/Employee Bene�ts Security Administration (98)

ECA/Bureau of Educational and Cultural A�airs (99) ECAB/Employees' Compensation Appeals Board (100) ED/Department of

Education, ED/Education Department, Education/Department of Education, DOE/Department of Education (101) EDA/Economic

Development Administration (102) EE/Energy E�ciency and Renewable Energy (103) EEOC/Equal Employment Opportu-

nity Commission (104) EIA/Energy Information Administration (105) EOIR/Executive O�ce for Immigration Review (106)

EOUSA/Executive O�ce for U.S. Attorneys (107) EPA/Environmental Protection Agency, EPA/United States Environmen-

tal Protection Agency (108) ERIC/Education Resources Information Center, ERIC/Educational Resources Information Cen-

ter (109) ERS/Economic Research Service (110) ESA/Economics and Statistics Administration, ESA/Employment Standards

Administration (111) ETA/Employment and Training Administration (112) EUCOM/European Command (113) ExIm/Export-

Import Bank of the United States, Ex-Im Bank/Export-Import Bank of the United States, EXIMBANK/Export-Import Bank

of the United States (114) FAA/Federal Aviation Administration (115) FAS/Foreign Agricultural Service (116) FASAB/Federal

Accounting Standards Advisory Board (117) FBI/Federal Bureau of Investigation (118) FBOP/Federal Bureau of Prisons (119)

FCA/Farm Credit Administration (120) FCC/Federal Communications Commission (121) FCIC/Federal Citizen Information Cen-

ter (122) FCIC/Federal Crop Insurance Corporation (123) FCSC/Foreign Claims Settlement Commission of the United States

(124) FDA/Food and Drug Administration (125) FDIC/Federal Deposit Insurance Corporation (126) FEB/Federal Executive

Boards, FEB's/Federal Executive Boards (127) FEC/Federal Election Commission (128) FEMA/Federal Emergency Manage-

ment Agency (129) FERC/Federal Energy Regulatory Commission (130) FFB/Federal Financing Bank (131) FGDC/Federal

Geographic Data Committee (132) FHA/Federal Housing Administration (133) FHEO/O�ce of Fair Housing and Equal Op-

portunity (134) FHFB/Federal Housing Finance Board (135) FHWA/Federal Highway Administration (136) FICE/Federal In-

teragency Committee on Education (137) FinCEN/Financial Crimes Enforcement Network (138) FJC/Federal Judicial Center

(139) FLETC/Federal Law Enforcement Training Center (140) FLRA/Federal Labor Relations Authority (141) FMC/Federal

Maritime Commission (142) FMCS/Federal Mediation and Conciliation Service (143) FMCSA/Federal Motor Carrier Safety

Administration (144) FMS/Financial Management Service (145) FMSHRC/Federal Mine Safety and Health Review Commis-

sion, FMSHRC/Federal Mine Safety (146) FNS/Food and Nutrition Service (147) FRA/Federal Railroad Administration (148)

FRB/Federal Reserve Board (149) FRS/Federal Reserve System, FED/Federal Reserve System, The Fed/Federal Reserve Sys-

tem (150) FRTIB/Federal Retirement Thrift Investment Board (151) FS/Forest Service (152) FSA/Farm Service Agency (153)

FSA/O�ce of Federal Student Aid (154) FSIS/Food Safety and Inspection Service (155) FTA/Federal Transit Administra-

tion (156) FTC/Federal Trade Commission (157) FWS/Fish and Wildlife Service (158) FYSB/Family and Youth Services Bu-

reau (159) GAO/Government Accountability O�ce, GAO/General Accounting O�ce (160) GIPSA/Grain Inspection, Packers

and Stockyards Administration, GIPSA/Grain Inspection (161) GNMA/Government National Mortgage Association, Ginnie

Mae/Government National Mortgage Association (162) GPO/Government Printing O�ce (163) GSA/General Services Adminis-

tration (164) HCFA/Health Care Financing Administration (165) HHS/Department of Health and Human Services, HHS/Health

and Human Services Department, DHHS/Department of Health and Human Services (166) HMI/Healthy Marriage Initiative (167)

HRSA/Health Resources and Services Administration (168) HSB/Head Start Bureau (169) HUD/Department of Housing and Ur-

ban Development, HUD/Housing and Urban Development Department, HUD/Housing and Urban Development, HUD/Housing

O�ce (170) IACB/Indian Arts and Crafts Board (171) IAF/Inter-American Foundation (172) IBB/International Broadcasting

Bureau (173) ICAF/Industrial College of the Armed Forces (174) ICC/Interstate Commerce Commission (175) ICE-FPS/United

States Federal Protective Service (176) ICE/Immigration and Customs Enforcement, ICE/U.S. Immigration and Customs En-

forcement (177) IES/Institute of Education Sciences (178) IHS/Indian Health Service (179) ILAB/Bureau of International La-

bor A�airs (180) IMLS/Institute of Museum and Library Services (181) INS/Immigration and Naturalization Service (182)

IO/Bureau of International Organization A�airs (183) IRS/Internal Revenue Service (184) ITA/International Trade Administra-

tion (185) ITC/International Trade Commission, USITC/United States International Trade Commission, USITC/International

Trade Commission (186) JCS/Joint Chiefs of Sta�, JCSLink/Joint Chiefs of Sta� (187) JFCOM/Joint Forces Command (188)

JFSC/Joint Forces Sta� College (189) LC/Library of Congress, LOC/Library of Congress (190) LIHEAP/Low Income Home

Energy Assistance Program (191) LOC/Library of Congress (192) LSA/Learn and Serve America (193) LSC/Legal Services

Corporation (194) MA/Maritime Administration, MARAD/Maritime Administration (195) MARAD/Maritime Administration

(196) MBDA/Minority Business Development Agency (197) MCC/Millennium Challenge Corporation (198) MDA/Missile Defense

Agency (199) MedPAC/Medicare Payment Advisory Commission (200) MMC/Marine Mammal Commission (201) MMS/Minerals

Management Service (202) MSHA/Mine Safety and Health Administration (203) MSPB/Merit Systems Protection Board (204)

NAEP/National Assessment of Educational Progress (205) NAL/National Agricultural Library (206) NARA/National Archives

and Records Administration (207) NASA/National Aeronautics and Space Administration (208) NASS/National Agricultural

Statistics Service (209) NCA/National Cemetery Administration (210) NCD/National Council on Disability (211) NCES/National

Center for Education Statistics (212) NCIS/Naval Criminal Investigative Service (213) NCJRS/National Criminal Justice Refer-

ence Service (214) NCPC/National Capital Planning Commission (215) NCS/National Communications System (216) NCUA/National

135

B. THE 5 BINARY DATASETS

Credit Union Administration (217) NDIC/National Drug Intelligence Center (218) NDU/National Defense University (219)

NEA/National Endowment for the Arts (220) NEC/National Economic Council (221) NEH/National Endowment for the Hu-

manities (222) NESDIS/National Environmental Satellite (223) NGA/National Geospatial-Intelligence Agency, NGIA/National

Geospatial-Intelligence Agency (224) NGS/National Geodetic Survey (225) NHTSA/National Highway Tra�c Safety Administra-

tion (226) NIC/National Ice Center (227) NIC/National Institute of Corrections (228) NIDRR/National Institute on Disability

and Rehabilitation Research (229) NIFC/National Interagency Fire Center (230) NIFL/National Institute for Literacy (231)

NIGC/National Indian Gaming Commission (232) NIH/National Institutes of Health (233) NIJ/National Institute of Justice

(234) NIMA/National Imagery and Mapping Agency (235) NIMH/National Institute of Mental Health (236) NIST/National

Institute of Standards and Technology (237) NLM/National Library of Medicine (238) NLRB/National Labor Relations Board

(239) NMB/National Mediation Board (240) NMMR/National Mine Map Repository (241) NNSA/National Nuclear Security

Administration (242) NOAA/National Oceanic and Atmospheric Administration (243) NORTHCOM/Northern Command (244)

NOS/National Ocean Service, NOS/National Oceanic Service (245) NPS/National Park Service, ParkNet/National Park Service

(246) NPTO/National Petroleum Technology O�ce (247) NRC/Nuclear Regulatory Commission (248) NRCS/Natural Resources

Conservation Service (249) NRO/National Reconnaissance O�ce (250) NSA/National Security Agency (251) NSC/National Secu-

rity Council (252) NSF/National Science Foundation (253) NTIA/National Telecommunications and Information Administration

(254) NTID/National Technical Institute for the Deaf (255) NTIS/National Technical Information Service (256) NTRC/National

Transportation Research Center (257) NTSB/National Transportation Safety Board (258) NWC/National War College (259)

NWS/National Weather Service (260) NWTRB/Nuclear Waste Technical Review Board (261) OA/O�ce of Administration (262)

OCC/O�ce of the Comptroller of the Currency (263) OCO/O�ce of Communications and Outreach (264) OCR/O�ce for Civil

Rights (265) OCS/O�ce of Community Services Block Grant (266) OCSE/O�ce of Child Support Enforcement, CSE/O�ce

of Child Support Enforcement (267) ODS/O�ce of the Deputy Secretary (268) OELA/O�ce of English Language Acquisition

(269) OESE/O�ce of Elementary and Secondary Education (270) OFA/O�ce of Family Assistance (271) OFCCP/O�ce of

Federal Contract Compliance Programs (272) OFHEO/O�ce of Federal Housing Enterprise Oversight (273) OGC/O�ce of the

General Counsel (274) OGE/O�ce of Government Ethics, USOGE/United States O�ce of Government Ethics, USOGE/U.S.

O�ce of Government Ethics (275) OIA/O�ce of Insular A�airs (276) OIG/O�ce of the Inspector General, USPS-OIG/O�ce

of the Inspector General, OIG/O�ce of Inspector General (277) OII/O�ce of Innovation and Improvement (278) OJP/O�ce

of Justice Programs (279) OLCA/O�ce of Legislation and Congressional A�airs (280) OLMS/The O�ce of Labor-Management

Standards (281) OMB/O�ce of Management and Budget (282) OMH/O�ce of Minority Health (283) ONCHIT/O�ce of the

National Coordinator for Health Information Technology (284) ONDCP/O�ce of National Drug Control Policy (285) OPE/O�ce

of Postsecondary Education (286) OPIC/Overseas Private Investment Corporation (287) OPM/O�ce of Personnel Management

(288) ORNL/Oak Ridge National Laboratory (289) ORR/O�ce of Refugee Resettlement (290) OS/O�ce of the Secretary (291)

OSC/O�ce of Special Counsel (292) OSDFS/O�ce of Safe and Drug Free Schools (293) OSEP/O�ce of Special Education Pro-

grams (294) OSERS/O�ce of Special Education and Rehabilitative Services (295) OSHA/Occupational Safety and Health Ad-

ministration, OSHA/Occupational Safety (296) OSHRC/Occupational Safety and Health Review Commission (297) OSM/O�ce

of Surface Mining (298) OSTI/O�ce of Scienti�c and Technical Information (299) OSTP/O�ce of Science and Technology Policy

(300) OTP/O�ce of Technology Policy (301) OTS/O�ce of Thrift Supervision (302) OUS/O�ce of the Under Secretary (303)

OVAE/O�ce of Vocational and Adult Education (304) OVC/O�ce for Victims of Crime (305) OWCP/O�ce of Workers' Compen-

sation Programs (306) PACOM/Paci�c Command (307) PBGC/Pension Bene�t Guaranty Corporation (308) PC/Peace Corps

(309) PCPID/President's Committee for People with Intellectual Disabilities (310) PFPA/Pentagon Force Protection Agency

(311) PHMSA/Pipeline and Hazardous Materials Safety Administration (312) PIH/Public and Indian Housing, PIH/O�ce of

Public and Indian Housing (313) PRC/Postal Regulatory Commission (314) PSC/Program Support Center (315) PTO/Patent

and Trademark O�ce, USPTO/Patent and Trademark O�ce (316) PWBA/Pension and Welfare Bene�ts Administration (317)

RBS/Rural Business-Cooperative Service (318) RD/Rural Development (319) RFA/Radio Free Asia (320) RFE/Radio Free Eu-

rope (321) RHS/Rural Housing Service (322) RITA/Research and Innovative Technology Administration (323) RMA/Risk Man-

agement Agency (324) RRB/Railroad Retirement Board (325) RSA/Rehabilitation Services Administration (326) RUS/Rural

Utilities Service (327) SAMHSA/Substance Abuse and Mental Health Services Administration (328) SBA/Small Business Admin-

istration (329) SEC/Securities and Exchange Commission (330) SEC/Securities Exchange Commission (331) SI/Smithsonian In-

stitution (332) SJI/State Justice Institute (333) SLAC/Stanford Linear Accelerator Center (334) SLSDC/Saint Lawrence Seaway

Development Corporation (335) SNL/Sandia National Laboratories (336) SOCOM/Special Operations Command (337) SOUTH-

COM/Southern Command, USSOUTHCOM/United States Southern Command (338) SRBC/Susquehanna River Basin Commis-

sion (339) SS/Secret Service (340) SSA/Social Security Administration (341) SSS/Selective Service System (342) STB/Surface

Transportation Board (343) STRATCOM/Strategic Command, USSTRATCOM/Strategic Command (344) TA/Technology Ad-

ministration (345) TANF/Temporary Assistance for Needy Families (346) TDA/Trade and Development Agency, USTDA/U.S.

Trade and Development Agency, USTDA/United States Trade and Development Agency (347) TFI/Terrorism and Financial

Intelligence (348) TIGTA/Treasury Inspector General for Tax Administration (349) TRANSCOM/Transportation Command

(350) TSA/Transportation Security Administration (351) TTAB/Trademark Trial and Appeal Board (352) TTB/Alcohol and

Tobacco Tax and Trade Bureau (353) TVA/Tennessee Valley Authority (354) USAF/Department of the Air Force (355) US-

AID/Agency for International Development, USAID/U.S. Agency for International Development (356) USARC/U.S. Arctic Re-

search Commission (357) USBR/Bureau of Reclamation, BOR/Bureau of Reclamation (358) USCCR/US Commission on Civil

Rights (359) USCG/United States Coast Guard, USCG/Coast Guard (360) USCIS/United States Citizenship and Immigration

Services, USCIS/U.S. Citizenship and Immigration Services (361) USDA/Department of Agriculture, USDA/Agriculture Depart-

ment, USDA/United States Department of Agriculture (362) USGS/United States Geological Survey, USGS/Geological Survey

(363) USIA/United States Information Agency (364) USITC/U.S. International Trade Commission (365) USM/U.S. Mint (366)

USMS/United States Marshals Service (367) USN/Department of the Navy, USN/Navy (368) USPIS/United States Postal In-

spection Service (369) USPPD/United States Pentagon Police (370) USSAH/Armed Forces Retirement Home (371) USSC/United

States Sentencing Commission, USSC/U.S. Sentencing Commission (372) USSS/United States Secret Service (373) USTR/United

States Trade Representative (374) TREAS/Department of the Treasury, USTREAS/United States Department of the Treasury

(375) USPS/United States Postal Service, USPS/Postal Service, USPS/U.S. Postal Service (376) VA/Department of Veter-

ans A�airs, DVA/Department of Veterans A�airs, VA/Veterans A�airs Department (377) VBA/Veterans Bene�ts Administra-

tion (378) VETS/Veterans' Employment and Training Service (379) VHA/Veterans Health Administration (380) VOA/Voice

136

of America (381) WAPA/Western Area Power Administration (382) WB/Women's Bureau (383) WHD/Wage and Hour Divi-

sion, WH/Wage and Hour Division (384) WHIHBCU/President's Advisory Board on Historically Black Colleges and Universities

(385) WHITCU/President's Advisory Board on Tribal Colleges and Universities (386) WHMO/White House Military O�ce (387)

WHS/Washington Headquarters Services

English Dataset: car-makers

(1) Abarth/Italy, Abarth/Italia (2) Acura/Japan (3) Agrale Bus/Brasil (4) Alfa Romeo/Italy, Alfa Romeo/Italia (5) Alpina/Germany

(6) Alvis/UK, Alvis/U.K, Alvis/United Kingdom (7) Apperson/USA, Apperson/United States (8) Aston Martin/UK, Aston Mar-

tin/U.K, Aston Martin/England, Aston Martin/United Kingdom (9) Audi/Germany (10) Austin Healey/UK, Austin Healey/U.K,

Austin Healey/United Kingdom (11) Autobianchi/Italy, Autobianchi/Italia (12) Ballot/France (13) Bentley/UK, Bentley/U.K,

Bentley/United Kingdom (14) Bertone/Italy, Bertone/Italia (15) Bmw/Germany (16) Bugatti/France (17) Buick/USA, Buick/United

States (18) Cadillac/USA, Cadillac/United States (19) Callaway/USA, Callaway/United States (20) Caterham/UK, Cater-

ham/U.K, Caterham/United Kingdom (21) Chevrolet/USA, Chevrolet/United States (22) Chrysler/USA, Chrysler/United States

(23) Citroen/France (24) Dacia/Romania (25) Daewoo/Korea, Daewoo/South Korea (26) Daihatsu/Japan (27) DaimlerChrysler/Germany

(28) Datsun/Japan (29) De Tomaso/Italy, De Tomaso/Italia, DeTomaso/Italy, DeTomaso/Italia (30) Dodge/USA, Dodge/United

States (31) Eagle/USA, Eagle/United States (32) Ferrari/Italy, Ferrari/Italia, Ferrari Dino/Italy (33) Fiat/Italy, Fiat/Italia (34)

Ford/USA, Ford/United States (35) Frazer Nash/UK, Frazer Nash/U.K, Frazer Nash/United Kingdom (36) General Motors/USA

(37) Gillet/Belgium (38) Ginetta/UK, Ginetta/U.K, Ginetta/United Kingdom (39) Holden/Australia, GM Holden/Australia

(40) GMC/USA, GMC/United States (41) Gurgel/Brasil (42) Honda/Japan (43) Hummer/USA, Hummer/United States (44)

Hyundai/Korea, Hyundai/South Korea (45) In�niti/Japan (46) Innocenti/Italy, Innocenti/Italia (47) Isdera/Germany (48) Isuzu/Japan

(49) Italdesign/Italy, Italdesign/Italia (50) Iveco/Italy, Iveco/Italia (51) Jaguar/UK, Jaguar/U.K, Jaguar/United Kingdom,

Jaguar/England (52) Jeep/USA, Jeep/United States (53) Kia/Korea, Kia/South Korea (54) Kissel/USA, Kissel/United States

(55) Koenigsegg/Sweden (56) Lada/Russia (57) Lamborghini/Italy, Lamborghini/Italia (58) Lancia/Italy, Lancia/Italia (59)

Land Rover/UK, Land Rover/U.K, Land Rover/England, Land Rover/United Kingdom, Rover/UK, Rover Group/U.K (60)

Laraki/Morocco (61) Lexus/Japan (62) Ligier/France (63) Lincoln/USA, Lincoln/United States (64) Lotus/UK, Lotus/U.K,

Lotus Cars/England, Lotus/United Kingdom, Lotus/England (65) Magna/Canada (66) Mahindra/India (67) Malaguti/Italy,

Malaguti/Italia (68) Maserati/Italy, Maserati/Italia (69) Maybach/Germany (70) Mazda/Japan (71) McLaughlin/Canada (72)

Mercedes/Germany, Mercedes Benz/Germany (73) Mercer/USA, Mercer/United States (74) Mercury/USA, Mercury/United

States (75) MG/UK, MG/U.K, MG/United Kingdom, M.G/UK, MG/England (76) MINI/UK, MINI/U.K, Mini/United King-

dom (77) Mitsubishi/Japan (78) Morgan/UK, Morgan/U.K, Morgan/United Kingdom, Morgan Morot/UK (79) Nissan/Japan (80)

Oldsmobile/USA, Oldsmobile/United States (81) Opel/Germany (82) Pagani/Italy, Pagani/Italia (83) Panoz/USA, Panoz/United

States (84) Pegaso/Spain (85) Peugeot/France (86) Plymouth/USA, Plymouth/United States (87) Pontiac/USA, Pontiac/United

States (88) Porsche/Germany, Porche/Germany (89) Proton/Malaysia (90) Reliant/UK, Reliant/U.K, Reliant/United Kingdom

(91) Renault/France (92) Rolls Royce/UK, Rolls Royce/U.K, Rolls Royce/United Kingdom (93) RUF/Germany (94) Saab/Sweden

(95) Saleen/USA, Saleen/United States (96) Saturn/USA, Saturn/United States (97) Scion/USA, Scion/United States (98)

Seat/Spain (99) Shelby/USA, Shelby/United States (100) Skoda/Czech Republic, Skoda/Rep.Czech (101) Smart/Germany (102)

Spyker/Netherlands (103) Ssangyong/Korea (104) Subaru Isuzu Automotive/USA (105) Subaru/Japan (106) Sunbeam/UK, Sun-

beam/U.K, Sunbeam/United Kingdom (107) Suzuki/Japan (108) Talbot/France (109) Tata/India, Tata Motors/India (110)

Toyota/Japan (111) Trabant/Germany (112) Triumph/UK, Triumph/U.K, Triumph/United Kingdom (113) Troller/Brasil (114)

TVR/UK, TVR/U.K (115) Vauxhall/UK, Vauxhall/U.K, Vauxhall/United Kingdom (116) Vector/USA, Vector/United States

(117) Venturi/France (118) Volkswagen/Germany, VW/Germany (119) Volvo/Sweden (120) Wartburg/Germany (121) Wies-

mann/Germany (122) Yugo/Yugoslavia, Yugo/Jugoslavija

137

B. THE 5 BINARY DATASETS

138

Appendix C

List Questions for TREC 13-15

List Questions for TREC 13

1.3 Which cities have Crip gangs?

2.3 What are titles of the group's releases?

3.3 In what countries was the Hale Bopp comet visible?

4.4 What movies did James Dean appear in?

5.5 What companies has AARP endorsed?

6.3 Famous people who have been Rhodes scholars.

6.4 What countries have Rhodes Scholars come from?

7.3 In what countries are agouti's found?

8.4 Who have been members of the organization? (Black Panthers)

9.1 Who are the members of Insane Clown Poose?

9.2 What albums has Insane Clown Poose made?

10.3 What diseases are prions associated with?

10.4 What researchers have worked with prions?

11.2 Who are Nirvana's band members?

11.5 What are Nirvana's albums?

15.1 Who are the members of the Rat Pack?

16.3 List doctors who have performed cateract surgery.

18.6 List the names of boxers Floyd Patterson fought.

20.2 What airlines have Concordes in their eets?

21.2 List Club Med spots in the US

22.4 What books did he author? (Franz Kafka)

24.4 What prizes or awards has Frank Gehry won?

24.5 What buildings has Gehry designed?

26.5 What are names of Ice-T's albums?

30.5 What songs did Al Jolson Sing?

31.7 What movies did Jean Harlow appear in?

31.8 What leading men did Jean Harlow star opposite?

32.4 What festivals does Wicca have?

34.5 Name cities that have an Amtrak terminal.

36.4 Who were leaders of the Khmer Rouge?

37.2 List the Wiggles' Names.

37.4 List the Wiggles' Songs.

38.4 What are the di�erent types of quarks?

39.3 List songs of The Clash

41.4 Who were the major players involved in the Teapot Dome scandal?

43.2 Categories of Nobel Prizes.

45.3 What countries has IFC �nanced projects in?

47.5 What schools did Bashar Assad attend?

48.4 In what countries as Abu Nidal operated from?

50.4 What planets will the Cassini space probe pass?

51.3 What other countries do Kurds live in?

52.5 What countries is Burger King located in?

53.4 What magazines does Conde Nast publish?

54.6 What schools did Eileen Marie Collins attend?

55.4 What books has Walter Mosley written?

139

C. LIST QUESTIONS FOR TREC 13-15

56.3 List groups a�ected by Good Friday Agreement.

56.4 List key players in negotiating the G.F. Agreement.

58.2 List organizations A. Villar donated money to.

58.4 List companies in which Alberto Villar invested.

61.4 What countries does the Muslim Brotherhood operate in?

61.5 Name members of the Muslin Brotherhood group.

62.4 List members of the Berkman Center for Internet and Society

63.3 List states that have had problems with Boll Weevils

64.5 Where did Johnny Appliseed plant trees?

65.1 What are the names of the space shuttles?

List Questions for TREC 14

66.5 Which countries expressed regret about the loss [sinking of Kursk submarine]?

66.7 Which U.S. submarines were reportedly in the area [of Kursk sinking]?

67.6 Name other contestants [in Miss Universe 2000].

68.6 What were the names of the victims [of Port Arthur Massacre]?

68.7 What were the nationalities of the victims [of Port Arthur Massacre]?

69.7 Name players on the French team.

70.7 Who were on-ground witnesses to the accident [plane clipping cable wires in Italian resort]?

71.6 What countries besides U.S. y F16s?

72.6 Who are some of the Bollywood stars?

73.6 In what countries could Viagra be obtained on the black market?

74.6 Name graduates of the [DePauw] university.

75.5 Name companies that are business competitors [of Merck].

75.7 Name products manufactured by Merck.

76.7 What movies was he [Bing Crosby] in?

77.6 Name opponents who Foreman defeated.

77.7 Name opponents who defeated Foreman.

78.7 What were some of his [Akira Kurosawa] Japanese �lm titles?

79.3 List students who were shot by Kip Kinkel

80.6 Identify nationalities of passengers on Flight 990

81.2 List other horses that have won the Kentucky Derby and Preakness but not the Belmont

82.3 Name the various puppets used in the \Howdy Doody Show"

82.4 Name the characters in the [Howdy Doody] show

83.4 Name the works of art that have been stolen from the Louvre

84.7 Provide a list of names/identi�cations given to meteorites

85.1 Name the ships of the NCL

85.6 Name the so-called theme cruises promoted by NCL

86.5 Name the children of Sani Abacha

87.4 List things named in honor of Enrico Fermi

88.4 In what foreign countries does the UPS operate?

89.3 What Little League teams have won the World Series?

90.1 What grape varieties are Virginia wines made from?

90.5 Name the Virginia Wine Festivals

91.3 Give the titles of Cli�s Notes Condensed Classics

92.3 What players has Arnold Palmer competed against in \The Skins Game"?

92.4 Which golf courses were designed by Arnold Palmer?

93.7 Who helped the candidates prepare [for the Bush Gore Debate]?

94.4 Who testi�ed in defense of Susan McDougal?

95.5 What other countries formally congratulated China on the return of Hong Kong?

96.3 Who won gold medals in Nagano?

97.5 Crow's Record Titles

97.6 List the Crow's Band Members

98.5 List Legionaires

99.1 List Woody Guthrie's songs

100.7 Pitchers o� of which Sosa homered

101.7 List Michael Weiss's competitors

102.6 List individuals associated with the Bag Dig

103.6 List players who scored touchdowns in the game [Super Bowl XXXIV]

104.4 List auto manufacturers in the show [1999 Auto Show-Detroit]

105.6 List names of eyewitnesses of eruption [1980 Mt. St. Helens]

106.6 Name the players in the [1998 World Series] Series

107.6 List dates of Chunnel closures

108.4 Name movies released by SPE (Sony Pictures Entertainment)

108.5 Name TV Shows by the SPE [Sony Pictures Entertainment]

109.5 Name companies involved in mergers with Telefonica of Spain

110.5 Name o�cials of the Club [Lions Club International]

110.6 Programs sponsored by the Lions Club [International]

111.4 O�cals of the [Amway] Company

140

112.5 Corporation's [McDonald's] Top O�cials

112.6 Non-hanburger restaurant holdings of the [McDonald's] Corporation

113.4 Name the camps started under his [Paul Newman] Hole in the Wall Foundation.

113.5 Name some of his [Paul Newman] movies

114.3 Various Occupations [of Jesse Ventura]

114.4 Movies/TV Shows [Jesse Ventura] appeared in

115.7 List personel of the [Longwood] Gardens

116.6 Who are some world leaders that have met there [Camp David]?

117.4 What other name is it [Kudzu] known by?

118.4 What medal [U.S. Medal of Honor] of honor recipients are in Congress?

119.4 What other products do they [Harley-Davidson] produce?

120.5 What awards has she [Rose Crumb] received?

121.3 What books did she [Rachel Carson] write?

122.7 What were some of his [Paul Revere] occupations?

123.5 What countries did Vicente Fox visit?

124.6 Who were Rocky Marciano's opponents?

125.1 In what operas has Caruso sung?

126.3 What o�cial positions did Pope Pius XII hold before becomingPope?

127.6 People who attended the US Naval Academy in Annapolis, MD

128.3 What countries constitute the OPEC committee?

128.5 List of OPEC countries

129.4 Which countries were the original signers of NATO?

130.5 What countries have been struck by Tsunamis?

131.7 Individual who witnessed the Hindenburg Disaster

132.4 What posts has Kim Jong Il held in the government of this country?

133.3 As of the time of Hurricane Mitch, what previous hurricanes had higher death totals?

133.4 What countries o�ered aid for this hurricane [Mitch]?

134.2 List species whose genomes have been sequenced.

134.3 List the organizations that sequenced the Human genome.

135.5 What countries participated in this [\Food-for-Oil"] agreement by providing food or medicine?

136.7 What Shiite leaders were killed in Pakistan?

137.3 What other island groups are controlled by this government?

138.3 Where were UPU congresses held?

139.2 Which countries are members of the OIC?

139.3 Who has served as Secretary General of the OIC?

140.4 Employees of what companies are receiving bene�ts from this [PBGC] organization?

List Questions for TREC 15

141.6 Who have coached Moon in professional football?

141.7 List the professional teams for which Moon has been a player.

142.6 Name past and present LPGA commissioners.

142.7 Name tournaments in which LPGA players have participated.

143.6 Who have been \scholars" at the Institute?

143.7 Who have been \fellows" at the Institute?

144.6 In what conicts has the division participated?

144.7 Who have commanded the division?

145.6 What defense and prosecution attorneys participated in the trial?

146.6 Which countries formally disapproved of the overthrow?

147.7 What individuals were at the wedding?

148.6 Tourists from which countries were among the dead?

149.7 What celebrities have appeared on The Daily Show?

150.7 Name supporting actors who performed in Cheers.

151.2 What races are part of the Winston Cup series?

151.3 Which drivers have won the Winston Cup?

152.4 List Mozart's operas.

153.4 List his movie nominations for best director.

154.6 List titles of movies, other than \Superman" movies, that Christopher Reeve acted in.

155.5 List countries visited by Chavez.

156.4 List winners of the NASCAR races.

157.6 Who has served as Secretary-General of the U.N.?

158.6 Name the schools of Tufts University.

159.3 List companies that have �led suits against Wal-Mart.

160.2 List the countries that have been provided loans by the IMF.

161.3 List the o�cial sponsors of the game.

162.6 List facilities involved in the treatment of multiple myeloma.

163.5 List the artists represented in the collection.

164.2 What movies did she play in?

165.3 The Queen Mother received congratulatory greetings from what Heads of State?

166.6 What vaccines are known to be e�ective against avian u?

141

C. LIST QUESTIONS FOR TREC 13-15

167.6 List the names of other millennium structures in England.

168.2 What charities have bene�ted from the sale or auction of his paintings?

169.5 What are the locations or names of other stone circles in the UK?

170.5 What artists has John Prine done duets with?

170.6 What are the titles of songs written by John Prine?

171.6 Name famous artists whose works have been purchased by Stephen Wynn or are displayed in his galleries.

172.7 Name unusual avors created by Ben & Jerry's.

173.6 The WTO has held meetings in what countries?

173.7 Who has served as secretary general of the WTO?

174.6 What employees of the AFBF have been mentioned in the news?

175.6 What are the names of Elian's relatives?

176.1 Name cast members of the movie \An O�cer and a Gentleman".

177.7 In what cities were the matches between Deep Blue and Kasparov held?

178.6 In what cities or towns have illegal methamphetamine labs been found?

179.5 Name movies Hedy Lamarr appeared in.

179.7 Name Hedy Lamarr's husbands.

180.5 Name members of the Lebanese Parliament.

181.6 Who were leading players for Manchester United in the 1990's?

181.8 Which British teams has Manchester United played?

182.3 What plays were performed at the 1998 Edinburgh Fringe?

183.4 What national leaders and spokespersons sent congratulatory messages following Thabo Mbeki's election as president

of South Africa?

184.7 Name nations represented in the 1999 Chicago Marathon.

185.5 Name people who have won the Iditarod.

185.8 Which companies have sponsored the Iditarod?

186.3 What are the names of the three Great Pyramids?

186.7 Name additional pyramids of Egypt.

187.4 Name tributaries of the Amazon River.

188.3 What are the main commercial varieties of avocados?

188.4 What countries produce avocados?

189.1 What are the names of this author's books?

190.6 What food companies have been acquired by Heinz?

191.4 In what cities were International Rowing Federation Rowing World Cup events held?

192.3 What are some other Basque separatist groups?

193.7 What countries have donated to the WFP?

194.4 Who did Kasparov defeat in this tournament?

194.5 The purpose of this tournament was to help unify what world chess organizations?

195.6 What countries contributed troops to INTERFET?

196.3 Which European Union countries originally chose not to adopt the Euro?

197.4 What other mammals have been cloned from adult cells?

197.5 What countries have placed restrictions on human cloning research?

198.3 What other countries have signed contracts to work on this facility?

199.7 List other saints who have had the stigmata.

200.6 Name his children.

201.7 What plays did Shakespeare write?

202.4 What musicals did Cole Porter compose?

203.3 In what countries does Nissan manufacture vehicles outside of Japan?

204.5 Name elected government o�cials who are Mormon.

205.6 What other volcanoes are in the Philippines?

206.7 What other U.S. states have had dam failures?

207.7 Name other leaning towers.

208.5 In what cities has the Great Wall of China been found?

209.7 Who were her family members?

210.7 List universities that she visited.

211.7 What songs did she record?

212.7 List the songs he recorded.

213.4 What movies did Meg Ryan star in?

214.7 Who were the �ve �nalists in the pageant?

215.7 List �lms shown at the 1999 Sundance Film Festival.

142

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Research Contributions
	1.3 Thesis Organization

	2 Set Expander for Any Language
	2.1 Introduction
	2.2 System Architecture
	2.3 The Extractor
	2.3.1 Semi-Structured Documents
	2.3.2 Identifying Wrappers for Unary Relations
	2.3.3 Free-Text Wrappers

	2.4 The Ranker
	2.4.1 Analyzing the Problem
	2.4.2 Building a Graph
	2.4.3 Random Walk with Restart

	2.5 Evaluation
	2.5.1 Baseline System
	2.5.2 Alternative Rankers
	2.5.2.1 PageRank
	2.5.2.2 Bayesian Sets
	2.5.2.3 Wrapper Length

	2.5.3 Alternative Extractors
	2.5.4 Evaluation Datasets
	2.5.5 Evaluation Method
	2.5.6 Evaluation Results

	2.6 Comparison to Prior Work
	2.6.1 Talukdar et al., 2006
	2.6.2 Ghahramani et al., 2005

	2.7 Summary

	3 Noise Resistant SEAL (for List Question Answering)
	3.1 Introduction
	3.2 Ephyra Question Answering System
	3.3 Proposed Approach
	3.3.1 Aggressive Fetcher
	3.3.2 Lenient Extractor
	3.3.3 Hinted Expander

	3.4 Experiments
	3.4.1 Experiment with Ephyra
	3.4.2 Experiment with Top QA Systems

	3.5 Summary

	4 Iterative SEAL
	4.1 Introduction
	4.2 Iterative SEAL
	4.2.1 Iterative Supervised Expansion
	4.2.1.1 Fixed Seed Size
	4.2.1.2 Increasing Seed Size

	4.2.2 Bootstrapping
	4.2.2.1 Fixed Seed Size
	4.2.2.2 Increasing Seed Size

	4.3 Experimental Setting
	4.4 Experimental Results
	4.5 Summary

	5 Automatic Set Instance Acquisition
	5.1 Introduction
	5.2 Related Work
	5.3 Proposed Approach
	5.3.1 Noisy Instance Provider
	5.3.2 Noisy Instance Expander
	5.3.3 Bootstrapper

	5.4 Experimental Results
	5.5 Comparison to Prior Work
	5.5.1 Kozareva et al., 2008
	5.5.2 Pasca, 2007b
	5.5.3 Van Durme & Pasca, 2008 and Talukdar et al., 2008
	5.5.4 Snow et al., 2006

	5.6 Summary

	6 Bilingual SEAL
	6.1 Introduction
	6.2 Proposed Approach
	6.3 Named Entity Translation
	6.4 Experiments
	6.4.1 Experimental Setting
	6.4.2 Experimental Results

	6.5 Summary

	7 Relational SEAL
	7.1 Introduction
	7.2 Identifying Wrappers for Binary Relations
	7.3 Experiments
	7.3.1 Experimental Setting
	7.3.2 Experimental Results

	7.4 Comparison to Prior Work
	7.5 Summary

	8 Related Work
	8.1 Semi-Structured Documents
	8.2 Unstructured Documents
	8.3 Combination of Both

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	References
	A The 36 Unary Datasets
	B The 5 Binary Datasets
	C List Questions for TREC 13-15

