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Abstract

The adoption of neural network models has led to state-of-the-art performance in many

NLP tasks on major languages that have large amounts of data (Devlin et al., 2019; Vaswani

et al., 2017), but their improvements often lag behind for low-resource languages (Koehn and

Knowles, 2017; Sennrich and Zhang, 2019a). This imbalance in NLP progress could lead to

increasing disparities between people from different regions or in different socioeconomic

conditions. The goal of this thesis is to developmethodswhich efficiently utilize the available

data resources to build competitive NLP systems for all languages.

We focus on multilingual training, a particularly effective strategy for improving the

model quality of low-resource languages while training parameter-efficient models (Zoph

et al., 2016; Neubig and Hu, 2018; Devlin et al., 2019; Conneau et al., 2019). We identify

three major challenges facing multilingual models. (1) The standard word embedding rep-

resentation hinders the model’s generalization to training signals across different languages,

mainly because it does not have good inductive biases to account for the lexical similarities

and discrepancies between different languages. (2) Searching for good multilingual data

selection and balancing strategies requires multiple runs of model retraining because multi-

lingual datasets are often highly imbalanced across different languages. (3) It is challenging

to adapt a multilingual model to languages with very limited resources. To tackle the first

two challenges for multilingual training, we propose better word representationmethods for

multilingual data that encourage positive transfer between languages, and design automatic

methods to select and balance multilingual training data. To tackle the third challenge, we

explore novel methods that adapt multilingual models to support language varieties that are

often overlooked in existing multilingual benchmarks through model ensembling and data

augmentation.
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Chapter 1

Introduction

Human languages play an important role in human society. People use languages to communicate with

each other, build a sense of community, and create diverse cultural heritages. There are over 7000 lan-

guages in the world, and each language is unique in its own way. Developing competitive natural lan-

guage processing (NLP) tools for all languages in the world is crucial for the advancements in NLP to

equitably benefit people across the globe.

While languages in the world have rich linguistic diversity, recent progress in NLP research mostly

focuses on a few major languages, such as English, where a large amount of data is available. Deep

learning methods and neural network based models have become the standard backbone for most NLP

models, leading to state-of-the-art performance on a variety of NLP tasks such as text classification (De-

vlin et al., 2019), language modeling and generation (Radford et al., 2018; Brown et al., 2020), and neural

machine translation (NMT) (Vaswani et al., 2017; Edunov et al., 2018). Because these models obtain sig-

nificantly better performance with increasing parameter count and training data (Kaplan et al., 2020),

researchers tend to focus on languages with a large amount of easily accessible data resources to push

the frontiers of NLP research.

Despite the impressive progress in NLP brought about by deep learning, these advancements are not

equally observed for languages with less digitized data for model training (Joshi et al., 2020). We refer to

these languages with fewer resources as “low-resource languages”. In fact, most languages in the world

are low-resource languages; the top five languages in CommonCrawl, a popular source of web-crawled

data for the development of NLP models, account for about 70% of the total data, while the majority of

languages in the world have much less data or no data at all in CommonCrawl
1
. Low-resource languages

also include regional language variations or dialects that are often overlooked in standard NLP datasets.

For example, neural network models can reach impressive performance on English benchmarks, but

their performance deteriorates on African American Vernacular English (Groenwold et al., 2020; Tan

et al., 2020). Developing competitive models for low-resource languages is challenging mainly because

the performance of neural models often lags behind the model performance on major high-resource

languages when the amount of training data is scarce (Koehn and Knowles, 2017; Sennrich and Zhang,

1https://commoncrawl.github.io/cc-crawl-statistics/plots/languages

1
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2019a). The imbalance in advancement of NLP technologies can lead to unfairness in allocating any

potential benefits of the technologies to speakers of low-resource languages (Joshi et al., 2020; Blasi

et al., 2022).

1.1 Research Motivations and Objectives

This thesis aims to address the challenges facing low-resource languages by designing intelligent strate-

gies to use data when the available resources for these languages are limited. The works in this thesis are

inspired by two general attributes of human languages. The first attribute is that languages around the

world share many commonalities. For example, Galician, a European language used by more than 2

million people, shares many lexical similarities to Portuguese and Spanish. The similarities between dif-

ferent languages allow us to utilize data from related languages to improve performance in low-resource

languages. However, each language has its own unique linguistic properties that differentiates it

from other highly related or even mutually intelligible varieties. Bhojpuri, for example, is very similar

to a relatively high-resourced language Hindi, but it still has systematic differences in certain words and

phrases. Therefore, it is essential to account for these language variations when developing competitive

NLP systems for low-resource languages.

The first two parts of the thesis focus on multilingual training, or training a single model jointly on

both high-resource and low-resource languages. Multilingual training is a particularly effective strategy

to improve low-resource languages on many NLP tasks such as machine translation (Zoph et al., 2016;

Neubig and Hu, 2018), text classification (Devlin et al., 2019; Conneau and Lample, 2019; Conneau et al.,

2019) and question answering (Clark et al., 2020). However, it has two major challenges due to the

heterogeneous training datasets from many different languages.

1. It is challenging to determine the amount of training data from each language to use while train-

ing jointly on all languages, because the amount of training data in each language is often very

different.

2. The standard word embedding method in neural network models does not have an inductive bias

to account for the lexical similarities and differences between languages, which limits positive

transfer between different languages.

To tackle the two problems for multilingual training, the first part of the thesis outlines intelligent data

selection and utilization strategies for multilingual data, and the second part aims to design better data

representation methods for multilingual data.

Then, we turn to another important category of low-resource languages that have historically been

overlooked in developing language technologies. The third part of the thesis focuses on adapting multi-

lingual models to languages and language variations with very limited resources, such as languages with

limited textual data or regional dialects. It is particularly challenging to build competitive NLP models

for these languages because they often have very little or no data at all, and they generally have received

relatively less attention from the NLP community. Nevertheless, improving NLP systems for these lan-

2
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Figure 1.1: Content structure of the thesis.

guage varieties is an important step towards making inclusive NLP models that benefit all people.

1.2 Contributions

This theme of this thesis revolves around the commonalities and unique properties of each language.

Fig. 1.1 illustrates the contributions of the proposal under this theme.

To leverage language similarities, we focus on multilingual training methods that encourage positive

transfer between different languages. First, we observe that intelligent data sampling methods which

consider the relatedness of different languages can have a significant positive impact on multilingual

training (Chapter 3,Chapter 4,Chapter 5). Second, we find that improvements in model architecture that

incorporate inductive bias about the commonalities between languages can significantly improve mul-

tilingual training (Chapter 6). Furthermore, accounting for the word segmentation differences between

languages is crucial for cross-lingual transfer (Chapter 7).

Besides leveraging language commonalities, we also recognize the linguistic diversities of the worlds’

languages and aim to adapt multilingual NLP models to speakers of language varieties overlooked in

existing research and benchmarks. These language varieties often have no or very limited textual data for

training. Therefore, we propose a novel algorithm to compose model parameters from related languages

at test time for an unseen language variety (Chapter 8) and a general data augmentation method to

synthesize data into these languages (Chapter 9).

1.3 Thesis Outline

A more detailed structure of the proposal is as follows:

• Part I investigates data selection and balancing strategies that maximize the utility of multilingual

3



training data.

Chapter 3 investigates heuristic methods to select data from many different languages to

improve the NMT model’s performance on a low-resource language. The work is published

at ACL 2019 (Wang and Neubig, 2019).

Chapter 4 proposes a framework that automatically learns the optimal data usage strategy

that maximizes the performance of the model in a validation set. We design an algorithm

under the framework that optimizes the schedule for using available multilingual data to

improve a given low-resource language. This work is published at ICML 2020 (Wang et al.,

2019c).

Chapter 5 generalizes the algorithm in Chapter 4 to learn a data sampling schedule of multi-

lingual training data to maximize the model performance on many different languages. This

algorithm also allows one to have different optimization priority for multilingual objectives.

This work is published in ACL 2020 (Wang et al., 2020a).

• Part II designs better multilingual word representations.

Chapter 6 proposes a novel word embedding method for multilingual data that decomposes

the word embedding into a lexical embedding that reflects the spelling of the word, a latent

semantic embedding, and a language-specific transformation. This design can encourage

positive transfer from high-resource languages to low-resource languages because it maps

similar words from different languages into closer vector representations. This work is pub-

lished at ICLR 2019 (Wang et al., 2019b).

Chapter 7 focuses on improving the word representation for massive multilingual pretrained

models for better cross-lingual transfer. In this work, we first apply existing subword reg-

ularization strategies during fine-tuning stage of the multilingual pretrained models to al-

leviate the word segmentation discrepancies between different languages. We then propose

a method that further enforces the model prediction consistency under different word seg-

mentation. This work is published at NAACL 2021 (Wang et al., 2021b).

• Part III focuses on model adaptation methods for challenges facing languages with limited re-

sources and fine-grained variations.

Chapter 8 focuses on adapting pretrained multilingual models for unseen dialectal variations

at test time. In this work, we first show that using an ensemble of related language adapters

can lead to more robust performance for an unseen language than using any individual lan-

guage adapter. We then propose a test time adaptation algorithm that adjusts the ensemble

weights to minimize the entropy loss for each test input from the new language variety. This

work is published at Findings of EMNLP 2021 (Wang et al., 2021c).

Chapter 9 focuses on adapting pretrained multilingual models to languages with little or no

textual data, which account for over 80% of the 7000+ languages in the world. We propose

a pipeline that leverages bilingual lexicons, an under-utilized data source with much better

4



language coverage than conventional data sources, to synthesize textual data into the low-

resource languages. This work is published at ACL 2022 (Wang et al., 2022).

5
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Chapter 2

Background

This chapter outlines the background and related work for the thesis. We first give an overview of low-

resource languages (§ 2.1). Next, we briefly introduce the NLP applications covered in this thesis: neural

machine translation (§ 2.2) and pretrained models (§ 2.3). Finally, we give an overview of multilingual

training, which is the main methodology studied in this thesis (§ 2.4).

2.1 Low-resource Language Varieties

Since this thesis focuses on challenges for low-resource language varieties, we provide a concrete defi-

nition of low-resource languages and explain their characteristics. There are more than 7000 languages

in the world. Although several major languages have abundant textual data to benefit from state-of-the-

art deep learning methods, the majority of the world’s language varieties fall behind by a large margin

due to lack of resources. The languages that have inferior performance using standard modeling and

training techniques due to limited labeled data, monolingual data, or other resources are often referred

to as low-resource languages. Several previous works have aimed to study and categorize low-resource

languages (Singh, 2008; Cieri et al., 2016; Magueresse et al., 2020). In particular, Joshi et al. (2020) study

the current state of NLP progress by dividing all languages in the world into 6 groups based on the avail-

ability of labeled and unlabeled textual data. Although there is no standard definition or categorization

of low-resource languages, it is helpful to have some understanding of these languages as a guideline

for allocating future research efforts.

There are two axes to consider when defining low-resource languages. First, the categorization of

low-resource languages depends on the particular NLP task that one wishes to solve. For example, there

are abundant parallel data between English and French to train a good machine translation model with

the standard settings. However, there are far fewer data available in French for other NLP tasks such as

dialogue and question answering. Second, the state of technology development also has big impact on

what languages are considered low-resource. This is because new NLP technologies could be developed

such that it would require less data or make better use of new sources of data, making the performance

of some low-resource languages defined under the old technology competitive enough to be removed

7



from the group. Therefore, the categorization of low-resource languages is a fluid concept that should

be re-evaluated periodically to provide up-to-date guidance to the NLP community.

With these two principles in mind, we provide a rough sketch of low-resource languages based on

the state of NLP technologies for machine translation at the time of writing this thesis. For simplicity of

definition, we consider the number of monolingual and labeled textual data as a criterion to define low-

resource languages. It is worth mentioning that some low-resource languages with very little textual

data could have more data in other formats, such as video/audio recordings and linguistic information.

For example, there are several hundred local languages spoken in Indonesia. Since many of them are

mostly used colloquially in casual conversations, they tend to have very little written textual data while

audio is a more natural data form for these languages (Aji et al., 2022). At the time of writing this thesis,

the majority of the works on NLP and multilingual learning focus on text-only models, so we still use the

availability of textual data as the criterion for categorizing low-resource languages. It is an important

future direction to utilize alternative data sources such as speech and audio for low-resource languages.

There are three types of low-resource languages. 1) No-Text: these languages have virtually no

labeled or unlabeled data, which account for about 80% of languages in the World (Joshi et al., 2020).

Some examples of this type of languages are Popoloca, Bora, and Dahalo. Many languages within this

category are endangered languages that are at risk of disappearance as their speakers shift to other

languages or die out. 2) No-Label: these languages also have almost no labeled data, but they might

have a very small amount of unlabeled data. Some examples of these languages are Greenlandic and

Romani. Languages in this category often have a decent number of native speakers, but there is very

limited attention to these languages when curating data sets and developing specialized NLP systems.

3) Low-Label: these languages have a small amount of labeled and unlabeled data, but the size of their

data is still orders of magnitude lower than the major languages such as English. Some examples of these

languages are Zulu, Cebuano, and Maltese. This group of languages are often consistently utilized by a

small group of native speakers.

The works in this thesis cover all three groups of low-resource languages. Part I and Part II focus

on Low-Label languages that have some amount of parallel data and monolingual data included in joint

multilingual training. Part III focuses on methods that adapt multilingual models to the No-Text and

Few-Label languages.

2.2 Neural Machine Translation

Machine translation is one of the longest standing NLP research problems. Early attempts to use com-

puters to translate between human languages date back as far back as the 1950s (Hutchins, 2000, 2004).

Statistical machine translation (SMT) became more popular as computers became more powerful and ac-

cessible. Progress in SMT enabled the development and commercialization of practical MT systems (Chi-

ang, 2005; Koehn et al., 2007). More recently, neural network models have become the state-of-the-art

backbone of MT systems (Bahdanau et al., 2015; Vaswani et al., 2017). Neural machine translation (NMT)

generally achieves much better performance than SMT while having a simple end-to-end system archi-
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tecture. In this section, we give a brief introduction to NMT systems.

Given a parallel corpus from the source language S to the target language T , an NMT model is

optimized to translate a source sentence x ∈ S into its corresponding target sentence y ∈ T . An NMT

model generally has two components: an encoder and a decoder. The encoder produces a representation

of the source sentence x:

hx = fenc (emb(x)) (2.1)

where emb(x) is the embedding of the input x. The decoder then computes the representation for each

target timestep using hx:

hiy = fdec(hx, emb(yt<i)) (2.2)

where emb(yt<i) is embedding of the target words before the current timestep. At every timestep i, the

decoder can generate a word from the target vocabulary using the scores from softmax(W · hiy), where
W is the linear projection matrix that maps the dense vector representation to the target vocabulary.

The details of the functions fenc(·) and fdec(·) depend on the choice of model architectures. We could

use the Recurrent Neural Network (RNN; Hochreiter and Schmidhuber, 1997; Chung et al., 2014) or the

transformer model (Vaswani et al., 2017). Although RNN and transformer have different advantages that

make them suitable for different use cases, the state-of-the-art NMT systems are currently dominated

by transformer models.

2.3 Deep Pretrained Models

Labeled data is crucial for training an NLP model to perform specific tasks, but it can be expensive to

annotate the data for each task we wish to support. On the other hand, there is much more unlabeled

text available, such as Wikipedia pages, news articles, and books. Many researchers have proposed to

use unlabeled texts to directly improve the performance of NLP applications (Sennrich et al., 2016a;

Ruder and Plank, 2018). More recently, a two-stage pretraining-fine-tuning paradigm has been shown

to be particularly effective for neural network models (Devlin et al., 2019; Raffel et al., 2020). It involves

learning a general language representation model on unlabeled text, which we can then use for various

downstream NLP tasks. The goal is that by training the model on large quantities of unlabeled text, we

can get a set of parameters that can be a good initialization point for any NLP task.

We often use the term pretraining to refer to the first step of training the language representation

model on unlabeled text. There are generally three types of modeling choices for pretraining. The first

type of models are decoders trained using auto-regressive languagemodeling objective (Dai and Le, 2015;

Peters et al., 2018; Radford et al., 2018; Howard and Ruder, 2018a), where the goal is to predict the next

word in the sentence given the previous words. The second type of pretrainedmodels are encoders, often

trained using the masked language modeling objective (MLM), where the goal is to predict the words

that are masked out in a sentence given the unmasked context (Devlin et al., 2019; Conneau and Lample,

2019; Conneau et al., 2019). The third type of pre-trained models is encoder-decoder models, similar to
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the NMT model discussed in § 2.2. These models have more flexibility in using both monolingual and

parallel data with different training objectives, such as reconstructing perturbed inputs or translating

the input sentence into a different language (Raffel et al., 2020; Xue et al., 2021b; Lewis et al., 2020a). The

pretraining step usually requires large amounts of unlabeled data and computational resources so that

the model can learn a good representation for textual input.

After pretraining, the model can be finetuned for a particular downstream task using a relatively

small amount of labeled data. The pretraining-fine-tuning paradigm is currently the state-of-the-art

method for various NLP tasks such as classification, sequence tagging, and question answering. It is

also a promising paradigm for supporting low-resource languages because pretrained models can reach

competitive performance on many tasks with much less labeled data compared to training a model from

scratch (Wu and Dredze, 2019; Brown et al., 2020)

2.4 Multilingual Training

The lack of both labeled and unlabeled data is the main difficulty of training competitive NLP systems for

low-resource languages. Therefore, multilingual training has become a particularly effective approach

for improving the performance of low-resource languages through cross-lingual transfer (Zoph et al.,

2016; Neubig and Hu, 2018; Devlin et al., 2019; Conneau et al., 2019; Babu et al., 2021b). In this section,

we give a brief definition of multilingual training, clarify its optimization objectives, and outline several

challenges to applying this technique in practice.

2.4.1 Definition and applications

Given a multilingual dataset withN languagesDmulti = {D1, D2, ..., DN}where eachDi contains data

from a unique language or language pair, multilingual training optimizes the model parameter jointly

on all the N datasets. Multilingual training has a rich history (Schultz and Waibel, 1998; Mimno et al.,

2009; Shi et al., 2010; Täckström et al., 2013), but has become particularly prominent in recent years due

to the ability of neural networks to easily perform multitask learning (Dong et al., 2015; Plank et al.,

2016; Johnson et al., 2016b). Multilingual training can be applied to various NLP models and tasks. Here

we mainly introduce its applications in NMT models and deep pretrained models because they are the

models we focus on for the rest of the thesis.

Multilingual NMT In § 2.2 we explained that a monolingual NMT model that translates between a

single language pair S-T is trained on parallel data from the source language S to the target language

T . To train a multilingual NMT model, we jointly optimize the parameters of the NMT model onDmulti,

where each Di ∈ Dmulti contains parallel data from a source language Si to a target language Ti. We

usually assign a tag for each target language Ti. Let si-ti be a parallel sentence from the training dataset

Di, we add the target language tag for Ti to si-ti when we optimize the NMT model on this training

example. Here is an example of the parallel training data where S is English and T is French:

• si: How are you ?
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• ti: <2fr> Comment ça va ?

At inference time, we can generate translations in any of the N target languages by feeding the

corresponding target language tag to the model. Due to the usage of target language tags and joint

training in many parallel datasets, multilingual models can translate between any source language Si

to any target language Tj , even if the multilingual training data Dmulti do not contain a parallel dataset

from Si to Tj . This property is often referred to as zero-shot translation in existing works onmultilingual

NMT (Johnson et al., 2016b; Firat et al., 2016b). This attribute can significantly decrease the quadratic

number of parallel datasets required to support translation between any two of the N languages in the

training data.

Multilingual pretrained models As discussed in § 2.3, deep pretrained models are optimized on

large amounts of unlabeled data during pretraining, and then they can be finetuned on labeled data in

various NLP tasks. Similarly, multilingual pretrained models are first optimized on unlabeled multilin-

gual dataset Dmulti that contains unlabeled data in N different languages. To utilize the multilingual

pretrained model for a downstream task, we can finetune the model on the labeled data for the task in a

high-resource language, often English. The finetuned model can then be directly used to support other

languages for the downstream task, although it is not finetuned on labeled data in these languages. This

property of pretrained multilingual models is often called zero-shot cross-lingual transfer, because it al-

lows the model to support low-resource languages without any labeled data in these languages (Wu and

Dredze, 2019). It is a promising direction for supporting low-resource languages in NLP models because

unlabeled data are more prevalent than labeled data and labeled data are often much more expensive to

annotate. If we have labeled data in many different languages, we can also finetune the model jointly

on the multilingual labeled data. This could lead to better performance on the downstream task for

low-resource languages (Conneau et al., 2019; Hu et al., 2020).

As we can see, the dataset Di ∈ Dmulti for multilingual NMT models contains parallel data from a

source language Si to a target language Ti, while for pretrained multilingual models,Di ∈ Dmulti is data

from a single language Li. For simplicity of notation, we use Li to represent the language or language

pair for the dataset Di.

2.4.2 Multilingual optimization objectives

There are generally two different optimization objectives for multilingual training. The first objective
is to obtain the best possible model for a particular language Li, often a low-resource language, by

leveraging cross-lingual transfer through training the model on all or a subset of Dmulti. Multilingual

training can be considered as a form a data augmentation, because the model can use the additional data

from the related languages to learn the linguistic patterns shared between the related languages and the

low-resource language Li. The second objective for multilingual training is to support all languages

{L1, L2, .., LN} in the training data. A multilingual model trained using this objective is a much more

parameter efficient method to support all N languages than training N different monolingual models.

Generally, this type of multilingual model also performs better for low-resource languages compared to
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Figure 2.1: The four stages of multilingual training. The works in this thesis mainly focus on three of

the four stages: data selection/balancing, data representation, and model adaptation.

monolingual models (Aharoni et al., 2019). For this objective, the standard evaluation criterion is often

the average performance over allN languages (Hu et al., 2020; Conneau et al., 2022). While the average

performance of the languages is a simple criterion to evaluate the general performance of multilingual

models across all languages, it might not be a fair metric because it might bias towards high-resource

languages that are better represented in the evaluation data. More recently, Blasi et al. (2022) question the

fairness of the strategy and propose to consider other factors such as speaker population and economic

impact to calculate the overall utility of a multilingual model.

The two multilingual optimization objectives may sometimes be conflicting, but are often interde-

pendent. For example, the best performing model for a particular language Li can often be obtained by

first optimizing the model θ jointly on several languages related to Li and then finetuning θ only on data

in Li (Neubig and Hu, 2018).

2.4.3 Challenges of multilingual training

We categorize the challenges of multilingual training based on four training stages shown in Fig. 2.1. In

this section, we clarify the challenges in each training stage and introduce some existing work to tackle

these challenges.

Data selection and balancing

Two important attributes ofmultilingual datasetsmake data selection and balancing extremely important

for successful multilingual training. First, the size of each Di ∈ Dmulti can have a very large variance,

making multilingual datasets highly imbalanced. For example, the top five languages make up about

70% of the CommonCrawl corpus, while the remaining 160+ languages only account for 30% of the
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data
1
. Second, using training examples from Di of a specific language or language pair can have very

different impact on the model’s performance on other languages. This is because different languages

have very different levels of relatedness.

Various heuristic methods have been proposed to select data for different multilingual training ob-

jectives. To train a model for a specific language Li, (Neubig and Hu, 2018; Lin et al., 2019) rely on

linguistic knowledge and other heuristics to select a subset of the training languages that are most likely

to benefit the performance of the model on Li. Aharoni et al. (2019); Arivazhagan et al. (2019); Conneau

et al. (2019) aim to support allN languages in the training data, so they rely on a heuristic data balancing

schedule based on the size of each dataset scaled by a temperature term.

Data representation

It is challenging to design a good input representation for multilingual text because different languages

can have different scripts or vocabulary. The standard method of representing an input word for an NLP

model generally involves two steps: first, a heuristic word segmentationmodel learned using the training

corpus is used to segment the word into commonly occurring subword units; second, each subword unit

is mapped to a dense vector through an embedding table. To encode a diverse vocabulary from hundreds

or even thousands of languages, multilingual models usually rely on standard subword segmentation

methods such as byte-pair-encoding (BPE; Sennrich et al., 2016b) or unigram language models (Kudo

and Richardson, 2018) to learn a single vocabulary shared by all languages. This method often leads

to suboptimal segmentation and representation of multilingual text for two reasons: first, low-resource

languages are often assigned smaller number of subword tokens than high-resource languages; second,

the embedding lookup table simply converts words with slightly different spellings in different languages

into completely separate vectors, limiting cross-lingual transfer.

Several works propose to optimize subword-sensitive word encoding methods for NLP models. The

first line of work focuses on adding character information in the word embedding, either through con-

volutional neural networks (Kim, 2014; Lee et al., 2017; Cherry et al., 2018a; Kim et al., 2016; Józefowicz

et al., 2016; Ma et al., 2020) or other character embedding composition methods (Ataman and Federico,

2018; Clark et al., 2022; Xue et al., 2021a). Apart from using character information, a different line of

work aims to design better subword segmentation models by adding phrases in the vocabulary (Zhang

and Li, 2020), learning separate vocabularies for each language cluster (Chung et al., 2020), or designing

better learning methods for the subword segmentation model (He et al., 2020; Xu et al., 2021).

Parameter sharing and separation

While multilingual training generally optimizes all parameters in the model on all N languages, there

are different design choices on whether or how to allocate a subset of the parameters for a specific lan-

guage or language group. Intuitively, the parameters shared across languages maximize the learning of

commonalities such as borrowed vocabularies, which could enable more effective cross-lingual transfer

1https://commoncrawl.github.io/cc-crawl-statistics/plots/languages
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that improves the performance of low-resource languages. However, different languages have unique

linguistic properties that might be more effectively modeled through language specific parameters.

There is no standard or uniformly best strategy for allocating language-specific parameters. Some

early works on multilingual NMT only share specific components of the model across all languages

while having language specific encoder, decoder, or attention (Dong et al., 2015; Firat et al., 2016a).

(Ha et al., 2016; Johnson et al., 2016b) propose to share all NMT model components across different

translation directions while adding a language embedding to the input sentence. While sharing all model

parameters is a simple and effective approach, (Aharoni et al., 2019; Arivazhagan et al., 2019) show that

increasing the number of languages for a multilingual NMT model could lead to lower performance,

especially for high-resource languages, due to the limited model capacity. Several works aim to alleviate

this problem by allocating more fine-grained language-specific parameters such as certain model layers

or attention modules (Blackwood et al., 2018; Wang et al., 2019d; Zhu et al., 2020). Others propose to

add a small amount of additional parameters during multilingual training (Zhang et al., 2021a; Wang

et al., 2020c) or adaptation (Bapna et al., 2019; Lin et al., 2021). Mixture-of-expert models can directly

increase model capacity while maintaining similar computation cost by only activating part of the model

during multilingual training. Prior works show that the mixture-of-expert models could lead to better

performance when scaling the multilingual model to a large number of languages (Shazeer et al., 2017;

Kudugunta et al., 2021).

Adaptation

After we train a big multilingual model according to the objective of optimizing the performance of

all N languages in Dmulti, it is beneficial to adapt the model to a specific language Li. That is, we

can continue to optimize the model according to the objective of maximizing its performance on Li, so

that the speakers of Li can enjoy the best performing model for their language. As large models are

becoming essential for state-of-the-art performance (Shoeybi et al., 2019; Brown et al., 2020), effective

model adaptation could maximize the utility of large pretrained models while minimizing computational

resources, model storage, and model deployment efforts.

There are generally two goals for adapting largemultilingualmodels: increasing parameter efficiency

and maximizing final performance. Several works focus on parameter-efficient adaptation of large pre-

trained models through adding a small amount of additional parameters for each individual language or

task while keeping the large model fixed (Bapna et al., 2019; Pfeiffer et al., 2020b; Li and Liang, 2021; Guo

et al., 2021; Üstün et al., 2020; Karimi Mahabadi et al., 2021). Other works focus mainly on maximizing

the model performance for a particular language Li, generally through continue training the model on

the datasetDi in Li (Neubig and Hu, 2018; Wang et al., 2020b; Chau et al., 2020). Additionally, (Chau and

Smith, 2021; Muller et al., 2021) explore several model adaptation strategies, including transliterating the

data to Latin script and expanding the vocabulary during adaptation.
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Summary

In this section we introduce the challenges in the four stages of multilingual training: data selection,

data representation, parameter sharing/separation, and model adaptation. The works in the thesis are

organized according to these four multilingual training stages. In particular, we focus mainly on three of

the four challenges in data selection (Part I), data representation (Part II), and model adaptation (Part III).

The next chapter will discuss our efforts to tackle challenges in data selection.
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Part I

Data selection
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Chapter 3

Target Conditioned Sampling:
Optimizing Data Usage for Multilingual
Neural Machine Translation

In order to explore data selection methods for multilingual training, we first focus on heuristic data

selection strategies for NMT. To improve low-resource NMT with multilingual corpora, training on the

most related high-resource language only is often more effective than using all data available (Neubig

and Hu, 2018). However, it is possible that an intelligent data selection strategy can further improve

low-resource NMT with data from other auxiliary languages. In this chapter, we seek to construct a

sampling distribution over all multilingual data, so that it minimizes the training loss of the low-resource

language.
1

3.1 Introduction

Multilingual NMThas led to impressive gains in translation accuracy of low-resource languages (LRL) (Zoph

et al., 2016; Firat et al., 2016a; Gu et al., 2018a; Neubig and Hu, 2018; Nguyen and Chiang, 2018). Many

real world datasets provide sentences that are multi-parallel, with the same content in a variety of lan-

guages. Examples include TED (Qi et al., 2018), Europarl (Koehn, 2005), and many others (Tiedemann,

2012). These datasets open up the tantalizing prospect of training a system on many different languages

to improve accuracy, but previous work has found methods that use only a single related (HRL) often

out-perform systems trained on all available data (Neubig and Hu, 2018). In addition, because the re-

sulting training corpus is smaller, using a single language is also substantially faster to train, speeding

experimental cycles (Neubig and Hu, 2018). In this chapter, we go a step further and ask the question: can

we design an intelligent data selection strategy that allows us to choose the most relevant multilingual

data to further boost NMT performance and training speed for LRLs?

1
The code can be found at https://github.com/cindyxinyiwang/TCS.
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Prior work has examined data selection from the view of domain adaptation, selecting good training

data from out-of-domain text to improve in-domain performance. In general, these methods select data

that score above a preset threshold according to some metric, such as the difference between in-domain

and out-of-domain languagemodels (Axelrod et al., 2011; Moore and Lewis, 2010) or sentence embedding

similarity (Wang et al., 2017). Other works use all the data but weight training instances by domain

similarity (Chen et al., 2017), or sample subsets of training data at each epoch (van der Wees et al.,

2017a). However, none of these methods are trivially applicable to multilingual parallel datasets, which

usually contain many different languages from the same domain. Moreover, most of these methods need

to pretrain language models or NMT models with a reasonable amount of data, and accuracy can suffer

in low-resource settings like those encountered for LRLs (Duh et al., 2013).

In this chapter, we create amathematical framework for data selection inmultilingualMT that selects

data from all languages, such thatminimizing the training objective over the sampled data approximately

minimizes the loss of the LRL MT model. The formulation leads to a simple, efficient, and effective

algorithm that first samples a target sentence and then conditionally samples which of several source

sentences to use for training. We name the method Target Conditioned Sampling (TCS). We also propose

and experiment with several design choices for TCS, which are especially effective for LRLs. On the TED

multilingual corpus (Qi et al., 2018), TCS leads to large improvements of up to 2 BLEU on three of the

four languages we test, and no degradation on the fourth, with only slightly increased training time. To

our knowledge, this is the first successful application of data selection to multilingual NMT.

3.2 Method

3.2.1 Multilingual Training Objective

First, in this section we introduce our problem formally, where we use the upper case letters X , Y to

denote the random variables, and the corresponding lower case letters x, y to denote their actual values.

Suppose our objective is to learn parameters θ of a translation model from a source language s into target

language t. Let x be a source sentence from s, and y be the equivalent target sentence from t, given loss

function L(x, y; θ) our objective is to find optimal parameters θ∗ that minimize:

Ex,y∼PS(X,Y )[L(x, y; θ)] (3.1)

where Ps(X,Y ) is the data distribution of s-t parallel sentences.

Unfortunately, we do not have enough data to accurately estimate θ∗, but instead we have a multilin-

gual corpus of parallel data from languages {s1, S2, ..., Sn} all into t. Therefore, we resort to multilingual

training to facilitate the learning of θ. Formally, we want to construct a distribution Q(X,Y ) with sup-

port over s1, s2, ..., sn-T to augment the s-t data with samples from Q during training. Intuitively, a

good Q(X,Y ) will have an expected loss

Ex,y∼Q(X,Y )[L(x, y; θ)] (3.2)

20



that is correlated with Eq. 3.1 over the space of all θ, so that training over data sampled from Q(X,Y )

can facilitate the learning of θ. Next, we explain a version of Q(X,Y ) designed to promote efficient

multilingual training.

3.2.2 Target Conditioned Sampling

We argue that the optimal Q(X,Y ) should satisfy the following two properties.

First, Q(X,Y ) and Ps(X,Y ) should be target invariant; the marginalized distributions Q(Y ) and

Ps(Y ) should match as closely as possible:

Q(Y ) ≈ Ps(Y ) (3.3)

This property ensures that Eq. 3.1 and Eq. 3.2 are optimizing towards the same target Y distribution.

Second, to have Eq. 3.2 correlated with Eq. 3.1 over the space of all θ, we need Q(X,Y ) to be corre-

lated with Ps(X,Y ), which can be loosely written as

Q(X,Y ) ≈ Ps(X,Y ). (3.4)

Because we also make the target invariance assumption in Eq. 3.3,

Q(X,Y )

Q(Y )
≈ Ps(X,Y )

Ps(Y )
(3.5)

Q(X|Y ) ≈ Ps(X|Y ). (3.6)

We call this approximation of Ps(X|Y ) by Q(X|Y ) conditional source invariance. Based on these

two assumptions, we define Target Conditioned Sampling (TCS), a training framework that first samples

y ∼ Q(Y ), and then conditionally samples x ∼ Q(X|y) during training. Note Ps(X|Y = y) is the

optimal back-translation distribution, which implies that back-translation (Sennrich et al., 2016a) is a

particular instance of TCS.

Of course, we do not have enough s-t parallel data to obtain a good estimate of the true back-

translation distribution Ps(X|y) (otherwise, we can simply use that data to learn θ). However, we posit

that even a small amount of data is sufficient to construct an adequate data selection policy Q(X|y) to
sample the sentences x frommultilingual data for training. Thus, the training objective that we optimize

is

Ey∼Q(Y )Ex∼Q(X|y) [L(x, y; θ)] (3.7)

Next, in §3.2.3, we discuss the choices of Q(Y ) and Q(X|y).

3.2.3 Choosing the Sampling Distributions

Choosing Q(Y ). Target invariance requires that we need Q(Y ) to match Ps(Y ), which is the dis-

tribution over the target of s-t. We have parallel data from multiple languages s1, s2, ..., sn, all into t.

Assuming no systematic inter-language distribution differences, a uniform sample of a target sentence

y from the multilingual data can approximate Ps(Y ). We thus only need to sample y uniformly from

the union of all extra data.
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ChoosingQ(X|y). ChoosingQ(X|y) to approximate Ps(X|y) is more difficult, and there are a num-

ber of methods could be used to do so. To do so, we note that conditioning on the same target y and re-

stricting the support of Ps(X|y) to the sentences that translate into y in at least one of si-t, Ps(X = x|y)
simply measures how likely x is in s. We thus define a heuristic function sim(x, s) that approximates the

probability that x is a sentence in s, and follow the data augmentation objective in Wang et al. (2018a)

in defining this probability according to

Q∗(x|y) = exp (sim(x, s)/τ)∑
x′ exp (sim(x′, s)/τ)

(3.8)

where is a temperature parameter that adjusts the peakiness of the distribution.

3.2.4 Algorithms

The formulation of Q(X,Y ) allows one to sample multilingual data with the following algorithm:

1. Select the target y based on Q(y). In our case we can simply use the uniform distribution.

2. Given the target y, gather all data (xi, y) ∈ s1, s2, ...sn-t and calculate sim(xi, s)

3. Sample (xi, y) based on Q(X|y)
The algorithm requires calculatingQ(X|y) repeatedly during training. To reduce this overhead, we pro-
pose two strategies for implementation: 1) Stochastic: compute Q(X|y) before training starts, and dy-

namically sample each minibatch using the precomputed Q(X|y); 2) Deterministic: compute Q(X|y)
before training starts and select x′ = argmaxxQ(x|y) for training. The deterministic method is equiv-

alent to setting τ , the degree of diversity in Q(X|y), to be 0.

3.2.5 Similarity Measure

In this section, we define two formulations of the similarity measure sim(s, x), which is essential for

constructingQ(X|y). Each of the similarity measures can be calculated at two granularities: 1) language

level, which means we calculate one similarity score for each language based on all of its training data;

2) sentence level, which means we calculate a similarity score for each sentence in the training data.

Vocab Overlap provides a crude measure of surface form similarity between two languages. It is

efficient to calculate, and is often quite effective, especially for low-resource languages. Here we use

the number of character n-grams that two languages share to measure the similarity between the two

languages.

We can calculate the language-level similarity between Si and S

simvocab-lang(si, s) =
|vocabk(s) ∩ vocabk(si)|

k

vocabk(·) represents the top k most frequent character n-grams in the training data of a language. Then

we can assign the same language-level similarity to all the sentences in si.

This can be easily extended to the sentence level by replacing vocabk(si) to the set of character

n-grams of all the words in the sentence x.
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Language Model trained on s can be used to calculate the probability that a data sequence belongs to

s. Although it might not perform well if s does not have enough training data, it may still be sufficient

for use in the TCS algorithm. The language-level metric is defined as

simLM-lang(si, s) = exp

(∑
ci∈si NLLs(ci)

|ci ∈ si|

)
where NLLs(·) is negative log likelihood of a character-level LM trained on data from s. Similarly, the

corresponding sentence level metric is the LM probability over each sentence x.

3.3 Experiment

3.3.1 Dataset and Baselines

We use the 58-language-to-English TED dataset (Qi et al., 2018). Following the setup in prior work (Qi

et al., 2018; Neubig and Hu, 2018), we use three low-resource languages Azerbaijani (aze), Belarusian

(bel), Galician (glg) to English, and a slightly higher-resource dataset, Slovak (slk) to English.

We use multiple settings for baselines: 1) Bi: each LRL is paired with its related HRL, following Neu-

big and Hu (2018). The statistics of the LRL and their corresponding HRL are listed in Table 6.2; 2) All:

we train a model on all 58 languages; 3) Copied: following Currey et al. (2017), we use the union of all

English sentences as monolingual data by copying them to the source side.

3.3.2 Experiment Settings

A standard sequence-to-sequence (Sutskever et al., 2014) NMTmodel with attention is used for all exper-

iments. Byte Pair Encoding (BPE) (Sennrich et al., 2016b; Kudo and Richardson, 2018) with vocabulary

size of 8000 is applied for each language individually.

3.3.3 Results

We test both the Deterministic (TCS-D) and Stochastic (TCS-S) algorithms described in §3.2.4. For each

algorithm, we experiment with the similarity measures introduced in §3.2.5. The results are listed in

Tab. 6.3.

Of all the baselines, Bi in general has the best performance, while All, which uses all the data and

takes much longer to train, generally hurts the performance. This is consistent with findings in prior

work (Neubig and Hu, 2018). Copied is only competitive for slk, which indicates the gain of TCS is not

simply due to extra English data.

TCS-S combined with the language-level similarity achieves the best performance for all four lan-

guages, improving around 1 BLEU over the best baseline for aze, and around 2 BLEU for glg and slk. For

bel, TCS leads to no degradation while taking much less training time than the best baseline All.
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Sim Method aze bel glg slk

- Bi 10.35 15.82 27.63 26.38

- All 10.21 17.46 26.01 26.64

- copied 9.54 13.88 26.24 26.77

Back-Translate TCS 7.79 11.50 27.45 28.44

LM-sent TCS-D 10.34 14.68 27.90 27.29

LM-sent TCS-S 10.95† 17.15 27.91 27.24

LM-lang TCS-D 10.76 14.97 27.92 28.40

LM-lang TCS-S 11.47∗ 17.61 28.53† 28.56∗

Vocab-sent TCS-D 10.68 16.13 27.29 27.03

Vocab-sent TCS-S 11.09† 16.30 28.36† 27.01

Vocab-lang TCS-D 10.58 16.32 28.17 28.27∗

Vocab-lang TCS-S 11.46∗ 17.79 29.57∗ 28.45∗

Table 3.1: BLEU scores on four languages. Statistical significance Clark et al. (2011a) is indicated with

∗ (p < 0.001) and † (p < 0.05), compared with the best baseline.

TCS-D vs. TCS-S. Both algorithms, when using document-level similarity, improve over the baseline

for all languages. TCS-D is quite effective without any extra sampling overhead. TCS-S outperforms

TCS-D for all experiments, indicating the importance of diversity in the training data.

Sent. vs. Lang. For all experiments, language-level outperforms the sentence-level similarity. This

is probably because language-level metric provides a less noisy estimation, making Q(x|y) closer to
Ps(x|y).

LMvs. Vocab. In general, the best performingmethods using LM andVocab are comparable, except for

glg, where Vocab-lang outperforms LM-lang by 1 BLEU. Slk is the only languagewhere LM outperformed

Vocab in all settings, probably because it has the largest amount of data to obtain a good language

model. These results show that easy-to-compute language similarity features are quite effective for data

selection in low-resource languages.

Back-Translation TCS constructs Q(X|y) to sample augmented multilingual data, when the LRL

data cannot estimate a good back-translation model. Here we confirm this intuition by replacing the

Q(X|y) in TCS with the back-translations generated by the model trained on the LRLs. To make it

comparable to Bi, we use the sentence from the LRL and its most related HRL if there is one for the

sampled y, but use the back-translated sentence otherwise. Tab. 6.3 shows that for slk, back-translate
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achieves comparable results with the best similarity measure, mainly because slk has enough data to get

a reasonable back-translation model. However, it performs much worse for aze and bel, which have the

smallest amount of data.

3.4 Conclusion

We propose Target Conditioned Sampling (TCS), an efficient data selection framework for multilingual

data by constructing a data sampling distribution that facilitates the NMT training of LRLs. TCS brings

up to 2 BLEU improvements over strong baselines with only slight increase in training time.
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Chapter 4

Optimizing Data Usage via
Differentiable Rewards

Our method in the previous chapter shows that well-designed heuristic data selection methods can lead

to significant improvements to multilingual training. This insight leads to a natural follow-up question:

can we design an algorithm that automatically learns what data to use? To acquire a new skill, humans

learn better and faster if a tutor informs them of how much attention they should pay to particular

content or practice problems based on their current knowledge level. Similarly, a machine learning

model could potentially be trained better if data is presented in a way that adapts to its current learning

state. In this chapter, we examine the problem of training an adaptive scorer that weights data instances

to maximally benefit learning.

4.1 Introduction

While deep learning models are remarkably good at fitting large data sets, their performance is also

highly sensitive to the structure and domain of their training data. Training on out-of-domain data can

lead to worse model performance, while using more relevant data can assist transfer learning. Previous

work has attempted to create strategies to handle this sensitivity by selecting subsets of the data to

train the model on (Jiang and Zhai, 2007; Wang et al.; Axelrod et al., 2011; Moore and Lewis, 2010),

providing different weights for each example (Sivasankaran et al., 2017; Ren et al., 2018), or changing the

presentation order of data (Bengio et al., 2009; Kumar et al., 2019).

However, there are several challenges with existing work on better strategies for data usage. Most

data filtering critera or training curriculum rely on domain-specific knowledge and hand-designed heuris-

tics, which can be sub-optimal. To avoid hand-designed heuristics, several works propose to optimize a

parameterized neural network to learn the data usage schedule, but most of them are tailored to specific

use cases, such as handling noisy data for classification (Jiang et al., 2018), learning a curriculum learn-

ing strategy for specific tasks (Kumar et al., 2019; Tsvetkov et al., 2016), and actively selecting data for

annotation (Fang et al., 2017; Wu et al., 2018). Fan et al. (2018b) proposes a more general teacher-student
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∇θ J(θ, Ddev)
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ψ
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Figure 4.1: The general workflow of DDS.

framework that first trains a “teacher network” to select data that directly optimizes development set

accuracy over multiple training runs. However, because running multiple runs of training simply to

learn this teacher network entails an n-fold increase in training time for n runs, this is infeasible in

many practical settings. In addition, in preliminary experiments we also found the single reward signal

provided by dev set accuracy at the end of training to be noisy, to the extent that we were not able to

achieve results competitive with simpler heuristic training methods.

In this chapter, we propose an alternative: a general Reinforcement Learning (RL) framework for

optimizing training data usage by training a scorer network that minimizes the model loss on the de-

velopment set. We formulate the scorer network as a function of the current training examples, and

update the scorer along with the main model being trained. Thus, our method requires no heuristics and

is generalizable to various tasks. To make the scorer adaptive, we train it using frequent and efficient

updates towards a reward function inspired by recent work on learning from auxiliary tasks (Du et al.,

2018; Liu et al., 2019b), which uses the similarity between two gradients as a measure of task relevance.

We propose to use the gradient alignment between the training examples and the dev set as a reward

signal for a parametric scorer network, as illustrated in Fig. 9.3. We then formulate our framework as a

bi-level optimization problem similar to those found in prior works such as meta-learning for few-shot

learning (Finn et al., 2017), noisy data filtering (Ren et al., 2018), and neural architecture search (Liu et al.,

2019a), and demonstrate that our proposed update rules follow a direct differentiation of the scorer pa-

rameters to optimize the model loss on the dev set. Thus we refer to our framework as “Differentiable

Data Selection” (DDS).

We demonstrate two concrete instantiations of the DDS framework, one for a more general case of

image classification, and the other for a more specific case of NMT. For image classification, we test on

both CIFAR-10 and ImageNet. For NMT, we focus on a multilingual setting, where we optimize data

usage from a multilingual corpus to improve the performance on a particular language. For these two

very different and realistic tasks, we find the DDS framework brings significant improvements over

diverse baselines for all settings.
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4.2 Differentiable Data Selection

4.2.1 Risk, Training, and Development Sets

Commonly in machine learning, we seek to find the parameters θ∗ that minimize the risk J(θ, P ), the
expected value of a loss function ℓ(x, y; θ), where ⟨x, y⟩ are pairs of inputs and associated labels sampled

from a particular distribution P (X,Y ):

θ∗ = argmin
θ

J(θ, P ) where

J(θ, P ) = Ex,y∼P (X,Y )[ℓ(x, y; θ)]
(4.1)

Ideally, we would like the risk J(·) to be minimized over the data distribution that our system sees at

test time, ie. Ptest(X,Y ). Unfortunately, this distribution is unknown at training time, so instead we col-

lect a training setDtrain = {(xi, yi) : i = 1, ..., Ntrain}with distribution Ptrain(X,Y ) = Uniform(Dtrain),

and minimize the empirical risk by taking ⟨x, y⟩ ∼ Ptrain(X,Y ). Since we need a sufficiently large train-

ing setDtrain to train a good model, it is hard to ensure that Ptrain(X,Y ) ≈ Ptest(X,Y ). In fact, we often

accept that training data comes from a different distribution than test data. The discrepancy between

Ptrain(X,Y ) and Ptest(X,Y ) manifests itself in the form of problems such as overfitting (Zhang et al.,

2017; Srivastava et al., 2014), covariate shift (Shimodaira, 2000), and label shift (Lipton et al., 2018).

However, unlike the large training set, we can often collect a relatively small development setDdev =

{(xi, yi) : i = 1, ..., Ndev} with a distribution Pdev(X,Y ) that is much closer to Ptest(X,Y ) (Some

examples can be found in §4.4). Since Ddev is a better approximation of our test-time scenario, we can

use Ddev to get reliable feedback to learn to better utilize our training data from Dtrain. In particular, we

propose to train a scorer network, parameterized by ψ, that adjusts the weights of examples in Dtrain to

minimize J(θ,Ddev) .

4.2.2 Learning to Optimize Data Usage

We propose to optimize the scorer’s parameters ψ in an RL setting. Our environment is the model state

θ and an example ⟨x, y⟩. Our RL agent is the scorer network ψ, which optimizes the data usage for the

current model state. The agent’s reward on picking an example approximates the dev set performance

of the resulting model after the model is updated on this example.

Our scorer network is parameterized as a differentiable function that only takes as inputs the features

of the example ⟨x, y⟩. Intuitively, it represents a distribution over the training datawheremore important

data has a higher probability of being used, denoted P (X,Y ;ψ). Unlike prior methods which generally

require complicated featurization of both the model state and the data as input to the RL agent (Fan

et al., 2018b; Jiang et al., 2018; Fang et al., 2017), our formulation is much simpler and generalizable to

different tasks. Since our scorer network does not consider the model parameters θt as input, we update

it iteratively with the model so that at training step t, P (X,Y ;ψt) provides an up-to-date data scoring

feedback for a given θt.

Although the above formulation is simpler andmore general, it requires muchmore frequent updates
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to the scorer parameter ψ. Existing RL frameworks simply use the change in dev set risk as the regular

reward signal, which makes the update expensive and unstable (Fan et al., 2018b; Kumar et al., 2019).

Therefore, we propose a novel reward function as an approximation to∆Jdev(x, y) to quantify the effect

of the training example ⟨x, y⟩. Inspired by Du et al. (2018), which uses gradient similarity between

two tasks to measure the effect of adaptating between them, we use the agreement between the model

gradient on data ⟨x, y⟩ and the gradient on the dev set to approximate the effect of ⟨x, y⟩ on dev set

performance. This reward implies that we prefer data that moves θ in the direction that minimizes the

dev set risk:

R(x, y) = ∆Jdev(x, y) ≈ ∇θℓ(x, y; θt−1)
⊤ · ∇θJ(θt,Ddev) (4.2)

According to the REINFORCE algorithm (Williams, 1992), the update rule for ψ is thus

ψt+1 ← ψt +∇θℓ(x, y; θt−1) · ∇θJ(θt,Ddev)︸ ︷︷ ︸
R(x,y)

∇ψlog(P (X,Y ;ψ))
(4.3)

The update rule for the model is simply

θt ← θt−1 −∇θJ(θt−1, P (X,Y ;ψ)) (4.4)

For simplicity of notation, we omit the learning rate term. By alternating between Eq. 4.4 and Eq. 4.3,

we can iteratively update θ using the guidance from the scorer network, and update ψ to optimize the

scorer using feedback from the model.

Our formulation of scorer network as P (X,Y ;ψ) has several advantages. First, it provides the

flexibility that we can either (1) sample a training instance with probability proportional to its score,

(2) or equivalently scale the update from the training instance based on its score. In later sections, we

provide an algorithm under the DDS framework for multilingual NMT (see §4.3.2), where the former is

more efficient, and another more general algorithm for image classification (see §4.3.1), where the latter

choice is natural. Second, it allows easy integration of prior knowledge of the data, which is shown to

be effective in §4.4.

4.2.3 Deriving Rewards through Direct Differentiation

In this section, we show that the update for the scorer network in Eq. 4.3 can be approximately derived

as the solution of a bi-level optimization problem (Colson et al., 2007), which has been applied to many

different lines of research in the field of meta-learning (Baydin et al., 2018; Liu et al., 2019a; Ren et al.,

2018).

Under our framework, the scorer samples the data according to ⟨x, y⟩ ∼ P (X,Y ;ψ), and ψ will be

chosen so that θ∗ that minimizes J(θ, P (X,Y ;ψ)) will approximately minimize J(θ, Pdev(X,Y )):

ψ∗ = argmin
ψ

J(θ∗(ψ),Ddev) where θ
∗(ψ) = argmin

θ
Ex,y∼P (X,Y ;ψ) [ℓ(x, y; θ)] (4.5)

The connection between ψ and θ in Eq. 4.5 shows that J(θt,Ddev) is differentiable with respect to

ψ. Now we can approximately compute the gradient∇ψJ(θt,Ddev) as follows:
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∇ψJ(θt,Ddev) = ∇θtJ(θt,Ddev)
⊤ · ∇ψθt(ψ) (apply chain rule:)

= ∇θtJ(θt,Ddev)
⊤ · ∇ψ (θt−1 −∇θJ(θt−1, ψ)) (substitute θt from Eq. 4.4:)

≈ −∇θtJ(θt,Ddev)
⊤ · ∇ψ (∇θJ(θt−1, ψ)) (assume∇ψθt−1 ≈ 0:)

= −∇ψEx,y∼P (X,Y ;ψ)

[
∇θJ(θt,Ddev)

⊤ · ∇θℓ(x, y; θt−1)
]

= −Ex,y∼P (X,Y ;ψ)

[ (
∇θJ(θt,Ddev)

⊤ · ∇θℓ(x, y; θt−1)
)
· ∇ψ logP (x, y;ψ)

]
(4.6)

Here, we make a Markov assumption that ∇ψθt−1 ≈ 0, assuming that at step t, given θt−1 we do not

care about how the values of ψ from previous steps led to θt−1. Intuitively, this assumption indicates

in the previous step ψt−1 is already updated regards to θt−1, so the effect of ψ on θt−1 is likely to be

minimal. This assumption can simplify and speed up computation. Moreover, this allows us to have a

natural interpretation of the update rule for the data scorer: it should up-weight the training data that

have similar gradient direction with the dev data
1
. Eq. 4.6 leads to a rule to update ψ using gradient

descent, which is exactly the same as the RL update rule in Eq. 4.3.

4.2.4 Additional Clarifications

One potential concern with our approach is that because we optimize ψt directly on the dev set using

J(θt,Ddev), we may risk indirectly overfitting model parameters θt by selecting a small subset of data

that is overly specialized. Howeverwe do not observe this problem in practice, and posit that this because

(1) the influence of ψt on the final model parameters θt is quite indirect, and acts as a “bottleneck” which

has similarly proven useful for preventing overfitting in neural models (Grézl et al., 2007), and (2) because

the actual implementations of DDS (which we further discuss in §4.3) only samples a subset of data from

Dtrain at each optimization step, further limiting expressivity.

4.3 Concrete Instantiations of DDS

We now turn to discuss two concrete instantiations of DDS that we use in our experiments: a more

generic example of classification, which should be applicable to a wide variety of tasks, and a specialized

application to the task of multilingual NMT, which should serve as an example of how DDS can be

adapted to the needs of specific applications.

4.3.1 Formulation for Classification

Alg. 1 presents the pseudo code for the training process on classification tasks, using the notation intro-

duced in §5.2.

1
Our use of the Markov assumption is based on its use and empirical success in previous work on bi-level optimization,

such as Hyper Gradient Descent (Baydin et al. 2017) and many others. Of course, this is a simplifying assumption, but we

believe that our empirical results show that the proposed method is useful nonetheless.
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Algorithm 1: Training a classification model with DDS.

Input : Dtrain, Ddev

Output: Optimal parameters θ∗

1 Initializer θ0 and ψ0

2 for t = 1 to num_train_steps do
3 Sample B training data points xi, yi ∼ Uniform(Dtrain)

4 Sample B validation data points x′i, y
′
i ∼ Uniform(Ddev)

▷ Optimize θ
5 gθ ←

∑B
i=1 p(xi, yi;ψt−1)∇θℓ(xi, yi; θt−1)

6 Update θt ← GradientUpdate

(
θt−1, gθ

)
▷ Evaluate θt on Ddev

7 Let dθ ← 1
B

∑B
j=1∇θℓ(x′j , y′j ; θt)

▷ Optimize ψ
8 ri ← d⊤θ · ∇θℓ(xi, yi; θt−1)

9 Let dψ ← 1
B

∑B
i=1 [ri · ∇ψ log p(xi, yi;ψ)]

10 Update ψt ← GradientUpdate(ψt−1, dψ)

11 end

The main classification model is parameterized by θ. The scorer p(X,Y ;ψ) uses an architecture

identical to the main model, but with independent weights, i.e. p(X,Y ;ψ) does not share weights with

θ. For each examplexi in aminibatch uniformly sampled fromDtrain
2
, this DDSmodel outputs a scalar for

the data point xi. All scalars are passed through a softmax function to compute the relative probabilities

of the examples in the minibatch, and their gradients are scaled accordingly when applied to θ.

We have two gradient update steps, one for the model parameter θt in line 6 and the other for the

DDS scorer parameter ψ in line 10. For the model parameter update, we can simply use any of the

standard optimization update rule. For the scorer ψ, we use the update rule derived in § 4.2.3.

Per-Example Gradient. In standard neural network training, a single aggregate gradient is computed

with respect to a mini-batch of training data of size n to improve computational efficiency. In contrast, as

seen from line 9 of Alg. 1, as well as from ??, DDS requires us to compute∇θℓ(xi, yi; θt−1), the gradient

for each example in a batch of training data. This potentially slows down training by a factor of n. A

naive implementation of this operation would be very slow and memory intensive, especially when the

batch size is large, e.g. our experiments on ImageNet use a batch size of 4096 (see §4.4).

We propose an efficient approximation of this per-example gradient computation via the first-order

Taylor expansion of ℓ(xi, yi; θt−1). In particular, for any vector v ∈ R|θ|
, with sufficiently small ϵ > 0,

we have:

2
Note that our actual formulation of p(X,Y ;ψ) does not depend on Y , but we keep Y in the notation for consistency

with the formulation of the DDS framework.
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v⊤ · ∇θℓ(xi, yi; θt−1)

≈ 1

ϵ

(
ℓ
(
xi, yi; θt−1 + ϵv

)
− ℓ
(
xi, yi; θt−1

))
,

(4.7)

Eq. 4.7 can be implemented by keeping a shadow version of parameters θt−1, caching training loss

ℓ(xi, yi; θt−1), and computing the new loss with θt−1 + ϵv. Here, v is dθ as in line 9 of Alg. 1.

4.3.2 Formulation for Multilingual NMT

Next we demonstrate an application of DDS to multilingual models for NMT, specifically for improving

accuracy on low-resource languages (LRL) (Zoph et al., 2016; Neubig and Hu, 2018).

Problem Setting. In this setting, we assume that we have a particular LRL S that we would like to

translate into target language T , and we additionally have a multilingual corpus Dtrain that has parallel

data between n source languages (S1, S2, ..., Sn) and target language T . We would like to pick parallel

data from any of the source languages to the target language to improve translation of a particular LRL

S, so we assume that Ddev exclusively consists of parallel data between S and T . Thus, DDS will select

data from Dtrain that improve accuracy on S-to-T translation as represented by Ddev.

Adaptation to NMT. To make training more efficient and stable in this setting, we make three sim-

plifications of the main framework in §4.2.3 that take advantage of the problem structure of multilingual

NMT. First, instead of directly modeling p(X,Y ;ψ), we assume a uniform distribution over the target

sentence Y , and only parameterize the conditional distribution of which source language sentence to

pick given the target sentence: p(X|y;ψ). This design follows the formulation of Target Conditioned

Sampling (TCS; ?), an existing state-of-the-art data selection method that uses a similar setting but mod-

els the distribution p(X|y) using heuristics. Since the scorer only needs to model a simple distribution

over training languages, we use a fully connected 2-layer perceptron network, and the input is a vector

indicating which source languages are available for the given target sentence. Second, we only update

ψ after updating the NMT model for a fixed number of steps. Third, we sample the data according to

p(X|y;ψ) to get a Monte Carlo estimate of the objective in Eq. 4.5. This significantly reduces the training

time compared to using all data. The pseudo code of the training process is in Alg. 3. In practice, we use

cosine distance instead of dot product to measure the gradient alignment between the training and dev

language, because cosine distance has smaller variance and thus makes the scorer update more stable.

4.4 Experiments

We now discuss experimental results on both image classification, an instance of the general classifica-

tion problem using Alg. 1, and multilingual NMT using Alg. 3.
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Algorithm 2: Training multilingual NMT with DDS.

Input : Dtrain; K: number of data to train the NMT model before updating ψ; E: number of

updates for ψ; α1,α2: discount factors for the gradient

Output: The converged NMT model θ∗

1 Initialize ψ0, θ0

▷ Initialize the gradient of each source language
2 grad[Si]← 0 for i in n
3 while θ not converged do
4 X,Y ← load_data(ψ,Dtrain,K)

▷ Train the NMT model
5 for xi, y in X,Y do
6 θt ← GradientUpdate

(
θt−1,∇θt−1ℓ(xi, y; θt−1)

)
7 grad[Si]← α1 × grad[Si] + α2 ×∇θt−1ℓ(xi, y; θt−1)

8 end
▷ Optimize ψ

9 for iter in E do
10 sample B data pairs from Dtrain

11 dψ ← 1
B

∑B
j=1

∑n
i=1

[
grad[Si]

⊤
grad[S] · ∇ψt−1 log (p (Si|yj ;ψt−1))

]
12 ψt ← GradientUpdate(ψt−1, dψt−1)

13 end

14 end
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Table 4.1: Results for image classification accuracy (left) and multilingual MT BLEU (right). For MT,

the statistical significance is indicated with ∗ (p < 0.005) and † (p < 0.0001). DDS outperforms the

best baseline in all settings. For both image classification and NMT, DDS performs better than other

intelligent data selection methods.

Methods
CIFAR-10 (WRN-28-k) ImageNet (ResNet-50)

4K, k = 2 Full, k = 10 10% Full

Uniform 82.60±0.17 95.55±0.15 56.36/79.45 76.51/93.20

SPCL 81.09±0.22 93.66±0.12 - -

BatchWeight 79.61±0.50 94.11±0.18 - -

MentorNet 83.11±0.62 94.92±0.34 - -

DDS 83.63± 0.29 96.31± 0.13 56.81/79.51 77.23/93.57
retrained DDS 85.56±0.20 97.91±0.12 - -

Methods aze bel glg slk

Uniform 10.31 17.21 26.05 27.44

SPCL 9.07 16.99 23.64 21.44

Related 10.34 15.31 27.41 25.92

TCS 11.18 16.97 27.28 27.72

DDS 10.74 17.24 27.32 28.20∗

TCS+DDS 11.84∗ 17.74† 27.78 27.74

4.4.1 Experimental Settings

Data. We apply our method on established benchmarks for image classification and multilingual NMT.

For image classification, we use CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015).

For each dataset, we consider two settings: a reduced setting where only roughly 10% of the training

labels are used, and a full setting, where all labels are used. Specifically, the reduced setting for CIFAR-10

uses the first 4000 examples in the training set, and with ImageNet, the reduced setting uses the first 102

TFRecord shards as pre-processed by Kornblith et al. (2019). We use the size of 224× 224 for ImageNet.

For multilingual NMT, we use the 58-language-to-English TED dataset (Qi et al., 2018). Following

prior work (Qi et al., 2018; Neubig and Hu, 2018; Wang et al., 2019b), we evaluate translation from four

low-resource languages (LRL) Azerbaijani (aze), Belarusian (bel), Galician (glg), and Slovak (slk)
to English, where each is paired with a similar high-resource language Turkish (tur), Russian (rus),
Portugese (por), and Czech (ces). We combine data from all 8 languages, and use DDS to optimize

data selection for each LRL.

To update the scorer, we constructDdev so that it does not overlap withDtest. For image classification,

we hold out 10% of the training data as Ddev; while for multilingual NMT, we simply use the dev set of

the LRL as Ddev.

Models andTrainingDetails. For image classification, onCIFAR-10, we use the pre-activationWideResNet-

28 (Zagoruyko and Komodakis, 2016), with width factor k = 2 for the reduced setting and k = 10 for

the normal setting. For ImageNet, we use the post-activation ResNet-50 (He et al., 2016).

For NMT, we use a standard LSTM-based attentional baseline (Bahdanau et al., 2015), which is similar

to previous models used in low-resource scenarios on this dataset (Neubig and Hu, 2018; Wang et al.,

2019b) and others (Sennrich and Zhang, 2019b) due to its relative stability compared to other options

such as the Transformer (Vaswani et al., 2017). Accuracy is measured using BLEU score (Papineni et al.,

2002).

Baselines and Our Methods. For both image classification and multi-lingual NMT, we compare the
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following data selection methods. Uniform: data is selected uniformly from all of the data that we have

available, as is standard in training models. SPCL (Jiang et al., 2015): a curriculum learning method that

dynamically updates the curriculum to focus more on the “easy” training examples based on model loss.

DDS: our proposed method.

For image classification, we compare with several additional methods designed for filtering noisy

data on CIFAR-10, where we simply consider the dev set as the clean data. BatchWeight (Ren et al.,

2018): a method that scales example training loss in a batch with a locally optimized weight vector using

a small set of clean data. MentorNet (Jiang et al., 2018): a curriculum learning method that trains a

mentor network to select clean data based on features from both the data and the main model.

For machine translation, we also compare with two state-of-the-art heuristic methods for multi-

lingual data selection. Related: data is selected uniformly from the target LRL and a linguistically related

HRL (Neubig and Hu, 2018). TCS: the heuristic data selection method of “target conditioned sampling”

introduced in Chapter 3, which uniformly chooses target sentences, then picks which source sentence

to use based on heuristics such as word overlap. Note that both of these methods take advantage of

structural properties of the multi-lingual NMT problem, and do not generalize to other problems such

as classification.

DDS with Prior Knowledge DDS is a flexible framework to incorporate prior knowledge about the

data using the scorer network, which can be especially important when the data has certain structural

properties such as language or domain. We test such a setting of DDS for both tasks.

For image classification, we use retrained DDS, where we first train a model and scorer network

using the standard DDS till convergence. The trained scorer network can be considered as a good prior

over the data, so we use it to train the final model from scratch again using DDS. For multilingual NMT,

we experiment with TCS+DDS, where we initialize the parameters of DDS with the TCS heuristic, then

continue training.

4.4.2 Main Results

The results of the baselines and our method are listed in Tab. 6.3. First, comparing the standard baseline

strategy of “Uniform” and the proposed method of “DDS” we can see that in all 8 settings DDS improves

over the uniform baseline. This is a strong indication of both the consistency of the improvements that

DDS can provide, and the generality – it works well in two very different settings. Next, we find that

DDS outperforms SPCL by a large margin for both of the tasks, especially for multilingual NMT. This is

probably because SPCL weighs the data only by their easiness, while ignoring their relevance to the dev

set, which is especially important in settings where the data in the training set can have very different

properties such as the different languages in multilingual NMT.

DDS also brings improvements over the state-of-the-art intelligent data utilization methods. For

image classification, DDS outperforms MentorNet and BatchWeight on CIFAR-10 in all settings. For

NMT, in comparison to Related and TCS, vanilla DDS performs favorably with respect to these state-

of-the-art data selection baselines, outperforming each in 3 out of the 4 settings (with exceptions of
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Figure 4.2: Example images from the ImageNet and their weights assigned by DDS. A trained DDS

scorer assigns higher probabilities to images from ImageNet, in which the class content is more clear.

Each image’s label and weight in the minibatch is shown.

slightly underperforming Related on glg and TCS on aze). In addition, we see that incorporating prior
knowledge into the scorer network leads to further improvements. For image classification, retrained

DDS can significantly improve over regular DDS, leading to the new state-of-the-art result on the CIFAR-

10 dataset. For mulitlingual NMT, TCS+DDS achieves the best performance in three out of four cases

(with the exception of slk, where vanilla DDS already outperformed TCS).
3

DDS does not incur much computational overhead. For image classification and multilingual NMT

respectively, the training time is about 1.5× and 2× the regular training time without DDS. This con-

trasts favorably to previous methods that learn to select data using reinforcement learning. For example,

in the IMDB movie review experiment in (Fan et al., 2018a), the data agent is trained for 200 episode,

where each episode uses around 40% of the whole dataset, requiring 80x more training time than a single

training run.

4.4.3 Analysis

Image classification. Prior work on heuristic data selection has found that models perform better

when fed higher quality or more domain-relevant data towards the end of training (van der Wees et al.,

2017b; Wang et al., 2019a). Here we verify this observation by analyzing the learned importance weight

at the end of training for image classification. Fig. 4.3 shows that at the end of training, DDS learns

to balance the class distribution, which is originally unbalanced due to the dataset creation. Fig. 4.2

shows that at the end of training, DDS assigns higher probabilities to images with clearer class content

from ImageNet. These results show that DDS learns to focus on higher quality data towards the end of

training.

NMT. Next, we focus on multilingual NMT, where the choice of data directly corresponds to picking a

language, which has an intuitive interpretation. Since DDS adapts the data weights dynamically to the

model throughout training, here we analyze how the dynamics of learned weights. Fig. 4.4 shows an

3
Significance tests (Clark et al., 2011b) find significant gains over the baseline foraze, slk, andbel. Forglg, DDSwith-

out heuristics performs as well as the TCS baseline.
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Figure 4.3: A trained DDS scorer learns to balance the class distributions of CIFAR-10 4K.

interesting trend of DDS without heuristic initialization. For both aze and bel, DDS focuses on the

most related HRL after a certain number of training updates. Interestingly, for bel, DDS learns to focus
on both rus, its most related HRL, and ces. Similarly for slk, DDS also learns to focus on ces, its
most related HRL, and rus, although there is little vocabulary overlap between slk and rus. Also
notably, the ratios change significantly over the course of training, indicating that different types of data

may be more useful during different learning stages.
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Figure 4.4: Language usage for DDS by training step. From left to right: aze, bel, glg, slk.

4.5 Related Work

Data Selection Methods Data selection for domain adaptation for disparate tasks has also been ex-

tensively studied (Moore and Lewis, 2010; Axelrod et al., 2011; Ngiam et al., 2019; Jiang and Zhai, 2007;

Foster et al., 2010; Wang et al.). These methods generally design heuristics to measure domain similar-

ity, while DDS is a more general data selection framework that works for both classification and other

usage cases. Besides domain adaptation, data selection also benefits training in the face of noisy or oth-

erwise undesirable data (Vyas et al., 2018; Pham et al., 2018). The idea of selecting training data that

are similar to dev data has been used in works on submodular optimization (Kirchhoff and Bilmes, 2014;

Tschiatschek et al., 2014), but they rely on features specific to the task, while DDS directly optimizes the

the dev set performance, and is generalizable across tasks. Moreover, unlike DDS, these methods cannot

adaptively change the data selection scheme.
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Instance Weighting Methods Our method is also related to works on training instance weight-

ing (Sivasankaran et al., 2017; Ren et al., 2018; Jiang and Zhai, 2007; Ngiam et al., 2019). These methods

reweigh data based on a manually computed weight vector, instead of using a parameterized neural

network. Notably, Ren et al. (2018) tackles noisy data filtering for image classification, by using meta-

learning to calculate a locally optimized weight vector for each batch of data. In contrast, our work

focuses on the general problem of optimizing data usage. We train a parameterized scorer network that

optimizes over the entire data space, which can be essential in preventing overfitting mentioned in § 5.2;

empirically our method outperform Ren et al. (2018) by a large margin in § 4.4. Sivasankaran et al. (2017)

optimizes data weights by minimizing the error rate on the dev set. However, they use a single number

to weigh each subgroup of augmented data, and their algorithm requires an expensive heuristic method

to update data weights; while DDS uses a more expressive parameterized neural network to model the

individual data weights, which are efficiently updated by directly differentiating the dev loss.

Curriculum Learning Manymachine learning approaches consider how to best present data to mod-

els. First, difficulty-based curriculum learning estimates the presentation order based on heuristic un-

derstanding of the hardness of examples (Bengio et al., 2009; Spitkovsky et al., 2010; Tsvetkov et al., 2016;

Zhang et al., 2016; Graves et al., 2017; Zhang et al., 2018; Platanios et al., 2019). These methods, though

effective, often generalize poorly because they require task-specific difficulty measures. On the other

hand, self-paced learning (??) defines the hardness of the data based on the loss from the model, but is

still based on the assumption that the model should learn from easy examples. Our method does not

make these assumptions.

RL for Training Data Usage Our method is closest to the learning to teach framework (Fan et al.,

2018b) but their formulation involves manual feature design and requires expensive multi-pass optimiza-

tion. Instead, we formulate our reward using bi-level optimization, which has been successfully applied

for a variety of other tasks (Colson et al., 2007; Anandalingam and Friesz, 1992; Liu et al., 2019a; Baydin

et al., 2018; Ren et al., 2018). (Wu et al., 2018; Kumar et al., 2019; Fang et al., 2017) propose RL frameworks

for specific natural language processing tasks, but their methods are less generalizable and requires more

complicated featurization.

4.6 Conclusion

We present differentiable data selection, an efficient RL framework for optimizing training data usage.

We parameterize the scorer network as a differentiable function of the data, and provide an intuitive

reward function for efficiently training the scorer network. We formulate two algorithms under the

DDS framework for two realistic and very different tasks, image classification and multilingual NMT,

which lead to consistent improvements over strong baselines.
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Chapter 5

Balancing Training for Multilingual
Neural Machine Translation

Equipped with the general automatic data selection method introduced in the previous chapter, we turn

to a specific data balancing problem in multilingual training. As discussed in § 2.4, when training mul-

tilingual machine translation models that can translate to/from multiple languages, we are faced with

imbalanced training sets: some languages have much more training data than others. In this chapter,

we propose a method that automatically learns how to weight training data through a data scorer that

is optimized to maximize performance on all test languages.
1

5.1 Introduction

A common problem with multilingual training is that the data from different languages are both hetero-

geneous (different languages may exhibit very different properties) and imbalanced (there may be wildly

varying amounts of training data for each language). Thus, while LRLs will often benefit from transfer

from other languages, for languages where sufficient monolingual data exists, performance will often

decrease due to interference from the heterogeneous nature of the data. This is especially the case for

modestly-sized models that are conducive to efficient deployment (Arivazhagan et al., 2019; Conneau

et al., 2019).

To balance the performance on different languages, the standard practice is to heuristically adjust the

distribution of data used in training, specifically by over-sampling the training data from LRLs (Johnson

et al., 2016b; Neubig and Hu, 2018; Arivazhagan et al., 2019; Conneau et al., 2019). For example, Ari-

vazhagan et al. (2019) sample training data from different languages based on the dataset size scaled by a

heuristically tuned temperature term. However, such heuristics are far from perfect. First, Arivazhagan

et al. (2019) find that the exact value of this temperature term significantly affects results, and we further

show in experiments that the ideal temperature varies significantly from one experimental setting to

another. Second, this heuristic ignores factors other than data size that affect the interaction between

1
The code is available at https://github.com/cindyxinyiwang/fairseq/tree/multiDDS.
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different languages, despite the fact that language similarity has been empirically proven important in

examinations of cross-lingual transfer learning (Wang and Neubig, 2019; Lin et al., 2019).

In this chapter, we ask the question: “is it possible to learn an optimal strategy to automatically

balance the usage of data in multilingual model training?” To this effect, we propose a method that

learns a language scorer that can be used throughout training to improve the model performance on all
languages. Our method is based on the approach of Differentiable Data Selection (DDS) introduced in

Chapter 4, a general machine learning method for optimizing the weighting of different training exam-

ples to improve a pre-determined objective. In this work, we take this objective to be the average loss

from different languages, and directly optimize the weights of training data from each language to max-

imize this objective on a multilingual development set. This formulation has no heuristic temperatures,

and enables the language scorer to consider the interaction between languages.

Based on this formulation, we propose an algorithm that improves the ability of DDS to optimize

multiple model objectives, which we name MultiDDS. This is particularly useful in the case where we

want to optimize performance on multiple languages simultaneously. Specifically, MultiDDS (1) has

a more flexible scorer parameterization, (2) is memory efficient when training on multiple languages,

and (3) stabilizes the reward signal so that it improves all objectives simultaneously instead of being

overwhelmed by a single objective.

While the proposed methods are model-agnostic and thus potentially applicable to a wide variety

of tasks, we specifically test them on the problem of training multilingual NMT systems that can trans-

late many languages in a single model. We perform experiments on two sets of languages (one with

more similarity between the languages, one with less) and two translation directions (one-to-many and

many-to-one where the “one” is English). Results show that MultiDDS consistently outperforms various

baselines in all settings. Moreover, we demonstrate MultiDDS provides a flexible framework that allows

the user to define a variety of optimization objectives for multilingual models.

5.2 Multilingual Training Preliminaries

Monolingual Training Objective A standard NMTmodel is trained to translate from a single source

language S to a target language T . The parameters of the model are generally trained by preparing

a training dataset Dtrain, and defining the empirical distribution of sentence pairs ⟨x, y⟩ sampled from

Dtrain asP . We thenminimize the empirical risk J(θ, P ), which is the expected value of the loss function

ℓ(x, y; θ) over this distribution:

θ∗ = argmin
θ

J(θ,Dtrain)

where J(θ,Dtrain) = Ex,y∼P (X,Y )[ℓ(x, y; θ)]
(5.1)

Multilingual Training Formulation A multilingual NMT model can translate n pairs of languages,

from any source language Si. to its corresponding target T i. To train such a multilingual model, we

have access to n sets of training data Dtrain = D1
train

, D2
train

, . . . , Dn
train

, where Di
train

is training data for

language pair Si-T i. From these datasets, we can define P i, the distribution of sentences from Si-T i,
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and consequently also define a risk J(θ, P i) for each language following the monolingual objective in

Eq. 5.1.

However, the question now becomes: “how do we define an overall training objective given these

multiple separate datasets?” Several different methods to do so have been proposed in the past. To

discuss all of these different methods in a unified framework, we further define a distribution PD over

the n sets of training data, and define our overall multilingual training objective as

Jmult(θ, PD, Dtrain) = Ei∼PD(i;ψ)

[
J(θ,Di

train)
]
. (5.2)

In practice, this overall objective can be approximated by selecting a language according to ĩ ∼ PD(i),

then calculating gradients with respect to θ on a batch of data from Dĩ
train

.

Evaluation Methods Another important question is how to evaluate the performance of such mul-

tilingual models. During training, it is common to use a separate development set for each language

Ddev = D1
dev
, D2

dev
, ..., Dn

dev
to select the best model. Given that the objective of multilingual train-

ing is generally to optimize the performance on all languages simultaneously (Arivazhagan et al., 2019;

Conneau et al., 2019), we can formalize this objective as minimizing the average of dev risks
2
:

Jdev(θ,Ddev) =
1

n

n∑
i=1

J(θ,Di
dev). (5.3)

Relation to Heuristic Strategies This formulation generalizes a variety of existing techniques that

define PD(i) using a heuristic strategy, and keep it fixed throughout training.

Uniform: The simplest strategy sets PD(i) to a uniform distribution, sampling minibatches from each

language with equal frequency (Johnson et al., 2016b).

Proportional: It is also common to sample data in portions equivalent to the size of the corresponding

corpora in each language (Johnson et al., 2016b; Neubig and Hu, 2018).

Temperature-based: Finally, because both of the strategies above are extreme (proportional under-weighting

LRLs, and uniform causing overfitting by re-sampling sentences from limited-size LRL datasets), it

is common to sample according to data size exponentiated by a temperature term τ (Arivazhagan

et al., 2019; Conneau et al., 2019):

PD(i) =
q
1/τ
i∑n

k=1 q
1/τ
k

where qi =
|Di

train
|∑n

k=1 |Dk
train
| . (5.4)

When τ = 1 or τ = ∞ this is equivalent to proportional or uniform sampling respectively, and

when a number in the middle is chosen it becomes possible to balance between the two strategies.

As noted in the introduction, these heuristic strategies have several drawbacks regarding sensitivity

to the τ hyperparameter, and lack of consideration of similarity between the languages. In the following

sections we will propose methods to resolve these issues.

2
In reality, it is common to have the loss ℓ be a likelihood-based objective, but finally measure another metric such as BLEU

score at test time, but for simplicity we will assume that these two metrics are correlated.
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5.3 Differentiable Data Selection

Now we turn to the question: is there a better way to optimize PD(i) so that we can achieve our final

objective of performing well on a representative development set over all languages, i.e. minimizing

Jdev(θ,Ddev). In order to do so, we turn to the method of Differentiable Data Selection (DDS, introduced

in Chapter 4), a general purpose machine learning method that allows for weighting of training data to

improve performance on a separate set of held-out data.

Specifically, DDS uses a technique called bi-level optimization (Colson et al., 2007), that learns a

second set of parameters ψ that modify the training objective that we use to learn θ, so as to maximize

the final objective Jdev(θ,Ddev). Specifically, it proposes to learn a data scorer P (x, y;ψ), parameterized

by ψ, such that training using data sampled from the scorer optimizes the model performance on the

dev set. To take the example of learning an NMT system to translate a single language pair i using DDS,
the general objective in Eq. 5.1 could be rewritten as

ψ∗ = argmin
ψ

J(θ∗(ψ), Di
dev) where

θ∗(ψ) = argmin
θ

Ex,y∼P (x,y;ψ) [ℓ(x, y; θ)] .
(5.5)

DDS optimizes θ and ψ iteratively throughout the training process. Given a fixed ψ, the update rule

for θ is simply

θt ← θt−1 −∇θEx,y∼P (x,y;ψ) [ℓ(x, y; θ)]

To update the data scorer, DDS uses reinforcement learningwith a reward function that approximates

the effect of the training data on the model’s dev performance

R(x, y; θt) ≈ ∇J(θt, Di
dev)

⊤ · ∇θℓ(x, y; θt−1)

≈ cos
(
∇J(θt, Di

dev),∇θℓ(x, y; θt−1)
) (5.6)

where cos(·) is the cosine similarity of two vectors. This reward can be derived by directly differentiating

J(θ(ψ), Di
dev

) with respect to ψ, but intuitively, it indicates that the data scorer should be updated to

up-weigh the data points that have similar gradient with the dev data. According to the REINFORCE

algorithm Williams (1992), the update rule for the data scorer then becomes

ψt+1 ← ψt +R(x, y; θt) · ∇ψlogP (x, y;ψ) (5.7)

5.4 DDS for Multilingual Training

In this section, we use the previously described DDS method to derive a new framework that, instead

of relying on fixed heuristics, adaptively optimizes usage of multilingual data for the best model perfor-

mance on multiple languages. We illustrate the overall workflow in Fig. 5.1.

First, we note two desiderata for our multilingual trainingmethod: 1) generality: the method should

be flexible enough so that it can be utilized universally for different multilingual tasks and settings (such

as different translation directions for NMT). 2) scalablity: the method should be stable and efficient if

one wishes to scale up the number of languages that a multilingual model supports. Based on these two

properties, we introduce MultiDDS, an extension of the DDS method tailored for multilingual training.
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Figure 5.1: An illustration of the MultiDDS algorithm. Solid lines represent updates for θ, and dashed

lines represent updates for ψ. The scorer defines the distribution over n training languages, from which

training data is sampled to train the model. The scorer is updated to favor the datasets with similar

gradients as the gradient of the aggregated dev sets.

Method MultiDDS directly parameterizes the standard dataset sampling distribution for multilingual

training with ψ:

PD(i;ψ) = eψi/
∑n

k=1e
ψk (5.8)

and optimizes ψ to minimize the dev loss. Notably, unlike standard DDS we make the design decision

to weight training datasets rather than score each training example ⟨x, y⟩ directly, as it is more efficient

and also likely easier to learn.

We can thus rewrite the objective in Eq. 5.2 to incorporate both ψ and θ as:

ψ∗ = argmin
ψ

Jdev(θ
∗(ψ), Ddev) where

θ∗ = argmin
θ

Ei∼PD(i;ψ)

[
J(θ,Di

train)
] (5.9)

In other words, while the general DDS framework evaluates the model performance on a single dev set

and optimizes the weighting of each training example, our multilingual training objective evaluates the

performance over an aggregation of n dev sets and optimizes the weighting of n training sets.

The reward signal for updating ψt is

R(i; θt) ≈ cos
(
∇ (Jdev(θt, Ddev)) ,∇θJ(θt−1, D

i
train

)
)

= cos

(
∇
(
1

n

n∑
k=1

J(θt, D
k
dev

)

)
,∇θJ(θt−1, D

i
train

)

)
,

(5.10)

where Jdev(·) defines the combination of n dev sets, and we simply plug in its definition from Eq. 5.3.

Intuitively, Eq. 5.10 implies that we should favor the training language i if its gradient aligns with the

gradient of the aggregated dev risk of all languages.
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Implementing the Scorer Update The pseudo-code for the training algorithm using MultiDDS can

be found in Alg. 3. Notably, we do not update the data scorer ψ on every training step, because it is too

computationally expensive for NMT training (Wang et al., 2019c). Instead, after training the multilingual

model θ for a certain number of steps, we update the scorer for all languages. This implementation is

not only efficient, but also allows us to re-estimate more frequently the effect of languages that have low

probability of being sampled.

In order to do so, it is necessary to calculate the effect of each training language on the current model,

namely R(i; θt). We estimate this value by sampling a batch of data from eachDi
train

to get the training

gradient for θt, and use this to calculate the reward for this language. This process is detailed in line 11

of the Alg. 3.

Unlike the algorithm in DDS which requires storing n model gradients,
3
this approximation does

not require extra memory even if n is large, which is important given recent efforts to scale multilingual

training to 100+ (Arivazhagan et al., 2019; Aharoni et al., 2019) or even 1000+ languages (Östling and

Tiedemann, 2017; Malaviya et al., 2017).

5.5 Stabilized Multi-objective Training

In our initial attempts to scale DDS to highly multi-lingual training, we found that one challenge was

that the reward for updating the scorer became unstable. This is because the gradient of a multilingual

dev set is less consistent and of higher variance than that of a monolingual dev set, which influences the

fidelity of the data scorer reward.
4

Thus, instead of using the gradient alignment between the training data and the aggregated loss of

n dev sets as the reward, we propose a second approach to first calculate the gradient alignment reward

between the data and each of the n dev sets, then take the average of these as the final reward. This can

be expressed mathematically as follows:

R′(i; θt) ≈ cos

(
∇θ
(
1

n

n∑
k=1

J(θt, D
k
dev)

)
,∇θJ(θt−1, D

i
train)

)

≈ 1

n

n∑
k=1

cos

(
∇θJ(θt, Dk

dev),∇θJ(θt−1, D
i
train)

) (5.11)

To implement this, we can simply replace the standard reward calculation at Line 11 of Alg. 3 to

use the stable reward. We name this setting MultiDDS-S. In §5.7.1 we show that this method has less

variance than the reward in Eq. 5.10.

3
The NMT algorithm in (Wang et al., 2019c) estimates the reward by storing the moving average of n training gradients,

which is not memory efficient (See Line. 7 of Alg. 2 in Chapter 4). In the preliminary experiments, our approximation performs

as well as the moving average approximation. Thus, we use our approximation method as the component for MultiDDS for

the rest of the experiments.

4
Suppose the dev set gradient of language k has variance of var(gkdev) = σ, and that the dev gradients of each language

{g1dev, ..., gndev} are independent. Then the sum of the gradients from the n languages has a variance of var(
∑n

k=1 g
k
dev) = nσ.
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Algorithm 3: Training with MultiDDS

Input : Dtrain; M: amount of data to train the multilingual model before updating ψ;

Output: The converged multilingual model θ∗

▷ Initialize PD(i, ψ) to be proportional to dataset size

1 PD(i, ψ)← |Di
train

|∑n
j=1 |Dj

train
|

2 while not converged do
▷ Load training data with ψ

3 X,Y ← ∅
4 while |X,Y | < M do
5 ĩ ∼ PD(i, ψt)
6 (x, y) ∼ Dĩ

train

7 X,Y ← X,Y ∪ x, y
8 end

▷ Train the NMT model for multiple steps
9 for x, y in X,Y do
10 θ ← GradientUpdate (θ,∇θℓ(x, y; θ))
11 end

▷ Estimate the effect of each language R(i; θ)
12 for i from 1 to n do
13 x′, y′ ∼ Di

train

14 gtrain ← ∇θℓ(x′, y′; θ)
15 θ′ ← GradientUpdate(θ, gtrain)

16 gdev ← 0

17 for j from 1 to n do
18 xd, yd ∼ Dj

dev

19 gdev ← gdev +∇θ′ℓ(xd, yd; θ′)
20 end
21 R(i; θ)← cos(gdev, gtrain)

22 end
▷ Optimize ψ

23 dψ ←
∑n
i=1R(i; θ) · ∇ψlog (PD (i;ψ))

24 ψ ← GradientUpdate(ψ, dψ)

25 end

5.6 Experimental Evaluation

5.6.1 Data and Settings

We use the 58-languages-to-English parallel data from Qi et al. (2018). A multilingual NMT model is

trained for each of the two sets of language pairs with different level of language diversity:

Related: 4 LRLs (Azerbaijani: aze, Belarusian: bel, Glacian: glg, Slovak: slk) and a related HRL

for each LRL (Turkish: tur, Russian: rus, Portuguese: por, Czech: ces)
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Diverse: 8 languageswith varying amounts of data, pickedwithout consideration for relatedness (Bosnian:

bos, Marathi: mar, Hindi: hin, Macedonian: mkd, Greek: ell, Bulgarian: bul, French: fra,
Korean: kor)

For each set of languages, we test two varieties of translation: 1) many-to-one (M2O): translating

8 languages to English; 2) one-to-many (O2M): translating English into 8 different languages. A target

language tag is added to the source sentences for the O2M setting (Johnson et al., 2016b).

5.6.2 Experiment Setup

All translationmodels use standard transformermodels Vaswani et al. (2017) as implemented in fairseq (Ott

et al., 2019) with 6 layers and 4 attention heads. All models are trained for 40 epochs. We preprocess the

data using sentencpiece (Kudo and Richardson, 2018) with a vocabulary size of 8K for each language.

The model performance is evaluated with BLEU score (Papineni et al., 2002), using sacreBLEU (Post,

2018).

Baselines We compare with the three standard heuristic methods explained in §5.2: 1) Uniform (τ =

∞): datasets are sampled uniformly, so that LRLs are over-sampled to match the size of the HRLs; 2)

Temperature: scales the proportional distribution by τ = 5 (following Arivazhagan et al. (2019)) to

slightly over-sample the LRLs; 3) Proportional (τ = 1): datasets are sampled proportional to their size,

so that there is no over-sampling of the LRLs.

Ours we runMultiDDS with either the standard reward (MultiDDS), or the stabilized reward proposed

in Eq. 5.11 (MultiDDS-S). The scorer for MultiDDS simply maps the ID of each dataset to its correspond-

ing probability (See Eq. 5.8. The scorer has N parameters for a dataset with N languages.)

Method Avg. aze bel glg slk tur rus por ces

M2O
Prop. 24.88 11.20 17.17 27.51 28.85 23.09∗ 22.89 41.60 26.80

MultiDDS-S 25.52 12.20∗ 19.11∗ 29.37∗ 29.35∗ 22.81 22.78 41.55 27.03

O2M
Temp. 16.61 6.66 11.29 21.81 18.60 11.27 14.92 32.10 16.26

MultiDDS-S 17.32 6.59 12.39∗ 21.65 20.61∗ 11.58 15.26∗ 33.52∗ 16.98∗

bos mar hin mkd ell bul fra kor

M2O
Prop. 26.68 23.43 10.10 22.01 31.06 35.62∗ 36.41∗ 37.91∗ 16.91
MultiDDS-S 27.00 25.34∗ 10.57 22.93∗ 32.05∗ 35.27 35.77 37.30 16.81

O2M
Temp. 17.94 14.73∗ 4.93 15.49 20.59 24.82 26.60 29.74∗ 6.62

MultiDDS-S 18.24 14.02 4.76 15.68∗ 21.44 25.69∗ 27.78∗ 29.60 7.01∗

Table 5.1: BLEU scores of the best baseline and MultiDDS-S for all translation settings. MultiDDS-S

performs better on more languages. For each setting, bold indicates the highest value, and ∗ means the

gains are statistically significant with p < 0.05.
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Method
M2O O2M

Related Diverse Related Diverse

B
a
s
e
li
n
e Uni. (τ=∞) 22.63 24.81 15.54 16.86

Temp. (τ=5) 24.00 26.01 16.61 17.94

Prop. (τ=1) 24.88 26.68 15.49 16.79

O
u
r
s

MultiDDS 25.26 26.65 17.17 18.40
MultiDDS-S 25.52 27.00 17.32 18.24

Table 5.2: Average BLEU for the baselines and our methods. Bold indicates the highest value.

5.6.3 Main Results

We first show the average BLEU score over all languages for each translation setting in Tab. 5.2. First,

comparing the baselines, we can see that there is no consistently strong strategy for setting the sam-

pling ratio, with proportional sampling being best in the M2O setting, but worst in the O2M setting.

Next, we can see that MultiDDS outperforms the best baseline in three of the four settings and is compa-

rable to proportional sampling in the last M2O-Diverse setting. With the stabilized reward, MultiDDS-S

consistently delivers better overall performance than the best baseline, and outperforms MultiDDS in

three settings. From these results, we can conclude that MultiDDS-S provides a stable strategy to train

multilingual systems over a variety of settings.

Next, we look closer at the BLEU score of each language pair for MultiDDS-S and the best baseline.

The results for all translation settings are in Tab. 5.1. In general, MultiDDS-S outperforms the baseline

on more languages. In the best case, for the O2M-Related setting, MultiDDS-S brings significant gains

for five of the eight languages, without hurting the remaining three. The gains for the Related group

are larger than for the Diverse group, likely because MultiDDS can take better advantage of language

similarities than the baseline methods.

It is worth noting that MultiDDS does not impose large training overhead. For example, for our

M2O system, the standard method needs around 19 hours and MultiDDS needs around 20 hours for

convergence. The change in training time is not siginificant because MultiDDS only optimizes a simple

distribution over the training datasets.

5.6.4 Prioritizing what to Optimize

Prior works on multilingual models generally focus on improving the average performance of the model

on all supported languages (Arivazhagan et al., 2019; Conneau et al., 2019). The formulation of Multi-

DDS reflects this objective by defining the aggregation of n dev sets using Eq. 5.3, which is simply the

average of dev risks. However, average performance might not be the most desirable objective under

all practical usage settings. For example, it may be desirable to create a more egalitarian system that

performs well on all languages, or a more specialized system that does particularly well on a subset of
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Setting Baseline
MultiDDS-S

Regular Low High

M2O 26.68 27.00 26.97 27.08

O2M 17.94 18.24 17.95 18.55

Table 5.3: Average BLEU of the best baseline and three MultiDDS-S settings for the Diverse group.

MultiDDS-S always outperform the baseline.

languages.

In this section, we examine the possibility of using MultiDDS to control the priorities of the multilin-

gual model by defining different dev set aggregation methods that reflect these priorities. To do so, we

first train the model for 10 epochs using regular MultiDDS, then switch to a different dev set aggregation

method. Specifically, we compare MultiDDS with three different priorities:

Regular: this is the standard MultiDDS that optimizes all languages throughout training using the av-

erage dev risk aggregation in Eq. 5.3

Low: a more egalitarian system that optimizes the average of the four languages with the worst dev

perplexity, so that MultiDDS can focus on optimizing the low-performing languages

High: a more specialized system that optimizes the four languages with the best dev perplexity, for

MultiDDS to focus on optimizing the high-performing languages

We performed experiments with these aggregation methods on the Diverse group, mainly because

there is more performance trade-off among these languages. First, in Tab. 5.3 we show the average

BLEU over all languages, and find that MultiDDS with different optimization priorities still maintains

competitive average performance compared to the baseline.

More interestingly, in Fig. 5.2, we plot the BLEU score difference of High and Low compared to

Regular for all 8 languages. The languages are ordered on the x-axis from left to right in decreasing

perplexity. Low generally performs better on the low-performing languages on the left, while High

generally achieves the best performance on the high-performing languages on the right, with results

most consistent in the O2M setting. This indicates that MultiDDS is able to prioritize different predefined

objectives.

It is also worth noting that low-performing languages are not always low-resource languages. For

example, Korean (kor) has the largest amount of training data, but its BLEU score is among the lowest.

This is because it is typologically very different from English and the other training languages. Fig. 5.2

shows that Low is still able to focus on improving kor, which aligns with the predefined objective. This

fact is not considered in baseline methods that only consider data size when sampling from the training

datasets.
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Figure 5.2: The difference between Low and High optimization objectives compared to Regular for the

Diverse language group. MultiDDS successfully optimize for different priorities. left: M2O; right: O2M.

Method
M2O O2M

Mean Var. Mean Var.

MultiDDS 26.85 0.04 18.20 0.05

MultiDDS-S 26.94 0.02 18.24 0.02

Table 5.4: Mean and variance of the average BLEU score for the Diverse group. The models trained with

MultiDDS-S perform better and have less variance.

5.7 Analysis

5.7.1 Effect of Stablized Rewards

Next, we study the effect of the stablized reward proposed in §5.2. In Fig. 5.3, we plot the regular re-

ward (used by MultiDDS) and the stable reward (used by MultiDDS-S) throughout training. For all

settings, the reward in MultiDDS and MultiDDS-S follows the similar trend, while the stable reward

used in MultiDDS-S has consistently less variance.

MultiDDS-S also results in smaller variance in the final model performance. We run MultiDDS and

MultiDDS-S with 4 different random seeds, and record the mean and variance of the average BLEU score.

Tab. 5.4 shows results for the Diverse group, which indicate that the model performance achieved using

MultiDDS-S has lower variance and a higher mean than MultiDDS.

Additionally, we compare the learned language distribution of MultiDDS-S and MultiDDS in Fig. 5.4.

The learned language distribution in both plots fluctuates similarly, but MultiDDS has more drastic

changes than MultiDDS-S. This is also likely due to the reward of MultiDDS-S having less variance

than that of MultiDDS.
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Figure 5.3: Variance of reward. Left: M2O; Right: O2M; Top: Related language group; Bottom: Diverse

language group.
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Figure 5.4: Language usage for the M2O-Diverse setting. Left: MultiDDS-S; Right: MultiDDS. The two

figures follow similar trends while MultiDDS changes more drastically.
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5.7.2 Learned Language Distributions

In Fig. 5.5, we visualize the language distribution learned by MultiDDS throughout the training process.

Under all settings, MultiDDS gradually increases the usage of LRLs. Although initialized with the same

distribution for both one-to-many and many-to-one settings, MultiDDS learns to up-sample the LRLs

more in the one-to-many setting, likely due to the increased importance of learning language-specific

decoders in this setting. For the Diverse group, MultiDDS learns to decrease the usage of Korean (kor)

the most, probably because it is very different from other languages in the group.

5.8 Related Work

Our work is related to the multilingual training methods in general. As stated previously, recent results

have demonstrated the importance of balancing HRLs and LRLs during multilingual training (Arivazha-

gan et al., 2019; Conneau et al., 2019), which is largely done with heuristic sampling using a temperature

term; MultiDDS provides a more effective and less heuristic method. Wang and Neubig (2019); Lin et al.

(2019) choose languages from multilingual data to improve the performance on a particular language,

while our work instead aims to train a single model that handles translation between many languages.

(Zaremoodi et al., 2018; Wang et al., 2018b, 2019b) propose improvements to the model architecture to

improve multilingual performance, while MultiDDS is a model-agnostic and optimizes multilingual data

usage.

Our work is also related to machine learning methods that balance multitask learning (Chen et al.,

2018; Kendall et al., 2018). For example, Kendall et al. (2018) proposes to weigh the training loss from a

multitask model based on the uncertainty of each task. Our method focuses on optimizing the multilin-

gual data usage, and is both somewhat orthogonal to and less heuristic than such loss weightingmethods.

Finally, ourwork is related tometa-learning, which is used in hyperparameter optimization (Baydin et al.,

2018), model initialization for fast adaptation (Finn et al., 2017), and data weighting (Ren et al., 2018). No-

tably, Gu et al. (2018b) apply meta-learning to learn an NMT model initialization for a set of languages,

so that it can be quickly fine-tuned for any language. This is different in motivation from our method

because it requires an adapted model for each of the language, while our method aims to optimize a

single model to support all languages. To our knowledge, our work is the first to apply meta-learning to

optimize data usage for multilingual objectives.

5.9 Conclusion

In this chapter, we propose MultiDDS, an algorithm that learns a language scorer to optimize multilin-

gual data usage to achieve good performance on many different languages. We extend and improve over

the method DDS (Wang et al., 2019c) introduced in Chapter 4, with a more efficient algorithmic instanti-

ation tailored for the multilingual training problem and a stable reward to optimize multiple objectives.

MultiDDS not only outperforms prior methods in terms of overall performance on all languages, but
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Figure 5.5: Language usage by training step. Left: many-to-one; Right: one-to-many; Top: related lan-

guage group; Bottom: diverse language group.
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also provides a flexible framework to prioritize different multilingual objectives.

Notably, MultiDDS is not limited to NMT, and future work may consider applications to other mul-

tilingual tasks. In addition, there are other conceivable multilingual optimization objectives than those

we explored in §5.6.4.
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Part II

Data Representation
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Chapter 6

Multilingual Neural Machine
Translation with Soft Decoupled
Encoding

After selecting suitable training examples from the multilingual dataset, it is still challenging to repre-

sent the selected multilingual data which often have diverse scripts and vocabularies. We first explore

modeling improvements to address this problem for NMT. In this chapter, we propose Soft Decoupled

Encoding (SDE), a multilingual lexicon encoding framework specifically designed to share lexical-level

information intelligently without requiring heuristic preprocessing such as pre-segmenting the data.
1

6.1 Introduction

The standard sequence-to-sequence (seq2seq) NMTmodel (Sutskever et al., 2014) represents each lexical

unit by a vector from a look-up table, making it difficult to share across different languages with limited

lexicon overlap. This problem is particularly salient when translating low-resource languages, where

there is not sufficient data to fully train the word embeddings. Several methods have been proposed to

alleviate this data sparsity problem in multilingual lexical representation. The current de-facto standard

method is to use subword units (Sennrich et al., 2016b; Kudo, 2018a), which split up longer words into

shorter subwords to allow for generalization across morphological variants or compounds (e.g. “un/de-

cide/d” or “sub/word”). These can be applied to the concatenated multilingual data, producing a shared

vocabulary for different languages, resulting in sharing some but not all subwords of similarly spelled

words (such as “traducción” in Spanish and “tradução” in Portuguese, which share the root “tradu-”).

However, subword-based preprocessing can produce sub-optimal segmentations for multilingual data,

with semantically identical and similarly spelled languages being split into different granularities (e.g.

“traducción” and “tradu/ção”) leading to disconnect in the resulting representations. This problem is

1
The source code is available at https://github.com/cindyxinyiwang/SDE
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especially salient when the high-resource language dominates the training data (see empirical results in

§8.4).

In this chapter, we propose Soft Decoupled Encoding (SDE), a multilingual lexicon representation

framework that obviates the need for segmentation by representing words on a full-word level, but

can nonetheless share parameters intelligently, aiding generalization. Specifically, SDE softly decouples

the traditional word embedding into two interacting components: one component represents how the

word is spelled, and the other component represents the word’s latent meaning, which is shared over

all languages present at training time. We can view this representation as a decomposition of language-

specific realization of the word’s form (i.e. its spelling) and its language-agnostic semantic function.

More importantly, our decoupling is done in a soft manner to preserve the interaction between these

two components.

SDE has three key components: 1) an encoding of a word using character n-grams (Wieting et al.,

2016); 2) a language specific transform for the character encoding; 3) a latent word embedding con-

structed by using the character encoding to attend to a shared word embedding space, inspired by Gu

et al. (2018a). Our method can enhance lexical-level transfer through the shared latent word embed-

ding while preserving the model’s capacity to learn specific features for each language. Moreover, it

eliminates unknown words without any external preprocessing step such as subword segmentation.

We test SDE on four low-resource languages from a multilingual TED corpus (Qi et al., 2018). Our

method shows consistent improvements over multilingual NMT baselines for all four languages, and im-

portantly outperforms previous methods for multilingual NMT that allow for more intelligent parameter

sharing but do not use a two-step process of character-level representation and latent meaning repre-

sentation (Gu et al., 2018a). Our method outperforms the best baseline by about 2 BLEU for one of the

low-resource languages, achieving new state-of-the-art results on all four language pairs compared to

strong multi-lingually trained and adapted baselines (Neubig and Hu, 2018).

6.2 Lexical Representation for Multilingual NMT

In this section, we first revisit the 3-step process of computing lexical representations for multilingual

NMT, which is illustrated in Fig. 6.1. Then, we discuss various design choices for each step, as well as

the desiderata of an ideal lexical representation for multilingual NMT.

6.2.1 Lexical Unit Segmentation

The first step to compute the neural representation for a sentence is to segment the sentence into lexical

units. There are three popular options with different granularities:

• Word-based method splits an input sequence into words, often based on white spaces or punc-

tuation. This is perhaps the natural choice for lexical unit segmentation. Early work in NMT all

employ this method (Sutskever et al., 2014; Bahdanau et al., 2015).

• Character-based method splits an input sequence into characters (Lee et al., 2017).
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Figure 6.1: Three steps to compute the lexical representations for the input sequence “a cute puppy”,

using various lexical unit segmentations.

• Subword-based method splits each word into pieces from a small vocabulary of frequently oc-

curring patterns (Sennrich et al., 2016b; Kudo, 2018a).

6.2.2 Embedding Look-up

After a sentence is segmented into lexical units, NMT models generally look up embeddings from a

dictionary to turn each lexical unit into a high-dimensional vector. In the context of multilingual NMT,

the lexical unit segmentation method affects this dictionary in different ways.

In word-based segmentation, since the number of unique words for each language is unbounded,

while computer memory is not, previous work, e.g. Sutskever et al. (2014), resorts to a fixed-size vocab-

ulary of the most frequent words, while mapping out-of-vocabulary words to an ⟨unk⟩ token. For mul-

tilingual NMT settings, where multiple languages are processed, the number of words mapped to ⟨unk⟩
significantly increases. Moreover, different languages, even related languages, have very few words that

have exactly the same spelling, which leads to the same concept being represented by multiple and inde-

pendent parameters. This disadvantage hurts the translation model’s ability to learn the same concept

in multiple languages.

Meanwhile, character-based segmentation can effectively reduce the vocabulary size, while max-

imizing the potential for parameter sharing between languages with identical or similar character sets.

However, character segmentation is based on the strong assumption that neural networks can infer

meaningful semantic boundaries and compose characters into meaningful words. This puts a large

amount of pressure on neural models, requiring larger model sizes and training data. Additionally,

training character-based NMT systems is often slow, due to the longer character sequences (Cherry

et al., 2018a).

Subword-based segmentation is a middle ground between word and character segmentation. How-

ever, in multilingual translation, the subword segmentation can be sub-optimal, as the subwords from

high-resource languages, i.e. languages with more training data, might dominate the subword vocabu-

lary, so that the words in low-resource language can be split into extremely small pieces.
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Therefore, existing methods for lexical unit segmentation lead to difficulties in building an effective

embedding look-up strategy for multilingual NMT.

6.2.3 Optional Encoding Transformations

Most commonly, the embedding vectors looked up from the embedding table are used as the final lexical

representation. However, it is also possible to have multiple versions of embeddings for a single lexicon

and combine them through operations such as attentional weighted sum (Gu et al., 2018a). Without loss

of generality, we can assume there is always a transformation applied to the embedding vectors, and

models that do not use such a transformation can be treated as using the identity transformation.

6.2.4 Desiderata

To efficiently utilize parameters for multilingual NMT, the lexical representation should have two prop-

erties. First, for maximal accuracy, the lexical representation should be able to accurately represent words
in all of the languages under consideration. Second, for better cross-lingual learning and generalization,

such a representation should maximize the sharing of parameters across languages.

These two conflicting objectives are difficult to achieve through existingmethods. Themost common

method of using lookup embeddings can only share information through lexical units that overlap be-

tween the languages. Subword segmentation strikes a middle ground, but has many potential problems

for multilingual NMT, as already discussed in §6.2.2. Although Gu et al. (2018a)’s method of latent encod-

ing increases lexical level parameter sharing, it still relies on subwords as its fundamental units, and thus

inherits the previously stated problems of sub-word segmentation. We also find in experiments in §8.4

that it is actually less robust than simple lookup when large monolingual data to pre-train embeddings

is not available, which is the case for many low-resourced languages.

Next, in §6.3, we propose a novel lexical representation strategy that achieves both desiderata.

6.3 Soft Decoupled Encoding

Given the conflict between sharing lexical features and preserving language specific properties, we pro-

pose SDE, a general framework to represent lexical units for multilingual NMT. Specifically, following

the linguistic concept of the “arbitrariness of the sign” (Chandler, 2007), SDE decomposes the modeling

of each word into two stages: (1) modeling the language-specific spelling of the word, and (2) modeling

the language-agnostic semantics of the word. This decomposition is based on the need for distinguished

treatments between a word’s semantics and its spelling.

Semantic representation is language-agnostic. For example, the English “hello” and the French

“bonjour” deliver the same greetingmessage, which is invariant with respect to the language. SDE shares

such semantic representations among languages by querying a list of shared concepts, which are loosely

related to the linguistic concept of “sememes” (Greimas, 1983). This design is implemented using an
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Method Lex Unit Embedding Encoding

Johnson et al. (2016a) Subword joint-Lookup Identity

Lee et al. (2017) Character joint-Lookup Identity

Gu et al. (2018a) Subword pretrain-Lookup joint-Lookup + Latent

Ataman and Federico (2018) Word character n-gram Identity

SDE Word character n-gram Identity + Latent

Table 6.1: Methods for lexical representation in multilingual NMT. joint-Lookup means the lookup table

is jointly trained with the whole model. pretrain-Lookupmeans the lookup table is trained independently

on monolingual data.

attention mechanism, where the query is the lexical unit representation, and the keys and the values

come from an embedding matrix shared among all languages.

Meanwhile, the word spellings are more sophisticated. Here, we identify two important observa-

tions about word spellings. First, words in related languages can have similar spellings, e.g. the English

word “color” and the French word “coleur”. In order to effectively share parameters among languages,

a word spelling model should utilize this fact. Second, and not contradicting the first point, related

languages can also exhibit consistent spelling shifts. For instance, “Christopher”, a common name in

English, has the spelling “Kryštof” in Czech. This necessitates a learnable rule to convert the spelling

representations between such pairs of words in related languages. To account for both points, we use a

language-specific transformation on top of a first encoding layer based on character n-grams.

6.3.1 Existing Methods

Before we describe our specific architecture in detail (§6.3.2), given these desiderata discussed above,

we summarize the designs of several existing methods for lexical representation and our proposed

SDE framework in Tab. 6.1. Without a preprocessing step of subword segmentation, SDE can capture the

lexical similarities of two related languages through the character n-gram embedding while preserving

the semantic meaning of lexicons through a shared latent embedding.

6.3.2 Details of Soft Decoupled Encoding

Figure 6.2: SDE computes the embedding for the word “puppy”. Both character n-grams embeddings

and latent semantic embeddings are shared among all languages.
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As demonstrated in Fig. 6.2, given a word w in a multilingual corpus from language Li, SDE con-

structs the embedding of w in three phases.

Lexical Embedding. We maintain an embedding matrix Wc ∈ RC×D
, where D is the embedding

dimension and C is the number of n-grams in our vocabulary. Out-of-vocab n-grams are mapped to a

designated token ⟨unk⟩. Wc is shared among all languages. Following Wieting et al. (2016), for each

word w, we first compute the bag of character n-grams of w, denoted by BoN(w), which is a sparse

vector whose coordinates are the appearance counts of each character n-gram in w. For instance, the

characters n-grams with n = 1, 2, 3, 4 of the word “puppy” are shown in Fig. 6.2. We then look up and

add the rows of Wc according to their corresponding counts, and apply a tanh activation function on

the result

c(w) = tanh(BoN(w) ·Wc). (6.1)

Language-specific Transformation. To account for spelling shifts between languages (c.f. §6.3), we

apply an language-specific transformation to normalize away these differences. We use a simple fully-

connected layer for this transformation. In particular, for language Li, we have

ci(w) = tanh(c(w) ·WLi), (6.2)

whereWLi ∈ RD×D
is the transformation matrix specific to language Li.

Latent Semantic Embedding. Finally, to model the shared semantics of words among languages, we

employ an embedding matrixWs ∈ RS×D , where S is the number of core semantic concepts we assume

a language can express. Similar to the lexical embedding matrix Wc, the semantic embedding matrix

Ws is also shared among all languages.

For each word w, its language-specific embedding ci(w) is passed as a query for an attention mech-

anism (Luong et al., 2015) to compute a weighted sum over the latent embeddings

elatent(w) = Softmax(ci(w) ·W⊤
s ) ·Ws. (6.3)

Finally, to ease the optimization of our model, we follow Vaswani et al. (2017) and add the residual

connection from ci(w) into elatent(w), forming the Soft Decoupled Encoding embedding of w

eSDE(w) = elatent(w) + ci(w). (6.4)

6.4 Experiment

We build upon a standard seq2seq NMT model for all experiments. We run each experiment with 3

different random seeds, and conduct significance tests for the results using the paired bootstrap (Clark

et al., 2011a).

6.4.1 Datasets

We use the 58-language-to-English TED corpus for experiments. Following the settings of prior works

onmultilingual NMT (Neubig and Hu, 2018; Qi et al., 2018), we use three low-resource language datasets:

64



LRL Train Dev Test HRL Train

aze 5.94k 671 903 tur 182k

bel 4.51k 248 664 rus 208k

glg 10.0k 682 1007 por 185k

slk 61.5k 2271 2445 ces 103k

Table 6.2: Statistics of our datasets. LRL and HRL mean Low-Resource and High-Resource Language.

Azerbaijani (aze), Belarusian (bel), Galician (glg) to English, and a slightly higher-resource dataset,

namely Slovak (slk) to English. Each low-resource language is paired with a related high-resource lan-

guage: Turkish (tur), Russian (rus), Portuguese (por), and Czech (ces) respectively. Tab. 6.2 shows the

statistics of each dataset.

6.4.2 Baselines

For the baseline, we use the standard lookup embeddings for three granularities of lexical units: (1) word:

with a fixed word vocabulary size of 64,000 for the concatenated bilingual data; (2) sub-joint: with BPE

of 64,000 merge operations on the concatenated bilingual data; and (3) sub-sep: with BPE separately

on both languages, each with 32,000 merge operations, effectively creating a vocabulary of size 64,000.

We use all three settings to compare their performances and to build a competitive baselines. We also

implement the latent embedding method of Gu et al. (2018a). We use 32,000 character n-gram with

n = {1, 2, 3, 4, 5} from each language and a latent embedding size of 10,000.

6.4.3 Results

Table 6.3 presents the results of SDE and of other baselines. For the three baselines using lookup, sub-sep

achieves the best performance for three of the four languages. Sub-joint is worse than sub-sep although

it allows complete sharing of lexical units between languages, probably because sub-joint leads to over-

segmentation for the low-resource language. Our reimplementation of universal encoder (Gu et al.,

2018a) does not perform well either, probably because the monolingual embedding is not trained on

enough data, or the hyperparameters for their method are harder to tune. Meanwhile, SDE outperforms

the best baselines for all four languages, without using subword units or extra monolingual data.

2
For all tasks in our experiments, our reimplementation of Neubig and Hu (2018) achieves similar or slightly higher BLEU

scores than originally reported (aze: 10.9; bel: 15.8; glg: 27.3; slk: 25.5). We suspect the difference is because we use a different

tokenizer from Neubig and Hu (2018). Details are in our open-sourced software.

3
To ensure the fairness of comparison with other methods, we only train the monolingual embedding from the parallel

training data, while Gu et al. (2018a) used extra monolingual data from the Wikipedia dump. We have also tried testing

our reimplementation of their method with trained monolingual embedding from the Wikipedia dump, but achieved similar

performance.
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Lex Unit Model aze bel glg slk

Word Lookup 7.66 13.03 28.65 25.24

Sub-joint Lookup 9.40 11.72 22.67 24.97

Sub-sep Lookup (Neubig and Hu, 2018)
2

10.90 16.17 28.10 28.50

Sub-sep UniEnc (Gu et al., 2018a)
3

4.80 8.13 14.58 12.09

Word SDE 11.82∗ 18.71∗ 30.30∗ 28.77†

Table 6.3: BLEU scores on four language pairs. Statistical significance is indicated with ∗ (p < 0.0001)

and † (p < 0.05), compared with the best baseline.

Model aze bel glg slk

SDE 11.82 18.71 30.30 28.77

-Language Specific Transform 12.89∗ 18.13† 30.07 29.16†

-Latent Semantic Embedding 7.77∗ 15.66∗ 29.25∗ 28.15∗

-Lexical Embedding 4.57∗ 8.03∗ 13.77∗ 7.08∗

Table 6.4: BLEU scores after removing each component from SDE-

com. Statistical significance is indicated with ∗ (p < 0.0001) and

† (p < 0.005), compared with the full model in the first row.
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6.4.4 Ablation Studies

We next ablate various features of SDE by removing each of the three key components, and show the re-

sults in Tab. 7.3. Removing the latent semantic embedding and lexical embedding consistently harms the

performance of the model. The effect of the language specific transformation is smaller and is language

dependent. Removing the language specific transformation does not lead to significant difference for

glg. However, it leads to a 0.8 gain in BLEU for aze, a 0.3 gain for slk, but about a 0.6 decrease for bel. A

further inspection of the four language pairs shows that the language specific transform is more helpful

for training on languages with fewer words of the same spelling. To quantify this, we extract bilingual

dictionaries of the low-resource languages and their paired high-resource languages, and measure the

edit distance between the character strings of the aligned words. We use FastAlign (Dyer et al., 2013)

to extract aligned words between the source language and English from the parallel training data, then

match the English side of two related languages to get their dictionary. Tab. 6.3 shows the percentage of

the word pairs grouped by their edit distance. Among the four languages, bel has the lowest percentage

of words that are exactly the same with their corresponding words in the high-resource language (0 edit

distance), indicating that the language specific transform is most important for divergent languages.

In the published paper corresponding to this chapter (Wang et al., 2019c), there are several additional
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Figure 6.4: Gain in word F-measure of SDE over sub-sep. Left: the target words are bucketed by the

number of subword pieces that their corresponding source words are segmented into. Right: the target
words are bucketed by the edit distance between their source words and the corresponding words in the

high resource language.

experiments on using SDEwith subwords andmodels trained on all eight languages. These will be added

to the final thesis document.

6.5 Analysis

6.5.1 Why does SDE work better?

The SDE framework outperforms the strong sub-sep baseline because it avoids sub-optimal segmentation

of the multilingual data. We further inspect the improvements by calculating the word F-measure of the

translated target words based on two properties of their corresponding source words: 1) the number

of subwords they were split into; 2) the edit distance between their corresponding words in the related

high-resource language. From Fig. 6.4 left, we can see that SDE is better at predicting words that were

segmented into a large number of subwords. Fig. 6.4 right shows that the gain peaks on the second bucket
for 2 languages and the first bucket for bel and slk, which implies that SDE shows more improvements

for words with small but non-zero edit distance from the high-resource language. This is intuitive: words

similar in spelling but with a few different characters can be split into very different subword segments,

while SDE can leverage the lexical similarities of word pairs with slightly different spelling.

6.5.2 Qualitative Analysis

Tab. 6.5 lists a few translations for both sub-sep and SDE.We can see that SDE is better at capturing func-

tional words like “if” and “would”. Moreover, it translates “climatologist” to a related word “weather”,

probably from the prefix “climat” in glg, while sub-sep gives the totally unrelated translation of “college

friend”.
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glg eng sub-sep SDE

Pero non temos a tec-

noloxía para resolver

iso, temos?

But we don’t have a

technology to solve

that, right?

But we don’t have the

technology to solve that

, we have?

But we don’t have the

technology to solve

that, do we?

Se queres saber sobre o

clima, preguntas a un

climatólogo.

If you want to know

about climate, you ask a

climatologist.

If you want to know

about climate, you’re

asking a college friend.

If you want to know

about climate, they ask

for a weather.

Non é dicir que si

tivesemos todo o

diñeiro do mundo, non

o quereríamos facer.

It’s not to say that if

we had all the money in

the world, we wouldn’t

want to do it .

It’s not to say that we

had all the money in the

world, we didn’t want

to do it .

It’s not to say that if

we had all the money in

the world, we wouldn’t

want to do it.

Table 6.5: Examples of glg to eng translations.

6.5.3 Effect of Vocabulary Size

We examine the performance of SDE and the best baseline sub-sep, with a character n-gram vocabulary

and sub-word vocabulary respectively, of size of 8K, 16K, and 32K. We use character n-gram of n =

{1, 2, 3, 4} for 8K and 16K vocabularies, and n = {1, 2, 3, 4, 5} for the 32K vocabulary. Figure 6.5 shows

that for all four languages, SDE outperforms sub-sep with all three vocabulary sizes. This shows that

SDE is also competitive with a relatively small character n-gram vocabulary.
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Figure 6.5: Performance on three different vocabulary size (results of a single random seed).

6.5.4 Example Bilingual Words

Table 6.6 lists some words and their subwords from bel and its related language rus. We can see that

subwords fail to capture all the lexical similarities between these words, and sometimes the word pairs

are segmented into different number of pieces.

6.5.5 Analysis of Attention over Latent Embedding Space

In this section we compare the attention distribution over the latent embedding space of related lan-

guages, with the intuition that words that mean the same thing should have similar attention distri-

butions. We calculate the KL divergence of the attention distribution for word pairs in both the LRL

and HRL. Figure 6.6 shows that the lowest KL divergence is generally on the diagonals representing

words with identical meanings, which indicates that similar words from two related languages tend to

have similar attention over the latent embedding space. Note that this is the case even for words with
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bel rus
eng

word subword word subword

фiнансавыя фiнансавы я финансовых финансовы х financial

стадыён стады ён стадион стадион stadium

розных розны х разных разны х different

паказаць паказа ць показать показать show

Table 6.6: Bilingual word pairs and their subword pieces.
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Figure 6.6: KL divergence of attention over latent embedding space between words from two related

languages. Word pairs that match at the diagonal have similar meanings. Left: bel-rus. Right: glg-por.

different spellings. For example, Figure 6.6 right shows that the KL divergence between the glg word

“músicos” (meaning “musicians”), and the por word of the closet meaning among the words shown here,

“jogadores” (meaning “players”), is the smallest, although their spellings are quite different.

6.5.6 Analysis of Word Vectors from SDE

In this section, we qualitatively examine the location of word vectors at different stages of SDE. We

reduce the word vectors to two dimensions using t-SNE (van der Maaten and Hinton, 2008). In particular,

we focus on two groups of words shown in Table 6.7 from glg-por, where each word from glg is paired

with two words from por, one with the same meaning but different spelling, while the other has similar

spelling but different meaning. Figure 6.7 left shows the embeddings derived from the character n-grams.

At this stage, the word “cando” is closer to “caindo”, which has a different meaning, than “quando”, which

has the same meaning but a slightly more different spelling. The word “etiqueta” lies in the middle of

“rótulo” and “riqueza”. After the whole encoding process, the location of the words are shown in Figure

6.7 right. At the final stage, the word “cando” moves closer to “quando”, which has the same meaning,

than “caindo”, which is more similar in spelling. The word “etiqueta” is also much closer to “rótulo”, the

69



glg eng por eng

cando when quando when

caindo failing down

etiqueta label rótulo label

riqueza wealth

Table 6.7: Words in glg-por that have the same meaning but different spelling, or similar spelling but

different meaning.
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Figure 6.7: T-SNE visualizations of the embeddings of words in Table 6.7 encoded after the character

n-gram embedding stage (Left), or after the full process of SDE(Right). Words of the same color have

similar meanings, and the language code of the word is placed in the parenthesis. It can be seen that

the character embedding stage is more sensitive to lexical similarity, while the full SDEmodel is more

sensitive to similarity in meaning.
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word with similar meaning, and grows further apart from “riqueza”.

6.6 Related Works

In multilingual NMT, several approaches have been proposed to enhance parameter sharing of lexical

representations. Zoph et al. (2016) randomly assigns embedding of a pretrained NMT model to the

vocabulary of the language to adapt, which shows improvements over retraining the new embeddings

from scratch. Nguyen and Chiang (2018) propose tomatch the embedding of the word piece that overlaps

with the vocabulary of the new language. When training directly on concatenated data, it is also common

to have a shared vocabulary of multilingual data (Neubig and Hu, 2018; Qi et al., 2018). Gu et al. (2018a)

propose to enhance parameter sharing in lexical representation by a latent embedding space shared by

all languages.

Several prior works have utilized character level embeddings for machine translation (Cherry et al.,

2018a; Lee et al., 2017; Ataman and Federico, 2018), language modeling (Kim et al., 2016; Józefowicz

et al., 2016), and semantic parsing (Yih et al., 2014). Specifically for NMT, fully character-level NMT can

effectively reduce the vocabulary size while showing improvements for mulitlingual NMT (Lee et al.,

2017), but it often requires much longer to train (Cherry et al., 2018a). Ataman and Federico (2018) shows

that character n-gram encoding of words can improve over BPE for morphologically rich languages.

6.7 Conclusion

Existing methods of lexical representation for multilingual NMT hinder parameter sharing between

words that share similar surface forms and/or semantic meanings. We show that SDE can intelligently

leverage the word similarities between two related languages by softly decoupling the lexical and se-

mantic representations of the words. Our method, used without any subword segmentation, shows

significant improvements over the strong multilingual NMT baseline on all languages tested.
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Chapter 7

Multi-view Subword Regularization

While designing better multilingual data representation models is a promising direction, modifying the

architecture of pretrained models requires large amounts of computational resources. Similar to mul-

tilingual NMT, multilingual pretrained representations also rely on subword segmentation algorithms

to create a shared multilingual vocabulary, which often lead to sub-optimal segmentation for languages

with limited amounts of data. In this chapter, we want to tackle this problem for multilingual pretrained

models at fine-tuning time.

7.1 Introduction

Multilingual pre-trained representations (Devlin et al., 2019; Huang et al., 2019; Conneau and Lample,

2019; Conneau et al., 2019) are now an essential component of state-of-the-art methods for cross-lingual

transfer (Wu and Dredze, 2019; Pires et al., 2019). These methods pretrain an encoder by learning in an

unsupervised way from raw textual data in up to hundreds of languages which can then be fine-tuned

on annotated data of a downstream task in a high-resource language, often English, and transferred to

another language. In order to encode hundreds of languages with diverse vocabulary, it is standard for

suchmultilingualmodels to employ a shared subword vocabulary jointly learned on themultilingual data

using heuristic word segmentation methods based on byte-pair-encoding (BPE; Sennrich et al., 2016b)

or unigram language models (Kudo and Richardson, 2018) (details in §7.2). However, subword-based

preprocessing can lead to sub-optimal segmentation that is inconsistent across languages, harming cross-

lingual transfer performance, particularly on under-represented languages. As one example, consider

the segmentation of the word “excitement” in different languages in Tab. 7.1. The English word is not

segmented, but its translations in the other languages, including the relatively high-resourced French and

German, are segmented into multiple subwords. Since each subword is mapped to a unique embedding

vector, the segmentation discrepancy—which generally does not agree with a language’s morphology—

could map words from different languages to very distant representations, hurting cross-lingual transfer.

In fact, previous work (Conneau et al., 2019; Artetxe et al., 2020) has shown that heuristic fixes such as

increasing the subword vocabulary capacity and up-sampling low-resource languages during learning
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en excitement fr excita/tion de Auf/re/gung

pt excita/ção el εν/ϑ/ουσι/ασµός ru волн/ение

Table 7.1: XLM-R segmentation of “excitement” in different languages. The English word is not seg-

mented while the same word in other languages is over-segmented. A better segmentation would allow

the model to match the verb stem and derivational affix across languages.

of the subword segmentation can lead to significant performance improvements.

Despite this, there is not much work studying or improving subword segmentation methods for

cross-lingual transfer. Bostrom and Durrett (2020) empirically compare several popular word segmenta-

tion algorithms for pretrained language models of a single language. Several works propose to use differ-

ent representation granularities, such as phrase-level segmentation (Zhang and Li, 2020) or character-

aware representations (Ma et al., 2020) for pretrained language models of a single high-resource lan-

guage, such as English or Chinese only. However, it is not a foregone conclusion that methods designed

and tested on monolingual models will be immediately applicable to multilingual representations. Fur-

thermore, they add significant computation cost to the pretraining stage, which is especially problematic

for multilingual pretraining on hundreds of languages. The problem of sub-optimal subword segmenta-

tion has drawn more attention in the context of neural machine translation (NMT). Specifically, subword
regularization methods have been proposed to improve the NMT model of a single language pair by

randomly sampling different segmentations of the sentences during training (Kudo, 2018b; Provilkov

et al., 2020). However, these methods have not been applied to multilingual NMT or pretrained language

models and it is similarly not clear if they are useful for cross-lingual transfer.

In this chapter, wemake two contributions to close this gap. First, we perform the first (to our knowl-

edge) empirical examination of subword regularization methods on a variety of cross-lingual transfer

tasks from the XTREME benchmark (Hu et al., 2020). We demonstrate that despite its simplicity, this

method is highly effective, providing consistent improvements across a wide variety of languages and

tasks for both multilingual BERT (mBERT; Devlin et al., 2019) and XLM-R (Conneau et al., 2019) mod-

els. Analysis of the results shows that this method is particularly effective for languages with non-Latin

scripts despite only being applied during English fine-tuning.

Further, we posit that naively applying probabilistic segmentation only during fine-tuning may be

sub-optimal as it creates a discrepancy between the segmentations during the pretraining and fine-tuning

stages. To address this problem, we propose Multi-view Subword Regularization (MVR; Fig. 7.1), a novel

method—inspired by the usage of consistency regularization in semi-supervised learningmethods (Clark

et al., 2018; Xie et al., 2018)—which utilizes both the standard and probabilistically segmented inputs,

enforcing the model’s predictions to be consistent across the two views. Such consistency regularization

further improves accuracy, with MVR finally demonstrating consistent gains of up to 2.5 points over

the standard practice across all models and tasks. We analyze the sources of the improvement from

consistency regularization and find that it can be attributed to both label smoothing and self-ensembling.

74



pθ(y | ̂x )

pθ(y |x′�)

Final  
Loss

Cross Entropy  
Loss

Prediction 
Consistencyx*

y*

y*

BPE

BPE-dropout

̂x

x′�

Figure 7.1: Fine-tuning models using MVR on data (x∗, y∗)

7.2 Background: Subword Segmentation

Here, we first discuss two common deterministic segmentation methods based on byte pair encoding

(BPE) and unigram language models (ULM), discuss their probabilistic variants, and explain how to

incorporate them in training.

7.2.1 Deterministic Segmentation

The most widely used subword segmentation methods first estimate a segmentation model from the

training corpus in an unsupervised fashion. They then produce a segmentation x̂ of the input x∗ under

the estimated segmentation model P (x):

x̂ = argmax
x∈S(x∗)

P (x)

Here S(x∗) is the set of all possible segmentations, and P (x) is the likelihood of a given segmentation.

Note that x̂ is deterministically selected for each input x∗.

Byte-pair encoding (BPE) The popular BPE algorithm (Sennrich et al., 2016b) initializes the vocab-

ulary with individual characters and initially represents each word as a sequence of characters. It then

counts the most frequent character token bigrams in the data, merges them into a new token, and adds

the new token to the vocabulary. This process is done iteratively until a predefined vocabulary size is

reached.

To segment a word, BPE simply splits the word into character tokens, and iteratively merges adjacent

tokens with the highest priority until no merge operation is possible. That is, for an input x∗, it assigns

segmentation probability P (x̂) = 1 for the sequence x̂ obtained from the greedy merge operations, and

assigns other possible segmentations a probability of 0.

Notably, a variant of this method (Schuster and Nakajima, 2012) is used for the mBERT embedding

model (Devlin et al., 2019).

Unigram language model (ULM) The ULM method (Kudo and Richardson, 2018) starts from a rea-

sonably large seed vocabulary, which is iteratively pruned to maximize the training corpus likelihood

under a unigram language model of the subwords until the desired vocabulary size is reached.

75



During segmentation, ULM decodes the most likely segmentation of a sentence under the estimated

languagemodel using the Viterbi algorithm. This method is used in the XLM-R cross-lingual embeddings

(Conneau et al., 2019).

7.2.2 Probabilistic Segmentation

As explained in §7.1, one drawback of both word segmentation algorithms is that they produce a de-

terministic segmentation for each sentence, even though multiple segmentations are possible given the

same vocabulary. In contrast, Kudo (2018b) and Provilkov et al. (2020) have proposedmethods that enable

the model to generate segmentations probabilistically. Instead of selecting the best subword sequence

for input x∗, these method stochastically sample a segmentation x′ as follows:

x′ ∼ P ′(x) where P ′(x) ∝
{
P (x) if x ∈ S(x∗)
0 otherwise

Here we briefly introduce these two methods.

BPE-dropout This method is used together with the BPE algorithm, randomly dropping merge oper-

ations with a given probability p while segmenting the input data (Provilkov et al., 2020).

ULM-sample As the ULM algorithm relies on a language model to score segmentation candidates

for picking the most likely segmentation, Kudo (2018b) propose to sample from these segmentation

candidates based on their language model scores.

7.2.3 Subword Regularization (SR)

Subword regularization (Kudo, 2018b) is a method that incorporates probabilistic segmentation at train-

ing time to improve the robustness of models to different segmentations. The idea is conceptually simple:

at training time sample different segmentations x′ for each input sentence x∗. Previous works (Kudo,

2018b; Provilkov et al., 2020) have demonstrated that subword regularization using both BPE-dropout

and ULM-sampling are effective at improvingmachine translation accuracy, particularly in cross-domain

transfer settings where the model is tested on a different domain than the one on which it is trained.

7.3 Subword Regularization for Cross-lingual Transfer

While sub-optimal word segmentation is a challenge in monolingual models, it is an even bigger chal-

lenge for multilingual pretrained models. These models train a shared subword segmentation model

jointly on data from many languages, but the segmentation can nonetheless be different across lan-

guages, stemming from two main issues. First, the granularity of segmentation differs among languages,

where the segmentation model tends to over-segment low-resource languages that do not have enough

representation in the joint training data (Ács, 2019). Fig. 7.2 shows the distribution of words from lan-
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Figure 7.2: Percentage of words with different number of segments from different languages.

guages from different language families based on the number of subwords they are split into.
1
We can see

that the majority of English words are not segmented at all, while many languages only have less than

half of the words unsegmented. Notably, even though Burmese (my) is a language with little inflectional

morphology, almost a quarter of the words are segmented into more than nine subwords. Second, the

segmentation might still be inconsistent between different languages even if the granularity is similar, as

explained in Tab. 7.1. For example, neither the English word “excitement” nor the same word in French

“excita/tion” are overly segmented, but segmenting the English word into “excite/ment” would allow the

model to learn a better cross-lingual alignment.

Despite these issues, few methods have tried to address this subword segmentation problem for

multilingual pretrained models. Chau et al. (2020) propose to adapt a pretrained multilingual model to

a new language by augmenting the vocabulary with a new subword vocabulary learned on the target

language, but this method might not help for languages other than the target language it adapts to.

Chung et al. (2020) propose to separately construct a subword segmentation model for each cluster of

related languages for pretraining themultilingual representations. However, directlymodifying theword

segmentation requires retraining large pretrained models, which is computationally prohibitive in most

cases.

In this paper, we instead propose a more efficient approach of using probabilistic segmentation dur-

ing fine-tuning on labeled data of a downstream task. As mismatch in segmentation is one of the factors

harming cross-lingual transfer, we expect a model that becomes more robust to different varieties of seg-

mentation in one language will be more accommodating to differing segmentations in other languages

during inference. Despite the simplicity of this method it is, as far as we are aware, unattested in the

literature, and we verify in §7.5.3 that it significantly improves the cross-lingual transfer performance of

multilingual pretrained models.

1
We use Pan et al. (2017a)’s named entity recognition test data with mBERT’s tokenizer.
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7.4 Multi-view Subword Regularization

Previous attempts at SR have mainly applied it to models trained from scratch for tasks such as MT. How-

ever, the situation is somewhat different when fine-tuning pre-trained representations, in which case the

original pre-trained models are generally not trained on sampled segmentations. This discrepancy be-

tween the segmentation of the English labeled data and the segmentation of English monolingual data

during pretraining might hurt the ability of the model to take full advantage of the parameters learned

during the pretraining stage. To reduce this pretraining–fine-tuning discrepancy, we propose Multi-

view Subword Regularization (MVR), a method for learning from multiple segmented versions of the

same data and enforcing the consistency of predictions over different segmentations.

Given the input x̂i tokenized with the deterministic segmentation such as BPE, and x′i, the same

input tokenized with the corresponding probabilistic segmentation algorithm such as BPE-dropout, the

objective for MVR has three components

J(θ) =
n∑
i=1

[
− 1

2
log pθ(yi|x̂i)︸ ︷︷ ︸
Det. Seg CrossEnt

−1

2
log pθ(yi|x′i)︸ ︷︷ ︸
Prob. Seg CrossEnt

+λD(pθ(yi|x̂i) || pθ(yi|x′i))︸ ︷︷ ︸
Consistency loss

]
(7.1)

1. A cross-entropy loss using the standard deterministic segmentation. This loss acts on data whose

segmentation is consistent with the segmentation seen during pretraining. It thus maximizes the

benefit of pretrained representations.

2. A cross entropy loss using probabilistic segmentation. It allows the model to learn from different

possible segmentations of the same input.

3. A distance termD(·||·) between the model prediction distributions over the two different versions

of the input. We use KL divergence as the distance metric and a hyperparameter λ to balance

the supervised cross-entropy losses and the consistency loss. Minimizing the distance between

the two distributions enforces the model to make consistent predictions under different input

segmentations, making it robust to sub-optimal segmentation of multilingual data.
2

Flattening the prediction The benefit of consistency regularization might be limited if the model

prediction becomes overly confident on certain classes, especially when the number of output classes is

large. Inspired by a similar technique in knowledge distillation (Hinton et al., 2014), we can use a softmax

temperature τ to flatten the prediction distribution when calculating the consistency loss. Specifically,

the distance loss between two prediction distributions in Eq. 7.1 can bewritten asD(pflatθ (yi|x̂i)||pθ(yi|x′i)),
where

pflatθ (yi|x̂i) =
exp(zy)/τ∑
y′ exp(zy′)/τ

(7.2)

and zy is the logit for output label yi. Normally τ is set to 1, and a higher τ makes the probability

distribution more evenly distributed over all classes. In our experiments, we find that τ = 1 works well

for most of the tasks and τ = 2 works slightly better for tasks that have larger output label spaces.

2
As in semi-supervised learning Clark et al. (2018), we expect our method to also be effective when applied to unlabeled

data, e.g. using target language adaptation Pfeiffer et al. (2020b), which we leave for future work.
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Efficiency At inference time, we simply use the model prediction based on the input tokenized by

deterministic segmentation only. Therefore, our method does not add additional decoding latency.

MVR needs about twice the fine-tuning cost compared to the baseline. However, compared to pretraining

and inference usage of a model, fine-tuning is generally the least expensive component.

7.5 Experiments

7.5.1 Training and evaluation

We evaluate the multilingual representations using tasks from the XTREME benchmark (Hu et al., 2020),

focusing on the zero-shot cross-lingual transfer with English as the source language. We consider sen-

tence classification tasks including XNLI (Conneau et al., 2018) and PAWS-X (Yang et al., 2019), a struc-

tured prediction task of multilingual NER (Pan et al., 2017a), and question-answering tasks including

XQuAD (Artetxe et al., 2020) and MLQA (Lewis et al., 2020b).

7.5.2 Experiment setup

We evaluate on both the mBERTmodel which utilizes BPE to tokenize the inputs, and the XLM-Rmodels

which uses ULM segmentation. To replicate the baseline, we follow the hyperparameters provided in

the XTREME codebase
3
. Models are fine-tuned on English training data and zero-shot transferred to

other languages. We run each experiment with 5 random seeds and record the average results and the

standard deviation.

SR We use BPE-dropout (Provilkov et al., 2020) for mBERT and ULM-sample (Kudo, 2018b) for XLM-R

models to do probabilistic segmentation of the English labeled data. BPE-dropout sets a dropout prob-

ability of p ∈ [0, 1] for the merge operations, where a higher p corresponds to stronger regularization.

ULM-sample utilizes a sampling temperature α ∈ [0, 1] to scale the scores for segmentation candidates,

and a lower α leads to stronger regularization. We select the p and α values based on the model perfor-

mance on the English dev set of the NER task and simply use the same values across all other tasks. We

set p = 0.1 for BPE-dropout and α = 0.6 for ULM-sample.

MVR We select the hyperparameters for MVR using the English dev set performance on the NER task.

MVR works slightly better by using stronger regularization than SR, likely because using inputs deter-

ministically segmented by the standard algorithm can balance the negative impact of bad tokenization

by sampling from a more diverse set of segmentation candidates. We use λ = 0.2, p = 0.2 for mBERT

and λ = 0.6, α = 0.2 for XLM-R. We use prediction temperature τ = 2 for the question-answering

tasks XQuAD and MLQA for the XLMR mdoels, and simply use τ = 1 for all other tasks.

3https://github.com/google-research/xtreme
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7.5.3 Main results

Model Method Avg. XNLI PAWS-X NER XQuAD MLQA

Metrics Acc. Acc. F1 F1/EM F1/EM

mBERT

Hu et al. (2020) 67.1 65.4 81.9 62.2 64.5 / 49.4 61.4 / 44.2

Baseline (ours) 67.3 66.5±0.4 83.1±0.4 61.5±0.7 64.7±0.2 / 49.8±0.4 60.9±0.4 / 43.8±0.5

SR 68.0 66.4±0.2 85.0±0.3 62.2±0.6 64.7±0.3 / 50.0±0.3 61.5±0.3 / 44.4±0.3

MVR 68.8 67.2±0.3 85.6±0.3 62.7±0.4 66.3±0.2 / 51.7±0.2 62.2±0.2 / 45.3±0.1

XLM-R base

Baseline (ours) 71.1 74.4±0.2 84.3±0.7 60.6±0.6 70.9±0.3 / 54.9±0.5 65.5±0.3 / 47.7±0.2

SR 71.4 74.4±0.7 85.5±0.5 61.0±0.6 70.9±0.3 / 55.7±0.2 65.4±0.1 / 47.5±0.1

MVR 72.3 75.3±0.3 86.3±0.6 61.8±0.3 71.6±0.5 / 56.5±0.4 66.4±0.5 / 48.5±0.4

XLM-R large

Hu et al. (2020) 75.8 79.2 86.4 65.4 76.6 / 60.8 71.6 / 53.2

Baseline (ours) 76.1 80.3±0.4 86.9±0.5 63.6±0.3 77.0±0.2 / 61.7±0.3 72.8±0.2 / 54.5±0.1
SR 76.5 80.1±0.5 87.3±0.4 65.5±0.6 77.2±0.2 / 62.0±0.2 72.5±0.1 / 54.0±0.2

MVR 77.2 81.3±0.1 88.2±0.2 66.0±0.7 77.6±0.2 / 62.5±0.4 72.8±0.2 / 54.5±0.1

Table 7.2: Average performance and standard deviation of different methods for mBERT, XLM-R base

and XLM-R large models. SR is especially effective for mBERT. MVR leads to significant further improve-

ments across all models and tasks.

We compare performance of SR, MVR and the baseline for all models in Tab. 7.2, focusing on the

average performance on all languages for each task. Our baseline numbers match or exceed the bench-

mark results in Hu et al. (2020) for both mBERT and XLM-R large (Hu et al. (2020) do not include results

for XLM-R base) on almost all tasks.

Applying SR on English significantly improves other languages SR is surprisingly effective for

mBERT—it is comparable to the baseline on XNLI and significantly improves over the baseline for the

rest of the four tasks. However, the gains are less consistent for XLM-R models. For both XLM-R base

and large, SR leads to improvements on the NER task and the PAWS-X classification task, but is mostly

comparable to the baseline for the rest of the three tasks. SR performs better for mBERT likely because

the vocabulary of mBERT is more imbalanced than that of XLM-R; it thus benefits more from the regu-

larization methods. mBERT relies on BPE, which could be worse than ULM at tokenizing subwords into

morphologically meaningful units (Bostrom and Durrett, 2020). Furthermore, mBERT has only 100K

words in the vocabulary while XLM-R has a much larger vocabulary of 250K.

MVR consistently improves over SR For mBERT, it leads to improvements of over 1 to 2 points

over the baseline for all tasks. It is also very effective for the XLM-R models. For both the XLM-R base

and the stronger XLM-R large models, MVR improves over 1 point over the baseline on the NER task

and the two classification tasks. On the question-answering tasks, MVR delivers strong improvements

for the XLM-R base model while the improvements on the XLM-R large model is slightly smaller. It has
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Method Avg. XNLI PAWS-X NER XQuAD MLQA

Metrics Acc. Acc. F1 F1/EM F1/EM

MVR 68.8 67.2±0.3 85.6±0.3 62.7±0.4 66.3±0.2 / 51.7±0.2 62.2±0.2 / 45.3±0.1

– Det. Seg CrossEnt 52.8 66.7±0.5 85.5±0.2 62.4±0.7 25.0±8.2 / 15.6±6.7 24.3±8.6 / 13.1±6.4

– Prob. Seg CrossEnt 67.7 66.7±0.6 85.0±0.3 62.3±0.7 64.0±0.3 / 48.7±0.4 60.3±0.4 / 43.1±0.3

– consistency loss 68.2 66.5±0.7 85.3±0.3 62.3±0.6 65.2±0.2 / 50.2±0.4 61.7±0.1 / 44.5±0.2

Table 7.3: Effect of removing each loss component on mBERT.

around 0.5 point improvement on XQuAD and has the same performance on MLQA. MVR leads to more

improvements on XQuAD, probably because it has a more diverse set of languages that potentially have

more sub-optimal subword segmentation. The consistent gains on both mBERT and XLM-R show that

MVR is a general and flexible method for a variety of pretrained multilingual models based on different

segmentation methods.

7.5.4 Effect of each loss component

In this section, we verify the effectiveness of the three loss components inMVR by removing each of them

from the objective. The ablation results on mBERT for all tasks are listed in Tab. 7.3. Removing any of the

three loss components hurts the model performance by about the same amount for most of the tasks.

For the question answering tasks, however, removing the cross-entropy loss on the deterministically

segmented inputs reduces themodel performance by almost half. This is likely because under this setting,

the model only learns to locate exact spans for inputs tokenized by BPE-dropout, while we use the

standard BPE to segment the inputs at test time.

7.6 Analysis

In this section, we perform several analyses to better understand the behavior and root causes of the

accuracy gains realized by our method. The paper corresponding to this chapter also includes some

additional analysis of the improvements over languages with Latin vs. non-Latin scripts, which will be

included in the final thesis document.

7.6.1 Effect on over-segmentation

In this section, we analyze the effect of our methods on languages and words with different subword

segmentation granularity. We focus on the NER task because it contains a diverse set of over 40 lan-

guages. We calculate the average number of subword pieces in a language, and plot the gains over the

baseline for these languages with respect to their average subwords in Fig. 7.3. To visualize the relation-

ship between the two values, we also fit a trend line and record its coefficient for each method in the

legend. We consider three methods for mBERT: SR, MVR without consistency loss, and the full MVR.
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Figure 7.4: XLM-R large gains over the NER

baseline for words with increasing number of

subword pieces.

The trend line for MVR has a positive coefficient, indicating that it improves more on languages that are

more overly segmented. Removing the consistency loss tends to hurt more for these languages. SR, on

the other hand, does not tend to favor languages with more subword segmentation.

Next, we bucket all the words together based on how many subwords they are segmented into, and

compare the performance of our methods for each word bucket. We use the XLM-R model and plot the

results in Fig. 7.4. SR brings slightly more improvements on average for words that are split into 4 or

more pieces for the large model. MVR outperforms SR for all categories, especially for difficult words

that are segmented into 5 or more subwords.

Gains on Latin vs. non-Latin script In addition, it is notable that we fine-tune the model using

labeled data from English, a Latin script language, while the non-Latin scripted languages might have

larger segmentation and vocabulary discrepancies from English. We thus also plot the score improve-

ments of both SR and MVR over the baseline for languages with and without Latin script in Fig. 7.5.

We use a lighter shade to represent improvements for Latin-script languages and a darker shade for

languages with non-Latin scripts. Across all the tasks, both SR and MVR generally have larger improve-

ments on languages with non-Latin script. MVR, which is represented by blue shades, generally outper-

forms SR for both the Latin and non-Latin scripted languages across all models. While SR sometimes

underperforms the baseline on Latin scripted languages, especially for XLM-R models, MVR delivers

consistent improvements over the baseline across both types of languages.

7.6.2 Effect of consistency loss

One of the novel components of MVR is the consistency loss between two different segmentations of the

input. In this section we analyze two hypotheses about the source of benefit provided thereby.
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Figure 7.7: Increase in distance to the ensem-

ble distribution by removing the consistency

loss on the NER task. The languages are la-
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loss shifts model prediction closer to the en-

semble distribution.

Label smoothing The first hypothesis is that the consistency loss may be able to mitigate over-

confident predictions by calibrating the two output distributions against each other. This effect is similar

to label smoothing (Szegedy et al., 2015; Yuan et al., 2020), which softens the one-hot target label by

adding a loss of uniform distribution over all class labels and has proven helpful across a wide variety

of models. To measure this, we plot the F1 improvement on the NER task for examples categorized by

increasing predictive entropy in Fig. 7.6. MVR leads to more improvements on examples with higher

entropy, or those that the model is more uncertain about, indicating that MVR is indeed helping the

model improve on examples where it is not confident.
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Figure 7.8: Gains of MVR and SR for English. While SR harms the performance on English, MVR gener-

ally improves it.

Ensemble effect The second hypothesis is that the consistency loss could regularize the model to

be closer to the ensemble of models trained on standard deterministically segmented inputs and prob-

abilistically segmented inputs. To verify this hypothesis, we first calculate the ensembled prediction

probability of the baseline and the SR models for each language. Then we compare the KL divergence

between this ensemble distribution and MVR with or without the consistency loss. In Fig. 7.7, we plot

this KL divergence difference between the MVR without consistency loss and the full MVR for each

language in NER. For most of the languages, the full MVR has lower KL divergence with the ensemble

distribution, which indicates that the consistency loss trains the model to be closer to the ensemble of

two inputs.

7.6.3 MVR also improves English

Although SR improves the model performance averaged over all languages, surprisingly it can hurt

the performance on English, the language we use for fine-tuning. Fig. 7.8 shows the improvement on

English over the baseline for both SR and MVR, and notably English performance decreases for all tasks

on mBERT. MVR, on the other hand, generally brings improvements for English across both mBERT and

XLM-R largemodels. This is likely becauseMVR also utilizes English inputs with standard segmentation,

the method used at pretraining time, which allows it to take full advantage of the information encoded

during pretraining.

7.7 Related work

Several works propose to optimize subword-sensitive word encoding methods for pretrained language

models. Ma et al. (2020) uses convolutional neural networks (Kim, 2014) on characters to calculate word

representations. Zhang and Li (2020) propose to add phrases into the vocabulary for Chinese pretrained

language models. However, they focus on improving the vocabulary of pretrained representations of a
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single language, and they requiremodification to themodel pretraining stage. Chung et al. (2020) propose

to cluster related languages together and run subword vocabulary construction on each language cluster

when constructing vocabularies for mBERT. Their method is also applied at the pretraining stage and

could be combined with our method for potential additional improvements.

Our method is also related to prior work that optimize word representations for NMT and lan-

guage modeling. Character level embeddings have been utilized instead of subword segmentation for

NMT (Cherry et al., 2018a; Lee et al., 2017; Ataman and Federico, 2018) and language modeling (Kim

et al., 2016; Józefowicz et al., 2016). Wang et al. (2019b) propose a multilingual word embedding method

for NMT that relies on character n-gram embedding and a latent semantic embedding shared between

different languages. Ataman and Federico (2018) show that character n-gram based embedding per-

forms better than BPE for morphologically rich languages. He et al. (2020) propose to learn the optimal

segmentation given a subword vocabulary for NMT.

Our method is inspired by semi-supervised learning methods that enforce model consistency on un-

labeled data. Several self-training methods utilize unlabeled examples to minimize the distance between

the model predictions based on the unlabeled example and a noised version of the same input (Miyato

et al., 2017b,a; Xu and Yang, 2017; Clark et al., 2018; Xie et al., 2018). Xu and Yang (2017) use knowledge

distillation on unlabeled data to adapt models to a new language. Clark et al. (2018) propose to mask

out different parts of the unlabeled input and encourage the model to make consistent prediction given

these different inputs. These methods all focus on semi-supervised learning, while our method regulates

model consistency to mitigate the subword segmentation discrepancy between different languages.

7.8 Conclusion

The results in this chapter demonstrate that standard deterministic subword segmentation is sub-optimal

for multilingual pretrained representations. Even incorporating simple methods for subword regulariza-

tion such as BPE-dropout at fine-tuning can improve the cross-lingual transfer of pretrained models, and

our proposed Multi-view Subword Regularization method further shows consistent and strong improve-

ments over a variety of tasks for models built upon different subword segmentation algorithms. Going

forward, we suggest that some variety of subword regularization, MVR or otherwise, should be a stan-

dard component of the fine-tuning of pre-trained representations that use subword segmentation.
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Part III

Adaptation to language variations
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Chapter 8

Efficient Adapter Ensembling for
Low-resource Language Varieties

Training a big model using multilingual training is computationally expensive. Therefore, it is important

to investigate how we can adapt pretrained multilingual models efficiently to individual language vari-

eties while minimizing the additional parameters required. Adapters are light-weight modules that allow

parameter-efficient fine-tuning of pretrained models. Specialized language and task adapters have re-

cently been proposed to facilitate cross-lingual transfer of multilingual pretrained models (Pfeiffer et al.,

2020b). In this chapter, we aim to improve the robustness of language adapters to uncovered languages

without training new adapters.

8.1 Introduction

Massively multilingual pretrained models (Devlin et al., 2019; Huang et al., 2019; Conneau and Lample,

2019; Conneau et al., 2019) combined with cross-lingual transfer now define the state of the art on a va-

riety of NLP tasks (Hu et al., 2020). Within this paradigm, multilingual pretrained models are fine-tuned

on annotated data of a task in a high-resource language, and transferred to other languages. Several re-

cent works propose parameter-efficient fine-tuning methods that insert small adapter modules between

the layers of pretrained models (Rebuffi et al., 2017; Houlsby et al., 2019). In this line of work, the pre-

trained model is usually frozen while only the adapters are fine-tuned for a downstream task, which is

conducive to both improving the model’s learning ability and compactness with respect to storage on

disk or in memory. The adapters can be applied to the cross-lingual transfer setting by training separate

language and task adapters Pfeiffer et al. (2020b); Üstün et al. (2020). Specifically, Pfeiffer et al. (2020b)

propose to perform zero-shot transfer by first training language-level adapters on monolingual data in

different languages and then a task adapter on annotated data in the source language.

One drawback of this framework is that a separate language adapter is required for each target

language, which is problematic in cases where the data to train these adapters cannot be easily obtained,

such as for languages with diverse regional or demographic variations. In fact, certain language varieties
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Figure 8.1: Comparison of the standard cross-lingual adapter and our method of entropy minimized

ensembling of adapters (EMEA), which combines multiple language adapters to improve robustness to

new language varieties at test time.

are not included in the standard language identification tools, which makes it challenging to reliably

obtain even unlabeled data (Salameh et al., 2018; Caswell et al., 2020a; Demszky et al., 2021). To give

just one example, the Nordic languages and dialects form a dialect continuum where the total number

of language varieties is difficult to estimate, and language varieties constantly emerge in culturally and

linguistically diverse areas (Svendsen and Røyneland, 2008; Røyneland and Jensen, 2020). Although

highly related, these language varieties have many systematic differences, which need to be addressed

by NLP systems that equitably serve all speakers (Kumar et al., 2021). One potential mitigation strategy

is directly using an adapter trained on another similar language variety, but we find this sub-optimal in

experiments (§ 8.4).

Instead, we propose two methods to combine existing language adapters to adapt the model to new
language varieties at test time without any training data. First, we find that simply ensembling multiple

related language adapters can significantly improve the fine-tuned model, compared with using individ-

ual language adapters. Second, we propose Entropy Minimized Ensemble of Adapters (EMEA; Fig. 9.3),

which adapts the ensemble weight of the language adapters for each test instance by minimizing the en-

sembledmodel’s prediction uncertainty. Our experiments show that EMEA further improves over vanilla

ensembling for three groups of uncovered language varieties on both the named entity recognition and

part-of-speech tagging tasks.

8.2 Adapters for Cross-lingual Transfer

To facilitate our discussion, we briefly summarize the MAD-X framework (Pfeiffer et al., 2020b) for zero-

shot cross-lingual transfer and identify its shortcomings. The goal of MAD-X is to fine-tune a multilin-

gual pretrained modelM tom downstream tasks T1, T2, ..., Tm, each of which could be in n languages

L1, L2, ..., Ln. To this end, MAD-X relies on language and task adapters, which are light-weight func-

tions inserted in the Transformer layers inM—usually a feed-forward down-projection followed by an

up-projection. Specifically, let h be the output of an intermediate layer inM, then Lj(h) is the transfor-
mation that projects h into the embedding space for language Lj , and Ti(Lj(h)) is the transformation
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that projects Lj(h) into the embedding space for task Ti.

MAD-X trains the adapters Ti(·) and Lj(·) in two steps. First, for each language Lj , its adapter Lj
is inserted intoM to replace the output of each layer h with Lj(h). The resulting model, which we

denote as Lj ◦M, is trained on unlabeled data in Lj using an unsupervised objective such as masked

language modeling (MLM; Devlin et al., 2019). Second, for each task Ti, its adapter Ti is inserted on top

of a src language adapter Lsrc. The resulting model Ti ◦Lsrc ◦M is trained on the downstream task Ti in

language Lsrc. After these two steps, Ti ◦Lj ◦M can be used to perform zero-shot cross-lingual transfer

for any task Ti and language Lj .

Shortcomings This approach requires a separate adapter for each language one wishes to support.

The online database AdapterHub
1
aims to improve the efficiency and reuse of trained language and task

adapters (Pfeiffer et al., 2020a) but currently supports only about 50 languages, and hencemost languages

are not covered. More importantly, as mentioned in the introduction, certain languages have diverse

regional varieties and difficulty of reliably obtaining data for them makes adapter-based approaches

especially brittle in these cases. In the following § 8.3, we propose strategies to improve the robustness

of language adapters to uncovered languages without training new adapters.

8.3 Generalizing Language Adapters to Related Languages

We consider the setting where we have a multilingual pretrained modelM as well as the pretrained

task adapters T1, T2, ..., Tm and language adapters L1,L2, ...,Ln. We want to useM and the existing

adapters to support a new language Lnew, which is not in {L1, L2, ..., Ln} on a given task T without

training a new adapter for Lnew.
Related LanguageAdaptersOne potential solution is to find themost related languageLrel ∈ {L1, L2, ..., Ln}
and then use T ◦ Lrel ◦M to do inference in Lnew. However, this has two disadvantages. First, the task

adapter T is only trained in the setting of T ◦ Lsrc ◦M, so it might not generalize well to the test time

setting of T ◦ Lrel ◦M (as shown in § 8.4.1). Second, while the pretrained modelM may be relatively

robust against distribution shifts (Hendrycks et al., 2020), the specialized language adapters might make

the model brittle to language variations because they are trained for specific languages. Our experiments

in § 8.4.1 show that this solution indeed leads to poor performance.

Adapter Ensembling As a first solution to this problem, we propose an extremely simple strategy of

averaging the transformed outputs of multiple language adapters. Specifically, we use both the source

language adapter Lsrc and adapters from related languages with similar linguistic properties to the new

language. Let R be the set of the source and related language adapters. To do inference on a task T for

the new language Lnew, we transform the output h of each layer inM with the language adapters as

Lavg(h) = 1
R

∑R
i=1 Li(h).

1https://adapterhub.ml/
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Algorithm 4: Training with EMEA

Input : Uniform weights α0
, weighted adapter output; Lwavg(h, α

0); test data x; number of update

steps T

Output: Prediction ŷ
1 for t in 0, 1, ..., T-1 do

▷ Calculate entropy
2 H(x, α)← Entropy(T ◦ Lwavg(h, α

t) ◦M)

▷ Calculate gradient
3 gt = ∇αH(x;αt)

▷ Update weighting
4 αt+1 ← Update(αt, gt)

5 end
▷ Calculate final prediction

6 ŷ ← Predict(T ◦ Lwavg(h, α
T ) ◦M)

Entropy Minimized Ensemble of Adapters While ensembling is a simple and effective strategy to

combine multiple potentially beneficial language adapters, the equal weighing of all language adapters

could be sub-optimal for Lnew; different language varieties, or even sentences, could benefit from a

different weighting of the pretrained language adapters. To further improve adapter ensembling, we

generalize Lavg(h) into a learnable weighted average:

Lwavg(h) =
∑R

i=1
αiLi(h)

where α1, α2, ..., αR are learnable weights satisfying αi ≥ 0 and
∑S

i=1 αi = 1. Next, we propose

Entropy Minimized Ensemble of Adapters (EMEA) method, which learns the adapter weightings for
each sentence without additional training.

The intuition behind our method is that a good adapter weight α for a test input x should make

the model more confident in its prediction for x, that is, it should lead to lower model entropy over

the input (Shannon, 1948; Wang et al., 2021a). Specifically for structured prediction tasks, we want to

classify each word xw in a test input xwithW words into one of the possibleC classes. We consider the

entropy: H(x;α) = −∑W
w=1

∑C
c=1 P (c|xw;α) logP (c|xw;α), where P (c|xw;α) is the prediction of

the model T ◦Lwavg(h)◦M. Since P (c|xw;α) is a function of the ensemble weights α, we can calculate

the gradient of α as gi = ∇αiH(x;α).

To minimize the entropy loss, we can simply do gradient descent steps on each αi using the corre-

sponding gradient gi by αi = αi − γgi, where γ is the learning rate. We can then use the updated α to

calculate the final prediction for x. In § 8.4, we find that a single step of gradient update already leads

to better performance than simple ensembling. We can additionally perform multiple steps of gradient

descent to obtain a better α at the cost of lower inference speed. Alg. 4 shows the pseudo code of our

method
2
.

2
Code can be found at https://github.com/cindyxinyiwang/emea
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Related Additional Test

hi en,ar mr,bn,ta,bho

is en,de fo,no,da

ru en be,uk,bg

Table 8.1: Test language groups and their corresponding language adapters. Adapters from languages in

the first two columns are applied to the test languages in the third column.

8.4 Experiments

Data We focus on zero-shot cross-lingual transfer with English as the source language. We conduct

experiments on named entity recognition (NER) and part-of-speech tagging (POS). We use the WikiAnn

dataset (Pan et al., 2017a) for NER and Universial Treebank 2.0 for POS tagging (Nivre et al., 2018).

Model Weuse themBERT (Devlin et al., 2019) model, which shows good performance for low-resource

languages on the structured prediction tasks (Pfeiffer et al., 2020b; Hu et al., 2020). We use the English

annotated data to train the task adapter. Each experiment is run with 5 different random seeds and we

report the average performance.

Languages We focus on three related language groups with rich regional variations. Each group has

a language with pretrained adapter available on the AdapterHub (Pfeiffer et al., 2020a), and we test on

the languages without adapters. The language with adapter and the corresponding target languages for

each group are: 1. Hindi (hi): Marathi (mr), Bengali (bn), Tamil (ta), Bhojpuri (bho); 2. Icelandic (is):

Faroese (fo), Norwegian (no), Danish (da); 3. Russian (ru): Bulgarian (bg), Ukrainian (uk), Belorus-

sian (be). We only test on languages with data available for each task. For our methods, we additionally

use the English adapter (the src language), and optionally another highly related language if there is one

available on the AdapterHub. The adapters used are listed in Tab. 8.1.

Baselines We compare with several competitive baselines: 1) En: the English adapter; 2) Related:

the best performing related language adapter; 3) Continual learning (CL): we use the English language

adapter and update its parameters using the entropy loss for each test input; 4) Fusion: learn another set

of key, value and query parameters in each layer that uses the layer output as query to mix together the

output of each adapter (Pfeiffer et al., 2021a). Since we do not use labeled data in the new language, we

train the fusion parameters on English labeled data.

Implementation Details We preprocess the data using scripts in XTREME (Hu et al., 2020). We use

the best performing adapter configuration in Pfeiffer et al. (2020b). For NER, we train the task adapter

for 100 epochs using learning rate of 1e-4. For POS tagging, we train the task adapter for 50 epochs
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Task Method mr bn ta avg. fo no da avg. be uk bg avg. avg.

NER

En 48.0 54.4 29.6 44.0 57.5 73.3 80.5 70.4 67.1 67.6 71.1 68.6 61.0

Related 51.7 47.0 30.8 43.1 54.3 72.7 79.3 68.7 66.2 65.8 69.8 67.3 59.7

CL 48.1 55.2 28.9 44.1 57.5 73.6 80.6 70.6 67.0 67.8 71.0 68.6 61.1

Fusion 51.7 47.0 30.8 43.1 58.8 73.3 80.9 71.0 66.2 65.8 69.8 67.3 60.5

Ensemble 55.6 55.3 35.8 48.9 57.7 73.8 80.3 70.6 70.7 70.5 74.0 71.7 63.7

EMEA 55.9 58.3 36.3 50.1 58.8 74.2 81.1 71.3 71.3 70.7 74.3 72.1 64.5

Method mr bho ta avg. fo no da avg. be uk bg avg. avg.

POS

En 62.6 39.5 53.4 51.8 71.6 84.6 87.6 81.1 85.3 81.4 84.6 83.7 72.2

Related 53.2 46.9 47.0 49.0 72.8 82.4 86.9 80.7 84.0 79.5 82.9 82.1 70.6

CL 62.6 39.6 53.6 51.9 71.7 84.2 87.7 81.2 85.6 81.5 84.7 83.9 72.3

Fusion 54.5 44.1 51.6 50.1 72.0 80.2 84.4 78.9 83.7 78.6 82.2 81.5 70.1

Ensemble 61.0 45.3 53.5 53.2 73.8 83.3 87.7 81.6 85.9 81.6 84.6 84.0 72.9

EMEA 63.2 45.0 54.0 54.0 74.0 83.6 87.9 81.8 86.0 81.6 84.7 84.1 73.3

Table 8.2: F1 of the baselines and our methods for each language group.

with the learning rate of 1e-4. For EMEA, we search over the learning rate γ of 0.1, 1, 10 on the English

validation set and pick γ = 10 for all experiments.

For Fusion, we use learning rate of 5e-5 which is recommended by (Pfeiffer et al., 2021a). We search

over the best learning rate for CL on the performance of English labeled data. We use the learning rate

of 2e-5 and do 1 step of gradient update for each batch. For our experiment on training new adapters,

we find that training from scratch on no and mr is not competitive when using very small amount of

data. Therefore, we continue training from their related language adapters.

8.4.1 Results

The main results of our method on NER and POS tagging can be found in Tab. 8.2. For most languages

simply using the English adapter is better than the best individual related language adapter. This verifies

our hypothesis that specialized language adapters might not be robust to language variations. CL leads

to slight improvements to some languages but is generally comparable to En. Fusion does not work well

for most language varieties, especially the non-Latin script languages, probably because it can overfit to

the English labeled data.

Using multiple language adapters brings significant gains Ensembling leads to significant gains

for the non-Latin language group. It also brings improvements or is comparable to the best baseline

on other languages. EMEA delivers further improvements across almost all languages, demonstrating

the effectiveness of adapting language adapter weights to each test sentence. We hypothesize that the

proposed methods improve non-Latin languages more because these are low-performing languages that
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Figure 8.4: Comparison to training adapter on different amount of monolingual data.

the model is more uncertain about.

8.5 Analysis

Effect of test batch size In Fig. 8.2 we plot the result of using different test batch size with EMEA

on the NER task. A smaller batch size leads to more fine-grained test time adaptation with a higher

computational cost. Fig. 8.2 shows that smaller batch size indeed leads to better performance while

using a larger batch size still outperforms the baseline.

Significance of source language adapter We investigate whether the benefit of adding the src lan-

guage adapter comes from the discrepancy between training and testing of the task adapter. We train

different task adapters with language adapters other than English(en), and compare the improvement of

adding the en adapter for the ensemble. Fig. 8.3 shows that the en adapter provides the largest benefit

when it is used to train the task adapter, which verifies that using different language adapters with the

task adapter between training and testing leads to sub-optimal cross-lingual transfer performance.
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Figure 8.5: Mean and standard deviation of the weight for each adapter for the is (left) and hi (right)
language groups.

Comparison to training new adapters In order to understand the data requirement of training new

language adapters, we also examine the method that trains new adapters using small amount of mono-

lingual data in the target language. We focus on two languages, mr and no, on the NER task, and the

results are in Fig. 8.4. Note that this is not a fair comparison since EMEA does not require any training.

It takes about 100k monolingual data for no to reach comparable performance with our method, while

mr still lags behind EMEA.

Analysis of weights We plot the mean and standard deviation of ensembling weights from EMEA in

Fig. 8.5. The En adapter gets the highest weight for both language groups, in line with the results in

Tab. 8.2 showing en as the best individual adapter. For the hi language group, the ar adapter tends to

have the least benefit, probably because it has a different script from the languages we test on.

8.6 Conclusion

We find that specialized language adapters might not be robust to language variations, and that utiliza-

tion of multiple existing pretrained language adapters alleviates this issue. We hope our findings can

inspire future work on models that are robust and adaptive to language variations.
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Chapter 9

Expanding Pretrained Models to
Thousands More Languages via
Lexicon-based Adaptation

The previous chapter explores methods that adapt pretrained models to language variations or dialects.

Here we focus on adapting pretrained multilingual models to another type of low-resource languages

– languages that have little or no textual data. The performance of multilingual pretrained models is

highly dependent on the availability of monolingual or parallel text present in a target language. To

expand possibilities of using NLP technology in these under-represented languages, we systematically

study strategies that relax the reliance on conventional language resources through the use of bilingual

lexicons, an alternative resource with much better language coverage.
1

9.1 Introduction

Multilingual pretrained models (Devlin et al., 2019; Conneau and Lample, 2019; Conneau et al., 2019)

have become an essential method for cross-lingual transfer on a variety of NLP tasks (Pires et al., 2019;

Wu and Dredze, 2019). These models are supposed to benefit under-represented languages that do not

have annotated data. However, recent studies have found that the cross-lingual transfer performance

of a language is highly contingent on the availability of monolingual data in the language during pre-

training Hu et al. (2020). Languages with more monolingual data tend to have better performance while

languages not present during pretraining significantly lag behind.

Several works propose methods to adapt the pretrained multilingual models to low-resource lan-

guages, but these generally involve continued training usingmonolingual text from these languages (Wang

et al., 2020b; Chau et al., 2020; Pfeiffer et al., 2020b, 2021b). Therefore, the performance of these methods

is still constrained by the amount of monolingual or parallel text available, making it difficult for lan-

1
Code and data are available at: https://github.com/cindyxinyiwang/

expand-via-lexicon-based-adaptation.
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Figure 9.1: The percentage of theworld’s≈7,000 languages covered bymBERT,monolingual data sources

and lexicons.

guages with little or no textual data to benefit from the progress in pretrained models. Joshi et al. (2020)

indeed argue that unsupervised pretraining makes the ‘resource-poor poorer’.

Fig. 9.1 plots the language coverage of multilingual BERT (mBERT; Devlin et al., 2019), a widely used

pre-trained model, and several commonly used textual data sources.
2
Among the 7,000 languages in the

world, mBERT only covers about 1% of the languages while Wikipedia and CommonCrawl, the two

most common resources used for pretraining and adaptation, only contain textual data from 4% of the

languages (often in quite small quantities, partially because language IDs are difficult to obtain for low-

resource languages (Caswell et al., 2020b)). Ebrahimi and Kann (2021) show that continued pretraining

of multilingual models on a small amount of Bible data can significantly improve the performance of

uncovered languages. Although the Bible has much better language coverage of 23%, its relatively small

data size and constrained domain limits its utility (see § 9.6)—and 70% of the world’s languages do not

even have this resource. The failure of technology to adapt to these situations raises grave concerns

regarding the fairness of allocation of any benefit that may be conferred by NLP to speakers of these

languages (Joshi et al., 2020; Blasi et al., 2022). On the other hand, linguists have been studying and

documenting under-represented languages for years in a variety of formats (Gippert et al., 2006). Among

these, bilingual lexicons or word lists are usually one of the first products of language documentation,

and thus have much better coverage of the worlds’ languages than easily accessible monolingual text,

as shown in Fig. 9.1. There are also ongoing efforts to create these word lists for even more languages

through methodologies such as “rapid word collection” (Boerger, 2017), which can create an extensive

lexicon for a new language in a number of days. As Bird (2020) notes:

After centuries of colonisation, missionary endeavours, and linguistic fieldwork, all lan-

guages have been identified and classified. There is always a wordlist. . . . In short, we do

not need to “discover” the language ex nihilo (L1 acquisition) but to leverage the available

resources (L2 acquisition).

However, there are few efforts on understanding the best strategy to utilize this valuable resource

for adapting pretrained language models. Bilingual lexicons have been used to synthesize bilingual data

for learning cross-lingual word embeddings Gouws and Søgaard (2015); Ruder et al. (2019) and task data

for NER via word-to-word translation (Mayhew et al., 2017), but both approaches precede the adoption

of pre-trained multilingual LMs. Khemchandani et al. (2021) use lexicons to synthesize monolingual data

2
Statistics taken from Ebrahimi and Kann (2021) and panlex.org.
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Figure 9.2: Results for baselines and adaptation using synthetic data for both resource settings across

three NLP tasks.

for adapting LMs, but their experimentation is limited to several Indian languages and no attempt was

made to synthesize downstream task data while Hu et al. (2021) argue that bilingual lexicons may hurt

performance.

In this paper, we conduct a systematic study of strategies to leverage this relatively under-studied

resource of bilingual lexicons to adapt pretrained multilingual models to languages with little or no

monolingual data. Utilizing lexicons from an open-source database, we create synthetic data for both

continued pretraining and downstream task fine-tuning via word-to-word translation. Empirical results

on 19 under-represented languages on 3 different tasks demonstrate that using synthetic data leads to

significant improvements on all tasks (Fig. 9.2), and that the best strategy depends on the availability of

monolingual data (§ 9.5, § 9.6). We further investigate methods that improve the quality of the synthetic

data through a small amount of parallel data or by model distillation.

9.2 Background

We focus on the cross-lingual transfer setting where the goal is to maximize performance on a down-

stream task in a target language T . Due to the frequent unavailability of labeled data in the target lan-

guage, a pretrained multilingual modelM is typically fine-tuned on labeled data in the downstream task

DSlabel = {(xSi , ySi )}Ni=1 in a source language S where xSi is a textual input, ySi is the label, and N is the

number of labeled examples. The fine-tunedmodel is then directly applied to task dataDTtest = {xTi , yTi }i
in language T at test time.

3
The performance on the target language T can often be improved by further

adaptation of the pretrained model.

3
We additionally examine the few-shot setting where some task data DT

label in T is available for fine-tuning in § 9.7.
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9.2.1 Adaptation with Text

There are two widely adopted paradigms for adapting pretrained models to a target language using

monolingual or parallel text.

MLM Continued pretraining on monolingual text DTmono = {xTi }i in the target language (Howard

and Ruder, 2018b; Gururangan et al., 2020) using a masked language model (MLM) objective has proven

effective for adapting models to the target language (Pfeiffer et al., 2020b). Notably, Ebrahimi and Kann

(2021) show that using as little as several thousand sentences can significantly improve the model’s

performance on target languages not covered during pretraining.

Trans-Train For target languageswith sufficient parallel textwith the source languageDSTpar = {(xSi , xTi )}i,
one can train a machine translation (MT) system that translates data from the source language into the

target language. Using such anMT system, we can translate the labeled data in the source languageDSlabel
into target language data D̂Tlabel = {(x̂Ti , ySi )}Ni=1, and fine-tune the pretrained multilingual model on

both the source and translated labeled dataDSlabel ∪D̂Tlabel. This method often brings significant gains to

the target language, especially for languages with high-quality MT systems (Hu et al., 2020; Ruder et al.,

2021).

9.2.2 Challenges with Low-resource Languages

Both methods above require DTmono or DSTpar in target language T , so they cannot be directly extended

to languages without this variety of data. Joshi et al. (2020) classified the around 7,000 languages of the

world into six groups based on the availability of data in each language. The two groups posing the

biggest challenges for NLP are:

“The Left-Behinds,” languages with virtually no unlabeled data. We refer to this as the No-Text setting.

“The Scraping-Bys,” languages with a small amount of monolingual data. We refer to this as the Few-Text
setting.

These languages make up 85% of languages in the world, yet they do not benefit from the development

of pretrained models and adaptation methods due to the lack of monolingual and parallel text. In this

paper, we conduct a systematic study of strategies directly targeted at these languages.

9.3 Adapting to Under-represented Languages Using Lexicons

Since the main bottleneck of adapting to under-represented languages is the lack of text, we adopt a data

augmentation framework (illustrated in Fig. 9.3) that leverages bilingual lexicons, which are available

for a much larger number of languages.
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eng xS ∈ DSmono Anarchism calls for the abolition of the state , which it holds to be undesirable , unnecessary , and harmful .

Pseudo Mono x̃T ∈ D̃Tmono Anarchism calls gℏal il abolition ta’ il stat , lima hi holds gℏal tkun undesirable , bla bzonn , u harmful .

eng xS ∈ DSlabel I suspect the streets of Baghdad will look as if a war is looming this week .

Pseudo Labeled x̃T ∈ D̃Tlabel jien iddubita il streets ta’ Bagdad xewqa hares kif jekk a gwerra is looming dan ġimgℏa .
Pseudo Labeled yS ∈ D̃Tlabel PRON VERB DET NOUN ADP PROPN AUX VERB SCONJ SCONJ DET NOUN AUX VERB DET NOUN PUNCT

Label Distilled ỹT ∈ D̃Tdistill PRON VERB DET NOUN ADP PROPN NOUN NOUN SCONJ SCONJ DET NOUN AUX VERB DET NOUN PUNCT

Table 9.1: Examples of pseudo monolingual data and pseudo labeled data for POS tagging for Mal-

tese (mlt). Words in red have different labels between the source language and the label distilled data.

This is because “xewqa” in Maltese is a noun meaning “desire,will”, while the word “will” is not used as

a noun in the original English sentence.

9.3.1 Synthesizing Data Using Lexicons

Given a bilingual lexicon DST
lex

between the source language S and a target language T , we create syn-

thetic sentences x̃Ti in T using sentences xSi in S via word-to-word translation, and use this synthetic

data in the following adaptation methods.

PseudoMLM Usingmonolingual textDSmono = {xSi }i, we generate pseudomonolingual text D̃Tmono =
{x̃Ti }i for T by replacing the words in xSi with their translation in T based on the lexiconDST

lex
. We keep

the words that do not exist in the lexicon unchanged, so the pseudo text x̃Ti can include words in both

S and T . We then adapt the pretrained multilingual model on D̃Tmono using the MLM objective. For the

Few-Text setting where some gold monolingual data DTmono is available, we can train the model jointly

on the pseudo and the gold monolingual data D̃Tmono ∪ DTmono.

Pseudo Trans-train Given the source labeled data DSlabel = {(xSi , ySi )}Ni=1, for each text example xSi
we use DST

lex
to replace the words in xSi with its corresponding translation in T , resulting in pseudo

labeled data D̃Tlabel = {(x̃Ti , ySi )}Ni=1. We keep the original word if it does not have an entry in the

lexicon. We then fine-tune the model jointly on both pseudo and gold labeled data D̃Tlabel ∪ DSlabel.
Since thesemethods only require bilingual lexicons, we can apply them to bothNo-Text and Few-Text

settings. We can use either of the two methods or the combination of both to adapt the model.

Challenges with Pseudo Data Our synthetic data D̃T could be very different from the true data

DT because the lexicons do not cover all words in S or T , and we do not consider morphological or

word order differences between T and S.4 Nonetheless, we find that this approach yields significant

improvements in practice (see Tab. 9.3). We also outline two strategies that aim to improve the quality

of the synthetic data in the next section.

4
In fact, we considered more sophisticated methods using morphological analyzers and inflectors, but even models with

relatively broad coverage (Anastasopoulos and Neubig, 2019) did not cover many languages we used in experiments.
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Figure 9.3: Pipelines for synthesizing data for both No-text and Few-text settings and utilizing extra data

for the Few-Text setting. Solid lines indicate adaptation methods and dashed lines are synthetic data

refinement methods.

9.3.2 Refining the Synthetic Data

Label Distillation The pseudo labeled data D̃Tlabel = {(x̃Ti , ySi )}Ni=1 is noisy because the synthetic

examples x̃Ti could have a different label from the original label ySi (see Tab. 9.1). To alleviate this issue,

we propose to automatically “correct” the labels of pseudo data using a teacher model. Specifically, we

fine-tune the pretrained multilingual model as a teacher model using only DSlabel. We use this model to

generate the new pseudo labeled data D̃Tdistill = {(x̃Ti , ỹTi )}Ni=1 by predicting labels ỹTi for the pseudo

task examples x̃Ti . We then fine-tune the pretrained model on both the new pseudo labeled data and the

source labeled data D̃Tdistill ∪ DSlabel.

Induced Lexiconswith Parallel Data For the Few-Text setting, we can leverage the available parallel

data DSTpar to further improve the quality of the augmented data. Specifically, we use unsupervised word

alignment to extract additional word pairs D̃STlex from the parallel data, and use the combined lexicon

D̃STlex ∪ DSTlex to synthesize the pseudo data.

9.4 General Experimental Setting

In this section, we outline the tasks and data setting used by all experiments. We will then introduce the

adaptation methods and results for the No-Text setting in § 9.5 and the Few-Text setting in § 9.6.

9.4.1 Tasks, Languages and Model

Weevaluate on the gold test sets of three different taskswith relatively good coverage of under-represented

languages: named entity recognition (NER), part-of-speech (POS) tagging, and dependency parsing (DEP).

We use two NER datasets: WikiAnn NER (Pan et al., 2017b; Rahimi et al., 2019) and MasakhaNER (Ade-

lani et al., 2021). We use the Universal Dependency 2.5 (Nivre et al., 2018) dataset for both the POS and
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Language iso Family Task Lex Count

Acehnese ace Austronesian NER 0.5k

Bashkir bak Turkic NER 3.4k

Crimean Turkish crh Turkic NER 4.4k

Hakka Chinese hak Sino-Tibetan NER 8.5k

Igbo ibo Niger-Congo NER 3.6k

Ilokano ilo Austronesian NER 4.0k

Kinyarwanda kin Niger-Congo NER 4.7k

Eastern Mari mhr Uralic NER 21.7k

Maltese mlt Afro-Asiatic All 1.0k

Maori mri Austronesian NER 13.8k

Hausa hau Niger-Congo NER 5.6k

Wolof wol Niger-Congo All 1.9k

Luganda lug Niger-Congo NER 3.5k

Luo luo NER 0.7k

Bambara bam Mande POS,Parsing 4.4k

Manx glv Indo-European POS,Parsing 37.6k

Ancient Greek grc Indo-European POS,Parsing 8.0k

Swiss German gsw Indo-European POS,Parsing 2.5k

Erzya myv Uralic POS,Parsing 7.4k

Table 9.2: Languages used for evaluation.

DEP tasks.

We use English as the source language for all experiments. For each dataset, we use the English

training data and select the checkpoint with the best performance on the English development set. For

MasakhaNER, which does not have English training data, we follow Adelani et al. (2021) and use the

CoNLL-2003 English NER training data. We run each fine-tuning experiment with 3 random seeds and

report the average performance. For NER and POS tagging, we follow the data processing and fine-

tuning hyper-parameters in Hu et al. (2020). We use the Udify (Kondratyuk and Straka, 2019) codebase

and configuration for parsing.

Languages For each task, we select languages that have task data but are not covered by the mBERT

pretraining data. The languages we use can be found in Tab. 9.2. Most fall under the Few-Text set-

ting (Joshi et al., 2020). We employ the same languages to simulate the No-Text setting as well.
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Model We use the multilingual BERT model (mBERT) because it has competitive performance on

under-represented languages (Pfeiffer et al., 2020b). We find that our mBERT performance on WikiNER

and POS is generally comparable or exceeds the XLM-R large results in Ebrahimi and Kann (2021). We

additionally verify our results also hold for XLM-R in § 9.7.

9.4.2 Adaptation Data

Lexicon We extract lexicons between English and each target language from the PanLex database.
5

The number of lexicon entries varies from about 0.5k to 30k, and most of the lexicons have around 5k

entries. The lexicon statistics for each language can be found in Tab. 9.2.

Pseudo Monolingual Data English Wikipedia articles are used to synthesize monolingual data. We

first tokenize the English articles using Stanza (Qi et al., 2020) and keep the first 200k sentences. To create

pseudo monolingual data for a given target language, we replace each English word with its translation

if the word exists in the bilingual lexicon. We randomly sample a target word if the English word has

multiple possible translations because it is difficult to estimate translation probabilities due to lack of

target text.

Pseudo Labeled Data Using the English training data for each task, we simply replace each English

word in the labeled training data with its corresponding translation and retain its original label. For the

sake of simplicity, we only use lexicon entries with a single word.

9.5 No-Text Setting

We analyze the results of the following adaptation methods for the setting where we do not have any

monolingual data.

PseudoMLM The mBERTmodel is trained on the pseudo monolingual data using the MLM objective.

We train the model for 5k steps for the NER tasks and 10k steps for the POS tagging and Parsing tasks.

Pseudo Trans-train We fine-tune mBERT or the model adapted with Pseudo MLM for a downstream

task on the concatenation of both the English labeled data and the pseudo labeled data.

Label Distillation We use the model adapted with PseudoMLM as the teacher model to generate new

labels for the pseudo labeled data, which we use jointly with the English labeled data to fine-tune the

final model.

5https://panlex.org/snapshot/
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Method Lexicon WikiNER ∆ MasakhaNER ∆ POS ∆ Parsing ∆ Avg. ∆

No-Text

mBERT - 47.6 - 46.1 - 36.1 - 16.5 - 36.5 -

Pseudo Trans-train PanLex 49.8 2.2 54.4 8.3 51.1 15.0 25.9 9.4 45.2∗ 8.7

Pseudo MLM PanLex 49.8 2.2 52.6 6.5 48.9 12.8 25.2 8.7 44.1∗ 7.6

Both PanLex 48.5 0.9 54.6 8.5 48.7 12.6 25.9 9.4 44.4∗ 7.9

Both+Label Distillation PanLex 50.6 2.1 53.5 -1.1 50.3 1.6 26.0 0.1 45.1∗ 0.7

Few-Text

Gold MLM - 49.5 - 53.6 - 60.6 - 40.2 - 50.9 -

Pseudo Trans-train PanLex 50.2 0.7 59.4 5.8 59.3 -1.3 37.0 -3.2 51.4 0.5

Pseudo MLM PanLex 50.7 1.2 57.4 3.8 65.4 4.8 43.5 3.3 54.2∗ 3.3

PanLex+Induced 52.2 1.5 58.5 0.9 64.7 -0.7 41.5 -2.0 54.2∗ 0.0

Both PanLex 50.1 0.6 59.2 5.6 60.7 0.1 38.3 -1.9 52.0∗ 1.1

PanLex+Induced 52.6 2.5 61.1 1.9 59.5 -1.2 35.3 -3.0 52.0† 0.0

Both+Label Distillation PanLex 51.7 1.6 58.4 -0.8 66.2 5.5 41.9 3.6 54.5∗ 2.5

PanLex+Induced 53.2 1.5 59.4 1.0 65.8 -0.4 40.7 -1.2 54.7∗ 0.2

Table 9.3: Average F1 score for languages in each task. We record F1 of the LAS for Parsing. We com-

pare three adaptation methods (∆ indicates gains over baselines): Pseudo Trans-train, Pseudo MLM, and

Both. We also examine two data refinement methods: Label Distillation (∆ is gains over Both) and Pan-

Lex+Induced (∆ is gains over PanLex). Bold is the best result for each dataset, and underline indicates

the best improvements among the three adaptation methods over the baselines. We test the significance

of the average gains over the baselines in the last column using paired bootstrap resampling. * indicates

significant gains with p < 0.001 and † indicates significant gains with p < 0.05.

9.5.1 Results

The average performance of different adaptation methods averaged across all languages in each task can

be found in Tab. 9.3.

Pseudo Trans-train is the bestmethod for No-Text. PseudoMLM and Pseudo Trans-train can both

bring significant improvements over the mBERT baseline for all tasks. Pseudo Trans-train leads to the

best aggregated result across all tasks, and it is also the best method or very close to the best method for

each task. Adding Pseudo Trans-train on top of Pseudo MLM does not add much improvement. Label

Distillation generally leads to better performance, but overall it is comparable to only using Pseudo

Trans-train.

9.6 Few-Text Setting

We test same adaptation methods introduced in § 9.5 for the Few-Text setting where we have a small

amount of gold data. First we introduce the additional data and adaptation methods for this setting.
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9.6.1 Gold Data

Gold Monolingual Data We use the JHU Bible Corpus (McCarthy et al., 2020) as the monolingual

data. Following the setup in Ebrahimi and Kann (2021), we use the verses from the New Testament,

which contain 5000 to 8000 sentences for each target language.

Gold Parallel Data We can use the parallel data between English and the target languages from the

Bible to extract additional word pairs. We use an existing unsupervised word alignment tool, eflomal (?),
to generate word alignments for each sentence in the parallel Bible data. To create high quality lexicon

entries, we only keep the word pairs that are aligned more than once, resulting in about 2k extra word

pairs for each language. We then augment the PanLex lexicons with the induced lexicon entries.

9.6.2 Adaptation Methods

Gold MLM The mBERT model is trained on the gold monolingual Bible data in the target language

using the MLM objective. Following the setting in Ebrahimi and Kann (2021), we train for 40 epochs for

the NER task, and 80 epochs for the POS and Parsing tasks.

Pseudo MLM We conduct MLM training on both the Bible monolingual data and the pseudo mono-

lingual data in the target language. The Bible data is up-sampled to match the size of the pseudo mono-

lingual data. We train the model for 5k steps for the NER task and 10k steps for the POS tagging and

Parsing tasks.

9.6.3 Results

The average performance in each task for Few-Text can be found in Tab. 9.3.

Pseudo MLM is the competitive strategy for Few-Text. Unlike the No-Text setting, Pseudo Trans-

train only marginally improves or even decreases the performance for three out of the four datasets we

consider. On the other hand, Pseudo MLM, which uses both gold and pseudo monolingual data for MLM

adaptation, consistently and significantly improves over Gold MLM for all tasks. Again, using Pseudo

Trans-train on top of Pseudo MLM does not help and actually leads to relatively large performance loss

for the syntactic tasks, such as POS tagging and Parsing.

Label Distillation brings significant improvements for the two syntactic tasks. Notably, it is

the best performing method for POS tagging, but it still lags behind Pseudo MLM for Parsing. This is

likely because Parsing is a much harder task than POS tagging to generate correct labels. The effect of

Label Distillation on the NER task is less consistent—it improves over Pseudo Trans-train for WikiNER

but not for MasakhaNER. This is because the named entity tags of the same words in different languages

likely remain the same so that the pseudo task data probably has less noise for Label Distillation to have

consistent benefits.
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Figure 9.4: left: Ratio of words with different POS tags in each lexicon. right: POS accuracy gain of test

words with different POS tags by using induced lexicons. The induced lexicons have more verbs but lead

to worse performance on verbs.

Adding Induced Lexicons We examine the effect of using the lexicons augmented by word pairs

induced from the Bible parallel data. The results can be found in Tab. 9.3. Adding the induced lexicon

significantly improves the NER performance, while it hurts the two syntactic tasks.

To understand what might have prevented the syntactic tasks from benefiting from the extra lexicon

entries, we plot the distribution of the part-of-speech tags of the words in PanLex lexicons and the lexi-

cons induced from the Bible in Fig. 9.4. PanLex lexicons have more nouns than the Bible lexicons while

the Bible lexicons cover more verbs than PanLex. However, the higher verb coverage in induced lexicons

actually leads to a larger prediction accuracy drop for verbs in the POS tagging task. We hypothesize

that the pseudo monolingual data created using the induced lexicons would contain more target lan-

guage verbs with the wrong word order, which could be more harmful for syntactic tasks than tasks that

are less sensitive to word order such as NER.

Discrepancies between the two NER datasets While WikiNER, along with POS tagging and Pars-

ing, benefit the most from Pseudo MLM for Few-Text, MasakhaNER achieves the best result with Pseudo

Trans-train. One possible explanation is that MasakhaNER contains data from the news domain, while

WikiNER is created fromWikipedia. The pseudomonolingual data used forMLM is created from English

Wikipedia articles, which could benefit WikiNER much more than MasakhaNER. On the other hand, the

English NER training data for MasakhaNER is from the news domain, which potentially makes Pseudo

Trans-train a stronger method for adapting the model simultaneously to the target language and to the

news domain. One advantage of Pseudo MLM is that the English monolingual data is much cheaper to

acquire, while Pseudo Trans-train is constrained by the amount of labeled data for a task. We show in

?? that Pseudo MLM has more benefit for MasakhaNER when we use a subset of the NER training data.
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bam glv mlt myv

Gold MLM (Ours) 59.7 64.1 58.5 70.6

Ebrahimi and Kann (2021) 60.5 59.7 59.6 66.6

+Pseudo Trans-train 57.4 63.2 69.1 63.8

+Pseudo MLM 68.5 67.5 72.3 73.8

+Both 60.3 64.5 69.3 65.9

+Both(Label Distillation) 69.4 68.8 72.1 74.3

Table 9.4: Results for POS tagging with XLM-R. Our methods follow similar trend as on mBERT and they

lead to significant gains compared to prior work.

9.7 Analyses

PerformancewithXLM-R Wemainly usemBERT because it has competitive performance for under-

represented languages and it is more computationally efficient due to the smaller size. Here we verify

our methods have the same trend when used on a different model XLM-R (Conneau et al., 2019). We

focus on a subset of languages in the POS tagging task for the Few-Text setting and the results are in

Tab. 9.4. We use the smaller XLM-R base for efficiency, and compare to the best result in prior work,

which uses XLM-R large (Ebrahimi and Kann, 2021). Tab. 9.4 shows that our baseline is comparable or

better than prior work. Similar to the conclusion in § 9.6, Pseudo MLM is the competitive strategy that

brings significant improvements over prior work. While adding Pseudo Trans-train to PseudoMLM does

not help, using Label Distillation further improves the performance.

Effect of Baseline Performance Using pseudo data might be especially effective for languages with

lower performance. We plot the improvement of different languages over the baseline in Fig. 9.5, where

languages are arranged with increasing baseline performance from left to right. We mainly plot Pseudo

MLM and Pseudo Trans-train for simplicity. Fig. 9.5 shows that for both resource settings, lower per-

forming languages on the left tend to have more performance improvement by using pseudo data.

Using NMTModel to Synthesize Data One problem with the pseudo data synthesized using word-

to-word translation is that it cannot capture the correct word order or syntactic structure in the target

language. If we have a good NMT system that translates English into the target language, we might

be able to get more natural pseudo monolingual data by translating the English sentences to the target

language.

Since the target languages we consider are usually not supported by popular translation services,

we train our own NMT system by fine-tuning an open sourced many-to-many NMT model on the Bible
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Figure 9.5: F1 gain over the baselines for languages with increasing baseline performance from left to

right. Pseudo data tends to help more for languages with lower performance.

WikiNER MasakaNER POS Parsing

Lexicon 45.0 56.0 63.7 40.7
NMT 42.2 55.8 58.9 37.7

Table 9.5: F1 of using Pseudo MLM for Few-Text. Synthesizing data with NMT is consistently worse.

parallel data from English to the target language (details in ??). Instead of creating pseudo monolingual

data using the lexicon, we can simply use the fine-tuned NMT model to translate English monolingual

data into the target language.

The results of using NMT as opposed to lexicon for Pseudo MLM on all four tasks can be found in

Tab. 9.5. Unfortunately, NMT is consistently worse than word-to-word translation using lexicons. We

find that the translated monolingual data tend to have repeated words and phrases that are common in

the Bible data, although the source sentence is from Wikipedia. This is because the NMT model overfits

to the Bible data, and it fails to generate good translation for monolingual data from a different domain

such as Wikipedia.

Comparison to Few-shot Learning Lauscher et al. (2020) found that using as few as 10 labeled ex-

amples in the target language can significantly outperform the zero-shot transfer baseline for languages

included in mBERT. We focus on the zero-shot setting in this paper because the languages we consider

have very limited data and it could be expensive or unrealistic to annotate data in every task for thou-

sands of languages. Nonetheless, we experiment with k-shot learning to examine its performance on

low-resource languages in the MasakhaNER task. Tab. 9.6 shows that using 10 labeled examples brings

improvements over the mBERT baseline for a subset of the languages, and it is mostly worse than our
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Method hau wol lug ibo kin luo

mBERT 48.7 33.9 50.9 55.2 52.4 35.3

Best Adapted 74.4 60.3 61.6 63.6 63.8 42.6

10-shot 44.5 49.1 52.7 56.2 51.2 46.2

100-shot 64.0 56.9 58.3 65.5 55.7 51.6
Best Adapt+100-shot 76.1 57.3 61.3 63.2 62.6 49.4

Table 9.6: Results on MasakhaNER for k-shot learning. We compare to the zero-shot mBERT baseline

and our best adapted model.

best adapted model without using any labeled data. When we have access to 100 examples, few-shot

learning begins to reach or exceed our zero-shot model. In general, few-shot learning seems to require

more data to consistently perform well for under-represented languages while our adaptation meth-

ods bring consistent gains without any labeled data. Combining the best adapted model with few-shot

learning leads to mixed results. More research is needed to understand the annotation cost and benefit

of few-shot learning for low-resource languages.

9.8 Related Work

Several methods have been proposed to adapt pretrained language models to a target language. Most of

them rely on MLM training using monolingual data in the target languages (Wang et al., 2020b; Chau

et al., 2020; Muller et al., 2021; Ebrahimi and Kann, 2021; Pfeiffer et al., 2020b), competitive NMT sys-

tems trained on parallel data (Hu et al., 2020; Ponti et al., 2021), or some amount of labeled data in the

target languages (Lauscher et al., 2020). These methods cannot be easily extended to low-resource lan-

guages with no or limited amount of monolingual data, which account for more than 80% of theWorld’s

languages (Joshi et al., 2020).

Bilingual lexicons have been commonly used for learning cross-lingual word embeddings (Mikolov

et al., 2013; Ruder et al., 2019). Among these, some work uses lexicons to synthesize pseudo bilingual

(Gouws and Søgaard, 2015; Duong et al., 2016) or pseudo multilingual corpora (Ammar et al., 2016).

Mayhew et al. (2017) propose to synthesize task data for NER using bilingual lexicons. More recently,

Khemchandani et al. (2021) synthesize monolingual data in Indian languages for adapting pretrained

language models via MLM. Hu et al. (2021) argue that using bilingual lexicons for alignment hurts per-

formance compared to word-level alignment based on parallel corpora. Such parallel corpora, however,

are not available for truly under-represented languages. Reid and Artetxe (2021) employ a dictionary

denoising objective where a word is replaced with its translation into a random language with a certain

probability. This can be seen as text-to-text variant of our approach applied to multilingual pre-training.

Akyurek and Andreas (2021) propose to use lexicons to improve the compositionality of NLP models.
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None of the above works provide a systematic study of methods that utilize lexicons and limited data

resources for adapting pretrained language models to languages with no or limited text.

9.9 Conclusion and Discussion

We propose a pipeline that leverages bilingual lexicons, an under-studied resource with much better lan-

guage coverage than conventional data, to adapt pretrained multilingual models to under-represented

languages. Through comprehensive studies, we find that using synthetic data can significantly boost

the performance of these languages while the best method depends on the data availability. Our re-

sults show that we can make concrete progress towards including under-represented languages into the

development of NLP systems by utilizing alternative data sources.

Our work also has some limitations. Since we focus on different methods of using lexicons, we

restrict experiments to languages in Latin script and only use English as the source language for sim-

plicity. Future work could explore the effect of using different source languages and combining translit-

eration (Muller et al., 2021) or vocabulary extension (Pfeiffer et al., 2021b) with lexicon-based data aug-

mentation for languages in other scripts. We also did not test the data augmentation methods on higher-

resourced languages as MLM fine-tuning and translate-train are already effective in that setting and our

main goal is to support the languages with little textual data. Nonetheless, it would be interesting to

examine whether our methods can deliver gains for high-resource languages, especially for test data in

specialized domains.

We point to the following future directions: First, phrases instead of single word entries could be used

to create pseudo data. Second, additional lexicons beyond PanLex could be leveraged. Some bilingual

lexicons beyond PanLex are:

• Swadesh lists in about 200 languages in Wikipedia
6

• Words in 3156 language varietities in CLICS
7

• Intercontinental Dictionary Series in about 300 languages
8

• 40-item wordlists in 5,000+ languages in ASJP
9

• Austronesian Basic Vocabulary Database in 1,700+ languages
10

• Diachronic Atlas of Comparative Linguistics in 500 languages
11

Third, more effort could be spent on digitizing both existing monolingual data such as books Gref (2016)

and lexicons into a format easily accessible by NLP practitioners. Although PanLex already covers over

5000 languages, some language varieties have only as little as 10 words in the database, while there ex-

ist many paper dictionaries that could be digitized through technologies such as OCR (Rijhwani et al.,

6https://en.wiktionary.org/wiki/Appendix:Swadesh_lists
7https://clics.clld.org/
8https://ids.clld.org/
9https://asjp.clld.org/
10https://abvd.shh.mpg.de/austronesian/
11https://diacl.ht.lu.se/
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2020).
12

Lexicon collection is also relatively fast, which could be a more cost effective strategy to signifi-

cantly boost the performance of many languages without lexicons. Finally, the quality of synthetic data

could be improved by incorporating morphology. However, we find that there is virtually no existing

morphological analysis data or toolkits for the languages we consider. Future work could aim to improve

the morphological analysis of these low-resource languages.

12https://panlex.org/source-list/ contains a list of undigitized dictionaries.
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Chapter 10

Conclusion

The adoption of technologies such as mobile phones and the Internet has made our planet more con-

nected than ever before. Progress in multilingual NLP models can assist more seamless communication

between speakers of different languages. However, as new users start to use multilingual NLP systems,

these systems also have new challenges to serve speakers of unseen languages or dialects. While lan-

guage technologies have advanced significantly for a handful of languages, the majority of language

varieties on earth are falling behind. We hope that this thesis can contribute to building competitive

NLP systems for people from different cultural and social backgrounds.

10.1 Summary of Contributions

The goal of the thesis is to create better NLP systems for low-resource languages by efficiently utilizing

training data. In particular, we propose that multilingual learning methods should aim to utilize the

commonalities between languages while recognizing the individual characteristics of each language.

Our contributions follow three general steps of model development. Before training anymultilingual

NLPmodel, selecting good training data often has a significant impact on anymodel training that follows.

Part I explores data selection methods for multilingual training. We examine a heuristic method to select

themost relevant data for multilingual training, and propose a general framework that leads to automatic

data selection algorithms formultilingual data. Afterwe select the suitablemultilingual data for a specific

objective, the next challenge is to properly represent the data in the neural network model. In Part II we

design a novel word representation model for multilingual NMT that incorporates helpful inductive bias

for cross-lingual transfer. Additionally, we also develop an efficient training algorithm to regularize word

embeddings of multilingual pretrained models. After we train a good multilingual model that supports

many different languages, it is often helpful to adapt the model to a specific language. In Part III, we

propose methods that adapt pretrained multilingual models to two types of low-resource languages that

are particularly challenging due to the paucity of data. We propose a novel model ensemble algorithm

to support unseen language varieties at test time. We also experiment with various data augmentation

methods for languages with no or limited textual data.
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10.2 Future Directions

In this section, we outline some possible extensions of the works introduced in this thesis and future

directions for multilingual NLP in general.

10.2.1 Efficient data selection

Our works in Part II show that good data selection and balancing strategies can have a significant im-

pact on the performance of multilingual models. We propose a meta-learning framework for general

data selection that shows promising results for multilingual training. One difficulty of our approach is

that meta-learning requires longer training time and memory cost, which limits the application of our

methods on large-scale models. Memory and computationally efficient meta-learning algorithms could

be a promising direction to expand the practical impact of our framework. Furthermore, innovations

in deep learning frameworks (Bradbury et al., 2018) and hardware architecture could potentially make

meta-learning more efficient to use in practice.

10.2.2 Character-aware multilingual text representation

As discussed in Part I, the standard subword segmentation and representation methods are suboptimal

for multilingual data. While the works in this thesis provide several improvements to the standard

word representation through modeling and training regularization, more research is needed to design

suitable multilingual text representation methods that are both computationally efficient and beneficial

for cross-lingual transfer. Character-level representation can encourage cross-lingual transfer because

it can potentially represent words with similar spellings from different languages to closer subspace

than subword representations (Cherry et al., 2018a; Clark et al., 2022; Xue et al., 2021a). On the other

hand, fully character based models often suffer from higher computational cost, and their performance

is more sensitive to the choice of model architectures and other hyperparameters (Cherry et al., 2018b).

Intuitively, text representations that utilize subword or word boundaries add helpful inductive biases to

the model, while fully character-based representation might put additional burden of learning character

compositions of the inputs on the rest of the model.

Given the strengths and weaknesses of both character and word/subword based text representations,

it could be a promising future direction to combine the two so that we can maximize the benefits of both

methods or have more flexible control over the trade-offs. Our work in Chapter 6 is an example of such

methods, although themodel incurs a higher engineering and computational cost. While character-based

text representation is relatively popular and easy to implement for encoders, it is much more challenging

to use for decoders because longer character sequences lead to slower inference speed. Futurework could

consider adding character level information as a regularization strategy at training time while keeping

the subword based model architecture.
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10.2.3 Multilingual benchmarks

Constructing an effective evaluation dataset and framework is usually the first step toward building any

machine learning model for a specific task or a certain group of users. Although the NLP research field

has developed various benchmarks for a wide range of tasks such as answering questions, dialogue, sum-

marizing, common sense reasoning, etc., most works focus only on curating datasets in English (Sanh

et al., 2021). Since the imbalance in the construction of data sets can amplify the existing gap in re-

search efforts between English and other languages in the world, it is important to construct multilin-

gual datasets that have wide language and task coverage. However, this is a nontrivial task because there

are thousands of languages in the world and each language variety has unique linguistic and cultural

attributes that need to be considered during the data collection process.

There are several potential directions for building more inclusive multilingual benchmarks. We can

pay more attention to building websites and crowd-sourcing tools that allow native speakers of different

languages to annotate or contribute data in their languages. This approach has already shown suc-

cess in the speech processing community. For example, CommonVoice is a popular multilingual speech

dataset where people speaking different languages can easily record a few voice clips to contribute to the

dataset (Ardila et al., 2020). To further assist efficient data collection, we should also understand what

types of language data are most helpful for model development and the amount of data that one needs

to collect to achieve certain model performance.

10.2.4 Alternative data sources

Although there have been more work to improve NLP models for languages other than English, more

fine-grained language varieties, such as regional dialects, have received very little attention in the re-

search community. One of the biggest challenges with these language varieties is that they often have

extremely limited or no textual training data at all. To close the gap, in Part III of the thesis we explored

several methods addressing these challenges through test-time adaptation and data augmentation. One

promising research direction to improve the performance of these fine-grained language varieties is

to utilize alternative data sources. For example, many dialects are often used in casual conversational

settings, so there are more audio or video recordings of these dialects than written text.

Some recent progress in speech pretraining opens up interesting opportunities to better serve speak-

ers of fine-grained language varieties (Conneau et al., 2020; Babu et al., 2021a; Bapna et al., 2022). For

example, we can use our proposed adaptation methods in Chapter 8 to dynamically adapt these mul-

timodal pre-trained models to an unseen dialect at test time. It is also an important direction to use

both speech and text data for multilingual pretraining because the learning signals and languages of

each modality could be complementary. Moreover, speech and text data are more likely to come from

different domains, so we should also design better data usage schedules or model architectures to utilize

the domain information.
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10.2.5 Personalized model adaptation

One of the core values of building multilingual NLP systems is to recognize and celebrate the uniqueness

of native speakers of all languages in the world. More broadly speaking, each person speaks a language

in a slightly different way and an intelligent NLP model should be able to adapt to the unique language

variety spoken by each user. Personalized model adaptation has been studied in the context of NMT and

dialogue (Michel and Neubig, 2018; Zheng et al., 2019), but it is still a relatively understudied area in

NLP research. The speech processing community has more works on speaker adaptation for automatic

speech recognition (Saon et al., 2013; Sarı et al., 2020; Zhao et al., 2021), probably because there are more

individualized variations in speech utterances. As speech processing and NLP become more intercon-

nected for real world applications such as speech translation (Zhang et al., 2021b; Lee et al., 2022) and

conversational dialogue systems (Faruqui and Hakkani-Tür, 2022), personalized NLP models have the

potential to bring significant positive impact on users with different cultural backgrounds.
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