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A B S T R A C T

Representation learning has had a tremendous impact in machine learning and natural lan-

guage processing (NLP), especially in recent years. Learned representations provide useful

features needed for downstream tasks, allowing models to incorporate knowledge from

billions of tokens of text. The result is better performance and generalization on many

important problems of interest. Often these representations can also be used in an un-

supervised manner to determine the degree of semantic similarity of text or for finding

semantically similar items, the latter useful for mining paraphrases or parallel text. Lastly,

representations can be probed to better understand what aspects of language have been

learned, bringing an additional element of interpretability to our models.

This thesis focuses on the problem of learning paraphrastic representations for units of

language. These units span from sub-words, to words, to phrases, and to full sentences –

the latter being a focal point. Our primary goal is to learn models that can encode arbitrary

word sequences into a vector with the property that sequences with similar semantics are

near each other in the learned vector space, and that this property transfers across domains.

We first show several effective and simple models, paragram and charagram, to learn

word and sentence representations on noisy paraphrases automatically extracted from bilin-

gual corpora. These models outperform contemporary and more complicated models on a

variety of semantic evaluations.

We then propose techniques to enable deep networks to learn effective semantic represen-

tations, addressing a limitation of our prior work. We found that in order to learn represen-

tations for sentences with deeper, more expressive neural networks, we need large amounts

of sentential paraphrase data. Since this did not exist yet, we utilized neural machine trans-

lation models to create ParaNMT-50M, a corpus of 50 million English paraphrases which

has found numerous uses by NLP researchers, in addition to providing further gains on

our learned paraphrastic sentence representations.

We next propose models for bilingual paraphrastic sentence representations. We first pro-

pose a simple and effective approach that outperforms more complicated methods on cross-

lingual sentence similarity and mining bitext, and we also show that we can also achieve

strong monolingual performance without paraphrase corpora by just using parallel text.
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We then propose a generative model capable of concentrating semantic information into

our embeddings and separating out extraneous information by viewing parallel text as two

different views of a semantic concept. We found that this model has improved performance

on both monolingual and cross-lingual tasks. Lastly, we extend this bilingual model to the

multilingual setting and show it can be effective on multiple languages simultaneously,

significantly surpassing contemporary multilingual models.

Finally, this thesis concludes by showing applications of our learned representations and

ParaNMT-50M. The first of these is on generating paraphrases with syntactic control for

making classifiers more robust to adversarial attacks. We found that we can generate a

controlled paraphrase for a sentence by supplying just the top production of the desired

constituent parse – and the generated sentence will follow this structure, filling in the

rest of the tree as needed to create the paraphrase. The second application is applying

our representations for fine-tuning neural machine translation systems using minimum

risk training. The conventional approach is to use BLEU (Papineni et al., 2002), since that

is what is commonly used for evaluation. However, we found that using an embedding

model to evaluate similarity allows the range of possible scores to be continuous and, as a

result, introduces fine-grained distinctions between similar translations. The result is better

performance on both human evaluations and BLEU score, along with faster convergence

during training.
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1
I N T R O D U C T I O N

Representation learning has had a tremendous impact in machine learning and natural

language processing, especially in recent years. Learned representations provide useful

features needed for downstream tasks, allowing models to incorporate knowledge from

billions of tokens of text. The result is better performance downstream tasks and better gen-

eralization. Representations are also useful because they can be probed to better understand

what aspects of language have been learned. Vector representations can additionally be use-

ful for finding semantically similar items quickly, an important aspect for text retrieval and

mining.

Word representations have had an especially rich history in natural language processing.

A common form of these representations are mathematical objects like vectors, points in a

high dimensional space (Deerwester et al., 1990; Turney, 2001; Bengio et al., 2003; Turian

et al., 2010; Mikolov et al., 2013b). With these representations, the relationship between

words can be inferred from this space. For instance, words with similar meaning could

be near each other or the different dimensions of the word vectors may also correspond

to semantic or grammatical properties. It is important to note that there are other types

of lexical representations beyond word vectors. Word clusters (Brown et al., 1992; Kneser

and Ney, 1993) are another type of representation that can be represented by a vector

indicating membership into a specific cluster. There has also been significant work on cre-

ating word ontologies or lexicons such as Wordnet (Miller, 1995), Verbnet (Schuler, 2005),

Framenet (Baker et al., 1998), and the Proposition Bank (Palmer et al., 2005). These contain

rich linguistic information and also can specify the relationships between words. They are

also manually created resources and are therefore costlier to construct than automatic ap-

proaches. Moreover, they tend to be more sparse than automatic methods that are able to

learn representations from data consisting of billions of words incorporating vocabularies

that can number in the millions.

There are many techniques for learning word vectors, most of these relying on the distri-

butional hypothesis (Harris, 1954) which states that the meaning of words can be inferred by

the contexts in which they occur. This was famously restated by Firth (Firth, 1957) that You

8
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shall know a word by the company it keeps. This insight led to many of the distributional word

embedding approaches that have made such an impact on the field. Early approaches to

learn word embeddings factorize a matrix of co-occurrence count statistics using singular

value decomposition (SVD) (Deerwester et al., 1990). Co-occurrence statistics of other rela-

tions have also been successfully used like syntactic dependencies (Lin, 1998). In contrast

to word counts, methods using dependencies tend to capture more functional similarity as

opposed to topical similarity. Often counts are transformed into other statistics to better

differentiate surprising from expected co-occurrences such as pointwise mutual informa-

tion (PMI) (Church and Hanks, 1990). Besides methods focused on matrix factorization, the

other main approach to learning word embeddings involve neural networks. These include

methods based on language modelling (Bengio et al., 2003) and methods based on pre-

dicting co-occurrences (Mikolov et al., 2013b; Pennington et al., 2014). (Faruqui and Dyer,

2014) found that models based on estimating co-occurrences usually lead to better perfor-

mance owing to incorporating both sides of the context of a word. Interestingly, (Levy and

Goldberg, 2014) found that the skip-gram model of (Mikolov et al., 2013b) can be seen as

equivalent to factoring a matrix of PMI statistics shifted by log(k), where k is the number

of negative samples used during training.

Recently, contextualized representations (Dai and Le, 2015; McCann et al., 2017; Peters

et al., 2018; Devlin et al., 2018) of words have found a great deal of success, often improv-

ing on downstream tasks over static word embeddings. In these models, the representations

for words change depending on their current context. Therefore, a single word is no longer

limited to a specific vector, but instead its representation is generated specifically for its cur-

rent context. These models are learned through language modelling, machine translation

or related objectives such as masked language modelling.

With the success of word representations in many tasks in natural language process-

ing (Clark, 2003; Turian et al., 2010; Bansal et al., 2014), a natural question to ask is what

about learning representations for larger units of text such as word bigrams, phrases, sen-

tences, or even paragraphs and documents? These representations pose additional chal-

lenged because unlike words, the possible number of instances increases exponentially as

the text sequences become larger. Therefore, developing ontologies or borrowing techniques

from learning distributional word vectors is infeasible, and therefore different approaches

to learning these representations must be used.

Many approaches for learning sentential representations have been proposed in the lit-

erature. These include constituent parsing (Klein and Manning, 2003), dependency pars-
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ing (McDonald et al., 2005), semantic parsing (Berant and Liang, 2014), semantic role la-

belling (Punyakanok et al., 2008), and abstract meaning representations (Banarescu et al.,

2013). These representations can be seen as analogs to the ontology and lexicons for words

since they are also created with the input of human linguists and provide rich syntac-

tic and/or semantic information about the text. However drawbacks include that models

must be trained to predict these structures, which can introduce errors when applied to

new text, especially if it is out-of-domain from the training data. Further, to apply these

representations to downstream tasks, additional processing is required whether they are

mined for features or transformed into continuous representations to be incorporated as

features into neural models.

Perhaps the earliest work on vector representations of sentences are feature vectors for

classification tasks. In these early models, features would be extracted by manually de-

signed feature functions, which could be as simple as the identity of the words in the

sentence. Later, with approaches using neural networks in (Collobert and Weston, 2008;

Collobert et al., 2011; Socher et al., 2011), features were learned automatically. The first gen-

eral purpose sentence embeddings however, are relatively recent in the literature (Le and

Mikolov, 2014; Kiros et al., 2015). In contrast to the supervised approaches, these embed-

dings were not trained for any particular goal task, but to provide useful features for any

task.

There have been many approaches proposed for learning sentence embeddings. These

include predicting the next and previous sentences (Kiros et al., 2015), machine transla-

tion (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Schwenk, 2018; Artetxe and

Schwenk, 2018b), training on natural language inference (NLI; (Bowman et al., 2015)) data (Con-

neau et al., 2017), discourse based objectives (Jernite et al., 2017; Nie et al., 2017), and multi-

task objectives which include some of the previously mentioned objectives (Cer et al., 2018)

as well as additional tasks like constituency parsing (Subramanian et al., 2018).

In this thesis, we focus on learning paraphrastic representations for sentences. We hypoth-

esize that a minimum requirement of quality representations is that the distance of the

representations in the learned vector space is related to the semantic distance of the un-

derlying text. This intuition motivates many of the algorithms and strategies in this thesis,

and distinguishes our work from much of the literature. The problem of learning these

representations is difficult because sentences with similar semantics can have significantly

different surface forms, while sentences with contradictory semantics can have very similar

surface forms. For instance, paraphrases can have large lexical and syntactic differences
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such as Other ways are needed. and It is necessary to find other means., but have similar seman-

tics. Further, subtle lexical changes can drastically change the meaning of the sentences as

in Flights are on sale from New York to Paris. and Flights are on sale from Paris to New York.

The overarching theme of our methods in this thesis is that to adequately distill semantics

into vector representations, two views of the underlying concept are needed. When only

a single view of a concept is used, for instance when training word representations like

GloVe or Word2Vec or sentence representations like Skip-Thought, representations that are

close to each other in the learned embedding space will have similar contexts. However,

this does not mean that there are paraphrases of each other, as they could simply be related

words that share many of the same contexts. For instance, they could be words like brother

and sister or rampant and epidemic

These views can take a variety of forms (text and video or images, human constructed

paraphrases, etc.), but in this thesis we largely make use of parallel data in some fashion

(although we do dabble with mined human-constructed paraphrases). Pure parallel data

refers to translations, for instance, data consisting of English and Spanish or French and

Chinese translations. While parallel data makes up the backbone of our multiple views, we

make use of it in different ways. For instance, in Chapters 3, 4, and 5, we use data from

the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013). In Chapter 6, we explore first

using human-generated paraphrase data, but then proceed to use back-translated parallel

text in Chapter 7 in order to automatically generate paraphrase data. Lastly, in Chapters 9

to 11, we explore using parallel data directly. All of these approaches have their trade-offs,

but they are united by making use of two views of the same concept.

This thesis is organized into four content sections and eleven content chapters covering

not only our approaches to learning paraphrastic sentence embeddings, but applications

of these embeddings from tasks including the construction of large paraphrase corpora,

adversarial paraphrase generation, and fine-tuning machine translation outputs.

The first section covers Chapters 3 to 5, and we discuss our first models for learning

paraphrastic representations using paraphrase text snippets from the Paraphrase Database

(PPDB). In this section, we propose three main models. The first are paragram word em-

beddings. These significantly surpassed the state-of-the-art word embedding approaches

for measuring similarity and are even the basis for state-of-the-art models today. In the sec-

ond model, we learn sentence embeddings where our primary evaluation is on a suite of

semantic textual similarity (STS) datasets, but we also follow the setting of (Kiros et al., 2015)

and show that we can rival their performance with our simpler model. Lastly, we discuss
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our charagram models for learning word and sentence representations. In these repre-

sentations, we represent a character sequence by a vector containing counts of character

n-grams, inspired by Huang et al. (2013). This vector is embedded into a low-dimensional

space using a single nonlinear transformation. We find that these charagram embeddings

outperforms character recurrent neural networks (RNNs), character convolutional neural

networks (CNNs), as well as paragram embeddings. We find that modelling subwords

yields large gains in performance for rare words and can easily handle spelling variation,

morphology, and word choice.

The second section covers Chapters 6 to 8, where we discuss strategies to improve our

paraphrastic sentence embeddings. We do this by both moving away from PPDB and by

incorporating deeper and more expressive architectures. In Chapter 6, we discuss the impor-

tance of training on sentence pairs, instead of text snippets for performance, and introduce

a new recurrent neural architecture that combines aspects of both our simpler averaging

models and RNNs. In Chapter 7, we show how backtranslation of bilingual data can be

used to creating a corpus of sentential paraphrases on par with paraphrase corpora con-

structed via manual rewrites. Finally, in Chapter 8, we create a corpus of 50 million sen-

tence paraphrases through back-translation of a large bilingual corpus (Bojar et al., 2016).

The subsequent performance gains with our embeddings using ParaNMT-50M, allowed us

to outperform all competing systems in the SemEval STS competitions held from 2012-2016

despite not using the training data for these tasks. Moreover, as we show in Chapter 12,

The third section covers Chapters 9 to 11, where we experiment with learning paraphrastic

sentence representations from multilingual data. In Chapter 9, we show: 1) Using bilingual

text can rival performance of using ParaNMT-50M, simplifying the procedure if our fo-

cus is exclusively on sentence embeddings, since back-translation is no longer required. 2)

Using sub-word embeddings in this setting is more effective than using character n-grams

or words for cross-lingual similarity. In Chapter 10, we propose learning paraphrastic sen-

tence embeddings as a source separation problem, leading to s significant boost in repre-

sentation quality. We treat parallel data as two views of the same semantic information, but

with different surface forms. We then propose a deep latent variable model, the Bilingual

Generative Transformer (BGT) that performs source separation, isolating what the parallel

sentences have in common in a latent semantic vector, and explaining what is left over

with language-specific latent vectors. We find that the model is effective, pushing more se-

mantic information into the semantic representation, relative to strong baselines, leading

to improvement in all of our evaluations. Lastly, in Chapter 11, we extend the BGT to the
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multilingual setting with the Multilingual Generative Transformer (MGT). In this chapter,

we show how we can collapse to the BGT model to use a single encoder and decoder

while training on many languages simultaneously and retaining strong performance – far

surpassing that of a translation baseline which is used in contemporary state-of-the-art

models.

Finally, the last section, covering Chapters 12 and 13, focus on application of our para-

phrase corpus and our paraphrastic sentence embeddings. In Chapter 12, we apply our

ParaNMT-50Mcorpus and sentence embedding models towards learning controllable para-

phrase generation. Specifically we focus on controlling the syntax of the generated sen-

tences. We find that we can learn a model where by just supplying a parse template, i.e. the

top production of a constituent parse, we can generate a sentence with that syntax. We show

that when these syntactic paraphrases are added to training, models become more robust

to adversarial examples. In Chapter 13, we use our paraphrastic representations, along with

a proposed length penalty, for fine-tuning neural machine translation systems using mini-

mum risk training. The conventional approach is to use BLEU (Papineni et al., 2002), since

that is what is commonly used for evaluation. However, we found that using an embedding

model to evaluate similarity allows the range of possible scores to be continuous and, as a

result, introduces fine-grained distinctions between similar translations. The result is better

performance on both human evaluations and BLEU score, along with faster convergence

during training.

We conclude this thesis with a short summary of the work presented, and discuss sev-

eral directions for further work in both representation learning, text generation, and their

applications.



2
B A C K G R O U N D

2.1 representation learning in natural language processing

There are many types of representations in Natural Language Processing (NLP). Repre-

sentations have been studied at the subword (Sennrich et al., 2016b; Wieting et al., 2016a),

word (Bengio et al., 2003), sentence (Kiros et al., 2015), and document level (Le and Mikolov,

2014). There are representations as well for knowledge graphs (Bordes et al., 2014b) that can

be used to represent entities and relations and even word sense embeddings (Li and Juraf-

sky, 2015). In this thesis we focus on subword, word, and sentence embeddings primarily

and we will discuss those in greater detail below.

2.1.1 Subword Embeddings

2.1.1.1 Morpheme Based Models

The simplest approaches append subword features to word embeddings, letting the model

learn how to use the subword information for particular tasks. Some added knowledge-

based morphological features to word representations (Alexandrescu and Kirchhoff, 2006;

El-Desoky Mousa et al., 2013). Others learned embeddings jointly for subword units and

words, defining simple compositional architectures (often based on addition) to create word

embeddings from subword embeddings (Lazaridou et al., 2013; Botha and Blunsom, 2014;

Qiu et al., 2014; Chen et al., 2015c).

2.1.1.2 Character Based Models

Later, richer functional architectures to convert character sequences into word embeddings

became increasingly popular. Luong et al. (2013) used recursive models to compose morphs

into word embeddings, using unsupervised morphological analysis. Ling et al. (2015a) used

a bidirectional long short-term memory (LSTM) RNN on characters to embed arbitrary

word types, showing strong performance for language modeling and POS tagging. Balles-

14
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teros et al. (2015) used this model to represent words for dependency parsing. Several have

used character-level RNN architectures for machine translation, whether for representing

source or target words (Ling et al., 2015b; Luong and Manning, 2016), or even for generating

entire translations character-by-character (Chung et al., 2016).

Schütze (1993) learned representations of character four-grams through singular value

decomposition. Reprsentations for words were then constructed by summing these four-

gram representations. Wieting et al. (2016a) used character n-grams in order to construct

sentence and word embeddings. They found that it improved performance on semantic

similarity tasks. Also by using character n-grams, embeddings for nearly any word could

be created and so they found their model had the most impact over a word embeddings

baseline approach when handling rare words (including mispellings, slang, etc.). The popu-

lar FastText embeddings Bojanowski et al. (2017) are also based on this idea and are similar

to the n-gram embeddings in Wieting et al. (2016a) where they sum together n-grams of

sizes 3 to 6 to obtain an embedding for a word, however instead of training on parallel text,

they follow Mikolov et al. (2013a) and train on

2.1.1.3 Byte Pair Encoding (BPE) and Sentencepiece

Sennrich et al. (2016b) proposed using Byte Pair Encoding (BPE) to split sentences into to-

kens instead of the most common approaches from prior that segmented sentence by words

or characters. When BPE is applied to text, the most frequent symbol pair are merged to-

gether into a new symbol. In the beginning, the most frequently paired characters are

merged and then this process is continued n times where n is a hyperparameter that speci-

fies the maximum number of merge operations permitted. Sentencepiece is an alternative

to BPE and also seeks to segment text into its most frequent subwords, however, it models

the segmentation as

Pretrained embeddings using BPE have been released and found to be useful for a num-

ber of tasks. Heinzerling and Strube (2018) trained BPE embeddings on Wikipedia in 275

languages using a wide set of allowed merge operations and embedding sizes. Wieting et al.

(2019b) found that for learning paraphrastic sentence representations, using Sentencepiece

can perform similarly or better than using character n-gram embeddings, while being both

faster to compute and requiring less memory.

Many recent deep embedding models use either BPE or Sentencepiece models to seg-

ment text (Artetxe and Schwenk, 2018b; Devlin et al., 2018; Raffel et al., 2019). They have

been found to be especially useful when working with multiples languages as a subword
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embedding is significantly more likely to be shared between languages than a word em-

bedding if the languages are related, which can reduce the number of parameters in the

model (both in the embedding table and in the projection to compute the logits). They also

likely enhance the amount of semantic content in the embeddings since they receive more

frequent updates.

2.1.2 Word Embeddings

The motivation for learning word representations is based on the distributional hypothesis,

that the meaning of words can be captured by their context (Harris, 1954). There are a num-

ber of ways in which one can compute representations for words, and these representations

can take a number of forms, from binary vectors to continuous representations to difference

vectors for each word sense.

The earliest embeddings were based on counts, Salton et al. (1975) created document

embeddings, where dimensions were the whole vocabulary and the entries were frequency

counts of the words. Word embeddings eventually followed this paradigm (Deerwester

et al., 1990) where the context for each word was whether it appeared in a set of documents,

with a 1 in entry i if it appeared in document i.

The intuition of most methods for learning word embeddings is to create these vectors (or

embeddings) is that similar words have similar contexts (Firth, 1957). Earlier models made

use of latent semantic analysis (LSA) (Deerwester et al., 1990). More sophisticated neural

models, work originating with (Bengio et al., 2003), then gained popularity (Mikolov et al.,

2013a; Pennington et al., 2014). These embeddings were then used in new ways by being

tailored to specific downstream tasks (Bansal et al., 2014). Other popular word embeddings

include (Lin and Pantel, 2001; Bengio et al., 2003; Collobert and Weston, 2008; Turian et al.,

2010; Turney and Pantel, 2010; Collobert et al., 2011).

PPDB has been used along with other resources to learn word embeddings for several

tasks, including semantic similarity, language modeling, predicting human judgments, and

classification (Yu and Dredze, 2014; Faruqui et al., 2015; Wieting et al., 2015; Mrkšić et al.,

2016). Other work has used neural MT architectures and training settings to obtain better

word embeddings (Hill et al., 2014a,b).

Finally, it is important to mention that word embeddings can encode harmful biases.

For instance it not uncommon for word embeddings trained on a large enough corpora

may associate certain groups with certain attributes. These biases can then be propagated
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through trained models since word embeddings are often used to initialize neural NLP

models. Research into mitigating biased outputs is an important and active area of research

currently, especially with the widespread use of increasingly large pretrained models.

2.1.3 Sentence Embeddings

Researchers have also developed many ways to embed word sequences for NLP. They

mostly focus on the question of compositionality: given vectors for words, how should we

create a vector for a word sequence? Early work in this area started with simply composing

pairs of words or bigrams. In (Mitchell and Lapata, 2008, 2010), they compared a variety of

binary compositional operations on word vectors and found that simple point-wise multi-

plication of explicit vector representations performed very well. Follow-up work by (Blacoe

and Lapata, 2012) found again that simple operations such as vector addition performed

strongly. Other works like (Zanzotto et al., 2010) and (Baroni and Zamparelli, 2010) also

explored composition using models based on operations of vectors and matrices. Later,

the efficient neural embeddings of (Mikolov et al., 2013a) also had strong performance on

compositional tasks simply by adding the word vectors (Mikolov et al., 2013b). (Hashimoto

et al., 2014) introduced an alternative word embedding and compositional model based on

predicate-argument structures that does well on two simple composition tasks, including

the one introduced by (Mitchell and Lapata, 2010). Many other simple compositional ar-

chitectures have also been proposed based on distributional semantics (Baroni et al., 2014;

Paperno et al., 2014; Polajnar et al., 2015; Tian et al., 2015).

An alternative approach to composition, is to learn deep neural models that compose

word embeddings. One of the first neural models for NLP was (Weston et al., 2010)One of

the earliest works to do this for sentence representations was (Socher et al., 2011), where the

authors trained a recursive neural network (RNN) whose structure is defined by a binarized

parse tree. This work was followed up in (Socher et al., 2012, 2013; Irsoy and Cardie, 2014;

Wieting et al., 2015). In particular, they trained their RNN as an unsupervised autoencoder.

The RNN captures the latent structure of composition. Later work has shown that this

model struggles in tasks involving compositionality (Blacoe and Lapata, 2012; Hashimoto

et al., 2014).1

1 We also replicated this approach in Chapter 3 and found training to be time-consuming even using low-
dimensional word vectors.
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Since these early forays into compositional models, many other neural computational

models have been proposed: neural bag-of-words models (Kalchbrenner et al., 2014), deep

averaging networks (DANs) (Iyyer et al., 2015), feature-weighted averaging (Yu and Dredze,

2015), recursive neural networks using syntactic parses (Socher et al., 2012, 2013; Irsoy and

Cardie, 2014), recursive networks based on non-syntactic hierarchical structure (Zhao et al.,

2015; Chen et al., 2015b), convolutional neural networks (Kalchbrenner et al., 2014; Kim,

2014; Hu et al., 2014a; Yin and Schütze, 2015; He et al., 2015), and recurrent neural net-

works using long short-term memory (Tai et al., 2015; Ling et al., 2015a; Liu et al., 2015).

Most of this work learns compositional models in the context of supervised learning. That

is, a training set is provided with annotations and the composition function is learned

discriminatively for the purposes of optimizing an objective function based on those anno-

tations. The models are then evaluated on a test set drawn from the same distribution as

the training set.

In contrast to supervised learning, others have proposed methods for creating general

purpose, domain independent embeddings for word sequences. Early sentence embedding

methods include paragraph vectors (Le and Mikolov, 2014) and skip-thought vectors (Kiros

et al., 2015). Both of these approaches learn sequence representations that are predictive of

words inside the sequence or in neighboring sequences. Skip-thought vectors capture sim-

ilarity in terms of discourse context by using a encoder-decoder architecture. Paragraph

vectors ... These methods produce generic representations that can be used to provide fea-

tures for text classification or sentence similarity tasks. One popular early approach was to

train an autoencoder in an attempt to learn the latent structure of the sequence, whether it

be a sentence with a parse tree (Socher et al., 2011),a longer sequence such as a paragraph

or document (Li et al., 2015), or X (Hill et al., 2016). Another popular approach is to use par-

allel text, and resources built from parallel text like NMT systems and PPDB, can be used

for learning embeddings for words and sentences. Several have used PPDB as a knowl-

edge resource for training or improving embeddings (Wieting et al., 2015; Yu and Dredze,

2015). (Wieting and Gimpel, 2017) later showed that PPDB is not as effective as senten-

tial paraphrases, especially for recurrent networks. These results are intuitive because the

phrases in PPDB are short and often cut across constituent boundaries. (Wieting and Gim-

pel, 2017) used a dataset developed for text simplification by (Coster and Kauchak, 2011).

It was created by aligning sentences from Simple English and standard English Wikipedia.

NMT architectures and training settings have been used to obtain better embeddings for

words (Hill et al., 2014a,b) and words-in-context (McCann et al., 2017). (Hill et al., 2016) eval-
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uated the encoders of English-to-X NMT systems as sentence representations. (Mallinson

et al., 2017) adapted trained NMT models to produce sentence similarity scores in semantic

evaluations. (Sutskever et al., 2014) trained NMT systems and visualized part of the space

of the source language encoder for their English→French system. (Hill et al., 2016) evalu-

ated the encoders of English-to-X NMT systems as sentence representations, finding them

to perform poorly compared to several other methods based on unlabeled data. Mallinson

et al. (2017) adapted trained NMT models to produce sentence similarity scores in seman-

tic evaluations. They used pairs of NMT systems, one to translate an English sentence into

multiple foreign translations and the other to then translate back to English.

This has been a popular area with many proposed architectures including LSTMs (Hill

et al., 2016; Conneau et al., 2017; Schwenk and Douze, 2017; Subramanian et al., 2018),

Transformers (Cer et al., 2018; Reimers and Gurevych, 2019), and averaging models (Wieting

et al., 2016b; Arora et al., 2017; Pagliardini et al., 2017) have found success for learning

sentence embeddings. The choice of training data and objective are intimately intertwined,

and there are a wide variety of options including next-sentence prediction (Kiros et al.,

2015), machine translation (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Schwenk,

2018; Artetxe and Schwenk, 2018b), natural language inference (NLI) (Conneau et al., 2017),

and multi-task objectives which include some of the previously mentioned objectives (Cer

et al., 2018) as well as additional tasks like constituency parsing (Subramanian et al., 2018).

2.1.4 Contextualized Embeddings

Contextualised embeddings (Dai and Le, 2015; Peters et al., 2018; Devlin et al., 2018) have

had a dramatic effect on the performance on NLP tasks. In ELMo (Peters et al., 2018) (em-

beddings from language model), the contextualized embeddings are the hidden states of a

deep bidirectional LSTM, trained as a bidirectional language model. This work has been ex-

tended to Transformers with BERT (Devlin et al., 2018). Transformers, compared to RNNs,

allow for using much deeper contexts since they are able to handle longer contexts and are

not limited to being unidirectional and can attend to context both before and after a word.

They also do not need to process the input sequentially, and therefore can better make use

of the massive parallel computation allowed for by GPUs. The objective used to train BERT

is a masked language model, in contrast to the unidirectional language model used to train

ELMo. In a masked language model, the objective is to predict the identity of words given
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bidirectional context. Since BERT many extensions and adaptions have been proposed (Liu

et al., 2019; Lample and Conneau, 2019; Yang et al., 2019b; Lan et al., 2019; Sanh et al., 2019).

2.2 evaluating representations

2.2.1 Word Embedding Evaluation

There are two main approaches to evaluating word embeddings. The first, intrinsic, involves

comparing the distance between word embedding pairs on a list and then measuring how

close the distances are to some human-rankings. Extrinsic evaluations involve using the

word embeddings as part of a larger model and comparing performance on some down-

stream task.

The early and standard approaches to evaluating word embeddings relied on intrinsic

evaluation on lists of word pairs. One of the datasets constructed for this purpose was RG-

65 (Rubenstein and Goodenough, 1965), C-30 (Miller and Charles, 1991) which consist of

65 and 30 word pairs respectively.

Wordsim-353 (WS353) (Finkelstein et al., 2001), specifically its similarity (WS-S) and relat-

edness (WS-R) partitions (Agirre et al., 2009). SimLex-999 (SL999) dataset (Hill et al., 2015)

most closely evaluates the paraphrase relationship. Even though WS-S is a close approxima-

tion to this relationship, it does not include pairs that are merely associated and assigned

low scores, which SL999 rectifies. However, SL999 has been its focus on nouns and high

frequency concepts. Other popular datasets include (Bruni et al., 2014; Gerz et al., 2016;

Pilehvar et al., 2018; Finkelstein et al., 2001; Hill et al., 2014b; Luong et al., 2013). Mikolov

et al. (2013a) proposed using analogies for evaluation.

2.2.2 Sentence Embedding Evaluation

There have been two main approaches to evaluating the quality of sentence embeddings:

classification tasks and semantic similarity tasks. One of the best approaches to analyzing

sentence embeddings is through probing tasks (Ettinger et al., 2016; Conneau et al., 2018a)

where embeddings are trained on some data to see how well they classify various linguistic

phenomena (for example, the tense of a sentence or how many tokens it contains).
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2.2.2.1 Semantic Textual Similarity (STS)

Semantic similarity tasks were originally meant to test the performance of supervised se-

mantic similarity systems, training data was provided and teams were advised to make use

of resources like WordNet (Miller, 1995), Wikipedia, paraphrase tables, dictionaries, as well

as NLP tools for tagging, named entity recognition, and semantic role labeling.

We adopted these datasets to measure unsupervised semantic similarity. That is, we did

not use the training data. We were the first to propose this use of the datasets and it

has since become a standard tool for evaluating sentence embeddings. We selected these

datasets because they reflect semantic similarity (as opposed to relatedness like couch and

table) and cover many different domains to discourage overfitting on a specific type of data.

Other popular paraphrase datasets include (Marelli et al., 2014; Dolan and Brockett, 2005;

Zhang et al., 2019b)

english sts The first STS task was held in 2012 and these tasks have been held every

year since. Given two sentences, the objective of the task is to predict how similar they are

on a 0-5 scale, where 0 indicates the sentences are on different topics and 5 indicates that

they are completely equivalent. Each STS task consists of 4-6 different datasets and the tasks

cover a wide variety of domains which we have categorized below. Most submissions for

these tasks use supervised models that are trained and tuned on either provided training

data or similar datasets from older tasks. Details on the number of teams and submissions

for each task and the performance of the submitted systems for each dataset are included in

Table 1 and Table 14 respectively. For more details on these tasks please refer to the relevant

publications for the 2012 (Agirre et al., 2012), 2013 (Agirre et al., 2013), 2014 (Agirre et al.,

2014), and 2015 (Agirre et al., 2015) tasks.

Dataset No. of teams No. of submissions

2012 STS 35 88

2013 STS 34 89

2014 STS 15 38

2015 STS 29 74

2016 STS 43 119

2014 SICK 17 66

2015 Twitter 19 26

Table 1: Details on numbers of teams and submissions in the STS tasks used for evaluation.

Below are the textual domains contained in the STS tasks:

News: Newswire was used in the 2012 task (MSRpar) and the 2013 and 2014 tasks (deft
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news).

Image and Video Descriptions: Image descriptions generated via crowdsourcing were

used in the 2013 and 2014 tasks (images). Video descriptions were used in the 2012 task

(MSRvid).

Glosses: Glosses from WordNet, OntoNotes, and FrameNet were used in the 2012, 2013,

and 2014 tasks (OnWN and FNWN).

MT evaluation: The output of machine translation systems with their reference translations

was used in the 2012 task (SMT-eur and SMT-news) and the 2013 task (SMT).

Headlines: Headlines of news articles were used in the 2013, 2014, 2015, and 2016 tasks

(headline).

Web Forum: Forum posts were used in the 2014 task (deft forum).

Twitter: Pairs containing a tweet related to a news headline and a sentence pertaining to

the same news headline. This dataset was used in the 2014 task (tweet news).

Belief: Text from the Deft Committed Belief Annotation (LDC2014E55) was used in the

2015 task (belief).

Questions and Answers: Paired answers to the same question from Stack Exchange (answers-

forums) and the BEETLE corpus (Dzikovska et al., 2010) (answers-students) were used in

2015. A similar task Answer-Answer was used in the 2016 evaluation also based on Stack

Exchange. Question-Question: Similar to Answer-Answer, paired questions (the title of the

post when it ends in a question mark in this case) were used in the 2016 task. The questions

were also taken from Stack Exchange. Plagarism: The plagiarism dataset is based on the

Corpus of Plagiarised Short Answers (Clough and Stevenson, 2011). This corpus contains

short answers to computer science questions that exhibit plagiarism from related Wikipedia

articles. Post-Editing: (Specia, 2011)

non-english and cross-lingual sts Cross-lingual STS started as a pilot task in

2014 and repeated again in 2015 using Spanish-Spanish pairs. The 2016 task included a

pilot track on cross-lingual Spanish-English pairs. In 2017, semantic similarity between non-

English sentences and cross-lingual semantic similarity became the primary focus. To create

the pairs used in evaluation, sentence pairs were sampled from the Stanford Natural Lan-

guage Inference (SNLI) dataset (Bowman et al., 2015) and translated into the appropriate

language. Scores for the sentence pairs were obtained by human evaluation via Amazon Me-

chanical Turk.2. This evaluation contains Arabic-Arabic, Arabic-English, Spanish-Spanish,

2 https://www.mturk.com

https://www.mturk.com
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Spanish-English, and Turkish-English STS datasets. These datasets were created by trans-

lating one or both pairs of an English STS pair into Arabic (ar), Spanish (es), or Turkish

(tr).

In the 2017 competition, 31 teams submitted 84 submissions with 17 teams provided 44

systems participating all in tracks (datasets). The best system (Tian et al., 2017) ensembled

feature engineered models with deep learning approaches. They also used Google Translate

to translate them to English to simplify the problem. Note that they also used the Paragram

embeddings we created outlined in Chapter 4.

(Yang et al., 2019a) (Zweigenbaum et al., 2018) (Artetxe and Schwenk, 2018b)

2.2.2.2 Sentence Classification

In addition to the semantic similarity evaluations, there is an alternative approach measur-

ing the effectiveness of sentence embeddings. This approach to evaluation was pioneered

in (Kiros et al., 2015). In this setting, sentence representations are used as features for a

linear classifier. The sentence embeddings are kept fixed, while training data is used to fine-

tune the classifier on the target task. Tasks used in these evaluations have differed and have

been even extended to the multilingual domain (Conneau et al., 2018b), but SentEval (Con-

neau and Kiela, 2018) has become a standard for English sentence embeddings.3 The tasks

included are sentiment analysis (MR, Pang and Lee, 2005; CR, Hu and Liu, 2004; SST, Socher

et al., 2013), subjectivity classification (SUBJ; Pang and Lee, 2004), opinion polarity (MPQA;

Wiebe et al., 2005), question classification (TREC; Li and Roth, 2002), paraphrase detection

(MRPC; Dolan et al., 2004), semantic relatedness (SICK-R; Marelli et al., 2014), and textual

entailment (SICK-E).

While this method of evaluation has been widespread, it does have a number of draw-

backs when compared using semantic similarity tasks as an evaluation. The main one is

the lack of diversity in tasks, as most are sentiment. This evaluation can also be more even

gamed than evaluating on semantic similarity as training on in-domain data4 significantly

improves results. Furthermore it is also possible that training sentence embeddings to be

used as features (as done in Conneau et al. (2017) and Cer et al. (2018)) can also give a boost

to performance since it more closely aligns with the evaluation task.

3 github.com/facebookresearch/SentEval
4 For example, product reviews for sentiment, Quora data for TREC, Stanford Natural Language Inference

(SNLI) (Bowman et al., 2015) for paraphrase detection, semantic relatedness, and semantic similarity)

github.com/facebookresearch/SentEval
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2.3 paraphrase corpora

2.3.1 Paraphrase Database

The Paraphrase Database (PPDB; Ganitkevitch et al., 2013), is a collection of confidence-

rated paraphrases created using the bilingual pivoting technique of (Bannard and Callison-

Burch, 2005) over large parallel corpora. Bilingual pivoting is a method from statistical

machine translation to find lexical and phrasal paraphrases in parallel text, where PPDB is

a massive resource, containing 220 million paraphrase pairs. It captures many short para-

phrases that would be difficult to obtain using any other resource. For example, the pair {we

must do our utmost, we must make every effort} has little lexical overlap but is present in PPDB.

The PPDB has recently been used for monolingual alignment (Yao et al., 2013), for predict-

ing sentence similarity (Bjerva et al., 2014), and to improve the coverage of FrameNet (Ras-

togi and Van Durme, 2014).

Since PPDB only relies on the availability of bilingual text, it can be extracted for many

languages (Ganitkevitch and Callison-Burch, 2014). Other extensions to the original PPDB

have also been developed. PPDB 2.0 was released in Pavlick et al. (2015), where the para-

phrases were re-ranked to be more aligned with human judgements. The original PPDB

used a heuristic scoring model based on features for the paraphrases, bu in this paper

the authors trained a supervised model using human judgments from Mechanical Turk.5

They also automatically annotated the paraphrases with entailment relations, word embed-

ding similarities, and style annotations. In (Pavlick and Callison-Burch, 2016), they release

Simple PPDB, which consists of 4.5 million simplifying paraphrase score. To create this

resource, Turkers are asked to annotate PPDB pairs first on two tasks. The first is whether

they or not the pairs show a paraphrase. Then for all paraphrases, they ask the Turkers to

rate which of the paraphrases is simpler or if there is no complexity difference. From these

annotations they are then able to train a supervised model and annotate a filtered subset

of PPDB with a simplification confidence score.

Though effective for multiple NLP tasks, we note some drawbacks of PPDB. The first is

lack of coverage: to use the PPDB to compare two phrases, both must be in the database.

The second is that PPDB is a nonparametric paraphrase model; the number of parameters

(phrase pairs) grows with the size of the dataset used to build it. In practice, it can become

unwieldy to work with as the size of the database increases. A third concern is that the

5 https://www.mturk.com/

https://www.mturk.com/
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confidence estimates in PPDB are a heuristic combination of features, and their quality is

unclear.

2.3.2 Sentential Paraphrase Corpora

Many methods have been developed for generating or finding paraphrases, including us-

ing multiple translations of the same source material (Barzilay and McKeown, 2001), using

distributional similarity to find similar dependency paths (Lin and Pantel, 2001), using

comparable articles from multiple news sources (Dolan et al., 2004; Dolan and Brock-

ett, 2005; Quirk et al., 2004), aligning sentences between standard and Simple English

Wikipedia (Coster and Kauchak, 2011), crowdsourcing (Xu et al., 2014, 2015b; Jiang et al.,

2017), using diverse MT systems to translate a single source sentence (Suzuki et al., 2017),

using tweets with matching URLs (Lan et al., 2017a).

There is also a rich history of research in generating or finding naturally-occurring sen-

tential paraphrases (Barzilay and McKeown, 2001; Dolan et al., 2004; Dolan and Brockett,

2005; Quirk et al., 2004; Coster and Kauchak, 2011; Xu et al., 2014, 2015b).



Part I

PA R A P H R A S T I C E M B E D D I N G S
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In this section, we discuss our first models for learning paraphrastic representations. This

section encompasses work that has appeared in three papers: (Wieting et al., 2015, 2016b,a).

In Chapter 3, we find that state-of-the-art phrase embeddings could be learned by using

text snippets from the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013) as training

data. PPDB is created by bilingual pivoting (Bannard and Callison-Burch, 2005) on parallel

bitext, where two text snippets are paraphrases when they align to the same snippet in

another language. While the recursive RNN (Socher et al., 2011) architecture in this paper

was overly complicated (which is shown in later papers), we laid the groundwork with a

focus on paraphrastic similarity, our training strategy, and our proposed objective function.

We use the term paraphrastic similarity to distinguish it from other types of similarity

which were largely inter-mixed at the time - specifically separating the notion of relatedness

from paraphrastic where relatedness refers to words that appear in similar contexts (table

and chair) while paraphrastic refers to words that could be paraphrases in some context

(chair and seat). One other important contribution from that paper were paragram word

embeddings. These significantly surpassed the state-of-the-art word embedding approaches

for measuring similarity and are even the basis for state-of-the-art models today.

In Chapter 4. we extended (Wieting et al., 2015) to learn sentence embeddings. Our pri-

mary evaluation was on a suite of semantic textual similarity (STS) datasets but we also

follow the setting of (Kiros et al., 2015) and show that we can rival their performance with

our simpler model. This is also the first paper to use these suite of tasks as an evaluation

approach for sentence embeddings, which has become a standard. We experimented with

a wide variety of encoding architectures, and we fount that the simplest approach, averag-

ing word embeddings, to be the most effective and are able to surpass the vast majority of

proposed STS systems despite being unsupervised. This was a surprising result, consider-

ing LSTM (Hochreiter and Schmidhuber, 1997) were setting new state-of-the-arts for many

problems in natural language processing. In this paper, we analyzed some hypotheses to

explain these results, finding that the reason wasn’t due to length, over-fitting, or insuffi-

cient parameter tuning. LSTMs (and deeper architectures in general) can work well on this

problem, but the training strategies need to change. This is further discussed in Chapter 6

and Chapter 10.

Lastly, in Chapter 5, we discuss our charagram models for learning word and sentence

representations. In these representations, we represent a character sequence by a vector

containing counts of character n-grams, inspired by Huang et al. (2013). This vector is em-

bedded into a low-dimensional space using a single nonlinear transformation. This can be
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interpreted as learning embeddings of character n-grams, which are learned so as to pro-

duce effective sequence embeddings when a summation is performed over the character

n-grams in the sequence. We evaluate on three tasks: word similarity, sentence similarity,

and part-of-speech tagging and show that charagram outperforms character RNNs, char-

acter CNNs, as well as paragram embeddings. We find that modelling subwords yields

large gains in performance for rare words and can easily handle spelling variation, mor-

phology, and word choice.



3
R E C U R S I V E N E U R A L N E T W O R K S A N D PA R A G R A M W O R D

E M B E D D I N G S

3.1 introduction

Paraphrase detection1 is the task of analyzing two segments of text and determining if

they have the same meaning despite differences in structure and wording. It is useful for

a variety of NLP tasks like question answering (Rinaldi et al., 2003; Fader et al., 2013),

semantic parsing (Berant and Liang, 2014), textual entailment (Bosma and Callison-Burch,

2007), and machine translation (Marton et al., 2009).

One component of many such systems is a paraphrase table containing pairs of text

snippets, usually automatically generated, that have the same meaning. The most recent

work in this area is the Paraphrase Database (PPDB; Ganitkevitch et al., 2013), a collec-

tion of confidence-rated paraphrases created using the pivoting technique of Bannard and

Callison-Burch (2005) over large parallel corpora. The PPDB is a massive resource, contain-

ing 220 million paraphrase pairs. It captures many short paraphrases that would be difficult

to obtain using any other resource. For example, the pair {we must do our utmost, we must

make every effort} has little lexical overlap but is present in PPDB. The PPDB has recently

been used for monolingual alignment (Yao et al., 2013), for predicting sentence similar-

ity (Bjerva et al., 2014), and to improve the coverage of FrameNet (Rastogi and Van Durme,

2014).

Though already effective for multiple NLP tasks, we note some drawbacks of PPDB. The

first is lack of coverage: to use the PPDB to compare two phrases, both must be in the

database. The second is that PPDB is a nonparametric paraphrase model; the number of

parameters (phrase pairs) grows with the size of the dataset used to build it. In practice, it

can become unwieldy to work with as the size of the database increases. A third concern

is that the confidence estimates in PPDB are a heuristic combination of features, and their

quality is unclear.

1 See Androutsopoulos and Malakasiotis (2010) for a survey on approaches for detecting paraphrases.

29
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We address these issues in this work by introducing ways to use PPDB to construct

parametric paraphrase models. First we show that initial skip-gram word vectors (Mikolov

et al., 2013a) can be fine-tuned for the paraphrase task by training on word pairs from

PPDB. We call them paragram word vectors. We find additive composition of paragram

vectors to be a simple but effective way to embed phrases for short-phrase paraphrase tasks.

We find improved performance by training a recursive neural network (RNN; Socher et al.,

2010) directly on phrase pairs from PPDB.

We show that our resulting word and phrase representations are effective on a wide va-

riety of tasks, including two new datasets that we introduce. The first, Annotated-PPDB,

contains pairs from PPDB that were scored by human annotators. It can be used to eval-

uate paraphrase models for short phrases. We use it to show that the phrase embeddings

produced by our methods are significantly more indicative of paraphrasability than the

original heuristic scoring used by Ganitkevitch et al. (2013). Thus we use the power of

PPDB to improve its contents.

Our second dataset, ML-Paraphrase, is a re-annotation of the bigram similarity corpus

from Mitchell and Lapata (2010). The task was originally developed to measure semantic

similarity of bigrams, but some annotations are not congruent with the functional similarity

central to paraphrase relationships. Our re-annotation can be used to assess paraphrasing

capability of bigram compositional models.

In summary, we make the following contributions:

Provide new paragram word vectors, learned using PPDB, that achieve state-of-the-art per-

formance on the SimLex-999 lexical similarity task (Hill et al., 2015) and lead to improved

performance in sentiment analysis.

Provide ways to use PPDB to embed phrases. We compare additive and RNN composi-

tion of paragram vectors. Both can improve PPDB by re-ranking the paraphrases in PPDB

to improve correlations with human judgments. They can be used as concise parameteriza-

tions of PPDB, thereby vastly increasing its coverage. We also perform a qualitative analysis

of the differences between additive and RNN composition.

Introduce two new datasets. The first contains PPDB phrase pairs and evaluates how well

models can measure the quality of short paraphrases. The second is a new annotation of the

bigram similarity task in Mitchell and Lapata (2010) that makes it suitable for evaluating

bigram paraphrases.
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We release the new datasets, complete with annotation instructions and raw annotations,

as well as our code and the trained models.2

3.2 related work

There is a vast literature on representing words as vectors. The intuition of most methods

to create these vectors (or embeddings) is that similar words have similar contexts (Firth,

1957). Earlier models made use of latent semantic analysis (LSA) (Deerwester et al., 1990).

Recently, more sophisticated neural models, work originating with (Bengio et al., 2003),

have been gaining popularity (Mikolov et al., 2013a; Pennington et al., 2014). These embed-

dings are now being used in new ways as they are being tailored to specific downstream

tasks (Bansal et al., 2014).

Phrase representations can be created from word vectors using compositional models.

Simple but effective compositional models were studied by Mitchell and Lapata (2008; 2010)

and Blacoe and Lapata (2012). They compared a variety of binary operations on word

vectors and found that simple point-wise multiplication of explicit vector representations

performed very well. Other works like Zanzotto et al. (2010) and Baroni and Zamparelli

(2010) also explored composition using models based on operations of vectors and matrices.

More recent work has shown that the extremely efficient neural embeddings of Mikolov

et al. (2013a) also do well on compositional tasks simply by adding the word vectors

(Mikolov et al., 2013b). Hashimoto et al. (2014) introduced an alternative word embedding

and compositional model based on predicate-argument structures that does well on two

simple composition tasks, including the one introduced by Mitchell and Lapata (2010).

An alternative approach to composition, used by Socher et al. (2011), is to train a re-

cursive neural network (RNN) whose structure is defined by a binarized parse tree. In

particular, they trained their RNN as an unsupervised autoencoder. The RNN captures

the latent structure of composition. Recent work has shown that this model struggles in

tasks involving compositionality (Blacoe and Lapata, 2012; Hashimoto et al., 2014).3 How-

ever, we found success using RNNs in a supervised setting, similar to Socher et al. (2014),

who used RNNs to learn representations for image descriptions. The objective function we

used in this work was motivated by their multimodal objective function for learning joint

image-sentence representations.

2 available on the authors’ websites
3 We also replicated this approach and found training to be time-consuming even using low-dimensional word

vectors.
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Lastly, the PPDB has been used along with other resources to learn word embeddings for

several tasks, including semantic similarity, language modeling, predicting human judg-

ments, and classification (Yu and Dredze, 2014; Faruqui et al., 2015). Concurrently with

our work, it has also been used to construct paraphrase models for short phrases (Yu and

Dredze, 2015).

3.3 new paraphrase datasets

We created two novel datasets: (1) Annotated-PPDB, a subset of phrase pairs from PPDB

which are annotated according to how strongly they represent a paraphrase relationship,

and (2) ML-Paraphrase, a re-annotation of the bigram similarity dataset from Mitchell and

Lapata (2010), again annotated for strength of paraphrase relationship.

3.3.1 Annotated-PPDB

Our motivation for creating Annotated-PPDB was to establish a way to evaluate composi-

tional paraphrase models on short phrases. Most existing paraphrase tasks focus on words,

like SimLex-999 (Hill et al., 2015), or entire sentences, such as the Microsoft Research Para-

phrase Corpus (Dolan et al., 2004; Quirk et al., 2004). To our knowledge, there are no

datasets that focus on the paraphrasability of short phrases. Thus, we created Annotated-

PPDB so that researchers can focus on local compositional phenomena and measure the

performance of models directly—avoiding the need to do so indirectly in a sentence-level

task. Models that have strong performance on Annotated-PPDB can be used to provide

more accurate confidence scores for the paraphrases in the PPDB as well as reduce the

need for large paraphrase tables altogether.

Annotated-PPDB was created in a multi-step process (outlined below) involving various

automatic filtering steps followed by crowdsourced human annotation. One of the aims

for our dataset was to collect a variety of paraphrase types—we wanted to include pairs

that were non-trivial to recognize as well as those with a range of similarity and length.

We focused on phrase pairs with limited lexical overlap to avoid including those with only

trivial differences.
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We started with candidate phrases extracted from the first 10M pairs in the XXL version

of the PPDB and then executed the following steps.4

Filter phrases for quality: Only those phrases whose tokens were in our vocabulary were

retained.5 Next, all duplicate paraphrase pairs were removed; in PPDB, these are distinct

pairs that contain the same two phrases with the order swapped.

Filter by lexical overlap: Next, we calculated the word overlap score in each phrase pair and

then retained only those pairs that had a score of less than 0.5. By word overlap score, we

mean the fraction of tokens in the smaller of the phrases with Levenshtein distance 6 1 to

a token in the larger of the phrases. This was done to exclude less interesting phrase pairs

like 〈my dad had, my father had〉 or 〈ballistic missiles, of ballistic missiles〉 that only differ in a

synonym or the addition of a single word.

Select range of paraphrasabilities: To balance our dataset with both clear paraphrases and

erroneous pairs in PPDB, we sampled 5,000 examples from ten chunks of the first 10M

initial phrase pairs where a chunk is defined as 1M phrase pairs.

Select range of phrase lengths: We then selected 1,500 phrases from each 5000-example

sample that encompassed a wide range of phrase lengths. To do this, we first binned the

phrase pairs by their effective size. Let n1 be the number of tokens of length greater than one

character in the first phrase and n2 the same for the second phrase. Then the effective size is

defined as max(n1,n2). The bins contained pairs of effective size of 3, 4, and 5 or more, and

500 pairs were selected from each bin. This gave us a total of 15,000 phrase pairs.

Prune to 3,000: 3,000 phrase pairs were then selected randomly from the 15,000 remaining

pairs to form an initial dataset, Annotated-PPDB-3K. The phrases were selected so that

every phrase in the dataset was unique.

Annotate with Mechanical Turk: The dataset was then rated on a scale from 1-5 using

Amazon Mechanical Turk, where a score of 5 denoted phrases that are equivalent in a large

number of contexts, 3 meant that the phrases had some overlap in meaning, and 1 indicated

that the phrases were dissimilar or contradictory in some way (e.g., can not adopt and is able

to accept).

We only permitted workers whose location was in the United States and who had done

at least 1,000 HITS with a 99% acceptance rate. Each example was labeled by 5 annotators

and their scores were averaged to produce the final rating. Table 2 shows some statistics of

4 Note that the confidence scores for phrase pairs in PPDB are based on a weighted combination of features
with weights determined heuristically. The confidence scores were used to place the phrase pairs into their
respective sets (S, M, L, XL, XXL, etc.), where each larger set subsumes all smaller ones.

5 Throughout, our vocabulary is defined as the most common 100K word types in English Wikipedia, following
tokenization and lowercasing (see section 3.5).
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Score Range MD % of Data

[1, 2) 0.66 8.1
[2, 3) 1.05 20.0
[3, 4) 0.93 34.9
[4, 5] 0.59 36.9

Table 2: An analysis of Annotated-PPDB-3K extracted from PPDB. The statistics shown are for the
splits of the data according to the average score by workers. MD denotes mean deviation
and % of Data refers to the percentage of our dataset that fell into each range.

the data. Overall, the annotated data had a mean deviation (MD)6 of 0.80. Table 2 shows

that overall, workers found the phrases to be of high quality, as more than two-thirds of

the pairs had an average score of at least 3. Also from the Table, we can see that workers

had stronger agreement on very low and very high quality pairs and were less certain in

the middle of the range.

Prune to 1,260: To create our final dataset, Annotated-PPDB, we selected 1,260 phrase pairs

from the 3,000 annotations. We did this by first binning the phrases into 3 categories: those

with scores in the interval [1, 2.5), those with scores in the interval [2.5, 3.5], and those with

scores in the interval (3.5, 5]. We took the 420 phrase pairs with the lowest MD in each bin,

as these have the most agreement about their label, to form Annotated-PPDB.

These 1,260 examples were then randomly split into a development set of 260 examples

and a test set of 1,000 examples. The development set had an MD of 0.61 and the test set

had an MD of 0.60, indicating the final dataset had pairs of higher agreement than the

initial 3,000.

3.3.2 ML-Paraphrase

Our second newly-annotated dataset, ML-Paraphrase, is based on the bigram similarity task

originally introduced by Mitchell and Lapata (2010); we refer to the original annotations as

the ML dataset.

The ML dataset consists of human similarity ratings for three types of bigrams: adjective-

noun (JN), noun-noun (NN), and verb-noun (VN). Through manual inspection, we found

that the annotations were not consistent with the notion of similarity central to paraphrase

tasks. For instance, television set and television programme were the highest rated phrases in

the NN section (based on average annotator score). Similarly, one of the highest ranked JN

6 MD is similar to standard deviation, but uses absolute value instead of squared value and thus is both more
intuitive and less sensitive to outliers.
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pairs was older man and elderly woman. This indicates that the annotations reflect topical

similarity in addition to capturing functional or definitional similarity.

Therefore, we had the data re-annotated by two authors of this paper who are native En-

glish speakers.7 The bigrams were labeled on a scale from 1-5 where 5 denotes phrases that

are equivalent in a large number of contexts, 3 indicates the phrases are roughly equivalent

in a narrow set of contexts, and 1 means the phrases are not at all equivalent in any context.

Following annotation, we collapsed the rating scale by merging 4s and 5s together and 1s

and 2s together.

Data IA ρ IA κ ML comp. ρ ML Human ρ

JN 0.87 0.79 0.56 0.52

NN 0.64 0.58 0.38 0.49

VN 0.73 0.73 0.55 0.55

Table 3: Inter-annotator agreement of ML-Paraphrase and comparison with ML dataset. Columns
2 and 3 show the inter-annotator agreement between the two annotators measured with
Spearman ρ and Cohen’s κ. Column 4 shows the ρ between ML-Paraphrase and all of the
ML dataset. The last column is the average human ρ on the ML dataset.

Statistics for the data are shown in Table 3. We show inter-annotator Spearman ρ and

Cohen’s κ in columns 2 and 3, indicating substantial agreement on the JN and VN portions

but only moderate agreement on NN. In fact, when evaluating our NN annotations against

those from the original ML data (column 4), we find ρ to be 0.38, well below the average hu-

man correlation of 0.49 (final column) reported by Mitchell and Lapata and also surpassed

by pointwise multiplication (Mitchell and Lapata, 2010). This suggests that the original NN

portion, more so than the others, favored a notion of similarity more related to association

than paraphrase.

3.4 paraphrase models

We now present parametric paraphrase models and discuss training. Our goal is to embed

phrases into a low-dimensional space such that cosine similarity in the space corresponds

to the strength of the paraphrase relationship between phrases.

We use a recursive neural network (RNN) similar to that used by Socher et al. (2014).

We first use a constituent parser to obtain a binarized parse of a phrase. For phrase p, we

compute its vector g(p) through recursive computation on the parse. That is, if phrase p is

7 We tried using Mechanical Turk here, but due to such short phrases, with few having the paraphrase relation-
ship, workers did not perform well on the task.
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the yield of a parent node in a parse tree, and phrases c1 and c2 are the yields of its two

child nodes, we define g(p) recursively as follows:

g(p) = f(W[g(c1);g(c2)] + b)

where f is an element-wise activation function (tanh), [g(c1);g(c2)] ∈ R2n is the concatena-

tion of the child vectors, W ∈ Rn×2n is the composition matrix, b ∈ Rn is the offset, and n

is the dimensionality of the word embeddings. If node p has no children (i.e., it is a single

token), we define g(p) =W(p)
w , where Ww is the word embedding matrix in which particu-

lar word vectors are indexed using superscripts. The trainable parameters of the model are

W, b, and Ww.

3.4.1 Objective Functions

We now present objective functions for training on pairs extracted from PPDB. The training

data consists of (possibly noisy) pairs taken directly from the original PPDB. In subsequent

sections, we discuss how we extract training pairs for particular tasks.

We assume our training data consists of a set X of phrase pairs 〈x1, x2〉, where x1 and x2

are assumed to be paraphrases. To learn the model parameters (W,b,Ww), we minimize

our objective function over the data using AdaGrad (Duchi et al., 2011) with mini-batches.

The objective function follows:

min
W,b,Ww

1

|X|

( ∑
〈x1,x2〉∈X

max(0, δ− g(x1) · g(x2) + g(x1) · g(t1))

+ max(0, δ− g(x1) · g(x2) + g(x2) · g(t2))
)

+ λW(‖W‖2 + ‖b‖2) + λWw

∥∥Wwinitial −Ww
∥∥2

where λW and λWw
are regularization parameters, Wwinitial is the initial word embedding

matrix, δ is the margin (set to 1 in all of our experiments), and t1 and t2 are carefully-

selected negative examples taken from a mini-batch during optimization.

The intuition for this objective is that we want the two phrases to be more similar to

each other (g(x1) · g(x2)) than either is to their respective negative examples t1 and t2, by

a margin of at least δ.
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selecting negative examples To select t1 and t2 in Eq. 3.4.1, we simply chose the

most similar phrase in the mini-batch (other than those in the given phrase pair). E.g., for

choosing t1 for a given 〈x1, x2〉:

t1 = argmax
t:〈t,·〉∈Xb\{〈x1,x2〉}

g(x1) · g(t)

where Xb ⊆ X is the current mini-batch. That is, we want to choose a negative example

ti that is similar to xi according to the current model parameters. The downside of this

approach is that we may occasionally choose a phrase ti that is actually a true paraphrase

of xi. We also tried a strategy in which we selected the least similar phrase that would

trigger an update (i.e., g(ti) · g(xi) > g(x1) · g(x2) − δ), but we found the simpler strategy

above to work better and used it for all experiments reported below.

discussion The objective in Eq. 3.4.1 is similar to one used by Socher et al. (2014),

but with several differences. Their objective compared text and projected images. They also

did not update the underlying word embeddings; we do so here, and in a way such that

they are penalized from deviating from their initialization. Also for a given 〈x1, x2〉, they

do not select a single t1 and t2 as we do, but use the entire training set, which can be very

expensive with a large training dataset.

We also experimented with a simpler objective that sought to directly minimize the

squared L2-norm between g(x1) and g(x2) in each pair, along with the same regularization

terms as in Eq. 3.4.1. One problem with this objective function is that the global minimum

is 0 and is achieved simply by driving the parameters to 0. We obtained much better results

using the objective in Eq. 3.4.1.

training word paraphrase models To train just word vectors on word para-

phrase pairs (again from PPDB), we used the same objective function as above, but simply

dropped the composition terms. This gave us an objective that bears some similarity to the

skip-gram objective with negative sampling in word2vec (Mikolov et al., 2013a). Both seek
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to maximize the dot products of certain word pairs while minimizing the dot products of

others. This objective function is:

min
Ww

1

|X|

( ∑
〈x1,x2〉∈X

max(0, δ−W(x1)
w ·W(x2)

w

+W
(x1)
w ·W(t1)

w ) + max(0, δ−W(x1)
w ·W(x2)

w +

W
(x2)
w ·W(t2)

w )

)
+ λWw

∥∥Wwinitial −Ww
∥∥2

It is like Eq. 3.4.1 except with word vectors replacing the RNN composition function and

with the regularization terms on the W and b removed.

We further found we could improve this model by incorporating constraints. From our

training pairs, for a given word w, we assembled all other words that were paired with it

in PPDB and all of their lemmas. These were then used as constraints during the pairing

process: a word t could only be paired with w if it was not in its list of assembled words.

3.5 experiments – word paraphrasing

We first present experiments on learning lexical paraphrasability. We train on word pairs

from PPDB and evaluate on the SimLex-999 dataset (Hill et al., 2015), achieving the best

results reported to date.

3.5.1 Training Procedure

To learn word vectors that reflect paraphrasability, we optimized Eq. 3.4.1. There are many

tunable hyperparameters with this objective, so to make training tractable we fixed the

initial learning rates for the word embeddings to 0.5 and the margin δ to 1. Then we did

a coarse grid search over a parameter space for λWw
and the mini-batch size. We consid-

ered λWw
values in {10−2, 10−3, ..., 10−7, 0} and mini-batch sizes in {100, 250, 500, 1000}. We

trained for 20 epochs for each set of hyperparameters using AdaGrad (Duchi et al., 2011).

For all experiments, we initialized our word vectors with skip-gram vectors trained using

word2vec (Mikolov et al., 2013a). The vectors were trained on English Wikipedia (tokenized

and lowercased, yielding 1.8B tokens).8 We used a window size of 5 and a minimum count

cut-off of 60, producing vectors for approximately 270K word types. We retained vectors for

8 We used the December 2, 2013 snapshot.
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only the 100K most frequent words, averaging the rest to obtain a single vector for unknown

words. We will refer to this set of the 100K most frequent words as our vocabulary.

3.5.2 Extracting Training Data

For training, we extracted word pairs from the lexical XL section of PPDB. We used the XL

data for all experiments, including those for phrases. We used XL instead of XXL because

XL has better quality overall while still being large enough so that we could be selective

in choosing training pairs. There are a total of 548,085 pairs. We removed 174,766 that

either contained numerical digits or words not in our vocabulary. We then removed 260,425

redundant pairs, leaving us with a final training set of 112,894 word pairs.

3.5.3 Tuning and Evaluation

Hyperparameters were tuned using the wordsim-353 (WS353) dataset (Finkelstein et al.,

2001), specifically its similarity (WS-S) and relatedness (WS-R) partitions (Agirre et al.,

2009). In particular, we tuned to maximize 2×WS-S correlation minus the WS-R correla-

tion. The idea was to reward vectors with high similarity and relatively low relatedness, in

order to target the paraphrase relationship.

After tuning, we evaluated the best hyperparameters on the SimLex-999 (SL999) dataset (Hill

et al., 2015). We chose SL999 as our primary test set as it most closely evaluates the para-

phrase relationship. Even though WS-S is a close approximation to this relationship, it does

not include pairs that are merely associated and assigned low scores, which SL999 does

(see discussion in Hill et al., 2014b).

Note that for all experiments we used cosine similarity as our similarity metric and

evaluated the statistical significance of dependent correlations using the one-tailed method

of (Steiger, 1980).

3.5.4 Results

Table 4 shows results on SL999 when improving the initial word vectors by training on

word pairs from PPDB, both with and without constraints. The “paragram WS” rows show

results when tuning to maximize 2×WS-S − WS-R. We also show results for strong skip-



3.5 experiments – word paraphrasing 40

Model n SL999 ρ

skip-gram 25 0.21

skip-gram 1000 0.38

paragram WS 25 0.56
∗

+ constraints 25 0.58∗

Hill et al. (2015) 200 0.446

Hill et al. (2014b) - 0.52

inter-annotator agreement N/A 0.67

Table 4: Results on the SimLex-999 (SL999) word similarity task obtained by performing hyperpa-
rameter tuning based on 2×WS-S −WS-R and treating SL999 as a held-out test set. n is
word vector dimensionality. A ∗ indicates statistical significance (p < 0.05) over the 1000-
dimensional skip-gram vectors.

gram baselines and the best results from the literature, including the state-of-the-art results

from Hill et al. (2014b) as well as the inter-annotator agreement from Hill et al. (2015).9

The table illustrates that, by training on PPDB, we can surpass the previous best cor-

relations on SL999 by 4-6% absolute, achieving the best results reported to date. We also

find that we can train low-dimensional word vectors that exceed the performance of much

larger vectors. This is very useful as using large vectors can increase both time and memory

consumption in NLP applications.

To generate word vectors to use for downstream applications, we chose hyperparame-

ters so as to maximize performance on SL999.10 These word vectors, which we refer to as

paragram vectors, had a ρ of 0.57 on SL999. We use them as initial word vectors for the

remainder of the paper.

3.5.5 Sentiment Analysis

As an extrinsic evaluation of our paragram word vectors, we used them in a convolutional

neural network (CNN) for sentiment analysis. We used the simple CNN from Kim (2014)

and the binary sentence-level sentiment analysis task from Socher et al. (2013). We used

the standard data splits, removing examples with a neutral rating. We trained on all con-

stituents in the training set while only using full sentences from development and test,

giving us train/development/test sizes of 67,349/872/1,821.

The CNN uses m-gram filters, each of which is an m× n vector. The CNN computes

the inner product between an m-gram filter and each m-gram in an example, retaining the

maximum match (so-called “max-pooling”). The score of the match is a single dimension in

9 Hill et al. (2014b) did not report the dimensionality of the vectors that led to their state-of-the-art results.
10 We did not use constraints during training.
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word vectors n accuracy (%)

skip-gram 25 77.0
skip-gram 50 79.6

paragram 25 80.9

Table 5: Test set accuracies when comparing embeddings in a static CNN on the binary sentiment
analysis task from Socher et al. (2013).

a feature vector for the example, which is then associated with a weight in a linear classifier

used to predict positive or negative sentiment.

While Kim (2014) used m-gram filters of several lengths, we only used unigram filters.

We also fixed the word vectors during learning (called “static” by Kim). After learning, the

unigram filters correspond to locations in the fixed word vector space. The learned classifier

weights represent how strongly each location corresponds to positive or negative sentiment.

We expect this static CNN to be more effective if the word vector space separates positive

and negative sentiment.

In our experiments, we compared baseline skip-gram embeddings to our paragram vec-

tors. We used AdaGrad learning rate of 0.1, mini-batches of size 10, and a dropout rate of

0.5. We used 200 unigram filters and rectified linear units as the activation (applied to the

filter output + filter bias). We trained for 30 epochs, predicting labels on the development

set after each set of 3,000 examples. We recorded the highest development accuracy and

used those parameters to predict labels on the test set.

Results are shown in Table 5. We see improvements over the baselines when using para-

gram vectors, even exceeding the performance of higher-dimensional skip-gram vectors.

3.5.6 Scaling up to 300 Dimensions

Increasing the dimension of word embeddings or training them on more data can have

a significant positive impact on many tasks—both at the word level and on downstream

tasks. We scaled up our original 25-dimensional paragram embeddings and modified our

training procedure slightly in order to produce two sets of 300-dimensional paragram

vectors.11 The vectors outperform our original 25-dimensional paragram vectors on all

tasks and achieve human-level performance on SL999 and WS353. Moreover, when simply

using vector addition as a compositional model, they are both on par with the RNN models

we trained specifically for each task. These results can be seen in Tables 12, 13, and 6.

11 Both paragram
300,WS353

and paragram
300,SL999

vectors can be found on the authors’ websites.
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Model

word vectors n comp. Annotated-PPDB

GloVe 300 + 0.27

paragram
300,WS353

300 + 0.43

paragram
300,SL999

300 + 0.41

Table 6: Evaluation of 300 dimensional paragram vectors on Annotated-PPDB.

The main modification was to use higher-dimensional initial embeddings, in our case

the pretrained 300-dimensional GloVe embeddings.12 Since PPDB only contains lowercased

words, we extracted only one GloVe vector per word type (regardless of case) by taking the

first occurrence of each word in the vocabulary. This is the vector for the most common

casing of the word, and was used as the word’s single initial vector in our experiments.

This reduced the vocabulary from the original 2.2 million types to 1.7 million.

Smaller changes included replacing dot product with cosine similarity in Equation 3.4.1

and a change to the negative sampling procedure. We experimented with three approaches:

MAX sampling discussed in Section 3.4.1, RAND sampling which is random sampling from

the batch, and a 50/50 mixture of MAX sampling and RAND sampling.

For training data, we selected all word pairs in the lexical portion of PPDB XL that were

in our vocabulary, removing redundancies. This resulted in 169,591 pairs for training. We

trained our models for 10 epochs and tuned hyperparameters (batch size, λWw
, δ, and

sampling method) in two ways: maximum correlation on WS353 (paragram300,WS353) and

maximum correlation on SL999 (paragram300,SL999).13 We report results for both sets of

embeddings in Tables 12, 13, and 6, and make both available to the community in the hope

that they may be useful for other downstream tasks.

3.6 experiments – compositional paraphrasing

In this section, we describe experiments on a variety of compositional phrase-based para-

phrasing tasks. We start with the simplest case of bigrams, and then proceed to short

phrases. For all tasks, we again train on appropriate data from PPDB and test on various

evaluation datasets, including our two novel datasets (Annotated-PPDB and ML-Paraphrase).

12 We used the GloVe vectors trained on 840 billion tokens of Common Crawl data, available at http://nlp.
stanford.edu/projects/glove/

13 Note that if we use the approach in Section 3.5.3 in which we tune to maximize 2×WS-S correlation minus the
WS-R correlation, the SL999 ρ is 0.640, still higher than any other reported result to the best of our knowledge.

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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3.6.1 Training Procedure

We trained our models by optimizing Eq. 3.4.1 using AdaGrad (Duchi et al., 2011). We

fixed the initial learning rates to 0.5 for the word embeddings and 0.05 for the composition

parameters, and the margin to 1. Then we did a coarse grid search over a parameter space

for λWw
, λW , and mini-batch size.

For λWw
, our search space again consisted of {10−2, 10−3, ..., 10−7, 0}, for λW it was

{10−1, 10−2, 10−3, 0}, and we explored batch sizes of {100, 250, 500, 1000, 2000}. When

initializing with paragram vectors, the search space for λWw
was shifted upwards to

be {10, 1, 10−1, 10−3, ..., 10−6} to reflect our increased confidence in the initial vectors. We

trained only for 5 epochs for each set of parameters. For baselines, we used the same initial

skip-gram vectors as in Section 3.5.

3.6.2 Evaluation and Baselines

For all experiments, we again used cosine similarity as our similarity metric and evaluated

the statistical significance using the method of (Steiger, 1980).

A baseline used in all compositional experiments is vector addition of skip-gram (or

paragram) word vectors. Unlike explicit word vectors, where point-wise multiplication

acts as a conjunction of features and performs well on composition tasks (Mitchell and

Lapata, 2008), using addition with skip-gram vectors (Mikolov et al., 2013b) gives better

performance than multiplication.

3.6.3 Bigram Paraphrasability

To evaluate our ability to paraphrase bigrams, we consider the original bigram similarity

task from Mitchell and Lapata (2010) as well as our newly-annotated version of it: ML-

Paraphrase.

extracting training data Training data for these tasks was extracted from the XL

portion of PPDB. The bigram similarity task from Mitchell and Lapata (2010) contains three

types of bigrams: adjective-noun (JN), noun-noun (NN), and verb-noun (VN). We aimed to

collect pairs from PPDB that mirrored these three types of bigrams.
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Model Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n comp. JN NN VN Avg JN NN VN Avg

skip-gram 25 + 0.36 0.44 0.36 0.39 0.32 0.35 0.42 0.36

paragram 25 + 0.44
∗

0.34 0.48
∗

0.42 0.50
∗

0.29 0.58∗‡ 0.46

paragram 25 RNN 0.51∗† 0.40
† 0.50∗‡ 0.47 0.57∗‡ 0.44† 0.55

∗ 0.52

Hashimoto et al. (2014) 0.49 0.45 0.46 0.47 0.38 0.39 0.45 0.41

Mitchell and Lapata (2010) 0.46 0.49 0.38 0.44 - - - -

Human - - - - 0.87 0.64 0.73 0.75

Table 7: Results on the test section of the bigram similarity task of Mitchell and Lapata (2010) and
our newly annotated version (ML-Paraphrase). (n) shows the word vector dimensionality
and (“comp.”) shows the composition function used: “+” is vector addition and “RNN” is
the recursive neural network. The * indicates statistically significant (p < 0.05) over the
skip-gram model, † statistically significant over the {paragram, +} model, and ‡ statistically
significant over Hashimoto et al. (2014).

We found parsing to be unreliable on such short segments of text, so we used a POS

tagger (Manning et al., 2014) to tag the tokens in each phrase. We then used the word

alignments in PPDB to extract bigrams for training. For JN and NN, we extracted pairs

containing aligned, adjacent tokens in the two phrases with the appropriate part-of-speech

tag. Thus we extracted pairs like 〈easy job, simple task〉 for the JN section and 〈town meeting,

town council〉 for the NN section. We used a different strategy for extracting training data

for the VN subset: we took aligned VN tokens and took the closest noun after the verb.

This was done to approximate the direct object that would have been ideally extracted with

a dependency parse. An example from this section is 〈achieve goal, achieve aim〉.

We removed phrase pairs that (1) contained words not in our vocabulary, (2) were re-

dundant with others, (3) contained brackets, or (4) had Levenshtein distance 6 1. The final

criterion helps to ensure that we train on phrase pairs with non-trivial differences. The final

training data consisted of 133,997 JN pairs, 62,640 VN pairs and 35,601 NN pairs.

baselines In addition to RNN models, we report baselines that use vector addition

as the composition function, both with our skip-gram embeddings and paragram embed-

dings from Section 3.5.

We also compare to several results from prior work. When doing so, we took their best

correlations for each data subset. That is, the JN and NN results from Mitchell and Lapata

(2010) use their multiplicative model and the VN results use their dilation model. From

Hashimoto et al. (2014) we used their PAS-CLBLM Addl and PAS-CLBLM Addnl models.

We note that their vector dimensionalities are larger than ours, using n = 2000 and 50

respectively.
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results Results are shown in Table 7. We report results on the test portion of the orig-

inal Mitchell and Lapata (2010) dataset (ML) as well as the entirety of our newly-annotated

dataset (ML-Paraphrase). RNN results on ML were tuned on the respective development

sections and RNN results on ML-Paraphrase were tuned on the entire ML dataset.

Our RNN model outperforms results from the literature on most sections in both datasets

and its average correlations are among the highest.14 The one subset of the data that posed

difficulty was the NN section of the ML dataset. We suspect this is due to the reasons

discussed in Section 3.3.2; for our ML-Paraphrase dataset, by contrast, we do see gains on

the NN section.

We also outperform the strong baseline of adding 1000-dimensional skip-gram embed-

dings, a model with 40 times the number of parameters, on our ML-Paraphrase dataset.

This baseline had correlations of 0.45, 0.43, and 0.47 on the JN, NN, and VN partitions,

with an average of 0.45—below the average ρ of the RNN (0.52) and even the {paragram,

+} model (0.46).

Interestingly, the type of vectors used to initialize the RNN has a significant effect on

performance. If we initialize using the 25-dimensional skip-gram vectors, the average ρ on

ML-Paraphrase drops to 0.43, below even the {paragram, +} model.

3.6.4 Phrase Paraphrasability

In this section we show that by training a model based on filtered phrase pairs in PPDB, we

can actually distinguish between quality paraphrases and poor paraphrases in PPDB better

than the original heuristic scoring scheme from Ganitkevitch et al. (2013).

extracting training data As before, training data was extracted from the XL sec-

tion of PPDB. Similar to the procedure to create our Annotated-PPDB dataset, phrases were

filtered such that only those with a word overlap score of less than 0.5 were kept. We also

removed redundant phrases and phrases that contained tokens not in our vocabulary. The

phrases were then binned according to their effective size and 20,000 examples were selected

from bins of effective sizes of 3, 4, and more than 5, creating a training set of 60,000 ex-

amples. Care was taken to ensure that none of our training pairs was also present in our

development and test sets.

14 The results obtained here differ from those reported in Hashimoto et al. (2014) as we scored their vectors with
a newer Python implementation of Spearman ρ that handles ties (Hashimoto, P.C.).
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baselines We compare our models with strong lexical baselines. The first, strict word

overlap, is the percentage of words in the smaller phrase that are also in the larger phrase.

We also include a version where the words are lemmatized prior to the calculation.

We also train a support vector regression model (epsilon-SVR) (Chang and Lin, 2011) on

the 33 features that are included for each phrase pair in PPDB. We scaled the features such

that each lies in the interval [−1, 1] and tuned the parameters using 5-fold cross validation

on our dev set.15 We then trained on the entire dev set after finding the best performing C

and ε combination and evaluated on the test set of Annotated-PPDB.

Model
word vectors n comp. Annotated-PPDB

skip-gram 25 + 0.20

paragram 25 + 0.32
∗

paragram 25 RNN 0.40∗†‡

Ganitkevitch et al. (2013) 0.25

word overlap (strict) 0.26

word overlap (lemmatized) 0.20

PPDB+SVR 0.33

Table 8: Spearman correlation on Annotated-PPDB. The * indicates statistically significant (p < 0.05)
over the skip-gram model, the † indicates statistically significant over the {paragram, +}
model, and the ‡ indicates statistically significant over PPDB+SVR.

results We evaluated on our Annotated-PPDB dataset described in section 3.3.1. Ta-

ble 8 shows the Spearman correlations on the 1000-example test set. RNN models were

tuned on the development set of 260 examples. All other methods had no hyperparameters

and therefore required no tuning.

We note that the confidence estimates from Ganitkevitch et al. (2013) reach a ρ of 0.25

on the test set, similar to the results of strict overlap. While 25-dimensional skip-gram

embeddings only reach 0.20, we can improve this to 0.32 by fine-tuning them using PPDB

(thereby obtaining our paragram vectors). By using the paragram vectors to initialize the

RNN, we reach a correlation of 0.40, which is better than the PPDB confidence estimates by

15% absolute.

We again consider addition of 1000-dimensional skip-gram embeddings as a baseline,

and they continue to perform strongly (ρ = 0.37). The RNN initialized with paragram

vectors does reach a higher ρ (0.40), but the difference is not statistically significant (p =

0.16). Thus we can achieve similarly-strong results with far fewer parameters.

15 We tuned both parameters over {2−10, 2−9, ..., 210}.
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This task also illustrates the importance of initializing our RNN model with appropriate

word embeddings. An RNN initialized with skip-gram vectors has a modest ρ of 0.22,

well below the ρ of the RNN initialized with paragram vectors. Clearly, initialization is

important when optimizing non-convex objectives like ours, but it is noteworthy that our

best results came from first improving the word vectors and then learning the composition

model, rather than jointly learning both from scratch.

3.7 qualitative analysis

Score Range + RNN

[1, 2) 2.35 2.08

[2, 3) 1.56 1.38

[3, 4) 0.87 0.85

[4, 5] 0.43 0.47

Table 9: Average absolute error of addition and RNN models on different ranges of gold scores.

Index Phrase 1 Phrase 2 Length Ratio Overlap Ratio Gold RNN +

1 scheduled to be held in that will take place in 1.0 0.4 4.6 2.9 4.4

2 according to the paper , the newspaper reported that 0.8 0.5 4.6 2.8 4.1

3 at no cost to without charge to 0.75 1.0 4.8 3.1 4.6

4 ’s surname family name of 0.67 1.0 4.4 2.8 4.1

5 could have an impact on may influence 0.4 0.5 4.6 4.2 3.2

6 to participate actively to play an active role 0.6 0.67 5.0 4.8 4.0

7 earliest opportunity early as possible 0.67 0.0 4.4 4.3 2.9

8 does not exceed is no more than 0.75 0.0 5.0 4.8 3.5

Table 10: Illustrative phrase pairs from Annotated-PPDB with gold similarity > 4. The last three
columns show the gold similarity score, the similarity score of the RNN model, and the
similarity score of vector addition. We note that addition performs better when the pairs
have high length ratio (rows 1–2) or overlap ratio (rows 3–4) while the RNN does better
when those values are low (rows 5–6 and 7–8 respectively). Boldface indicates smaller error
compared to gold scores.

We performed a qualitative analysis to uncover sources of error and determine differ-

ences between adding paragram vectors and using an RNN initialized with them. To do

so, we took the output of both systems on Annotated-PPDB and mapped their cosine simi-

larities to the interval [1, 5]. We then computed their absolute error as compared to the gold

ratings.

Table 9 shows how the average of these absolute errors changes with the magnitude of the

gold ratings. The RNN performs better (has lower average absolute error) for less similar

pairs. Vector addition only does better on the most similar pairs. This is presumably because
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the most positive pairs have high word overlap and so can be represented effectively with

a simpler model.

To further investigate the differences between these models, we removed those pairs with

gold scores in [2, 4], in order to focus on pairs with extreme scores. We identified two factors

that distinguished the performance between the two models: length ratio and the amount

of lexical overlap. We did not find evidence that non-compositional phrases, such as idioms,

were a source of error as these were not found in ML-Paraphrase and only appear rarely in

Annotated-PPDB.

We define length ratio as simply the number of tokens in the smaller phrase divided

by the number of tokens in the larger phrase. Overlap ratio is the number of equivalent

tokens in the phrase pair divided by the number of tokens in the smaller of the two phrases.

Equivalent tokens are defined as tokens that are either exact matches or are paired up in the

lexical portion of PPDB used to train the paragram vectors.

Table 11 shows how the performance of the models changes under different values of

length ratio and overlap ratio.16 The values in this table are the percentage changes in

absolute error when using the RNN over the paragram vector addition model. So negative

values indicate superior performance by the RNN.

Length Ratio [0, 0.6] (0.6, 0.8] (0.8, 1]

Positive Examples -22.4 10.0 35.5
Negative Examples -9.9 -11.1 -12.2

Both -13.0 -6.4 -2.0

Overlap Ratio [0,13 ] (13 ,23 ] (23 ,1]

Positive Examples -4.5 7.0 19.4
Negative Examples -11.3 -7.5 -15.0

Both -10.6 -5.3 0.0

Table 11: Comparison of the addition and RNN model on phrase pairs of different overlap and
length ratios. The values in the table are the percent change in absolute error from the ad-
dition model to the RNN model. Negative examples are defined as pairs from Annotated-
PPDB whose gold score is less than 2 and positive examples are those with scores greater
than 4. “Both” refers to both negative and positive examples.

A few trends emerge from this table. One is that as the length ratio increases (i.e., the

phrase pairs are closer in length), addition surpasses the RNN for positive examples. For

negative examples, the trend is reversed. The same trend appears for overlap ratio. Ex-

amples from Annotated-PPDB illustrating these trends on positive examples are shown in

Table 10.

16 The bin delimiters were chosen to be uniform over the range of output values of the length ratio ([0.4,1] with
one outlier data point removed) and overlap ratio ([0,1]).
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Model n SL999 WS353 WS-S WS-R

GloVe 300 0.376 0.579 0.630 0.571

paragram300,WS353 300 0.667 0.769 0.814 0.730
paragram300,SL999 300 0.685 0.720 0.779 0.652

inter-annotator agreement∗ N/A 0.67 0.756 N/A N/A

Table 12: Evaluation of 300 dimensional paragram vectors on SL999 and WS353. Note that the inter-
annotator agreement ρ was calculated differently for WS353 and SL999. For SL999, the
agreement was computed as the average pairwise correlation between pairs of annotators,
while for WS353, agreement was computed as the average correlation between a single
annotator with the average over all other annotators. If one uses the alternative measure of
agreement for WS353, the agreement is 0.611, which is easily beaten by automatic methods
(Hill et al., 2015).

Model Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n comp. JN NN VN Avg JN NN VN Avg

GloVe 300 + 0.40 0.46 0.37 0.41 0.39 0.36 0.45 0.40

paragram300,WS353 300 + 0.52 0.41 0.49 0.48 0.55 0.42 0.55 0.51

paragram300,SL999 300 + 0.51 0.36 0.51 0.46 0.57 0.39 0.59 0.52

Table 13: Evaluation of 300 dimensional paragram vectors on the bigram tasks.

When considering both positive and negative examples (“Both”), we see that the RNN

excels on the most difficult examples (large differences in phrase length and less lexical

overlap). For easier examples, the two fare similarly overall (-2.0 to 0.0% change), but the

RNN does much better on negative examples. This aligns with the intuition that addition

should perform well when two paraphrastic phrases have high lexical overlap and simi-

lar length. But when they are not paraphrases, simple addition is misled and the RNN’s

learned composition function better captures the relationship. This may suggest new archi-

tectures for modeling compositionality differently depending on differences in length and

amount of overlap.

3.8 conclusion

We have shown how to leverage PPDB to learn state-of-the-art word embeddings and com-

positional models for paraphrase tasks. Since PPDB was created automatically from parallel

corpora, our models are also built automatically. Only small amounts of annotated data are

used to tune hyperparameters.

We also introduced two new datasets to evaluate compositional models of short para-

phrases, filling a gap in the NLP community, as currently there are no datasets created for

this purpose. Successful models on these datasets can then be used to extend the coverage

of, or provide an alternative to, PPDB.
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There remains a great deal of work to be done in developing new composition models,

whether with new network architectures or distance functions. In this work, we based our

composition function on constituent parse trees, but this may not be the best approach—

especially for short phrases. Dependency syntax may be a better alternative (Socher et al.,

2014). Besides improving composition, another direction to explore is how to use models

for short phrases in sentence-level paraphrase recognition and other downstream tasks.



4
PA R A G R A M S E N T E N C E R E P R E S E N TAT I O N S D E F I N E D A N D

E X P L O R E D

In this chapter, we discuss our first models for learning paraphrastic representations. This

chapter encompasses work that has appeared in three papers: (Wieting et al., 2015, 2016b,a).

While (Wieting et al., 2015), is not discussed in detail in this chapter, a lot of the work

in this paper formed the backbone of this thesis. In this work, we find that state-of-the-art

phrase embeddings could be learned by using text snippets from the Paraphrase Database

(PPDB) (Ganitkevitch et al., 2013) as training data. PPDB is created by bilingual pivot-

ing (Bannard and Callison-Burch, 2005) on parallel bitext, where two text snippets are

paraphrases when they align to the same snippet in another language. While the recur-

sive RNN (Socher et al., 2011) architecture in this paper was overly complicated (which is

shown in later papers), we laid the groundwork with a focus on paraphrastic similarity, our

training strategy, and our proposed objective function. We use the term paraphrastic simi-

larity to distinguish it from other types of similarity which were largely inter-mixed at the

time - specifically separating the notion of relatedness from paraphrastic where relatedness

refers to words that appear in similar contexts (table and chair) while paraphrastic refers to

words that could be paraphrases in some context (chair and seat). One other important con-

tribution from that paper were paragram word embeddings. These significantly surpassed

the state-of-the-art word embedding approaches for measuring similarity and are even the

basis for state-of-the-art models today.

In (Wieting et al., 2016b). we extended (Wieting et al., 2015) to learn sentence embeddings.

Our primary evaluation was on a suite of semantic textual similarity (STS) datasets but we

also follow the setting of (Kiros et al., 2015) and show that we can rival their performance

with our simpler model. This is also the first paper to use these suite of tasks as an evalu-

ation approach for sentence embeddings, which has become a standard. We experimented

with a wide variety of encoding architectures, and we fount that the simplest approach,

averaging word embeddings, to be the most effective and are able to surpass the vast ma-

jority of proposed STS systems despite being unsupervised. This was a surprising result,

considering LSTM (Hochreiter and Schmidhuber, 1997) were setting new state-of-the-arts

51
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for many problems in natural language processing. In this paper, we analyzed some hy-

potheses to explain these results, finding that the reason wasn’t due to length, over-fitting,

or insufficient parameter tuning. LSTMs (and deeper architectures in general) can work

well on this problem, but the training strategies need to change. This is further discussed

in Chapter 8 and Chapter 10.

Lastly, we discuss our charagram models for learning word and sentence representa-

tions. In these representations, we represent a character sequence by a vector containing

counts of character n-grams, inspired by Huang et al. (2013). This vector is embedded into

a low-dimensional space using a single nonlinear transformation. This can be interpreted

as learning embeddings of character n-grams, which are learned so as to produce effec-

tive sequence embeddings when a summation is performed over the character n-grams in

the sequence. We evaluate on three tasks: word similarity, sentence similarity, and part-of-

speech tagging and show that charagram outperforms character RNNs, character CNNs,

as well as paragram embeddings. We find that modelling subwords yields large gains

in performance for rare words and can easily handle spelling variation, morphology, and

word choice.

4.1 introduction

Word embeddings have become ubiquitous in natural language processing (NLP). Several

researchers have developed and shared word embeddings trained on large datasets (Col-

lobert et al., 2011; Mikolov et al., 2013b; Pennington et al., 2014), and these have been used

effectively for many downstream tasks (Turian et al., 2010; Socher et al., 2011; Kim, 2014;

Bansal et al., 2014; Tai et al., 2015). There has also been recent work on creating representa-

tions for word sequences such as phrases or sentences. Many functional architectures have

been proposed to model compositionality in such sequences, ranging from those based on

simple operations like addition (Mitchell and Lapata, 2010; Yu and Dredze, 2015; Iyyer et al.,

2015) to those based on richly-structured functions like recursive neural networks (Socher

et al., 2011), convolutional neural networks (Kalchbrenner et al., 2014), and recurrent neu-

ral networks using long short-term memory (LSTM) (Tai et al., 2015). However, there is

little work on learning sentence representations that can be used across domains with the

same ease and effectiveness as word embeddings. In this chapter, we explore compositional

models that can encode arbitrary word sequences into a vector with the property that se-

quences with similar meaning have high cosine similarity, and that can, importantly, also
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transfer easily across domains. We consider six compositional architectures based on neu-

ral networks and train them on noisy phrase pairs from the Paraphrase Database (PPDB;

Ganitkevitch et al., 2013).

We consider models spanning the range of complexity from word averaging to LSTMs.

With the simplest word averaging model, there are no additional compositional parame-

ters. The only parameters are the word vectors themselves, which are learned to produce

effective sequence embeddings when averaging is performed over the sequence. We add

complexity by adding layers, leading to variants of deep averaging networks (Iyyer et al.,

2015). We next consider several recurrent network variants, culminating in LSTMs because

they have been found to be effective for many types of sequential data (Graves et al., 2008,

2013; Greff et al., 2015), including text (Sutskever et al., 2014; Vinyals et al., 2014; Xu et al.,

2015a; Hermann et al., 2015; Ling et al., 2015a; Wen et al., 2015).

To evaluate our models, we consider two tasks drawn from the same distribution as the

training data, as well as 22 SemEval textual similarity datasets from a variety of domains

(such as news, tweets, web forums, and image and video captions). Interestingly, we find

that the LSTM performs well on the in-domain task, but performs much worse on the out-of-

domain tasks. We discover surprisingly strong performance for the models based on word

averaging, which perform well on both the in-domain and out-of-domain tasks, beating

the best LSTM model by 16.5 Pearson’s r on average. Moreover, we find that learning word

embeddings in the context of vector averaging performs much better than simply averaging

pretrained, state-of-the-art word embeddings. Our average Pearson’s r over all 22 SemEval

datasets is 17.1 points higher than averaging GloVe vectors1 and 12.8 points higher than

averaging paragram-sl999 vectors.2

Our final sentence embeddings3 place in the top 25% of all submitted systems in every

SemEval STS task from 2012 through 2015, being best or tied for best on 4 of the datasets.4

This is surprising because the submitted systems were designed for those particular tasks,

with access to training and tuning data specifically developed for each task.

While the above experiments focus on transfer, we also consider the fully supervised set-

ting (Table 17). We compare the same suite of compositional architectures for three super-

vised NLP tasks: sentence similarity and textual entailment using the 2014 SemEval SICK

1 We used the publicly available 300-dimensional vectors that were trained on the 840 billion token Common
Crawl corpus, available at http://nlp.stanford.edu/projects/glove/.

2 These are 300-dimensional vectors from Chapter 3 and are available at https://www.cs.cmu.edu/~jwieting.
They give human-level performance on two commonly used word similarity datasets, WordSim353 (Finkelstein
et al., 2001) and Simlex-999 (Hill et al., 2015).

3 Denoted paragram-phrase-XXL and discussed in Section 4.4.3.
4 As measured by the average Pearson’s r over all datasets in each task; see Table 16.

http://nlp.stanford.edu/projects/glove/
https://www.cs.cmu.edu/~jwieting
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dataset (Marelli et al., 2014), and sentiment classification using the Stanford Sentiment Tree-

bank (Socher et al., 2013). We again find strong performance for the word averaging models

for both similarity and entailment, outperforming the LSTM. However, for sentiment clas-

sification, we see a different trend. The LSTM now performs best, achieving 89.2% on the

coarse-grained sentiment classification task. This result, to our knowledge, is the new state

of the art on this task.

We then demonstrate how to combine our PPDB-trained sentence embedding models

with supervised NLP tasks. We first use our model as a prior, yielding performance on

the similarity and entailment tasks that rivals the state of the art. We also use our sentence

embeddings as an effective black box feature extractor for downstream tasks, comparing

favorably to recent work (Kiros et al., 2015).

We release our strongest sentence embedding model, which we call paragram-phrase

XXL, to the research community.5 Since it consists merely of a new set of word embeddings,

it is extremely efficient and easy to use for downstream applications. Our hope is that this

model can provide a new simple and strong baseline in the quest for universal sentence

embeddings.

4.2 related work

Researchers have developed many ways to embed word sequences for NLP. They mostly

focus on the question of compositionality: given vectors for words, how should we create

a vector for a word sequence? (Mitchell and Lapata, 2008, 2010) considered bigram compo-

sitionality, comparing many functions for composing two word vectors into a single vector

to represent their bigram. Follow-up work by (Blacoe and Lapata, 2012) found again that

simple operations such as vector addition performed strongly. Many other compositional

architectures have been proposed. Some have been based on distributional semantics (Ba-

roni et al., 2014; Paperno et al., 2014; Polajnar et al., 2015; Tian et al., 2015), while the current

trend is toward development of neural network architectures. These include neural bag-of-

words models (Kalchbrenner et al., 2014), deep averaging networks (DANs) (Iyyer et al.,

2015), feature-weighted averaging (Yu and Dredze, 2015), recursive neural networks based

on parse structure (Socher et al., 2011, 2012, 2013; Irsoy and Cardie, 2014; Wieting et al.,

2015), recursive networks based on non-syntactic hierarchical structure (Zhao et al., 2015;

Chen et al., 2015b), convolutional neural networks (Kalchbrenner et al., 2014; Kim, 2014; Hu

5 Available at https://www.cs.cmu.edu/~jwieting.

https://www.cs.cmu.edu/~jwieting
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et al., 2014b; Yin and Schütze, 2015; He et al., 2015), and recurrent neural networks using

long short-term memory (Tai et al., 2015; Ling et al., 2015a; Liu et al., 2015). In this paper,

we compare six architectures: word averaging, word averaging followed by a single linear

projection, DANs, and three variants of recurrent neural networks, including LSTMs.6

Most of the work mentioned above learns compositional models in the context of su-

pervised learning. That is, a training set is provided with annotations and the composition

function is learned for the purposes of optimizing an objective function based on those

annotations. The models are then evaluated on a test set drawn from the same distribution

as the training set.

In this paper, in contrast, we are primarily interested in creating general purpose, do-

main independent embeddings for word sequences. There have been research efforts also

targeting this goal. One approach is to train an autoencoder in an attempt to learn the

latent structure of the sequence, whether it be a sentence with a parse tree (Socher et al.,

2011), or a longer sequence such as a paragraph or document (Li et al., 2015). Other recently

proposed methods, including paragraph vectors (Le and Mikolov, 2014) and skip-thought

vectors (Kiros et al., 2015), learn sequence representations that are predictive of words inside

the sequence or in neighboring sequences. These methods produce generic representations

that can be used to provide features for text classification or sentence similarity tasks. While

skip-thought vectors capture similarity in terms of discourse context, in this paper we are

interested in capturing paraphrastic similarity, i.e., whether two sentences have the same

meaning.

Our learning formulation draws from a large body of related work on learning input

representations in order to maximize similarity in the learned space (Weston et al., 2010; Yih

et al., 2011; Huang et al., 2013; Hermann and Blunsom, 2014; Socher et al., 2014; Faruqui and

Dyer, 2014; Bordes et al., 2014b,a; Lu et al., 2015), including our prior work in Chapter 3. We

focus our exploration here on modeling and keep the learning methodology mostly fixed,

though we do include certain choices about the learning procedure in our hyperparameter

tuning space for each model.

6 In prior work, we experimented with recursive neural networks on binarized parses of the PPDB (Chapter 3),
but we found that many of the phrases in PPDB are not sentences or even constituents, causing the parser to
have unexpected behavior.
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4.3 models and training

Our goal is to embed sequences into a low-dimensional space such that cosine similarity

in the space corresponds to the strength of the paraphrase relationship between the se-

quences. We experimented with six models of increasing complexity. The simplest model

embeds a word sequence x = 〈x1, x2, ..., xn〉 by averaging the vectors of its tokens. The only

parameters learned by this model are the word embedding matrix Ww:

gparagram-phrase(x) =
1

n

n∑
i

Wxi
w

where Wxi
w is the word embedding for word xi. We call the learned embeddings paragram-

phrase embeddings.

In our second model, we learn a projection in addition to the word embeddings:

gproj(x) =Wp

(
1

n

n∑
i

Wxi
w

)
+ b

where Wp is the projection matrix and b is a bias vector.

Our third model is the deep averaging network (DAN) of (Iyyer et al., 2015). This is a

generalization of the above models that typically uses multiple layers as well as nonlinear

activation functions. In our experiments below, we tune over the number of layers and

choice of activation function.

Our fourth model is a standard recurrent network (RNN) with randomly initialized

weight matrices and nonlinear activations:

ht = f(WxW
xt
w +Whht−1 + b)

gRNN(x) = h−1

where f is the activation function (either tanh or rectified linear unit; the choice is tuned),

Wx and Wh are parameter matrices, b is a bias vector, and h−1 refers to the hidden vector

of the last token.

Our fifth model is a special RNN which we call an identity-RNN. In the identity-RNN, the

weight matrices are initialized to identity, the bias is initialized to zero, and the activation is

the identity function. We divide the final output vector of the identity-RNN by the number

of tokens in the sequence. Thus, before any updates to the parameters, the identity-RNN
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simply averages the word embeddings. We also regularize the identity-RNN parameters to

their initial values. The idea is that, with high regularization, the identity-RNN is simply

averaging word embeddings. However, it is a richer architecture and can take into account

word order and hopefully improve upon the averaging baseline.

Our sixth and final model is the most expressive. We use long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997), a recurrent neural network (RNN) archi-

tecture designed to model sequences with long-distance dependencies. LSTMs have re-

cently been shown to produce state-of-the-art results in a variety of sequence processing

tasks (Chen et al., 2015a; Filippova et al., 2015; Xu et al., 2015c; Belinkov and Glass, 2015;

Wang and Nyberg, 2015). We use the version from (Gers et al., 2003) which has the follow-

ing equations:

it = σ (WxiW
xt
w +Whiht−1 +Wcict−1 + bi)

ft = σ (WxfW
xt
w +Whfht−1 +Wcfct−1 + bf)

ct = ftct−1 + it tanh (WxcW
xt
w +Whcht−1 + bc)

ot = σ (WxoW
xt
w +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

gLSTM(x) = h−1

where σ is the logistic sigmoid function. We found that the choice of whether or not to

include the output gate had a significant impact on performance, so we used two versions

of the LSTM model, one with the output gate and one without. For all models, we learn the

word embeddings themselves, denoting the trainable word embedding parameters by Ww.

We denote all other trainable parameters by Wc (“compositional parameters”), though the

paragram-phrase model has no compositional parameters. We initialize Ww using some

embeddings pretrained from large corpora.

4.3.1 Training

We mostly follow the approach of (Wieting et al., 2015). The training data consists of (pos-

sibly noisy) pairs taken directly from the original Paraphrase Database (PPDB) and we

optimize a margin-based loss.
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Our training data consists of a set X of phrase pairs 〈x1, x2〉, where x1 and x2 are assumed

to be paraphrases. The objective function follows:

min
Wc,Ww

1

|X|

( ∑
〈x1,x2〉∈X

max(0, δ− cos(g(x1),g(x2)) + cos(g(x1),g(t1)))

+max(0, δ− cos(g(x1),g(x2)) + cos(g(x2),g(t2)))
)

+λc ‖Wc‖2 + λw
∥∥Wwinitial −Ww

∥∥2
where g is the embedding function in use (e.g., gLSTM), δ is the margin, λc and λw are

regularization parameters, Wwinitial is the initial word embedding matrix, and t1 and t2

are carefully-selected negative examples taken from a mini-batch during optimization. The

intuition is that we want the two phrases to be more similar to each other (cos(g(x1),g(x2)))

than either is to their respective negative examples t1 and t2, by a margin of at least δ.

4.3.1.1 Selecting Negative Examples

To select t1 and t2 in Eq. 4.3.1, we tune the choice between two approaches. The first, MAX,

simply chooses the most similar phrase in some set of phrases (other than those in the

given phrase pair). For simplicity and to reduce the number of tunable parameters, we use

the mini-batch for this set, but it could be a separate set. Formally, MAX corresponds to

choosing t1 for a given 〈x1, x2〉 as follows:

t1 = argmax
t:〈t,·〉∈Xb\{〈x1,x2〉}

cos(g(x1),g(t))

where Xb ⊆ X is the current mini-batch. That is, we want to choose a negative example

ti that is similar to xi according to the current model parameters. The downside of this

approach is that we may occasionally choose a phrase ti that is actually a true paraphrase

of xi.

The second strategy selects negative examples using MAX with probability 0.5 and selects

them randomly from the mini-batch otherwise. We call this sampling strategy MIX. We tune

over the strategy in our experiments.
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4.4 experiments

4.4.1 Data

We experiment on 24 textual similarity datasets, covering many domains, including all

datasets from every SemEval semantic textual similarity (STS) task (2012-2015). We also

evaluate on the SemEval 2015 Twitter task (Xu et al., 2015b) and the SemEval 2014 Semantic

Relatedness task (Marelli et al., 2014), as well as two tasks that use PPDB data (Wieting et al.,

2015; Pavlick et al., 2015).

For tuning, we use two datasets that contain PPDB phrase pairs scored by human an-

notators on the strength of their paraphrase relationship. One is a large sample of 26,456

annotated phrase pairs developed by (Pavlick et al., 2015). The second, called Annotated-

PPDB, was developed in our prior work in Chapter 3 and is a small set of 1,000 annotated

phrase pairs that were filtered to focus on challenging paraphrase phenomena.

4.4.2 Transfer Learning

4.4.2.1 Experimental Settings

As training data, we used the XL section7 of PPDB which contains 3,033,753 unique phrase

pairs. However, for hyperparameter tuning we only used 100k examples sampled from

PPDB XXL and trained for 5 epochs. Then after finding the hyperparameters that maximize

Spearman’s ρ on the Pavlick et al. PPDB task, we trained on the entire XL section of PPDB

for 10 epochs. We used paragram-sl999 embeddings to initialize the word embedding

matrix (Ww) for all models.

We chose the Pavlick et al. task for tuning because we wanted our entire procedure to

only make use of PPDB and use no other resources. In particular, we did not want to use

any STS tasks for training or hyperparameter tuning. We chose the Pavlick et al. dataset

over Annotated-PPDB due to its larger size. But in practice the datasets are very similar

and tuning on either produces similar results.

7 PPDB comes in different sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller ones.
The phrases are sorted by a confidence measure and so the smaller sets contain higher precision paraphrases.
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To learn model parameters for all experiments in this section, we minimize Eq. 4.3.1.

Our models have the following tunable hyperparameters:8 λc, the L2 regularizer on the

compositional parameters Wc (not applicable for the word averaging model), the pool of

phrases used to obtain negative examples (coupled with mini-batch size B, to reduce the

number of tunable hyperparameters), λw, the regularizer on the word embeddings, and δ,

the margin. We also tune over optimization method (either AdaGrad (Duchi et al., 2011)

or Adam (Kingma and Ba, 2014)), learning rate (from {0.05, 0.005, 0.0005}), whether to clip

the gradients with threshold 1 (Pascanu et al., 2012), and whether to use MIX or MAX

sampling. For the classic RNN, we further tuned whether to use tanh or rectified linear

unit activation functions; for the identity-RNN, we tuned λc over {1000, 100, 10, 1} because

we wanted higher regularization on the composition parameters; for the DANs we tuned

over activation function (tanh or rectified linear unit) and the number of layers (either 1

or 2); for the LSTMs we tuned on whether to include an output gate. We fix the output

dimensionalities of all models that require doing so to the dimensionality of our word

embeddings (300).

4.4.2.2 Results

The results on all STS tasks as well as the SICK and Twitter tasks are shown in Table 14. We

include results on the PPDB tasks in Table 15. In Table 14, we first show the median, 75th per-

centile, and highest score from the official task rankings. We then report the performance of

our seven models: paragram-phrase (PP), identity-RNN (iRNN), projection (proj.), deep-

averaging network (DAN), recurrent neural network (RNN), LSTM with output gate (o.g.),

and LSTM without output gate (no o.g.). We compare to three baselines: skip-thought vec-

tors9 (Kiros et al., 2015), denoted “ST”, averaged GloVe10 vectors (Pennington et al., 2014),

and averaged paragram-sl999 vectors from Chapter 3, denoted “PSL”. Note that the GloVe

vectors were used to initialize the paragram-sl999 vectors which were, in turn, used to ini-

tialize our paragram-phrase embeddings. We compare to skip-thought vectors because

trained models are publicly available and they show impressive performance when used

as features on several tasks including textual similarity.

8 For λc we searched over {10−3, 10−4, 10−5, 10−6}, for b we searched over {25, 50, 100}, for λw we searched over
{10−5, 10−6, 10−7, 10−8} as well as the setting in which we do not update Ww, and for δ we searched over
{0.4, 0.6, 0.8}.

9 Note that we pre-processed the training data with the tokenizer from Stanford CoreNLP (Manning et al., 2014)
rather than the included NLTK (Bird et al., 2009) tokenizer. We found that doing so significantly improves the
performance of the skip-thought vectors.

10 We used the publicly available 300-dimensional vectors that were trained on the 840 billion token Common
Crawl corpus, available at http://nlp.stanford.edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/
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Dataset 50% 75% Max PP proj. DAN RNN iRNN LSTM
(no
o.g.)

LSTM
(o.g.)

ST GloVe PSL

MSRpar 51.5 57.6 73.4 42.6 43.7 40.3 18.6 43.4 16.1 9.3 16.8 47.7 41.6

MSRvid 75.5 80.3 88.0 74.5 74.0 70.0 66.5 73.4 71.3 71.3 41.7 63.9 60.0

SMT-eur 44.4 48.1 56.7 47.3 49.4 43.8 40.9 47.1 41.8 44.3 35.2 46.0 42.4

OnWN 608 65.9 72.7 70.6 70.1 65.9 63.1 70.1 65.2 56.4 29.7 55.1 63.0

SMT-news 40.1 45.4 60.9 58.4 62.8 60.0 51.3 58.1 60.8 51.0 30.8 49.6 57.0

STS 2012 Average 54.5 59.5 70.3 58.7 60.0 56.0 48.1 58.4 51.0 46.4 30.8 52.5 52.8

headline 64.0 68.3 78.4 72.4 72.6 71.2 59.5 72.8 57.4 48.5 34.6 63.8 68.8

OnWN 52.8 64.8 84.3 67.7 68.0 64.1 54.6 69.4 68.5 50.4 10.0 49.0 48.0

FNWN 32.7 38.1 58.2 43.9 46.8 43.1 30.9 45.3 24.7 38.4 30.4 34.2 37.9

SMT 31.8 34.6 40.4 39.2 39.8 38.3 33.8 39.4 30.1 28.8 24.3 22.3 31.0

STS 2013 Average 45.3 51.4 65.3 55.8 56.8 54.2 44.7 56.7 45.2 41.5 24.8 42.3 46.4

deft forum 36.6 46.8 53.1 48.7 51.1 49.0 41.5 49.0 44.2 46.1 12.9 27.1 37.2

deft news 66.2 74.0 78.5 73.1 72.2 71.7 53.7 72.4 52.8 39.1 23.5 68.0 67.0

headline 67.1 75.4 78.4 69.7 70.8 69.2 57.5 70.2 57.5 50.9 37.8 59.5 65.3

images 75.6 79.0 83.4 78.5 78.1 76.9 67.6 78.2 68.5 62.9 51.2 61.0 62.0

OnWN 78.0 81.1 87.5 78.8 79.5 75.7 67.7 78.8 76.9 61.7 23.3 58.4 61.1

tweet news 64.7 72.2 79.2 76.4 75.8 74.2 58.0 76.9 58.7 48.2 39.9 51.2 64.7

STS 2014 Average 64.7 71.4 76.7 70.9 71.3 69.5 57.7 70.9 59.8 51.5 31.4 54.2 59.5

answers-forums 61.3 68.2 73.9 68.3 65.1 62.6 32.8 67.4 51.9 50.7 36.1 30.5 38.8

answers-students 67.6 73.6 78.8 78.2 77.8 78.1 64.7 78.2 71.5 55.7 33.0 63.0 69.2

belief 67.7 72.2 77.2 76.2 75.4 72.0 51.9 75.9 61.7 52.6 24.6 40.5 53.2

headline 74.2 80.8 84.2 74.8 75.2 73.5 65.3 75.1 64.0 56.6 43.6 61.8 69.0

images 80.4 84.3 87.1 81.4 80.3 77.5 71.4 81.1 70.4 64.2 17.7 67.5 69.9

STS 2015 Average 70.2 75.8 80.2 75.8 74.8 72.7 57.2 75.6 63.9 56.0 31.0 52.7 60.0

2014 SICK 71.4 79.9 82.8 71.6 71.6 70.7 61.2 71.2 63.9 59.0 49.8 65.9 66.4

2015 Twitter 49.9 52.5 61.9 52.9 52.8 53.7 45.1 52.9 47.6 36.1 24.7 30.3 36.3

Table 14: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in
each row is in boldface (omitting the official task score columns).

The results in Table 14 show strong performance of our two simplest models: the paragram-

phrase embeddings (PP) and our projection model (proj.). They outperform the other mod-

els on all but 5 of the 22 datasets. The iRNN model has the next best performance, while

the LSTM models lag behind. These results stand in marked contrast to those in Table 15,

which shows very similar performance across models on the in-domain PPDB tasks, with

the LSTM models slightly outperforming the others. For the LSTM models, it is also in-

teresting to note that removing the output gate results in stronger performance on the

textual similarity tasks. Removing the output gate improves performance on 18 of the 22

datasets. The LSTM without output gate also performs reasonably well compared to our

strong paragram-sl999 addition baseline, beating it on 12 of the 22 datasets.
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Model Pavlick et al.
(oracle)

Pavlick et al.
(test)

Annotated-
PPDB
(test)

paragram-phrase 60.3 60.0 53.5

projection 61.0 58.4 52.8

DAN 60.9 60.1 52.3

RNN 60.5 60.3 51.8

iRNN 60.3 60.0 53.9

LSTM (no o.g.) 61.6 61.3 53.4

LSTM (o.g.) 61.5 60.9 52.9

skip-thought 39.3 39.3 31.9

GloVe 44.8 44.8 25.3

paragram-sl999 55.3 55.3 40.4

Table 15: Results on the PPDB tasks (Spearman’s ρ× 100). For the task in (Pavlick et al., 2015), we
include the oracle result (the max Spearman’s ρ on the dataset), since this dataset was used
for model selection for all other tasks, as well as test results where models were tuned on
Annotated-PPDB.

4.4.3 paragram-phrase XXL

Since we found that paragram-phrase embeddings have such strong performance, we

trained this model on more data from PPDB and also used more data for hyperparame-

ter tuning. For tuning, we used all of PPDB XL and trained for 10 epochs, then trained

our final model for 10 epochs on the entire phrase section of PPDB XXL, consisting of

9,123,575 unique phrase pairs.11 We show the results of this improved model, which we

call paragram-phrase XXL, in Table 16. We also report the median, 75th percentile, and

maximum score from our suite of textual similarity tasks. paragram-phrase XXL matches

or exceeds the best performance on 4 of the datasets (SMT-news, SMT, deft forum, and

belief) and is within 3 points of the best performance on 8 out of 22. We have made this

trained model available to the research community.12

4.4.4 Using Representations in Learned Models

We explore two natural questions regarding our representations learned from PPDB: (1)

can these embeddings improve the performance of other models through initialization and

regularization? (2) can they effectively be used as features for downstream tasks? To address

these questions, we used three tasks: The SICK similarity task, the SICK entailment task,

11 We fixed batchsize to 100 and δ to 0.4, as these were the optimal values for the experiment in Table 14. Then,
for λw we searched over {10−6, 10−7, 10−8}, and tuned over MIX and MAX sampling. To optimize, we used
AdaGrad with a learning rate of 0.05.

12 Available at https://www.cs.cmu.edu/~jwieting.

https://www.cs.cmu.edu/~jwieting
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Dataset 50% 75% Max paragram-
phrase-

XXL

MSRpar 51.5 57.6 73.4 44.8
MSRvid 75.5 80.3 88.0 79.6
SMT-eur 44.4 48.1 56.7 49.5
OnWN 60.8 65.9 72.7 70.4
SMT-news 40.1 45.4 60.9 63.3
STS 2012 Average 54.5 59.5 70.3 61.5

headline 64.0 68.3 78.4 73.9
OnWN 52.8 64.8 84.3 73.8
FNWN 32.7 38.1 58.2 47.7
SMT 31.8 34.6 40.4 40.4
STS 2013 Average 45.3 51.4 65.3 58.9

deft forum 36.6 46.8 53.1 53.4
deft news 66.2 74.0 78.5 74.4
headline 67.1 75.4 78.4 71.5
images 75.6 79.0 83.4 80.4
OnWN 78.0 81.1 87.5 81.5
tweet news 64.7 72.2 79.2 77.4

STS 2014 Average 64.7 71.4 76.7 73.1

answers-forums 61.3 68.2 73.9 69.1
answers-students 67.6 73.6 78.8 78.0
belief 67.7 72.2 77.2 78.2
headline 74.2 80.8 84.2 76.4
images 80.4 84.3 87.1 83.4

STS 2015 Average 70.2 75.8 80.2 77.0

2014 SICK∗ 71.4 79.9 82.8 72.7

2015 Twitter 49.9 52.5 61.9 52.4

Table 16: Results on SemEval textual similarity datasets (Pearson’s r× 100) for paragram-phrase

XXL embeddings. Results that match or exceed the best shared task system are shown in
bold. ∗For the 2014 SICK task, the median, 75th percentile, and maximum include only the
primary runs as the full set of results was not available.

and the Stanford Sentiment Treebank (SST) binary classification task (Socher et al., 2013).

For the SICK similarity task, we minimize the objective function13 from (Tai et al., 2015).

13 This objective function has been shown to perform very strongly on text similarity tasks, significantly better
than squared or absolute error.
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Given a score for a sentence pair in the range [1,K], where K is an integer, with sentence

representations hL and hR, and model parameters θ, they first compute:

h× = hL � hR, h+ = |hL − hR|,

hs = σ
(
W(×)h× +W(+)h+ + b(h)

)
,

p̂θ = softmax
(
W(p)hs + b

(p)
)

,

ŷ = rT p̂θ,

where rT = [1 2 . . . K]. They then define a sparse target distribution p that satisfies y = rTp:

pi =



y− byc, i = byc+ 1

byc− y+ 1, i = byc

0 otherwise

for 1 6 i 6 K. Then they use the following loss, the regularized KL-divergence between p

and p̂θ:

J(θ) =
1

m

m∑
k=1

KL
(
p(k)

∥∥∥ p̂(k)θ )
,

where m is the number of training pairs and where we always use L2 regularization on all

compositional parameters14 but omit these terms for clarity.

We use nearly the same model for the entailment task, with the only differences being

that the final softmax layer has three outputs and the cost function is the negative log-

likelihood of the class labels. For sentiment, since it is a binary sentence classification task,

we first encoded the sentence and then used a fully-connected layer with a sigmoid acti-

vation followed by a softmax layer with two outputs. We used negative log-likelihood of

the class labels as the cost function. All models use L2 regularization on all parameters,

except for the word embeddings, which are regularized back to their initial values with an

L2 penalty.

We first investigated how these models performed in the standard setting, without using

any models trained using PPDB data. We tuned hyperparameters on the development set

of each dataset15 as well as on two optimization schemes: AdaGrad with learning rate of

14 Word embeddings are regularized toward their initial state.
15 For all models, we tuned batch-size over {25, 50, 100}, output dimension over {50, 150, 300}, λc over

{10−3, 10−4, 10−5, 10−6}, λs = λc, and λw over {10−3, 10−4, 10−5, 10−6, 10−7, 10−8} as well as the option of
not updating the embeddings for all models except the word averaging model. We again fix the output di-
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Task word proj. DAN RNN LSTM LSTM w/ universal
averaging (no o.g.) (o.g.) regularization

similarity (SICK) 86.40 85.93 85.96 73.13 85.45 83.41 86.84

entailment (SICK) 84.6 84.0 84.5 76.4 83.2 82.0 85.3

binary sentiment (SST) 83.0 83.0 83.4 86.5 86.6 89.2 86.9

Table 17: Results from supervised training of each compositional architecture on similarity, entail-
ment, and sentiment tasks. The last column shows results regularizing to our universal
parameters from the models in Table 14. The first row shows Pearson’s r× 100 and the last
two show accuracy.

0.05 and Adam with a learning rate of 0.001. We trained the models for 10 epochs and

initialized the word embeddings with paragram-sl999 embeddings.

The results are shown in Table 17. We find that using word averaging as the compositional

architecture outperforms the other architectures for similarity and entailment. However,

for sentiment classification, the LSTM is much stronger than the averaging models. This

suggests that the superiority of a compositional architecture can vary widely depending

on the evaluation, and motivates future work to compare these architectures on additional

tasks.

These results are very competitive with the state of the art on these tasks. Recent strong

results on the SICK similarity task include 86.86 using a convolutional neural network (He

et al., 2015) and 86.76 using a tree-LSTM (Tai et al., 2015). For entailment, the best re-

sult we are aware of is 85.1 (Beltagy et al., 2015). On sentiment, the best previous result

is 88.1 (Kim, 2014), which our LSTM surprisingly outperforms by a significant margin. We

note that these experiments simply compare compositional architectures using only the pro-

vided training data for each task, tuning on the respective development sets. We did not use

any PPDB data for these results, other than that used to train the initial paragram-sl999

embeddings. Our results appear to show that standard neural architectures can perform

surprisingly well given strong word embeddings and thorough tuning over the hyperpa-

rameter space.

4.4.4.1 Regularization and Initialization to Improve Textual Similarity Models

In this setting, we initialize each respective model to the parameters learned from PPDB

(calling them universal parameters) and augment Eq. 4.4.4 with three separate regulariza-

tion terms with the following weights: λs which regularizes the classification parameters

(the two layers used in the classification step after obtaining representations), λw for regu-

mensionalities of all models which require this specification, to the dimensionality of our word embeddings
(300). Additionally, for the classic RNN, we further tuned whether to use tanh or rectified linear unit activation
functions; for the DANs we tuned over activation function (tanh or rectified linear unit) and the number of
layers (either 1 or 2).
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larizing the word parameters toward the learned Ww from PPDB, and λc for regularizing

the compositional parameters (for all models except for the word averaging model) back

to their initial values.16 In all cases, we regularize to the universal parameters using L2

regularization.

The results are shown in the last column of Table 17, and we only show results for the

best performing models on each task (word averaging for similarity/entailment, LSTM

with output gate for sentiment). Interestingly, it seems that regularizing to our universal

parameters significantly improves results for the similarity and entailment tasks which are

competitive or better than the state-of-the-art, but harms the LSTM’s performance on the

sentiment classification task.

4.4.4.2 Representations as Features

Task paragram-phrase skip-thought
300 1200 2400 uni-skip bi-skip

similarity (SICK) 82.15 82.85 84.94 84.77 84.05

entailment (SICK) 80.2 80.1 83.1 - -
binary sentiment (SST) 79.7 78.8 79.4 - -

Table 18: Results from supervised training on similarity, entailment, and sentiment tasks, except
that we keep the sentence representations fixed to our paragram-phrase model. The first
row shows Pearson’s r× 100 and the last two show accuracy, with boldface showing the
highest score in each row.

We also investigate how our paragram-phrase embeddings perform as features for su-

pervised tasks. We use a similar set-up as in (Kiros et al., 2015) and encode the sentences

by averaging our paragram-phrase embeddings and then just learn the classification pa-

rameters without updating the embeddings. To provide a more apt comparison to skip-

thought vectors, we also learned a linear projection matrix to increase dimensionality of

our paragram-phrase embeddings. We chose 1200 and 2400 dimensions in order to both

see the dependence of dimension on performance, and so that they can be compared fairly

with skip-thought vectors. Note that 2400 dimensions is the same dimensionality as the

uni-skip and bi-skip models in (Kiros et al., 2015).

The 300 dimension case corresponds to the paragram-phrase embeddings from Ta-

ble 14. We tuned our higher dimensional models on PPDB as described previously in

Section 4.4.2.2 before training on PPDB XL.17 Then we trained the same models for the

16 We tuned λs over {10−3, 10−4, 10−5, 10−6}, λc over {10−2, 10−3, 10−4, 10−5, 10−6}, and λw over
{10−3, 10−4, 10−5, 10−6, 10−7, 10−8}. All other hyperparameters were tuned as previously described.

17 Note that we fixed batch-size to 100, δ to 0.4, and used MAX sampling as these were the optimal parameters for
the paragram-phrase embeddings. We tuned the other hyperparameters as described in Section 4.4.2.2 with
the exception of λc which was tuned over {10−4, 10−5, 10−6, 10−7, 10−8}.
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similarity, entailment, and sentiment tasks as described in Section 4.4.4 for 20 epochs. We

again tuned λs over {10−3, 10−4, 10−5, 10−6} and tuned over the two optimization schemes

of AdaGrad with learning rate of 0.05 and Adam with a learning rate of 0.001. Note that

we are not updating the word embeddings or the projection matrix during training.

The results are shown in Table 18. The similarity and entailment tasks show clear im-

provements as we project the embeddings into the 2400 dimensional space. In fact, our

results outperform both types of skip-thought embeddings on the single task that we over-

lap. However, the sentiment task does not benefit from higher dimensional representations,

which is consistent with our regularization experiments in which sentiment also did not

show improvement. Therefore, it seems that our models learned from PPDB are more effec-

tive for similarity tasks than classification tasks, but this hypothesis requires further investi-

gation.

4.5 discussion

It is interesting that the LSTM, with or without output gates, is outperformed by much sim-

pler models on the similarity and entailment tasks studied in this paper. We now consider

possible explanations for this trend.

The first hypothesis we test is based on length. Since PPDB contains short text snippets of

a few words, the LSTM may not know how to handle the longer sentences that occur in our

evaluation tasks. If this is true, the LSTM would perform much better on short text snippets

and its performance would degrade as their length increases. To test this hypothesis, we

took all 12,108 pairs from the 20 SemEval STS tasks and binned them by length.18 We

then computed the Pearson’s r for each bin. The results are shown in Table 19 and show

that while the LSTM models do perform better on the shortest text pairs, they are still

outperformed, at all lengths, by the paragram-phrase model.19

We next consider whether the LSTM has worse generalization due to overfitting on the

training data. To test this, we analyzed how the models performed on the training data

(PPDB XL) by computing the average difference between the cosine similarity of the gold

phrase pairs and the negative examples.20 We found that all models had very similar scores:

18 For each pair, we computed the number of tokens in each of the two pieces of text, took the max, and then
binned based on this value.

19 Note that for the analysis in Sections 4.5 and 4.6, the models used were selected from earlier experiments. They
are not the same as those used to obtain the results in Table 14.

20 More precisely, for each gold pair 〈g1,g2〉, and ni, the respective negative example of each gi, we computed
2 · cos(g1,g2) − cos(n1,g1) − cos(n2,g2) and averaged this value over all pairs.
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Max
Length

paragram-
phrase

LSTM
(no
o.g.)

LSTM
(o.g.)

paragram-
sl999

6 4 72.7 63.4 58.8 66.3
5 74.0 54.5 48.4 65.0
6 70.5 52.6 48.2 50.1
7 73.7 56.9 50.6 56.4
8 75.5 60.2 52.4 60.1
9 73.0 58.0 48.8 58.8

> 10 72.6 55.6 53.8 58.4

Table 19: Performance (Pearson’s r× 100) as a function of the maximum number of tokens in the
sentence pairs over all 20 SemEval STS datasets.

0.7535, 0.7572, 0.7565, and 0.7463 for paragram-phrase, projection, LSTM (o.g.), and LSTM

(no o.g.). This, along with the similar performance of the models on the PPDB tasks in

Table 15, suggests that overfitting is not the cause of the worse performance of the LSTM

model.

Lastly, we consider whether the LSTM’s weak performance was a result of insufficient

tuning or optimization. We first note that we actually ran more hyperparameter tuning

experiments for the LSTM models than either the paragram-phrase or projection models,

since we tuned the decision to use an output gate. Secondly, we note that (Tai et al., 2015)

had a similar LSTM result on the SICK dataset (Pearson’s r of 85.28 to our 85.45) to show

that our LSTM implementation/tuning procedure is able to match or exceed performance

of another published LSTM result. Thirdly, the similar performance across models on the

PPDB tasks (Table 15) suggests that no model had a large advantage during tuning; all

found hyperparameters that comfortably beat the paragram-sl999 addition baseline. Fi-

nally, we point out that we tuned over learning rate and optimization strategy, as well as

experimented with clipping gradients, in order to rule out optimization issues.

4.5.1 Under-Trained Embeddings

One limitation of our new paragram-phrase vectors is that many of our embeddings are

under-trained. The number of unique tokens occurring in our training data, PPDB XL,

is 37,366. However, the number of tokens appearing more than 100 times is just 7,113.

Thus, one clear source of improvement for our model would be to address under-trained

embeddings for tokens appearing in our test data.
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In order to gauge the effect under-trained embeddings and unknown words have on our

model, we calculated the fraction of words in each of our 22 SemEval datasets that do not

occur at least 100 times in PPDB XL along with our performance deviation from the 75th

percentile of each dataset. We found that this fraction had a Spearman’s ρ of -45.1 with the

deviation from the 75th percentile indicating that there is a significant negative correlation

between the fraction of OOV words and performance on these STS tasks.

4.5.2 Using More PPDB

4.5.2.1 Performance Versus Amount of Training Data

Models in related work such as (Kiros et al., 2015) and (Li et al., 2015) require significant

training time on GPUs, on the order of multiple weeks. Moreover, dependence of model

performance upon training data size is unclear. To investigate this dependence for our

paragram-phrase model, we trained on different amounts of data and plotted the perfor-

mance. The results are shown in Figure 1. We start with PPDB XL which has 3,033,753

unique phrase pairs and then divide by two until there are fewer than 10 phrase pairs.21

For each data point (each division by two), we trained a model with that number of phrase

pairs for 10 epochs. We use the average Pearson correlation for all 22 datasets in Table 14

as the dependent variable in our plot.

We experimented with two different ways of selecting training data. The first (“Ordered”)

retains the order of the phrase pairs in PPDB, which ensures the smaller datasets contain

higher confidence phrase pairs. The second (“Random”) randomly permutes PPDB XL

before constructing the smaller datasets. In both methods, each larger dataset contains the

previous one plus as many new phase pairs.

We make three observations about the plot in Figure 1. The first is that performance con-

tinually increases as more training data is added. This is encouraging as our embeddings

can continually improve with more data. Secondly, we note the sizable improvement (4

points) over the paragram-sl999 baseline by training on just 92 phrase pairs from PPDB.

Finally, we note the difference between randomly permuting the training data and using

the order from PPDB (which reflects the confidence that the phrases in each pair possess the

paraphrase relationship). Performance of the randomly permuted data is usually slightly

better than that of the ordered data, until the performance gap vanishes once half of PPDB

21 The smallest dataset contained 5 pairs.
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Figure 1: Performance of the paragram-phrase embeddings as measured by the average Pearson’s
r on 22 textual similarity datasets versus the amount of training data from PPDB on a log
scale. Each datapoint contains twice as much training data as the previous one. Random
and Ordered refer to whether we shuffled the XL paraphrase pairs from PPDB or kept
them in order. We also show baselines of averaging paragram-sl999 and GloVe embed-
dings.

XL is used. We suspect this behavior is due to the safe phrase pairs that occur in the begin-

ning of PPDB. These high-confidence phrase pairs usually have only slight differences and

therefore are not as useful for training our model.

4.6 qualitative analysis

Word paragram-phrase Nearest Neighbors paragram-sl999 Nearest Neighbors

unlike contrary, contrast, opposite, versa, conversely, opposed, contradiction than, although, whilst, though, albeit, kinda, alike

2 2.0, two, both, ii, 2nd, couple, 02 2.0, 3, 1, b, ii, two, 2nd

ladies girls, daughters, honorable, females, girl, female, dear gentlemen, colleague, fellow, girls, mr, madam, dear

lookin staring, looking, watching, look, searching, iooking, seeking doin, goin, talkin, sayin, comin, outta, somethin

disagree agree, concur, agreeing, differ, accept disagreement, differ, dispute, difference, disagreements

Table 20: Nearest neighbors of paragram-phrase and paragram-sl999 word embeddings sorted
by cosine similarity.

To explore other differences between our paragram-phrase vectors and the paragram-

sl999 vectors that were used for initialization, we inspected lists of nearest neighbors in

each vector space. When obtaining nearest neighbors, we restricted our search to the 10,000

most common tokens in PPDB XL to ensure that the paragram-phrase vectors were not

too under-trained. Some informative neighbors are shown in Table 20. In the first four rows,

we see that the paragram-phrase embeddings have neighbors with a strong paraphrasing
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relationship. They tend to avoid having neighbors that are antonyms or co-hyponyms such

as unlike and alike or 2 and 3 which are an issue for the paragram-sl999 embeddings. In

contrast to the first four rows, the last row shows a problematic effect of our bag-of-words

composition function: agree is the nearest neighbor of disagree. The reason for this is that

there are numerous pairs in PPDB XL such as i disagree and i do not agree that encourage

disagree and agree to have high cosine similarity. A model that takes context into account

could resolve this issue. The difficulty would be finding a model that does so while still

generalizing well, as we found that our paragram-phrase embeddings generalize better

than learning a weight matrix or using a recurrent neural network. We leave this for future

work.

When we take a closer look at our paragram-phrase embeddings, we find that information-

bearing content words, such as poverty, kidding, humanitarian, 18, and july have the largest

L2 norms, while words such as of, it, to, hereby and the have the smallest. Pham et al. (2015)

noted this same phenomenon in their closely-related compositional model. Interestingly,

we found that this weighting explains much of the success of our model. In order to quan-

tify exactly how much, we calculated a weight for each token in our working vocabulary22

simply by summing up the absolute value of all components of its paragram-phrase vec-

tor. Then we multiplied each weight by its corresponding paragram-sl999 word vector.

We computed the average Pearson’s r over all 22 datasets in Table 14. The paragram-sl999

vectors have an average correlation of 54.94, the paragram-phrase vectors have 66.83, and

the scaled paragram-sl999 vectors, where each is multiplied by its computed weight, have

an average Pearson’s r of 62.64. Therefore, it can be surmised that at least 64.76% of the

improvement over the initial paragram-sl999 vectors is due to weighting tokens by their

importance.23

We also investigated the connection between these multiplicative weights and word fre-

quency. To do so, we calculated the frequency of all tokens in PPDB XL.24 We then nor-

malized these by the total number of tokens in PPDB XL and used the reciprocal of these

scores as the multiplicative weights. Thus less frequent words have more weight than more

frequent words. With this baseline weighting method, the average Pearson’s r is 45.52, indi-

22 This corresponds to the 42,091 tokens that appear in the intersection of our paragram-sl999 vocabulary, the
test sets of all STS tasks in our evaluation, and PPDB XL plus an unknown word token.

23 We also trained a model in which we only a learn a single multiplicative parameter for each word in our
vocabulary, keeping the word embeddings fixed to the paragram-sl999 embeddings. We trained for 10 epochs
on all phrase pairs in PPDB XL. The resulting average Pearson’s r, after tuning on the Pavlick et al. PPDB
task, was 62.06, which is slightly lower than using the absolute value of each paragram-phrase vector as its
multiplicative weight.

24 Tokens that did not appear in PPDB XL were assigned a frequency of 1.
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cating that the weights we obtain for these words are more sophisticated than mere word

frequency. These weights are potentially useful for other applications that can benefit from

modeling word importance, such as information retrieval.

4.7 conclusion

We introduced an approach to create universal sentence embeddings and propose our

model as the new baseline for embedding sentences, as it is simple, efficient, and per-

forms strongly across a broad range of tasks and domains. Moreover, our representations

do not require the use of any neural network architecture. The embeddings can be simply

averaged for a given sentence in an NLP application to create its sentence embedding. We

also find that our representations can improve general text similarity and entailment mod-

els when used as a prior and can achieve strong performance even when used as fixed

representations in a classifier. Future work will focus on improving our embeddings by ef-

fectively handling undertrained words as well as by exploring new models that generalize

even better to the large suite of text similarity tasks used in our experiments.



5
C H A R A G R A M : I M P R O V E D G E N E R A L I Z AT I O N B Y E M B E D D I N G

W O R D S A N D S E N T E N C E S V I A C H A R A C T E R nG R A M S

5.1 introduction

Representing textual sequences such as words and sentences is a fundamental component

of natural language understanding systems. Many functional architectures have been pro-

posed to model compositionality in word sequences, ranging from simple averaging (Mitchell

and Lapata, 2010; Iyyer et al., 2015) to functions with rich recursive structure (Socher et al.,

2011; Tai et al., 2015; Bowman et al., 2016). Most work uses words as the smallest units in

the compositional architecture, often using pretrained word embeddings or learning them

specifically for the task of interest (Tai et al., 2015; He et al., 2015).

Some prior work has found benefit from using character-based compositional models

that encode arbitrary character sequences into vectors. Examples include recurrent neu-

ral networks (RNNs) and convolutional neural networks (CNNs) on character sequences,

showing improvements for several NLP tasks (Ling et al., 2015a; Kim et al., 2015; Balles-

teros et al., 2015; dos Santos and Guimarães, 2015). By sharing subword information across

words, character models have the potential to better represent rare words and morphologi-

cal variants.

Our approach, charagram, uses a much simpler functional architecture. We represent a

character sequence by a vector containing counts of character n-grams, inspired by Huang

et al. (2013). This vector is embedded into a low-dimensional space using a single nonlin-

ear transformation. This can be interpreted as learning embeddings of character n-grams,

which are learned so as to produce effective sequence embeddings when a summation is

performed over the character n-grams in the sequence.

We consider three evaluations: word similarity, sentence similarity, and part-of-speech

tagging. On multiple word similarity datasets, charagram outperforms RNNs and CNNs,

achieving state-of-the-art performance on SimLex-999 (Hill et al., 2015). When evaluated on

a large suite of sentence-level semantic textual similarity tasks, charagram embeddings

again outperform the RNN and CNN architectures as well as the paragram-phrase em-

73
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beddings of Chapter 4. We also consider English part-of-speech (POS) tagging using the

bidirectional long short-term memory tagger of Ling et al. (2015a). The three architectures

reach similar performance, though charagram converges fastest to high accuracy.

We perform extensive analysis of our charagram embeddings. We find large gains in

performance on rare words, showing the empirical benefit of subword modeling. We also

compare performance across different character n-gram vocabulary sizes, finding that the

semantic tasks benefit far more from large vocabularies than the syntactic task. However,

even for challenging semantic similarity tasks, we still see strong performance with only a

few thousand character n-grams.

Nearest neighbors show that charagram embeddings simultaneously address differ-

ences due to spelling variation, morphology, and word choice. Inspection of embeddings of

particular character n-grams reveals etymological links; e.g., die is close to mort. We release

our resources to the community in the hope that charagram can provide a strong baseline

for subword-aware text representation.

5.2 related work

We first review work on using subword information in word embedding models. The

simplest approaches append subword features to word embeddings, letting the model

learn how to use the subword information for particular tasks. Some added knowledge-

based morphological features to word representations (Alexandrescu and Kirchhoff, 2006;

El-Desoky Mousa et al., 2013). Others learned embeddings jointly for subword units and

words, defining simple compositional architectures (often based on addition) to create word

embeddings from subword embeddings (Lazaridou et al., 2013; Botha and Blunsom, 2014;

Qiu et al., 2014; Chen et al., 2015c).

A recent trend is to use richer functional architectures to convert character sequences

into word embeddings. Luong et al. (2013) used recursive models to compose morphs into

word embeddings, using unsupervised morphological analysis. Ling et al. (2015a) used a

bidirectional long short-term memory (LSTM) RNN on characters to embed arbitrary word

types, showing strong performance for language modeling and POS tagging. Ballesteros

et al. (2015) used this model to represent words for dependency parsing. Several have used

character-level RNN architectures for machine translation, whether for representing source

or target words (Ling et al., 2015b; Luong and Manning, 2016), or for generating entire

translations character-by-character (Chung et al., 2016).
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Sutskever et al. (2011) and Graves (2013) used character-level RNNs for language mod-

eling. Others trained character-level RNN language models to provide features for NLP

tasks, including tokenization and segmentation (Chrupała, 2013; Evang et al., 2013), and

text normalization (Chrupała, 2014).

CNNs with character n-gram filters have been used to embed arbitrary word types for

several tasks, including language modeling (Kim et al., 2015), part-of-speech tagging (dos

Santos and Zadrozny, 2014), named entity recognition (dos Santos and Guimarães, 2015),

text classification (Zhang et al., 2015), and machine translation (Costa-Jussà and Fonollosa,

2016). Combinations of CNNs and RNNs on characters have also been explored (Józefowicz

et al., 2016).

Most closely-related to our approach is the DSSM (instantiated variously as “deep se-

mantic similarity model” or “deep structured semantic model”) developed by Huang et al.

(2013). For an information retrieval task, they represented words using feature vectors con-

taining counts of character n-grams. Sperr et al. (2013) used a very similar technique to

represent words in neural language models for machine translation. Our charagram em-

beddings are based on this same idea. We show this strategy to be extremely effective when

applied to both words and sentences, outperforming character LSTMs like those used by

Ling et al. (2015a) and character CNNs like those from Kim et al. (2015).

5.3 models

We now describe models that embed textual sequences using their characters, including

our charagram model and the baselines that we compare to. We denote a character-based

textual sequence by x = 〈x1, x2, ..., xm〉, which includes space characters between words as

well as special start-of-sequence and end-of-sequence characters. We use xji to denote the

subsequence of characters from position i to position j inclusive, i.e., xji = 〈xi, xi+1, ..., xj〉,

and we define xii = xi.

Our charagram model embeds a character sequence x by adding the vectors of its

character n-grams followed by an elementwise nonlinearity:

gchar(x) = h

b+

m+1∑
i=1

i∑
j=1+i−k

I
[
xij ∈ V

]
Wxij


where h is a nonlinear function, b ∈ Rd is a bias vector, k is the maximum length of any

character n-gram, I[p] is an indicator function that returns 1 if p is true and 0 otherwise,
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V is the set of character n-grams included in the model, and Wxij ∈ Rd is the vector for

character n-gram xij.

The set V is used to restrict the model to a predetermined set (vocabulary) of character n-

grams. Below, we compare several choices for defining this set. The number of parameters

in the model is d+ d|V |. This model is based on the letter n-gram hashing technique devel-

oped by Huang et al. (2013) for their DSSM approach. One can also view Eq. equation 5.3

(as they did) as first populating a vector of length |V | with counts of character n-grams

followed by a nonlinear transformation.

We compare the charagram model to two other models. First we consider LSTM ar-

chitectures (Hochreiter and Schmidhuber, 1997) over the character sequence x, using the

version from Gers et al. (2003). We use a forward LSTM over the characters in x, then take

the final LSTM hidden vector as the representation of x. Below we refer to this model as

“charLSTM.”

We also compare to convolutional neural network (CNN) architectures, which we refer to

below as “charCNN.” We use the architecture from Kim (2014) with a single convolutional

layer followed by an optional fully-connected layer. We use filters of varying lengths of

character n-grams, using two primary configurations of filter sets, one of which is identical

to that used by Kim et al. (2015). Each filter operates over the entire sequence of character

n-grams in x and we use max pooling for each filter. We tune over the choice of nonlinearity

for both the convolutional filters and for the optional fully-connected layer. We give more

details below about filter sets, n-gram lengths, and nonlinearities.

We note that using character n-gram convolutional filters is similar to our use of char-

acter n-grams in the charagram model. The difference is that, in the charagram model,

the n-gram must match exactly for its vector to affect the representation, while in the CNN

each filter will affect the representation of all sequences (depending on the nonlinearity be-

ing used). So the charagram model is able to learn precise vectors for particular character

n-grams with specific meanings, while there is pressure for the CNN filters to capture mul-

tiple similar patterns that recur in the data. Our qualitative analysis shows the specificity

of the learned character n-gram vectors learned by the charagram model.

5.4 experiments

We perform three sets of experiments. The goal of the first two (Section 5.4.1) is to produce

embeddings for textual sequences such that the embeddings for paraphrases have high
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cosine similarity. Our third evaluation (Section 5.4.3) is a classification task, and follows the

setup of the English part-of-speech tagging experiment from Ling et al. (2015a).

5.4.1 Word and Sentence Similarity

We compare the ability of our models to capture semantic similarity for both words and

sentences. We train on noisy paraphrase pairs from the Paraphrase Database (PPDB; Gan-

itkevitch et al., 2013) with an L2 regularized contrastive loss objective function, following

the training procedure of Chapters 3 and 4 described below. For part-of-speech tagging, we

follow the English Penn Treebank training procedure of Ling et al. (2015a).

For the similarity tasks, the training data consists of a set X of phrase pairs 〈x1, x2〉 from

the Paraphrase Database (PPDB; Ganitkevitch et al., 2013), where x1 and x2 are assumed

to be paraphrases. We optimize a margin-based loss:

min
θ

1

|X|

( ∑
〈x1,x2〉∈X

max(0, δ− cos(g(x1),g(x2))

+ cos(g(x1),g(t1))) + max(0, δ− cos(g(x1),g(x2))

+ cos(g(x2),g(t2)))
)
+ λ ‖θ‖2

where g is the embedding function in use, δ is the margin, the full set of parameters is

contained in θ (e.g., for the charagram model, θ = 〈W,b〉), λ is the L2 regularization

coefficient, and t1 and t2 are carefully selected negative examples taken from a mini-batch

during optimization (discussed below). Intuitively, we want the two phrases to be more

similar to each other (cos(g(x1),g(x2))) than either is to their respective negative examples

t1 and t2, by a margin of at least δ.

5.4.2 Selecting Negative Examples

To select t1 and t2 in Eq. equation 5.4.1, we tune the choice between two approaches. The

first, MAX, simply chooses the most similar phrase in some set of phrases (other than those

in the given phrase pair). For simplicity and to reduce the number of tunable parameters,
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we use the mini-batch for this set, but it could be a separate set. Formally, MAX corresponds

to choosing t1 for a given 〈x1, x2〉 as follows:

t1 = argmax
t:〈t,·〉∈Xb\{〈x1,x2〉}

cos(g(x1),g(t))

where Xb ⊆ X is the current mini-batch. That is, we want to choose a negative example

ti that is similar to xi according to the current model parameters. The downside of this

approach is that we may occasionally choose a phrase ti that is actually a true paraphrase

of xi.

The second strategy selects negative examples using MAX with probability 0.5 and selects

them randomly from the mini-batch otherwise. We call this sampling strategy MIX. We tune

over the choice of strategy in our experiments.

5.4.2.1 Datasets

For word similarity, we focus on two of the most commonly used datasets for evaluating

semantic similarity of word embeddings: WordSim-353 (WS353) (Finkelstein et al., 2001)

and SimLex-999 (SL999) (Hill et al., 2015). We also evaluate our best model on the Stanford

Rare Word Similarity Dataset (Luong et al., 2013).

For sentence similarity, we evaluate on a diverse set of 22 textual similarity datasets,

including all datasets from every SemEval semantic textual similarity (STS) task from 2012

to 2015. We also evaluate on the SemEval 2015 Twitter task (Xu et al., 2015b) and the

SemEval 2014 SICK Semantic Relatedness task (Marelli et al., 2014). Given two sentences,

the aim of the STS tasks is to predict their similarity on a 0-5 scale, where 0 indicates the

sentences are on different topics and 5 indicates that they are completely equivalent.

Each STS task consists of 4-6 datasets covering a wide variety of domains, including

newswire, tweets, glosses, machine translation outputs, web forums, news headlines, image

and video captions, among others. Most submissions for these tasks use supervised models

that are trained and tuned on provided training data or similar datasets from older tasks.

Further details are provided in the official task descriptions (Agirre et al., 2012, 2013, 2014,

2015).

5.4.2.2 Preliminaries

For training data, we use pairs from PPDB. For word similarity experiments, we train on

word pairs and for sentence similarity, we train on phrase pairs. PPDB comes in different
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sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller ones. The

pairs in PPDB are sorted by a confidence measure and so the smaller sets contain higher

precision paraphrases.

Before training the charagram model, we need to populate V , the vocabulary of char-

acter n-grams included in the model. We obtain these from the training data used for the

final models in each setting, which is either the lexical or phrasal section of PPDB XXL. We

tune over whether to include the full sets of character n-grams in these datasets or only

those that appear more than once.

When extracting n-grams, we include spaces and add an extra space before and after

each word or phrase in the training and evaluation data to ensure that the beginning and

end of each word is represented. We note that strong performance can be obtained using

far fewer character n-grams; we explore the effects of varying the number of n-grams and

the n-gram orders in Section 5.4.5.

We used Adam (Kingma and Ba, 2014) with a learning rate of 0.001 to learn the parame-

ters in the following experiments.

5.4.2.3 Word Embedding Experiments

training and tuning For hyperparameter tuning, we used one epoch on the lexical

section of PPDB XXL, which consists of 770,007 word pairs. We used either WS353 or

SL999 for model selection (reported below). We then took the selected hyperparameters

and trained for 50 epochs to ensure that all models had a chance to converge.

We tuned all models thoroughly, tuning the activation functions for charagram and

charCNN, as well as the regularization strength, mini-batch size, and sampling type for all

models. For all architectures, we tuned over the mini-batch size (25 or 50) and the type of

sampling used (MIX or MAX). δ was set to 0.4 and the dimensionality d of each model was

set to 300.

For the charagram model, we tuned the activation function h (tanh or linear) and reg-

ularization coefficient λ (over {10−4, 10−5, 10−6}). The n-gram vocabulary V contained all

100,283 character n-grams (n ∈ {2, 3, 4}) in the lexical section of PPDB XXL.

For charCNN and charLSTM, we randomly initialized 300 dimensional character embed-

dings for all unique characters in the training data and we tuned λ over {10−4, 10−5, 10−6}.

For charLSTM, we tuned over whether to include an output gate. For charCNN, we tuned

the filter activation function (rectified linear or tanh) and tuned the activation for the fully-

connected layer (tanh or linear).
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Model Tuned on WS353 SL999

charCNN SL999 26.31 30.64

WS353 33.19 16.73

charLSTM SL999 48.27 54.54

WS353 51.43 48.83

charagram
SL999 53.87 63.33

WS353 58.35 60.00

inter-annotator agreement - 75.6 78

Table 21: Word similarity results (Spearman’s ρ × 100) on WS353 and SL999. The inter-annotator
agreement is the average Spearman’s ρ between a single annotator with the average over
all other annotators.

For charCNN, we experimented with two filter sets: one uses 175 filters for each n-gram

size ∈ {2, 3, 4}, and the other uses the set of filters from Kim et al. (2015), consisting of 25

filters of size 1, 50 of size 2, 75 of size 3, 100 of size 4, 125 of size 5, and 150 of size 6. We also

experimented with using dropout (Srivastava et al., 2014) on the inputs of the last layer of

the charCNN model in place of L2 regularization, as well as removing the last feedforward

layer. Neither of these variations significantly improved performance on our suite of tasks

for word or sentence similarity. However, using more filters does improve performance,

seemingly linearly with the square of the number of filters.

architecture comparison The results are shown in Table 21. The charagram

model outperforms both the charLSTM and charCNN models, and also outperforms recent

strong results on SL999.

We also found that the charCNN and charLSTM models take far more epochs to converge

than the charagram model. We noted this trend across experiments and explore it further

in Section 5.4.4.

Model SL999

Hill et al. (2014a) 52

Schwartz et al. (2015) 56

Faruqui and Dyer (2015) 58

Chapter 3 66.7

charagram (large) 70.6

Table 22: Spearman’s ρ× 100 on SL999. charagram (large) refers to the charagram model de-
scribed in Section 5.4.5. This model contains 173,881 character embeddings, more than the
100,283 in the charagram model used to obtain the results in Table 21.

comparison to prior work We found that performance of charagram on word

similarity tasks can be improved by using more character n-grams. This is explored in

Section 5.4.5. Our best result from these experiments was obtained with the largest model



5.4 experiments 81

Dataset 50% 75% Max charCNN charLSTM paragram-
phrase

charagram-
phrase

STS 2012 Average 54.5 59.5 70.3 56.5 40.1 58.5 66.1

STS 2013 Average 45.3 51.4 65.3 47.7 30.7 57.7 57.2

STS 2014 Average 64.7 71.4 76.7 64.7 46.8 71.5 74.7

STS 2015 Average 70.2 75.8 80.2 66.0 45.5 75.7 76.1

2014 SICK 71.4 79.9 82.8 62.9 50.3 72.0 70.0

2015 Twitter 49.9 52.5 61.9 48.6 39.9 52.7 53.6

Average 59.7 65.6 73.6 59.2 41.9 66.2 68.7

Table 23: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in
each row is in boldface (omitting the official task score columns).

we considered, which contains 173,881 n-gram embeddings. When using WS353 for model

selection and training for 25 epochs, this model achieves 70.6 on SL999. To our knowledge,

this is the best result reported on SL999 in this setting; Table 22 shows comparable recent

results. Note that a higher SL999 number is reported in (Mrkšić et al., 2016), but the setting

is not comparable to ours as they started with embeddings tuned on SL999.

Lastly, we evaluated our model on the Stanford Rare Word Similarity Dataset (Luong

et al., 2013), using SL999 for model selection. We obtained a Spearman’s ρ of 47.1, which

outperforms the 41.8 result from Soricut and Och (2015) and is competitive with the 47.8

reported in Pennington et al. (2014), despite only using PPDB for training.

5.4.2.4 Sentence Embedding Experiments

training and tuning We did initial training of our models using one pass through

PPDB XL, which consists of 3,033,753 unique phrase pairs. Following our work in Chapter 4,

we use the annotated phrase pairs developed by Pavlick et al. (2015) as our validation set,

using Spearman’s ρ to rank the models. We then take the highest performing models and

train on the 9,123,575 unique phrase pairs in the phrasal section of PPDB XXL for 10 epochs.

For all experiments, we fix the mini-batch size to 100, the margin δ to 0.4, and use

MAX sampling. For the charagram model, V contains all 122,610 character n-grams

(n ∈ {2, 3, 4}) in the PPDB XXL phrasal section. The other tuning settings are the same

as in Section 5.4.2.3.

For another baseline, we train the paragram-phrase model of Chapter 4, tuning its

regularization strength over {10−5, 10−6, 10−7, 10−8}. The paragram-phrase model simply

uses word averaging as its composition function, but outperforms many more complex

models.

In this section, we refer to our model as charagram-phrase because the input is a charac-

ter sequence containing multiple words rather than only a single word as in Section 5.4.2.3.
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Dataset 50% 75% Max charCNN charLSTM paragram-
phrase

charagram-
phrase

MSRpar 51.5 57.6 73.4 50.6 23.6 42.9 59.7

MSRvid 75.5 80.3 88.0 72.2 47.2 76.1 79.6

SMT-eur 44.4 48.1 56.7 50.9 38.5 45.5 57.2

OnWN 60.8 65.9 72.7 61.8 53.0 70.7 68.7

SMT-news 40.1 45.4 60.9 46.8 38.3 57.2 65.2

STS 2012 Average 54.5 59.5 70.3 56.5 40.1 58.5 66.1

headline 64.0 68.3 78.4 68.1 54.4 72.3 75.0

OnWN 52.8 64.8 84.3 54.4 33.5 70.5 67.8

FNWN 32.7 38.1 58.2 26.4 10.6 47.5 42.3

SMT 31.8 34.6 40.4 42.0 24.2 40.3 43.6

STS 2013 Average 45.3 51.4 65.3 47.7 30.7 57.7 57.2

deft forum 36.6 46.8 53.1 45.6 19.4 50.2 62.7

deft news 66.2 74.0 78.5 73.5 54.6 73.2 77.0

headline 67.1 75.4 78.4 67.4 53.7 69.1 74.3

images 75.6 79.0 83.4 68.7 53.6 80.0 77.6

OnWN 78.0 81.1 87.5 66.8 46.1 79.9 77.0

tweet news 64.7 72.2 79.2 66.2 53.6 76.8 79.1

STS 2014 Average 64.7 71.4 76.7 64.7 46.8 71.5 74.7

answers-forums 61.3 68.2 73.9 47.2 27.3 67.4 61.5

answers-students 67.6 73.6 78.8 75.0 63.1 78.3 78.5

belief 67.7 72.2 77.2 65.7 22.6 76.0 77.2

headline 74.2 80.8 84.2 72.2 61.7 74.5 78.7

images 80.4 84.3 87.1 70.0 52.8 82.2 84.4

STS 2015 Average 70.2 75.8 80.2 66.0 45.5 75.7 76.1

2014 SICK 71.4 79.9 82.8 62.9 50.3 72.0 70.0

2015 Twitter 49.9 52.5 61.9 48.6 39.9 52.7 53.6

Average 59.7 65.6 73.6 59.2 41.9 66.2 68.7

Table 24: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in
each row is in boldface (omitting the official task score columns).
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Since the vocabulary V is defined by the training data sequences, the charagram-phrase

model includes character n-grams that span multiple words, permitting it to capture some

aspects of word order and word co-occurrence, which the paragram-phrase model is un-

able to do.

We encountered difficulties training the charLSTM and charCNN models for this task. We

tried several strategies to improve their chance at convergence, including clipping gradients,

increasing training data, and experimenting with different optimizers and learning rates.

We found success by using the original (confidence-based) ordering of the PPDB phrase

pairs for the initial epoch of learning, then shuffling them for subsequent epochs. This

is similar to curriculum learning (Bengio et al., 2009). The higher-confidence phrase pairs

tend to be shorter and have many overlapping words, possibly making them easier to learn

from.

results An abbreviated version of the sentence similarity results is shown in Table 23;

Full results are shown in Table 24. For comparison, we report performance for the median

(50%), third quartile (75%), and top-performing (Max) systems from the shared tasks. We

observe strong performance for the charagram-phrase model. It always does better than

the charCNN and charLSTM models, and outperforms the paragram-phrase model on 15

of the 22 tasks. Furthermore, charagram-phrase matches or exceeds the top-performing

task-tuned systems on 5 tasks, and is within 0.003 on 2 more. The charLSTM and charCNN

models are significantly worse, with the charCNN being the better of the two and beating

paragram-phrase on 4 of the tasks.

We emphasize that there are many other models that could be compared to, such as an

LSTM over word embeddings. This and many other models were explored in Chapter 4.

Their paragram-phrase model, which simply learns word embeddings within an averag-

ing composition function, was among their best-performing models. We used this model in

our experiments as a strongly-performing representative of their results.

Lastly, we note other recent work that considers a similar transfer learning setting. The

FastSent model (Hill et al., 2016) uses the 2014 STS task as part of its evaluation and reports

an average Pearson’s r of 61.3, much lower than the 74.7 achieved by charagram-phrase

on the same datasets.
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Model Accuracy (%)

charCNN 97.02

charLSTM 96.90

charagram 96.99

charagram (2-layer) 97.10

Table 25: Results on part-of-speech tagging.

5.4.3 POS Tagging Experiments

We now consider part-of-speech (POS) tagging, since it has been used as a testbed for eval-

uating architectures for character-level word representations. It also differs from semantic

similarity, allowing us to evaluate our architectures on a syntactic task. We replicate the

POS tagging experimental setup of Ling et al. (2015a). Their model uses a bidirectional

LSTM over character embeddings to represent words. They then use the resulting word

representations in another bidirectional LSTM that predicts the tag for each word. We re-

place their character bidirectional LSTM with our three architectures: charCNN, charLSTM,

and charagram.

We use the Wall Street Journal portion of the Penn Treebank, using Sections 1-18 for

training, 19-21 for tuning, and 22-24 for testing. We set the dimensionality of the character

embeddings to 50 and that of the (induced) word representations to 150. For optimization,

we use stochastic gradient descent with a mini-batch size of 100 sentences. The learning

rate and momentum are set to 0.2 and 0.95 respectively. We train the models for 50 epochs,

again to ensure that all models have an opportunity to converge.

The other settings for our models are mostly the same as for the word and sentence

experiments (Section 5.4.1). We again use character n-grams with n ∈ {2, 3, 4}, tuning over

whether to include all 54,893 in the training data or only those that occur more than once.

However, there are two minor differences from the previous sections. First, we add a single

binary feature to indicate if the token contains a capital letter. Second, our tuning considers

rectified linear units as the activation function for the charagram and charCNN architec-

tures.1

The results are shown in Table 25. Performance is similar across models. We found that

adding a second fully-connected 150 dimensional layer to the charagram model improved

results slightly.2

1 We did not consider ReLU for the similarity experiments because the final embeddings are used directly
to compute cosine similarities, which led to poor performance when restricting the embeddings to be non-
negative.

2 We also tried adding a second (300 dimensional) layer for the word and sentence embedding models and found
that it hurt performance.
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Figure 2: Plots of performance versus training epoch for word similarity and POS tagging.

5.4.4 Convergence

One observation we made during our experiments was that different models converged

at significantly different rates. Figure 2 plots the performance of the word similarity and

tagging tasks as a function of the number of examples processed during training. For word

similarity, we plot the oracle Spearman’s ρ on SL999, while for tagging we plot tagging ac-

curacy on the validation set. We evaluate performance every quarter epoch (approximately

every 194,252 word pairs) for word similarity and every epoch for tagging. We only show

the first 10 epochs of training in the tagging plot.

The plots show that the charagram model converges quickly to high performance. The

charCNN and charLSTM models take many more epochs to converge. Even with tagging,

which uses a very high learning rate, charagram converges significantly faster than the

others. For word similarity, it appears that charCNN and charLSTM are still slowly improv-

ing at the end of 50 epochs. This suggests that if training was done for a much longer period,

and possibly on more data, the charLSTM or charCNN models could match and surpass the

charagram model. However, due to the large training sets available from PPDB and the

computational requirements of these architectures, we were unable to explore the regime

of training for many epochs. We conjecture that slow convergence could be the reason for

the inferior performance of LSTMs for similarity tasks as reported in Chapter 4.
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Task # n-grams 2 2,3 2,3,4 2,3,4,5 2,3,4,5,6

POS 100 95.52 96.09 96.15 96.13 96.16

Tagging 1,000 96.72 96.86 96.97 97.02 97.03

50,000 96.81 97.00 97.02 97.04 97.09

Word 100 6.2 7.0 7.7 9.1 8.8

Similarity 1,000 15.2 33.0 38.7 43.2 43.9

50,000 14.4 52.4 67.8 69.2 69.5

Sentence 100 40.2 33.8 32.5 31.2 29.8

Similarity 1,000 50.1 60.3 58.6 56.6 55.6

50,000 45.7 64.7 66.6 63.0 61.3

Table 26: Results of using different numbers and different combinations of character n-grams.

5.4.5 Model Size Experiments

The default setting for our charagram and charagram-phrase models is to use all char-

acter bigram, trigrams, and 4-grams that occur in the training data at least C times, tuning

C over the set {1, 2}. This results in a large number of parameters, which could be seen as an

unfair advantage over the comparatively smaller charCNN and charLSTM models, which

have up to 881,025 and 763,200 parameters respectively in the similarity experiments.3

On the other hand, for a given training example, very few parameters in the charagram

model are actually used. For the charCNN and charLSTM models, by contrast, all param-

eters are used except the character embeddings for those characters that are not present

in the example. For a sentence with 100 characters, and when using the 300-dimensional

charagram model with bigrams, trigrams, and 4-grams, there are approximately 90,000

parameters in use for this sentence, far fewer than those used by the charCNN and char-

LSTM for the same sentence.

We performed a series of experiments to investigate how the charagram and charagram-

phrase models perform with different numbers and lengths of character n-grams. For a

given k, we took the top k most frequent character n-grams for each value of n in use. We

experimented with k values in {100, 1000, 50000}. If there were fewer than k unique charac-

ter n-grams for a given n, we used all of them. For these experiments, we did very little

tuning, setting the regularization strength to 0 and only tuning over the activation function.

We repeated this experiment for all three of our tasks. For word similarity, we report perfor-

mance on SL999 after training for 5 epochs on the lexical section of PPDB XXL. For sentence

similarity, we report the average Pearson’s r over all 22 datasets after training for 5 epochs

on the phrasal section of PPDB XL. For tagging, we report accuracy on the validation set

after training for 50 epochs. The results are shown in Table 26.

3 This includes 134 character embeddings.
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When using extremely small models with only 100 n-grams of each order, we still see rel-

atively strong performance on POS tagging. However, the semantic similarity tasks require

far more n-grams to yield strong performance. Using 1000 n-grams clearly outperforms

100, and 50,000 n-grams performs best.

5.5 analysis

5.5.1 Quantitative Analysis

One of our primary motivations for character-based models is to address the issue of out-of-

vocabulary (OOV) words, which were found to be one of the main sources of error for the

paragram-phrase model from Chapter 4. They reported a negative correlation (Pearson’s

r of -0.45) between OOV rate and performance. We took the 12,108 sentence pairs in all 20

SemEval STS tasks and binned them by the total number of unknown words in the pairs.4

We computed Pearson’s r over each bin. The results are shown in Table 27.

Number of
Unknown

Words

N
paragram-

phrase

charagram-
phrase

0 11,292 71.4 73.8

1 534 68.8 78.8

2 194 66.4 72.8

> 1 816 68.6 77.9

> 0 12,108 71.0 74.0

Table 27: Performance (Pearson’s r× 100) as a function of the number of unknown words in the
sentence pairs over all 20 SemEval STS datasets. N is the number of sentence pairs.

The charagram-phrase model has better performance for each number of unknown

words. The paragram-phrase model degrades when more unknown words are present,

presumably because it is forced to use the same unknown word embedding for all unknown

words. The charagram-phrase model has no notion of unknown words, as it can embed

any character sequence.

We next investigated the sensitivity of the two models to length, as measured by the

maximum of the lengths of the two sentences in a pair. We binned all of the 12,108 sentence

pairs in the 20 SemEval STS tasks by length and then again found the Pearson’s r for both

the paragram-phrase and charagram-phrase models. The results are shown in Table 28.

4 Unknown words were defined as those not present in the 1.7 million unique (case-insensitive) tokens that
comprise the vocabulary for the GloVe embeddings available at http://nlp.stanford.edu/projects/glove/.
The paragram-sl999 embeddings, used to initialize the paragram-phrase model, use this same vocabulary.

http://nlp.stanford.edu/projects/glove/
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Max Length N
paragram-

phrase

charagram-
phrase

6 4 71 67.9 72.9

5 216 71.1 71.9

6 572 67.0 69.7

7 1,097 71.5 74.0

8 1,356 74.2 74.5

9 1,266 71.7 72.7

10 1,010 70.7 74.2

11-15 3,143 71.8 73.7

16-20 1,559 73.0 75.1

> 21 1,818 74.5 75.4

Table 28: Performance (Pearson’s r× 100) as a function of the maximum number of tokens in the
sentence pairs over all 20 SemEval STS datasets. N is the number of sentence pairs.

We find that both models are robust to sentence length, achieving the highest correlations

on the longest sentences. We also find that charagram-phrase outperforms paragram-

phrase at all sentence lengths.

5.5.2 Qualitative Analysis

bigram charagram-phrase paragram-phrase

not capable incapable, unable, incapacity not, capable, stalled
not able unable, incapable, incapacity not, able, stalled
not possible impossible impracticable unable not, stalled, possible
not sufficient insufficient, sufficient, inadequate not, sufficient, stalled
not easy easy, difficult, tough not, stalled, easy

Table 29: Nearest neighboring words of selected bigrams under charagram-phrase and
paragram-phrase embeddings.

Aside from OOVs, the paragram-phrase model lacks the ability to model word order

or cooccurrence, since it simply averages the words in the sequence. We were interested

to see whether charagram-phrase could handle negation, since it does model limited

information about word order (via character n-grams that span multiple words in the se-

quence). We made a list of “not” bigrams that could be represented by a single word, then

embedded each bigram using both models and did a nearest-neighbor search over a work-

ing vocabulary.5 The results, in Table 29, show how the charagram-phrase embeddings

model negation. In all cases but one, the nearest neighbor is a paraphrase for the bigram

and the next neighbors are mostly paraphrases as well. The paragram-phrase model, un-

surprisingly, is incapable of modeling negation. In all cases, the nearest neighbor is not,

5 This contained all words in PPDB-XXL, our evaluations, and in two other datasets: the Stanford Sentiment
task (Socher et al., 2013) and the SNLI dataset (Bowman et al., 2015), resulting in 93,217 unique (up-to-casing)
tokens.
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Word charagram-phrase

vehicals vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car

serious-looking serious, grave, acute, serious-minded, seriousness, gravity, serious-faced

near-impossible impossible, hard/impossible, audacious-impossible, impractical, unable

growths growth, grow, growing, increases, grows, increase, rise, growls, rising

litered liter, litering, lited, liters, literate, literature, literary, literal, lite, obliterated

journeying journey, journeys, voyage, trip, roadtrip, travel, tourney, voyages, road-trip

babyyyyyy babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling

adirty dirty, dirtyyyyyy, filthy, down-and-dirty, dirtying, dirties, ugly, dirty-blonde

refunding refunds, refunded, refund, repayment, reimbursement, rebate, repay

reimbursements, reimburse, repaying, repayments, rebates, rebating, reimburses

professors professor, professorships, professorship, teachers, professorial, teacher

prof., teaches, lecturers, teachings, instructors, headteachers, teacher-student

huge enormous, tremendous, large, big, vast, overwhelming, immense, giant

formidable, considerable, massive, huger, large-scale, great, daunting

Table 30: Nearest neighbors of charagram-phrase embeddings. Above the double horizontal line
are nearest neighbors of words that were not in our training data, and below it are nearest
neighbors of words that were in our training data.

as this word carries much more weight than the word it modifies. The remaining nearest

neighbors are either the modified word or stalled.

We did two additional nearest neighbor explorations with our charagram-phrase model.

In the first, we collected the nearest neighbors for words that were not in the training data

(i.e. PPDB XXL), but were in our working vocabulary. This consisted of 59,660 words. In

the second, we collected nearest neighbors of words that were in our training data which

consisted of 37,765 tokens.

A sample of the nearest neighbors is shown in Table 30. Several kinds of similarity are

being captured simultaneously by the model. One kind is similarity in terms of spelling

variation, including misspellings (vehicals, vehicels, and vehicles) and repetition for emphasis

(baby and babyyyyyyy). Another kind is similarity in terms of morphological variants of a

shared root (e.g., journeying and journey). We also see that the model has learned many

strong synonym relationships without significant amounts of overlapping n-grams (e.g.,

vehicles, cars, and automobiles). We find these characteristics for words both in and out of

the training data. Words in the training data, which tend to be more commonly used, do

tend to have higher precision in their nearest neighbors (e.g., see neighbors for huge). We

noted occasional mistakes for words that share a large number of n-grams but are not

paraphrases (see nearest neighbors for litered which is likely a misspelling of littered).

Lastly, since our model learns embeddings for character n-grams, we include an analysis

of character n-gram nearest neighbors in Table 31. These n-grams appear to be grouped

into themes, such as death (first row), food (second row), and speed (third row), but have
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n-gram n-gram Embedding

die _dy, _die, dead,_dyi, rlif, mort, ecea, rpse, d_aw

foo _foo,_eat, meal, alim, trit, feed, grai,_din, nutr, toe

pee peed, hast, spee, fast, mpo_, pace, _vel, loci, ccel

aiv waiv, aive, boli, epea, ncel, abol, lift, bort, bol

ngu ngue, uist, ongu, tong, abic, gual, fren, ocab, ingu

_2 2_, _02, _02_,_tw,_dua,_xx,_ii_, xx, o_14, d_.2

Table 31: Nearest neighbors of character n-gram embeddings from our trained charagram-phrase

model. The underscore indicates a space, which signals the beginning or end of a word.

different granularities. The n-grams in the last row appear in paraphrases of 2, whereas the

second-to-last row shows n-grams in words like french and vocabulary, which can broadly

be classified as having to do with language.

5.6 conclusion

We performed a careful empirical comparison of character-based compositional architec-

tures on three NLP tasks. While most prior work has considered machine translation, lan-

guage modeling, and syntactic analysis, we showed how character-level modeling can im-

prove semantic similarity tasks, both quantitatively and with extensive qualitative analysis.

We found a consistent trend: the simplest architecture converges fastest to high perfor-

mance. These results, coupled with those from Chapter 4, suggest that practitioners should

begin with simple architectures rather than moving immediately to RNNs and CNNs. We

release our code and trained models so they can be used by the NLP community for general-

purpose, character-based text representation.
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R E V I S I T I N G R E C U R R E N T N E T W O R K S F O R PA R A P H R A S T I C

S E N T E N C E E M B E D D I N G S

6.1 introduction

Modeling sentential compositionality is a fundamental aspect of natural language seman-

tics. Researchers have proposed a broad range of compositional functional architectures (Mitchell

and Lapata, 2008; Socher et al., 2011; Kalchbrenner et al., 2014) and evaluated them on

a large variety of applications. Our goal is to learn a general-purpose sentence embed-

ding function that can be used unmodified for measuring semantic textual similarity (STS)

(Agirre et al., 2012) and can also serve as a useful initialization for downstream tasks. We

wish to learn this embedding function such that sentences with high semantic similarity

have high cosine similarity in the embedding space. In particular, we focus on the setting

of Chapter 4, in which models are trained on noisy paraphrase pairs and evaluated on both

STS and supervised semantic tasks.

Surprisingly, in Chapter 4, we found that simple embedding functions—those based on

averaging word vectors—outperform more powerful architectures based on long short-term

memory (LSTM) (Hochreiter and Schmidhuber, 1997). In this chapter, we revisit their ex-

perimental setting and present several techniques that together improve the performance

of the LSTM to be superior to word averaging.

We first change data sources: rather than train on noisy phrase pairs from the Paraphrase

Database (PPDB; Ganitkevitch et al., 2013), we use noisy sentence pairs obtained automati-

cally by aligning Simple English to standard English Wikipedia (Coster and Kauchak, 2011).

Even though this data was intended for use by text simplification systems, we find it to be

efficient and effective for learning sentence embeddings, outperforming much larger sets

of examples from PPDB.

We then show how we can modify and regularize the LSTM to further improve its per-

formance. The main modification is to simply average the hidden states instead of using

the final one. For regularization, we experiment with two kinds of dropout and also with

randomly scrambling the words in each input sequence. We find that these techniques help

92
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in the transfer learning setting and on two supervised semantic similarity datasets as well.

Further gains are obtained on the supervised tasks by initializing with our models from the

transfer setting.

Inspired by the strong performance of both averaging and LSTMs, we introduce a novel

recurrent neural network architecture which we call the gated recurrent averaging net-

work (GRAN). The GRAN outperforms averaging and the LSTM in both the transfer and

supervised learning settings, forming a promising new recurrent architecture for semantic

modeling.

6.2 related work

Modeling sentential compositionality has received a great deal of attention in recent years.

A comprehensive survey is beyond the scope of this paper, but we mention popular func-

tional families: neural bag-of-words models (Kalchbrenner et al., 2014), deep averaging net-

works (DANs) (Iyyer et al., 2015), recursive neural networks using syntactic parses (Socher

et al., 2011, 2012, 2013; Irsoy and Cardie, 2014), convolutional neural networks (Kalchbren-

ner et al., 2014; Kim, 2014; Hu et al., 2014a), and recurrent neural networks using long

short-term memory (Tai et al., 2015; Ling et al., 2015a; Liu et al., 2015). Simple operations

based on vector addition and multiplication typically serve as strong baselines (Mitchell

and Lapata, 2008, 2010; Blacoe and Lapata, 2012).

Most work cited above uses a supervised learning framework, so the composition func-

tion is learned discriminatively for a particular task. In this paper, we are primarily inter-

ested in creating general purpose, domain independent embeddings for word sequences.

Several others have pursued this goal (Socher et al., 2011; Le and Mikolov, 2014; Pham et al.,

2015; Kiros et al., 2015; Hill et al., 2016; Arora et al., 2017; Pagliardini et al., 2017), though

usually with the intent to extract useful features for supervised sentence tasks rather than

to capture semantic similarity.

An exception is our work in Chapter 4. We closely follow this experimental setup and

directly address some outstanding questions in our experimental results. Here we briefly

summarize our main findings and attempts at explaining them. We made the surprising

discovery that word averaging outperforms LSTMs by a wide margin in the transfer learn-

ing setting. We proposed several hypotheses for why this occurs. We first considered that

the LSTM was unable to adapt to the differences in sequence length between phrases in
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training and sentences in test. This was ruled out by showing that neither model showed

any strong correlation between sequence length and performance on the test data.

We next examined whether the LSTM was overfitting on the training data, but then

showed that both models achieve similar values of the training objective and similar perfor-

mance on in-domain held-out test sets. Lastly, we considered whether their hyperparameters

were inadequately tuned, but extensive hyperparameter tuning did not change the story.

Therefore, the reason for the performance gap, and how to correct it, was left as an open

problem. This chapter takes steps toward addressing that problem.

6.3 models and training

6.3.1 Models

Our goal is to embed a word sequence s into a fixed-length vector. We focus on three compo-

sitional models in this paper, all of which use words as the smallest unit of compositionality.

We denote the tth word in s as st, and we denote its word embedding by xt.

Our first two models have been well-studied in prior work, so we describe them briefly.

The first, which we call Word, simply averages the embeddings xt of all words in s. The

only parameters learned in this model are those in the word embeddings themselves, which

are stored in the word embedding matrix Ww. This model was found in Chapter 4 to

perform very strongly for semantic similarity tasks.

Our second model uses a long short-term memory (LSTM) recurrent neural network (Hochre-

iter and Schmidhuber, 1997) to embed s. We use the LSTM variant from Gers et al. (2003)

including its “peephole” connections. We consider two ways to obtain a sentence embed-

ding from the LSTM. The first uses the final hidden vector, which we denote h−1. The

second, denoted LSTMavg, averages all hidden vectors of the LSTM. In both variants, the

learnable parameters include both the LSTM parameters Wc and the word embeddings

Ww.

Inspired by the success of the two models above, we propose a third model, which we

call the gated recurrent averaging network (GRAN). The gated recurrent averaging

network combines the benefits of Word and LSTMs. In fact it reduces to Word if the

output of the gate is all ones. We first use an LSTM to generate a hidden vector, ht, for each
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word st in s. Then we use ht to compute a gate that will be elementwise-multiplied with

xt, resulting in a new, gated hidden vector at for each step t:

at = xt � σ(Wxxt +Whht + b)

where Wx and Wh are parameter matrices, b is a parameter vector, and σ is the elemen-

twise logistic sigmoid function. After all at have been generated for a sentence, they are

averaged to produce the embedding for that sentence. This model includes as learnable

parameters those of the LSTM, the word embeddings, and the additional parameters in

Eq. equation 6.3.1. For both the LSTM and GRAN models, we use Wc to denote the “com-

positional” parameters, i.e., all parameters other than the word embeddings.

The motivation for the GRAN is that we are contextualizing the word embeddings prior

to averaging. The gate can be seen as an attention, attending to the prior context of the

sentence.1

We also experiment with four other variations of this model, though they generally were

more complex and showed inferior performance. In the first, GRAN-2, the gate is applied

to ht (rather than xt) to produce at, and then these at are averaged as before.

GRAN-3 and GRAN-4 use two gates: one applied to xt and one applied to at−1. We

tried two different ways of computing these gates: for each gate i, σ(Wxixt +Whiht + bi)

(GRAN-3) or σ(Wxixt +Whiht +Waiat−1 + bi) (GRAN-4). The sum of these two terms

comprised at. In this model, the last average hidden state, a−1, was used as the sentence

embedding after dividing it by the length of the sequence. In these models, we are addition-

ally keeping a running average of the embeddings that is being modified by the context at

every time step. In GRAN-4, this running average is also considered when producing the

contextualized word embedding.

Lastly, we experimented with a fifth GRAN, GRAN-5, in which we use two gates, calcu-

lated by σ(Wxixt +Whiht + bi) for each gate i. The first is applied to xt and the second

is applied to ht. The output of these gates is then summed. Therefore GRAN-5 can be

reduced to either word-averaging or averaging LSTM states, depending on the behavior

of the gates. If the first gate is all ones and the second all zeros throughout the sequence,

the model is equivalent to word-averaging. Conversely, if the first gate is all zeros and the

1 We tried a variant of this model without the gate. We obtain at from f(Wxxt +Whht + b), where f is a
nonlinearity, tuned over tanh and ReLU. The performance of the model is significantly worse than the GRAN
in all experiments.
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second is all ones throughout the sequence, the model is equivalent to averaging the LSTM

states. Further analysis of these models is included in Section 6.4.

6.3.2 Training

We follow the training procedure of Chapters 3 and 4, described below. The training data

consists of a set S of phrase or sentence pairs 〈s1, s2〉 from either the Paraphrase Database

(PPDB; Ganitkevitch et al., 2013) or the aligned Wikipedia sentences (Coster and Kauchak,

2011) where s1 and s2 are assumed to be paraphrases. We optimize a margin-based loss:

min
Wc,Ww

1

|S|

( ∑
〈s1,s2〉∈S

max(0, δ− cos(g(s1),g(s2))

+ cos(g(s1),g(t1))) + max(0, δ− cos(g(s1),g(s2))

+ cos(g(s2),g(t2)))
)
+ λc ‖Wc‖2 + λw

∥∥Wwinitial −Ww
∥∥2

where g is the model in use (e.g., Word or LSTM), δ is the margin, λc and λw are reg-

ularization parameters, Wwinitial is the initial word embedding matrix, and t1 and t2 are

carefully-selected negative examples taken from a mini-batch during optimization. The in-

tuition is that we want the two phrases to be more similar to each other (cos(g(s1),g(s2)))

than either is to their respective negative examples t1 and t2, by a margin of at least δ.

6.3.2.1 Selecting Negative Examples

To select t1 and t2 in Eq. equation 8.4, we simply choose the most similar phrase in some

set of phrases (other than those in the given phrase pair). For simplicity we use the mini-

batch for this set, but it could be a different set. That is, we choose t1 for a given 〈s1, s2〉 as

follows:

t1 = argmax
t:〈t,·〉∈Sb\{〈s1,s2〉}

cos(g(s1),g(t))

where Sb ⊆ S is the current mini-batch. That is, we want to choose a negative example ti

that is similar to si according to the current model. The downside is that we may occasion-

ally choose a phrase ti that is actually a true paraphrase of si.
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6.4 experiments

Our experiments are designed to address the empirical question posed in Chapter 4: why

do LSTMs underperform Word for transfer learning? In Sections 6.4.1.2-6.4.2, we make

progress on this question by presenting methods that bridge the gap between the two mod-

els in the transfer setting. We then apply these same techniques to improve performance

in the supervised setting, described in Section 6.4.3. In both settings we also evaluate our

novel GRAN architecture, finding it to consistently outperform both Word and the LSTM.

6.4.1 Transfer Learning

6.4.1.1 Datasets and Tasks

We train on large sets of noisy paraphrase pairs and evaluate on a diverse set of 22 textual

similarity datasets, including all datasets from every SemEval semantic textual similarity

(STS) task from 2012 to 2015. We also evaluate on the SemEval 2015 Twitter task (Xu et al.,

2015b) and the SemEval 2014 SICK Semantic Relatedness task (Marelli et al., 2014). Given

two sentences, the aim of the STS tasks is to predict their similarity on a 0-5 scale, where

0 indicates the sentences are on different topics and 5 indicates that they are completely

equivalent. We report the average Pearson’s r over these 22 sentence similarity tasks.

Each STS task consists of 4-6 datasets covering a wide variety of domains, including

newswire, tweets, glosses, machine translation outputs, web forums, news headlines, im-

age and video captions, among others. Further details are provided in the official task

descriptions (Agirre et al., 2012, 2013, 2014, 2015).

6.4.1.2 Experiments with Data Sources

We first investigate how different sources of training data affect the results. We try two data

sources. The first is phrase pairs from the Paraphrase Database (PPDB). PPDB comes in

different sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller

ones. The pairs in PPDB are sorted by a confidence measure and so the smaller sets con-

tain higher precision paraphrases. PPDB is derived automatically from naturally-occurring

bilingual text, and versions of PPDB have been released for many languages without the

need for any manual annotation (Ganitkevitch and Callison-Burch, 2014).
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Word LSTM LSTMavg

PPDB 67.7 54.2 64.2

SimpWiki 68.4 59.3 67.5

Table 32: Test results on SemEval semantic textual similarity datasets (Pearson’s r× 100) when train-
ing on different sources of data: phrase pairs from PPDB or simple-to-standard English
Wikipedia sentence pairs from Coster and Kauchak (2011).

The second source of data is a set of sentence pairs automatically extracted from Sim-

ple English Wikipedia and English Wikipedia articles by Coster and Kauchak (2011). This

data was extracted for developing text simplification systems, where each instance pairs a

simple and complex sentence representing approximately the same information. Though

the data was obtained for simplification, we use it as a source of training data for learn-

ing paraphrastic sentence embeddings. The dataset, which we call SimpWiki, consists of

167,689 sentence pairs.

To ensure a fair comparison, we select a sample of pairs from PPDB XL such that the

number of tokens is approximately the same as the number of tokens in the SimpWiki

sentences.2

We use paragram-sl999 embeddings from Chapter 3 to initialize the word embedding

matrix (Ww) for all models. For all experiments, we fix the mini-batch size to 100, and λc

to 0. We tune the margin δ over {0.4, 0.6, 0.8} and λw over {10−4, 10−5, 10−6, 10−7, 10−8, 0}.

We train Word for 7 epochs, and the LSTM for 3, since it converges much faster and

does not benefit from 7 epochs. For optimization we use Adam (Kingma and Ba, 2014)

with a learning rate of 0.001. We use the 2016 STS tasks (Agirre et al., 2016) for model

selection, where we average the Pearson’s r over its 5 datasets. We refer to this type of

model selection as test. For evaluation, we report the average Pearson’s r over the 22 other

sentence similarity tasks.

The results are shown in Table 32. We first note that, when training on PPDB, we find the

same result as Chapter 4: Word outperforms the LSTM by more than 13 points. However,

when training both on sentence pairs, the gap shrinks to about 9 points. It appears that part

of the inferior performance for the LSTM in prior work was due to training on phrase pairs

rather than on sentence pairs. The Word model also benefits from training on sentences,

but not nearly as much as the LSTM.3

2 The PPDB data consists of 1,341,188 phrase pairs and contains 3 more tokens than the SimpWiki data.
3 We experimented with adding EOS tags at the end of training and test sentences, SOS tags at the start of training

and test sentences, adding both, and adding neither. We treated adding these tags as hyperparameters and
tuned over these four settings along with the other hyperparameters in the original experiment. Interestingly,
we found that adding these tags, especially EOS, had a large effect on the LSTM when training on SimpWiki,
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Our hypothesis explaining this result is that in PPDB, the “phrase pairs” are short frag-

ments of text which are not necessarily constituents or phrases in any syntactic sense. There-

fore, the sentences in the STS test sets are quite different from the fragments seen during

training. We hypothesize that while word-averaging is relatively unaffected by this differ-

ence, the recurrent models are much more sensitive to overall characteristics of the word

sequences, and the difference between train and test matters much more.

These results also suggest that the SimpWiki data, even though it was developed for text

simplification, may be useful for other researchers working on semantic textual similarity

tasks.

6.4.1.3 Experiments with LSTM Variations

We next compare LSTM and LSTMavg. The latter consists of averaging the hidden vectors

of the LSTM rather than using the final hidden vector as in prior work (Chapter 4). We

hypothesize that the LSTM may put more emphasis on the words at the end of the sentence

than those at the beginning. By averaging the hidden states, the impact of all words in the

sequence is better taken into account. Averaging also makes the LSTM more like Word,

which we know to perform strongly in this setting.

The results on Word and the LSTM models are shown in Table 32. When training on

PPDB, moving from LSTM to LSTMavg improves performance by 10 points, closing most

of the gap with Word. We also find that LSTMavg improves by moving from PPDB to

SimpWiki, though in both cases it still lags behind Word.

6.4.2 Experiments with Regularization

We next experiment with various forms of regularization. In Chapters 4 and 5, we only

used L2 regularization. In Chapter 4 also regularized the word embeddings back to their

initial values. Here we use L2 regularization as well as several additional regularization

methods we describe below.

We try two forms of dropout. The first is just standard dropout (Srivastava et al., 2014)

on the word embeddings. The second is “word dropout”, which drops out entire word

embeddings with some probability (Iyyer et al., 2015).

improving performance by 6 points. When training on PPDB, adding EOS tags only improved performance by
1.6 points.
The addition of the tags had a smaller effect on LSTMavg. Adding EOS tags improved performance by 0.3
points on SimpWiki and adding SOS tags on PPDB improved performance by 0.9 points.
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We also experiment with scrambling the inputs. For a given mini-batch, we go through

each sentence pair and, with some probability, we shuffle the words in each sentence in the

pair. When scrambling a sentence pair, we always shuffle both sentences in the pair. We do

this before selecting negative examples for the mini-batch. The motivation for scrambling

is to make it more difficult for the LSTM to memorize the sequences in the training data,

forcing it to focus more on the identities of the words and less on word order. Hence it will

be expected to behave more like the word averaging model.4

We also experiment with combining scrambling and dropout. In this setting, we tune

over scrambling with either word dropout or dropout.

The settings for these experiments are largely the same as those of the previous section

with the exception that we tune λw over a smaller set of values: {10−5, 0}. When using L2

regularization, we tune λc over {10−3, 10−4, 10−5, 10−6}. When using dropout, we tune the

dropout rate over {0.2, 0.4, 0.6}. When using scrambling, we tune the scrambling rate over

{0.25, 0.5, 0.75}. We also include a bidirectional model (“Bi”) for both LSTMavg and the

gated recurrent averaging network. We tune over two ways to combine the forward

and backward hidden states; the first simply adds them together and the second uses a

single feedforward layer with a tanh activation.

We try two approaches for model selection. The first, test, is the same as was done in

Section 6.4.1.2, where we use the average Pearson’s r on the 5 2016 STS datasets. The

second tunes based on the average Pearson’s r of all 22 datasets in our evaluation. We refer

to this as oracle.

The results are shown in Table 33. They show that dropping entire word embeddings

and scrambling input sequences is very effective in improving the result of the LSTM,

while neither type of dropout improves Word. Moreover, averaging the hidden states of

the LSTM is the most effective modification to the LSTM in improving performance. All of

these modifications can be combined to significantly improve the LSTM, finally allowing it

to overtake Word.

In Table 34, we compare the various GRAN architectures. We find that the GRAN pro-

vides a small improvement over the best LSTM configuration, possibly because of its simi-

larity to Word. It also outperforms the other GRAN models, despite being the simplest.

In Table 35, we show results on all individual STS evaluation datasets after using STS

2016 for model selection (unidirectional models only). The LSTMavg and gated recur-

4 We also tried some variations on scrambling that did not yield significant improvements: scrambling after
obtaining the negative examples, partially scrambling by performing n swaps where n comes from a Poisson
distribution with a tunable λ, and scrambling individual sentences with some probability instead of always
scrambling both in the pair.
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Model Regularization Oracle 2016 STS

Word

none 68.5 68.4
dropout 68.4 68.3
word dropout 68.3 68.3

LSTM

none 60.6 59.3
L2 60.3 56.5
dropout 58.1 55.3
word dropout 66.2 65.3
scrambling 66.3 65.1
dropout, scrambling 68.4 68.4

LSTMavg
none 67.7 67.5
dropout, scrambling 69.2 68.6

BiLSTMavg dropout, scrambling 69.4 68.7

Table 33: Results on SemEval textual similarity datasets (Pearson’s r× 100) when experimenting
with different regularization techniques.

Model Oracle STS 2016

GRAN (no reg.) 68.0 68.0
GRAN 69.5 68.9
GRAN-2 68.8 68.1
GRAN-3 69.0 67.2
GRAN-4 68.6 68.1
GRAN-5 66.1 64.8
BiGRAN 69.7 68.4

Table 34: Results on SemEval textual similarity datasets (Pearson’s r× 100) for the GRAN archi-
tectures. The first row, marked as (no reg.) is the GRAN without any regularization. The
other rows show the result of the various GRAN models using dropout and scrambling.

rent averaging network are more closely correlated in performance, in terms of Spear-

man’s ρ and Pearson’r r, than either is to Word. But they do differ significantly in some

datasets, most notably in those comparing machine translation output with its reference.

Interestingly, both the LSTMavg and gated recurrent averaging network significantly

outperform Word in the datasets focused on comparing glosses like OnWN and FNWN.

Upon examination, we found that these datasets, especially 2013 OnWN, contain examples

of low similarity with high word overlap. For example, the pair 〈the act of preserving or pro-

tecting something., the act of decreasing or reducing something.〉 from 2013 OnWN has a gold

similarity score of 0.4. It appears that Word was fooled by the high amount of word over-

lap in such pairs, while the other two models were better able to recognize the semantic

differences.
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Dataset LSTMavg Word GRAN

MSRpar 49.0 45.9 47.7
MSRvid 84.3 85.1 85.2
SMT-eur 51.2 47.5 49.3
OnWN 71.5 71.2 71.5
SMT-news 68.0 58.2 58.7

STS 2012 Average 64.8 61.6 62.5

headline 77.3 76.9 76.1
OnWN 81.2 72.8 81.4
FNWN 53.2 50.2 55.6
SMT 40.7 38.0 40.3

STS 2013 Average 63.1 59.4 63.4
deft forum 56.6 55.6 55.7
deft news 78.0 78.5 77.1
headline 74.5 75.1 72.8
images 84.7 85.6 85.8
OnWN 84.9 81.4 85.1
tweet news 76.3 78.7 78.7

STS 2014 Average 75.8 75.8 75.9
answers-forums 71.8 70.6 73.1
answers-students 71.1 75.8 72.9
belief 75.3 76.8 78.0
headline 79.5 80.3 78.6
images 85.8 86.0 85.8

STS 2015 Average 76.7 77.9 77.7

2014 SICK 71.3 72.4 72.9
2015 Twitter 52.1 52.1 50.2

Table 35: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in
each row is in boldface.
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6.4.3 Supervised Text Similarity

We also investigate if these techniques can improve LSTM performance on supervised se-

mantic textual similarity tasks. We evaluate on two supervised datasets. For the first, we

start with the 20 SemEval STS datasets from 2012-2015 and then use 40% of each dataset for

training, 10% for validation, and the remaining 50% for testing. There are 4,481 examples in

training, 1,207 in validation, and 6,060 in the test set. The second is the SICK 2014 dataset,

using its standard training, validation, and test sets. There are 4,500 sentence pairs in the

training set, 500 in the development set, and 4,927 in the test set. The SICK task is an eas-

ier learning problem since the training examples are all drawn from the same distribution,

and they are mostly shorter and use simpler language. As these are supervised tasks, the

sentence pairs in the training set contain manually-annotated semantic similarity scores.

We minimize the loss function5 from Tai et al. (2015). Given a score for a sentence pair in

the range [1,K], where K is an integer, with sentence representations hL and hR, and model

parameters θ, they first compute:

h× = hL � hR, h+ = |hL − hR|,

hs = σ
(
W(×)h× +W(+)h+ + b(h)

)
,

p̂θ = softmax
(
W(p)hs + b

(p)
)

,

ŷ = rT p̂θ,

where rT = [1 2 . . . K]. They then define a sparse target distribution p that satisfies y = rTp:

pi =



y− byc, i = byc+ 1

byc− y+ 1, i = byc

0 otherwise

for 1 6 i 6 K. Then they use the following loss, the regularized KL-divergence between p

and p̂θ:

J(θ) =
1

m

m∑
k=1

KL
(
p(k)

∥∥∥ p̂(k)θ )
,

where m is the number of training pairs.

5 This objective function has been shown to perform very strongly on text similarity tasks, significantly better
than squared or absolute error.
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Model Regularization STS SICK Avg.

Word

none 79.2 85.2 82.2
dropout 80.7 84.5 82.6
word dropout 79.3 81.8 80.6

none 68.4 80.9 74.7
dropout 69.6 81.3 75.5

LSTM word dropout 68.0 76.4 72.2
scrambling 74.2 84.4 79.3
dropout, scrambling 75.0 84.2 79.6

LSTMavg

none 69.0 79.5 74.3
dropout 69.2 79.4 74.3
word dropout 65.6 76.1 70.9
scrambling 76.5 83.2 79.9
dropout, scrambling 76.5 84.0 80.3

GRAN

none 79.7 85.2 82.5
dropout 79.7 84.6 82.2
word dropout 77.3 83.0 80.2
scrambling 81.4 85.3 83.4
dropout, scrambling 81.6 85.1 83.4

Table 36: Results from supervised training on the STS and SICK datasets (Pearson’s r× 100). The
last column is the average result on the two datasets.

Model STS SICK Avg.

GRAN 81.6 85.3 83.5
GRAN-2 77.4 85.1 81.3
GRAN-3 81.3 85.4 83.4
GRAN-4 80.1 85.5 82.8
GRAN-5 70.9 83.0 77.0

Table 37: Results from supervised training on the STS and SICK datasets (Pearson’s r× 100) for the
GRAN architectures. The last column is the average result on the two datasets.

We experiment with the LSTM, LSTMavg, and Word models with dropout, word dropout,

and scrambling tuning over the same hyperparameter as in Section 6.4.2. We again regular-

ize the word embeddings back to their initial state, tuning λw over {10−5, 0}. We used the

validation set for each respective dataset for model selection.

The results are shown in Table 36. The gated recurrent averaging network has the

best performance on both datasets. Dropout helps the word-averaging model in the STS

task, unlike in the transfer learning setting. The LSTM benefits slightly from dropout, scram-

bling, and averaging on their own individually with the exception of word dropout on both

datasets and averaging on the SICK dataset. However, when combined, these modifications

are able to significantly improve the performance of the LSTM, bringing it much closer in

performance to Word. This experiment indicates that these modifications when training
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LSTMs are beneficial outside the transfer learning setting, and can potentially be used to

improve performance for the broad range of problems that use LSTMs to model sentences.

In Table 37 we compare the various GRAN architectures under the same settings as the

previous experiment. We find that the GRAN still has the best overall performance.

# Sentence 1 Sentence 2 Lavg Word Gold

1 the lamb is looking at the camera. a cat looking at the camera. 3.42 4.13 0.8

2 he also said shockey is “living the
dream life of a new york athlete.

“jeremy’s a good guy,” barber said,
adding:“jeremy is living the dream life of
the new york athlete.

3.55 4.22 2.75

3 bloomberg chips in a billion bloomberg gives $1.1 b to university 3.99 3.04 4.0

4 in other regions, the sharia is imposed. in other areas, sharia law is being introduced by
force.

4.44 3.72 4.75

5 three men in suits sitting at a table. two women in the kitchen looking at a object. 3.33 2.79 0.0

6 we never got out of it in the first place! where does the money come from in the first
place?

4.00 3.33 0.8

7 two birds interacting in the grass. two dogs play with each other outdoors. 3.44 2.81 0.2

Table 38: Illustrative sentence pairs from the STS datasets showing errors made by LSTMavg and
Word. The last three columns show the gold similarity score, the similarity score of
LSTMavg, and the similarity score of Word. Boldface indicates smaller error compared
to gold scores.

We also experiment with initializing the supervised models using our pretrained sen-

tence model parameters, for the Word model (no regularization), LSTMavg (dropout, scram-

bling), and gated recurrent averaging network (dropout, scrambling) models from Ta-

ble 33 and Table 34. We both initialize and then regularize back to these initial values,

referring to this setting as “universal”.6

The results are shown in Table 39. Initializing and regularizing to the pretrained models

significantly improves the performance for all three models, justifying our claim that these

models serve a dual purpose: they can be used a black box semantic similarity function, and

they possess rich knowledge that can be used to improve the performance of downstream

tasks.

6.5 analysis

6.5.1 Error Analysis

We analyze the predictions of Word and the recurrent networks, represented by LSTMavg,

on the 20 STS datasets. We choose LSTMavg as it correlates slightly less strongly with Word

6 In these experiments, we tuned λw over {10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 0} and λc over
{10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 0}.
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Model Regularization STS SICK

Word
dropout 80.7 84.5
dropout, universal 82.9 85.6

LSTMavg
dropout, scrambling 76.5 84.0
dropout, scrambling, universal 81.3 85.2

GRAN dropout, scrambling 81.6 85.1
dropout, scrambling, universal 82.7 86.0

Table 39: Impact of initializing and regularizing toward universal models (Pearson’s r × 100) in
supervised training.

than the GRAN on the results over all SemEval datasets used for evaluation. We scale the

models’ cosine similarities to lie within [0, 5], then compare the predicted similarities of

LSTMavg and Word to the gold similarities. We analyzed instances in which each model

would tend to overestimate or underestimate the gold similarity relative to the other. These

are illustrated in Table 38.

We find that Word tends to overestimate the semantic similarity of a sentence pair, rela-

tive to LSTMavg, when the two sentences have a lot of word or synonym overlap, but have

either important differences in key semantic roles or where one sentence has significantly

more content than the other. These phenomena are shown in examples 1 and 2 in Table 38.

Conversely, Word tends to underestimate similarity when there are one-word-to-multiword

paraphrases between the two sentences as shown in examples 3 and 4.

LSTMavg tends to overestimate similarity when the two inputs have similar sequences of

syntactic categories, but the meanings of the sentences are different (examples 5, 6, and 7).

Instances of LSTMavg underestimating the similarity relative to Word are relatively rare,

and those that we found did not have any systematic patterns.

6.5.2 GRAN Gate Analysis

We also investigate what is learned by the gating function of the gated recurrent averag-

ing network. We are interested to see whether its estimates of importance correlate with

those of traditional syntactic and (shallow) semantic analysis.

We use the oracle trained gated recurrent averaging network from Table 34 and cal-

culate the L1 norm of the gate after embedding 10,000 sentences from English Wikipedia.7

We also automatically tag and parse these sentences using the Stanford dependency parser (Man-

7 We selected only sentences of less than or equal to 15 tokens to ensure more accurate parsing.
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POS Dep. Label

top 10 bot. 10 top 10 bot. 10

NNP TO number possessive
NNPS WDT nn cop
CD POS num det
NNS DT acomp auxpass
VBG WP appos prep
NN IN pobj cc
JJ CC vmod mark
UH PRP dobj aux
VBN EX amod expl
JJS WRB conj neg

Table 40: POS tags and dependency labels with highest and lowest average gated recurrent aver-
aging network gate L1 norms. The lists are ordered from highest norm to lowest in the
top 10 columns, and lowest to highest in the bottom 10 columns.

Dep. Label Weight

xcomp 170.6
acomp 167.1
root 157.4

amod 143.1

advmod 121.6

Table 41: Average L1 norms for adjectives (JJ) with selected dependency labels.

ning et al., 2014). We then compute the average gate L1 norms for particular part-of-speech

tags, dependency arc labels, and their conjunction.

Table 40 shows the highest/lowest average norm tags and dependency labels. The net-

work prefers nouns, especially proper nouns, as well as cardinal numbers, which is sensible

as these are among the most discriminative features of a sentence.

Analyzing the dependency relations, we find that nouns in the object position tend to

have higher weight than nouns in the subject position. This may relate to topic and focus;

the object may be more likely to be the “new” information related by the sentence, which

would then make it more likely to be matched by the other sentence in the paraphrase pair.

We find that the weights of adjectives depend on their position in the sentence, as shown

in Table 41. The highest norms appear when an adjective is an xcomp, acomp, or root;

this typically means it is residing in an object-like position in its clause. Adjectives that

modify a noun (amod) have medium weight, and those that modify another adjective or

verb (advmod) have low weight.
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Dep. Label Weight

pcomp 190.0
amod 178.3
xcomp 176.8

vmod 170.6
root 161.8

auxpass 125.4
prep 121.2

Table 42: Average L1 norms for words with the tag VBG with selected dependency labels.

Lastly, we analyze words tagged as VBG, a highly ambiguous tag that can serve many

syntactic roles in a sentence. As shown in Table 42, we find that when they are used to

modify a noun (amod) or in the object position of a clause (xcomp, pcomp) they have high

weight. Medium weight appears when used in verb phrases (root, vmod) and low weight

when used as prepositions or auxiliary verbs (prep, auxpass).

6.6 conclusion

We showed how to modify and regularize LSTMs to improve their performance for learning

paraphrastic sentence embeddings in both transfer and supervised settings. We also intro-

duced a new recurrent network, the gated recurrent averaging network, that improves

upon both Word and LSTMs for these tasks, and we release our code and trained models.

Furthermore, we analyzed the different errors produced by Word and the recurrent meth-

ods and found that the recurrent methods were learning composition that wasn’t being

captured by Word. We also investigated the GRAN in order to better understand the com-

positional phenomena it was learning by analyzing the L1 norm of its gate over various

inputs.

Future work will explore additional data sources, including from aligning different trans-

lations of novels (Barzilay and McKeown, 2001), aligning new articles of the same topic (Dolan

et al., 2004), or even possibly using machine translation systems to translate bilingual text

into paraphrastic sentence pairs. Our new techniques, combined with the promise of new

data sources, offer a great deal of potential for improved universal paraphrastic sentence

embeddings.
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L E A R N I N G PA R A P H R A S T I C S E N T E N C E E M B E D D I N G S F R O M

B A C K - T R A N S L AT E D B I T E X T

7.1 introduction

Pretrained word embeddings have received a great deal of attention from the research

community, but there is much less work on developing pretrained embeddings for sentences.

Here we target sentence embeddings that are “paraphrastic” in the sense that two sentences

with similar meanings are close in the embedding space. In 4, we developed paraphrastic

sentence embeddings that are useful for semantic textual similarity tasks and can also be

used as initialization for supervised semantic tasks.

To learn these sentence embeddings, we used the Paraphrase Database (PPDB) (Ganitke-

vitch et al., 2013). PPDB contains a large set of paraphrastic textual fragments extracted

automatically from bilingual text (“bitext”), which is readily available for languages and

domains. Versions of PPDB have been released for several languages (Ganitkevitch and

Callison-Burch, 2014).

However, in 6, we showed that the fragmental nature of PPDB’s pairs can be prob-

lematic, especially for recurrent networks. Better performance can be achieved with a

smaller set of sentence pairs derived from aligning Simple English and standard English

Wikipedia (Coster and Kauchak, 2011). While effective, this type of data is inherently lim-

ited in size and scope, and not available for languages other than English.

PPDB is appealing in that it only requires bitext. We would like to retain this property

but develop a data resource with sentence pairs rather than phrase pairs. We turn to neural

machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2015; Sennrich et al.,

2016b), which has matured recently to yield strong performance especially in terms of

producing grammatical outputs.

In this chapter, we build NMT systems for three language pairs, then use them to back-

translate the non-English side of the training bitext. The resulting data consists of sentence

pairs containing an English reference and the output of an X-to-English NMT system. Ta-

ble 43 shows examples. We use this data for training paraphrastic sentence embeddings,

109
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R: We understand that has already commenced, but there is a long way to go.
T: This situation has already commenced, but much still needs to be done.

R: The restaurant is closed on Sundays. No breakfast is available on Sunday mornings.
T: The restaurant stays closed Sundays so no breakfast is served these days.

R: Improved central bank policy is another huge factor.
T: Another crucial factor is the improved policy of the central banks.

Table 43: Illustrative examples of references (R) paired with back-translations (T).

yielding results that are much stronger than when using PPDB and competitive with the

Simple English Wikipedia data.

Since bitext is abundant and available for many language pairs and in many data do-

mains, we also develop several methods of filtering the data, including based on sentence

length, quality measures, and measures of difference between the reference and its back-

translation. We find length to be an effective filtering method, showing that very short

length ranges—where the translation is 1 to 10 words—are best for learning.

In studying quality measures for filtering, we train a classifier to predict if a sentence is

a reference or a back-translation, then score sentences by the classifier score. This investiga-

tion allows us to examine the kinds of phenomena that best distinguish NMT output from

references in this controlled setting of translating the bitext training data. NMT output has

more repetitions of both words and longer n-grams, and uses fewer rare words than the

references.

We release our generated sentence pairs to the research community with the hope that the

data can inspire others to develop additional filtering methods, to experiment with richer

architectures for sentence embeddings, and to further analyze the differences between neu-

ral machine translations and references.

7.2 related work

We describe related work in learning general-purpose sentence embeddings, work in au-

tomatically generating or discovering paraphrases, and finally prior work in leveraging

neural machine translation for embedding learning.

paraphrastic sentence embeddings . Our learning and evaluation setting is the

same as that considered in Chapters 4 and 5, in which the goal is to learn paraphrastic

sentence embeddings that can be used for downstream tasks. They trained models on PPDB
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and evaluated them using a suite of semantic textual similarity (STS) tasks and supervised

semantic tasks. Others have begun to consider this setting as well (Arora et al., 2017).

Other work in learning general purpose sentence embeddings has used autoencoders (Socher

et al., 2011; Hill et al., 2016), encoder-decoder architectures (Kiros et al., 2015), or other learn-

ing frameworks (Le and Mikolov, 2014; Pham et al., 2015). Chapter 4 and Hill et al. (2016)

provide many empirical comparisons to this prior work. For conciseness, we compare only

to the strongest configurations from their results.

paraphrase generation and discovery. There is a rich history of research in

generating or finding naturally-occurring sentential paraphrases (Barzilay and McKeown,

2001; Dolan et al., 2004; Dolan and Brockett, 2005; Quirk et al., 2004; Coster and Kauchak,

2011; Xu et al., 2014, 2015b).

The most relevant work uses bilingual corpora, e.g., Bannard and Callison-Burch (2005),

culminating in PPDB. Our goals are highly similar to those of the PPDB project, which has

also been produced for many languages (Ganitkevitch and Callison-Burch, 2014) since it

only relies on the availability of bilingual text.

Prior work has shown that PPDB can be used for learning embeddings for words and

phrases (Faruqui et al., 2015; Wieting et al., 2015). However, when learning sentence em-

beddings in Chapter 6, we showed that PPDB is not as effective as sentential paraphrases,

especially for recurrent networks. These results are intuitive because the phrases in PPDB

are short and often cut across constituent boundaries. For sentential paraphrases, we used

a dataset developed for text simplification by Coster and Kauchak (2011) in Chapter 6. It

was created by aligning sentences from Simple English and standard English Wikipedia.

We compare our data to both PPDB and this Wikipedia dataset.

neural machine translation for paraphrastic embedding learning . Sutskever

et al. (2014) trained NMT systems and visualized part of the space of the source language en-

coder for their English→French system. Hill et al. (2016) evaluated the encoders of English-

to-X NMT systems as sentence representations, finding them to perform poorly compared

to several other methods based on unlabeled data. Mallinson et al. (2017) adapted trained

NMT models to produce sentence similarity scores in semantic evaluations. They used pairs

of NMT systems, one to translate an English sentence into multiple foreign translations and

the other to then translate back to English. Other work has used neural MT architectures

and training settings to obtain better word embeddings (Hill et al., 2014a,b).
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Our approach differs in that we only use the NMT system to generate training data for

training sentence embeddings, rather than use it as the source of the model. This permits

us to decouple decisions made in designing the NMT architecture from decisions about

which models we will use for learning sentence embeddings. Thus we can benefit from

orthogonal work in designing neural architectures to embed sentences.

7.3 neural machine translation

We now describe the NMT systems we use for generating data for learning sentence em-

beddings. In our experiments, we use three encoder-decoder NMT models: Czech→English,

French→English, and German→English.

We used Groundhog1 as the implementation of the NMT systems for all experiments. We

generally followed the settings and training procedure from previous work (Bahdanau et al.,

2015; Sennrich et al., 2016b). As such, all networks have a hidden layer size of 1000 and an

embedding layer size of 620. During training, we used Adadelta (Zeiler, 2012), a minibatch

size of 80, and the training set was reshuffled between epochs. We trained a network for

approximately 7 days on a single GPU (TITAN X), then the embedding layer was fixed

and training continued, as suggested by Jean et al. (2015), for 12 hours. Additionally, the

softmax was calculated over a filtered list of candidate translations. Following Jean et al.

(2015), during decoding, we restrict the softmax layers’ output vocabulary to include: the

10000 most common words, the top 25 unigram translations, and the gold translations’

unigrams.

All systems were trained on the available training data from the WMT15 shared trans-

lation task (15.7 million, 39.2 million, and 4.2 million sentence pairs for CS→EN, FR→EN,

and DE→EN, respectively). The training data included: Europarl v7 (Koehn, 2005), the

Common Crawl corpus, the UN corpus (Eisele and Chen, 2010), News Commentary v10,

the 109 French-English corpus, and CzEng 1.0 (Bojar et al., 2016). A breakdown of the sizes

of these corpora can be found in Table 44. The data was pre-processed using standard pre-

processing scripts found in Moses (Koehn et al., 2007). Rare words were split into sub-word

units, following Sennrich et al. (2016c). BLEU scores on the WMT2015 test set for each NMT

system can be seen in Table 45.

To produce paraphrases we use “back-translation”, i.e., we use our X→English NMT

systems to translate the non-English sentence in each training sentence pair into English.

1 Available at https://github.com/sebastien-j/LV_groundhog.

https://github.com/sebastien-j/LV_groundhog


7.4 models and training 113

Czech French German

Europarl 650,000 2,000,000 2,000,000

Common Crawl 160,000 3,000,000 2,000,000

News Commentary 150,000 200,000 200,000

UN - 12,000,000 -
109 French-English - 22,000,000 -
CzEng 14,700,000 - -

Table 44: Dataset sizes (numbers of sentence pairs) for data domains used for training NMT systems.

Language % BLEU

Czech→English 19.7
French→English 20.1
German→English 28.2

Table 45: BLEU scores on the WMT2015 test set.

We directly use the bitext on which the models were trained. This could potentially lead

to pairs in which the reference and translation match exactly, if the model has learned to

memorize the reference translations seen during training. However, in practice, since we

have so much bitext to draw from, we can easily find data in which they do not match

exactly.

Thus our generated data consists of pairs of English references from the bitext along with

the NMT-produced English back-translations. We use beam search with a width of 50 to

generate multiple translations for each non-English sentence, each of which is a candidate

paraphrase for the English reference.

Example outputs of this process are in Table 43, showing some rich paraphrase phenom-

ena in the data. These examples show non-trivial phrase substitutions (“there is a long way

to go” and “much still needs to be done”), sentences being merged and simplified, and

sentences being rearranged. For examples of erroneous paraphrases that can be generated

by this process, see Table 53.

7.4 models and training

Our goal is to compare our paraphrase dataset to other datasets by using each to train sen-

tence embeddings, keeping the models and learning procedure fixed. So we select models

and a loss function from Chapters 4 and 6.
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7.4.1 Models

We wish to embed a word sequence s into a fixed-length vector. We denote the tth word in

s as st, and we denote its word embedding by xt. We focus on two models in this paper.

The first model, which we call Word, simply averages the embeddings xt of all words in s.

The only parameters learned in this model are those in the word embeddings themselves,

which are stored in the word embedding matrix Ww. This model was found in Chapter 4

to perform very strongly for semantic similarity tasks.

The second model, the gated recurrent averaging network (GRAN) from Chapter 6,

combines the benefits of Word and long short-term memory (LSTM) recurrent neural net-

works (Hochreiter and Schmidhuber, 1997). It first uses an LSTM to generate a hidden

vector, ht, for each word st in s. Then ht is used to compute a gate that is elementwise-

multiplied with xt, resulting in a new hidden vector at for each step t:

at = xt � σ(Wxxt +Whht + b)

where Wx and Wh are parameter matrices, b is a parameter vector, and σ is the elemen-

twise logistic sigmoid function. After all at have been generated for a sentence, they are

averaged to produce the embedding for that sentence. The GRAN reduces to Word if the

output of the gate is always 1. This model includes as learnable parameters those of the

LSTM, the word embeddings, and the additional parameters in Eq. equation 7.4.1. We use

Wc to denote the “compositional” parameters, i.e., all parameters other than the word em-

beddings.

7.4.2 Training

We follow the training procedure from Chapters 3 and 4. The training data is a set S of

paraphrastic pairs 〈s1, s2〉 and we optimize a margin-based loss:

min
Wc,Ww

1

|S|

( ∑
〈s1,s2〉∈S

max(0, δ− cos(g(s1),g(s2))

+ cos(g(s1),g(t1))) + max(0, δ− cos(g(s1),g(s2))

+ cos(g(s2),g(t2)))
)
+ λc ‖Wc‖2 + λw

∥∥Wwinitial −Ww
∥∥2
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where g is the model (Word or GRAN), δ is the margin, λc and λw are regularization

parameters, Wwinitial is the initial word embedding matrix, and t1 and t2 are “negative

examples” taken from a mini-batch during optimization. The intuition is that we want the

two texts to be more similar to each other (cos(g(s1),g(s2))) than either is to their respective

negative examples t1 and t2, by a margin of at least δ. To select t1 and t2, we choose the

most similar sentence in some set (other than those in the given pair). For simplicity we use

the mini-batch for this set, i.e., we choose t1 for a given 〈s1, s2〉 as follows:

t1 = argmax
t:〈t,·〉∈Sb\{〈s1,s2〉}

cos(g(s1),g(t))

where Sb ⊆ S is the current mini-batch. That is, we want to choose a negative example ti

that is similar to si according to the current model. The downside is that we may occasion-

ally choose a phrase ti that is actually a true paraphrase of si.

7.5 experiments

We now investigate how best to use our generated paraphrase data for training universal

paraphrastic sentence embeddings. We consider 10 data sources: Common Crawl (CC),

Europarl (EP), and News Commentary (News) from all 3 language pairs, as well as the 109

French-English data (Giga). We extract 150,000 reference/back-translation pairs from each

data source. We use 100,000 of these to mine for training data for our sentence embedding

models, and the remaining 50,000 are used as train/validation/test data for the reference

classification and language models described below.

7.5.1 Evaluation

We evaluate the quality of a paraphrase dataset by using the experimental setting from

Chapter 4. We use the paraphrases as training data to create paraphrastic sentence embed-

dings, then evaluate the embeddings on the SemEval semantic textual similarity (STS) tasks

from 2012 to 2015 (Agirre et al., 2012, 2013, 2014, 2015), the SemEval 2015 Twitter task (Xu

et al., 2015b), and the SemEval 2014 SICK Semantic Relatedness task (Marelli et al., 2014).

Given two sentences, the aim of the STS tasks is to predict their similarity on a 0-5

scale, where 0 indicates the sentences are on different topics and 5 indicates that they are
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completely equivalent. As our test set, we report the average Pearson’s r over these 22

sentence similarity tasks. As development data, we use the 2016 STS tasks (Agirre et al.,

2016), where the tuning criterion is the average Pearson’s r over its 5 datasets.

7.5.2 Experimental Setup

For fair comparison among different datasets and dataset filtering methods described below,

we use only 24,000 training examples for nearly all experiments. Different filtering methods

produce different amounts of training data, and using 24,000 examples allows us to keep

the amount of training data constant across filtering methods. It also allows us to complete

these several thousand experiments in a reasonable amount of time. In Section 7.5.8 below,

we discuss experiments that scale up to larger amounts of training data.

We use paragram-sl999 embeddings from Chapter 3 to initialize the word embedding

matrix (Ww) for both models. For all experiments, we fix the mini-batch size to 100, λw

to 0, λc to 0, and the margin δ to 0.4. We train Word for 20 epochs, and the GRAN for 3,

since it converges much faster. For optimization we use Adam (Kingma and Ba, 2014) with

a learning rate of 0.001.

We compare to two data resources used in previous work to learn paraphrastic sentence

embeddings. The first is phrase pairs from PPDB, used in Chapters 4 and 5. PPDB comes in

different sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller

ones. The pairs in PPDB are sorted by a confidence measure and so the smaller sets contain

higher precision paraphrases. We use PPDB XL in this paper, which consists of fairly high

precision paraphrases. The other data source is the aligned Simple English / standard

English Wikipedia data developed by Coster and Kauchak (2011) and used for learning

paraphrastic sentence embeddings in Chapter 6. We refer to this data source as “SimpWiki”.

We refer to our back-translated data as “NMT”.

7.5.3 Dataset Comparison

We first compare datasets, randomly sampling 24,000 sentence pairs from each of PPDB,

SimpWiki, and each of our NMT datasets. The only hyperparameter to tune for this exper-

iment is the stopping epoch, which we tune based on our development set. The results are

shown in Table 46.
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Lang. Data GRAN Word

SimpWiki 67.2 65.8
PPDB 64.5 65.8

CC 65.5 65.4
CS EP 66.5 65.1

News 67.2 65.1

CC 67.3 66.1

FR EP 67.8 65.7
Giga 67.4 65.9
News 67.0 65.2

CC 66.5 66.2
DE EP 67.2 65.6

News 66.5 64.7

Table 46: Test results (average Pearson’s r× 100 over 22 STS datasets) using a random selection of
24,000 examples from each data source considered in this paper.

We find that the NMT datasets are all effective as training data, outperforming PPDB

in all cases when using the GRAN. There are exceptions when using Word, for which

PPDB is quite strong. This is sensible because Word is not sensitive to word order, so the

fragments in PPDB do not cause problems. However, when using the GRAN, which is

sensitive to word order, the NMT data is consistently better than PPDB. It often exceeds the

performance of training on the SimpWiki data, which consists entirely of human-written

sentences.

7.5.4 Filtering Methods

Above we showed that the NMT data is better than PPDB when using a GRAN and often

as good as SimpWiki. Since we have access to so much more NMT data than SimpWiki

(which is limited to fewer than 200k sentence pairs), we next experiment with several ap-

proaches for filtering the NMT data. We first consider filtering based on length, described

in Section 7.5.5. We then consider filtering based on several quality measures designed to

find more natural and higher-quality translations, described in Section 7.5.6. Finally, we

consider several measures of diversity. By diversity we mean here a measure of the lexical

and syntactic difference between the reference and its paraphrase. We describe these exper-

iments in Section 7.5.7. We note that these filtering methods are not all mutually exclusive

and could be combined, though in this paper we experiment with each individually and

leave combination to future work.
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7.5.5 Length Filtering

We first consider filtering candidate sentence pairs by length, i.e., the number of tokens in

the translation. The tunable parameters are the upper and lower bounds of the translation

lengths.

We experiment with a partition of length ranges, showing the results in Table 47. These

results are averages across all language pairs and data sources of training data for each

length range shown. We find it best to select NMT data where the translations have between

0 and 10 tokens, with performance dropping as sentence length increases. This is true for

both the GRAN and Word models. We do the same filtering for the SimpWiki data, though

the trend is not nearly as strong. This may be because machine translation quality drops as

sentence length increases. This trend appears even though the datasets with higher ranges

have more tokens of training data, since only the number of training sentence pairs is kept

constant across configurations.

We then tune the length range using our development data, considering the following

length ranges: [0,10], [0,15], [0,20], [0,30], [0,100], [10,20], [10,30], [10,100], [15,25], [15,30],

[15,100], [20,30], [20,100], [30,100]. We tune over ranges as well as language, data source,

and stopping epoch, each time training on 24,000 sentence pairs. We report the average test

results over all languages and datasets in Table 48. We compare to a baseline that draws

a random set of data, showing that length-based filtering leads to gains of nearly half a

point on average across our test sets. The tuned length ranges are short for both NMT and

SimpWiki.

The distribution of lengths in the NMT and SimpWiki data is fairly similar. The 10 NMT

datasets all have mean translation lengths between 22 and 28 tokens, with common crawl on

the lower end and Europarl on the higher end. The data has fairly large standard deviations

(11-25 tokens) indicating that there are some very long translations in the data. SimpWiki

has a mean length of 24.2 and a standard deviation of 13.1 tokens.

7.5.6 Quality Filtering

We also consider filtering based on several measures of the “quality” of the back-translation:

• Translation Cost: We use the cost (negative log likelihood) of the translation from the

NMT system, divided by the number of tokens in the translation.
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Length Range

Data Model 0-10 10-20 20-30 30-100

SimpWiki GRAN 67.4 67.7 67.1 67.3
Word 65.9 65.7 65.6 65.9

NMT GRAN 66.6 66.5 66.0 64.8
Word 65.7 65.6 65.3 65.0

Table 47: Test correlations for our models when trained on sentences with particular length ranges
(averaged over languages and data sources for the NMT rows). Results are on STS datasets
(Pearson’s r× 100).

NMT SimpWiki

Filtering Method GRAN Word GRAN Word

None (Random) 66.9 65.5 67.2 65.8

Length 67.3 66.0 67.4 66.2
Tuned Len. Range [0,10] [0,10] [0,10] [0,15]

Table 48: Length filtering test results after tuning length ranges on development data (averaged over
languages and data sources for the NMT rows). Results are on STS datasets (Pearson’s
r× 100).

• Language Model: We train a separate language model for each language/data pair on

40,000 references that are separate from the 100,000 used for mining data. Due to the

small data size, we train a 3-gram language model and use the KenLM toolkit (Heafield,

2011).

• Reference/Translation Classification: We train binary classifiers to predict whether a

given sentence is a reference or translation (described in Section 7.5.6.1). We use the

probability of being a reference as the score for filtering.

For translation cost, we tune the upper bound of the cost over the range [0.2, 1] using

increments of 0.1. For the language model, we tune an upper bound on the perplexity of

the translations among the set {25, 50, 75, 100, 150, 200,∞}. For the classifier, we tune the

minimum probability of being a reference over the range [0, 0.9] using increments of 0.1.

Filtering Method GRAN Word

None (Random) 66.9 65.5

Translation Cost 66.6 65.4
Language Model 66.7 65.5
Reference Classification 67.0 65.5

Table 49: Quality filtering test results after tuning quality hyperparameters on development data
(averaged over languages and data sources for the NMT rows). Results are on STS datasets
(Pearson’s r× 100).
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Table 49 shows average test results over all languages and datasets after tuning hyperpa-

rameters on our development data for each. The translation cost and language model are

not helpful for filtering, as random selection outperforms them. Both methods are outper-

formed by the reference classifier, which slightly outperforms random selection when using

the stronger GRAN model. We now discuss further how we trained the reference classifier

and the data characteristics that it reveals. We did not experiment with quality filtering for

SimpWiki since it is human-written text.

7.5.6.1 Reference/Translation Classification

We experiment with predicting whether a given sentence is a reference or a back-translation.

We train two kinds of binary classifiers, one using an LSTM and the other using word

averaging, followed by a softmax layer. We select 40,000 reference/translation pairs for

training and 5,000 for each of validation and testing. A single example is a sentence with

label 1 if it is a reference translation and 0 if it is a translation.

In training, we consider the entire k-best list as examples of translations, selecting one

translation to be the 0-labeled example. We either do this randomly or we score each sen-

tence in the k-best list using our model and select the one with the highest probability of

being a reference as the 0-labeled example. We tune this choice as well as an L2 regularizer

on the word embeddings (tuned over {10−5, 10−6, 10−7, 10−8, 0}). We use paragram-sl999

embeddings (Wieting et al., 2015) to initialize the word embeddings for both models. Mod-

els were trained by minimizing cross entropy for 10 epochs using Adam with learning rate

0.001. We performed this procedure separately for each of the 10 language/data pairs.

The results are shown in Table 50. While performance varies greatly across data sources,

the LSTM always outperforms the word averaging model. For our translation-reference

classification, we note that our results can be further improved. We also trained models

on 90,000 examples, essentially doubling the amount of data, and the results improved by

about 2% absolute on each dataset on both the validation and testing data.

analyzing reference classification. We inspected the output of our reference

classifier and noted a few qualitative trends which we then verified empirically. First, neu-

ral MT systems tend to use a smaller vocabulary and exhibit more restricted use of phrases.

They correspondingly tend to show more repetition in terms of both words and longer

n-grams. This hypothesis can be verified empirically in several ways. We do so by calculat-

ing the entropy of the unigrams and trigrams for both the references and the translations



7.5 experiments 121

Model Lang. Data Test Acc. + Acc. - Acc.

CC 72.2 72.2 72.3
CS EP 72.3 64.3 80.3

News 79.7 73.2 86.3
CC 80.7 82.1 79.3

LSTM FR EP 79.3 75.2 83.4
Giga 93.1 92.3 93.8
News 84.2 81.2 87.3
CC 79.3 71.7 86.9

DE EP 85.1 78.0 92.2
News 89.8 82.3 97.4
CC 71.2 68.9 73.5

CS EP 69.1 63.0 75.1
News 77.6 71.7 83.6
CC 78.8 80.4 77.2

Word FR EP 78.9 75.5 82.3
Giga 92.5 91.5 93.4
News 82.8 81.1 84.5
CC 77.3 70.4 84.1

DE EP 82.7 73.4 91.9
News 87.6 80.0 95.3

Table 50: Results of reference/translation classification (accuracy×100). The highest score in each
column is in boldface. Final two columns show accuracies of positive (reference) and neg-
ative classes, respectively.
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Lang. Data Ent. (uni) Ent. (tri) Rep. (uni) Rep. (tri)

CC 0.50 1.13 -7.57% -5.58%
CS EP 0.14 0.31 -0.88% -0.11%

News 0.16 0.31 -0.96% -0.16%

CC 0.97 1.40 -8.50% -7.53%

FR EP 0.51 0.69 -1.85% -0.58%
Giga 0.97 1.21 -5.30% -7.74%
News 0.67 0.75 -2.98% -0.85%

CC 0.29 0.57 -1.09% -0.73%
DE EP 0.32 0.53 -0.14% -0.11%

News 0.40 0.37 -1.02% -0.24%

All 0.46 0.74 -2.80% -2.26%

Table 51: Differences in entropy and repetition of unigrams/trigrams in references and translations.
Negative values indicate translations have a higher value, so references show consistently
higher entropies and lower repetition rates.

from our 150,000 reference-translation pairs.2 We also calculate the repetition percentage

of unigrams and trigrams in both the references and translations. This is defined as the

percentage of words that are repetitions (i.e., have already appeared in the sentence). For

unigrams, we only consider words consisting of at least 3 characters.

The results are shown in Table 51, in which we subtract the translation value from the

reference value for each measure. The translated text has lower n-gram entropies and higher

rates of repetition. This appears for all datasets, but is strongest for common crawl and

French-English 109.

We also noticed that translations are less likely to use rare words, instead willing to use

a larger sequence of short words to convey the same meaning. We found that translations

were sometimes more vague and, unsurprisingly, were more likely to be ungrammatical.

We check whether our classifier is learning these patterns by computing the reference

probabilities P(R) of 100,000 randomly sampled translation-reference pairs from each dataset

(the same used to train models). We then compute the correlation between our classifica-

tion score and different metrics: the repetition rate of the sentence, the average inverse-

document frequency (IDF) of the sentence,3 and the length of the translation.

The results are shown in Table 52. Negative correlations with repetitions indicates that

fewer repetitions lead to higher P(R). A positive correlation with average IDF indicates that

P(R) rewards the use of rare words. Interestingly, negative correlation with length suggests

2 We randomly selected translations from the beam search.
3 Wikipedia was used to calculate the frequencies of the tokens. All tokens were lowercased.
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Metric Spearman’s ρ

Unigram repetition rate -35.1
Trigram repetition rate -18.4
Average IDF 27.8
Length -34.0

Table 52: Spearman’s ρ between our reference classifier probability and various measures.

Sentence P(R)

R: Room was comfortable and the staff at the front desk were very helpful. 1.0
T: The staff were very nice and the room was very nice and the staff were very

nice.
<0.01

R: The enchantment of your wedding day, captured in images by Flore-Ael
Surun.

0.98

T: The wedding of the wedding, put into images by Flore-Ael A. <0.01

R: Mexico and Sweden are longstanding supporters of the CTBT. 1.0
T: Mexico and Sweden have been supporters of CTBT for a long time now. 0.06

R: We thought Mr Haider ’ s Austria was endangering our freedom. 1.0
T: We thought that our freedom was put at risk by Austria by Mr Haider. 0.09

Table 53: Illustrative examples of references (R) and back-translations (T), along with probabilities
from the reference classifier. See text for details.

that the classifier prefers more concise sentences.4 We show examples of these phenomena

in Table 53. The first two examples show the tendency of NMT to repeat words and phrases.

The second two show how they tend to use sequences of common words (“put at risk”)

rather than rare words (“endangering”).

NMT SimpWiki

Filtering Method GRAN Word GRAN Word

Random 66.9 65.5 67.2 65.8

Unigram Overlap 66.6 66.1 67.8 67.4
Bigram Overlap 67.0 65.5 68.0 67.2
Trigram Overlap 66.9 65.4 67.8 66.6
BLEU Score 67.1 65.3 67.5 66.5

Table 54: Diversity filtering test results after tuning filtering hyperparameters on development data
(averaged over languages and data sources for the NMT rows). Results are on STS datasets
(Pearson’s r× 100).
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7.5.7 Diversity Filtering

We consider several filtering criteria based on measures that encourage particular amounts

of disparity between the reference and its back-translation:

• n-gram Overlap: Our n-gram overlap measures are calculated by counting n-grams of

a given order in both the reference and translation, then dividing the number of shared

n-grams by the total number of n-grams in the reference or translation, whichever has

fewer. We use three n-gram overlap scores (n ∈ {1, 2, 3}).

• BLEU Score: We use a smoothed sentence-level BLEU variant from Nakov et al. (2012)

that uses smoothing for all n-gram lengths and also smooths the brevity penalty.

For both methods, the tunable hyperparameters are the upper and lower bounds for the

above scores. We tune over the cross product of lower bounds {0, 0.1, 0.2, 0.3} and upper

bounds {0.6, 0.7, 0.8, 0.9, 1.0}. Our intuition is that the best data will have some amount of

n-gram overlap, but not too much. Too much n-gram overlap will lead to pairs that are not

useful for learning.

The results are shown in Table 54, for both models and for both NMT and SimpWiki.

We find that the diversity filtering methods lead to consistent improvements when training

on SimpWiki. We believe this is because many of the sentence pairs in SimpWiki are near-

duplicates and these filtering methods favor data with more differences.

Diversity filtering can also help when selecting NMT data, though the differences are

smaller. We do note that unigram overlap is the strongest filtering strategy for Word. When

looking at the threshold tuning, the best lower bounds are often 0 or 0.1 and the best upper

bounds are typically 0.6-0.7, indicating that sentence pairs with a high degree of word

overlap are not useful for training. We also find that the GRAN benefits more from filtering

based on higher-order n-gram overlap than Word.

7.5.8 Scaling Up

Unlike the SimpWiki data, which is naturally limited and only available for English, we

can scale our approach. Since we use data on which the NMT systems were trained and

perform back-translation, we can easily produce large training sets of paraphrastic sentence

pairs for many languages and data domains, limited only by the availability of bitext.

4 This is noteworthy because the average sentence length of translations and references is not significantly differ-
ent.
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Data GRAN Word

PPDB 64.6 66.3
SimpWiki (100k/168k) 67.4 67.7
CC-CS (24k) 66.8 -
CC-DE (24k) - 66.6

CC-CS (100k) 68.5 -
CC-DE (168k) - 67.6

Table 55: Test results when using more training data. More data helps both Word and GRAN,
where both models get close to or surpass training on SimpWiki and comfortably surpass
the PPDB baseline. The amount of training examples used is in parentheses.

To test this, we took the tuned filtering approaches and language/data pairs (according

to our development dataset only ), and trained them on more data. These were the CC-

CS for GRAN and CC-DE for Word models. We trained them with the same amount of

sentence pairs from SimpWiki.5 We also compare to PPDB XL, and since PPDB has fewer

tokens per example, we use enough PPDB data so that it has at least as many tokens as the

SimpWiki data used in the experiment.6

The results are shown in Table 55, where the NMT data surpasses SimpWiki, while both

SimpWiki and the NMT data perform similarly for Word. PPDB is soundly beaten by both

data sources. Moreover, the CC-CS and CC-DE data have greatly improved their perfor-

mance from training on just 24,000 examples from 66.77 and 66.61 respectively, providing

more evidence that this approach does indeed scale.

7.6 conclusion

We have shown how back-translating can be an effective paraphrase-generation technique,

by using it to produce paraphrastic embeddings at least on par with human-written para-

phrase datasets and significantly surpassing PPDB. We have also shown that filtering can

improve the generated paraphrase corpus, and we explored a variety of filtering techniques.

In doing so, we also identified characteristics that distinguish NMT output from human-

written sentences. Future work will aim to improve this generation process, for instance by

devising more sophisticated filtering techniques.

5 Since the CC-CS data was the smallest dataset used to train the CS NMT system (See Table 44) and limited, we
only used 100,000 pairs for the GRAN experiment. For Word, we used the full 167,689.

6 This was 800,011 and 1,341,188 pairs in the GRAN and Word respectively.
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PA R A N M T: A PA R A P H R A S E C O R P U S

8.1 introduction

While many approaches have been developed for generating or finding paraphrases (Barzi-

lay and McKeown, 2001; Lin and Pantel, 2001; Dolan et al., 2004), there do not exist any

freely-available datasets with millions of sentential paraphrase pairs. The closest such re-

source is the Paraphrase Database (PPDB; Ganitkevitch et al., 2013), which was created

automatically from bilingual text by pivoting over the non-English language (Bannard

and Callison-Burch, 2005). PPDB has been used to improve word embeddings (Faruqui

et al., 2015; Mrkšić et al., 2016). However, PPDB is less useful for learning sentence embed-

dings (Wieting and Gimpel, 2017).

In this chapter, we describe the creation of a dataset containing more than 50 million

sentential paraphrase pairs. We create it automatically by scaling up the approach shown

in Chapter 7. We use neural machine translation (NMT) to translate the Czech side of a

large Czech-English parallel corpus. We pair the English translations with the English ref-

erences to form paraphrase pairs. We call this dataset ParaNMT-50M. It contains examples

illustrating a broad range of paraphrase phenomena; we show examples in Section 12.2.

ParaNMT-50Mhas the potential to be useful for many tasks, from linguistically controlled

paraphrase generation, style transfer, and sentence simplification to core NLP problems like

machine translation.

We show the utility of ParaNMT-50Mby using it to train paraphrastic sentence embed-

dings using the learning framework we showed in Chapter 4. We primarily evaluate our

sentence embeddings on the SemEval semantic textual similarity (STS) competitions from

2012-2016. Since so many domains are covered in these datasets, they form a demanding

evaluation for a general purpose sentence embedding model.

Our sentence embeddings learned from ParaNMT-50Moutperform all systems in every

STS competition from 2012 to 2016. These tasks have drawn substantial participation; in

2016, for example, the competition attracted 43 teams and had 119 submissions. Most STS

systems use curated lexical resources, the provided supervised training data with manually-

126
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annotated similarities, and joint modeling of the sentence pair. We use none of these, simply

encoding each sentence independently using our models and computing cosine similarity

between their embeddings.

We experiment with several compositional architectures and find them all to work well.

We find benefit from making a simple change to learning (“mega-batching”) to better lever-

age the large training set, namely, increasing the search space of negative examples. In the

supplementary, we evaluate on general-purpose sentence embedding tasks used in past

work (Kiros et al., 2015; Conneau et al., 2017), finding our embeddings to perform compet-

itively.

Finally, in Section 8.7, we briefly report results showing how ParaNMT-50Mcan be

used for paraphrase generation. A standard encoder-decoder model trained on ParaNMT-

50Mcan generate paraphrases that show effects of “canonicalizing” the input sentence. In

other work, fully described in Chapter 12, we used ParaNMT-50Mto generate paraphrases

that have a specific syntactic structure (represented as the top two levels of a linearized

parse tree).

We release the ParaNMT-50Mdataset, our trained sentence embeddings, and our code.

ParaNMT-50Mis the largest collection of sentential paraphrases released to date. We hope

it can motivate new research directions and be used to create powerful NLP models, while

adding a robustness to existing ones by incorporating paraphrase knowledge. Our para-

phrastic sentence embeddings are state-of-the-art by a significant margin, and we hope

they can be useful for many applications both as a sentence representation function and as

a general similarity metric.

8.2 related work

We discuss work in automatically building paraphrase corpora, learning general-purpose

sentence embeddings, and using parallel text for learning embeddings and similarity func-

tions.

paraphrase discovery and generation. Many methods have been developed

for generating or finding paraphrases, including using multiple translations of the same

source material (Barzilay and McKeown, 2001), using distributional similarity to find simi-

lar dependency paths (Lin and Pantel, 2001), using comparable articles from multiple news

sources (Dolan et al., 2004; Dolan and Brockett, 2005; Quirk et al., 2004), aligning sentences
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between standard and Simple English Wikipedia (Coster and Kauchak, 2011), crowdsourc-

ing (Xu et al., 2014, 2015b; Jiang et al., 2017), using diverse MT systems to translate a single

source sentence (Suzuki et al., 2017), and using tweets with matching URLs (Lan et al.,

2017a).

The most relevant prior work uses bilingual corpora. Bannard and Callison-Burch (2005)

used methods from statistical machine translation to find lexical and phrasal paraphrases

in parallel text. Ganitkevitch et al. (2013) scaled up these techniques to produce the Para-

phrase Database (PPDB). Our goals are similar to those of PPDB, which has likewise been

generated for many languages (Ganitkevitch and Callison-Burch, 2014) since it only needs

parallel text. In particular, we follow the approach from Chapter 7, where we used NMT

to translate the non-English side of parallel text to get English-English paraphrase pairs.

We scale up the method to a larger dataset, produce state-of-the-art paraphrastic sentence

embeddings, and release all of our resources.

sentence embeddings . Our learning and evaluation setting is the same as that of

our recent work that seeks to learn paraphrastic sentence embeddings that can be used for

downstream tasks (see Chapters 4 to 7. We trained models on noisy paraphrase pairs and

evaluated them primarily on semantic textual similarity (STS) tasks. Prior work in learning

general sentence embeddings has used autoencoders (Socher et al., 2011; Hill et al., 2016),

encoder-decoder architectures (Kiros et al., 2015; Gan et al., 2017), and other sources of

supervision and learning frameworks (Le and Mikolov, 2014; Pham et al., 2015; Arora et al.,

2017; Pagliardini et al., 2017; Conneau et al., 2017).

parallel text for learning embeddings . Prior work has shown that parallel

text, and resources built from parallel text like NMT systems and PPDB, can be used for

learning embeddings for words and sentences. Several have used PPDB as a knowledge

resource for training or improving embeddings (Faruqui et al., 2015; Wieting et al., 2015;

Mrkšić et al., 2016). NMT architectures and training settings have been used to obtain

better embeddings for words (Hill et al., 2014a,b) and words-in-context (McCann et al.,

2017). Hill et al. (2016) evaluated the encoders of English-to-X NMT systems as sentence

representations. Mallinson et al. (2017) adapted trained NMT models to produce sentence

similarity scores in semantic evaluations.
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Dataset Avg. Length Avg. IDF Avg. Para. Score Vocab. Entropy Parse Entropy Total Size

Common Crawl 24.0±34.7 7.7±1.1 0.83±0.16 7.2 3.5 0.16M
CzEng 1.6 13.3±19.3 7.4±1.2 0.84±0.16 6.8 4.1 51.4M
Europarl 26.1±15.4 7.1±0.6 0.95±0.05 6.4 3.0 0.65M
News Commentary 25.2±13.9 7.5±1.1 0.92±0.12 7.0 3.4 0.19M

Table 56: Statistics of 100K-samples of Czech-English parallel corpora; standard deviations are
shown for averages.

Reference Translation Machine Translation

so, what’s half an hour? half an hour won’t kill you.
well, don’t worry. i’ve taken out tons and tons of guys. lots of guys. don’t worry, i’ve done it to dozens of men.
it’s gonna be ...... classic. yeah, sure. it’s gonna be great.
greetings, all! hello everyone!
but she doesn’t have much of a case. but as far as the case goes, she doesn’t have much.
it was good in spite of the taste. despite the flavor, it felt good.

Table 57: Example paraphrase pairs from ParaNMT-50M, where each consists of an English refer-
ence translation and the machine translation of the Czech source sentence (not shown).

8.3 the paranmt-50mdataset

To create our dataset, we used back-translation of bitext (Chapter 7). We used a Czech-

English NMT system to translate Czech sentences from the training data into English.

We paired the translations with the English references to form English-English paraphrase

pairs.

We used the pretrained Czech-English model from the NMT system of Sennrich et al.

(2017). Its training data includes four sources: Common Crawl, CzEng 1.6 (Bojar et al.,

2016), Europarl, and News Commentary. We did not choose Czech due to any particular

linguistic properties. In Chapter 7, we found little difference among Czech, German, and

French as source languages for back-translation. There were much larger differences due to

data domain, so we focus on the question of domain in this section. We leave the question

of investigating properties of back-translation of different languages to future work.

8.3.1 Choosing a Data Source

To assess characteristics that yield useful data, we randomly sampled 100K English refer-

ence translations from each data source and computed statistics. Table 56 shows the average

sentence length, the average inverse document frequency (IDF) where IDFs are computed

using Wikipedia sentences, and the average paraphrase score for the two sentences. The
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paraphrase score is calculated by averaging paragram-phrase embeddings from Chap-

ter 4 for the two sentences in each pair and then computing their cosine similarity. The

table also shows the entropies of the vocabularies and constituent parses obtained using

the Stanford Parser (Manning et al., 2014).1

Europarl exhibits the least diversity in terms of rare word usage, vocabulary entropy,

and parse entropy. This is unsurprising given its formulaic and repetitive nature. CzEng has

shorter sentences than the other corpora and more diverse sentence structures, as shown by

its high parse entropy. In terms of vocabulary use, CzEng is not particularly more diverse

than Common Crawl and News Commentary, though this could be due to the prevalence

of named entities in the latter two.

In Section 8.5.3, we empirically compare these data sources as training data for sen-

tence embeddings. The CzEng corpus yields the strongest performance when controlling

for training data size. Since its sentences are short, we suspect this helps ensure high-quality

back-translations. A large portion of it is movie subtitles which tend to use a wide vocab-

ulary and have a diversity of sentence structures; however, other domains are included as

well. It is also the largest corpus, containing over 51 million sentence pairs. In addition to

providing a large number of training examples for downstream tasks, this means that the

NMT system should be able to produce quality translations for this subset of its training

data.

For all of these reasons, we chose the CzEng corpus to create ParaNMT-50M. When

doing so, we used beam search with a beam size of 12 and selected the highest scoring

translation from the beam. It took over 10,000 GPU hours to back-translate the CzEng

corpus. We show illustrative examples in Table 57.

8.3.2 Manual Evaluation

We conducted a manual analysis of our dataset in order to quantify its noise level and assess

how the noise can be ameliorated with filtering. Two native English speakers annotated a

sample of 100 examples from each of five ranges of the Paraphrase Score.2 We obtained

annotations for both the strength of the paraphrase relationship and the fluency of the

translations.

1 To mitigate sparsity in the parse entropy, we used only the top two levels of each parse tree.
2 Even though the similarity score lies in [−1, 1], most observed scores were positive, so we chose the five ranges

shown in Table 58.



8.3 the paranmt-50mdataset 131

Para. Score # Avg. Tri. Paraphrase Fluency
Range (M) Overlap 1 2 3 1 2 3

(-0.1, 0.2] 4.0 0.00±0.0 92 6 2 1 5 94

(0.2, 0.4] 3.8 0.02±0.1 53 32 15 1 12 87

(0.4, 0.6] 6.9 0.07±0.1 22 45 33 2 9 89

(0.6, 0.8] 14.4 0.17±0.2 1 43 56 11 0 89

(0.8, 1.0] 18.0 0.35±0.2 1 13 86 3 0 97

Table 58: Manual evaluation of ParaNMT-50M. 100-pair samples were drawn from five ranges
of the automatic paraphrase score (first column). Paraphrase strength and fluency were
judged on a 1-3 scale and counts of each rating are shown.

To annotate paraphrase strength, we adopted the annotation guidelines used by Agirre

et al. (2012). The original guidelines specify six classes, which we reduced to three for

simplicity. We combined the top two into one category, left the next, and combined the

bottom three into the lowest category. Therefore, for a sentence pair to have a rating of 3,

the sentences must have the same meaning, but some unimportant details can differ. To

have a rating of 2, the sentences are roughly equivalent, with some important information

missing or that differs slightly. For a rating of 1, the sentences are not equivalent, even if

they share minor details.

For fluency of the back-translation, we use the following: A rating of 3 means it has no

grammatical errors, 2 means it has one to two errors, and 1 means it has more than two

grammatical errors or is not a natural English sentence.

Table 58 summarizes the annotations. For each score range, we report the number of

pairs, the mean trigram overlap score, and the number of times each paraphrase/fluency

label was present in the sample of 100 pairs. There is noise but it is largely confined to the

bottom two ranges which together comprise only 16% of the entire dataset. In the highest

paraphrase score range, 86% of the pairs possess a strong paraphrase relationship. The an-

notations suggest that ParaNMT-50Mcontains approximately 30 million strong paraphrase

pairs, and that the paraphrase score is a good indicator of quality. At the low ranges, we

inspected the data and found there to be many errors in the sentence alignment in the

original bitext. With regards to fluency, approximately 90% of the back-translations are

fluent, even at the low end of the paraphrase score range. We do see an outlier at the

second-highest range of the paraphrase score, but this may be due to the small number of

annotated examples.
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8.4 learning sentence embeddings

To show the usefulness of the ParaNMT-50Mdataset, we will use it to train sentence em-

beddings. We adopt the learning framework from Chapter 4, which was developed to train

sentence embeddings from pairs in PPDB. We first describe the compositional sentence

embedding models we will experiment with, then discuss training and our modification

(“mega-batching”).

models . We want to embed a word sequence s into a fixed-length vector. We denote

the tth word in s as st, and we denote its word embedding by xt. We focus on three model

families, though we also experiment with combining them in various ways. The first, which

we call Word, simply averages the embeddings xt of all words in s. This model was found

in Chapter 4 to perform strongly for semantic similarity tasks.

The second is similar to Word, but instead of word embeddings, we average character

trigram embeddings (Huang et al., 2013). We call this Trigram. In Chapter 5, we found

this to work well for sentence embeddings compared to other n-gram orders and to word

averaging.

The third family includes long short-term memory (LSTM) networks (Hochreiter and

Schmidhuber, 1997). We average the hidden states to produce the final sentence embed-

ding. For regularization during training, we scramble words with a small probability (from

Chapter 6). We also experiment with bidirectional LSTMs (BLSTM), averaging the forward

and backward hidden states with no concatenation.3

training . The training data is a set S of paraphrase pairs 〈s, s ′〉 and we minimize a

margin-based loss `(s, s ′) =

max(0, δ− cos(g(s),g(s ′)) + cos(g(s),g(t)))

where g is the model (Word, Trigram, etc.), δ is the margin, and t is a “negative example”

taken from a mini-batch during optimization. The intuition is that we want the two texts

3 Unlike Conneau et al. (2017), we found this to outperform max-pooling for both semantic similarity and general
sentence embedding tasks.
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to be more similar to each other than to their negative examples. To select t we choose the

most similar sentence in some set. For simplicity we use the mini-batch for this set, i.e.,

t = argmax
t ′:〈t ′,·〉∈Sb\{〈s,s ′〉}

cos(g(s),g(t ′))

where Sb ⊆ S is the current mini-batch.

modification : mega-batching . By using the mini-batch to select negative exam-

ples, we may be limiting the learning procedure. That is, if all potential negative examples in

the mini-batch are highly dissimilar from s, the loss will be too easy to minimize. Stronger

negative examples can be obtained by using larger mini-batches, but large mini-batches are

sub-optimal for optimization.

Therefore, we propose a procedure we call “mega-batching.” We aggregate M mini-

batches to create one mega-batch and select negative examples from the mega-batch. Once

each pair in the mega-batch has a negative example, the mega-batch is split back up into

M mini-batches and training proceeds. We found that this provides more challenging nega-

tive examples during learning as shown in Section 8.5.5. Table 61 shows results for different

values of M, showing consistently higher correlations with larger M values.

8.5 experiments

We now investigate how best to use our generated paraphrase data for training paraphrastic

sentence embeddings.

8.5.1 Evaluation

We evaluate sentence embeddings using the SemEval semantic textual similarity (STS) tasks

from 2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016) and the STS Benchmark (Cer

et al., 2017). Given two sentences, the aim of the STS tasks is to predict their similarity

on a 0-5 scale, where 0 indicates the sentences are on different topics and 5 means they

are completely equivalent. As our test set, we report the average Pearson’s r over each

year of the STS tasks from 2012-2016. We use the small (250-example) English dataset from

SemEval 2017 (Cer et al., 2017) as a development set, which we call STS2017 below.
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Training Corpus Word Trigram LSTMavg

Common Crawl 80.9 80.2 79.1
CzEng 1.6 83.6 81.5 82.5
Europarl 78.9 78.0 80.4
News Commentary 80.2 78.2 80.5

Table 59: Pearson’s r × 100 on STS2017 when training on 100k pairs from each back-translated
parallel corpus. CzEng works best for all models.

The supplementary material contains a description of a method to obtain a paraphrase

lexicon from ParaNMT-50Mthat is on par with that provided by PPDB 2.0. We also evaluate

our sentence embeddings on a range of additional tasks that have previously been used for

evaluating sentence representations (Kiros et al., 2015).

8.5.2 Experimental Setup

For training sentence embeddings on ParaNMT-50M, we follow the experimental proce-

dure from Chapter 4. We use paragram-sl999 embeddings from Chapter 3 to initialize the

word embedding matrix for all models that use word embeddings. We fix the mini-batch

size to 100 and the margin δ to 0.4. We train all models for 5 epochs. For optimization we

use Adam (Kingma and Ba, 2014) with a learning rate of 0.001. For the LSTM and BLSTM,

we fixed the scrambling rate to 0.3.4

8.5.3 Dataset Comparison

We first compare parallel data sources. We evaluate the quality of a data source by using

its back-translations paired with its English references as training data for paraphrastic

sentence embeddings. We compare the four data sources described in Section 12.2. We use

100K samples from each corpus and trained 3 different models on each: Word, Trigram,

and LSTMavg. Table 59 shows that CzEng provides the best training data for all models, so

we used it to create ParaNMT-50Mand for all remaining experiments.

CzEng is diverse in terms of both vocabulary and sentence structure. It has significantly

shorter sentences than the other corpora, and has much more training data, so its transla-

tions are expected to be better than those in the other corpora. In Chapter 7, we found that

4 As in Chapter 6, we found that scrambling significantly improves results, even with our much larger training
set. But while we previously used a scrambling rate of 0.5, we found that a smaller rate of 0.3 worked better
when training on ParaNMT-50M, presumably due to the larger training set.
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Filtering Method Model Avg.

Translation Score 83.2
Trigram Overlap 83.1
Paraphrase Score 83.3

Table 60: Pearson’s r× 100 on STS2017 for the best training fold across the average of Word, Tri-
gram, and LSTMavg models for each filtering method.

sentence length was the most important factor in filtering quality training data, presum-

ably due to how NMT quality deteriorates with longer sentences. We suspect that better

translations yield better data for training sentence embeddings.

8.5.4 Data Filtering

Since the ParaNMT-50Mdataset is so large, it is computationally demanding to train sen-

tence embeddings on it in its entirety. So, we filter the data to create a training set for

sentence embeddings.

We experiment with three simple methods: (1) the length-normalized translation score

from decoding, (2) trigram overlap (from Chapter 7), and (3) the paraphrase score from

Section 12.2. Trigram overlap is calculated by counting trigrams in the reference and trans-

lation, then dividing the number of shared trigrams by the total number in the reference or

translation, whichever has fewer.

We filtered the back-translated CzEng data using these three strategies. We ranked all

51M+ paraphrase pairs in the dataset by the filtering measure under consideration and

then split the data into tenths (so the first tenth contains the bottom 10% under the filtering

criterion, the second contains those in the bottom 10-20%, etc.).

We trained Word, Trigram, and LSTMavg models for a single epoch on 1M examples

sampled from each of the ten folds for each filtering criterion. We averaged the correlation

on the STS2017 data across models for each fold. Table 60 shows the results of the filter-

ing methods. Filtering based on the paraphrase score produces the best data for training

sentence embeddings.

We randomly selected 5M examples from the top two scoring folds using paraphrase

score filtering, ensuring that we only selected examples in which both sentences have a

maximum length of 30 tokens.5 These resulting 5M examples form the training data for

the rest of our experiments. Note that many more than 5M pairs from the dataset are

5 In Chapter 7, we found that sentence length cutoffs were effective for filtering back-translated parallel text.
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M Word Trigram LSTMavg

1 82.3 81.5 81.5
20 84.0 83.1 84.6
40 84.1 83.4 85.0

Table 61: Pearson’s r× 100 on STS2017 with different mega-batch sizes M.

original sir, i’m just trying to protect.

negative examples:
M=1 i mean, colonel...
M=20 i only ask that the baby be safe.
M=40 just trying to survive. on instinct.

original i’m looking at him, you know?

M=1 they know that i’ve been looking for her.
M=20 i’m keeping him.
M=40 i looked at him with wonder.

original i’il let it go a couple of rounds.

M=1 sometimes the ball doesn’t go down.
M=20 i’ll take two.
M=40 i want you to sit out a couple of rounds, all right?

Table 62: Negative examples for various mega-batch sizes M with the BLSTM model.

useful, as suggested by our human evaluations in Section 8.3.2. We have experimented with

doubling the training data when training our best sentence similarity model and found the

correlation increased by more than half a percentage point on average across all datasets.

8.5.5 Effect of Mega-Batching

Table 61 shows the impact of varying the mega-batch size M when training for 5 epochs

on our 5M-example training set. For all models, larger mega-batches improve performance.

There is a smaller gain when moving from 20 to 40, but all models show clear gains over

M = 1.

Table 62 shows negative examples with different mega-batch sizes M. We use the BLSTM

model and show the negative examples (nearest neighbors from the mega-batch excluding

the current training example) for three sentences. Using larger mega-batches improves per-

formance, presumably by producing more compelling negative examples for the learning

procedure. This is likely more important when training on sentences than prior work on

learning from text snippets (Wieting et al., 2015, 2016b; Pham et al., 2015).
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Training Data Model Dim. 2012 2013 2014 2015 2016

Word 300 66.2 61.8 76.2 79.3 77.5

Trigram 300 67.2 60.3 76.1 79.7 78.3

LSTMavg 300 67.0 62.3 76.3 78.5 76.0

LSTMavg 900 68.0 60.4 76.3 78.8 75.9

Our ParaNMT BLSTM 900 67.4 60.2 76.1 79.5 76.5

Work Word + Trigram (addition) 300 67.3 62.8 77.5 80.1 78.2

Word + Trigram + LSTMavg (addition) 300 67.1 62.8 76.8 79.2 77.0

Word, Trigram (concatenation) 600 67.8 62.7 77.4 80.3 78.1

Word, Trigram, LSTMavg (concatenation) 900 67.7 62.8 76.9 79.8 76.8

SimpWiki Word, Trigram (concatenation) 600 61.8 58.4 74.4 77.0 74.0

1st Place System - 64.8 62.0 74.3 79.0 77.7

STS Competitions 2nd Place System - 63.4 59.1 74.2 78.0 75.7

3rd Place System - 64.1 58.3 74.3 77.8 75.7

InferSent (AllSNLI) (Conneau et al., 2017) 4096 58.6 51.5 67.8 68.3 67.2

InferSent (SNLI) (Conneau et al., 2017) 4096 57.1 50.4 66.2 65.2 63.5

FastSent (Hill et al., 2016) 100 - - 63 - -

DictRep (Hill et al., 2016) 500 - - 67 - -

Related Work SkipThought (Kiros et al., 2015) 4800 - - 29 - -

CPHRASE (Pham et al., 2015) - - - 65 - -

CBOW (from Hill et al., 2016) 500 - - 64 - -

BLEU (Papineni et al., 2002) - 39.2 29.5 42.8 49.8 47.4

METEOR (Denkowski and Lavie, 2014) - 53.4 47.6 63.7 68.8 61.8

Table 63: Pearson’s r×100 on the STS tasks of our models and those from related work. We compare
to the top performing systems from each SemEval STS competition. Note that we are
reporting the mean correlations over domains for each year rather than weighted means
as used in the competitions. Our best performing overall model (Word, Trigram) is in
bold.

8.5.6 Model Comparison

Table 63 shows results on the 2012-2016 STS tasks and Table 64 shows results on the STS

Benchmark.6 Our best models outperform all STS competition systems and all related work

of which we are aware on the 2012-2016 STS datasets. Note that the large improvement over

BLEU and METEOR suggests that our embeddings could be useful for evaluating machine

translation output.

Overall, our individual models (Word, Trigram, LSTMavg) perform similarly. Using 300

dimensions appears to be sufficient; increasing dimensionality does not necessarily improve

correlation. When examining particular STS tasks, we found that our individual models

showed marked differences on certain tasks. Table 65 shows the mean absolute difference

in Pearson’s r over all 25 datasets. The Trigram model shows the largest differences from

6 Baseline results are from http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark, except for the unsuper-
vised InferSent result which we computed.

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Dim. Corr.

Our Work (Unsupervised)
Word 300 79.2
Trigram 300 79.1
LSTMavg 300 78.4

Word + Trigram (addition) 300 79.9
Word + Trigram + LSTMavg (addition) 300 79.6
Word, Trigram (concatenation) 600 79.9
Word, Trigram, LSTMavg (concatenation) 900 79.2

Related Work (Unsupervised)
InferSent (AllSNLI) (Conneau et al., 2017) 4096 70.6
C-PHRASE (Pham et al., 2015) 63.9
GloVe (Pennington et al., 2014) 300 40.6
word2vec (Mikolov et al., 2013b) 300 56.5
sent2vec (Pagliardini et al., 2017) 700 75.5

Related Work (Supervised)
Dep. Tree LSTM (Tai et al., 2015) 71.2
Const. Tree LSTM (Tai et al., 2015) 71.9
CNN (Shao, 2017) 78.4

Table 64: Results on STS Benchmark test set.

Models Mean Pearson Abs. Diff.

Word / Trigram 2.75

Word / LSTMavg 2.17

Trigram / LSTMavg 2.89

Table 65: The means (over all 25 STS competition datasets) of the absolute differences in Pearson’s
r between each pair of models.

Target Syntax Paraphrase

original with the help of captain picard, the borg will be prepared for
everything.

(SBARQ(ADVP)(,)(S)(,)(SQ)) now, the borg will be prepared by picard, will it?
(S(NP)(ADVP)(VP)) the borg here will be prepared for everything.

original you seem to be an excellent burglar when the time comes.
(S(SBAR)(,)(NP)(VP)) when the time comes, you’ll be a great thief.
(S(“)(UCP)(”)(NP)(VP)) “you seem to be a great burglar, when the time comes.” you said.

Table 66: Syntactically controlled paraphrases generated by the SCPN trained on ParaNMT-50M.

the other two, both of which use word embeddings. This suggests that Trigram may be

able to complement the other two by providing information about words that are unknown

to models that rely on word embeddings.

We experiment with two ways of combining models. The first is to define additive ar-

chitectures that form the embedding for a sentence by adding the embeddings computed

by two (or more) individual models. All parameters are trained jointly just like when we
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train individual models; that is, we do not first train two simple models and add their

embeddings. The second way is to define concatenative architectures that form a sentence

embedding by concatenating the embeddings computed by individual models, and again

to train all parameters jointly.

In Table 63 and Table 64, these combinations show consistent improvement over the

individual models as well as the larger LSTMavg and BLSTM. Concatenating Word and

Trigram results in the best performance on average across STS tasks, outperforming the

best supervised systems from each year. We have released the pretrained model for these

“Word, Trigram” embeddings. In addition to providing a strong baseline for future STS

tasks, these embeddings offer the advantages of being extremely efficient to compute and

being robust to unknown words.

We show the usefulness of ParaNMT by also reporting the results of training the “Word,

Trigram” model on SimpWiki, a dataset of aligned sentences from Simple English and stan-

dard English Wikipedia (Coster and Kauchak, 2011). We have shown SimpWiki to be useful

for training sentence embeddings in Chapter 6. However, Table 63 shows that training on

ParaNMT leads to gains in correlation of 3 to 6 points compared to SimpWiki.

8.5.7 General-Purpose Sentence Embedding Evaluations

We evaluate our sentence embeddings on a range of tasks that have previously been used

for evaluating sentence representations (Kiros et al., 2015). These include sentiment analysis

(MR, Pang and Lee, 2005; CR, Hu and Liu, 2004; SST, Socher et al., 2013), subjectivity

classification (SUBJ; Pang and Lee, 2004), opinion polarity (MPQA; Wiebe et al., 2005),

question classification (TREC; Li and Roth, 2002), paraphrase detection (MRPC; Dolan et al.,

2004), semantic relatedness (SICK-R; Marelli et al., 2014), and textual entailment (SICK-E).

We use the SentEval package from Conneau et al. (2017) to train models on our fixed

sentence embeddings for each task.7

Table 67 shows results on the general sentence embedding tasks. Each of our individual

models produces 300-dimensional sentence embeddings, which is far fewer than the several

thousands (often 2400-4800) of dimensions used in most prior work. While using higher

dimensionality does not improve correlation on the STS tasks, it does help on the general

sentence embedding tasks. Using higher dimensionality leads to more trainable parameters

in the subsequent classifiers, increasing their ability to linearly separate the data. For a

7 github.com/facebookresearch/SentEval

github.com/facebookresearch/SentEval
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Model Dim. MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E

Unsupervised (Unordered Sentences)

Unigram-TFIDF (Hill et al., 2016) 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - -
SDAE (Hill et al., 2016) 2400 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - -

Unsupervised (Ordered Sentences)

FastSent (Hill et al., 2016) 100 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - -
FastSent+AE (Hill et al., 2016) 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - -
SkipThought (Kiros et al., 2015) 4800 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 85.8 82.3

Unsupervised (Structured Resources)

DictRep (Hill et al., 2016) 500 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - -
NMT En-to-Fr (Hill et al., 2016) 2400 64.7 70.1 84.9 81.5 - 82.8 -
BYTE mLSTM (Radford et al., 2017) 4096 86.9 91.4 94.6 88.5 - - 75.0/82.8 79.2 -

Individual Models (Our Work)
Word 300 75.8 80.5 89.2 87.1 80.0 80.1 68.6/80.9 83.6 80.6
Trigram 300 68.8 75.5 83.6 82.3 73.6 73.0 71.4/82.0 79.3 78.0
LSTMavg 300 73.8 78.4 88.5 86.5 80.6 76.8 73.6/82.3 83.9 81.9

LSTMavg 900 75.8 81.7 90.5 87.4 81.6 84.4 74.7/83.0 86.0 83.0
BLSTM 900 75.6 82.4 90.6 87.7 81.3 87.4 75.0/82.9 85.8 84.4

Mixed Models (Our Work)
Word + Trigram (addition) 300 74.8 78.8 88.5 87.4 78.7 79.0 71.4/81.4 83.2 80.6
Word + Trigram + LSTMavg (addition) 300 75.0 80.7 88.6 86.6 77.9 78.6 72.7/80.8 83.6 81.8
Word, Trigram (concatenation) 600 75.8 80.5 89.9 87.8 79.7 82.4 70.7/81.7 84.6 82.0
Word, Trigram, LSTMavg (concatenation) 900 77.6 81.4 91.4 88.2 82.0 85.4 74.0/81.5 85.4 83.8

BLSTM (Avg., concatenation) 4096 77.5 82.6 91.0 89.3 82.8 86.8 75.8/82.6 85.9 83.8
BLSTM (Max, concatenation) 4096 76.6 83.4 90.9 88.5 82.0 87.2 76.6/83.5 85.3 82.5

Supervised (Transfer)

InferSent (SST) (Conneau et al., 2017) 4096 - 83.7 90.2 89.5 - 86.0 72.7/80.9 86.3 83.1
InferSent (SNLI) (Conneau et al., 2017) 4096 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 88.5 86.3
InferSent (AllNLI) (Conneau et al., 2017) 4096 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 88.4 86.3

Supervised (Direct)

Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - -
AdaSent (Zhao et al., 2015) 83.1 86.3 95.5 93.3 - 92.4 - - -
BLSTM-2DCNN (Zhou et al., 2016) 82.3 - 94.0 - 89.5 96.1 - - -
TF-KLD (Ji and Eisenstein, 2013) - - - - - - 80.4/85.9 - -
Illinois-LH (Lai and Hockenmaier, 2014) - - - - - - - - 84.5
Dependency Tree-LSTM (Tai et al., 2015) - - - - - - - 86.8 -

Table 67: General-purpose sentence embedding tasks, divided into categories based on resource
requirements.

further discussion on the effect of dimensionality and issues with the reported performance

of some of these models, see (Wieting and Kiela, 2019).

To enlarge the dimensionality, we concatenate the forward and backward states prior to

averaging. This is similar to Conneau et al. (2017), though they used max pooling. We exper-

imented with both averaging (“BLSTM (Avg., concatenation)”) and max pooling (“BLSTM

(Max, concatenation)”) using recurrent networks with 2048-dimensional hidden states, so

concatenating them yields a 4096-dimension embedding. These high-dimensional models

outperform SkipThought (Kiros et al., 2015) on all tasks except SUBJ and TREC. Nonethe-

less, the InferSent (Conneau et al., 2017) embeddings trained on AllNLI still outperform

our embeddings on nearly all of these general-purpose tasks.
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We also note that on five tasks (SUBJ, MPQA, SST, TREC, and MRPC), all sentence em-

bedding methods are outperformed by supervised baselines. These baselines use the same

amount of supervision as the general sentence embedding methods; the latter actually use

far more data overall than the supervised baselines. This suggests that the pretrained sen-

tence representations are not capturing the features learned by the models engineered for

those tasks.

We take a closer look of how our embeddings compare to InferSent (Conneau et al., 2017).

InferSent is a supervised model trained on a large textual entailment dataset (the SNLI and

MultiNLI corpora (Bowman et al., 2015; Williams et al., 2017), which consist of nearly 1

million human-labeled examples).

While InferSent has strong performance across all downstream tasks, our model obtains

better results on semantic similarity tasks. It consistently reach correlations approximately

10 points higher than those of InferSent.

Regarding the general-purpose tasks, we note that some result trends appear to be in-

fluenced by the domain of the data. InferSent is trained on a dataset of mostly captions,

especially the model trained on just SNLI. Therefore, the datasets for the SICK relatedness

and entailment evaluations are similar in domain to the training data of InferSent. Further,

the training task of natural language inference is aligned to the SICK entailment task. Our

results on MRPC and entailment are significantly better than SkipThought, and on a para-

phrase task that does not consist of caption data (MRPC), our embeddings are competitive

with InferSent. To quantify these domain effects, we performed additional experiments that

are described in Section 8.5.8.

There are many ways to train sentence embeddings, each with its own strengths. In-

ferSent, our models, and the BYTE mLSTM of Radford et al. (2017) each excel in particular

classes of downstream tasks. Ours are specialized for semantic similarity. BYTE mLSTM is

trained on review data and therefore is best at the MR and CR tasks. Since the InferSent

models are trained using entailment supervision and on caption data, they excel on the

SICK tasks. Future work will be needed to combine multiple supervision signals to gener-

ate embeddings that perform well across all tasks.

8.5.8 Effect of Training Domain on InferSent

We performed additional experiments to investigate the impact of training domain on

downstream tasks. We first compare the performance of our “Word, Trigram (concate-
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Data AllNLI SNLI

Overall mean diff. 10.5 12.5

MSRvid (2012) diff. 5.2 4.6
Images (2014) diff. 6.4 4.8
Images (2015) diff. 3.6 3.0

Table 68: Difference in correlation (Pearson’s r × 100) between “Word, Trigram” and InferSent
models trained on two different datasets: AllNLI and SNLI. The first row is the mean
difference across all 25 datasets, then the following rows show differences on three indi-
vidual datasets that are comprised of captions. The InferSent models are much closer to
our model on the caption datasets than overall.

Model All Cap. No Cap.

Unsupervised
InferSent (AllNLI) 70.6 83.0 56.6
InferSent (SNLI) 67.3 83.4 51.7
Word, Trigram 79.9 87.1 71.7

Supervised
InferSent (AllNLI) 75.9 85.4 64.8
InferSent (SNLI) 75.9 86.4 63.1

Table 69: STS Benchmark results (Pearson’s r× 100) comparing our Word, Trigram model to In-
ferSent trained on AllNLI and SNLI. We report results using all of the data (All), only the
caption portion of the data (Cap.), and all of the data except for the captions (No Cap.).

nation)” model to the InferSent SNLI and AllNLI models on all STS tasks from 2012-2016.

We then compare the overall mean with that of the three caption STS datasets within the

collection. The results are shown in Table 68. The InferSent models are much closer to

our Word, Trigram model on the caption datasets than overall, and InferSent trained on

SNLI shows the largest difference between its overall performance and its performance on

caption data.

We also compare the performance of these models on the STS Benchmark under several

conditions (Table 69). Unsupervised results were obtained by simply using cosine similarity

of the pretrained embeddings on the test set with no training or tuning. Supervised results

were obtained by training and tuning using the training and development data of the STS

Benchmark.

We first compare unsupervised results on the entire test set, the subset consisting of cap-

tions (3,250 of the 8,628 examples in the test set), and the remainder. We include analogous

results in the supervised setting, where we filter the respective training and development

sets in addition to the test sets. Compared to our model, InferSent shows a much larger

gap between captions and non-captions, providing evidence of a bias. Note that this bias is

smaller for the model trained on AllNLI, as its training data includes other domains.
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PPDB giggled, smiled, funny, used, grew, bust, ri, did

laughed ParaNMT-50M chortled, guffawed, pealed, laughin, laughingstock, cackled, chuckled, snick-
ered, mirthless, chuckling, jeered, laughs, laughing, taunted, burst, cackling,
scoffed,...

respectful

PPDB respect, respected, courteous, disrespectful, friendly, respecting, respectable,
humble, environmentally-friendly, child-friendly, dignified, respects, compli-
ant, sensitive,...

ParaNMT-50M reverent, deferential, revered, respectfully, awed, respect, respected, respects,
respectable, politely, considerate, treat, civil, reverence, polite, keeping, behave,
proper, dignified,...

Table 70: Example lexical paraphrases from PPDB ranked using the PPDB 2.0 scoring function and
from the paraphrase lexicon we induced from ParaNMT-50Mranked using adjusted PMI.

8.6 paraphrase lexicon

While ParaNMT-50Mconsists of sentence pairs, we demonstrate how a paraphrase lexicon

can be extracted from it. One simple approach is to extract and rank word pairs 〈u, v〉 using

the cross-sentence pointwise mutual information (PMI):

PMIcross(u, v) = log
#(u, v)#(·, ·)

#(u)#(v)

where joint counts #(u, v) are incremented when u appears in a sentence and v appears

in its paraphrase. The marginal counts (e.g., #(u)) are computed based on single-sentence

counts, as in ordinary PMI. This works reasonably well but is not able to differentiate words

that frequently occur in paraphrase pairs from words that simply occur frequently together

in the same sentence. For example, “Hong” and “Kong” have high cross-sentence PMI. We

can improve the score by subtracting the ordinary PMI that computes joint counts based

on single-sentence co-occurrences. We call the result the adjusted PMI:

PMIadj(u, v) = PMIcross(u, v) − PMI(u, v)

Before computing these PMIs from ParaNMT-50M, we removed sentence pairs with a

paraphrase score less than 0.35 and where either sentence is longer than 30 tokens. When

computing the ordinary PMI with single-sentence context, we actually compute separate

versions of this PMI score for translations and references in each ParaNMT-50Mpair, then

we average them together. We did this because the two sentences in each pair have highly

correlated information, so computing PMI on each half of the data would correspond to

capturing natural corpus statistics in a standard application of PMI.
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Dataset Score ρ× 100
PPDB L PPDB 2.0 37.97

PPDB XL PPDB 2.0 52.32

PPDB XXL PPDB 2.0 60.44

PPDB XXXL PPDB 2.0 61.47

ParaNMT-50M cross-sentence PMI 52.12

ParaNMT-50M adjusted PMI 61.59

Table 71: Spearman’s ρ× 100 on SimLex-999 for scored paraphrase lexicons.

original overall, i that it’s a decent buy, and am
happy that i own it.

paraphrase it’s a good buy, and i’m happy to own
it.

original oh, that’s a handsome women, that is.
paraphrase that’s a beautiful woman.

Table 72: Examples from our paraphrase generation model that show the ability to canonicalize text
and correct grammatical errors.

Table 71 shows an evaluation of the resulting score functions on the SimLex-999 word

similarity dataset (Hill et al., 2015). As a baseline, we use the lexical portion of PPDB

2.0 (Pavlick et al., 2015), evaluating its ranking score as a similarity score and assigning a

similarity of 0 to unseen word pairs.8 Our adjusted PMI computed from ParaNMT-50Mis

on par with the best PPDB lexicon.

Table 70 shows examples from PPDB and our paraphrase lexicon computed from ParaNMT-

50M. Paraphrases from PPDB are ordered by the PPDB 2.0 scoring function. Paraphrases

from our lexicon are ordered using our adjusted PMI scoring function; we only show para-

phrases that appeared at least 10 times in ParaNMT-50M.

8.7 paraphrase generation

In addition to powering state-of-the-art paraphrastic sentence embeddings, our dataset is

useful for paraphrase generation. We briefly describe two efforts in paraphrase generation

here.

We have found that training an encoder-decoder model on ParaNMT-50Mcan produce

a paraphrase generation model that canonicalizes text. For this experiment, we used a

bidirectional LSTM encoder and a two-layer LSTM decoder with soft attention over the

encoded states (Bahdanau et al., 2015). The attention computation consists of a bilinear

8 If both orderings for a SimLex word pair appear in PPDB, we average their PPDB 2.0 scores. If multiple lexical
entries are found with different POS tags, we take the first instance.
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product with a learned parameter matrix. Table 72 shows examples of output generated by

this model, showing how the model is able to standardize the text and correct grammatical

errors. This model would be interesting to evaluate for automatic grammar correction as it

does so without any direct supervision. Future work could also use this canonicalization to

improve performance of models by standardizing inputs and removing noise from data.

ParaNMT-50Mhas also been used for syntactically-controlled paraphrase generation;

this work is described in detail by Iyyer et al. (2018). A syntactically controlled paraphrase

network (SCPN) is trained to generate a paraphrase of a sentence whose constituent struc-

ture follows a provided parse template. A parse template contains the top two levels of a

linearized parse tree. Table 57 shows example outputs using the SCPN. The paraphrases

mostly preserve the semantics of the input sentences while changing their syntax to fit the

target syntactic templates. The SCPN was used for augmenting training data and finding

adversarial examples.

We believe that ParaNMT-50Mand future datasets like it can be used to generate rich

paraphrases that improve the performance and robustness of models on a multitude of

NLP tasks.

8.8 discussion

One way to view ParaNMT-50Mis as a way to represent the learned translation model in

a monolingual generated dataset. This raises the question of whether we could learn an

effective sentence embedding model from the original parallel text used to train the NMT

system, rather than requiring the intermediate step of generating a paraphrase training set.

However, while Hill et al. (2016) and Mallinson et al. (2017) used trained NMT models

to produce sentence similarity scores, their correlations are considerably lower than ours

(by 10% to 35% absolute in terms of Pearson). It appears that NMT encoders form repre-

sentations that do not necessarily encode the semantics of the sentence in a way conducive

to STS evaluations. They must instead create representations suitable for a decoder to gen-

erate a translation. These two goals of representing sentential semantics and producing a

translation, while likely correlated, evidently have some significant differences.

Our use of an intermediate dataset leads to the best results, but this may be due to our

efforts in optimizing learning for this setting (Wieting et al., 2016b; Wieting and Gimpel,

2017). Future work will be needed to develop learning frameworks that can leverage parallel

text directly to reach the same or improved correlations on STS tasks.
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8.9 conclusion

We described the creation of ParaNMT-50M, a dataset of more than 50M English sentential

paraphrase pairs. We showed how to use ParaNMT-50Mto train paraphrastic sentence

embeddings that outperform supervised systems on STS tasks, as well as how it can be

used for generating paraphrases for purposes of data augmentation, robustness, and even

grammar correction.

The key advantage of our approach is that it only requires parallel text. There are hun-

dreds of millions of parallel sentence pairs, and more are being generated continually. Our

procedure is immediately applicable to the wide range of languages for which we have

parallel text.

We release ParaNMT-50M, our code, and pretrained sentence embeddings, which also

exhibit strong performance as general-purpose representations for a multitude of tasks. We

hope that ParaNMT-50M, along with our embeddings, can impart a notion of meaning

equivalence to improve NLP systems for a variety of tasks. We are actively investigating

ways to apply these two new resources to downstream applications, including machine

translation, question answering, and additional paraphrase generation tasks.
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L E A R N I N G S I M P L E A N D E F F E C T I V E B I L I N G U A L

R E P R E S E N TAT I O N S

9.1 introduction

Measuring sentence similarity is a core task in semantics (Cer et al., 2017), and prior

work has achieved strong results by training similarity models on datasets of paraphrase

pairs (Dolan et al., 2004). However, such datasets are not produced naturally at scale and

therefore must be created either through costly manual annotation or by leveraging natural

annotation in specific domains, like Simple English Wikipedia (Coster and Kauchak, 2011)

or Twitter (Lan et al., 2017b).

One of the most promising approaches for inducing paraphrase datasets is via manipula-

tion of large bilingual corpora. Examples include bilingual pivoting over phrases (Callison-

Burch et al., 2006; Ganitkevitch et al., 2013), and automatic translation of one side of the

bitext (Wieting et al., 2017; Wieting and Gimpel, 2018; Hu et al., 2019) (Chapter chapters 7

and 8). However, this is costly – in Chapter 8 we reported that our large-scale database of

sentential paraphrases required 10,000 GPU hours to generate.

In this paper, we propose a method that trains highly performant sentence embeddings (Pham

et al., 2015; Hill et al., 2016; Pagliardini et al., 2017; McCann et al., 2017; Conneau et al.,

2017) directly on bitext, obviating these intermediate steps and avoiding the noise and er-

ror propagation from automatic dataset preparation methods. This approach eases data

collection, since bitext occurs naturally more often than paraphrase data and, further, has

the additional benefit of creating cross-lingual representations that are useful for tasks such

as mining or filtering parallel data and cross-lingual retrieval.

Most previous work for cross-lingual representations has focused on models based on

encoders from neural machine translation (Espana-Bonet et al., 2017; Schwenk and Douze,

2017; Schwenk, 2018) or deep architectures using a contrastive loss (Grégoire and Langlais,

2018; Guo et al., 2018; Chidambaram et al., 2018). However, the paraphrastic sentence em-

bedding literature has observed that simple models such as pooling word embeddings gen-

eralize significantly better than complex architectures as we show in Chapter 4. Here, we

148
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find a similar effect in the bilingual setting. We propose a simple model that not only pro-

duces state-of-the-art monolingual and bilingual sentence representations, but also encode

sentences hundreds of times faster – an important factor when applying these represen-

tations for mining or filtering large amounts of bitext. Our approach forms the simplest

method to date that is able to achieve state-of-the-art results on multiple monolingual and

cross-lingual semantic textual similarity (STS) and parallel corpora mining tasks.1

Lastly, since bitext is available for so many language pairs, we analyze how the choice of

language pair affects the performance of English paraphrastic representations, finding that

using related languages yields the best results.

9.2 learning sentence embeddings

9.2.1 Models

We first describe our objective function and then describe our encoder, in addition to several

baseline encoders. The methodology proposed here borrows much from past work (Wieting

and Gimpel, 2018; Guo et al., 2018; Grégoire and Langlais, 2018; Singla et al., 2018), but this

specific setting has not been explored and, as we show in our experiments, is surprisingly

effective.

training . The training data consists of a sequence of parallel sentence pairs (si, ti)

in source and target languages respectively. For each sentence pair, we randomly choose a

negative target sentence t ′i during training that is not a translation of si. Our objective is to

have source and target sentences be more similar than source and negative target examples

by a margin δ:

min
θsrc,θtgt

∑
i

[
δ−fθ(si, ti) + fθ(si, t ′i))

]
+

.

The similarity function is defined as:

fθ(s, t) = cos
(
g(s; θsrc),g(t; θtgt)

)

1 In fact, we show that for monolingual similarity, we can devise random encoders that outperform some of this
work.
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where g is the sentence encoder with parameters for each language θ = (θsrc, θtgt). To

select t ′i we choose the most similar sentence in some set according to the current model

parameters, i.e., the one with the highest cosine similarity.

negative sampling . The described objective can also be applied to monolingual

paraphrase data, which we explore in our experiments. The choice of negative examples

differs whether we are using a monolingual parallel corpus or a bilingual parallel corpus.

In the monolingual case, we select from all examples in the batch except the current pair.

However, in the bilingual case, negative examples are only selected from the sentences in

the batch from the opposing language. To select difficult negative examples that aid train-

ing, we use the mega-batching procedure from Chapter 8, which aggregates M mini-batches

to create one mega-batch and selects negative examples therefrom. Once each pair in the

mega-batch has a negative example, the mega-batch is split back up into M mini-batches

for training.

encoders . Our primary sentence encoder simply averages the embeddings of sub-

word units generated by sentencepiece (Kudo and Richardson, 2018); we refer to it as SP.

This means that the sentence piece embeddings themselves are the only learned parame-

ters of this model. As baselines we explore averaging character trigrams (Trigram) from

Chapter 5 and words (Word). SP provides a compromise between averaging words and

character trigrams, combining the more distinct semantic units of words with the coverage

of character trigrams.

We also use a bidirectional long short-term memory LSTM encoder (Hochreiter and

Schmidhuber, 1997), with LSTM parameters fully shared between languages , as well as

BLSTM-SP, which uses sentence pieces instead of words as the input tokens. For all en-

coders, when the vocabularies of the source and target languages overlap, the correspond-

ing encoder embedding parameters are shared. As a result, language pairs with more lexical

overlap share more parameters.

We utilize several regularization methods from Chapter 6 including dropout (Srivastava

et al., 2014) and shuffling the words in the sentence when training BLSTM-SP. Additionally,

we find that annealing the mega-batch size by slowly increasing it during training improved

performance by a significant margin for all models, but especially for BLSTM-SP.
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Model en-en en-cs(1M) en-cs(2M)

BLSTM-SP (20k) 66.5 66.4 66.2

SP (20k) 69.7 70.0 71.0

Word 66.7 65.2 66.8

Trigram 70.0 70.0 70.6

Table 73: Comparison between training on 1 million examples from a backtranslated English-
English corpus (en-en) and the original bitext corpus (en-cs) sampling 1 million and 2

million sentence pairs (the latter equalizes the amount of English text with the en-en set-
ting). Performance is the average Pearson’s r over the 2012-2016 STS datasets.

9.3 experiments

Our experiments are split into two groups. First, we compare training on parallel data

to training on back-translated parallel data. We evaluate these models on the 2012-2016

SemEval Semantic Textual Similarity (STS) shared tasks (Agirre et al., 2012, 2013, 2014, 2015,

2016), which predict the degree to which sentences have the same meaning as measured by

human judges. The evaluation metric is Pearson’s r with the gold labels. We use the small

STS English-English dataset from Cer et al. (2017) for model selection. Second, we compare

our best model, SP, on two semantic cross-lingual tasks: the 2017 SemEval STS task (Cer

et al., 2017) which consists of monolingual and cross-lingual datasets and the 2018 Building

and Using Parallel Corpora (BUCC) shared bitext mining task (Zweigenbaum et al., 2018).

9.3.1 Hyperparameters and Optimization

Unless otherwise specified, we fix the hyperparameters in our model to the following:

mega-batch size to 60, margin δ to 0.4, annealing rate to 150,2 dropout to 0.3, shuffling rate

for BLSTM-SP to 0.3, and the size of the sentencepiece vocabulary to 20,000. For Word

and Trigram, we limited the vocabulary to the 200,000 most frequent types in the training

data. We optimize our models using Adam (Kingma and Ba, 2014) with a learning rate of

0.001 and trained the models for 10 epochs.

9.3.2 Back-Translated Text vs. Parallel Text

We first compare sentence encoders and sentence embedding quality between models

trained on backtranslated text and those trained on bitext directly. As our bitext, we use

2 Annealing rate is the number of minibatches that are processed before the megabatch size is increased by 1.



9.3 experiments 152

the Czeng1.6 English-Czech parallel corpus (Bojar et al., 2016). We compare it to training

on ParaNMT from Chapter 8, a corpus of 50 million paraphrases obtained from automat-

ically translating the Czech side of Czeng1.6 into English. We sample 1 million examples

from ParaNMT and Czeng1.6 and evaluate on all 25 datasets from the STS tasks from 2012-

2016. Since the models see two full English sentences for every example when training on

ParaNMT, but only one when training on bitext, we also experiment with sampling twice

the amount of bitext data to keep fixed the number of English training sentences.

Results in Table 73 show two observations. First, models trained on en-en, in contrast to

those trained on en-cs, have higher correlation for all encoders except SP. However, when

the same number of English sentences is used, models trained on bitext have greater than

or equal performance across all encoders. Second, SP has the best overall performance in

the en-cs setting. It also has fewer parameters and is faster to train than BLSTM-SP and

Trigram. Further, it is faster at encoding new sentences at test time.

9.3.3 Monolingual and Cross-Lingual Similarity

We evaluate on the cross-lingual STS tasks from SemEval 2017. This evaluation contains

Arabic-Arabic, Arabic-English, Spanish-Spanish, Spanish-English, and Turkish-English STS

datsets. These datasets were created by translating one or both pairs of an English STS pair

into Arabic (ar), Spanish (es), or Turkish (tr).3

baselines . We compare to several models from prior work (Guo et al., 2018; Chi-

dambaram et al., 2018). A fair comparison to other models is difficult due to different

training setups. Therefore, we perform a variety of experiments at different scales to demon-

strate that even with much less data, our method has the best performance.4 In the case of

Schwenk (2018), we replicate their setting in order to do a fair comparison. 5

As another baseline, we analyze the performance of averaging randomly initialized em-

beddings. We experiment with SP having sentencepiece vocabulary sizes of 20,000 and

40,000 tokens as well as Trigram with a maximum vocabulary size of 200,000. The embed-

3 Note that for experiments with 1M OS examples, we trained for 20 epochs.
4 We do not directly compare to recent work in learning contextualized word embeddings (Peters et al., 2018;

Devlin et al., 2018). While these have been very successful in many NLP tasks, they do not perform well on
STS tasks without fine tuning.

5 Two follow-up papers (Artetxe and Schwenk, 2018a,b) use essentially the same underlying model, but we
compare to Schwenk (2018) because it was the only one of these papers where the model has been made
available when this paper was written.
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dings have 300 dimensions and are initialized from a normal distribution with mean 0 and

variance 1.

Model Data N Dim. ar-ar ar-en es-es es-en en-en tr-en

Random Trigram OS 1M 300 67.9 1.8 77.3 2.8 73.7 19.4

Random SP (20k) OS 1M 300 61.9 17.5 68.8 6.5 67.0 23.1

Random SP (40k) OS 1M 300 58.3 16.1 68.2 10.4 66.6 22.2

SP (20k) OS 1M 300 75.6 74.7 85.4 76.4 84.5 77.2

Trigram OS 1M 300 75.6 75.2 84.1 73.2 83.5 74.8

SP (80k) OS 10M 1024 76.2 75.0 86.2 78.3 84.5 77.5

SP (20k) EP 2M 300 - - 78.6 54.9 79.1 -

SP (20k) EP 2M 1024 - - 81.0 56.4 80.4 -

Schwenk (2018) EP 18M 1024 - - 64.4 40.8 66.0 -

Espana-Bonet et al. (2017) MIX 32.8M 2048 59 44 78 49 76 -

Chidambaram et al. (2018) MIX 470M/500M 512 - - 64.2 58.7 - -

2017 STS 1st Place - - - 75.4 74.9 85.6 83.0 85.5 77.1

2017 STS 2nd Place - - - 75.4 71.3 85.0 81.3 85.4 74.2

2017 STS 3rd Place - - - 74.6 70.0 84.9 79.1 85.4 73.6

Table 74: Comparison of our models with those in the literature and random encoder baselines.
Performance is measured in Pearson’s r (%). N refers to the number of examples in the
training data. OS stands for OpenSubtitles, EP for Europarl, and MIX for a variety of
domains.

results . The results are shown in Table 74. We make several observations. The first

is that the 1024 dimension SP model trained on 2016 OpenSubtitles Corpus6 (Lison and

Tiedemann, 2016) outperforms prior work on 4 of the 6 STS datasets. This result outper-

forms the baselines from the literature as well, all of which use deep architectures.7 Our

SP model trained on Europarl8 (EP) also surpasses the model from Schwenk (2018) which

is trained on the same corpus. Since that model is based on many-to-many translation,

Schwenk (2018) trains on nine (related) languages in Europarl. We only train on the splits

of interest (en-es for STS and en-de/en-fr for the BUCC tasks) in our experiments.

Secondly, we find that SP outperforms Trigram overall. This seems to be especially true

when the languages have more sentencepiece tokens in common.

Lastly, we find that random encoders, especially random Trigram, perform strongly

in the monolingual setting. In fact, the random encoders are competitive or outperform

all three models from the literature in these cases. For cross-lingual similarity, however,

6 http://opus.nlpl.eu/OpenSubtitles.php
7 Including a 3-layer transformer trained on a constructed parallel corpus (Chidambaram et al., 2018), a bidirec-

tional gated recurrent unit (GRU) network trained on a collection of parallel corpora using en-es, en-ar, and
ar-es bitext (Espana-Bonet et al., 2017), and a 3 layer bidirectional LSTM trained on 9 languages in Europarl
(Schwenk, 2018).

8 http://opus.nlpl.eu/Europarl.php

http://opus.nlpl.eu/OpenSubtitles.php
http://opus.nlpl.eu/Europarl.php
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Model en-de en-fr

Schwenk (2018) 76.1 74.9

SP (20k) 77.0 76.3

SP (40k) 77.5 76.8

Table 75: F1 scores for bitext mining on BUCC.

random encoders lag behind because they are essentially measuring the lexical overlap in

the two sentences and there is little lexical overlap in the cross-lingual setting, especially

for distantly related languages like Arabic and English.

9.3.4 Mining Bitext

Lastly, we evaluate on the BUCC shared task on mining bitext. This task consists of finding

the gold aligned parallel sentences given two large corpora in two distinct languages. Typi-

cally, only about 2.5% of the sentences are aligned. Following Schwenk (2018), we train our

models on Europarl and evaluate on the publicly available BUCC data.

Results in Table 75 on the French and German mining tasks demonstrate the proposed

model outperforms Schwenk (2018), although the gap is substantially smaller than on the

STS tasks. The reason for this is likely the domain mismatch between the STS data (image

captions) and the training data (Europarl). We suspect that the deep NMT encoders of

Schwenk (2018) overfit to the domain more than the simpler SP model, and the BUCC task

uses news data which is closer to Europarl than image captions.

9.4 analysis

We next conduct experiments on encoding speed and analyze the effect of language choice.

9.4.1 Encoding Speed

Model Dim Sentences/Sec.

Schwenk (2018) 1024 2,601

Chidambaram et al. (2018) 512 3,049

SP (20k) 300 855,571

SP (20k) 1024 683,204

Table 76: A comparison of encoding times for our model compared to two models from prior work.
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Figure 3: Plot of average performance on the 2012-2016 STS tasks compared to SP overlap and lan-
guage distance as defined by Littell et al. (2017).

In addition to outperforming more complex models (Schwenk, 2018; Chidambaram et al.,

2018), the simple SP models are much faster at encoding sentences. Since implementations

to encode sentences are publicly available for several baselines, we are able to test their

encoding speed and compare to SP. To do so, we randomly select 128,000 English sentences

from the English-Spanish Europarl corpus. We then encode these sentences in batches of

128 on an Nvidia Quadro GP100 GPU. The number of sentences encoded per second is

shown in Table 76, showing that SP is hundreds of times faster.

9.4.2 Does Language Choice Matter?

We next investigate the impact of the non-English language in the bitext when training

English paraphrastic sentence embeddings. We took all 46 languages with at least 100k

parallel sentence pairs in the 2016 OpenSubtitles Corpus (Lison and Tiedemann, 2016) and

made a plot of their average STS performance on the 2012-2016 English datasets compared
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Model SP Ovl. Lang. Distance

All Lang. 71.5 -22.8

Lang. (SP Ovl. 6 0.3) 23.6 -63.8

Lang. (SP Ovl. > 0.3) 18.5 -34.2

Table 77: Spearman’s ρ× 100 between average performance on the 2012-2016 STS tasks compared to
SP overlap (SP Ovl.) and language distance as defined by Littell et al. (2017). We included
correlations for all languages as well as those with low and high SP overlap with English.

to their SP overlap9 and language distance.10 We segmented the languages separately and

trained the models for 10 epochs using the 2017 en-en task for model selection.

The plot, shown in Figure 3, shows that sentencepiece (SP) overlap is highly correlated

with STS score. There are also two clusters in the plot, languages that have a similar alpha-

bet to English and those that do not. In each cluster we find that performance is negatively

correlated with language distance. Therefore, languages similar to English yield better per-

formance. The Spearman’s correlations (multiplied by 100) for all languages and these two

clusters are shown in Table 77. When choosing a language to pair up with English for learn-

ing paraphrastic embeddings, ideally there will be a lot of SP overlap. However, beyond or

below a certain threshold (approximately 0.3 judging by the plot), the linguistic distance

to English is more predictive of performance. Of the factors in URIEL, syntactic distance

was the feature most correlated with STS performance in the two clusters with correlations

of -56.1 and -29.0 for the low and high overlap clusters respectively. This indicates that

languages with similar syntax to English helped performance. One hypothesis to explain

this relationship is that translation quality is higher for related languages, especially if the

languages have the same syntax, resulting in a cleaner training signal.

We also hypothesize that having high SP overlap is correlated with improved perfor-

mance because the English SP embeddings are being updated more frequently during train-

ing. To investigate the effect, we again learned segmentations separately for both languages

then prefixed all tokens in the non-English text with a marker to ensure that there would

be no shared parameters between the two languages. Results showed that SP overlap was

still correlated (correlation of 24.9) and language distance was still negatively correlated

with performance albeit significantly less so at -10.1. Of all the linguistic features, again the

syntactic distance was the highest correlated at -37.5.

9 We define SP overlap as the percentage of SPs in the English corpus that also appear in the non-English corpus.
10 We used the feature distance in URIEL (Littell et al., 2017) which accounts for a number of factors when

calculating distance like phylogeny, geography, syntax, and phonology.
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9.5 conclusion

We have shown that using automatic dataset preparation methods such as pivoting or back-

translation are not needed to create higher performing sentence embeddings. Moreover

by using the bitext directly, our approach also produces strong paraphrastic cross-lingual

representations as a byproduct. Our approach is much faster than comparable methods

and yields stronger performance on cross-lingual and monolingual semantic similarity and

cross-lingual bitext mining tasks.



10
D E E P G E N E R AT I V E M O D E L S F O R B I L I N G U A L PA R A P H R A S T I C

S E N T E N C E R E P R E S E N TAT I O N S

10.1 introduction

Learning useful representations of language has been a source of recent success in natural

language processing (NLP). Much work has been done on learning representations for

words (Mikolov et al., 2013b; Pennington et al., 2014) and sentences (Kiros et al., 2015;

Conneau et al., 2017). More recently, deep neural architectures have been used to learn

contextualized word embeddings (Peters et al., 2018; Devlin et al., 2018) which have enabled

state-of-the-art results on many tasks. We focus on learning semantic sentence embeddings

in this paper, which play an important role in many downstream applications. Since they

do not require any labelled data for fine-tuning, sentence embeddings are useful for a

variety of problems right out of the box. These include Semantic Textual Similarity (STS;

Agirre et al. (2012)), mining bitext (Zweigenbaum et al., 2018), and paraphrase identification

(Dolan et al., 2004). Semantic similarity measures also have downstream uses such as fine-

tuning machine translation systems as discussed in 13.

There are three main ingredients when designing a sentence embedding model: the

architecture, the training data, and the objective function. Many architectures including

LSTMs (Hill et al., 2016; Conneau et al., 2017; Schwenk and Douze, 2017; Subramanian

et al., 2018), Transformers (Cer et al., 2018; Reimers and Gurevych, 2019), and averaging

models (Wieting et al., 2016b; Arora et al., 2017) (Chapter 4) have found success for learning

sentence embeddings. The choice of training data and objective are intimately intertwined,

and there are a wide variety of options including next-sentence prediction (Kiros et al.,

2015), machine translation (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Schwenk,

2018; Artetxe and Schwenk, 2018b), natural language inference (NLI) (Conneau et al., 2017),

and multi-task objectives which include some of the previously mentioned objectives (Cer

et al., 2018) as well as additional tasks like constituency parsing (Subramanian et al., 2018).

or bilingual data (Chapter 9). The inclusion of latent variables in these models has also

been explored (Chen et al., 2019).

158
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Intuitively, bilingual data in particular is promising because it potentially offers a useful

signal for learning the underlying semantics of sentences. Within a translation pair, prop-

erties shared by both sentences are more likely semantic, while those that are divergent

are more likely stylistic or language-specific. While previous work learning from bilingual

data perhaps takes advantage of this fact implicitly, the focus of this paper is modelling

this intuition explicitly, and to the best of our knowledge, this has not not been explored in

prior work. Specifically, we propose a deep generative model that is encouraged to perform

source separation on parallel sentences, isolating what they have in common in a latent se-

mantic embedding and explaining what is left over with language-specific latent vectors. At test

time, we use inference networks (Kingma and Welling, 2013) for approximating the model’s

posterior on the semantic and source-separated latent variables to encode monolingual sen-

tences. Finally, since our model and training objective are generative, our approach does

not require knowledge of the distance metrics to be used during evaluation,1 and it has the

additional property of being able to generate text.

In experiments, we evaluate our probabilistic source-separation approach on a standard

suite of STS evaluations. We demonstrate that the proposed approach is effective, most

notably allowing the learning of high-capacity deep transformer architectures (Vaswani

et al., 2017) while still generalizing to new domains, significantly outperforming a variety

of state-of-the-art baselines. Further, we conduct a thorough analysis by identifying subsets

of the STS evaluation where simple word overlap is not able to accurately assess semantic

similarity. On these most difficult instances, we find that our approach yields the largest

gains, indicating that our system is modeling interactions between words to good effect.

We also find that our model better handles cross-lingual semantic similarity than multi-

lingual translation baseline approaches, indicating that stripping away language-specific

information allows for better comparisons between sentences from different languages.

Finally, we analyze our model to uncover what information was captured by the source

separation into the semantic and language-specific variables and the relationship between

this encoded information and language distance to English. We find that the language-

specific variables tend to explain more superficial or language-specific properties such as

overall sentence length, amount and location of punctuation, and the gender of articles (if

gender is present in the language), but semantic and syntactic information is more concen-

trated in the shared semantic variables, matching our intuition. Language distance has an

effect as well, where languages that share common structures with English put more in-

1 In other words, we don’t assume cosine similarity as a metric, though it does work well in our experiments.
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Figure 4: The generative process of our model. Latent variables modeling the linguistic variation
in French and English, zfr and zen, as well as a latent variable modeling the common
semantics, zsem, are drawn from a multivariate Gaussian prior. The observed text in each
language is then conditioned on its language-specific variable and zsem.

formation into the semantic variables, while more distant languages put more information

into the language-specific variables. Lastly, we show outputs generated from our model

that exhibit its ability to do a type of style transfer.

10.2 model

10.2.1 Model

Our proposed training objective leverages a generative model of parallel text in two lan-

guages (e.g. English (en) and French (fr)) that form a pair consisting of an English sentence

xen and a French sentence xfr. Importantly, this generative process utilizes three under-

lying latent vectors: language-specific variation variables (language variables) zfr and zen

respectively for each side of the translation, as well as a shared semantic variation variable

(semantic variable) zsem. In this section we will first describe the generative model for the

text and latent variables. In the following section we will describe the inference procedure

of zsem given an input sentence, which corresponds to our core task of obtaining sentence

embeddings useful for downstream tasks such as semantic similarity.
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Further, by encouraging the model to perform this source separation, the learned seman-

tic encoders will more crisply represent the underlying semantics, increasing performance

on downstream semantic tasks.

The generative process of our model, the Bilingual Generative Transformer (BGT), is

depicted in Figure 4 and its computation graph is shown in Figure 5. First, we sample latent

variables 〈zfr, zen, zsem〉, where zi ∈ Rk, from a multivariate Gaussian prior N(0, Ik). These

variables are then fed into a decoder that samples sentences; xen is sampled conditioned on

zsem and zen, while xfr is sampled conditioned on zsem and zfr. Because sentences in both

languages will use zsem in generation, we expect that in a well-trained model this variable

will encode semantic, syntactic, or stylistic information shared across both sentences, while

zfr and zen will handle any language-specific peculiarities or specific stylistic decisions

that are less central to the sentence meaning and thus do not translate across sentences. In

the following section, we further discuss how this is explicitly encouraged by the learning

process.

decoder architecture . Many latent variable models for text use LSTMs (Hochre-

iter and Schmidhuber, 1997) as their decoders (Yang et al., 2017; Ziegler and Rush, 2019; Ma

et al., 2019). However, state-of-the-art models in neural machine translation have seen in-

creased performance and speed using deep Transformer architectures. We also found in our

experiments (see Appendix A.3 for details) that Transformers led to increased performance

in our setting, so they are used in our main model.

We use two decoders in our model, one for modelling p(xfr|zsem, zfr; θ) and one for mod-

eling p(xen|zsem, zen; θ). These decoders are depicted on the right side of Figure 5. Each

decoder takes in two latent variables, a language variable and a semantic variable. These

variables are concatenated together prior to being used by the decoder for reconstruction.

We explore four ways of using this latent vector: (1) Concatenate it to the word embeddings

(Word) (2) Use it as the initial hidden state (Hidden, LSTM only) (3) Use it as you would the

attention context vector in the traditional sequence-to-sequence framework (Attention) and

(4) Concatenate it to the hidden state immediately prior to computing the logits (Logit).

Unlike Attention, there is no additional feedforward layer in this setting. We experimented

with these four approaches, as well as combinations thereof, and report this analysis in

Appendix A.1. From these experiments, we see that the closer the sentence embedding is to

the softmax, the better the performance on downstream tasks evaluating its semantic con-

tent. We hypothesise that this is due to better gradient propagation because the sentence
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Figure 5: The computation graph for the variational lower bound used during training. The English
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network to ultimately produce the language variables zfr and zen and semantic variable
zsem. Each language-specific variable is then concatenated to zsem and used by the de-
coder to reconstruct the input sentence pair.

embedding is now closer to the error signal. Since Attention and Logit performed best, we

use these in our Transformer experiments.

10.3 learning and inference

Our model is trained on a training set X of parallel text consisting of N exam-

ples, X = {〈x1en, x1fr〉, . . . , 〈xNen, xNfr〉}, and Z is our collection of latent variables Z =

(〈z1en, z1fr, z
1
sem〉, . . . , 〈zNen, zNfr, z

N
sem〉). We wish to maximize the likelihood of the param-

eters of the two decoders θ with respect to the observed X, marginalizing over the latent

variables Z.

p(X; θ) =
∫
Z

p(X,Z; θ)dZ

Unfortunately, this integral is intractable due to the complex relationship between X and

Z. However, related latent variable models like variational autoencoders (VAEs (Kingma

and Welling, 2013)) learn by optimizing a variational lower bound on the log marginal like-

lihood. This surrogate objective is called the evidence lower bound (ELBO) and introduces

a variational approximation, q to the true posterior of the model p. The q distribution is

parameterized by a neural network with parameters φ. ELBO can be written for our model

as follows:
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ELBO =Eq(Z|X;φ)[logp(X|Z; θ)]−

KL(q(Z|X;φ)||p(Z; θ))

This lower bound on the marginal can be optimized by gradient ascent by using the

reparameterization trick (Kingma and Welling, 2013). This trick allows for the expectation

under q to be approximated through sampling in a way that preserves backpropagation.

We make several independence assumptions for q(zsem, zen, zfr|xen, xfr;φ). Specifically,

to match our goal of source separation, we factor q as q(zsem, zen, zfr|xen, xfr;φ) =

q(zsem|xen, xfr;φ)q(zen|xen)q(zfr|xfr;φ), with φ being the parameters of the encoders that

make up the inference networks, defined in the next paragraph.

Lastly, we note that the KL term in our ELBO equation encourages explaining variation

that is shared by translations with the shared semantic variable and explaining language-

specific variation with the corresponding language-specific variables. Information shared

by the two sentences will result in a lower KL loss if it is encoded in the shared variable,

otherwise that information will be replicated and the overall cost of encoding will increase.

encoder architecture . We use three inference networks as shown on the left side

of Figure 5: an English inference network to produce the English language variable, a

French inference network to produce the French language variable, and a semantic infer-

ence network to produce the semantic variable. Just as in the decoder architecture, we use

a Transformer for the encoders.

The semantic inference network is a bilingual encoder that encodes each language. For

each translation pair, we alternate which of the two parallel sentences is fed into the se-

mantic encoder within a batch. Since the semantic encoder is meant to capture language

agnostic semantic information, its outputs for a translation pair should be similar regard-

less of the language of the input sentence. We note that other operations are possible for

combining the views each parallel sentence offers. For instance, we could feed both sen-

tences into the semantic encoder and pool their representations. However, in practice we

find that alternating works well and leave further study of this to future work.
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10.4 experiments

10.4.1 Baseline Models

We experiment with twelve baseline models, covering both the most effective approaches

for learning sentence embeddings from the literature and ablations of our own BGT model.

These baselines can be split into three groups as detailed below.

models from the literature (trained on different data) We compare to

well known sentence embedding models Infersent (Conneau et al., 2017), GenSen (Subra-

manian et al., 2018), the Universal Sentence Encoder (USE) (Cer et al., 2018), as well as

BERT (Devlin et al., 2018).2 We used the pretrained BERT model in two ways to create a

sentence embedding. The first way is to concatenate the hidden states for the CLS token

in the last four layers. The second way is to concatenate the hidden states of all word to-

kens in the last four layers and mean pool these representations. Both methods result in

a 4096 dimension embedding. Finally, we compare to the newly released model, Sentence-

Bert (Reimers and Gurevych, 2019). This model is similar to Infersent (Conneau et al., 2017)

in that it is trained on natural language inference data, SNLI (Bowman et al., 2015). How-

ever, instead of using pretrained word embeddings, they fine-tune BERT in a way to induce

sentence embeddings.3

models from the literature (trained on our data) These models are

amenable to being trained in the exact same setting as our own models as they only re-

quire parallel text. These include the sentence piece averaging model, SP, from Chapter 9,

which is among the best of the averaging models (i.e. compared to averaging only words

or character n-grams) as well the LSTM model, LSTMavg, from Chapter 6. These models

use a contrastive loss with a margin. Following their settings, we fix the margin to 0.4 and

tune the number of batches to pool for selecting negative examples from {40, 60, 80, 100}. For

both models, we set the dimension of the embeddings to 1024. For LSTMavg, we train a sin-

gle layer bidirectional LSTM with hidden states of 512 dimensions. To create the sentence

2 Note that in all experiments using BERT, including Sentence-BERT, the large, uncased version is used.
3 Most work evaluating accuracy on STS tasks has averaged the Pearson’s r over each individual dataset for each

year of the STS competition. However, Reimers and Gurevych (2019) computed Spearman’s ρ over concatenated
datasets for each year of the STS competition. To be consistent with previous work, we re-ran their model and
calculated results using the standard method, and thus our results are not the same as those reported Reimers
and Gurevych (2019).
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embedding, the forward and backward hidden states are concatenated and mean-pooled.

Following Chapter 6, we shuffle the inputs with probability p, tuning p from {0.3, 0.5}.

We also implicitly compare to previous machine translation approaches like (Espana-

Bonet et al., 2017; Schwenk and Douze, 2017; Artetxe and Schwenk, 2018b) in Appendix A.1

where we explore different variations of training LSTM sequence-to-sequence models. We

find that our translation baselines reported in the tables below (both LSTM and Trans-

former) outperform the architectures from these works due to using the Attention and

Logit methods mentioned in Section 10.2.1 , demonstrating that our baselines represent, or

even over-represent, the state-of-the-art for machine translation approaches.

bgt ablations Lastly, we compare to ablations of our model to better understand the

benefits of language-specific variables, benefits of the KL loss term, and how much we gain

from the more conventional translation baselines.

• Eng. Trans.: Translation from en to fr.

• Multiling. Trans.: Translation from both en to fr and fr to en where the encoding

parameters are shared but each language has its own decoder.

• Var. Multiling. Trans.: A model similar to Multiling. Trans., but it includes a prior

over the embedding space and therefore a KL loss term. This model differs from BGT

since it does not have any language-specific variables.

• BGT w/o Prior: Follows the same architecture as BGT, but without the priors and KL

loss term.

10.4.2 Experimental Settings

The training data for our models is a mixture of OpenSubtitles 2018
4 en-fr data and en-fr

Gigaword5 data. To create our dataset, we combined the complete corpora of each dataset

and then randomly selected 1,000,000 sentence pairs to be used for training with 10,000

used for validation. We use sentencepiece (Kudo and Richardson, 2018) with a vocabulary

size of 20,000 to segment the sentences, and we chose sentence pairs whose sentences are

between 5 and 100 tokens each.

In designing the model architectures for the encoders and decoders, we experimented

with Transformers and LSTMs. Due to better performance, we use a 5 layer Transformer

4 http://opus.nlpl.eu/OpenSubtitles.php
5 https://www.statmt.org/wmt10/training-giga-fren.tar

http://opus.nlpl.eu/OpenSubtitles.php
https://www.statmt.org/wmt10/training-giga-fren.tar
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for each of the encoders and a single layer decoder for each of the decoders. This design

decision was empirically motivated as we found using a larger decoder was slower and

worsened performance, but conversely, adding more encoder layers improved performance.

More discussion of these trade-offs along with ablations and comparisons to LSTMs are

included in Appendix A.3.

For all of our models, we set the dimension of the embeddings and hidden states for

the encoders and decoders to 1024. Since we experiment with two different architectures,6

we follow two different optimization strategies. For training models with Transformers, we

use Adam (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98, and ε = 10−8. We use the same

learning rate schedule as (Vaswani et al., 2017), i.e., the learning rate increases linearly for

4,000 steps to 5× 10−4, after which it is decayed proportionally to the inverse square root

of the number of steps. For training the LSTM models, we use Adam with a fixed learning

rate of 0.001. We train our models for 20 epochs.

For models incorporating a translation loss, we used label smoothed cross en-

tropy (Szegedy et al., 2016; Pereyra et al., 2017) with ε = 0.1. For BGT and Multiling.

Trans., we anneal the KL term so that it increased linearly for 216 updates, which robustly

gave good results in preliminary experiments. We also found that in training BGT, combin-

ing its loss with the Multiling. Trans. objective during training of both models increased

performance, and so this loss was summed with the BGT loss in all of our experiments. We

note that this doesn’t affect our claim of BGT being a generative model, as this loss is only

used in a multi-task objective at training time, and we calculate the generation probabilities

according to standard BGT at test time.

Lastly, in Appendix A.2, we illustrate that it is crucial to train the Transformers with

large batch sizes. Without this, the model can learn the goal task (such as translation) with

reasonable accuracy, but the learned semantic embeddings are of poor quality until batch

sizes approximately reach 25,000 tokens. Therefore, we use a maximum batch size of 50,000

tokens in our Eng. Trans., Multiling. Trans., and BGT w/o Prior, experiments and

25,000 tokens in our Var. Multiling. Trans. and BGT experiments.

10.4.3 Evaluation

Our primary evaluation are the 2012-2016 SemEval Semantic Textual Similarity (STS)

shared tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016), where the goal is to accurately

6 We use LSTMs in our ablations.
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Data Sentence 1 Sentence 2 Gold Score

Hard+ Other ways are needed. It is necessary to find other
means.

4.5

Hard- How long can you keep
chocolate in the freezer?

How long can I keep bread
dough in the refrigerator?

1.0

Negation It’s not a good idea. It’s a good idea to do both. 1.0

Table 78: Examples from our Hard STS dataset and our negation split. The sentence pair in the first
row has dissimilar structure and vocabulary yet a high gold score. The second sentence
pair has similar structure and vocabulary and a low gold score. The last sentence pair con-
tains negation, where there is a not in Sentence 1 that causes otherwise similar sentences
to have low semantic similarity.

predict the degree to which two sentences have the same meaning as measured by human

judges. The evaluation metric is Pearson’s r with the gold labels.

Secondly, we evaluate on Hard STS, where we combine and filter the STS datasets in

order to make a more difficult evaluation. We hypothesize that these datasets contain many

examples where their gold scores are easy to predict by either having similar structure

and word choice and a high score or dissimilar structure and word choice and a low score.

Therefore, we split the data using symmetric word error rate (SWER),7 finding sentence

pairs with low SWER and low gold scores as well as sentence pairs with high SWER and

high gold scores. This results in two datasets, Hard+ which have SWERs in the bottom 20%

of all STS pairs and whose gold label is between 0 and 1,8 and Hard- where the SWERs are

in the top 20% of the gold scores are between 4 and 5. We also evaluate on a split where

negation was likely present in the example.9 Examples are shown in Table 78.

Lastly, we evaluate on STS in es and ar as well as cross-lingual evaluations for en-es,

en-ar, and en-tr. We use the datasets from SemEval 2017 (Cer et al., 2017). For this setting,

we train Multiling. Trans. and BGT on 1 million examples from en-es, en-ar, and en-tr

OpenSubtitles 2018 data.

10.4.4 Results

The results on the STS and Hard STS are shown in Table 79.10 From the results, we see that

BGT has the highest overall performance. It does especially well compared to prior work

on the two Hard STS datasets.

7 We define symmetric word error rate for sentences s1 and s2 as 12WER(s1, s2) + 1
2WER(s2, s2), since word

error rate (WER) is an asymmetric measure.
8 STS scores are between 0 and 5.
9 We selected examples for the negation split where one sentence contained not or ’t and the other did not.

10 We obtained values for STS 2012-2016 from prior works using SentEval (Conneau and Kiela, 2018). Note that
we include all datasets for the 2013 competition, including SMT, which is not included in SentEval.
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Model
Semantic Textual Similarity (STS)

2012 2013 2014 2015 2016 Avg. Hard+ Hard- Avg.

BERT (CLS) 33.2 29.6 34.3 45.1 48.4 38.1 7.8 12.5 10.2
BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4 3.1 24.1 13.6
Infersent 61.1 51.4 68.1 70.9 70.7 64.4 4.2 29.6 16.9
GenSen 60.7 50.8 64.1 73.3 66.0 63.0 24.2 6.3 15.3
USE 61.4 59.0 70.6 74.3 73.9 67.8 16.4 28.1 22.3
Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9 23.9 3.6 13.8

SP 68.4 60.3 75.1 78.7 76.8 71.9 19.1 29.8 24.5
LSTMavg 67.9 56.4 74.5 78.2 75.9 70.6 18.5 23.2 20.9

Eng. Trans. 66.5 60.7 72.9 78.1 78.3 71.3 18.0 47.2 32.6
Multiling. Trans. 67.1 61.0 73.3 78.0 77.8 71.4 20.0 48.2 34.1
Var. Multiling. Trans. 68.3 61.3 74.5 79.0 78.5 72.3 24.1 46.8 35.5
BGT w/o Prior 67.6 59.8 74.1 78.4 77.9 71.6 17.9 45.5 31.7
BGT 68.9 62.2 75.9 79.4 79.3 73.1 22.5 46.6 34.6

Table 79: Results of our models and models from prior work. The first six rows are pretrained
models from the literature, the next two rows are strong baselines trained on the same
data as our models, and the last 5 rows include model ablations and BGT, our final model.
We show results, measured in Pearson’s r× 100, for each year of the STS tasks 2012-2016

and our two Hard STS datasets.

We show further difficult splits in Table 80, including a negation split, beyond those used

in Hard STS and compare the top two performing models in the STS task from Table 79. We

also show easier splits in the bottom of the table.

From these results, we see that both positive examples that have little shared vocabu-

lary and structure and negative examples with significant shared vocabulary and structure

benefit significantly from using a deeper architecture. Similarly, examples where negation

occurs also benefit from our deeper model. These examples are difficult because more than

just the identity of the words is needed to determine the relationship of the two sentences,

and this is something that SP is not equipped for since it is unable to model word order.

The bottom two rows show easier examples where positive examples have high overlap and

low SWER and vice versa for negative examples. Both models perform similarly on this

data, with the BGT model having a small edge consistent with the overall gap between

these two models.

Lastly, in Table 81, we show the results of STS evaluations in es and ar and cross-lingual

evaluations for en-es, en-ar, and en-tr. From these results, we see that BGT has the best

performance across all datasets, however the performance is significantly stronger than the

Multiling. Trans. and BGT w/o Prior baselines in the cross-lingual setting. Since Var.
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Data Split n BGT SP

All 13,023 75.3 74.1

Negation 705 73.1 68.7

Bottom 20% SWER, label ∈ [0, 2] 404 63.6 54.9
Bottom 10% SWER, label ∈ [0, 1] 72 47.1 22.5
Top 20% SWER, label ∈ [3, 5] 937 20.0 14.4
Top 10% SWER, label ∈ [4, 5] 159 18.1 10.8

Top 20% WER, label ∈ [0, 2] 1380 51.5 49.9
Bottom 20% WER, label ∈ [3, 5] 2079 43.0 42.2

Table 80: Performance, measured in Pearson’s r× 100, for different data splits of the STS data. The
first row shows performance across all unique examples, the next row shows the negation
split, and the last four rows show difficult examples filtered symmetric word error rate
(SWER). The last two rows show relatively easy examples according to SWER.

Model es-es ar-ar en-es en-ar en-tr

Multiling. Trans. 83.4 72.6 64.1 37.6 59.1
Var. Multiling. Trans. 81.7 72.8 72.6 73.4 74.8
BGT w/o Prior 84.5 73.2 68.0 66.5 70.9
BGT 85.7 74.9 75.6 73.5 74.9

Table 81: Performance measured in Pearson’s r× 100, on the SemEval 2017 STS task on the es-es,
ar-ar, en-es, en-ar, and en-tr datasets.

Multiling. Trans. also has significantly better performance on these tasks, most of this

gain seems to be due to the prior have a regularizing effect. However, BGT outperforms

Var. Multiling. Trans. overall, and we hypothesize that the gap in performance between

these two models is due to BGT being able to strip away the language-specific information

in the representations with its language-specific variables, allowing for the semantics of the

sentences to be more directly compared.

10.5 analysis

We next analyze our BGT model by examining what elements of syntax and semantics the

language and semantic variables capture relative both to each-other and to the sentence

embeddings from the Multiling. Trans. models. We also analyze how the choice of lan-

guage and its lexical and syntactic distance from English affects the semantic and syntactic

information captured by the semantic and language-specific encoders. Finally, we also show

that our model is capable of sentence generation in a type of style transfer, demonstrating

its capabilities as a generative model.
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10.5.1 STS

We first show that the language variables are capturing little semantic information by eval-

uating the learned English language-specific variable from our BGT model on our suite of

semantic tasks. The results in Table 82 show that these encoders perform closer to a ran-

dom encoder than the semantic encoder from BGT. This is consistent with what we would

expect to see if they are capturing extraneous language-specific information.

Model Semantic Textual Similarity (STS)
2012 2013 2014 2015 2016 Hard+ Hard-

Random Encoder 51.4 34.6 52.7 52.3 49.7 4.8 17.9
English Language Encoder 44.4 41.7 53.8 62.4 61.7 15.3 26.5
Semantic Encoder 68.9 62.2 75.9 79.4 79.3 22.5 46.6

Table 82: STS performance on the 2012-2016 datasets and our STS Hard datasets for a randomly
initialized Transformer, the trained English language-specific encoder from BGT, and the
trained semantic encoder from BGT. Performance is measured in Pearson’s r× 100.

10.5.2 Probing

Lang. Model STS S. Num. O. Num. Depth Top Con. Word Len. P. Num. P. First Gend.

fr

Multiling. Trans. 71.2 78.0 76.5 28.2 65.9 80.2 74.0 56.9 88.3 53.0

Semantic Encoder 72.4 84.6 80.9 29.7 70.5 77.4 73.0 60.7 87.9 52.6

en Language Encoder 56.8 75.2 72.0 28.0 63.6 65.4 80.2 65.3 92.2 -

fr Language Encoder - - - - - - - - - 56.5

es

Multiling. Trans. 70.5 84.5 82.1 29.7 68.5 79.2 77.7 63.4 90.1 54.3

Semantic Encoder 72.1 85.7 83.6 32.5 71.0 77.3 76.7 63.1 89.9 52.6

en Language Encoder 55.8 75.7 73.7 29.1 63.9 63.3 80.2 64.2 92.7 -

es Language Encoder - - - - - - - - - 54.7

ar

Multiling. Trans. 70.2 77.6 74.5 28.1 67.0 77.5 72.3 57.5 89.0 -

Semantic Encoder 70.8 81.9 80.8 32.1 71.7 71.9 73.3 61.8 88.5 -

en Language Encoder 58.9 76.2 73.1 28.4 60.7 71.2 79.8 63.4 92.4 -

tr

Multiling. Trans. 70.7 78.5 74.9 28.1 60.2 78.4 72.1 54.8 87.3 -

Semantic Encoder 72.3 81.7 80.2 30.6 66.0 75.2 72.4 59.3 86.7 -

en Language Encoder 57.8 77.3 74.4 28.3 63.1 67.1 79.7 67.0 92.5 -

ja

Multiling. Trans. 71.0 66.4 64.6 25.4 54.1 76.0 67.6 53.8 87.8 -

Semantic Encoder 71.9 68.0 66.8 27.5 58.9 70.1 68.7 52.9 86.6 -

en Language Encoder 60.6 77.6 76.4 28.0 64.6 70.0 80.4 62.8 92.0 -

Table 83: Average STS performance for the 2012-2016 datasets, measured in Pearson’s r× 100, fol-
lowed by probing results on predicting number of subjects, number of objects, constituent
tree depth, top constituent, word content, length, number of punctuation marks, the first
punctuation mark, and whether the articles in the sentence are the correct gender. All
probing results are measured in accuracy ×100.
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We probe our BGT semantic and language-specific encoders, along with our Multiling.

Trans. encoders as a baseline, to compare and contrast what aspects of syntax and seman-

tics they are learning relative to each other across five languages with various degrees of

similarity with English. All models are trained on the OpenSubtitles 2018 corpus. We use

the datasets from (Conneau et al., 2018a) for semantic tasks like number of subjects and

number of objects, and syntactic tasks like tree depth, and top constituent. Additionally,

we include predicting the word content and sentence length. We also add our own tasks

to validate our intuitions about punctuation and language-specific information. In the first

of these, punctuation number, we train a classifier to predict the number of punctuation

marks11 in a sentence. To make the task more challenging, we limit each label to have at

most 20,000 examples split among training, validation, and testing data.12 In the second

task, punctuation first, we train a classifier to predict the identity of the first punctuation

mark in the sentence. In our last task, gender, we detect examples where the gender of the

articles in the sentence is incorrect in French of Spanish. To create an incorrect example, we

switch articles from {le, la, un, une} for French and {el, la, los, las} for Spanish, with their

(indefinite or definite for French and singular or plural for Spanish) counterpart with the

opposite gender. This dataset was balanced so random chances gives 50% on the testing

data. All tasks use 100,000 examples for training and 10,000 examples for validation and

testing. The results of these experiments are shown in Table 83.

These results show that the source separation is effective - stylistic and language-specific

information like length, punctuation and language-specific gender information are more

concentrated in the language variables, while word content, semantic and syntactic infor-

mation are more concentrated in the semantic encoder. The choice of language is also seen

to be influential on what these encoders are capturing. When the languages are closely

related to English, like in French and Spanish, the performance difference between the se-

mantic and English language encoder is larger for word content, subject number, object

number than for more distantly related languages like Arabic and Turkish. In fact, word

content performance is directly tied to how well the alphabets of the two languages over-

lap. This relationship matches our intuition, because lexical information will be cheaper to

encode in the semantic variable when it is shared between the languages. Similarly for the

tasks of length, punctuation first, and punctuation number, the gap in performance between

the two encoders also grows as the languages become more distant from English. Lastly,

11 Punctuation were taken from the set { ’ ! " # $ % & \’ ( ) ∗ + , − . / : ; < = > ? @ [ ] _̂ ‘ { | } ’̃ . }.
12 The labels are from 1 punctuation mark up to 10 marks with an additional label consolidating 11 or more

marks.
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the gap on STS performance between the two encoders shrinks as the languages become

more distant, which again is what we would expect, as the language-specific encoders are

forced to capture more information.

Japanese is an interesting case in these experiments, where the English language-specific

encoder outperforms the semantic encoder on the semantic and syntactic probing tasks.

Japanese is a very distant language to English both in its writing system and in its sentence

structure (it is an SOV language, where English is an SVO language). However, despite

these difference, the semantic encoder strongly outperforms the English language-specific

encoder, suggesting that the underlying meaning of the sentence is much better captured

by the semantic encoder.

10.5.3 Generation and Style Transfer

Source you know what i’ve seen?
Style he said, "since when is going fishing" had anything to do

with fish?"
Output he said, "what is going to do with me since i saw you?"

Source guys, that was the tech unit.
Style is well, "capicci" ...
Output is that what, "technician"?

Source the pay is no good, but it’s money.
Style do we know cause of death?
Output do we have any money?

Source we’re always doing stupid things.
Style all right listen, i like being exactly where i am,
Output all right, i like being stupid, but i am always here.

Table 84: Style transfer generations from our learned BGT model. Source refers to the sentence fed
into the semantic encoder, Style refers to the sentence fed into the English language-specific
encoder, and Output refers to the text generated by our model.

In this section, we qualitatively demonstrate the ability of our model to generate sen-

tences. We focus on a style-transfer task where we have original seed sentences from which

we calculate our semantic vector zsem and language specific vector zen. Specifically, we feed

in a Source sentence into the semantic encoder to obtain zsem, and another Style sentence

into the English language-specific encoder to obtain zen. We then generate a new sentence

using these two latent variables. This can be seen as a type of style transfer where we expect

the model to generate a sentence that has the semantics of the Source sentence and the style

of the Style sentence. We use our en-fr BGT model from Table 83 and show some examples
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in Table 84. All input sentences are from held-out en-fr OpenSubtitles data. From these ex-

amples, we see further evidence of the role of the semantic and language-specific encoders,

where most of the semantics (e.g. topical word such as seen and tech in the Source sentence)

are reflected in the output, but length and structure are more strongly influenced by the

language-specific encoder.

10.6 conclusion

We propose Bilingual Generative Transformers, a model that uses parallel data to learn to

perform source separation of common semantic information between two languages from

language-specific information. We show that the model is able to accomplish this source

separation through probing tasks and text generation in a style-transfer setting. We find that

our model bests all baselines on semantic similarity tasks, with the largest gains coming

from a new challenge we propose as Hard STS, designed to foil methods approximating

semantic similarity as word overlap. We also find our model to be especially effective on

cross-lingual semantic similarity, due to its stripping away of language-specific information

allowing for the underlying semantics to be more directly compared. In future work, we

will explore generalizing this approach to the multilingual setting.
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T H E M U LT I L I N G U A L G E N E R AT I V E T R A N S F O R M E R

11.1 introduction

The BGT model presented in Chapter 10 separates language-specific information from in-

terlingua semantic information

Within a translation pair, properties shared by both sentences are more likely semantic,

while those that are divergent are more likely stylistic or language-specific.

In experiments, we evaluate the MGT on a suite of semantic evaluations. These in-

clude semantic similarity, both cross-lingual and monolingual, bitext mining including

zero-shot bitext mining, and transfer learning using the XNLI natural language inference

dataset (Conneau et al., 2018b). MGT significantly exceeds the performance of our strong

translation baseline on all of these tasks. Moreover, our model exceeds or is competitive

with LASER (Artetxe and Schwenk, 2018b), a multilingual sentence embeddings trained on

an order of magnitude more data for a much longer period of time. We cannot replicate the

exact setting of LASER since complete code for the model is not released and training on

that large amount of data over 80 GPU-days is too costly.

Finally, we analyze our model to uncover what information was captured by the source

separation into the semantic and language-specific variables. We find that the language-

specific variables tend to explain more superficial or language-specific properties such as

overall sentence length and amount and location of punctuation. We also find that semantic

and syntactic information is more concentrated in the shared semantic variables, even more

so than in our translation baseline, matching our intuition.

11.2 model

11.2.1 Model

Our proposed training objective leverages a generative model of parallel text in multiple

languages. Ideally, we would have N-way parallel text, but in practice we often have par-

174
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Figure 6: The generative process of our model. Latent variables modeling the linguistic variation for
each language i, zli , as well as a latent variable modeling the common semantics, zsem,
are drawn from a multivariate Gaussian prior. The observed text in each language is then
conditioned on its language-specific variable and zsem.

allel corpora for a set of language pairs. However, we can approximate an N-way parallel

corpora by sampling translation pairs from this set of parallel corpora for each mini-batch.

Like the BGT in Chapter 10, our generative process utilizes two types of underlying latent

vectors: language-specific variation variables (language variables) zli for each language and

a shared semantic variation variable (semantic variable) zsem. In this section we will first

describe the generative model for the text and latent variables. In the following section we

will describe the inference procedure of zsem given an input sentence, which corresponds

to our core task of obtaining sentence embeddings useful for downstream tasks.

The generative process of MGT is depicted in Figure 6 and its computation graph is

shown in Figure 7. First, we sample latent variables for two languages, li and lj, and

a latent semantic variable: 〈zli , zlj , zsem〉, where zk ∈ Rn, from a multivariate Gaussian

prior N(0, In). These variables are then fed into a decoder that samples sentences; xli is

sampled conditioned on zsem and zli , while xlj is sampled conditioned on zsem and zlj .

Because sentences in both languages will use zsem in generation, we expect that in a well-

trained model this variable will encode semantic, syntactic, or stylistic information shared

across both sentences, while zli and zlj will handle any language-specific peculiarities or

specific stylistic decisions that are less central to the sentence meaning and thus do not
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Figure 7: The computation graph for the variational lower bound used during training. Parallel text
from languages li and lj are fed into their respective inference networks and the semantic
inference network to ultimately produce the language variables zli and zlj and semantic
variable zsem. Each language-specific variable is then concatenated to zsem and used by
the decoder to reconstruct the input sentence pair.

translate across sentences. In the following section, we further discuss how this is explicitly

encouraged by the learning process.

decoder architecture . In contrast to our work on BGT 10, we use a single Trans-

former decoder to model p(xli |zsem, zli ; θ) for all languages i. The decoder is depicted on

the right side of Figure 7. The decoder takes in two latent variables, a language variable

and a semantic variable. These variables are concatenated together to form a single embed-

ding prior to being used by the decoder for reconstruction. Following our work on BGT,

we concatenate this embeddings to the hidden state immediately prior to computing the

logits as we found this yielded the best performance.1 Since we are using a single decoder,

we encode the desired output language by using a language-specific embedding as the first

input to the decoder as depicted in the right side of Figure 7 to encourage the decoder

outputs to follow the desired language.
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11.3 learning and inference

Our model is trained on a training set X of parallel text consisting of Nij parallel examples

of languages i and j for a set of language pairs, X = {〈x1li , x
1
lj
〉, . . . , 〈xNli , x

N
lj
〉}, and Z is

our collection of latent variables Z = (〈z1li , z
1
lj

, z1sem〉, . . . , 〈zNli , z
N
lj

, zNsem〉). Just as we did for

the BGT, we wish to maximize the likelihood of the parameters of the decoders θ with

respect to the observed X, marginalizing over the latent variables Z. However, computing

the marginal is intractable, and so therefore we optimize a surrogate objective called the

evidence lower bound (ELBO). ELBO introduces a variational approximation, q to the true

posterior of the model p. The q distribution is parameterized by a neural network with

parameters φ. ELBO can be written for our model as follows:

ELBO =Eq(Z|X;φ)[logp(X|Z; θ)]−

KL(q(Z|X;φ)||p(Z; θ))

We optimize ELBO by gradient ascent using the reparameterization trick (Kingma and

Welling, 2013). This trick allows for the expectation under q to be approximated through

sampling in a way that preserves backpropagation.

Similar to the BGT, we make several independence assumptions for

q(zsem, zli , zlj |xli , xlj ;φ). Specifically, to match our goal of source separation, we fac-

tor q as q(zsem, zli , zlj |xli , xlj ;φ) = q(zsem|xli , xlj ;φ)q(zli |xli)q(zlj |xlj ;φ), with φ being

the parameters of the encoder that make up the inference networks, defined in the next

paragraph.

Lastly, as mentioned in Chapter 10, the KL term in our ELBO equation encourages ex-

plaining variation that is shared by translations with the shared semantic variable and

explaining language-specific variation with the corresponding language-specific variables.

Information shared by the two sentences will result in a lower KL loss if it is encoded in

the shared variable, otherwise that information will be replicated and the overall cost of

encoding will increase.

encoder architecture . In contrast to the BGT, we use a single Transformer en-

coder as shown on the left side of Figure 5, however we modify the architecture and use

1 See Appendix A.1.
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embeddings to have this single encoder play the role of N+ 1 inference networks, one each

for each of the N languages in our training data and another for our semantic network.

To distinguish between the encoder acting as a language inference network for language

li and as a semantic inference network, we append an embedding to the input sequence

indicating the desired network. For a language-specific inference network, we append a

lang embedding along with an embedding for li, the language of interest. For the semantic

inference network, we append a sem embedding. We also switch out the top layer of the

encoder depending if we are using a language-specific or semantic inference network. We

assume that the language specific and semantic information can be mostly shared in the

lower layers of the network, but switching out the top layer helps guide the appropriate

information into the resulting sentence embedding.

For each translation pair, we alternate which of the two parallel sentences is fed into the

semantic inference network within a batch. We sample the pairs so that each language will

be fed into the inference network the same amount of times.2 Since the semantic inference

network is meant to capture language agnostic semantic information, its outputs for a

translation pair should be similar regardless of the language of the input sentence. We

note that other operations are possible for combining the views each parallel sentence

offers. For instance, we could feed both sentences into the semantic encoder and pool their

representations. However, in practice we find that alternating works well and leave further

study of this to future work.

11.4 experiments

11.4.1 Experimental Settings

data We perform two experiments, one using four languages for ablations Arabic (ar,

English en, Spanish es, and Turkishtr), and another more large-scale experiment using

eight languages: (ar, en, es, tr, French fr, German de, Russian ru, and Chinese zh). In both

cases, we use the data used by LASER for the appropriate languages with the exception

2 Since often most parallel data is aligned to a high resource language like English, we then decrease the proba-
bility of selecting English to be in line with the other languages. We set the probability of selecting English to
be 1

N+1 and the probability of selecting non-English to be N
N+1 for each translation pair.
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of the Tatoeba corpus, since we use it for evaluation.34. Therefore, for all languages we

use examples from the Open Subtitles 2018
5 (Lison and Tiedemann, 2016). We use the

Tanzil corpus 6 (Tiedemann, 2012) for Arabic, Spanish, Russian, Turkish, and Chinese. We

additionally use Europarl7 for German, French, and Spanish. Lastly, we additionally use

the MultiUN corpus8 for Arabic, Russian, and Chinese.

baseline models We compare to LASER (Artetxe and Schwenk, 2018b), a massively

multilingual model trained on hundreds of millions of translations covering more than 100

languages. We note however, that this model was trained on 16 V100 GPUs for 5 days and

trained on a superset of the data we used that is about an order of magnitude larger times

larger. Therefore a fair comparison of the models between models is not possible, however

we compare to both LASER and a similar translation ablation to give context to our results.

We experiment with 3 ablations of our model listed below:

• Multiling. Trans.: Translation from both en to X and X to en where the weight of the

loss terms is N
N1

for language X and 1
N1

for en so that all languages are reflected equally.

• Var. Multiling. Trans.: A model similar to Multiling. Trans., but it includes a prior

over the embedding space and therefore a KL loss term. This model differs from MGT

since it does not have any language-specific variables.

• MGT w/o Prior: Follows the same architecture as MGT, but without the priors and KL

loss term – it just contains the language variables.

hyperparameters and optimization We set the dimension of the embeddings

and hidden states for the encoders and decoders to 1024. The feedforward layer for the

Transformers have dimension 2048 and we use 16 attention heads. For training models

with Transformers, we use Adam (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98, and

ε = 10−8. We use the same learning rate schedule as (Vaswani et al., 2017), i.e., the learning

rate increases linearly for 4,000 steps to 5× 10−4, after which it is decayed proportionally

to the inverse square root of the number of steps. We train our models for 10 epochs.

3 LASER was trained on a portion of Tatoeba that was outside the evaluation set of the bitext mining task
introduced in (Artetxe and Schwenk, 2018b)

4 We also note that LASER followed a fundamentally different training paradigm than we did where they used
X-en and x-es data for language X. We only use X-en, so we doubled the data used for OpenSubtitles to try to
more closely approximate the data used. However, for some corpora, this cannot be done like Europarl.

5 http://opus.nlpl.eu/OpenSubtitles.php
6 http://opus.nlpl.eu/Tanzil.php.
7 http://opus.nlpl.eu/Europarl.php
8 http://opus.nlpl.eu/MultiUN.php

http://opus.nlpl.eu/OpenSubtitles.php
http://opus.nlpl.eu/Tanzil.php
http://opus.nlpl.eu/Europarl.php
http://opus.nlpl.eu/MultiUN.php
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For models incorporating a translation loss, we used label smoothed cross en-

tropy (Szegedy et al., 2016; Pereyra et al., 2017) with ε = 0.1. For MGT and Var. Multiling.

Trans., we anneal the KL term so that it increased linearly for the first 8 of 10 epochs.

We also found that in training MGT, as with BGT, combining its loss with the Multiling.

Trans. objective during training of both models increased performance and led to faster

training, and so this loss was summed with the MGT loss in all of our experiments. We

note that this doesn’t affect our claim of MGT being a generative model, as this loss is only

used in a multi-task objective at training time, and we calculate the generation probabilities

according to standard MGT at test time.

11.4.2 Evaluation

We evaluate no a host of semantic language tasks detailed below:

• English STS: Our primary evaluation are the 2012-2016 SemEval Semantic Textual Sim-

ilarity (STS) shared tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016), where the goal

is to accurately predict the degree to which two sentences have the same meaning as

measured by human judges. The evaluation metric is Pearson’s r with the gold labels.

• Cross-Lingual STS: We evaluate on cross-lingual STS for en-es, en-ar, and en-tr using

the datasets from SemEval 2017 (Cer et al., 2017). We average the Pearson’s r for all three

datasets.

• non-English STS: We evaluate on the es-es and ar-ar non-English STS datasets from

SemEval 2017 (Cer et al., 2017). We average the Pearson’s r for these two datasets.

• Tatoeba: This is a bitext mining task introduced in (Artetxe and Schwenk, 2018b) based

on the Tatoeba corpus. 9. These datasets are small, about 1000 examples, and cosine

similarity is used to re-align the bitext. We evaluate on the Arabic, Spanish, and Turkish

languages and average performance (accuracy) for both the en->xx and xx->en directions.

• Zero-Shot Tatoeba: We evaluate on low resource languages similar to Spanish and Turk-

ish (Galician and Azerbaijani respectively). We call this zero-shot since data from these

languages was not included during training.

• XNLI: We evaluate on the transfer learning task XNLI from (Conneau et al., 2018b).

In this task, a classifier is trained on the Stanford Natural Language Inference dataset

(SNLI) (Bowman et al., 2015), which is in English, and then tested on translations of the

9 https://tatoeba.org/eng/

https://tatoeba.org/eng/


11.4 experiments 181

test set in multiple languages. We evaluate on English as well as the average performance

on Arabic, Spanish, and Turkish. Performance is measured on accurately the correct label

for each sentence pair.

• BUCC: We evaluate on the BUCC bitext mining task from (Zweigenbaum et al., 2018) for

en-de, en-fr, and en-ru. Performance is measured using F1.

11.4.3 Results

Model En. STS CL STS non-En. STS Tat. ZS Tat. En. XNLI Tr. XNLI

LASER 64.9 65.8 74.5 95.8 80.8 73.9 71.3
Multiling. Trans. 71.4 68.7 77.7 88.2 37.7 69.9 55.0
Var. Multiling. Trans. 72.8 72.3 79.9 91.1 41.1 69.0 54.7
MGT w/o Prior 70.5 69.6 75.9 90.2 36.5 69.4 56.9
MGT 73.5 75.8 80.5 95.4 53.8 70.8 63.7

Table 85: Results of LASER, our model, and ablations of our model, including a translation baseline.
We show results, measured in Pearson’s r× 100, for each year of the STS tasks 2012-2016,
the cross-lingual and non-English semantic textual similarity on the SemEval 2017 task.
Tatoeba bitext mining and zero-shot bitext mining, English XNLI and XNLI for ar, es, and
tr all measured in accuracy ×100.

Model en-fr en-de en-ru

LASER 87.60 91.24 90.03

Multiling. Trans. 74.15 71.97 70.28

MGT 86.95 90.30 89.00

Table 86: Results of LASER, MGT, and our translation baseline on the BUCC task. Performance is
measured in F1 ×100.

The results of our 4 language experiments, including ablations, are shown in Table 85 and

BUCC results for our 8 language model are shown in Table 86. The results show that across

tasks, the MGT has the strongest performance over its ablations, far exceeding the Multi-

ling. Trans. baseline. This is especially true for cross-lingual tasks like cross-lingual STS

and bitext mining. The ablations also show that all components, the KL term and the recon-

struction term, contribute significantly to performance. Comparisons to LASER are difficult

due to the difference in training time, training data size, and the number of languages, but

it seems that our model has better performance on semantic similarity tasks and similar

performance on bitext mining. However, for the XNLI transfer tasks, our performance lags

behind.
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11.5 conclusion

We have demonstrated how the BGT model can be extended to the multilingual setting with

our MGT model. The results are much stronger than our translation baseline for a variety

of semantic multilingual tasks including semantic similarity, bitext mining, and transfer

learning. Through ablations and analysis, we also show that all components of our model

are necessary for optimal performance and that the MGT is also able to separate language-

specific from semantic information despite using only a single encoder and decoder. Future

work will include scaling up this model to cover many of the world’s languages.



Part IV
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In this section, we discuss applications of our work in representation learning. This sec-

tion encompasses work that has appeared in two papers: (Iyyer et al., 2018; Wieting et al.,

2019a).

In Chapter 12, we apply our ParaNMT-50Mcorpus and sentence embedding models

towards learning controllable paraphrase generation. Specifically we focus on controlling

the syntax of the generated sentences. We find that we can learn a model where by just

supplying a parse template, i.e. the top production of a constituent parse, we can generate

a sentence with that syntax. We show that when these syntactic paraphrases are added to

training, models become more robust to adversarial examples. We use our paraphrastic sen-

tence embeddings to filter the generated the paraphrases, removing those that semantically

diverge too much from the source sentence.

Then in Chapter 13, we use our paraphrastic representations, along with a proposed length

penalty, for fine-tuning neural machine translation systems using minimum risk training.

The conventional approach for fine-tuning is to use BLEU (Papineni et al., 2002), since

BLEU is commonly used for evaluation. However, we find that using an embedding model

to evaluate similarity allows the range of possible scores to be continuous and, as a result,

introduces fine-grained distinctions between similar translations. This allows for partial

credit, reduces the penalties on semantically correct but lexically different translations. and

provides more informative gradients during the optimization process. The result is better

performance on both human evaluations and BLEU score, along with faster convergence

during training. This is the first work on fine-tuning neural machine translation models

with a semantic similarity reward based on embeddings, and we see this as becoming a

trend in the future.



12
C O N T R O L L E D PA R A P H R A S E G E N E R AT I O N

12.1 introduction

Natural language processing datasets often suffer from a dearth of linguistic variation,

which can hurt the generalization of models trained on them. Recent work has shown

it is possible to easily “break” many learned models by evaluating them on adversarial

examples (Goodfellow et al., 2015), which are generated by manually introducing lexical,

pragmatic, and syntactic variation not seen in the training set (Ettinger et al., 2017). Robust-

ness to such adversarial examples can potentially be improved by augmenting the train-

ing data, as shown by prior work that introduces rule-based lexical substitutions (Jia and

Liang, 2017; Liang et al., 2017). However, more complex transformations, such as generat-

ing syntactically adversarial examples, remain an open challenge, as input semantics must

be preserved in the face of potentially substantial structural modifications. In this chapter,

we introduce a new approach for learning to do syntactically controlled paraphrase generation:

given a sentence and a target syntactic form (e.g., a constituency parse), a system must

produce a paraphrase of the sentence whose syntax conforms to the target.

General purpose syntactically controlled paraphrase generation is a challenging task. Ap-

proaches that rely on handcrafted rules and grammars, such as the question generation sys-

tem of McKeown (1983), support only a limited number of syntactic targets. We introduce

the first learning approach for this problem, building on the generality of neural encoder-

decoder models to support a wide range of transformations. In doing so, we face two new

challenges: (1) obtaining a large amount of paraphrase pairs for training, and (2) defining

syntactic transformations with which to label these pairs.

Since no large-scale dataset of sentential paraphrases exists publicly, we follow our work

from Chapter 8 and use our millions of automatically generated paraphrase pairs using neu-

ral backtranslation. Backtranslation naturally injects linguistic variation between the original

sentence and its backtranslated counterpart. By running the process at a very large scale and

testing for the specific variations we want to produce, we can gather ample input-output

F Authors contributed equally.
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I’d have to say the star 
and director are the big 
problems here negative

The man is standing in the 
water at the base of a 
waterfall

entailment

A man is standing in      
the water at the base of 
a waterfall

By the way, you know, the 
star and director are the 
big problems positive

The man, at the base of 
the waterfall, is standing 
in the water

A man is standing in      
the water at the 
base of a waterfall neutral

S

PP PRN NP VP

SCPN S

NP , PP , VP

SCPN

Figure 8: Adversarial examples for sentiment analysis (left) and textual entailment (right) generated
by our syntactically controlled paraphrase network (scpn) according to provided parse
templates. In both cases, a pretrained classifier correctly predicts the label of the original
sentence but not the corresponding paraphrase.

pairs for a wide range of phenomena. Our focus is on syntactic transformations, which

we define using templates derived from linearized constituency parses (§12.2). Given such

parallel data, we can easily train an encoder-decoder model that takes a sentence and target

syntactic template as input, and produces the desired paraphrase.1

A combination of automated and human evaluations show that the generated para-

phrases almost always follow their target specifications, while paraphrase quality does not

significantly deteriorate compared to vanilla neural backtranslation (§12.4). Our model, the

syntactically controlled paraphrase network (scpn), is capable of generating adversarial ex-

amples for sentiment analysis and textual entailment datasets that significantly impact the

performance of pretrained models (Figure 8). We also show that augmenting training sets

with such examples improves robustness without harming accuracy on the original test

sets (§12.5). Together these results not only establish the first general purpose syntactically

controlled paraphrase approach, but also suggest that this general paradigm could be used

for controlling many other aspects of the target text.

12.2 collecting labeled paraphrase pairs

In this section, we describe a general purpose process for gathering and labeling training

data for controlled paraphrase generation.

1 Code, labeled data, and pretrained models available at https://github.com/miyyer/scpn.

https://github.com/miyyer/scpn
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12.2.1 Paraphrase data via backtranslation

Inducing paraphrases from bilingual data has long been an effective method to overcome

data limitations. In particular, bilingual pivoting (Bannard and Callison-Burch, 2005) finds

quality paraphrases by pivoting through a different language. Mallinson et al. (2017) show

that neural machine translation (NMT) systems outperform phrase-based MT on several

paraphrase evaluation metrics.

In this paper, we use the ParaNMT-50M corpus from Chapter 8. This corpus consists of

over 50 million paraphrases obtained by backtranslating the Czech side of the CzEng (Bojar

et al., 2016) parallel corpus. The pretrained Czech-English model used for translation came

from the Nematus NMT system (Sennrich et al., 2017). The training data of this system

includes four sources: Common Crawl, CzEng 1.6, Europarl, and News Commentary. The

CzEng corpus is the largest of these four and was found to have significantly more syntactic

diversity than the other data sources (see Chapter 8).2

12.2.2 Automatically labeling paraphrases with syntactic transformations

We need labeled transformations in addition to paraphrase pairs to train a controlled para-

phrase model. Manually annotating each of the millions of paraphrase pairs is clearly in-

feasible. Our key insight is that target transformations can be detected (with some noise)

simply by parsing these pairs.3

Specifically, we parse the backtranslated paraphrases using the Stanford parser (Man-

ning et al., 2014),4 which yields a pair of constituency parses 〈p1,p2〉 for each sentence

pair 〈s1, s2〉, where s1 is the reference English sentence in the CzEng corpus and s2 is its

backtranslated counterpart. For syntactically controlled paraphrasing, we assume s1 and

p2 are inputs, and the model is trained to produce s2. To overcome learned biases of the

NMT system, we also include reversed pairs 〈s2, s1〉 during training.

12.2.2.1 Syntactic templates

To provide syntactic control, we linearize the bracketed parse structure without leaf nodes

(i.e., tokens). For example, the corresponding linearized parse tree for the sentence “She

2 Syntactic diversity was measured by the entropy of the top two levels of parse trees in the corpora.
3 Similar automated filtering could be used to produce data for many other transformations, such as tense

changes, point-of-view shifts, and even stylometric pattern differences (Feng et al., 2012). This is an interesting
area for future work.

4 Because of the large dataset size, we use the faster but less accurate shift-reduce parser written by John Bauer.
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The    man    is    standing   in     the    water    …

+

The    man       ,        at      the    base …

The    man      ,        at      the    base     of    …

( ROOT ( S ( NP ( DT ) ( NN ) ) ( VP ( VBZ ) ( VP ( VBG ) ( PP ( IN ) ( NP ( NP ( DT ) ( NN ) …

+

( ROOT ( S ( NP (NP ( DT ) ( NN ) ) ( , ) ( PP ( IN ) ( NP ( NP ( DT ) ( NN ) ) ( PP ( IN ) …

+
( ROOT ( S ( … 

( ROOT ( S ( NP ) ( , ) ( PP ) ( , ) ( VP ) ) )

+
parse generator

paraphrase generator

target template t2

input parse p1

input sentence s1

target sentence s2

target parse p2

Figure 9: scpn implements parse generation from templates as well as paraphrase generation from
full parses as encoder-decoder architectures (attention depicted with dotted lines, copy
mechanism with double stroked lines). While both components are trained separately, at
test-time they form a pipelined approach to produce a controlled paraphrase from an input
sentence s1, its corresponding parse p1, and a target template t2.

drove home.” is (S(NP(PRP))(VP(VBD)(NP(NN)))(.)). A system that requires a complete lin-

earized target parse at test-time is unwieldy; how do we go about choosing the target parse?

To simplify test-time usage, we relax the target syntactic form to a parse template, which we

define as the top two levels of the linearized parse tree (the level immediately below the

root along with the root); the prior example’s template is S→ NP VP. In the next section, we

design models such that users can feed in either parse templates or full parses depending

on their desired level of control.

12.3 syntactically controlled paraphrase networks

The scpn encoder-decoder architecture is built from standard neural modules, as we de-

scribe in this section.

12.3.1 Neural controlled paraphrase generation

Given a sentential paraphrase pair 〈s1, s2〉 and a corresponding target syntax tree p2 for

s2, we encode s1 using a bidirectional LSTM (Hochreiter and Schmidhuber, 1997), and our

decoder is a two-layer LSTM augmented with soft attention over the encoded states (Bah-

danau et al., 2015) as well as a copy mechanism (See et al., 2017). Following existing work
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in NMT (Sennrich et al., 2016c), we preprocess s1 and s2 into subword units using byte pair

encoding, and we perform decoding using beam search. For all attention computations, we

use a bilinear product with a learned parameter matrix W: given vectors u and v, we score

them by uTWv.

We incorporate the target syntax p2 into the generation process by modifying the in-

puts to the decoder. In particular, a standard decoder LSTM receives two inputs at every

time step: (1) the embedding wt−1 of the ground-truth previous word in s2, and (2) an

attention-weighted average at of the encoder’s hidden states. We additionally provide a

representation zt of the target p2, so at every time step the decoder computes

ht = LSTM([wt−1;at; zt]).

Since we preserve bracketed parse structure, our linearized parses can have hundreds

of tokens. Forcing all of the relevant information contained by the parse tree into a single

fixed representation (i.e., the last hidden state of an LSTM) is difficult with such large

sequences. Intuitively, we want the decoder to focus on portions of the target parse tree

that correspond with the current time step. As such, we encode p2 using a (unidirectional)

LSTM and compute zt with an attention-weighted average of the LSTM’s encoded states at

every time step. This attention mechanism is conditioned on the decoder’s previous hidden

state ht−1.

12.3.2 From parse templates to full parses

As mentioned in Section 12.2.2.1, user-friendly systems should be able to accept high-level

parse templates as input rather than full parses. Preliminary experiments show that scpn

struggles to maintain the semantics of the input sentence when we replace the full target

parse with templates, and frequently generates short, formulaic sentences. The paraphrase

generation model seems to rely heavily on the full syntactic parse to determine output

length and clausal ordering, making it difficult to see how to modify the scpn architecture

for template-only target specification.

Instead, we train another model with exactly the same architecture as scpn to generate

complete parses from parse templates. This allows us to do the prediction in two steps: first

predict the full syntactic tree and then use that tree to produce the paraphrase. Concretely,

for the first step, assume t2 is the parse template formed from the top two levels of the target
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parse p2. The input to this parse generator is the input parse p1 and t2, and it is trained to

produce p2. We train the parse generator separately from scpn (i.e., no joint optimization)

for efficiency purposes. At test time, a user only has to specify an input sentence and target

template; the template is fed through the parse generator, and its predicted target parse is

in turn sent to scpn for paraphrase generation (see Figure 9).

12.3.3 Template selection and post-processing

By switching from full parses to templates, we have reduced but not completely removed

the burden of coming up with a target syntactic form. Certain templates may be not be ap-

propriate for particular input sentences (e.g., turning a long sentence with multiple clauses

into a noun phrase). However, others may be too similar to the input syntax, resulting in

very little change. Since template selection is not a major focus of this paper, we use a rela-

tively simple procedure, selecting the twenty most frequent templates in ParaNMT-50M.5

Since we cannot generate a valid paraphrase for every template, we postprocess to re-

move nonsensical outputs. In particular, we filter generated paraphrases using n-gram

overlap and paraphrastic similarity, the latter of which is computed using the pretrained

word,triavg sentence embedding model from Chapter 8.6 These paraphrastic sentence

embeddings significantly outperform prior work due to the ParaNMT-50M data.

12.4 intrinsic experiments

Before using scpn to generate adversarial examples on downstream datasets, we need to

make sure that its output paraphrases are valid and grammatical and that its outputs follow

the specified target syntax. In this section, we compare scpn to a neural backtranslation

baseline (nmt-bt) on the development set of our ParaNMT-50M split using both human

and automated experiments. nmt-bt is the same pretrained Czech-English model used to

create ParaNMT-50M; however, here we use it to generate in both directions (i.e., English-

Czech and Czech-English).

5 However, we do provide some qualitative examples of rare and medium-frequency templates in Table 89.
6 After qualitatively analyzing the impact of different filtering choices, we set minimum n-gram overlap to 0.5

and minimum paraphrastic similarity to 0.7.
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Model 2 1 0

scpn w/ full parses 63.7 14.0 22.3
scpn w/ templates 62.3 19.3 18.3

nmt-bt 65.0 17.3 17.7

Table 87: A crowdsourced paraphrase evaluation on a three-point scale (0 = no paraphrase, 1 =
ungrammatical paraphrase, 2 = grammatical paraphrase) shows both that nmt-bt and
scpn produce mostly grammatical paraphrases. Feeding parse templates to scpn instead
of full parses does not impact its quality.

12.4.1 Paraphrase quality & grammaticality

To measure paraphrase quality and grammaticality, we perform a crowdsourced experi-

ment in which workers are asked to rate a paraphrase pair 〈s,g〉 on the three-point scale

of Kok and Brockett (2010), where s is the source sentence and g is the generated sen-

tence. A 0 on this scale indicates no paraphrase relationship, while 1 means that g is an

ungrammatical paraphrase of s and 2 means that g is a grammatical paraphrase of s. We

select 100 paraphrase pairs from the development set of our ParaNMT-50M split (after

the postprocessing steps detailed in Section 12.3.3) and have three workers rate each pair.7

To focus the evaluation on the effect of syntactic manipulation on quality, we only select

sentences whose top-level parse templates differ (i.e., ts 6= tg), ensuring that the output of

both systems varies syntactically from the source sentences.

The results (Table 87) show that the uncontrolled nmt-bt model’s outputs are comparable

in quality and grammaticality to those of scpn; neither system has a significant edge. More

interestingly, we observe no quality drop when feeding templates to scpn (via the parse

generator as described in Section 12.3.2) instead of complete parse trees, which suggests

that the parse generator is doing a good job of generating plausible parse trees; thus, for all

of the adversarial evaluations that follow, we only use the templated variant of scpn.

12.4.2 Do the paraphrases follow the target specification?

We next determine how often scpn’s generated paraphrases conform to the target syntax:

if g is a generated paraphrase and pg is its parse, how often does pg match the ground-

truth target parse p2? We evaluate on our development set using exact template match: g is

deemed a syntactic match to s2 only if the top two levels of its parse pg matches those of

7 We use the Crowdflower platform for our experiments.
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Model Parse Acc.

scpn w/ gold parse 64.5
scpn w/ generated parse 51.6
Parse generator 99.9

Table 88: The majority of paraphrases generated by scpn conform to the target syntax, but the level
of syntactic control decreases when using generated target parses instead of gold parses.
Accuracy is measured by exact template match (i.e., how often do the top two levels of the
parses match).

p2. We evaluate two scpn configurations, where one is given the full target parse p2 and

the other is given the result of running our parse generator on the target template t2. As a

sanity check, we also evaluate our parse generator using the same metric.

The results (Table 88) show that scpn does indeed achieve syntactic control over the

majority of its inputs. Our parse generator produces full parses that almost always match

the target template; however, paraphrases generated using these parses are less syntactically

accurate.8 A qualitative inspection of the generated parses reveals that they can differ from

the ground-truth target parse in terms of ordering or existence of lower-level constituents

(Table 92); we theorize that these differences may throw off scpn’s decoder.

The nmt-bt system produces paraphrases that tend to be syntactically very similar to the

input sentences: 28.7% of these paraphrases have the same template as that of the input

sentence s1, while only 11.1% have the same template as the ground-truth target s2. Even

though we train scpn on data generated by NMT backtranslation, we avoid this issue by

incorporating syntax into our learning process.

12.5 adversarial example generation

The intrinsic evaluations show that scpn produces paraphrases of comparable quality to

the uncontrolled nmt-bt system while also adhering to the specified target specifications.

Next, we examine the utility of controlled paraphrases for adversarial example generation.

To formalize the problem, assume a pretrained model for some downstream task produces

prediction yx given test-time instance x. An adversarial example x′ can be formed by making

label-preserving modifications to x such that yx 6= yx′ . Our results demonstrate that con-

trolled paraphrase generation with appropriate template selection produces far more valid

adversarial examples than backtranslation on sentiment analysis and entailment tasks.

8 With that said, exact match is a harsh metric; these paraphrases are more accurate than the table suggests, as
often they differ by only a single constituent.
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template paraphrase

original with the help of captain picard , the borg will be prepared for every-
thing .

(SBARQ(ADVP)(,)(S)(,)(SQ)) now , the borg will be prepared by picard , will it ?

(S(NP)(ADVP)(VP)) the borg here will be prepared for everything .

(S(S)(,)(CC)(S) (:)(FRAG)) with the help of captain picard , the borg will be prepared , and the
borg will be prepared for everything ... for everything .

(FRAG(INTJ)(,)(S)(,)(NP)) oh , come on captain picard , the borg line for everything .

original you seem to be an excellent burglar when the time comes .

(S(SBAR)(,)(NP)(VP)) when the time comes , you ’ll be a great thief .

(S(“)(UCP)(”)(NP)(VP)) “ you seem to be a great burglar , when the time comes . ” you said .

(SQ(MD)(SBARQ)) can i get a good burglar when the time comes ?

(S(NP)(IN)(NP)(NP)(VP) look at the time the thief comes .

Table 89: Syntactically controlled paraphrases generated by scpn for two examples from the
ParaNMT-50M development set. For each input sentence, we show the outputs of four
different templates; the fourth template is a failure case (highlighted in green) exhibiting
semantic divergence and/or ungrammaticality, which occurs when the target template is
unsuited for the input.

12.5.1 Experimental setup

We evaluate our syntactically adversarial paraphrases on the Stanford Sentiment Tree-

bank (Socher et al., 2013, SST) and SICK entailment detection (Marelli et al., 2014). While

both are relatively small datasets, we select them because they offer different experimental

conditions: SST contains complicated sentences with high syntactic variance, while SICK al-

most exclusively consists of short, simple sentences. As a baseline, we compare the ten most

probable beams from nmt-bt to controlled paraphrases generated by scpn using ten tem-

plates randomly sampled from the template set described in Section 12.3.3.9 We also need

pretrained models for which to generate adversarial examples; we use the bidirectional

LSTM baseline for both SST and SICK outlined in Tai et al. (2015) since it is a relatively

simple architecture that has proven to work well for a variety of problems.10 Since the SICK

task involves characterizing the relationship between two sentences, for simplicity we only

generate adversarial examples for the first sentence and keep the second sentence fixed to

the ground truth.

9 We also experimented with the diverse beam search modification proposed by Li et al. (2016b) for nmt-bt

but found that it dramatically warped the semantics of many beams; crowdsourced workers rated 49% of its
outputs as 0 on the three-point scale.

10 We initialize both models using pretrained GloVe embeddings (Pennington et al., 2014) and set the LSTM
hidden dimensionality to 300.
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No augmentation With augmentation

Model Task Validity Test Acc Dev Broken Test Acc Dev Broken

scpn SST 77.1 83.1 41.8 83.0 31.4
nmt-bt SST 68.1 83.1 20.2 82.3 20.0

scpn SICK 77.7 82.1 33.8 82.7 19.8
nmt-bt SICK 81.0 82.1 20.4 82.0 11.2

Table 90: scpn generates more legitimate adversarial examples than nmt-bt, shown by the results
of a crowdsourced validity experiment and the percentage of held-out examples that are
broken through paraphrasing. Furthermore, we show that by augmenting the training
dataset with syntactically-diverse paraphrases, we can improve the robustness of down-
stream models to syntactic adversaries (see “Dev Broken” before and after augmentation)
without harming accuracy on the original test set.

12.5.2 Breaking pretrained models

For each dataset, we generate paraphrases for held-out examples and then run a pretrained

model over them.11 We consider a development example x broken if the original predic-

tion yx is correct, but the prediction yx′ for at least one paraphrase x′ is incorrect. For

SST, we evaluate on the binary sentiment classification task and ignore all phrase-level la-

bels (because our paraphrase models are trained on only sentences). Table 90 shows that

for both datasets, scpn breaks many more examples than nmt-bt. Moreover, as shown in

Table 91, nmt-bt’s paraphrases differ from the original example mainly by lexical substitu-

tions, while scpn often produces dramatically different syntactic structures.

12.5.3 Are the adversarial examples valid?

We have shown that we can break pretrained models with controlled paraphrases, but are

these paraphrases actually valid adversarial examples? After all, it is possible that the syn-

tactic modifications cause informative clauses or words (e.g., negations) to go missing. To

measure the validity of our adversarial examples, we turn again to crowdsourced exper-

iments. We ask workers to choose the appropriate label for a given sentence or sentence

pair (e.g., positive or negative for SST), and then we compare the worker’s judgment to the

original development example’s label. For both models, we randomly select 100 adversarial

examples and have three workers annotate each one. The results (Table 90) show that on

the more complex SST data, a higher percentage of scpn’s paraphrases are valid adversar-

11 Since the SICK development dataset is tiny, we additionally generate adversarial examples on its test set.
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ial examples than those of nmt-bt, which is especially encouraging given our model also

generates significantly more adversarial examples.

12.5.4 Increasing robustness to adversarial examples

If we additionally augment the training data of both tasks with controlled paraphrases, we

can increase a downstream model’s robustness to adversarial examples in the development

set. To quantify this effect, we generate controlled paraphrases for the training sets of SST

and SICK using the same templates as in the previous experiments. Then, we include these

paraphrases as additional training examples and retrain our biLSTM task models.12 As

shown by Table 90, training on scpn’s paraphrases significantly improves robustness to

syntactic adversaries without affecting accuracy on the original test sets. One important

caveat is that this experiment only shows robustness to the set of templates used by scpn;

in real-world applications, careful template selection based on the downstream task, along

with using a larger set of templates, is likely to increase robustness to less constrained

syntactic adversaries. Augmentation with nmt-bt’s paraphrases increases robustness on

SICK, but on SST, it degrades test accuracy without any significant gain in robustness; this

is likely due to its lack of syntactic variation compared to scpn.

12.6 qualitative analysis

In the previous section, we quantitatively evaluated the scpn’s ability to produce valid

paraphrases and adversarial examples. Here, we take a look at actual sentences generated

by the model. In addition to analyzing scpn’s strengths and weaknesses compared to nmt-

bt, we examine the differences between paraphrases generated by various configurations

of the model to determine the impact of each major design decision (e.g., templates instead

of full parses).

syntactic manipulation : Table 89 demonstrates scpn’s ability to perform syntac-

tic manipulation, showing paraphrases for two sentences generated using different tem-

plates. Many of the examples exhibit complex transformations while preserving both the

input semantics and grammaticality, even when the target syntax is very different from that

12 We did not experiment with more complex augmentation methods (e.g., downweighting the contribution of
paraphrased training examples to the loss).
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template original paraphrase

(S(ADVP)(NP)(VP)) moody , heartbreaking , and filmed
in a natural , unforced style that
makes its characters seem entirely
convincing even when its script is
not .

so he ’s filmed in a natural , un-
forced style that makes his char-
acters seem convincing when his
script is not .

(S(PP)(,)(NP)(VP)) there is no pleasure in watching a
child suffer .

in watching the child suffer , there
is no pleasure .

(S(S)(,)(CC)(S)) the characters are interesting and
often very creatively constructed
from figure to backstory .

the characters are interesting , and
they are often built from memory to
backstory .

every nanosecond of the the new
guy reminds you that you could be
doing something else far more plea-
surable .

each nanosecond from the new guy
reminds you that you could do
something else much more enjoy-
able .

harris commands the screen , using
his frailty to suggest the ravages of
a life of corruption and ruthlessness
.

harris commands the screen , using
his weakness to suggest the ravages
of life of corruption and reckless-
ness .

Table 91: Adversarial sentiment examples generated by scpn (top) and nmt-bt (bottom). The pre-
dictions of a pretrained model on the original sentences are correct (red is negative, blue
is positive), while the predictions on the paraphrases are incorrect. The syntactically con-
trolled paraphrases of scpn feature more syntactic modification and less lexical substitu-
tion than nmt-bt’s backtranslated outputs.

of the source (e.g., when converting a declarative to question). However, the failure cases

demonstrate that not every template results in a valid paraphrase, as nonsensical outputs

are sometimes generated when trying to squeeze the input semantics into an unsuitable

target form.

adversarial examples : Table 91 shows that scpn and nmt-bt differ fundamentally

in the type of adversaries they generate. While scpn mostly avoids lexical substitution in

favor of making syntactic changes, nmt-bt does the opposite. These examples reinforce the

results of the experiment in Section 12.4.2, which demonstrates nmt-bt’s tendency to stick

to the input syntax. While scpn is able to break more validation examples than nmt-bt, it

is alarming that even simple lexical substitution can break such a high percentage of both

datasets we tested.

Ebrahimi et al. (2017) observe a similar phenomenon with HotFlip, their gradient-based

substitution method for generating adversarial examples. While nmt-bt does not receive

signal from the downstream task like HotFlip, it also does not require external constraints

to maintain grammaticality and limit semantic divergence. As future work, it would be in-

teresting to provide this downstream signal to both nmt-bt and scpn; for the latter, perhaps
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this signal could guide the template selection process, which is currently fixed to a small,

finite set.

templates vs . gold parses : Why does the level of syntactic control decrease when

we feed scpn parses generated from templates instead of gold parses (Table 88)? The first

two examples in Table 92 demonstrate issues with the templated approach. In the first

example, the template is not expressive enough for the parse generator to produce slots for

the highlighted clause. A potential way to combat this type of issue is to dynamically define

templates based on factors such as the length of the input sentence. In the second example,

a parsing error results in an inaccurate template which in turn causes scpn to generate

a semantically-divergent paraphrase. The final two examples show instances where the

templated model performs equally as well as the model with gold parses, displaying the

capabilities of our parse generator.

removing syntactic control : To examine the differences between syntactically

controlled and uncontrolled paraphrase generation systems, we train an scpn without in-

cluding zt, the attention-weighted average of the encoded parse, in the decoder input. This

uncontrolled configuration produces outputs that are very similar to its inputs, often identi-

cal syntactically with minor lexical substitution. Concretely, the uncontrolled scpn produces

a paraphrase with the same template as its input 38.6% of the time, compared to nmt-bt’s

28.7% (Section 12.4.2).13

12.7 related work

Paraphrase generation (Androutsopoulos and Malakasiotis, 2010; Madnani and Dorr, 2010)

has been tackled using many different methods, including those based on hand-crafted

rules (McKeown, 1983), synonym substitution (Bolshakov and Gelbukh, 2004), machine

translation (Quirk et al., 2004), and, most recently, deep learning (Prakash et al., 2016;

Mallinson et al., 2017; Dong et al., 2017). Our syntactically controlled setting also relates

to controlled language generation tasks in which one desires to generate or rewrite a sen-

tence with particular characteristics. We review related work in both paraphrase generation

and controlled language generation below.

13 A configuration without the copy mechanism copies input syntax even more, with a 47.7% exact template
match.
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template (S(CC)(S)(,)(NP)(ADVP)(VP))

original damian encouraged me , criticized , he ... he always made me go a little deeper .

scpn parse but damian , he supported me , he told me , he always made me go a little deeper .

scpn template but damian supported me , he always made me go a little deeper .

template (S(S)(,)(NP)(VP))

original zacharias did n’t deserve to die , grishanov thought , and he was aware of the huge irony of his
situation

scpn parse zacharias did not deserve to die , grishanov told himself , realizing the greatest irony of all .

scpn template zacharias did not deserve to die , he was aware of the great irony of his situation .

template S(S)(,)(S))

original give me some water , my lips are dry , and i shall try to tell you .

scpn parse give me some water , i have just a dry mouth .

scpn template give me some water , my lips are dry .

template (S(NP)(,)(ADVP)(,)(VP))

original in the meantime , the house is weakened , and all its old alliances and deals are thrown into doubt .

scpn parse the house , meanwhile , is weakening , which will be all of its old alliances and business .

scpn template the house , meanwhile , is weakened , and its old alliances and deals are thrown into doubt .

Table 92: Examples from ParaNMT-50M comparing the output of two scpn configurations, one with
gold target parses (scpn parse) and one with parses generated from templates (scpn tem-
plate), where templates are the top two levels of the gold parses. The first two examples
demonstrate issues with missing information caused by inexpressive templates and pars-
ing errors, respectively. The remaining examples, in which both configurations produce
syntactically similar paraphrases, showcase the ability of the parse generator to produce
viable full parses.

12.7.1 Data-driven paraphrase generation

Madnani and Dorr (2010) review data-driven methods for paraphrase generation, noting

two primary families: template-based and translation-based. The first family includes ap-

proaches that use hand-crafted rules (McKeown, 1983), thesaurus-based substitution (Bol-

shakov and Gelbukh, 2004; Zhang and LeCun, 2015), lattice matching (Barzilay and Lee,

2003), and template-based “shake & bake” paraphrasing (Carl et al., 2005). These methods

often yield grammatical outputs but they can be limited in diversity.

The second family includes methods that rewrite the input using methods based on

parallel text (Bannard and Callison-Burch, 2005), machine translation (Quirk et al., 2004;

Napoles et al., 2016; Suzuki et al., 2017), or related statistical techniques (Zhao et al., 2009).

Of particular relevance to our work are methods that incorporate syntax to improve fluency

of paraphrase output. Callison-Burch (2008) constrains paraphrases to be the same syntactic

type as the input, though he was focused on phrase-level, not sentential, paraphrasing.

Pang et al. (2003) learn finite-state automata from translation pairs that generate syntactic

paraphrases, though this requires multiple translations into the same language and cannot

be used to generate paraphrases outside this dataset. Shen et al. (2006) extend this to deeper
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syntactic analysis. All of these approaches use syntax to improve grammaticality, which is

handled by our decoder language model.

Recent efforts involve neural methods. Iyyer et al. (2014) generate paraphrases with de-

pendency tree recursive autoencoders by randomly selecting parse trees at test time. Li

et al. (2017) generate paraphrases using deep reinforcement learning. Gupta et al. (2017)

use variational autoencoders to generate multiple paraphrases. These methods differ from

our approach in that none offer fine-grained control over the syntactic form of the para-

phrase.

12.7.2 Controlled language generation

There is growing interest in generating language with the ability to influence the topic,

style, or other properties of the output.

Most related to our methods are those based on syntactic transformations, like the tree-

to-tree sentence simplification method of Woodsend and Lapata (2011) based on quasi-

synchronous grammar (Smith and Eisner, 2006b). Our method is more general since we do

not require a grammar and there are only soft constraints. Perhaps the closest to the pro-

posed method is the conditioned recurrent language model of Ficler and Goldberg (2017),

which produces language with user-selected properties such as sentence length and formal-

ity but is incapable of generating paraphrases.

For machine translation output, Niu et al. (2017) control the level of formality while

Sennrich et al. (2016a) control the level of politeness. For dialogue, Li et al. (2016a) affect

the output using speaker identity, while Wang et al. (2017) develop models to influence

topic and style of the output. Shen et al. (2017) perform style transfer on non-parallel texts,

while Guu et al. (2017) generate novel sentences from prototypes; again, these methods are

not necessarily seeking to generate meaning-preserving paraphrases, merely transformed

sentences that have an altered style.

12.8 conclusion

We propose scpn, an encoder-decoder model for syntactically controlled paraphrase genera-

tion, and show that it is an effective way of generating adversarial examples. Using a parser,

we label syntactic variation in large backtranslated data, which provides training data for

scpn. The model exhibits far less lexical variation than existing uncontrolled paraphrase
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generation systems, instead preferring purely syntactic modifications. It is capable of gen-

erating adversarial examples that fool pretrained NLP models. Furthermore, by training on

such examples, we increase the robustness of these models to syntactic variation.



13
N E U R A L M A C H I N E T R A N S L AT I O N

13.1 introduction

In neural machine translation (NMT) and other natural language generation tasks, it is com-

mon practice to improve likelihood-trained models by further tuning their parameters to

explicitly maximize an automatic metric of system accuracy – for example, BLEU (Papineni

et al., 2002) or METEOR (Denkowski and Lavie, 2014). Directly optimizing accuracy met-

rics involves backpropagating through discrete decoding decisions, and thus is typically

accomplished with structured prediction techniques like reinforcement learning (Ranzato

et al., 2016), minimum risk training (Shen et al., 2016), and other specialized methods (Wise-

man and Rush, 2016). Generally, these methods work by repeatedly generating a translation

under the current parameters (via decoding, sampling, or loss-augmented decoding), com-

paring the generated translation to the reference, receiving some reward based on their

similarity, and finally updating model parameters to increase future rewards.

In the vast majority of work, discriminative training has focused on optimizing BLEU

(or its sentence-factored approximation). This is not surprising given that BLEU is the stan-

dard metric for system comparison at test time. However, BLEU is not without problems

when used as a training criterion. Specifically, since BLEU is based on n-gram precision,

it aggressively penalizes lexical differences even when candidates might be synonymous

with or similar to the reference: if an n-gram does not exactly match a sub-sequence of the

reference, it receives no credit. While the pessimistic nature of BLEU differs from human

judgments and is therefore problematic, it may, in practice, pose a more substantial prob-

lem for a different reason: BLEU is difficult to optimize because it does not assign partial

credit. As a result, learning cannot hill-climb through intermediate hypotheses with high

synonymy or semantic similarity, but low n-gram overlap. Furthermore, where BLEU does

assign credit, the objective is often flat: a wide variety of candidate translations can have

the same degree of overlap with the reference and therefore receive the same score. This,

again, makes optimization difficult because gradients in this region give poor guidance.

201
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In this chapter we propose SimiLe, a simple alternative to matching-based metrics like

BLEU for use in discriminative NMT training. As a new reward, we introduce a measure

of semantic similarity between the generated hypotheses and the reference translations evaluated

by an embedding model trained on a large external corpus of paraphrase data. Using an

embedding model to evaluate similarity allows the range of possible scores to be continu-

ous and, as a result, introduces fine-grained distinctions between similar translations. This

allows for partial credit and reduces the penalties on semantically correct but lexically dif-

ferent translations. Moreover, since the output of SimiLe is continuous, it provides more

informative gradients during the optimization process by distinguishing between candi-

dates that would be similarly scored under matching-based metrics like BLEU. Lastly, we

show in our analysis that SimiLe has an additional benefit over BLEU by translating words

with heavier semantic content more accurately.

To define an exact metric, we reference the burgeoning field of research aimed at measur-

ing semantic textual similarity (STS) between two sentences (Le and Mikolov, 2014; Pham

et al., 2015; Wieting et al., 2016b; Hill et al., 2016; Conneau et al., 2017; Pagliardini et al., 2017)

(Chapter 4). Specifically, we start with the method we introduced in 8, which learns para-

phrastic sentence representations using a contrastive loss and a parallel corpus induced

by backtranslating bitext. Also, in Chapters 4 and 5 we showed that simple models that

average word or character trigram embeddings can be highly effective for semantic simi-

larity. The strong performance, domain robustness, and computationally efficiency of these

models make them good candidates for experimenting with incorporating semantic sim-

ilarity into neural machine translation. For the purpose of discriminative NMT training,

we augment these basic models with two modifications: we add a length penalty to avoid

short translations, and calculate similarity by composing the embeddings of subword units,

rather than words or character trigrams. We find that using subword units also yields better

performance on the STS evaluations and is more efficient than character trigrams.

We conduct experiments with our new metric on the 2018 WMT (Bojar et al., 2018) test

sets, translating four languages, Czech, German, Russian, and Turkish, into English. Results

demonstrate that optimizing SimiLe during training results in not only improvements in

the same metric during test, but also in consistent improvements in BLEU. Further, we

conduct a human study to evaluate system outputs and find significant improvements in

human-judged translation quality for all but one language. Finally, we provide an analysis

of our results in order to give insight into the observed gains in performance. Tuning for

metrics other than BLEU has not (to our knowledge) been extensively examined for NMT,



13.2 simile reward function 203

and we hope this chapter provides a first step towards broader consideration of training

metrics for NMT.

13.2 simile reward function

Since our goal is to develop a continuous metric of sentence similarity, we borrow from

a line of work focused on domain agnostic semantic similarity metrics. We motivate our

choice for applying this line of work to training translation models in Section 2.1. Then in

Section 2.2, we describe how we train our similarity metric (SIM), how we compute our

length penalty, and how we tie these two terms together to form SimiLe.

13.2.1 SimiLe

Our SimiLe metric is based on the sentence similarity metric from Chapter 8, which we

choose as a starting point because it has state-of-the-art unsupervised performance on a

host of domains for semantic textual similarity.1 Being both unsupervised and domain

agnostic provide evidence that the model generalizes well to unseen examples. This is in

contrast to supervised methods which are often imbued with the bias of their training data.

model . Our sentence encoder g averages 300 dimensional subword unit2 embeddings

to create a sentence representation. The similarity of two sentences, SIM, is obtained by

encoding both with g and then calculating their cosine similarity.

1 In semantic textual similarity the goal is to produce scores that correlate with human judgments on the degree
to which two sentences have the same semantics. In embedding based models, including the models used in
this paper, the score is produced by the cosine of the two sentence embeddings.

2 We use sentencepiece which is available at https://github.com/google/sentencepiece. We limited the vo-
cabulary to 30,000 tokens.

https://github.com/google/sentencepiece
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Model 2012 2013 2014 2015 2016

SIM (300 dim.) 69.2 60.7 77.0 80.1 78.4

SimiLe 70.1 59.8 74.7 79.4 77.8

Chapter 8 67.8 62.7 77.4 80.3 78.1

BLEU 58.4 37.8 55.1 67.4 61.0

BLEU (symmetric) 58.2 39.1 56.2 67.8 61.2

METEOR 53.4 47.6 63.7 68.8 61.8

METEOR (symmetric) 53.8 48.2 65.1 70.0 62.7

STS 1st Place 64.8 62.0 74.3 79.0 77.7

STS 2nd Place 63.4 59.1 74.2 78.0 75.7

STS 3rd Place 64.1 58.3 74.3 77.8 75.7

Table 93: Comparison of the semantic similarity model used in this paper (SIM) with a number
of strong baselines including our strongest model from 8 and the top 3 performing STS
systems for each year. Symmetric refers to taking the average score of the metric with each
sentence having a turn in the reference position.

Model newstest2015 newstest2016

SIM 58.2 53.1
SimiLe 58.4 53.2
BLEU 53.6 50.0
METEOR 58.9 57.2

Table 94: Comparison of models on machine translation quality evaluation datasets. Scores are in
Spearman’s ρ.

training . We follow the procedure from Chapter 8 in learning the parameters of the

encoder g. The training data is a set S of paraphrase pairs3 〈s, s ′〉 and we use a margin-based

loss:

`(s, s ′) =max(0, δ− cos(g(s),g(s ′))

+ cos(g(s),g(t)))

where δ is the margin, and t is a negative example. The intuition is that we want the two texts

to be more similar to each other than to their negative examples. To select t, we choose the

most similar sentence in a collection of mini-batches called a mega-batch.

Finally, we note that SIM is robust to domain, as shown by its strong performance on the

STS tasks which cover a broad range of domains. We note that SIM was trained primarily

on subtitles, while we use news data to train and evaluate our NMT models. Despite this

3 We use 16.77 million paraphrase pairs filtered from the ParaNMT corpus from Chapter 8. The corpus is filtered
by a sentence similarity score based on the paragram-phrase from Chapter 4 and word trigrams overlap,
which is calculated by counting word trigrams in the reference and translation, then dividing the number
of shared trigrams by the total number in the reference or translation, whichever has fewer. These form a
balance between semantic similarity (similarity score) and diversity (trigram overlap). We kept all sentences
in ParaNMT with a similarity score > 0.5 and a trigram overlap score 6 0.2. In Chapter 9 we showed that
strong performance on semantic similarity tasks can also be achieved using bitext directly without the need for
backtranslation.
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domain switch, we are able to show improved performance over a baseline using BLEU,

providing more evidence of the robustness of this method.

length penalty. Our initial experiments showed that when using just the similarity

metric, SIM, there was nothing preventing the model from learning to generate long sen-

tences, often at the expense of repeating words. This is the opposite case from BLEU, where

the n-gram precision is not penalized for generating too few words. Therefore, in BLEU, a

brevity penalty (BP) was introduced to penalize sentences when they are shorter than the

reference. The penalty is:

BP(r,h) = e1−
|r|
|h|

where r is the reference and h is the generated hypothesis, with |r| and |h| their respective

lengths. We experimented with modifying this penalty to only penalize generated sentences

that are longer than the target (so we switch r and h in the equation). However, we found

that this favored short sentences. We instead penalize a generated sentence if its length

differs at all from that of the target. Therefore, our length penalty is:

LP(r,h) = e1−
max(|r|,|h|)
min(|r|,|h|)

simile . Our final metric, which we refer to as SimiLe, is defined as follows:

SimiLe = LP(r,h)αSIM(r,h)

In initial experiments we found that performance could be improved slightly by lessening

the influence of LP, so we fix α to be 0.25.

13.2.2 Motivation

There is a vast literature on metrics for evaluating machine translation outputs automatically

(For instance, WMT metrics task papers like Bojar et al. (2017)). In this paper we demon-

strate that training towards metrics other than BLEU has significant practical advantages in

the context of NMT. While this could be done with any number of metrics, in this paper we

experiment with a single semantic similarity metric, and due to resource constraints leave a

more extensive empirical comparison of other evaluation metrics to future work. That said,
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we designed SimiLe as a semantic similarity model with high accuracy, domain robustness,

and computational efficiency to be used in minimum risk training for machine translation.4

While semantic similarity is not an exact replacement for measuring machine translation

quality, we argue that it serves as a decent proxy at least as far as minimum risk training

is concerned. To test this, we compare the similarity metric term in SimiLe (SIM) to BLEU

and METEOR on two machine translation metric 5 and report their correlation with human

judgments in Table 94. Machine translation quality measures account for more than seman-

tics as they also capture other factors like fluency. A manual error analysis and the fact that

the machine translation correlations in Table 94 are close, but the semantic similarity corre-

lations6 in Table 93 are not, suggest that the difference between METEOR and SIM largely

lies in fluency. However, not capturing fluency is something that can be ameliorated by

adding a down-weighted maximum-likelihood (MLE) loss to the minimum risk loss. This

was done by Edunov et al. (2018), and we use this in our experiments as well.

13.3 machine translation preliminaries

architecture . Our model and optimization procedure are based on prior work on

structured prediction training for neural machine translation (Edunov et al., 2018) and are

implemented in Fairseq.7 Our architecture follows the paradigm of an encoder-decoder

with soft attention (Bahdanau et al., 2015) and we use the same architecture for each lan-

guage pair in our experiments. We use gated convolutional encoders and decoders (Gehring

et al., 2017). We use 4 layers for the encoder and 3 for the decoder, setting the hidden state

size for all layers to 256, and the filter width of the kernels to 3. We use byte pair encod-

ing (Sennrich et al., 2016c), with a vocabulary size of 40,000 for the combined source and

target vocabulary. The dimension of the BPE embeddings is set to 256.

objective functions . Following (Edunov et al., 2018), we first train models with

maximum-likelihood with label-smoothing (LTokLS) (Szegedy et al., 2016; Pereyra et al.,

4 SimiLe, including time to segment the sentence, is about 20 times faster than METEOR when code is executed
on a GPU (NVIDIA GeForce GTX 1080).

5 We used the segment level data, where English is the target language, from newstest2015 and newstest2016

available at http://statmt.org/wmt18/metrics-task.html. The former contains 6 language pairs and the latter
4.

6 Evaluation is on the SemEval Semantic Textual Similarity (STS) datasets from 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016). In the SemEval STS competitions, teams create models that need to work well on
domains both represented in the training data and hidden domains revealed at test time. Our model and those
from Chapter 8, in contrast to the best performing STS systems, do not use any manually-labeled training
examples nor any other linguistic resources beyond the ParaNMT corpus from Chapter 8

7 https://github.com/pytorch/fairseq

http://statmt.org/wmt18/metrics-task.html
https://github.com/pytorch/fairseq
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2017). We set the confidence penalty of label smoothing to be 0.1. Next, we fine-tune the

model with a weighted average of minimum risk training (LRisk) (Shen et al., 2016) and

(LTokLS), where the expected risk is defined as:

LRisk =
∑

u∈U(x)

cost(t, u)
p(u|x)∑

u ′∈U(x) p(u ′|x)

where u is a candidate hypothesis, U(x) is a set of candidate hypotheses, and t is the

reference. Therefore, our fine-tuning objective becomes:

LWeighted = γLTokLS + (1− γ)LRisk

We tune γ from the set {0.2, 0.3, 0.4} in our experiments. In minimum risk training, we aim

to minimize the expected cost. In our case that is 1− BLEU(t,h) or 1− SimiLe(t,h) where

t is the target and h is the generated hypothesis. As is commonly done, we use a smoothed

version of BLEU by adding 1 to all n-gram counts except unigram counts. This is to prevent

BLEU scores from being overly sparse (Lin and Och, 2004). We generate candidates for

minimum risk training from n-best lists with 8 hypotheses and do not include the reference

in the set of candidates.

optimization. We optimize our models using Nesterov’s accelerated gradient

method (Sutskever et al., 2013) using a learning rate of 0.25 and momentum of 0.99. Gradi-

ents are renormalized to norm 0.1 (Pascanu et al., 2012). We train the LTokLS objective for

200 epochs and the combined objective, LWeighted, for 10. Then for both objectives, we anneal

the learning rate by reducing it by a factor of 10 after each epoch until it falls below 10−4.

Model selection is done by selecting the model with the lowest validation loss on the valida-

tion set. To select models across the different hyperparameter settings, we chose the model

with the highest performance on the validation set for the evaluation being considered.

13.4 experiments

13.4.1 Data

Training models with minimum risk is expensive, but we wanted to evaluate in a difficult,

realistic setting using a diverse set of languages. Therefore, we experiment on four language
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Lang. Train Valid Test

cs-en 218,384 6,004 2,983

de-en 284,286 7,147 2,998

ru-en 235,159 7,231 3,000

tr-en 207,678 7,008 3,000

Table 95: Number of sentence pairs in the training/validation/test sets for all four languages.

de-en cs-en ru-en tr-en

Model BLEU SIM BLEU SIM BLEU SIM BLEU SIM

MLE 27.52 76.19 17.02 67.55 17.92 69.13 14.47 65.97

BLEU 27.92
‡

76.28
‡

17.38
‡

67.87
‡

17.97 69.29
‡

15.10
‡

66.53
‡

SimiLe 28.56†‡ 77.52†‡ 17.60†‡ 68.89†‡ 18.44†‡ 70.69†‡ 15.47†‡ 67.76†‡

Half 28.25
†‡

76.92
†‡

17.52
†‡

68.26
†‡

18.26
†‡

70.32
†‡

15.40
†‡

67.14
†‡

Table 96: Results on translating four languages to English for MLE, BLEU, SimiLe and Half. † de-
notes statistical significance (p < 0.05) over BLEU and ‡ denotes statistical significance over
MLE. Statistical significance was computed using paired bootstrap resampling (Koehn,
2004).

pairs: Czech (cs-en), German (de-en), Russian (ru-en), and Turkish (tr-en) translating to

English (en). For training data, we use News Commentary v13
8 provided by WMT (Bojar

et al., 2018) for cs-en, de-en, and ru-en. For training the Turkish system, we used the WMT

2018 parallel data which consisted of the SETIMES2
9 corpus. The validation and develop-

ment sets for de-en, cs-en, and ru-en were the WMT 2016 and WMT 2017 validation sets.

For tr-en, the validation set was the WMT 2016 validation set and the WMT 2017 validation

and test sets. Test sets for each language were the official WMT 2018 test sets.

13.4.2 Automatic Evaluation

We first use corpus-level BLEU and the corpus average SIM score to evaluate the outputs

of the different experiments. It is important to note that in this case, SIM is not the same

as SimiLe. SIM is only the semantic similarity component of SimiLe and therefore lacks the

length penalization term. We used this metric to estimate the degree to which the semantic

content of a translation and its reference overlap. When evaluating semantic similarity, we

find that SIM outperforms SimiLe marginally as shown in Table 93.

We compare systems trained with 4 objectives:

• MLE: Maximum likelihood with label smoothing

8 http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz
9 http://opus.lingfil.uu.se/SETIMES2.php

http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz
http://opus.lingfil.uu.se/SETIMES2.php
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• BLEU: Minimum risk training with 1-BLEU as the cost

• SimiLe: Minimum risk training with 1-SimiLe as the cost

• Half: Minimum risk training with a new cost that is half BLEU and half SimiLe: 1 −
1
2(BLEU + SimiLe)

The results are shown in Table 96. From the table, we see that using SimiLe performs the

best when using BLEU and SIM as evaluation metrics for all four languages. It is interesting

that using SimiLe in the cost leads to larger BLEU improvements than using BLEU alone,

the reasons for which we examine further in the following sections. It is important to em-

phasize that increasing BLEU was not the goal of our proposed method, human evaluations

were our target, but this is a welcome surprise. Similarly, using BLEU as the cost function

leads to large gains in SIM, though these gains are not as large as when using SimiLe in

training.

13.4.3 Human Evaluation

We also perform human evaluation, comparing MLE training with minimum risk training

using SimiLe and BLEU as costs. We selected 200 sentences along with their translation

from the respective test sets of each language. The sentences were selected nearly randomly

with the only constraints that they be between 3 and 25 tokens long and also that the

outputs for SimiLe and BLEU were not identical. The translators then assigned a score

from 0-5 based on how well the translation conveyed the information contained in the

reference. The annotation instructions used by translators are:

• 0. The meaning is completely different or the output is meaningless

• 1. The topic is the same but the meaning is different

• 2. Some key information is different

• 3. The key information is the same but the details differ

• 4. Meaning is essentially equal but some expressions are unnatural

• 5. Meaning is essentially equal and the two sentences are well-formed English

From the results shown in Table 97, we see that minimum risk training with SimiLe as the

cost scores the highest across all language pairs except Turkish. Turkish is also the language
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Avg. Score

Lang. MLE BLEU SimiLe

cs-en 0.98 0.90 1.02†

de-en 0.93 0.85 1.00†

ru-en 1.22 1.21 1.31†‡

tr-en 0.98
∗ 1.03∗ 0.78

Table 97: Average human ratings on 200 sentences from the test set for each of the respective lan-
guages. † denotes statistical significance (p < 0.05) over BLEU, except for the case of
cs-en, where p = 0.06. ‡ denotes statistical significance over MLE, and * denotes statisti-
cal significance over SimiLe. Statistical significance was computed using paired bootstrap
resampling.

with the lowest test BLEU (See Table 96). An examination of the human-annotated outputs

shows that in Turkish (unlike the other languages) repetition was a significant problem

for the SimiLe system in contrast to MLE or BLEU. We hypothesize that one weakness of

SimiLe may be that it needs to start with some minimum level of translation quality in

order to be most effective. The biggest improvement over BLEU is on de-en and ru-en,

which have the highest MLE BLEU scores in Table 96 which further lends credence to this

hypothesis.

13.5 quantitative analysis

We next analyze our model using the validation set of the de-en data unless stated other-

wise. We chose this dataset for the analysis since it had the highest MLE BLEU scores of

the languages studied.

13.5.1 Partial Credit

We analyzed the distribution of the cost function for both SimiLe and BLEU on the de-en

validation set before any fine-tuning. Again, using an n-best list size of 8, we computed the

cost for all generated translations and plotted their histogram in Figure 10. The plots show

that the distribution of scores for SimiLe and BLEU are quite different. Both distributions

are not symmetrical Gaussian, however the distribution of BLEU scores is significantly more

skewed with much higher costs. This tight clustering of costs provides less information

during training.

Next, for all n-best lists, we computed all differences between scores of the hypotheses in

the beam. Therefore, for a beam size of 8, this results in 28 different scores. We found that
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Figure 10: Distribution of scores for SimiLe and BLEU.

of the 86,268 scores, the difference between scores in an n-best list is > 0 99.0% of the time

for SimiLe, but 85.1% of the time for BLEU. The average difference is 4.3 for BLEU and 4.8

for SimiLe, showing that SimiLe makes finer grained distinctions among candidates.

13.5.2 Validation Loss

We next analyze the validation loss during training of the de-en model for both using

SimiLe and BLEU as costs. We use the hyperparameters of the model with the highest BLEU

on the validation set for model selection. Since the distributions of costs vary significantly

between SimiLe and BLEU, with BLEU having much higher costs on average, we compute

the validation loss with respect to both cost functions for each of the two models.

In Figure 11, we plot the risk objective for the first 10 epochs of training. In the top plot,

we see that the risk objective for both BLEU and SimiLe decreases much faster when using

SimiLe to train than BLEU. The expected BLEU also reaches a significantly lower value on

the validation set when training with SimiLe. The same trend occurs in the lower plot, this

time measuring the expected SimiLe cost on the validation set.

From these plots, we see that optimizing with SimiLe results in much faster training. It

also reaches a lower validation loss, and from Table 96, we’ve already shown that the SimiLe

and BLEU on the test set are higher for models trained with SimiLe. To hammer home
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Figure 11: Validation loss comparison for SimiLe and BLEU. The top plot shows the expected BLEU
cost when training with BLEU and SimiLe. The bottom plot shows the expected SimiLe

cost when training with BLEU and SimiLe.

the point at how much faster the models trained with SimiLe reach better performance,

we evaluated after just 1 epoch of training and found that the model trained with BLEU

had SIM/BLEU scores of 86.71/27.63 while the model trained with SimiLe had scores of

87.14/28.10. A similar trend was observed in the other language pairs as well, where the

validation curves show a much larger drop-off after a single epoch when training with

SimiLe than with BLEU.

13.5.3 Effect of nbest List Size

As mentioned in Section 13.3, we used an n-best list size of 8 in our minimum risk training

experiments. In this section, we train de-en translation models with various n-best list sizes

and investigate the relationship between beam size and test set performance when using

SimiLe or BLEU as a cost. We hypothesize that since BLEU is not as fine-grained a metric as

SimiLe, expanding the number of candidates would close the gap between BLEU and Sim-

iLe as BLEU would have access to a more candidates with more diverse scores. The results

of our experiment on the are shown in Figure 12 and show that models trained with SimiLe

actually improve in BLEU and SIM more significantly as n-best list size increases. This is

possibly due to small n-best sizes inherently upper-bounding performance regardless of
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Figure 12: The relationship between n-best list size and performance as measured by average SIM
score or corpus-level BLEU when training using SimiLe or BLEU as a cost.

Lang./Bucket cs-en ∆ de-en ∆ ru-en ∆ tr-en ∆ Avg.

1 0.1 0.8 0.2 0.1 0.30

2-5 1.2 0.6 0.0 0.2 0.50

6-10 0.4 0.7 1.4 -0.3 0.55

11-100 0.2 0.6 0.6 0.4 0.45

101-1000 -0.3 0.3 0.4 0.2 0.15

1001+ -0.2 0.5 0.4 -0.0 0.08

DET 0.1 -0.1 0.7 -0.5 0.03

PRON 0.6 -0.3 0.1 0.9 0.33

PREP 0.2 -0.3 0.5 0.5 0.24

CONJ 0.1 1.1 0.3 -0.5 0.27

PUNCT -0.4 1.3 0.8 -0.4 0.34

NUM 0.6 2.2 1.8 1.3 1.48
SYM 0.3 3.6 4.4 1.7 2.50
INTJ 3.2 -1.1 3.2 -2.6 0.66
VERB 0.2 0.3 0.0 0.0 0.13

ADJ 0.2 0.7 0.3 -0.2 0.25

ADV -0.2 0.1 0.8 0.7 0.34

NOUN 0.3 1.1 0.8 0.4 0.63
PRNOUN 0.5 1.2 0.6 0.4 0.65

Table 98: Difference in F1 score for various buckets of words. The values in the table are the differ-
ence between the F1 obtained when training using SimiLe and when training using BLEU
(positive values means SimiLe had a higher F1). The first part of the table shows F1 scores
across bins defined by word frequency on the test set. So words appearing only 1 time are
in the first row, between 2-5 times are in the second row, etc. The next part of the table
buckets words by coarse part-of-speech tags.
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Reference System Human
Score

Translation

I will tell you my personal
opinion of him.

. BLEU 2 I will have a personal opinion on it.

SimiLe 4 I will tell my personal opinion about it.

MLE 2 I will have a personal view of it.

In my case, it was very var-
ied.

BLEU 0 I was very different from me.

SimiLe 4 For me, it was very different.

MLE 1 In me, it was very different.

We’re making the city live-
able.

BLEU 0 We make the City of Life Life.

SimiLe 3 We make the city viable.

MLE 0 We make the City of Life.

The head of the White
House said that the conver-
sation was ridiculous.

BLEU 0 The White House chairman, the White House chip called a
ridiculous.

SimiLe 4 The White House’s head, he described the conversation as
ridiculous.

MLE 1 The White House chief, he called the White House, he called
a ridiculous.

According to the former
party leaders, so far the
discussion “has been pre-
dominated by expressions
of opinion based on emo-
tions, without concrete ar-
guments”.

BLEU 3 According to former party leaders, the debate has so far had
to be "elevated to an expression of opinion without concrete
arguments."

SimiLe 5 In the view of former party leaders, the debate has been
based on emotions without specific arguments."

MLE 4 In the view of former party leaders, in the debate, has been
based on emotions without specific arguments."

We are talking about the
21st century: servants.

BLEU 4 We are talking about the 21st century: servants.

SimiLe 1 In the 21st century, the 21st century is servants.

MLE 0 In the 21st century, the 21st century is servants.

Prof. Dr. Caglar continued:
BLEU 3 They also reminded them.

SimiLe 0 There are no Dr. Caglar.

MLE 3 They also reminded them.

Table 99: Translation examples for min-risk models trained with SimiLe and BLEU and our baseline
MLE model.

training metric, and SimiLe being a better measure overall when the n-best is sufficiently

large to learn.

13.5.4 Lexical F1

We next attempt to elucidate exactly which parts of the translations are improving due to

using SimiLe cost compared to using BLEU. We compute the F1 scores for target word

types based on their frequency and their coarse part-of-speech tag (as labeled by SpaCy10)

on the test sets for each language and show the results in Table 98.11

From the table, we see that training with SimiLe helps produce low frequency words

more accurately, a fact that is consistent with the part-of-speech tag analysis in the sec-

ond part of the table. Wieting and Gimpel (2017) noted that highly discriminative parts-of-

10 https://github.com/explosion/spaCy
11 We use compare-mt (Neubig et al., 2019) available at https://github.com/neulab/compare-mt.

https://github.com/explosion/spaCy
https://github.com/neulab/compare-mt
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speech, such as nouns, proper nouns, and numbers, made the most contribution to the

sentence embeddings. Other works (Pham et al., 2015; Wieting et al., 2016b) have also

found that when training semantic embeddings using an averaging function, embeddings

that bear the most information regarding the meaning have larger norms. We also see that

these same parts-of-speech (nouns, proper nouns, numbers) have the largest difference in F1

scores between SimiLe and BLEU. Other parts-of-speech like symbols and interjections have

high F1 scores as well, and words belonging to these classes are both relatively rare and

highly discriminative regarding the semantics of the sentence.12 In contrast, parts-of-speech

that in general convey little semantic information and are more common, like determiners,

show very little difference in F1 between the two approaches.

13.6 qualitative analysis

System Sentence BLEU SIM ∆BLEU ∆SIM

Reference Workers have begun to clean up in Röszke. - - - -
BLEU Workers are beginning to clean up work-

ers.
29.15 69.12 - -

SimiLe In Röszke, workers are beginning to clean
up.

25.97 95.39 -3.18 26.27

Reference All that stuff sure does take a toll. - - - -
BLEU None of this takes a toll. 25.98 54.52 - -
SimiLe All of this is certain to take its toll. 18.85 77.20 -7.13 32.46

Reference Another advantage is that they have fewer
enemies.

- - - -

BLEU Another benefit : they have less enemies. 24.51 81.20 - -
SimiLe Another advantage: they have fewer ene-

mies.
58.30 90.76 56.69 9.56

Reference I don’t know how to explain - it’s really
unique.

- - - -

BLEU I do not know how to explain it - it is really
unique.

39.13 97.42 - -

SimiLe I don’t know how to explain - it is really
unique.

78.25 99.57 39.12 2.15

Table 100: Translation examples where the |∆BLEU|− |∆SIM| statistic is among the highest and low-
est in the validation set. The top two rows show examples where the generated sentences
have similar sentence-level BLEU scores but quite different SIM scores. The bottom two
rows show the converse. Negative values indicate the SimiLe system had a higher score
for that sentence.

12 Note that in the data, interjections (INTJ) often correspond to words like Yes and No which tend to be very
important regarding the semantics of the translation in these cases.
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We show examples of the output of all three systems in Table 99 from the test sets, along

with their human scores which are on a 0-5 scale. The first 5 examples show cases where

SimiLe better captures the semantics than BLEU or MLE. In the first three, the SimiLe model

adds a crucial word that the other two systems omit. This makes a significant difference in

preserving the semantics of the translation. These words include verbs (tells), prepositions

(For), adverbs (viable) and nouns (conversation). The fourth and fifth examples also show

how SimiLe can lead to more fluent outputs and is effective on longer sentences.

The last two examples are failure cases of using SimiLe. In the first, it repeats a phrase,

just as the MLE model does and is unable to smooth it out as the BLEU model is able to

do. In the last example, SimiLe again tries to include words (Dr. Caglar) significant to the

semantics of the sentence. However it misses on the rest of translation, despite being the

only system to include this noun phrase.

13.7 metric comparison

We took all outputs of the validation set of the de-en data for our best SimiLe and BLEU

models, as measured by BLEU validation scores, and we sorted the outputs by the following

statistic:

|∆BLEU|− |∆SIM|

where BLEU in this case refers to sentence-level BLEU. Examples of some of the highest

and lowest scoring sentence pairs are shown in Table 100 along with the system they came

from (either trained with a BLEU cost or SimiLe cost).

The top half of the table shows examples where the difference in SIM scores is large, but

the difference in BLEU scores is small. From these examples, we see that when SIM scores

are very different, there is a difference in the meanings of the generated sentences. However,

when the BLEU scores are very close, this is not the case. In fact, in these examples, less

accurate translations have higher BLEU scores than more accurate ones. In the first sentence,

an important clause is left out (in Röszke) and in the second, the generated sentence from

the BLEU system actually negates the reference, despite having a higher BLEU score than

the sentence from the SimiLe system.

Conversely, the bottom half of the table shows examples where the difference in BLEU

scores is large, but the difference in SIM scores is small. From these examples, we can see
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that when BLEU scores are very different, the semantics of the sentence can still be pre-

served. However, the SIM score of these generated sentences with the references are close

to each other, as we would hope to see. These examples illustrate a well-known problem

with BLEU where synonyms, punctuation changes, and other small deviations from the

reference can have a large impact on the score. As can be seen from the examples, these are

less of a problem for the SIM metric.

13.8 related work

The seminal work on training machine translation systems to optimize particular evalua-

tion measures was performed by Och (2003), who introduced minimum error rate training

(MERT) and used it to optimize several different metrics in statistical MT (SMT). This was

followed by a large number of alternative methods for optimizing machine translation sys-

tems based on minimum risk (Smith and Eisner, 2006a), maximum margin (Watanabe et al.,

2007), or ranking (Hopkins and May, 2011), among many others.

Within the context of SMT, there have also been studies on the stability of particular

metrics for optimization. Cer et al. (2010) compared several metrics to optimize for SMT,

finding BLEU to be robust as a training metric and finding that the most effective and most

stable metrics for training are not necessarily the same as the best metrics for automatic

evaluation. The WMT shared tasks included tunable metric tasks in 2011 (Callison-Burch

et al., 2011) and again in 2015 (Stanojević et al., 2015) and 2016 (Jawaid et al., 2016). In

these tasks, participants submitted metrics to optimize during training or combinations of

metrics and optimizers, given a fixed SMT system. The 2011 results showed that nearly

all metrics performed similarly to one another. The 2015 and 2016 results showed more

variation among metrics, but also found that BLEU was a strong choice overall, echoing the

results of Cer et al. (2010). We have shown that our metric stabilizes training for NMT more

than BLEU, which is a promising result given the limited success of the broad spectrum of

previous attempts to discover easily tunable metrics in the context of SMT.

Some researchers have found success in terms of improved human judgments when train-

ing to maximize metrics other than BLEU for SMT. Lo et al. (2013) and Beloucif et al. (2014)

trained SMT systems to maximize variants of MEANT, a metric based on semantic roles.

Liu et al. (2011) trained systems using TESLA, a family of metrics based on softly matching

n-grams using lemmas, WordNet synsets, and part-of-speech tags. We have demonstrated

that our metric similarly leads to gains in performance as assessed by human annotators,
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and our method has an auxiliary advantage of being much simpler than these previous

hand-engineered measures.

Shen et al. (2016) explored minimum risk training for NMT, finding that a sentence-level

BLEU score led to the best performance even when evaluated under other metrics. These

results differ from the usual results obtained for SMT systems, in which tuning to optimize

a metric leads to the best performance on that metric (Och, 2003). Edunov et al. (2018)

compared structured losses for NMT, also using sentence-level BLEU. They found risk to

be an effective and robust choice, so we use risk as well in this paper.

13.9 conclusion

We have proposed SimiLe, an alternative to BLEU for use as a reward in minimum risk

training. We have found that SimiLe not only outperforms BLEU on automatic evaluations,

it correlates better with human judgments as well. Our analysis also shows that using this

metric eases optimization and the translations tend to be richer in correct, semantically

important words.

This is the first time to our knowledge that a continuous metric of semantic similarity

has been proposed for NMT optimization and shown to outperform sentence-level BLEU,

and we hope that this can be the starting point for more research in this direction.



14
C O N C L U S I O N

This thesis describes our work in paraphrastic representations and their applications. We

have discussed multiple approaches for learning these embeddings, at the sub-word, word,

and sentence level. We also explored the cross-lingual setting, showing that our approaches

are effective for measuring similarity between sentences of different languages. We then

proposed our final models, the cross-lingual probabilistic source separation model BGT

and the multilingual probabilistic source separation model MGT. We show that the BGT is

the first deep architecture that generalizes better than simple methods for semantic similar-

ity tasks. We then generalized this BGT to the multilingual setting showing how it can be

effectively trained to accommodate many languages at once. Lastly, we discussed applica-

tions of these works including the first large (more than 50 millions examples) paraphrasing

corpus, syntactically controlled paraphrase generation, and semantic similarity rewards for

fine-tuning neural machine translation systems that outperform the prior convention (using

BLEU).

There are many avenues for future work. For learning representations of sentences, none

of the models presented in this thesis make use of large contextual models or incorporate

monolingual text in any substantial way. Since monolingual text is more ubiquitous than

parallel data and is easier to obtain in more domains, this would be a fruitful avenue to ex-

plore. Language model pretraining has shown to learn much about syntax, discourse, and

semantics – however since it only has a single view of the data, it likely has a weaker picture

of semantics than models trained with multiple views. This is similar to what has occurred

with word embeddings, where they were trained on monolingual task, but conflated relat-

edness and similarity, and could be greatly improved at paraphrastic similarity using data

with two views 3. There are many ways monolingual data could be incorporated, from

simply using pretrained models to using objectives that account for both monolingual and

parallel data.

Another interesting avenue for learning sentence embeddings is designing new pretrain-

ing objectives for monolingual text. In the previous paragraph, we discussed incorporating

language models as pretrained models, but other objectives that focus more on the sentence

219



conclusion 220

level could lead to even more significant gains in downstream tasks. One example of s pos-

sible route here is a generative model for discourse where we aim to have latent variables

that captures information for the next and previous sentences. Then the information shared

between these views could be seen as encoding the semantics of the central sentence – sim-

ilar to the BGT, where as the next-sentence and previous-sentence variable encode only the

specific information for generating the next and previous sentences. This approach could

be extended to predict multiple sentences in a long discourse.

Paraphrase generation is another area where there is a lot of potential for impactful future

work. In Chapter 12, we introduced controlled paraphrase generation via pre-specifying the

desired syntactic structure of the paraphrase. We found this to be effective for increasing

the robustness of NLP models and even lead to some small improvements through data

augmentation. Recently in preliminary experiments, we have shown that leveraging large

pre-trained language models such as GPT-2 (Radford et al., 2019), can be trained on selected

diverse paraphrases to lead to a diverse paraphraser. This diverse paraphraser can then be

used to generate paraphrases with vastly different lexical choice and syntactic structure.

While this work is currently in its early stages, we think these diverse paraphraser models

hold huge promise for tasks like style transfer (since they can normalize the text prior to

generating in a desired style) and data augmentation and robustness. Open questions for

this line of research include how to select and automatically obtain the training data, what

type of pre-trained models should be used, and also what other strategies can be used to

increase paraphrase diversity. For instance, perhaps new diverse decoding techniques using

paraphrase embeddings would be an effective strategy.

Lastly, in 13, we proposed using our paraphrase embeddings as a reward for fine-tuning

neural machine translation models, and found it to be highly effective in terms of improved

accuracy and convergence speed, even on state-of-the-art Transformer models. We view

this as just the start for this line of research as our reward was generated from just a

simple averaging model. While some new evaluation metrics have been recently such as

BertScore (Zhang et al., 2019a) which use a matching algorithm built on BERT, these have a

weakness where they focus on detecting sentences that deviate little from the reference and

are not strong paraphrase detection models when there is a lot of diversity in the surface

forms of the sentences. Perhaps the rich embedding approaches we propose above could

lead to better rewards that can be tuned for more paraphrastic similarity (useful for style

transfer or paraphrase generation) versus the more literal type of paraphrase detection used

by BertScore and related approaches (useful for machine translation evaluation). Evaluation
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metrics and reward functions are closely aligned and the NLP field is in need of both. New

distributional rewards could also bring progress to difficult generation tasks like generating

coherent multi-paragraph text and for generating output more human-like outputs.
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a.1 location of sentence embedding in decoder for learning representa-

tions

As mentioned in Section 10.2.1, we experimented with 4 ways to incorporate the sentence

embedding into the decoder: Word, Hidden, Attention, and Logit. We also experimented

with combinations of these 4 approaches. We evaluate these embeddings on the STS tasks

and show the results, along with the time to train the models 1 epoch in Table 101.

For these experiments, we train a single layer bidirectional LSTM (BiLSTM) Eng. Trans.

model with embedding size set to 1024 and hidden states set to 512 dimensions (in order to

be roughly equivalent to our Transformer models). To form the sentence embedding in this

variant, we mean pool the hidden states for each time step. The cell states of the decoder

are initialized to the zero vector.

Architecture STS Time (s)

BiLSTM (Hidden) 54.3 1226

BiLSTM (Word) 67.2 1341

BiLSTM (Attention) 68.8 1481

BiLSTM (Logit) 69.4 1603

BiLSTM (Word + Hidden) 67.3 1377

BiLSTM (Word + Hidden + Attention) 68.3 1669

BiLSTM (Word + Hidden + Logit) 69.1 1655

BiLSTM (Word + Hidden + Attention + Logit) 68.9 1856

Table 101: Results for different ways of incorporating the sentence embedding in the decoder for a
BiLSTM on the Semantic Textual Similarity (STS) datasets, along with the time taken to
train the model for 1 epoch. Performance is measured in Pearson’s r× 100.

From this analysis, we see that the best performance is achieved with Logit, when the

sentence embedding is place just prior to the softmax. The performance is much better than

Hidden or Hidden+Word used in prior work. For instance, recently (Artetxe and Schwenk,

2018b) used the Hidden+Word strategy in learning multilingual sentence embeddings.

a.1.1 VAE Training

We also found that incorporating the latent code of a VAE into the decoder using the Logit

strategy increases the mutual information while having little effect on the log likelihood.

We trained two LSTM VAE models following the settings and aggressive training strategy

in (He et al., 2019), where one LSTM model used the Hidden strategy and the other used the
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Hidden + Logit strategy. We trained the models on the en side of our en-fr data. We found

that the mutual information increased form 0.89 to 2.46, while the approximate negative log

likelihood, estimated by importance weighting, increased slightly from 53.3 to 54.0 when

using Logit.

a.2 relationship between batch size and performance for transformer

and lstm
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Figure 13: The relationship between average performance for each year of the STS tasks 2012-2016

(Pearson’s r× 100) and batch size (maximum number of words per batch).

It has been observed previously that the performance of Transformer models is sensitive

to batch size (Popel and Bojar, 2018). We found this to be especially true when training

sequence-to-sequence models to learn sentence embeddings. Figure 13 shows plots of the

average 2012-2016 STS performance of the learned sentence embedding as batch size in-

creases for both the BiLSTM and Transformer. Initially, at a batch size of 2500 tokens, sen-

tence embeddings learned are worse than random, even though validation perplexity does

decrease during this time. Performance rises as batch size increases up to around 100,000

tokens. In contrast, the BiLSTM is more robust to batch size, peaking much earlier around

25,000 tokens, and even degrading at higher batch sizes.
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Architecture STS Time (s)

Transformer (5L/1L) 70.3 1767

Transformer (3L/1L) 70.1 1548

Transformer (1L/1L) 70.0 1244

Transformer (5L/5L) 69.8 2799

Table 102: Results on the Semantic Textual Similarity (STS) datasets for different configurations of
Eng. Trans., along with the time taken to train the model for 1 epoch. (XL/YL) means X
layers were used in the encoder and Y layers in the decoder. Performance is measured in
Pearson’s r× 100.

a.3 model ablations

In this section, we vary the number of layers in the encoder and decoder in BGT w/o Prior.

We see that performance increases as the number of encoder layers increases, and also that

a large decoder hurts performance, allowing us to save training time by using a single layer.

These results can be compared to those in Table 102 showing that Transformers outperform

BiLSTMS in these experiments.
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