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Abstract

Most existing Global Positioning System (GPS)-based vehicle navigation systems (also termed

route guidance systems) utilize distance within their turn-by-turn navigation directions. For exam-

ple, a system might give a voice instruction like ”turn left in 0.2 mile”. However, human drivers

usually use landmarks to help their navigation. Some previous research has shown that there are

performance-related benefits in using landmarks instead of distance for navigation. The goal of

this dissertation is to develop multimedia techniques that can be used for achieving landmark-

based navigation using computer vision and machine learning techniques.

This dissertation makes contributions in landmark labeling, detection, recognition and the hu-

man vehicle interfaces. Landmark labeling is essential for development of landmark recognition

systems and using a landmark-based navigation system. The first contribution of this dissertation

is a semi-supervised learning-based approach for labeling landmarks in images. The proposed

approaches, SmartLabel and SmartLabel-2, minimize user input in labeling landmarks. Text on

road signs carries much useful information for driving. The second contribution is an automatic

system which detects text on road signs from driving videos. The third contribution is a novel

approach for recognizing a given street landmark such as a store sign in a sequence of images. We

develop a street landmark recognition system that combines salient region detection, segmentation,

and object fingerprint extraction techniques. The fourth contribution is a landmark building recog-

nition framework which is able to recognize and localize the target building in dynamic driving

data. Navigation user interfaces have changed dramatically over the last decade due to available

electronic maps and GPS devices. However, current navigation systems without landmarks have
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not fully achieved user satisfaction. The fifth contribution of this dissertation is to demonstrate the

concept of landmark-based vehicle navigation on a computer display and also show a prototype

using a full-windshield head-up display system.
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Chapter 1

Introduction

Navigation is the process of planning, recording, and controlling the movement of a craft or vehicle

from one place to another 1. Navigating a vehicle in a dynamic environment is one of the most

demanding activities for drivers in their daily lives. Americans drive 12,000 miles per year on

average. Studies have long identified the difficulties that drivers have in planning and following

efficient routes [62, 108, 115].

A vehicle navigation system (also termed route guidance system) is usually a satellite navi-

gation system designed for use in vehicles. Most systems typically use a combination of Global

Positioning System (GPS) and digital map matching to calculate a variety of routes to a specified

destination such as the shortest route. They then present a map overview and turn-by-turn instruc-

tions to drivers, using a combination of auditory and visual information. A typical turn-by-turn

instruction is an auditory prompt such as ”in 0.5 mile turn right”, accompanied by a visual right

turn arrow plus a distance-to-turn countdown that reduces to zero as the turn is approached. Vehicle

navigation systems generally function well, although they are wholly dependent on the accuracy

of the underlying map database and availability of GPS signals. However, from a human factor

perspective, there are several potential limitations to the current design [79]: mainly presenting

1http://en.wikipedia.org/wiki/Navigation# ref-bow799 0
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procedural and paced navigation information to the driver, and relying on distance information to

enable a driver to locate a turn.

1.1 Motivation

Human drivers often use landmarks for navigation. For example, we tell people to turn left after the

second traffic light and to make a right at Starbucks. In our daily lives, a landmark can be anything

that is easily recognizable and used for giving navigation directions, such as a sign or a building.

It has been proposed that current navigation systems can be made more effective and safer by

incorporating landmarks as key navigation cues [14]. Especially, landmarks support navigation in

unfamiliar environments. By providing external reference points, which are easily remembered

and recognized, landmarks can potentially reduce the need to refer to an information display in

order to locate a navigation decision point.

The definition of landmark in navigation context has been studied from varying theoretical

perspectives. Lynch described landmarks as external reference points that are easily observable

from a distance [77]. Kaplan defined a landmark as ”a known place for which the individual has

a well formed representation”, and described two theoretical factors that lead to a object or place

acquiring landmark status: the frequency of contact with the object or place, and its distinctiveness

[57]. Three types of distinctiveness were proposed: visual distinctiveness (a predominantly objec-

tive quality relating to the physical attributes that discriminate a landmark from the surrounding

environment); inferred distinctiveness (knowledge concerning its structure or form that makes the

landmark stand out from what is usual); functional distinctiveness (the salience in terms of the

goals or sub-goals of the landmark). In addition to the visual characteristics of landmarks and their

functional or social importance, the location of an object within the environment has also been

shown to impact significantly on its effectiveness as a landmark [17, 2]. Burnett identified 4 out

of 11 attributes that were most important characteristic of ’good’ landmarks for vehicle navigation

systems [14]:
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1. Usefulness of location: the ease with which the location of the landmark allows a naviga-

tional maneuver (e.g., a turning) to be identified.

2. Visibility: whether the landmark’s size and shape can be clearly seen in all conditions.

3. Uniqueness: whether the appearance of the landmark is such that it is unlikely to be mistaken

for anything else.

4. Permanence: the likelihood of the landmark being present.

Based on the human factor studies using the above attributes Burnett has further identified the

top ten scoring landmark types in United Kingdom (UK) [14]:

1. Traffic lights

2. Pelican crossing

3. Bridge over road

4. Hump-backed bridge

5. Petrol station

6. Monument

7. Superstore

8. Street name signs

9. Railway station

10. Church

It is quite evident that several of these landmarks are UK specific. In the United States, we

observe that common navigation-useful landmarks include 1) road signs, 2) other signs (including

signs of gas stations, fast food restaurants, stores, subway stations, etc) and 3) buildings (includ-

ing churches, stores, etc). This is our observation. Fig.1.1.1 depicts these three main classes of

landmarks in USA, which are the focus of this dissertation. Sometimes, landmarks can also be

areas where memorable event occurred. In our study, we only focus on landmarks from these three

classes.

The potential benefits of landmarks are well established. A range of studies have empirically

demonstrated how landmarks have the potential to enhance vehicle navigation systems in terms of:

(1) effective navigation decisions [109], (2) reduced cognitive effort and distraction [14], and (3)

increased confidence and satisfaction [45]. However, little research has been published that has

developed technologies for detecting and recognizing landmarks for vehicle navigation systems.
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Figure 1.1.1: Three main classes of street landmarks in US, which are the focus of this dissertation.

1.2 Dissertation Statement

In this dissertation, we aim to develop technologies for landmark based navigation for the following

scenario. John is going to visit his friend Susan in another city. Susan sends John some street

landmark images of her city on his route to her place. John will drive a car with a video camera

that can capture the scene in front of the car. We would like to build such a system that could help

John to automatically recognize landmarks from the video sequence. As we know, the training

image and the test image sequence normally have different resolution and quality. An example of

a fast food restaurant sign, Taco Bell, is shown in Fig.1.2.1.

To implement such a landmark-based navigation system, I organize my dissertation research

around five main problems:

1. Labeling street landmarks in images with minimal human effort (Chapter 2). Manually la-

beling image data is labor intensive and time demanding. These difficulties motivate us to

turn to a semi-supervised learning approach.

2. Automatically detecting text on road signs from video (Chapter 3). Correctly detecting text

on road signs can be very useful and poses many challenges. Video images are relatively low
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Figure 1.2.1: Example images of Taco Bell sign. Training image is 1280×960, while test image

captured by a video camera is 320×240. Two images are re-scaled to be equal size. In this example,

it is even hard for human to recognize the Taco Bell sign from the clutter on the right.

resolution and noisy. Both the background and foreground of a road sign can be complex

and change frequently in video. Our proposed approach uses spatio-temporal information in

video and fuses partial information for detecting text from frame to frame.

3. Recognizing street landmarks (other signs) (Chapter 4). General object recognition algo-

rithms may not work well for this problem because of its unique challenges that include lack

of training data, abrupt change of viewpoint and illumination, occlusion, etc. Our approach

extracts salient features of the landmark as its representation and performs recognition using

the salient representation.
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4. Recognizing landmark buildings (Chapter 5). Landmark buildings are an important class of

street landmarks which can be used as reference points for navigation. We have developed a

robust landmark building recognition framework which is able to recognize and localize the

target building in diverse views of driving data.

5. Demonstrating the proposed technologies on a full-windshield head-up display system (FWD)

(Chapter 6). We have developed a preliminary concept system on a computer display and

implemented a prototype of a landmark-based navigation system using a FWD.

The dissertation statement is, we aim to develop multimedia technologies for landmark-

based vehicle navigation. We focus our attention on the following three main classes of landmarks

(Fig.1.1.1): 1) road signs, 2) other signs and 3) buildings. We present technologies for labeling,

detecting and recognizing these landmarks from images and videos. In addition, we implement a

prototype of the resulting system using a full-windshield head-up display system.

Fig.1.2.2 illustrates the role of the dissertation in the field of landmark-based vehicle naviga-

tion. In the real world, a vehicle sees the three main classes of landmarks through an in-vehicle

camera. The dissertation is to develop multimedia technologies for labeling, detecting and recog-

nizing these landmarks from images and videos. We use a FWD to implement a prototype, but

driver perception, or in other words, visualization is not a focus of this dissertation. Note the black

arrows in Fig.1.2.2 are the processes which we do not study in this dissertation.

1.3 Expected Contributions

In order to learn a discriminative model of the landmark of interest for recognition, we need to

first label the landmark versus its background in a given image. Manually labeling images is

not only a labor intensive task, but also subject to human labeling and annotation errors. While

efforts have been focused on online massive user labeling (e.g. MIT LabelMe 2, The ESP Game 3),
2http://labelme.csail.mit.edu/
3http://www.gwap.com
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Figure 1.2.2: Thesis contributions and chapter layout.

limited attention has been paid to semi-automatically labeling objects in images or videos [4, 5].

Our proposed SmartLabel and SmartLabel-2 aim to let a user only mark a small region of interest

inside the landmark (or object) on the image with simple input (e.g. dragging a rectangle), and our

algorithms can then label the rest of the landmark (object) in the image [121, 123]. The evaluation

of proposed SmartLabel-2 and comparison with other methods on a dataset of six object classes

indicate that SmartLabel-2 not only works effectively with a small amount of user input (e.g.,

1 .. 5% of image size) but also achieve very promising results (avg F1=0.84). In some cases,

SmartLabel-2 even obtain nearly perfect performance.

We have introduced a novel framework that can incrementally detect text on road signs from

video. The proposed framework takes advantage of spatio-temporal information in video and fuses

partial information for detecting text from frame to frame. Text on road signs carries much useful
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information for driving and describes the current traffic situation, defines right-of-way, provides

warnings about potential risks, and permits or prohibits roadway access. Automatic detection of

text on road signs can help to keep a driver aware of the traffic situation and surrounding environ-

ments by highlighting signs that are ahead and/or have been passed [119, 120, 118].The feasibility

of the proposed framework has been evaluated using video sequences captured from a moving

vehicle. This new framework gives an overall text detection rate of 88.9% and a false hit rate of

9.2%.

We further focus on recognition of other signs with limited training data. Street landmarks

(other signs) are always characterized by unique characters. Each landmark has its own characters

which we cannot find in other objects. We call such unique characters the landmark’s object

fingerprints. We define the problem of recognizing a particular street landmark as recognition of

the landmark’s object fingerprints. Instead of modeling and matching the landmark as a whole, our

proposed approach extracts the landmark’s object fingerprints in a given image and matches to a

new image in order to recognize the landmark. We formulate recognition of the landmark’s object

fingerprints as a classification problem solved by a cascade of 1-nearest neighbor classifiers. We

develop a street landmark recognition system that combines salient region detection, segmentation,

and object fingerprint extraction techniques [122]. To evaluate, we have compiled a novel dataset

which consists of 15 U.S. street landmarks’ images and videos. Our experiments on this dataset

show superior performance (avg F1=0.67) to state-of-the-art recognition algorithms. We believe

with additional GPS information, our system can achieve better recognition performance.

Landmark buildings are an important class of street landmarks which can be used as reference

points for driving navigation. We have developed a robust landmark building recognition frame-

work which is able to recognize and localize the target building in diverse views. The recognition

results can be further used for vehicle navigation. Evaluation on both a public dataset and our

self-collected Pittsburgh Historic Landmark dataset has shown promising results (with accuracy

equal to 0.94).

We have developed a preliminary landmark based navigation system on computer display. The
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system gives driving instructions by overlaying navigational arrows onto live video and provid-

ing synthesized voice, in addition to highlighting key landmarks for coming maneuvers [124].

Furthermore, we have implemented a prototype of a landmark-based navigation system using a

full-windshield head-up display system [117].

1.4 Related Works

In this section, we review some previous research related to landmark-based vehicle navigation in

different research fields in the order of research problems that are presented in this dissertation.

Landmark Labeling

Labeling landmarks or objects in images can also be called image segmentation, foreground extrac-

tion, object extraction or image editing, although they are slightly different in terms of applications

and domains. Image segmentation has been an active area of research for decades and its appli-

cation has been widely adopted in many research fields including content-based image retrieval

[106, 114, 32]. The goal is to create systems capable of segmenting foreground objects from the

background accurately and to achieve good segments of the image. Recently, research has focused

on the problem of interactive extraction of a foreground object from an image [90].

There are three key differences between our proposed SmartLabel framework and other state-

of-the-art interactive segmentation tools. First, the goal of SmartLabel is to create labels for inter-

esting object(s) in the image, not to segment the image into a number of blobs. Secondly, although

SmartLabel is a semi-automatic labeling tool, it does not rely too much on user input; only initial

specification and relevance feedback after the first iteration are required. Finally, SmartLabel can

extract a foreground object at multiple locations in the image even though the user only specifies

part of the object at one location, but most iterative segmentation tools extract objects within or

around the user specified region of interest. In the chapter of landmark labeling, we will describe
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several state of the art interactive object extraction (segmentation) tools: Magic Wand, GrabCut

[90], ClickRemoval [82], and central object extraction [61].

Detection of Text on Road Signs

Based on its origin, text in video can be classified into two classes: graphic text and scene text [72].

Graphic text is text that is added to the video after the video is captured, such as captions added

to news videos. Scene text exists as part of objects in a natural environment when it is directly

captured by a camera, which includes billboards, and street names on road signs. A common

assumption used by previous research in graphic text detection from video is that the text plane

is perpendicular to the optical axis of the camera [54, 69]. This is suitable for some domains

such as broadcast video where the camera is fixed or has relatively little motion. However, the

assumption does not necessarily hold in the scene text detection task since road sign planes are

often encountered at a non-perpendicular angle with respect to the camera optical axis.

More general techniques for detecting scene text from still images have been developed in

pattern recognition and computer vision fields. Recently, some researchers were able to detect

scene text from still images [21, 26] and reported that edge features can better handle lighting and

scale variations in scene images than texture features [22], which are often used for detecting text

in news video [54, 60]. Inspired by their work, we chose to use the edge-based features for text

detection in this study. Myers et al. described a full perspective transformation model to detect 3D

deformed text from still images [81].

Research on extracting scene text from video has informed our work. Fang et al. introduced

a dynamic visual model for recognizing road signs in video but was limited to road sign symbols,

such as those for ”stop” and ”do not enter” instead of text [33]. Haritaoglu and Haritaoglu used a

combination of symmetric neighborhood filtering and hierarchical connected component analysis

to extract written information on road signs in scene images [48]. Piccioli et al. used a priori

knowledge on scene and color clues to search suitable regions for road signs in images [84]. This
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approach works for images of cluttered urban streets as well as country roads and highways. Miura

et al. designed a two-camera system consisting of a wide-angle-lens camera and a telephoto-lens.

The wide-angle-lens is used to detect candidates for road signs using color, intensity, and shape

features, and the telephoto-lens is directed to the road sign to capture a high-resolution image of

the candidate [80]. Gandhi et al. applied a plane motion model to correct the perspective distortion

of the text planes for robust detection [42]. Vitabile et al. proposed a method for focusing on

detecting road sign symbols instead of text by using multi-layer perception neural network and

image data to evaluate the system [112].

Recognition of Other Signs

Recognizing a street landmark (a sign) from a moving camera is a difficult task because of com-

bined effects of camera motion, blur, and constantly changing illuminations. In addition, only

one landmark image is provided in advance which invalidates many successful object recognition

techniques such as algorithms requiring a certain amount of training data. While face recognition

from a single image has been extensively studied [126] and detection of pedestrians and vehicles

has been successfully demonstrated [67], little attention has been focused on recognition of street

landmarks.

To achieve robust object recognition, many interesting approaches have been proposed [8, 16,

28, 36, 116]. Also object detection has made tremendous progress over past years in various

directions: deformable object detection [85], application of geometric scene context for detection

[50], use of object boundary for detection [83], and exploration of geometrical relationship between

object components [96]. Location recognition has also been studied [98]. In the context of object

recognition from one image, researchers have proposed different methods [75, 38, 91] to exploit

object appearance and geometrical information. The previous work, however, requires modeling

of the whole object, and recognition is performed by matching the learned object model to a new

image. In contrast, our approach represents an object by a set of fingerprints and allows matching

fingerprints instead of the whole object. Bigrams and triplets of feature descriptor have been shown
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to help recognition which motivates our work [65, 131]. A bag of SIFT features for an image is

used in a text retrieval approach for object matching in videos [105]. It is also worth mentioning

very recent work by [86, 59, 94] which employ SIFT features to match landmark images or logos.

The closest work to ours is Ferencz et al. [37] which has only one image for training but

ample data to train a category classifier. Although the two approaches agree in general spirit, our

approach provides a different solution to recognize street landmarks from one training image. But

[37] focuses on car and face instances. Furthermore, our approach applies multiple segmentations

to extract patches, which has been shown to give better spatial support for recognition [78] than

regular patches, which are used by [37].

Recognition of Landmark Buildings

The recognition of landmark buildings as considered in this dissertation comprises two phases:

building representation and recognition of the target building. The problem of building recogni-

tion has attracted much attention in the past, mostly considering outdoors scenes. Some researchers

formulate and tackle the problem in a content-based image retrieval manner [53, 71]. Other re-

searchers proposed using vanishing direction for alignment of a building view in the query image

to the canonical view in the database and proposed matching using interest regions’ descriptors,

followed by the relative pose recovery between the views from planar homographies [89]. As men-

tioned in the paper, the methods which employ solely geometric and local feature based matching

techniques are often slow. In [100] authors proposed extracting invariant regions and used a set

of color moment invariants to represent them. Recognition was performed based on the number

of matched regions. In [110], an alternative approach was proposed to the context-based place

recognition problem. The representation of individual locations was obtained by integrating re-

sponses of the bank of filters over coarse spatial regions and fitting a Gaussian mixture model to

the responses. This approach enabled coarse classification of locations and also exploited spatial

relationships between locations captured by a Hidden Markov Model. However, the location model

did not allow for actual pose recovery of the camera with respect to the scene.
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In the context of object recognition, both global and local image descriptors have been con-

sidered. Commonly used global descriptors, which provide some invariance to occlusions and

clutter proposed in the past, include gist features [87] and multi-dimensional histograms [3]. The

representatives of local image descriptors include scale invariant features [75] and their descrip-

tors, which are invariant with respect to rotation, scale change and affine transformations. From

the perspective of the application, the efficiency of the approach has to be considered. Therefore,

when dealing with large databases, it is desirable to have some simple indexing vectors for all

models, so that unlikely models can be eliminated in advance. More recent research on detection

and recognition of buildings has been reported in [71, 64, 125, 98, 127].

In-Car Navigation Systems

Driving assistant systems are popular applications of multimedia technologies. A combination

of GPS and electronic maps has led to revolutionary changes in car navigation systems. These

systems provide drivers with an efficient route planning tool through a map database and allow

convenient route guidance by GPS satellite signals. Users of such navigation systems can take

advantage of such digital navigation services not only in their daily lives but also in unfamiliar

areas or in regions with complex road-layouts and intersections.

However, state-of-the-art navigation systems have not yet reached their full potential and their

use is often not intuitive and helpful to users with different abilities. There are two main kinds

of navigation interfaces in existing systems, i.e., voice commands and abstract map images on a

display, either integrated in the dashboard or being portable. Both interfaces have proven useful and

effective. For example, current navigation systems can increase a driver’s cognitive load because

the driver has to map the information provided by the navigation system to the real environment

outside the windshield. Another distracting effect of current navigation systems is that the driver

has to move his/her attention away from the road to perceive navigation information.

The head-up display (HUD) is a type of display that presents data without blocking the user’s
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view. The technique was pioneered for military aviation and now used in commercial aviation,

motor vehicle and other cases. Since 1988, General Motors has popularized HUDs on the Olds

Cutlass, Pontiac Grand Prix, Bonneville, Buick LeSabre, Park Avenue and Rendezvous. In 1999,

Automotive HUD technology made a big quality leap with the Chevrolet Corvette. In the new

Corvette, which uses a HUD to display vehicle speed, engine RPM, navigation and more, the

HUD has proven to be one of the most popular options. As of 2006, BMW featured the HUD as

an option on their 5 and 7 series vehicles, with more HUDs anticipated from other European and

Japanese OEMs. Despite the limited resolution and current generation HUDs’ sizes, they provide

information such as speed, turn by turn navigation and warnings via a virtual image projected onto

the windshield by mirrors within the driver’s normal field of vision. By adjusting the number of

mirrors, display color and illumination elements, installation space requirements and costs can be

adapted to respective vehicle models.

1.5 Chapters of the Dissertation

In the Chapter 2, we will discuss semi-automatically labeling landmarks and objects in images. In

the Chapter 3, we will describe detection of text on road signs from video. In the Chapter 4 and 5,

we present the methods for recognition of other signs and landmark buildings. In the Chapter 6, we

will introduce our work on human vehicle interface including a prototype using a full-windshield

head-up display system. Finally, we will conclude this dissertation and present some future works

in the Chapter 7.
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Chapter 2

Semi-Automatically Labeling Landmarks

and Objects in Images

In this chapter we focus on the problem of labeling objects in images with application to landmark

labeling. The fast growth of visual data on the Internet has created new challenges for the image

processing (IP) community. Most IP tasks such as image annotation [113], content based image

retrieval [92, 106, 114, 56, 30, 23] and object detection & recognition [111, 70], require training

data. Manually labeling images is not only a labor-intensive and time-consuming task but also

subject to human operation errors and variances. There has been much attention on attracting

Internet users to label images manually such as MIT LabelMe [93] and ESPGame.org, but research

on the semi-automatical manner has been limited [4, 5]. Our goal is to offer a semi-automatic

framework to label objects in images effectively (focusing on things as opposed to stuff [18]). We

have introduced a family of semi-automatic labeling methods in this study based on a graph-based

semi-supervised learning algorithm [130].

To appreciate the difficulties in manually labeling objects, let us go through the labeling process

of LabelMe [93]. The users need to trace object outlines of as many objects in the image and

for as many images as they like. Often users click their mice greater than 30 times along the
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outline to finish working on one object. Within 20 months since its inception, about 55 thousand

polygons are manually labeled among which about 5 thousands are described. LabelMe’s impact is

influential, but the numbers of labeled objects and descriptions are small compared to the amount

of contributed human efforts. These difficulties motivate us to seek semi-automatic methods to

label objects in images. One solution is to let a user mark a small region of interest (ROI) on

the object (e.g., dragging a rectangle) and the computer automatically extracts the object outline

and its other instances in the image. Figure 2.0.2 shows examples of user inputs and results by

SmartLabel [121] we have proposed and GrabCut [90].

Some research has been done in semi-automatic object extraction using various techniques

[18, 90]. Semi-supervised learning (SSL), which leverages the availability of unlabeled data to

Figure 2.0.1: MIT LabelMe [93]. (a) Two example images. (b) Evolution of LabelMe database

over time. Left: total number of polygons and descriptions over time. Right: the probability of a

new description being entered into the database over time.
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Figure 2.0.2: An illustration of SmartLabel [121] and a comparison with GrabCut [90]. SmartLabel

allows users loosely drag a rectangle (or a loop stroke) inside an object. It can label both single

and multiple objects. In each group, left are input images with user specified ROI (in yellow) and

right are extracted object regions. Note GrabCut asks users to mark an ROI outside of the object

in the image.

improve classification, has attracted a lot of attention in the past decade and been proven useful

for many problems [101, 10, 11, 9, 130, 6, 128]. A survey on SSL can be found in [129]. We

focus on addressing the problem within an SSL framework. We formulate the problem as follows.

Given an image, an ROI is provided by the user. We divide the image into non-overlapping square

patches; any patches overlapping the ROI are considered as labeled samples and put in L and the

rest are considered as unlabeled samples and put in U . Formulating the problem in this way allows

us to apply any SSL algorithm to classify patches in U . However, the formulation still presents

two challenges. First, labeled patches contain only positive samples. Second, L may contain noise

because patches which overlap ROI can include background. These two challenges become critical

hurdles for many existing SSL algorithms.

We have come to a recently proposed graph-based SSL method [130], which we refer to as

Zhu’s SSL method in the following. Zhu’s SSL method represents labeled and unlabeled samples

as vertexes in a weighed graph. Edge weights represent the similarity between connected vertexes.

It adopts Gaussian fields over a continuous state space rather than random fields over a discrete

label set. The mean of the field is characterized in terms of harmonic functions and its solution can

be efficiently obtained using matrix methods or belief propagation. This relaxation to a continu-

ous space has some attractive properties. For instance, lack of negative samples and continuous

label values can be naturally handled by Zhu’s SSL method. However, Zhu’s SSL method was
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proposed for problems in other domains, and there are still difficulties in directly applying it to

our problem. In [121], we have proposed SmartLabel based on Zhu’s SSL method. SmartLabel

has four novelties: 1) Real numbers from 0 to 1 are used as label values for positive patches. 2)

The weighed graph is constructed from the input image using two spatial constraints. 3) Harmonic

energy minimization is applied iteratively to estimate labels for patches in U and newly labeled

patches are added to L for the next iteration. 4) It brings the human in the loop by plugging in

relevance feedback (RF) to collect negative samples for learning.

Unfortunately, SmartLabel has some shortcomings such as demand of human supervision for

RF and zigzag object boundaries in resulting object areas, shown in [121]. These issues lim-

its SmartLabel’s application to many tasks. To overcome these weaknesses, we have proposed

SmartLabel-2 which improves in three aspects. In particular, we apply a quadtree structure to

partition images instead of using regular gridding. Secondly, we introduce a novel saliency-based

method to sample negative samples. Finally, we adopt image superpixel representation[88] to re-

fine labeling results and extract smooth object boundaries. The evaluation of proposed SmartLabel-

2 and comparison with SmartLabel and Zhu’s SSL method in a dataset of six object classes indicate

that SmartLabel-2 not only works effectively with a small amount of user input (e.g., 1 − 5% of

image size) but also achieve very promising results. In some cases, SmartLabel-2 even obtains

nearly perfect performance.

2.1 Relations to Other Object Extraction Tools

Labeling objects in images is closely related to image segmentation, object extraction or image

editing, but they are different in terms of applications. Image segmentation has been an active re-

search area for decades. We describe some standard or state-of-the-art interactive object extraction

tools: Magic Wand, GrabCut[90], ClickRemoval[82] and central object extraction[61].

Magic Wand as seen in Adobe Photoshop and many other photo-editing tools applies a basic
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seeded region growing algorithm [1]. It is based on absolute color differences among adjacent

pixels. It lets a user select a consistently colored area without having to trace its outline. While the

user interface is straightforward, finding the appropriate tolerance level is often cumbersome and

it cannot extract an object with multiple colored areas.

ClickRemoval[82] is an interactive tool to erase an object from an image. The user indicates

the undesired object by pinpointing it with the mouse cursor. The object extraction step relies on a

statistical region-growing segmentation technique using color information and the hole-filling step

applies background texture based synthesis. This method does not support extracting objects at

multiple locations.

Central Object Extraction[61] is developed for object-based image retrieval. It does not

require user interactions and automatically extracts central objects. It relies on two underlying

assumptions: interesting objects are located near the image center and contain regions with sig-

nificant color distributions. It cannot extract objects at various places and its assumptions limit its

applications.

GrabCut[90] and SmartLabel solve a similar problem but are different in three respects: 1)

User initial inputs are different as shown in their original papers. GrabCut’s common input is an

ROI outside the object while SmartLabel needs an ROI within the object 1. 2) Inference models are

different. SmartLabel adopts Gaussian fields with harmonic functions. GrabCut extends the graph-

cut approach [11]. 3) Outcomes are different. GrabCut achieves fine foreground and background

segmentation while SmartLabel can extract multiple similar/same objects. Figure 2.0.2 shows an

example of a comparison between SmartLabel and GrabCut.

To summarize, SmartLabel is different from other tools in terms of user inputs, underlying

models, and outcomes.

1GrabCut and SmartLabel both can work by being given a few background or foreground pixels/patches

19



2.2 Labeling Objects in Images Using Zhu’s SSL method

We first describe SSL notations and the application of Zhu’s SSL method[130] to label objects.

SSL is about learning from labeled and unlabeled data. Given a data set, X = {x1, ..., xl,

xl+1, ..., xn}, and a label set, C = {1, ..., c}, the first l samples have labels {y1, ..., yl} ∈ C and

remaining samples are unlabeled. We call L = {(x1, y1), ..., (xl, yl)} the labeled set and U =

{(xl+1, yl+1), ..., (xn, yn)} the unlabeled set. Graph-based SSL methods consider a connected

graph,G = (V,E), with n vertexes in V corresponding to n samples, where vertexes L = {1, ..., l}

are labeled samples and vertexes U = {l + 1, ..., n} are unlabeled samples. The edges, E, are

weighted by an n× n affinity matrix, W , computed by certain distance metrics.

The goal of Zhu’s SSL method is to compute a real-valued labeling function, g(·) : V− > R,

on G with certain nice properties, and then to assign labels for U based on g(·). The labeling

function is constrained to assign labels such as g(i) = gl(i) ≡ yi, on L, i = 1, ..., l. Gaussian field

configuration aims to make unlabeled samples that are nearby in the graph have similar labels. This

motivates choosing a quadratic energy function, E(g) = 1
2

∑
i,j wij(g(i) − g(j))2. In the n-dim

space, x ∈ Rn, the weight matrix, W , can be defined as, wij = exp
(
−
∑n

d=1
(xid−xjd)2

2σ2
d

)
, where

xid is d-th component of the feature vector xi ∈ Rn, and σ1, ..., σn are length scale hyperparameters

for each dimension.

To assign a probability distribution on g(·), a Gaussian field is formed as pβ(g) = e−βE(g)

Zβ
, where

β is the inverse temperature parameter andZβ is the partition functionZβ =
∫
g|gl=L

exp(−βE(g))dg,

which normalizes over all functions constrained to gl on L, where (xi, yi) ∈ L, i = 1, ..., l. To com-

pute the harmonic solutions of g(·), we minimize E(g) subject to the labeled data constraint.

g = arg min
g|L=gl

E(g) = arg min
g|L=gl

1

2

∑
i,j

wij(g(i)− g(j))2, (2.2.1)

in other words, it satisfies ∆g = 0 on all unlabeled samples in U and is subject to g|L = gl. Here ∆

is called combinatorial Laplacian, and defined as ∆ = D−W,whereD = diag(di), di =
∑

j wij.
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The harmonic property indicates g(·) at each unlabeled sample is average of g(·) at its nearby

samples,

g(j) =
1

dj

∑
i j

wijg(i), for j = l + 1, ..., l + u, (2.2.2)

which maintains the smoothness constraint of g(·) with respect to G. Expressed in the matrix

form, Equation (1) can be rewritten as g(·) = Qg(·), whereQ = D−1W . To compute the harmonic

solution,W is split into 4 blocks based on the separation of L and U . Wn×n =

 Wll Wlu

Wul Wuu


n×n

.

Denote the target labeling function g(·) =

 gl(·)

gu(·)


n×c

, and gl(·) denotes labels on L, gu(·)

denotes labels on U , and c is the number of classes. The unique harmonic solution ∆g(·) = 0

subject to g(·)|L = gl(·) ≡ yi, i = 1, ..., l is given as a u× c matrix gu(·).

gu(·) = (Duu −Wuu)
−1Wulgl(·). (2.2.3)

Algorithm 1 shows Zhu’s SSL method for labeling objects. SmartLabel improves it in several

aspects.

2.3 SmartLabel

2.3.1 Soft Labeling

To formulate an SSL-based labeling problem, we construct L and U . Given an image and ROI(s),

we partition the image into non-overlapping patches of size B × B (pixels). Each patch is treated

as a sample. Patches that are in the ROI or overlap with it are treated as positive samples and added

in L. Other patches are treated as unlabeled samples and put in U . The number of labeled samples
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Input An image (I) and input ROI(s).

Initialize Divide I in patches of B ×B pixels. patches in ROI are put in L and others in U .

Object Labeling using Zhu’s SSL method

1. Construct the weight matrix on L and U . Form the weight matrix W using the weight factor

defined in Section III and Wii = 1.

2. Construct the combinatorial Laplacian. Compute the matrix ∆ = D −W , in which D is a

diagonal matrix with Dii equal to the sum of the i-th row of W .

3. Compute the harmonic solution. Compute the label prediction on U using the equation

gu = (Duu −Wuu)
−1Wulgl.

4. Assign labels to unlabeled data. For each xi in U (i > l), assign the label as yi = gu(xi).

5. Output object regions. Produce object regions as combination f patches which are labeled

positive.

Algorithm 1: Labeling Objects in Images using Zhu’s SSL method.
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Figure 2.3.1: An illustration of necessity of soft labeling. After regular gridding, two ROIs (in

black) include a few complete patches but overlaps with other patches on the borders. Similar

problems happen too when the user drags a rectangle ROI.

is l and the number of unlabeled samples is u and n = l + u. Note L does not contain negative

samples yet.

Most SSL methods use the 0 or 1 labeling strategy (0 means negative and 1 means positive).

Problems rise with this strategy because samples in L are different: some patches are within ROI

but others partially overlap with ROI. If we use uniform labeling yi = 1, i = 1, ..., l for all samples

in L, the labeled data can be noisy because some patches may contain background. Figure 2.3.1

shows an example sign image with two ROIs. Some patches just partially overlap ROIs and some

only contain canvas background.

One solution is to give up all patches which only partially overlap with an ROI and put them in

U . But this is expensive by sacrificing already small L. By another solution, we relax the possible

label values to real numbers between 0 and 1 as yi ∈ [0, 1]. We call it soft labeling. The label

value for each sample in L is computed as the ratio of its area within ROI to the patch size. Since

the mapping function g(·) in Zhu’s SSL method is real-value defined, this relaxation appears to be

naturally handled by it.
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Figure 2.3.2: SSL settings in SmartLabel (b) and SmartLabel-2 (d). P : the positive set; Ur: the

relevant unlabeled set; Un: the irrelevant unlabeled set; N : the negative set. (a) An input image w.

an ROI. (c) Detected less informative regions (Section V).

2.3.2 Graph Construction with Spatial Constraints

Labeling objects in an SSL manner possess some unique properties which other SSL problems do

not have. One property is that location and context are important in images. Intuitively, pixels or

patches nearby tend to belong to one object instance rather than those far away. Regions at nearby

locations are more likely to contain similar color distributions than those far away. By observing

this location-dependent property, we next describe two spatial constraints which we embed to build

the weighed graph: a location-based similarity distance metric and separation of U into Ur and Un.

We first define a new distance metric by introducing an additional spatial distance term.

wij = exp

(
−

m∑
d=1

(xid − xjd)2

2σ2
d

·
∑2

k=1(xki − xkj )2

ε

)
, (2.3.1)

where the 1st term shows the feature distance as in [130] and the 2nd term measures the spatial

distance between two samples. m is the number of dimensions of feature vector xi, and σ1, ..., σm

are length scale hyperparameters for each dimension. x1
i and x2

i are image coordinates of xi and ε

is a normalization term. The new distance metric approximates the relevancy between two samples

by combining Mahalanobis distance in the feature space and Euclidean distance in 2D.

In most SSL algorithms, samples in U are treated equally in learning, but this assumption may

conflict with the location-dependent property. We treat unlabeled samples differently in terms of
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their image locations. We separate U into two subsets, Ur and Un, based on the location of L. Ur

includes unlabeled patches that are close to L and used in learning. Un includes the rest unlabeled

patches. Figure 2.3.2 shows an illustration of this setting. With this scheme, we incrementally

estimate labels on Ur without sacrificing the global configuration. SmartLabel is an iterative ap-

proach and T iterations guarantee all unlabeled patches will be included in the graph eventually.

Furthermore, separation of U prevents the graph learning from adding many false positives in L,

which can easily happen due to small number of samples in L. Also, searching globally instead

of incrementally using L is problematic because the target object concept is under-represented

by L without negative samples. By incrementally exploring neighborhood of L and adding high-

confidence predicted positive patches in L iteratively, ur method can quickly converge and achieve

robust results.

2.3.3 Iterated Harmonic Energy Minimization

SmartLabel introduces an iterated harmonic energy minimization in place of the one-shot mini-

mization in Zhu’s SSL method. This scheme allows an automatic increment of L after each itera-

tion. Note in most SSL other algorithms L is fixed but in SmartLabel L is dynamically updated.

Algorithm 2 shows main elements of SmartLabel* (without relevance feedback). In each iter-

ation, samples in Ur and L are studied and labels are predicted for Ur. SmartLabel* runs a fixed

number of iterations or until no more unlabeled samples can be added into L. False positives are

restrained during the label propagation by applying soft labeling and separation of Ur and Un. In

the following we analyze the time complexity of SmartLabel*. Step (a) takesO(lu) time for update

Ur & Un computation. Sizes of l, u and ur vary for applications. Step (b) takes O((l + ur)
2) time

for computing the weight matrix of L and Ur. Step (c) takes O(l+ ur) for Laplacian construction.

Step (d) takes O(u2
r + url + l) = O(ur(ur + l)) for computing a harmonic solution. And finally

the augmenting of L takes O(ur) time. Thus, the time complexity, C(T ), of SmartLabel* in T

iterations is C(T ) = O(T (lu + (l + ur)
2 + l + ur + ur(ur + l) + ur)) ≈ O(T · lu when l ∼ ur.
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Input An image (I) and input ROI(s).

Initialize Divide I in patches of B × B pixels. Create L and U . Set the max iteration as T and

neighborhood size as H . Ur = ∅, Un = ∅.

SmartLabel*

for t = 1 to T do

1. Update Ur & Un. Extract neighboring patches from L in H pixels and put them into Ur,

and the rest unlabeled patches are put in Un.

2. Compute the matrix W ′ based on L and Ur. Form the weight matrix W ′ using certain

weight measure and W ′
ii = 1.

3. Construct the Laplacian. Compute the matrix ∆ = D′ −W ′, in which D′ is a diagonal

matrix with D′ii equal to the sum of the i-th row of W ′.

4. Compute the harmonic solution. Compute the label prediction on Ur using the following:

gur = (Durur −Wurur)
−1Wurlgl.

5. Augment L. Add newly predicted unlabeled patches from Ur to L using the predictions

gur .

Output results. Produce extracted object regions from patches in L.

Algorithm 2: Smartlabel* (w/o. relevance feedback).
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One way to speed up is to compute W for the whole image once and shuffle rows and columns to

create W ′ based on updated L and Ur at every iteration.

To compute gur , W is split in 9 blocks as Wn×n =

[
Wl×l Wl×ur Wl×un

Wur×l Wur×ur Wur×un

Wun×l Wun×ur Wun×un

]
according to L,

Ur and Un. Similarly for the matrix D.

Since only Ur are considered, we denoteW ′ as the first four blocks in upper left ofW asW ′
p×p,

where p = l + ur. The harmonic solution of Ur is given as,

gur(·)ur×c = (Dur×ur −Wur×ur)
−1 ·Wur×l · gl(·)l×c. (2.3.2)

SmartLabel* supports marking of multiple ROIs, which either show many instances of one

object or different objects. Then one-against-all classifiers compete using gcur(j), c = 1, ..., K as

posterior probability. In particular, an unlabeled sample j is labeled as follows. First, compute

the harmonic solution gur(·), a ur × c matrix and obtain the j-th row which corresponds to the

sample j. Second, identify the highest value in the row vector and label the sample j accordingly:

gur(j) = arg max
c∈C

gcur(j).

2.3.4 Relevance Feedback

Note that initial ROI(s) provides only positive samples but lacks negative samples. This is prob-

lematic in SSL inference. The harmonic energy minimization in the first iteration has a difficulty

in discriminating non-object patches that have similar appearance (color and/or texture) of the ob-

ject from true object patches in Ur, since no negative samples are available initially in L, which is

crucial to reduce false positives. To alleviate the problem of lacking negative samples, we bring

the human in the loop by embedding relevance feedback (RF)[92] in SmartLabel*. Our aim is to

improve performance by including RF data, but to reduce human supervision, we apply RF only in

the first iteration. In other cases where the amount of human supervision is not a concern while the

performance is crucial, the strategy will be to apply RF in all iterations to achieve the best results.

Here, we only employ the first strategy.
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Input & Initialization are the same as SmartLabel*.

SmartLabel

1. For t = 1, 2, ..., T , similar to Step 1 in SmartLabel* except the user gives feedback before

augmenting L in sub-step (e) at Iteration 1.

2. Output resulting extractions. Produce extracted regions of the object from patches in L.

Algorithm 3: SmartLabel (w. relevance feedback).

We present patches that are labeled as the object by SmartLabel* to the user, ranked by gu(·).

When the user labels a patch as a negative example, its neighboring patches in the graph including

itself are added to L as negative samples. The same process is done to non-object patches labeled

by SmartLabel*. Other correctly labeled patches are also added in L. After RF, the graph learning

in later iterations has more positive samples and additional negative samples to represent the target

object concept discriminatively. The introduction of RF in SmartLabel* makes it possible to learn

object and non-object regions in the image simultaneously and also utilize the underlying graph

structure from the unlabeled samples to further improve labeling performance. Algorithm 3 shows

the details of SmartLabel (w. RF).

2.4 SmartLabel-2

SmartLabel is not perfect. Its limitations include lack of negative samples, demanding human

feedback, zigzag object boundaries and holes in extracted regions. To overcome these issues we

have proposed SmartLabel-2 by extending SmartLabel in three aspects [123].

1. SmartLabel needs RF to collect negative samples. With the goal of minimizing human effort,

SmartLabel-2 revise a spectral residual approach to sample negative samples from the input
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image.

2. Furthermore, SmartLabel-2 apply quadtree to partition instead of regular gridding used in

SmartLabel. This not only increases granularity of patches to reach object boundaries but

also improves labeling accuracy by reducing mixture of object and background in one patch.

3. Finally, SmartLabel-2 refine labeled object patches via superpixels[88]. Each image’s super-

pixels are computed offline and used with labeled patches to extract object boundaries.

2.4.1 Sampling Negative Samples from a Single Image

Negative samples are often used with positive samples to train a supervised classifier or a semi-

supervised classifier. However, in our problem, ROI(s) inside the object only contains positive

patches. Zhu’s SSL method can learn a classifier using positive data and unlabeled data, but its

performance is affected for missing negative samples. SmartLabel tackles the issue by requiring

the user to give relevance feedback on newly predicted patches. This practice is expensive and

inefficient because of the large number of images to label and limited manpower.

To overcome this challenge, we need an automatic robust scheme to sample negative samples

from the input image. One solution is to sample along image borders, but this invalidates one

advantage of SmartLabel-2 - extracting objects anywhere in the image, and not only in the center.

Instead, we revise a spectral residual approach [51] to detect uninformative image regions such as

sky and sample negative patches from them. Algorithm 4 shows the scheme and Figure 2.3.2 (c)

and (d) show an example. In [51], the spectral residual approach is proposed to detect information

rich regions. Using Inverse Fourier Transform, the method outputs the image’s saliency map which

contains the nontrivial image parts. We revise the method to detect less informative regions. We

apply the inverse of saliency map to obtain a background map which mainly contains uninformative

regions. Figure 2.3.2 shows detected uninformative regions by our scheme (top 20%) in (c) and

the SSL setting in (d).

Our scheme suffers when the object(s) contains uninformative regions decided by the spectral

29



Input & Initialization: input image (I), user-specified ROI (P ), relevant unlabeled set (Ur) and

the threshold (Ts).

Saliency-based Sampling of Negative Samples from Single Image

1. Compute saliency map of I using the approach in [51].

2. Sort pixels in saliency map in ascending order, preserve top Ts portion to obtain negative set

N .

3. Combine P , Ur and N to generate image label mask.

Algorithm 4: Saliency based sampling of negative samples from a single image.

Figure 2.4.1: For SmartLabel-2, (a) an input image; (b) its superpixel map (P = 100); (c) its

quadtree partition (min patch = 2× 2).

residual method. Fortunately, this happens only in few cases when labeling sky and ground among

other uninformative objects. Even so, SmartLabel-2 works by skipping the step of sampling of

negative samples step.

2.4.2 Quadtree Partitioning

A quadtree [40] is a tree data structure in which each internal node has up to four children.

Quadtree is often used to partition a 2D space by recursively subdividing it into four quadrants
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or regions. A similar partitioning is also known as a Q-tree. All forms of quadtrees share some

common features: 1) They decompose space into adaptable cells. 2) Each cell has a maximum

capacity. When maximum capacity is reached, the cell splits. 3) The tree directory follows the

spatial decomposition of the quadtree.

SmartLabel-2 replaces regular gridding by quadtree based partitioning which changes the un-

derlying patch structure. Figure 2.4.1 depicts quadtree partitioning of an example image. We adopt

qtdecomp function in Matlab to perform quadtree decomposition, which needs a preprocessing step

to resize the input image to a square image at resolution of 2n. Resizing input images to be square

changes the height-to-width, it does not affect patch-based feature extraction much. This resem-

bles unaccessible selection of optimal size and ratio of sliding windows which are commonly used

in the image processing and computer vision fields. Quadtree partitioning not only increases gran-

ularity of patches to reach arbitrary object boundaries but also improves accuracy by minimizing

mixture of object and background in one patch. It is fast too and takes 0.2 second to process a

512× 512 image on a 3.2GHz CPU.

2.4.3 Labeling Refinement Based on the Image’s Superpixels

Many existing image processing algorithms use image pixel as the basic representation unit. How-

ever, a pixel is not a natural representation unit of real scenes [88]. It is only a representation

unit of digital imaging. It would be more natural to work with perceptually meaningful units

obtained from a low-level clustering process. One well-known way [88] to achieve this natural

representation is to apply Normalized Cuts (NCut) [101] to partition an image into P segments,

called superpixels. This method gives over-segmentation results, so most structures such as object

boundaries and edges are conserved.

NCut is a classical segmentation algorithm which uses spectral clustering to exploit pairwise

brightness, color and texture affinities between pixels. As in [88], we apply NCut to over-segment

the image to obtain superpixels. This is done offline because it normally takes 3 minutes to process
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a 320 × 240 image. Figure 2.4.1 shows an image’s superpixel map. The labeled regions are

compared with superpixels to generate refined object boundaries. Algorithm 5 shows the process.

Init: input image (I), labeling mask (M ), the image’s superpixels (S) and result map (R).

Refine quadtree-based labeling results using superpixels.

1. For i=1,2,...,P; (P : number of superpixels) Compute the overlap between S(i) and M , if it is

greater than 50%, add S(i) in R.

Use R to cut out predicted object regions from I .

Algorithm 5: Saliency based sampling of negative samples from single image.

2.5 Experiments and Discussion

2.5.1 Experimental Setting

To evaluate SmartLabel-2 and compare it with SmartLabel, we have collected images from public

datasets [34, 104, 64] which are the same data used in [121]. Two sets of experiments are con-

ducted, quantitative analysis with simulated ROI and RF, and qualitative analysis with user input

ROIs. Six classes of objects are studied: airplane, animal, building, car, flower and text. These

classes cover a range of man-made and natural objects.

Two kinds of low-level features are used: color information and Gabor texture. Both features

are extracted for each patch. The color info consists of the 1st and 2nd moments for each RGB

channel and color histograms with 32 bins for each channel. This results in a 102-dim color vector

for each patch. The texture features are obtained from convoluting each patch with various Gabor

filters. Here 4 scales and 8 angles are used. The center and 2nd-order moments are computed from

each filter output. This results in a 64-dim texture vector. After normalization, we concatenate
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Figure 2.5.1: Comparing four algorithms: Zhu’s SSL method[130] (baseline), S-Label* (Smart-

Label w/o. relevance feedback), S-Label (SmartLabel) and S-Label2 (SmartLabel-2). Each curve

plots FM
1 against iterations. SP-Limit: superpixel-based upper bound.

color and texture vectors into a 166-dim vector. Hyperparameters, σ1, ..., σm, in Equation (5) are

set as variance for each dimension.

To quantitatively compare SmartLabel and SmartLabel-2, we simulate input ROIs by randomly

selecting a 10% of object regions. In SmartLabel, after the 1st iteration, we simulate RF by labeling

top 5 false positives as negative based on ground truth and adding them to L. For every new nega-

tive sample, we extract its 3 nearest neighbors in the graph and add them to L. Duplication is not

allowed. FM
1 value is used as overall performance metric and defined as FM

1 =
2
∑K
i=1Ri

∑K
i=1 Pi

K(
∑K
i=1 Pi+

∑K
i=1Ri)

,

where Pi and Ri are precision and recall computed for i-th image and K is the number of images

in the class. Except SmartLabel-2, other methods in our study use regular gridding as in [121].

We report results based on two patch sizes, B = 8 or B = 16 and for various sizes of Ur such as

H = 32 and H = 64.

2.5.2 Performance Evaluation

We compare four semi-supervised labeling methods as follows. Zhu’s SSL method (Zhu’s) takes

ROI(s) as positive samples and makes one-shot labeling prediction on all unlabeled patches. Smart-
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Label* utilizes the iterative labeling scheme without RF. SmartLabel includes RF. SmartLabel-2

requires no human supervision during learning and incorporates quadtree partitioning and sampling

of negative samples.

Figure 2.5.1 depicts performance curves on three object categories, (a) airplane, (b) text and (c)

flower. Each subfigure contains the curves of Zhu’s, SmartLabel*, SmartLabel and SmartLabel-

2 and the superpixel-based upper bound (SP-Limit), which is reachable performance by using

superpixel representation. Since Zhu’s is an one-shot approach, its performance does not change

as iterations. In the 1st loop, Zhu’s does better than or is comparable to other methods. This is

because Zhu’s predicts labels on U while other methods predict only on Ur. We observe that after

3 or 4 iterations, the other methods pick up and do better than Zhu’s. Comparing SmartLabel*,

SmartLabel and SmartLabel-2, we see that their performances stand in the order of SmartLabel*

� SmartLabel� SmartLabel-2. This observation corroborates the benefits of new improvements

proposed in SmartLabel-2. We also notice SmartLabel-2 achieves near SP-Limit FM
1 on the flower

class. With the number of loops increasing, all three SmartLabel methods monotonically improve

and normally converge at the 5th iteration. In summary, SmartLabel (w. RF) performs better than

SmartLabel* but underperforms SmartLabel-2.

Figure 2.5.2 shows results by SmartLabel-2 on several classes. The 1st column lists input

images with input ROIs. The 2nd column shows corresponding superpixel maps. The 3rd column

shows labeling results produced by SmartLabel-2. The last column depicts ground truth. We have

several interesting observations from the results. First, SmartLabel-2 generalizes very across man-

made objects such as airplanes, buildings and text signs, and natural objects such as flowers and

animals. Second, superpixels are proven to be effective in SmartLabel-2 to extract most of object

boundaries despite its heavy computation. Third, the results suggest that SmartLabel-2 can assist

humans to generate ground truth of object locations in images. Top two building examples in

Figure 2.5.2 show SmartLabel-2 even does a better job than a human labeler. For complete results

of all six classes, please see our submitted supplementary package.

Figure 2.5.3 shows labeling curves in terms of the size of Ur on three classes: (a) airplane,
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Figure 2.5.2: Results by SmartLabel-2. (a) Input images with ROIs. (b) Superpixel maps (P =

100). (c) SmartLabel-2’s labeling results. (d) Ground truth. For complete results of all six classes,

see our submitted supplementary package.
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Figure 2.5.3: The impact of Ur’s size on performance. Comparison on three classes. B = 16. Two

settings for SmartLabel: H = 32 and H = 64. For SmartLabel-2, H = 64. Each curve plots FM
1

against iterations. SP-Limit: superpixel-based upper bound.

(b) building and (c) flower. B = 16 is used for both SmartLabel and SmartLabel-2. We compare

them in two cases: H = 32 and H = 64. Each subplot shows FM
1 curves. Figure 2.5.3 shows

several interesting points. First, a large Ur (H = 64) results in higher performance than H = 32

along iterations for the airplane class. However, the observation is opposite for the building class

in first few iterations. To investigate the reasons, we examine images in both classes and find

that backgrounds in airplane images are simpler than those in building images. This explains

why a large Ur boosts performance on the airplane class but degrades performance in complex

building images. Also, performance trends seem interesting in building. We examine images

and intermediate results at every iteration, and we find that building regions across the class have

different sizes and shapes. H = 64 gives better performance on some building images than others

and H = 32 can also favor some images not others. This is why the blue curve slightly decreases

after the 3rd iteration. In contrast SmartLabel-2 consistently outperforms two other SmartLabel

variants.

To make a qualitative comparison between SmartLabel-2 and SmartLabel [121], Figure 2.5.4

shows various labeling results by two methods. The 1st row shows input images with ROIs. The

2nd row shows SmartLabel’s results and the third row is SmartLabel-2’s results. SmartLabel ob-

tains reasonable results but with zigzag boundaries, holes and some false positives. SmartLabel-2
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Zhu’s S-Label* S-Label S-Label2 SP-Limit

B=8 B=16 B=8 B=16 B=8 B=16 w/o SP SP C=0.5

Airplane (128) 0.56 0.60 0.71 0.72 0.78 0.77 0.78 0.82 0.91

Animal (59) 0.57 0.53 0.72 0.75 0.74 0.76 0.79 0.85 0.92

Building (42) 0.60 0.63 0.75 0.70 0.80 0.78 0.77 0.82 0.89

Car (123) 0.54 0.59 0.72 0.69 0.76 0.73 0.74 0.78 0.91

Flower (37) 0.66 0.70 0.82 0.81 0.85 0.83 0.85 0.90 0.91

Text (57) 0.64 0.61 0.73 0.71 0.78 0.78 0.80 0.84 0.94

Avg-FM
1 0.60 0.61 0.74 0.73 0.79 0.78 0.79 0.84 0.91

Table 2.5.1: Comparing 3 methods proposed in [121] with SmartLabel-2 (S-Label2). For S-Label*

and S-Label, H = 64 and B = 8 or B = 16. S-Label2 uses B = 16 and H = 64. SP: refinement

by superpixels, SP-Limit: superpixel-based upper bound, C = 0.5: 50% overlap criterion for

selecting a superpixel.

gives results with smooth object boundaries and no holes. The quantitative improvement by FM
1

may not be significant on these results, but the qualitative improvement in terms of user satisfaction

is distinctive.

Table 2.5.1 lists a comprehensive comparison on six classes. Numbers in the 1st column are

numbers of images in each class. The average of 10 runs’ FM
1 is shown for each method. Input

images are resized to 512× 512. Results of published methods are slightly different from those in

[121] due to different experiment settings. We observe that large patches (B = 16) improve Zhu’s

because segmenting images into small patches would create more patches which merely contain

background and bring noise to L. We see that SmartLabel-2 achieves near SP-Limit FM
1 on the

flower class. For other classes, SmartLabel-2 performs very well and better than SmartLabel.

The car class is harder than others because its images are all gray so color info is not explored.

SmartLabel runs for a few seconds processing an image of 384 × 256 using 16 × 16 patches on

a 3.2GHz CPU. SmartLabel-2 requires a few seconds more. Computing superpixels takes several
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Zhu’s SmartLabel* SmartLabel SmartLabel-2

User input X X X X

Regular partitioning X X X

Quadtree partitioning X

No human supervision X X X

Negative sampling X

Iterative labeling X X X

Boundary refinement X

Table 2.5.2: Summary of four SSL labeling methods described here.

Quadtree Superpixels

Computation Time (s) 0.4 836.5

Feature Extraction X N/A

Table 2.5.3: Comparison of quadtree and superpixel ( P = 100) on computation time and FE using

512× 512 images.

minutes per 320× 240 image, so it can be done offline or on a distributed cluster.

Figure 2.5.5 shows some failure cases by SmartLabel-2. After monitoring the intermediate

results at each iteration, we found that most of these failures resulted from two reasons: 1) likeness

between background and the object appearance and 2) background regions are added in the labeled

set (L) as positive data in initial iterations. These are challenging issues which cannot be dealt with

by any unified scheme.

Table 2.5.2 summarizes properties of four semi-supervised labeling methods proposed here.

Fig.2.5.6 shows more results of SmartLabel-2 on all six categories. Table 2.5.3 shows compar-

ison of quadtree and superpixels based on computation and feature extraction (FR).
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Figure 2.5.4: Comparison between SmartLabel [121] and SmartLabel-2. In two groups of three

rows. The 1st row shows input images with ROIs. The 2nd row shows results by SmartLabel. The

3rd row shows results by SmartLabel-2. Two merits of SmartLabel-2 compared to SmartLabel: 1)

smooth object boundaries instead of zigzag lines and 2) less misclassified patches.
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Figure 2.5.5: Some failure examples by SmartLabel-2 (the bottom row). Results by SmartLabel

are shown in the middle row.
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Figure 2.5.6: More results of SmartLabel-2 of all six classes.
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Chapter 3

Detection of Text on Road Signs from Video

In this chapter we will focus on one sub problem of detecting text on road signs from video. Auto-

matic detection of text from video is an essential task for autonomous or intelligent transportation

systems [58]. There have been extensive research efforts in the detection, segmentation, and recog-

nition of text from still images and video [20, 54, 69, 72, 76]. In addition, research on road sign

detection and recognition has recently become an active topic [21, 22, 31, 33, 84]. Related re-

search on license plate recognition and vision-based navigation can be found in [19, 43]. Here

we focus on the task of automatically detecting text on road signs from video and using that in-

formation in a driver assistance system. Text on road signs carries much useful information for

driving; it describes the current traffic situation, defines right-of-way, provides warnings about po-

tential risks, and permits or prohibits roadway access. Automatic detection of text on road signs

can help to keep a driver aware of the traffic situation and surrounding environments by seeing and

highlighting signs that are ahead and/or have been passed.

The application scenario begins with a video camera mounted on a moving vehicle capturing

the scene in the front of the vehicle. The system attempts to detect text on road signs from video

input in order to help the driver maneuver in traffic. Fig.3.0.1 shows four examples of road signs.

We can see that correctly detecting text on road signs poses many challenges. First, video images
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Figure 3.0.1: Examples of road signs in different situations including different lighting conditions,

weather and highlights.

are relatively low resolution and noisy. Both the background and foreground of a road sign can

be very complex and can change frequently in video. Lighting conditions are uncontrollable due

to time of the day and the current weather. A sign reading system must be able to read signs in a

variety of conditions such as broad daylight, shaded areas, cloudy days, dusk, rain, and snowing.

Second, the typography of the sign text can be rendered in a multitude of fonts, sizes, and colors.

Third, text moving quickly in video can be blurred by motion or occluded by other objects. Finally,

text can be distorted by the slant, tilt, and shape of signs. In addition to the horizontal left-to-right

orientation, other orientations include vertical, circularly wrapped around another object, and even

mixed orientations within the same text area. We will only address the horizontal case here and

leave other situations to future research.

In order to address the above difficulties, we have proposed a novel framework that can in-

crementally detect text on road signs from video. The proposed framework takes advantage of

spatio-temporal information in video and fuses partial information for detecting text from frame
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to frame. The framework employs a two step strategy: 1) locate road signs before detecting text

via a plane classification model by using features like discriminative points and color; and 2) de-

tect text within the candidate road sign areas and then fuse the detection results with the help of a

feature-based tracker.

3.1 Overview of the Proposed Approach

Some previous research work has paid particular attention to detecting and recognizing symbols

on road signs, particularly warning signs such as ”STOP”, ”YIELD”, and ”DO NOT ENTER”.

Since only a finite number of shapes and colors can be applied on these warning signs, color and

edge-based shape features are normally used to train the detector [33]. In this thesis however,

we are interested in detecting not only symbols, but also text on road signs. Text appearing on

road signs can have a variety of appearances. Color and shape features are not enough to train a

robust detector. Without knowing text on the signs, drivers cannot obtain correct information about

current traffic situation and appropriate driving instructions.

To improve the efficiency of the detection process while maintaining a low false hit rate in this

task, we naturally employ a divide and conquer strategy to decompose the original task into the two

subtasks: localizing road signs and detecting text. The key idea for realizing such an incremental

framework is to exploit the temporal information available in video. This idea has been shown

to be effective in other text detection tasks such as caption detection in broadcast video [69, 73].

Moreover, because of government requirements on the design and placement of road signs [39],

this task also has some auspicious properties for the new framework: 1) text on road signs is

highly luminant compared to most sign background colors; 2) text on the same road sign always

has similar foreground and background patterns; 3) most road signs exist on vertical planes; and

4) there are only a limited number colors used as background colors.

Fig.3.1.1 shows the architecture of the framework of which four main steps are summarized as
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Figure 3.1.1: The architecture of the proposed framework.

follows:

1. Discriminative points detection and clustering - detect discriminative feature points in every

video frame using the algorithm proposed in [102] and partition them into clusters.

2. Road sign localization - select candidate road sign regions corresponding to clusters of fea-

ture points using a vertical plane criterion.

3. Text detection - detect text on candidate road sign areas and track them.

4. Text extraction and recognition - extract text in candidate sign plane for recognition given a

satisfactory size.

There are some interesting properties of the new framework. First, the number of selected

points in step 1, N , balances the sign localization speed and system process rate because more
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feature point’s likelihood that the sign is located early. A large number of feature points also

mean intensive computation. Second, spatio-temporal information is extracted and used by the

framework to recover the orientation of potential planes in the 3D space. Once a point cluster is

classified as a vertical plane, the text detection algorithm will be run on it. Third, the framework

applies a feature-based tracker which can track a feature point in a subpixel level. The corners of

detected road sign areas and MBRs are tracked to the next frame by averaging the motions of the

nearest points of each corner. There are two reasons for tracking discriminative points instead of

the boundary corners directly: 1) boundary corners may not be a good feature to track compared

to those selected points; and 2) tracking the selected points on the road sign area can relieve the

problem of partial occlusion when it happens in video. This property is illustrated and discussed

more detailed later.

The new framework possesses two unique merits:

• By applying the divide and conquer strategy, the first two steps of the algorithm can signif-

icantly narrow down the search space for the later text detection step and thus reduce the

majority of false hits which occur in the case of the whole-image text detection;

• It takes advantage of both temporal and spatial information in video for detecting text on

road signs over the timeline.

3.2 Road Sign Localization

In order to differentiate road signs from other objects, we have to use properties of road signs such

as color distribution and geometric constraints. The following subsections, we show how to detect

discriminative points and use the vertical plane criterion for finding road signs from video.
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3.2.1 Discriminative Point Detection

To recover the orientations rigid planes in videos, the system finds a number of discriminative

feature points in the current video frame at any given frame. Features are found using the detector

of Shi and Tomasi [102]. This method finds features which are good and easy to track. Compute

the Laplacian matrix for each pixel in the image and also its minimum eigenvalue λm. Select,

λmax, the maximum value of λm over the whole image. Retain the image pixels that have a λm

value larger than 10% of λmax. From these selected pixels, retain the local maximum pixels whose

value is larger than that of any other pixel in its 3 × 3 neighborhood. In addition, keep a subset

of those pixels so that the minimum distance between any pair of pixels is larger than a given

threshold distance. After the feature selection step, we model the neighborhood of each detected

feature point using a Gaussian Mixture Model (GMM) since points on road signs share common

color properties.

g(c) = βGf (µf , θf ) + (1− β)Gb(µb + θb), 0 ≤ β ≤ 1, (3.2.1)

whereGf , Gb are the color distributions of the foreground and background respectively. There-

fore, each feature point can be represented as a vector such as (β, µf , µb, θf , θb). The GMM pa-

rameters are used as features for the clustering of selected points. Each color space has its own

characteristics. Previous research shows that the HSI color space can better handle the lighting

variations than others when saturation is not too low [21, 22], which often happen in the natural

scene environment. We use the H component in color analysis here.

In this stage, we then use the K-means algorithm to obtain a set of feature point clusters us-

ing color analysis, Ct
1, C

t
2, ..., C

t
Kat time t. K is the number of clusters and is set at 10 in our

experiments. Ct
i = [ptj, ..., p

t
k] is a cluster including from the j-th feature point to the k-th point.

Points in the same cluster share the similar color patterns in their local regions. Thus, a cluster can

be naturally considered as a candidate object plane for the later verification. Minimum bounding

rectangles are computed for each cluster. The visual illustration of the outcome after this step is
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Figure 3.2.1: The basic spatial relationship between two frames.

shown in Fig.3.2.1, where different colors show different clusters of points, e.g., red points in one

cluster, blue points in another cluster, so on and so forth.

3.2.2 A Vertical Plane Assumption

We are estimating the orientations of the candidate planes (signs) given three or more points in two

successive frames. Here, we make two assumptions: 1) the optical axis of the camera is roughly

horizontal and the motion of camera is also going along its optical axis; and 2) scene text lies

on planar surfaces. These two assumptions are often true in the real world setting. Particularly,

camera is mounted on the vehicle in our task and its optical axis is calibrated to parallel to the
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horizontal plane of the vehicle. Fig.3.2.1 upper figure shows the side view of the scenario and the

lower one shows the spatial constraints among the road sign plane, the image plane and the camera

between two successive frames. Here we have several coordinate systems:

1. The camera coordinate system OtX tY tZt and the imaging coordinate system otxtyt at time

t. The optical axis is the Z axis of OtX tY tZt, and the X axis is parallel to the horizon.

2. We take the camera coordinate system at time t0 as the basic world coordinate system,

OXY Z.

P1(X1, Y1, Z1), P2(X2, Y2, Z2) and P3(X3, Y3, Z3) are assumed to be 3 no collinear points on

a road sign plane Γ in Fig.3.2.1. Here, a pinhole camera model is used and let the camera’s focal

length be f , and the camera moves forward a distance d from time t0 to t1. As (t1− t0) is normally

very small for a real-time video stream, the assumption that the motion of vehicle is always small

enough from t0 to t1, often holds. The projections of the points Pi, (i = 1, 2, 3) onto two image

planes are pt0i : (xt0i , y
t0
i ) and pt1i : (xt1i , y

t1
i ), i = 1, 2, 3 respectively.

Here, a feature-based tracker is used to find the correspondence of points between t0 and t1

[73]. Equation (3.2.2) defines the projection between two coordinate systems. The left sides of the

equations are points’ coordinates in otxtyt and the right sides are coordinates in OXY Z. xt0i

yt0i

 =
f

Zi

 Xi

Yi

 , i = 1, 2, 3 (3.2.2)

 xt1i

yt1i

 =
f

Zi − d

 Xi

Yi

 , i = 1, 2, 3 (3.2.3)

We further write down the expressions for Pi in Equation (3.2.4).

Pi :


Xi

Yi

Zi

 =
d

f
·
(
xt0i · x

t1
i

xt1i − x
t0
i

,
yt0i · y

t1
i

yt1i − y
t0
i

,
f · xt1i
xt1i − x

t0
i

)T
, i = 1, 2, 3. (3.2.4)
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Although f and d are unknown, we will soon see that their values are not necessary to be

specified in the later algorithm. We can find that

xt1k
xt1k − x

t0
k

=
yt1k

yt1k − y
t0
k

, k = 1, 2, 3. (3.2.5)

For simplification in the following derivation, we define the following ratios Mk as:

Mk =
xt1k

xt1k − x
t0
k

=
yt1k

yt1k − y
t0
k

, k = 1, 2, 3. (3.2.6)

Fig.3.2.1 lower figure depicts that
−→
A is a vector from P1 to P2, and

−→
B is a vector from P3 to

P2. Using the estimated coordinates of Pi in Equation (3.2.4), we further obtain the estimations of
−→
A and

−→
B as:

−→
A :


X1 −X2

Y1 − Y2

Z1 − Z2

 =


d · x

t0
1

f
·M1 − d · x

t0
2

f
·M2

d · y
t0
1

f
·M1 − d · y

t0
2

f
·M2

d · (M1 −M2)

 , (3.2.7)

−→
B :


X3 −X2

Y3 − Y2

Z3 − Z2

 =


d · x

t0
3

f
·M3 − d · x

t0
2

f
·M2

d · y
t0
3

f
·M3 − d · y

t0
2

f
·M2

d · (M3 −M2)

 . (3.2.8)

In order to recover the orientation of the sign plane Γ, we need to further know the normal

vector of Γ , noted as N , which can be obtained by the cross product of
−→
A and

−→
B .

N =
−→
A ×

−→
B = (XΓYΓZΓ)T , (3.2.9)

where the expression for each component of N , i.e., XΓ, YΓ, ZΓ , is as follows:

XΓ =
d2

f
· [(yt01 M1 − yt02 M2)(M3 −M2)− (yt03 M3 − yt02 M2)(M1 −M2) =

d2

f
· CX ,

YΓ =
d2

f
· [(xt03 M3 − xt02 M2)(M1 −M2)− (xt01 M1 − xt02 M2)(M3 −M2) =

d2

f
· CY ,

ZΓ =
d2

f 2
· [(xt01 M1 − xt02 M2)(yt03 M3 − yt02 M2)− (xt03 M3 − xt02 M2)(yt01 M1 − yt02 M2) =

d2

f 2
· CZ ,
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where CX , CY and C are used to represent the long terms in equations and to simplify the expres-

sions. Equation (3.2.9) gives a nice way to estimate the orientation of the candidate plane by using

the three points’ image coordinates given the spatial constraints. By taking advantage of the ap-

proximations, we can further define a model to classify planes into positive and negative categories

using different criteria such as vertical vs. non-vertical planes or rigid vs. nonrigid planes. Here,

we are interested in the vertical plane criterion.

Based on the property that most road signs are on vertical planes, the ratio of the component to

the length of N is supposed to be smaller than a certain threshold. Thus, we can estimate the ratio

and use it to locate vertical planes. The ratio is defined as follows:

R =
|Y |
‖N‖

=
|CY |√

C2
X + C2

Y + 1
f2 · C2

Z

. (3.2.10)

3.2.3 Sign Localization Algorithm Description

We have obtained a number of clusters of feature points from the feature detection step. Now we

can apply the vertical plane assumption to verify if a cluster represents a candidate road sign plane.

In order to reduce the error caused by outliers, we use the median as the normal vector of candidate

plane and also calculate its corresponding variance.

Ri = median(Rij), j = 1, 2, ...,mi, (3.2.11)

V ar(Ri) = E(Rij −Ri)
2, j = 1, 2, ...,mi, (3.2.12)

where Ri is the median estimation for the ith cluster, mi is the number of recovered orientation

vectors from one cluster, and Rij is the jth vector in the ith cluster. We use the median to ap-

proximate the orientation of the candidate plane associated with each cluster Ct
i . A cluster will be

classified as a rigid plane if V ar(Ri) is smaller than a threshold. Moreover, it will be classified as

a vertical plane if Ri is smaller than a threshold.

Specifically, when the sign plane is perpendicular to the optical axis of the camera, we can use

a simplified criterion to verify candidate planes. In this case, points on the sign plane have almost
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Figure 3.2.2: Bird view of the perpendicular case.

the same distance to the camera along the Z axis in OXY Z. The constraint for P1, P2, P3 can be

written as:

Z1 ≈ Z2 ≈ Z3. (3.2.13)

Given the above condition, we obtain the equality among the ratios Mk from Equations (3.2.5)

and (3.2.6):

M1 ≈M2 ≈M3. (3.2.14)

From Equation (3.2.6) we see that the ratios of both components X and Y to the length of N

should be smaller than a threshold if Γ is a vertical plane. This is quite an intuitive observation

since we can imagine that N is almost parallel to the optical axis Z given the Equation (3.2.13)

holds. Fig.3.2.2 depicts the perpendicular situation as a special case of the vertical case.

Thus, the simplified verification criterion is shown as follows,

γ =
1

J

J∑
j=1

√
|Xj|2 + |Yj|2

‖Nj‖
, (3.2.15)

V ar(γ) = Eγ(γj − γ)2. (3.2.16)

The criterion indicates the triangle of P1, P2, P3 is about to maintain the consistent spatial struc-

ture from t0 to t1. More generally, such consistency of the spatial structure should hold whenever

52



Input: Feature point clusters Ct
1, C

t
2, ..., C

t
K .

Output: Lt = lt1, l
t
2, ..., l

t
K , l

t
i ∈ P, V,R,NV label for Ct

i . P is the perpendicular planes, V for

vertical planes, R for rigid planes and NR for non-rigid planes.

Algorithms:

1.R-plane identification step: compute Ri and V ar(Ri). If V ar(Ri) < ε, go to Step 2; other-

wise, label ltj = NR. Get the next cluster. If all clusters have been examined, exit.

2. V-plane identification step: If Ri < δ, which means it meets the vertical plane criterion, and

then go to Step 3 to further verify it is a perpendicular plane; otherwise, label ltj = R; it is a rigid

but not vertical plane. Go back to Step 1.

3. P-plane identification step: Compute the mean γ and variance V ar(γ). If γ < ξ and

V ar(γ) < ψ, label lti = P ; otherwise, label lti = V . Go back to Step 1.

Note: ε, δ, ξ, ψ are thresholds in the algorithm.

Algorithm 6: The algorithm for the road sign localization.
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the condition in Equation (3.2.13) is satisfied. We use the Maximum Likelihood criterion to esti-

mate the mean and variance of . Algorithm I summarizes the process of sign plane classification.

In this algorithm, the perpendicular plane is named as P , the vertical plane as V , the non-vertical

plane as NV , the rigid plane as R and the nonrigid plane as NR. The relationship among them is:

P ⊂ V ⊂ R, V ∩NV = ∅and R∩NR = ∅. Once we identify candidate road signs from feature

point clusters, we can focus on text detection within these candidates only, which can substantially

reduce the search space for the text detection.

3.2.4 A More General Case

Previously, we assume that the camera motion will only be traversal along the optical axis as in

Fig.3.2.2. However, this assumption is likely violated under some conditions such as when the

vehicle makes a turn. Calibrating the camera parallel to the horizontal plane of vehicle does not

help obviate the issue. From Equation (3.2.10), we can see that variations of the ratio may come

from two sources: a change in the focal length, and violation of the assumption motion occurs only

along the optical axis. The first issue can be negated after f is calibrated prior the experiment and

fixed during experiments. The second issue is relatively complicated because it could cause the

variations of more than one term in Equation (3.2.10). Next, we will devote the analysis for the

turning case in particular.

The key question to ask here is, can we recover the normal vector N of Γ when the vehicle

makes a turn? Our conclusion is that we can recover N if only if we know the turning angle,

such as θ. Assume the relative movement from t0 to t1 is (∆X, 0,∆Z) caused by turning and the

turning angle relative to the Y axis is θ. Fig.3.2.3 depicts such a turning scenario.

The normal vector to the plane O0P1P2 in the O0X0Y 0Z0 coordinate system is:

N0 =


x0

1

y0
1

f

×


x0
2

y0
2

f

 =


(y0

1 − y0
2)f

(x0
2 − x0

1)f

x0
1y

0
2 − x0

2y
0
1

 . (3.2.17)
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Figure 3.2.3: Model sensitivity analysis for the vehicle turning case, when the assumption of the

translation along the optical axis is violated.

Similarly, the normal vector to the plane O1P1P2 in the O1X1Y 1Z1 coordinate system is:

N0 =


x1

1

y1
1

f

×


x1
2

y1
2

f

 =


(y1

1 − y1
2)f

(x1
2 − x1

1)f

x1
1y

1
2 − x1

2y
1
1

 . (3.2.18)

Therefore, the normal vector to the plane O1P1P2 in the O0X0Y 0Z0 coordinate system can be

computed as:

N ′1 =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




(y1
1 − y1

2)f

(x1
2 − x1

1)f

x1
1y

1
2 − x1

2y
1
1)

 =


(y1

1 − y1
2)f cos θ + (x1

1y
1
2 − x1

2y
1
1) sin θ

(x1
2 − x1

1)f

(y1
2 − y1

1)f cos θ + (x1
1y

1
2 − x1

2y
1
1) cos θ


(3.2.19)
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Thus, the normal vector of→ P1P2 is:

N12 = N0 ×N ′1. (3.2.20)

Similarly, given a third point, P3, we obtain N23 and N13. Therefore, the normal vector of Γ

will be

N = N12 ×N13. (3.2.21)

As we can see from the above equation, the answer to the question at the beginning of this

section is that we can recover the normal vector of the plane Γ if we know or can approximate the

turning angle θ.

3.3 Detection of Text on Road Signs

Even when sign locations are known in images, correctly detecting text on road signs is still

not easy because of deformations, highlights, shadows and other factors. To work around these

changes in an image, we use an edge-based cascade text detection method that integrates edge

detection, adaptive searching, color analysis and geometry alignment analysis. This method was

first proposed in [22]. Fig.3.3.1 shows the basic flow of this schema.

Figure 3.3.1: An edge-based text detection method.

3.3.1 Coarse Detection of Candidate Text

The intensity of an image is a major source of information for text detection; however, it is well

known that the intensity is sensitive to lighting variations. In contrast, the gradient of the intensity
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(edge) is less sensitive to lighting changes. Therefore, we use edge-based features in the first

coarse detection phase. The main idea of the detection algorithm for coarse detection is as follows:

A multi-scale Laplacian of Gaussian (LOG) edge detector is used to obtain an edge set for each

candidate text area. The properties of the edge set associated with each edge patch, such as size,

intensity, mean, and variance, are then calculated. Some edge patches will be excluded from

further consideration based on certain criteria applied to the properties, and the rest will be passed

to a recursive procedure. The procedure attempts to merge adjoining edge patches with similar

properties and re-calculate the properties recursively until no update can be made. With LOG,

we can obtain enhanced correspondences on different edge scales by using a suitable deviation.

Since English letters in the same context share some common patterns, we can use them to analyze

the alignment and rectification parameters and refine detection results. Color distribution of the

foreground and background is one such important property.

3.3.2 Color Analysis

Text on signs is designed for drivers to view at a distance, so they have highly distinguishable col-

ors on their foregrounds and backgrounds, and also have a high intensity contrast in their grayscale

images. This property helps make it easy to segment text and describe letters using marginal distri-

butions in a color space. However, it is almost impossible to obtain uniform color distributions of

the foreground and background because of lighting sources, shadows, dust, etc. Here again, we use

the Gaussian Mixture Model to characterize color distributions of the foreground and background

of road signs, and more specifically, for each words on signs. Recall that β provides a cue on the

complexity of the letter, ‖µf − µb‖ indicates the contrast for a color space invariant to the lighting

condition, and θb, θf yields the font style.

Since there could be multiple lighting sources and shadows in natural scene video, contrasts of

foreground and background might change significantly across the entire sign. Therefore, we model

the distribution of each letter separately rather than the entire sign as a whole. We normalize HSI
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components within the range of [0, 255] in computation. These GMM parameters are used for

text alignment analysis and estimation of affine parameters. An expectation maximization (EM)

algorithm is applied to estimate the parameters. To differentiate the background and foreground,

we enlarge the boundary of the letter by 2 pixels on each side and calculate the color distribution

of the region between the original boundary and the enlarged boundary. This distribution should

be the same or similar to the background distribution. We then can determine the background

distribution in the GMM by comparing distributions in the GMM to this distribution.

3.3.3 Text Alignment Analysis

The objective of text alignment analysis is to align characters in an optimal way so that letters

that belong to the same context will be grouped together. Text alignment analysis includes two

cluster features: intrinsic and extrinsic features. The intrinsic features are those which do not

change with the camera position and the extrinsic features are those ones which change with the

camera position. The intrinsic features include font style, color, etc; the extrinsic features include

letter size, text orientation, etc. Both the intrinsic and extrinsic features can provide cues for the

alignment analysis. The algorithm first clusters text regions using intrinsic and extrinsic features,

including the center, height, width, and GMM parameters of candidate text regions. Then, it

uses the Hough transform to find all possible line segments. These line segments form several

compatible sets. The two smallest sets are selected as candidates. One winner from the compatible

sets is selected by picking the line segment which has a larger mean length than all line segments

excluding the shortest. Then, it removes all small candidate regions and finally outputs the corner

positions of MBR for each candidate region.
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Figure 3.3.2: An example sequence from our dataset. From left to right and top to down.

3.4 Experimental Results and Discussion

The proposed framework has been evaluated through experiments with a large and diverse set of

road sign video sequences. From a video database of 3-hour natural scene videos captured by a
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DV camera mounted in a moving mini van, we selected 22 video sequences with different driving

situations including different road conditions (straight, curve), vehicle speed (low, high), weather

conditions (sunny, cloudy), and daylight variations. Fig.3.3.2 shows a typical example of video

frames from our dataset. The objective of the selection was to be as diverse as possible and cover

the range of difficulty as well as the generality of the task. Thus, we did not include the extreme

cases, such as crooked lateral signs. Each video sequence is about 30 seconds, contains an average

of 92 road signs and 359 words (including numbers such as a speed limit), and has a frame size

of 640× 480. Our system was implemented in C++ and tested on a 1.8 GHz Pentium IV PC. The

number of selected points was set at N = 150 and the number of clusters was set at K = 10. The

parameters in the Algorithm I were ε = 0.1, δ = 0.15, ξ = 0.2, ψ = 0.1.

3.4.1 Incremental Text Detection Process

Fig.3.4.1 illustrates the process of incremental text detection. During a few initial video frames,

no discriminative points are found on the road sign plane as shown in (a). In the frame (b), some

feature points are detected in the frame, shown as blue points. The system then verifies the sign

area by using the plane classification algorithm. Once the area is confirmed as a vertical plane it

will be bounded with a yellow rectangle as in (c). The following frames, such as (d) - (h), show

that more and more texts are detected on the road sign over the time. Newly detected text regions

are merged with previously partial detection results. In the meantime, all detected text regions are

tracked by averaging the optical flows of the feature points within the detected areas. Finally, all

texts on the road sign are correctly detected as shown in (i). Note that there was a sign on the right

at the beginning of the sequence (a)-(c), however, our system did not detect it. The reason is that

no feature points were found in that sign area.

Fig.3.4.2 illustrates three more examples one in each row. The video sequence in (a) contains

three adjacent green road signs and other small road signs. The video was captured during daylight

under cloudy weather. Selected feature points mainly appear in the texture-rich areas, such as the
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Figure 3.4.1: An illustration of incremental text detection on a video sequence. Blue points are

selected feature points, the yellow box bounds the localized road sign area and red boxes indicate

the detected text lines.

edge of forest in background, road signs and side roads. Very few feature points appear in less

texture areas, such as sky and front ground. Obviously, the feature selection step not only provides

candidate clues for road sign localization but also reduces the search space for later text detection.

Images in column 3 show results of road sign localization: the labeled candidate road signs within

white rectangle. This step further refines the selected features by sign plane classification algorithm

and avoids feeding some texture-rich areas, such as forests and side roads, into the text detection

module, which could cause false hits. In the next few frames, partial texts are detected on the

road signs from frame to frame, as shown with yellow boxes. Detected text regions on road signs
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Figure 3.4.2: Three examples of incremental text detection process. One in each row. First column:

selected discriminative points; second column: intermediate sign localization and text detection

results; third column: final detection results before the road sign(s) disappear; fourth column:

extracted road sign segments from video.

are merged and tracked over the time until all texts are detected or the road signs disappear from

the frame. Finally, the image segments of extracted road sign are stored in the database and their

appearance times and durations are recorded for other services such as indexing or retrieval. Row

(b) shows the process of detecting another example of road signs from another sequence under

dusk environment. Sequences in both (a) and (b) were captured when the vehicle was driving

straight. However, the row (c) shows the case when the vehicle makes turning. As we analyze in

the Section 3.4, when we assume a very small angle for the turn case, our algorithm can still handle

the sign localization step well.
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3.4.2 Overall Evaluation

Table I summarizes the sign localization performance. The system correctly detected 85 of 92

signs. For each frame, the ground truth for text bounding boxes was initially created by our system

and further verified and adjusted manually. We apply the definitions of ”hit rate” and ”false hits”

as defined in [72], and shown in Equation (3.4.1).

hit ratebox−based = 1
M

∑
g∈G,a∈A δ(a, g),

miss ratebox−based = 1− hit ratebox−based, (3.4.1)

false hitsbox−based = N −
∑

g∈G,a∈A δ(a, g).

where A = a1, ..., aN and G = g1, ..., gM are the sets of box sets representing the system assigned

road sign boxes and the ground truth sign boxes. N = |A| and M = |G|. Also, δ(a, g) is defined

as:

δ(a, g) =

 1, if min(|a ∩ g|/|a|, |a ∩ g|/|g|) ≥ 0.8

0, otherwise

We used a slight variation on the evaluation methodology used by Lienhart. We directly

counted the number of false hits instead of computing the ratio to avoid the bigger-than-one case.

The text box-based hit rate, false hit rate, and miss rate refer to the number of detected boxes that

match with the ground truth. A system assigned text bounding box was regarded as matching a

ground truth text bounding box if only if only if these two boxes overlapped with each other by at

least 80%.

Table II summarize the overall text detection performance. We compare two methods in the

experiment: the baseline algorithm (which analyzes the whole image for every video frame) and
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the proposed algorithm. There are a total of 359 words in the testing videos, including numbers

and symbols such as arrows on all road signs. The new framework significantly reduces the false

hit rate and achieves a higher hit rate than the baseline algorithm. The low false hit rate is mainly

because of the two-step strategy of the new framework and a higher hit rate is due to the sign

localization step before detection. The total false hit rate of text detection is 9.2% as shown in the

Table II. On average, there are about two false positives per minute in areas without traffic signs.

Another merit of the new framework to mention is the improvement of processing bandwidth

of the working system. Currently, the working system can process the video at the rate of 8 -

16 fps, which is about twice to three times faster than the baseline algorithm. The detection rate

of 88.9% is still not good enough for real-world applications. Some signs are missed in the sign

plane localization step as shown in Table I. On the other hand, sign tracking improves the text

detection performance by reducing the number of false positives. At the beginning of stage, signs

are localized but the characters on them are too small to be detected because the signs are far away

from the vehicle. The feature-based tracker in our system tracks the localized signs in video, so it

is possible to merge the newly detected text with previously detected text over the time.

3.5 System Prototype and Interface

Fig.3.5.1 shows an early prototype of the proposed framework for testing on indoor road sign

printouts. Implemented functions include near real-time road sign detection, text recognition and
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Figure 3.5.1: An early prototype for indoor road sign (printout) recognition. Functions include near

real-time road sign detection, text recognition and Chinese-English translation. Bottom windows

show intermediate results.

Chinese-English translation. Bottom windows show intermediate results. The sign show here was

written in Chinese meaning ”No entry for tourists.”

Fig.3.5.2 shows the more advanced prototype (current version). Dynamic windows show mul-

tiple information and results: source video sequence, road sign detection results, road sign tracking

results, text detection and segmentation, and text detection binarization. Our system can read in

video sequences, or directly accept video stream from cameras, or read input images. Video-

playing mode interface allows users quickly learn how to operate our system and process data.
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Figure 3.5.2: The more advanced prototype. Dynamic windows show, source video sequence,

road sign detection results, road sign tracking results, text detection and segmentation, and text

detection binarization

.

66



Chapter 4

Recognition of Other Signs

In the previous chapter we have shown how to detect text on road sings from video and its benefits

to the landmark-based car navigation. In this chapter we will extend the work to recognition of

other signs such as store signs.

4.1 Introduction

Unlike a text document, we do not have ”key words” in understanding a multimedia document.

In order to analyze video data, we need some explicit structures. An object is something mate-

rial that may be perceived by the senses and it can be a basic unit at the lowest level of such a

structure. In video analysis, many algorithms can be largely categorized in detectors, such as face

detector [126], text detector [119], and person detector [63], etc. Simple detectors can form a more

complex detector, e.g., a face detector and a shot classifier can be combined as an anchor detector.

Therefore object detection plays an important role in multimedia content analysis. Object detec-

tion determines whether or not the object is present, and, if present, determines the location and

scale of each object in an given image. The challenge of this task is largely because of the infinite

combinations of scale, orientation, viewpoint, lighting, and many other factors. To model such
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variations, a machine learning algorithm usually requires extracting a number of features at every

pixel based on the statistics of the surrounding pixel values. For example, we could train a good

face detector using a large number of data [126]. For some content analysis applications, however,

we might not have enough training data. For example, we frequently must deal with only one

query image. In this research, we are interested in object recognition and localization with very

limited training data (e.g., one image per object for training). An application of such a problem

is street landmark localization which is important to location-aware multimedia applications and

in-car navigation tasks.

In daily life, a street landmark means anything that is easily recognizable, such as a monument,

a building, a store sign, or other structure [14]. In this research, we refer to street landmarks as

objects that can be used for giving directions for driving navigation. In an urban environment,

commonly used street landmarks include gas stations, fast food restaurants, and churches, etc. The

research is a part of our efforts in developing landmark-based navigation technologies for drivers.

Current GPS based navigation systems provide turn-by-turn instructions, e.g., turn left in 50 feet.

However, human drivers often use landmarks for helping navigation. For example, we tell people

to turn left after a BP gas station and then make a right at Starbucks. The application scenario is as

follows: John is going to visit his sister Linda in another city, to which John is new. To help John,

Linda sends him some street landmark images of her city on his route to her place. John will drive

a car with a video camera that can capture the scene in front of his car. We would like to build a

system that could help John to automatically recognize these landmarks from the video sequence.

We assume that only one image per landmark is available for training in this task. In addition,

the training images and the test video sequences always have different quality and resolution. An

example from such a scenario is shown in Fig.4.1.1.

Although street landmark recognition is an object recognition problem, many general object

recognition algorithms may not work well for this application because of the special characteristics

of the problem. A fundamental challenge is lack of training data. Other challenges include rigid

object recognition with different viewpoints, scale and illumination changes, partial occlusion,
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Figure 4.1.1: A BP sign example from our dataset. The training image, captured by a digital

camera, has 1280×960 resolution, but the test image (a video frame) is 320×240. It is even hard

for human eyes to recognize the BP sign from the right given the left training image.

and mismatching resolutions between the training and testing images. In order to address these

challenges, we have proposed a unified approach for learning a model based on a given landmark

image such that the system can recognize the landmark from a new street scene image. Our main

insight is to identify a set of features that are unique to the landmark which we call fingerprints,

and consider finding any fingerprints in a new image as recognition of the landmark.

We believe both appearance and context information of the landmark are crucial for landmark

recognition. However we hypothesize that we do not need all the information to model the entire

landmark in order to recognize it. Rather, we believe that the recognition of the landmark’s fin-

gerprints such as the star shape in the center of BP sign (Fig.4.2.1(a)), suffices to provide a robust
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recognition of the landmark. The contributions of this work are:

• We have proposed a new landmark recognition approach by mining and matching landmark’s

fingerprints. Appearance and bag of features are surprisingly useful in general object recog-

nition [105]. We combine them to extract unique fingerprints of a given landmark. Given

a new image containing the landmark, our approach not only recognizes the landmark, but

also estimates its scale and pose.

• Sliding window scanning is commonly used in object recognition, however, more researchers

have advocated the use of image segmentation to get a better spatial support for recognition.

Inspired by [78], we use multiple segmentations to extract landmark patches.

4.2 Sign Recognition as Fingerprint Matching

We highlight in this section key ideas of our fingerprint based landmark recognition approach.

Fig.4.2.1 provides an overview of core steps of our approach. Let us first define how recognizing a

seen landmark from an input image can be formulated as a fingerprint matching problem. During

training, we construct a set ∆ = δ1, ..., δM ofM fingerprints lying on the landmark. Fingerprints of

a landmark are defined as a combination of informative features or parts such as edges, patches and

keypoints. At runtime, given an input image Fig.4.2.1(c), we first detect salient regions to remove

backgrounds Fig.4.2.1(d) and then decompose the image into a set of features Fig.4.2.1(e)-(g) from

which we want to decide whether or not they contain the landmark’s fingerprints. In other words,

by representing the object through M fingerprints we transform the landmark recognition problem

to a fingerprint searching problem Fig.4.2.1(h).

Variations of object scale and viewpoint are challenging issues in our problem. Keypoints

have been shown to be effective for matching object within certain scale changes, while shape

and appearance features can tolerate more scale variations. By combining two we may achieve

robust feature combinations. In other recognition tasks, there are usually a large set of training
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data available. However, for street landmark recognition, it is impractical to require the user to

provide many landmark images. Most likely, we have only one image per landmark. In order to

achieve robustness against viewpoint, scale and illumination changes, we synthesize many images

of the landmark using a simple rendering technique to extract robust features.

Figure 4.2.1: Given a training image with the landmark in red box (a), our method first extracts

salient features to form a set of fingerprints. Here 3 bigram fingerprints of the BP sign are shown

(b). For a new image (c), our method first detects salient regions (d) and extracts low and mid-level

features via Canny edge detector, keypoint detector [75], graph-base segmentation [35] to obtain

(e)-(g) in which it searches the landmark’s fingerprints. (h) shows the matched landmark part and

inferred boundary.

4.3 Extracting Fingerprints of a Sign

We describe here how to extract a set of fingerprints from a single landmark image. We assume

that only one landmark exists in the image. The landmark boundary is provided automatically by

another algorithm or manually by a user. The task of learning is to start with this single image,

synthesize different views of the landmark, extract features, identify salient features to form a set

of fingerprints.
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Figure 4.3.1: An example of synthesized views for Taco Bell sign, and the extracted keypoints and

edge features for these views.

4.3.1 Building Synthetic Views

Inspired by [68], we generate new views of the landmark and then extract features in these views

as depicted in Fig.4.3.1. This method allows us to easily determine stable features from noises and

perspective distortions, which in turn helps to make the matching in low quality images robust to

the changes of viewpoint, illumination and clutter.

Since most street landmarks are rigid bodies and planar, a new view can be generated by warp-

ing the landmark image using an affine transformation which approximates homography. The

affine transformation can be decomposed as: H = RθR
−1
φ SRφ, where Rθ and Rφ are two rotation

matrices respectively parameterized by the angles θ and φ, and S = diag[λ1, λ2] is a scaling ma-

trix. Similar to [68], we use a random sampling of the affine transformation space, the angles θ and

φ changing in the range [−1
4
π,+1

4
π], and the scales λ1 and λ2 changing in the range [0.15, 2.0]. We

use a much large scale range because of two reasons: 1) to select the most stable scale-invariant

features and 2) to later recognize the landmark in different distances. Therefore, we obtain a set of

landmark images, K, including the original landmark view for the landmark, O.

4.3.2 Feature Extraction

Local image features are basic building blocks of an landmark in the image. The spirit of our ap-

proach is to identify the landmark’s unique fingerprints, and works independently of any particular
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choice of feature detectors and descriptors. In this work, we extract edges, keypoints and patches.

We choose Canny edge detector to extract edges for its simplicity. Long and close loop edges

which are longer than 50 pixels are selected. For keypoints, we choose the SIFT detector for its ro-

bustness and rapidness [75]. Number of scales per octave is set to be 3 and DoG thresh >= 0.01.

It has been demonstrated that using multiple different segmentations of the same image can

improve recognition accuracy [78]. Meanwhile, computational complexity and speed are not

concerns during training. We choose three most popular segmentation algorithms, Normalized

Cuts [101], Mean-Shift [27] and the FH algorithm [35], to generate the ”soup of segments” for

the given landmark image. For Normalized Cuts, we generate 7 different segmentations per

landmark by varying the number of segments k = 2, 3, 4, 5, 6, 7, 8. For the Mean-Shift seg-

mentation, we get 9 segmentations by setting min region = size(landmark)/15 and varying

spatial band = 5, 7, 9 and color band = 7, 14, 21. For the FH algorithm, we get 12 segmenta-

tions by setting σ = 0.5, 1, 1.5, 2, k = 200, 500, 1000, and min region = size(landmark)/15.

From these 28 segmentations, we let the user select the most satisfactory one as the landmark patch

representation.

We apply Canny detector, SIFT and the chosen segmentation algorithm on the synthesized set

K. For each feature, fi, which is detected in the original view we define a missing score to measure

how much percent the feature is not detected in K.

Γ(fi) = 1− Cj
C
,

where Cj is the number of synthesized images in which fi is detected and C is total number of

synthesized images. Γ(fi) smaller is better.

4.3.3 Finding Informative Features

The task of this section is to select the most informative features (appeared in the original view)

about the existence of the landmark. This becomes extremely important when conditions of the
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new image differ greatly from the original landmark image and only signature information of the

landmark is preserved. We select 2000 natural scene images from Google Images and Flickr.com

as SG. And for a particular landmark, O, we select 1000 images from SG, which do not contain

O, to build a database S. For every image in S, we apply the same procedure to extract edge,

keypoint and patch features, from which we select the informative features about O. Intuitively,

we want to find features which occur on the landmark, but rarely or never occur anywhere else.

This intuition can be formally implemented by the information gain criterion and commonly used

for feature selection [98].

Information gain I(A|B) is a measure how much uncertainty is removed from a distribution

by adding some additional information. It is defined based on the entropy H(A) and conditional

entropy I(A|B) = H(A) − H(A|B). In our problem, information gain I(O|fi) is defined with

respect to the existence of the landmark O and a particular feature fi. O is a binary variable that

is true when the landmark is present and fi is a binary variable that is true when the feature fi is

present. Therefore, the information gain of feature fi at presence of the landmark O is:

I(O|fi) = H(O)−H(O|fi). (4.3.1)

Recall our goal is to find those features on the landmark O which maximize this information

gain value. Since the entropy H(O) is constant across all features on the landmark, then maximiz-

ing I(O|fi) leads to minimize the conditional entropy H(O|fi). We can compute H(O|fi) from

four terms: N ,NO, NfiO and NfiO
. The first two terms are constant: N is the total number of

images; NO is the number of landmark instances. The last two terms vary with feature: NfiO is

the number of times feature fi occurs on O. NfiO
is the number times fi occurs on other instances.

Based on the definition of the conditional entropy, H(O|fi) depends on six probabilities and es-

sentially is a function of N ,NO, NfiO and NfiO
. For simplicity, we substitute x and y for NfiO and
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Figure 4.3.2: The minimal of conditional entropy H(O|fi) indicates the most informative feature

with respect to the existence of O. It is a function of x and y, the number of times fi occurs on O

and at other locations. The figure shows H(O|fi) is minimized when fi occurs on every instance

of O and does not at any other location.

NfiO
and we have

P (O|fi) =
x

x+ y
P (O|fi) =

NO − x
N − x− y

P (O|fi) =
y

x+ y
P (O|fi) =

N −NO − y
N − x− y

P (fi) =
x+ y

N
P (fi) =

N − x− y
N

From the definitions H(A) = −
∑

x P (X = x)logP (X = x) and H(A|B) =
∑

y P (B =

b)H(A|B = b) we obtain

H(O|fi) =

−x+ y

N
(

x

x+ y
log(

x

x+ y
) +

y

x+ y
log(

y

x+ y
))

−N − x− y
N

(
NO − x
N − x− y

log(
NO − x
N − x− y

)

+
N −NO − y
N − x− y

log(
N −NO − y
N − x− y

)).

This equation shows that the information gain of a feature H(O|fi) is determined by a function

of x and y as shown in Fig.4.3.2.
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Figure 4.3.3: Extracted local and region features (a) and selected bigram fingerprints for each

feature type (b).

4.3.4 Selecting Fingerprints

Motivated by [65], we use bigrams and triplets, which can be formed by different types of fea-

tures, as our matching primitives. By combining two or three features into a set, we increase

their discriminative power over single features. Similarly, we compute the conditional entropy

for each bigram and triplet which appear on the landmark. However, the above definition of the

conditional entropy only considers saliency of a bigram or triplet while ignoring the robustness of

them to noises. To achieve the trade-off between selecting informative and stable features, we rank
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extracted bigrams and triplets by using the following value.

Q(δj) = (1− µ) ·H(O|δj) + µ · Γ(δj), (4.3.2)

where Γ(δj) =
∑n

i=1 Γ(fi), fi ∈ δj , is the sum of missing scores of each feature in δj , n = 2 for

bigram and n = 3 for triplet. µ is a weighting factor. By computing Q(δj) for extracted bigram

and triplet features on the landmark, we rank them in ascending order and keep top M to form the

set of fingerprints ∆ for O. Fig.4.3.3 depicts the selected bigram fingerprints from each feature

type for BP sign. These M fingerprints are used to build the acceptance cascade to recognize O at

runtime as shown in Fig.4.4.1.

4.4 Recognizing a Sign

Given a new image, I1, our task is to detect whether the landmark exists, localize where the land-

mark is and estimate its boundary. We go through the following steps: removing less-information

regions (e.g. sky and ground), extracting image features, matching the landmark’s fingerprints to

the image features and finally estimating pose and boundary of the landmark if it exists.

4.4.1 Saliency Detection and Feature Extraction

During training, the user indicates the boundary of the landmark while for I1 we have no prior

knowledge whether the landmark exists and where it is. Instead, to avoid greedy feature extraction

on the whole image, we rely on a simple method for visual saliency detection [51]. By analyzing

the log-spectrum of the input image, the method extracts the spectral residual of an image in

spectral domain and constructs the corresponding saliency map in spatial domain (Fig.4.2.1(d)).

We follow the same procedure to extract image features as we do during training. We apply

SIFT detector to extract keypoints which are represented by 128-dimension vectors. Canny edge

detector (σ = 1) is applied to extract edge fragments. For patch features, we do not apply multiple
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Figure 4.4.1: Cascade of fingerprints using 1-Nearest Neighbor classifiers. The most informative

and robust fingerprints are listed in the beginning of the cascade. During recognition, once a

fingerprint is matched, the landmark will be recognized.

segmentations due to computation concern while only apply the FH algorithm [35] by letting σ =

0.5, k = 250 and min region = 50. Thus, we obtain three feature maps for I1, as shown in

Fig.4.2.1(e)-(g).

4.4.2 Matching a Fingerprint to the Image

For landmark recognition, we combineM 1-Nearest Neighbor classifiers with acceptance cascade,

as shown in Fig.4.4.1. Different from face or human detection using rejection cascade which com-

bines a number of weak classifiers, our fingerprint-based cascade method recognizes the landmark

once verification occurs at any cascade level. At every cascade level, we match the fingerprint to

the image via a pictorial model [36].

L∗ = arg min
L

(
n∑
i=1

mi(li) +
∑

(fi,fj)∈E

dij(li, lj)), (4.4.1)

where an candidate matching fingerprint is given by a configuration L = (l1, .., ln), where li spec-

ifies the location of feature fi. n = 2 for bigram fingerprint or n = 3 for triplet. (fi, fj) ∈ E
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indicates fi and fj are connected. mi(li) measures the degree of mismatch when feature fi is at

location li, and dij(li, lj) measures the deformation of the model when fi is at li and fj is at lj . For

mi(li), we define it as Shape Context cost [7] for edge and patch features; for keypoints we use

1− cos(a, b) distance metric. For dij(li, lj), we choose either feature in bigram, the mid-feature in

triplet, as a reference point, say fi and its matched position in I1, li. We then define dij(li, lj) as

the L2 distance from lj to fj . For triplets, the second term in Eq.(3) is sum of deformation values

on two edges. Since the pictorial model in our case is a two-node or three-node tree, an efficient

search algorithm [36] has been applied to obtain the optimal match.

The mismatch distance upper bounds for edge (ψe), keypoint (ψk) and patch (ψp) features are

learned from the synthesized training set K. If the mismatch distance (the first term in Eq.(3))

from the fingerprint to the nearest bigram or triplet found in I1 is smaller than the sum of features’

upper bounds, the detected bigram or triplet will be matched to the fingerprint and the landmark

be recognized.

The pose of the landmark can be estimated by projecting back to the synthesized landmark

views which give rise to the minimal residual on the matched fingerprints. In order to estimate the

landmark boundary, we can either re-scale and overlay the boundary of synthesized view obtained

from the last step, or compute the landmark image height from its image position, 3D height

(obtained from the training image) and the viewpoint using the method introduced in [50]. We use

the first method in this work.

4.5 A Dataset of Other Signs

Due to the lack of established research in street landmark recognition, it is difficult to obtain a

standard dataset to compare our approach with. Thus, we compiled a dataset of 15 different US

store signs including 4 categories (Fig.4.5.1): 1) gas station, 2) fast food restaurant, 3) pharmacy

and 4) store. They are:
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1. Shell

2. BP

3. Sunoco

4. Exxon

5. Gulf

6. KFC

7. Wendy’s

8. Taco Bell

9. McDonald’s

10. Pizza Hut

11. Arby’s

12. CVS

13. Eckerd

14. Target

15. Lowe’s

For each landmark, we captured one or a few frontal images for training, and recorded several

test videos in the city of Pittsburgh.

4.6 Experiments and Discussion

Precision, recall, F1 are computed for each landmark for evaluation. We consider a correct recog-

nition if the matched fingerprint is within the landmark region. Parameters such as µ, ψe, ψk, ψp

are varied to obtain precision-recall curves and M = 20.

Fig.4.6.1 depicts the detection performance using precision recall curves on four landmark

examples, i.e., 1) BP, 2) KFC, 3) CVS and 4) Lowe’s, which in general represents the detection

patterns of general street landmarks. Each subfigure contains the precision recall curves of four

detection algorithms, i.e., SIFT [75], bigram only fingerprints, triplets only and full model that

uses both bigrams and triplets. We vary DoG thresh and match thresh in SIFT to generate

curves. The figure shows several interesting observations. First, we observe that four methods

consistently perform better on some landmarks than others. Best performance appears for the BP

sign which can be well explained by its salient star logo with high contrast pattern. However, for

landmarks which mainly contain text such as CVS, four methods all perform poorly due to lack

of appropriate low-level features to capture saliency of text in our model. Second, we can see that

three algorithms proposed in this work all perform better than SIFT on this dataset. Third, for

most examples, bigram model achieves higher recall while lower precision than the triplet model

since the triplet model requires matching one more feature for verification. Finally, by combining
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bigram and triplet features, the full model obtain the best performance in F1 across all examples.

To further examine the proposed algorithms, Table 4.6.1 lists a more comprehensive quantita-

tive comparison for all 15 street landmarks. There are about 7000 labeled video frames (15fps).

Figure 4.5.1: Example images from our street landmark dataset, which consists of 15 different US

street landmarks. (a) training images; (b)-(e) test video images.
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Figure 4.6.1: Precision recall curves using SIFT [75], bigram only fingerprints, triplets and full

model. One street landmark is randomly selected from each landmark category to show the curve.

They are BP, KFC, CVS and Lowe’s in this figure.

F1 is reported for each landmark using four algorithms, SIFT, Bigram, Triplet and Full model.

All three proposed algorithms consistently perform better than SIFT for all landmarks. Overall,

the average F1 increases 32.02%, from 0.506 to 0.668. By combining both bigram and triplet fin-

gerprints, the full model achieves the best performance for each landmark. As we can see, our

approach performs very well on gas station landmarks which generally are big with salient appear-

ance, performs well on fast food and store categories which also often contain signature logos or

shapes. In contrast, pharmacy landmarks, such as CVS and Eckerd, only have texts in their signs

which are hard to be recognized by our approach. In addition, they are much smaller than other

landmarks, sometimes even hard to distinguish from the videos for humans. Another advantage of

our approach is to combine low level features, i.e., edges and keypoints, with mid level features,

i.e., patches, to detect landmarks in various scales which is essential for landmark recognition

in driving videos. The full model usually runs for several seconds processing a video frame of

320 × 240 on a PC with 3.2GHz CPU and 2GB RAM. Our system combined with GPS informa-

tion and more training data (more than one model image) can surely achieve better performance.

We have simplified the problem setting and only focused on the recognition part in our work.

Organization of web image search results have been recently studied in the multimedia com-

munity [55]. To demonstrate that our object fingerprint-based approach can be generalized to other

content analysis tasks, we apply our method to refine web image search results by re-ranking re-

turned images. We used Google image search in this experiment. We assume that the No.1 returned
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image is correct and use it as the model image to re-rank the rest of the top 100 images returned

by Google. Instead of quitting after acceptance, we run matching through all object fingerprints

in the cascade and count the number of matched fingerprints for each image. Use the count as the

ranking score and images with same counts are ranked by their sizes. Images with at least one

matched fingerprint are included in the re-ranking list. Fig.4.6.2 depicts the refined top results by

SIFT Bigram Triplet FP ↑(%)

Shell (404) 0.512 0.654 0.638 0.689 34.57

BP (448) 0.605 0.756 0.774 0.827 36.69

Sunoco (660) 0.619 0.721 0.718 0.761 22.94

Exxon (540) 0.633 0.719 0.685 0.756 19.43

Gulf (411) 0.625 0.727 0.659 0.776 24.16

KFC (488) 0.430 0.551 0.536 0.584 35.81

Wendy’s (408) 0.448 0.579 0.523 0.608 35.71

Taco Bell (490) 0.667 0.780 0.729 0.815 22.19

McDonald’s (519) 0.501 0.624 0.575 0.651 29.94

Pizza Hut (492) 0.485 0.692 0.687 0.708 45.98

Arby’s (475) 0.472 0.611 0.586 0.637 34.96

CVS (415) 0.316 0.383 0.370 0.419 32.59

Eckerd (484) 0.293 0.368 0.354 0.386 31.74

Target (498) 0.469 0.732 0.681 0.740 55.22

Lowe’s (427) 0.512 0.637 0.603 0.669 27.73

Avg F1 0.506 0.634 0.608 0.668 32.02

Table 4.6.1: Comparison of F1 among 15 street landmarks. SIFT uses the implementation in [75];

Bigram: use only bi-gram fingerprints; Triplet: use only triplet fingerprints; FP: the full model

with mixed bigram and triplet fingerprints, and ↑(%): F1 improvement of the full model over SIFT.

The number in the first column is the # of test images for each landmark.
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Figure 4.6.2: Refine web image search results by our approach. Google search results by 3 queries,

i.e. BP logo, Pizza Hut and Lowe’s, are shown. For each query, the first row shows top 10 images

returned by Google and the second row shows refined top 10 images by our method using the first

returned image as model image.

our approach. On the other hand, to achieve diversity of search results, our approach can also be

applied to eliminate near-duplicates from search results.
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Chapter 5

Recognition of Landmark Buildings

Landmark buildings are an important class of street landmarks which can be used as reference

points for driving navigation. This chapter describes and discusses the process of recognizing

landmark buildings.

5.1 Introduction

Commonly used landmark buildings include churches, hotels, office buildings, etc. Accurately

recognizing landmark buildings poses some new challenges which are different from those of

recognizing road signs or other signs.

• Unlike road signs or other signs, landmark buildings exist there not for reference. In other

words, buildings do not provide navigation and geographic information. Basically, buildings

are not salient compared to signs.

• Most buildings are occluded by nearby objects such as trees. Therefore, different view angles

may result in different occlusion appearance.
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Figure 5.1.1: Two images of Cathedral of Learning (a landmark building in Pittsburgh): (a) from

Flickr.com and (b) from Google Map Street View. Our application goal is to recognize the building

in (b) using (a).

• Appearance changes due to lighting, environmental changes, weather or season changes.

These challenges prevent us from applying object fingerprint-based approach to recognize

buildings. The recognition problem as considered in this application can consist of three phases:

building recognition, building segmentation and pose recovery of the building with respect to the

camera view. In this work, we only focus on the recognition aspect within the driving context.

Iterate our application context as mentioned in the dissertation statement. John is going to visit

his friend Susan in another city. Susan sends John some street landmark images of her city on

his route to her place including some images of landmark buildings. John will drive a car with a

video camera that can capture the scene in front of the car. In this chapter, we would like to build a

system that could help John to automatically identify the target landmark buildings from the video

sequence. We assume that only one landmark image is available for training in our task. Different

from other related works, we are not tackling a general image retrieval task or an object recognition

problem. Instead, we deal with a location-based building recognition problem in a driving context.

Fig.5.1.1 gives a glimpse of problem challenges.
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The problem of location and building recognition has been addressed in a number of publica-

tions in the past, mostly considering outdoors scenes. In [71], authors introduce a new mid-level

feature, the consistent line cluster for building recognition in the context of content-based image

retrieval. The color, orientation, and spatial features of line segments are used to group them into

line clusters. The interrelationships among different clusters and the intra-relationships within

single clusters are used to recognize and roughly locate buildings in images. Experiments on a

database of color images of outdoor scenes show promising results. On the other hand, authors

in [64] focuses the detection aspect and presents a generative model based approach to man-made

structure (mainly buildings) detection in natural images. The proposed approach uses a causal

multi-scale random field as a prior model on the class labels on the image sites. The distribution of

the multi-scale feature vectors is modeled as mixture of Gaussians. A set of robust multi-scale fea-

tures is presented that captures the general statistical properties of man-made structures at multiple

scales. The proposed approach is evaluated on images from the Corel dataset. One most related

work to our work is presented in [125]. Authors present a hierarchical approach for recognition

of buildings. At the first stage, they use a novel and efficient representation named localized color

histograms. This representation enables efficient retrieval of a small number of candidate images

from the database. At the second stage, recognition is refined by matching local image descriptors

associated with image regions. Once the correct building is identified, the relative camera pose

with respect to the building is recovered. Two most recent works in the context of large-scale

image retrieval are presented in [98, 127]. The first work [98] focuses at the problem of loca-

tion recognition in a large image dataset using a vocabulary tree. The proposed method can find

the location of a query image in a large dataset of more than 104 street-side images of a city. Au-

thors introduce a generalization of the traditional vocabulary tree search algorithm which improves

performance by effectively increasing the branching factor of a fixed vocabulary tree. The other

work [127] utilizes the vast amount of multimedia data on the web, the availability of an Internet

image search engine, and object recognition and clustering techniques, to build web-scale land-

mark recognition engine. First, a comprehensive list of landmarks is mined from two sources: (1)

millions of GPS-tagged photos and (2) online tour guide web pages. Candidate images for each
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landmark are then obtained from photo sharing websites or by querying an image search engine.

Second, landmark visual models are built by pruning candidate images using image matching and

clustering techniques. Finally, the landmarks and their visual models are evaluated by checking

authorship of their member images. The resulting landmark recognition engine incorporates 5312

landmarks from 1259 cities in 144 countries. Although above related works are closely relevant

to the problem in our application scenario, our problem focus and problem characteristics are still

different from theirs.

Inspired by the work [125], we tackle the landmark building recognition problem by a three-

stage approach. The first stage is comprised of an efficient coarse recognition scheme based on

matching local descriptors between a model image and candidate driving images. A ranking list of

candidate images is generated for the second re-ranking stage comprised of matching top candidate

images to the rest of images. This step generates a number of re-ranking lists. The final stage is

to merge re-ranking lists to a final list. SIFT descriptor are used in our proposed method and other

descriptors can be used to replace SIFT ones.

For evaluation, we have conducted experiments on two datasets: 1) ZuBuD (201 buildings, 5

training images for each building and 115 test images) is a published dataset of Zurich buildings

[99]. 2) Pittsburgh Historic Landmarks, a dataset which we have collected 65 Pittsburgh historic

landmarks mainly including buildings. Training images for each building are collected from a

online photograph collection provided by a photographer and test images are collected from the

Google Maps Street View imagery. In the following, we present the three-stage building recogni-

tion approach followed by description of two datasets and experiments.

5.2 Recognition Framework

We have proposed to conquer recognition of landmark buildings in the driving context by a three-

stage approach. The first stage is comprised of an efficient landmark building recognition scheme
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Figure 5.1.2: Our proposed approach to recognize landmark buildings to help car navigation.

based on matching local descriptors between a building model image Mi with its mask and candi-

date images Iij, j = 1...k captured approaching the location of the target landmark building. An

initial ranking list of candidate images, named RiF (short for the first), is generated for the sec-

ond stage comprised of re-matching each of top candidate images in RiF to the rest of candidate

images in Iij, j = 1...k. This is called re-ranking stage which generates a number of re-ranking

lists Rip, p = 1...P . The third also the final stage is to merge re-ranking lists Rip, p = 1...P to

generate a final ranking list RiL (short for the last) of Iij, j = 1...k. SIFT-based keypoint detector

and descriptors are used in our proposed method but other descriptors can be used to replace SIFT

ones. Fig.5.1.2 shows an overview of our proposed approach to recognize landmark buildings for

navigation while driving. In the following, we will first describe a handful of improvements over

the SIFT matching method [75] and then our recognition method in details.

Note that our proposed re-ranking and merging is similar to pseudo relevance feedback (PRF),

also known as blind relevance feedback. PRF works by doing normal retrieval to find an initial

set of most relevant documents, to then assuming that the top k ranked documents are relevant,

and doing relevance feedback under this assumption. Our approach is still different from PRF for

two reasons. First, we do not assume the top k returned images are correct. Second, we are doing
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image matching instead of document retrieval.

Some analysis of the following presentation is based on two datasets that we have used in our

experiments: 1) Pittsburgh Historic Landmarks Dataset (PHL) dataset that contains color images

of 65 historic landmark buildings/structures in Pittsburgh, USA, which we have built ourselves;

2) ZuBuD [99] dataset that is a public dataset including color images of 201 buildings in Zurich.

Details of these two datasets are presented in the section before experiments.

5.2.1 Symmetrical Match of Local Features

Accurately matching extracted local features is crucial to ensure the quality of high-level appli-

cations such as object detection and recognition. The key issue is to define a reliable matching

criterion so that correctly matched candidates are not missed while reducing mismatchings caused

by background clutter or noisy data. Many state-of-the-art descriptor matching algorithms choose

to use the criterion proposed by Lowe [75], which is defined as a threshold on the ratio of distance

from the closest neighbor to that of the second-closest neighbor. The criterion has been proved to

be reliable and robust in many applications [75]. However, there is an asymmetric phenomenon

which often happens when we apply Lowe’s matching algorithm on two images twice with differ-

ent matching directions, one from I1 to I2, and the other from I2 to I1. The images in Figure 5.2.1

shows the two matching results by Lowe’s method. As we can see, the matched features from (a)

and (b) are not identical for the same two images. The reason actually roots from the definition

of the matching ratio the Lowe’s method uses. Assume a feature fi in I1, we find its best match

fj from I2. But, in the other direction, for the feature fj in I2, fi is not guaranteed to be fj’s best

match in I1 by the Lowe’s matching criterion. This observation motivates us to put a symmetrical

constraint on Lowe’s matching criterion, which means, only if fi and fj are the best match to each

other from both matching directions using Lowe’s method, the pairs will be selected.
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Figure 5.2.1: Asymmetric matchings obtained by Lowe’s matching criterion [75]. Matching two

identical images in two directions. Notice features selected on one dog’s back in (a) are not selected

in (b).

5.2.2 Geometric Matching Using RANSAC

In order to reduce mismatchings and refine correct matches, we adopt RANSAC (abbreviation for

”RANdom SAmple Consensus”) process to refine the standard SIFT matching. The RANSAC

algorithm was first published by Fischler and Bolles in 1981 [41]. RANSAC is an iterative algo-

rithm to estimate parameters of a mathematical model from a set of observed data which contain

outliers. A basic assumption is that the data consists of ”inliers”, i.e., data whose distribution can

be fitted by the mathematical model, and ”outliers” which are data that do not fit the model. It is a

non-deterministic algorithm since it produces a reasonable result (estimation of parameters of the

underlying mathematical model) only with a certain probability, with this probability increasing

as more iterations are allowed. Because the data can be subject to noise, the outliers can come

from different sources: extreme values of the noise, or from erroneous measurements, or incorrect

hypotheses about the interpretation of data. Fischler and Bolles assume that, given a small set of

inliers, the RANSAC algorithm gives a procedure which can estimate the model parameters that

can optimally explains or fits this data.

We first apply RANSAC algorithm to refine found matches based on homography constraint

and then grow matches between two views from obtained seeds (matches). It is motivated by the
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observation that buildings appearing in the images usually contain one or two dominant facades.

The input to the RANSAC algorithm is a set of found matched pairs with coordinates, a param-

eterized homography matrix (model) which can explain the observations, and a error threshold

parameter. The RANSAC algorithm finds the optimal (good) homography matrix by iteratively

processing a number of randomly permuted correspondences (pairs of matched keypoints). It is

assumed that among these data, some are hypothetical inliers. This assumption is then tested as

follows:

• Do the following K times:

1. From a randomly permuted set of correspondences, the first four correspondences are

selected.

2. A homography matrix is fitted to the four correspondences using equations in [49].

3. All other correspondences are then tested against the fitted homography matrix and,

if computed error to the estimated matrix is smaller than the threshold, the correspon-

dence is considered as a hypothetical inlier.

4. If the number of inliers is greater than the max inlier number (which is initially set to

0) the max inlier number is set to the number of inliers.

• Return the best fit matrix found (the one corresponding to the highest max inlier number).

The procedure is repeated K times (K = 500 if the number of correspondences is greater

than 15; otherwise K = 250 in our study), each time the algorithm finds a model which either

is accepted because more inliers are fitted or a rejected model with less number of inliers. Once

the best fit matrix is found, all inliers are selected as grown correspondences. Fig.5.2.2 shows the

results after RANSAC and the growing step between two views. Similar technique has also been

applied in previous works such as in [97].
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Figure 5.2.2: Sift matching between two views of a same building. (a) results after the standard

SIFT matching [75] including mismatches. (b) Grown matches (in green) based on homography

constraint after RANSAC. Red lines indicate correct correspondences after RANSAC.

5.2.3 Matching by Labeled Buildings and Context

Imagine our application scenario and problem: The car is driving toward the location of the land-

markLi, the camera captures some scene images Ii1, ..., Iik (called driving images in the following)

and has a model image (Mi) of Li, the goal is to recognize Li in Ii1, ..., Iik to help localize current

position of the car with additional information such as GPS estimation.

In our study, one online photograph of each landmark captured by one photographer is used as

the model image. These model images have resolutions around 640 × 480. Images captured by

the professional photographer, which have controlled view angle, optimal exposure and reduced

occlusion, are good choices for model images. The above characteristics are also reasons that we

choose online photographes instead of self-capture images. This setting also make it possible for

our application scenario as close to the real world scenario as possible since a large amount of

building and landmark imagery are available online and free to download. For driving images of
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each landmark, which cannot be replaced by sidewalk-view images, we choose images from the

Google Maps Street View. By doing this, we collect data to match the application scenario as much

as possible.

To match a model image to each driving image, we first extract scale-invariant feature trans-

form (SIFT)[75] keypoints on both images. We choose SIFT over other image descriptors such as

color and edges because SIFT is less sensitive to scale change, rotation and occlusion which often

happen in the driving context. This method is called model-based method in our study although

it is different from the original algorithm in [75]. Matching is performed based on keypoints’

SIFT descriptors. Numbers of correspondences are ranked across driving images. The following

equation shows above the revised matching schemes of Lowe’s,

d(f1, g2)

d(f1, g1)
> ρd,

d(g1, f2)

d(g1, f1)
> ρd (5.2.1)

where f1, f2 are g1’s nearest and second nearest descriptors in the model image and g1, g2 are f1’s

nearest and second nearest descriptors in the driving image. This matching scheme represents the

previously proposed symmetrical match of local features.

We use a UCLA SIFT package 1. We set the number of scales per octave as 3, keypoint

selection threshold from sTh = 0.001 to sTh = 0.03 and keypoint matching criterion as ρd = 1.4

to ρd = 3.2. Fig.5.2.3 shows two studies of keypoint selection and match thresholds on the PHL

dataset. Evaluation is performed by calculating average accuracy on top 10 returned driving images

over all 65 landmarks. As we can see, sTh = 0.01 and ρd = 2.0 result in the best performance on

the PHL dataset. In the following we will use this parameter setting as the baseline.

In previous works [75], keypoint selection and matching are usually performed over the whole

image. However, this scheme may decrease recognition performance because analysis of back-

ground objects introduce noises and increase computation burden. On the other hand, background

objects play a critical role in recognizing foreground objects in some cases such as foreground

1http://vision.ucla.edu/ vedaldi/code/sift/
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Figure 5.2.3: Study of keypoint selection threshold in (a) and matching threshold in (b) on the PHL

dataset.

occlusion. Therefore, completely discarding background objects when selecting and matching

keypoints is not a good choice. We introduce a parameter R called landmark to context ratio to

balance contribution of foreground/background objects in the matching step. The PHL dataset

provides landmark masks (object/non-object map label) and enables our proposal.

num(Iij,Mi) = numl(Iij,Mi) +
numc(Iij,Mi)

R
, (5.2.2)

where num(Iij,Mi) are the number of correspondences between the j-th driving image of the

landmark Li and the model image Mi; numl(a, b) is the number of correspondences which are

within the landmark mask and numc(a, b) is the number of rest correspondences. Our experimental

analysis confirms our expectation and the proposed idea of the new parameter R. Fig.5.2.4 shows

the experimental analysis. From the figure, we have two observations. First, the new approach

(called model-based in the graphes) generally performs than the matching over the whole image.

Secondly, R = 2 and R = 50 lead to the same recognition performance for the model-based

method and RANSAC-based method. In the following analysis, we set R = 50.

Except the Lowe’s method and the RANSAC based method (called ransac), we have also devel-
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Figure 5.2.4: Analysis on the PHL dataset: (a) comparing matching by whole image vs. landmark

part; (b) study of the landmark-to-context ratio (R).

oped another method (called cosine-based method) and it is inspired the work in [125]) by adding

cosine matching criterion (performing union operation over the correspondences found by Lowe’s

method). This approach is inspired by the promising performance of adding cosine criterion re-

ported in [125]. The observation is that the model method is effective but not in all cases, in some

of which the cosine method performs better. The matching scheme is as follows:

cos(f, g) =
fTg

‖f‖2‖g‖2

> ρc. (5.2.3)

where f, g are descriptors in two images. Different parameters lead to different performance for

the ransac method and the cosine method. Fig.5.2.5 shows the experimental analysis. As we

can see from the figure, the higher cosine threshold lead the better performance for all three sets

of keypoint selection and matching parameters. On the other hand, for the better-performance

parameter set sTh = 0.005 and ρd = 2.0, setting RANSAC error threshold from 3 to 9 results in

the similar performance. In the following experiments, we set the cosine threshold as 0.995 and

the RANSAC error threshold as 9.

Fig.5.2.6 shows the keypoint match number ratio between the first correct and the first wrong
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Figure 5.2.5: Analysis on the PHL dataset: (a) study of cosine threshold for Zhang’s method; (b)

study of error threshold for the Ransac method.

on the PHL dataset. Comparison is shown among all three methods: model, ransac and cosine. The

higher ratio means the larger distance between the first correct and the first wrong which shows

more robust recognition behavior. From the figure, we can see the model method (symmetrical

matching criterion) is more robust than the other two methods. Except for a few landmarks, the

Figure 5.2.6: The match number ratio (between the first correct pair and first wrong pair) for 3

methods on the PHL dataset. The higher the better.
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Figure 5.2.7: Illustration of our re-ranking and merging algorithms. (a) a model image (No.22

landmark [Bellefield Hall] in the PHL dataset) and its mask; (b) top 10 images returned by the

Lowe’s method using the model image and its mask as query; areas of repeating patterns (corre-

spondences) and image number are also shown; (c) results after re-ranking using No.8 image (the

third in (a)) and its mask as query; (d) results after merging results of re-ranking all top 10 images

in (a).

ratio is generally below 10 for most landmarks.

5.2.4 Re-Ranking by Associating Repeating Patterns and Merging

Having improved the matching scheme the next step is to improve recognition performance us-

ing re-ranking and merging algorithms. Re-ranking and merging ranked lists returned by different

search engines is a challenging information retrieval (IR) task because different retrieval algo-

rithms may be used to search the databases, and because different databases have different corpus

statistics. Both problems have attracted much attention in the IR community. Many solutions have

been proposed in the IR literature and are quite effective. Here, we formulate recognition of a

landmark building from driving imagery as an image matching and ranking task. Inspired by the

rich literature of merging search engines’ results in the IR area, we seek effective algorithms from
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the literature since we are solving a similar but simplified task.

Fig.5.2.7 shows illustration of steps of our re-ranking and merging algorithms. Fig.5.2.7(a)

shows a model image (No.22 landmark [Bellefield Hall] in the PHL dataset) and its mask. Fig.5.2.7(b)

shows top 10 images returned by the modified model method using the model image and its mask

as matching query. Below each result image are the area of repeating patterns (correspondence

region) and image number. Correspondence region is computed as the minimal bounding box

which covers all correspondence points. Note the size of correspondence region does accurately

reflect the number of correspondence points. Fig.5.2.7(c) show results after re-ranking using No.8

image (the third in Fig.5.2.7(a)) and its mask as matching query. Fig.5.2.7(d) show results after

merging results after re-ranking using all top 10 images in Fig.5.2.7(a) as matching query. Images

with numbers that are greater than 10 are the ones that do not contain the target landmark, thus are

falsely recognized images.

A novelty here is to use the result merging algorithm associated with the CORI resource se-

lection algorithm (called CORI in the following) [15]. CORI algorithm uses a simple heuristic

to normalize database-specific document scores. Here database-specific document scores mean

re-ranking trial specific image scores. The higher score means the higher rank. The normalized

image score suitable for merging is calculated as follows. Again, notations are as follows. The

car is driving toward the location of the landmark Li, the camera captures some scene images

Ii1, ..., Iik (called driving images in the following) and has a model image (Mi) of Li, the goal is to

recognize Li in Ii1, ..., Iik to help localize current position of the car with additional information

such as GPS estimation.

To simplify, we just consider one landmark here, Li. Firstly, we transform image ranks of each

trial (re-ranking lists in Fig.5.1.2, up to 10 trials in our study)to scores ranging [0, 1]. Illustration

of different trials is shown in Fig.5.1.2. The higher rank gets the greater score.

X̄q = 1− Xq

d
, (5.2.4)
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where Xq is indices of images of the q-th trial (the one using q-th image in RiF ) and d is the

maximal rank and equal to 20 in our experiments (the minimal rank equal to 1 indicates the top 1

result, the highest rank).

Secondly, we normalize rank scores to the range [0, 1] based on importance of trials. In other

words, we normalize the scored calculated from the above equation by multiplying a coefficient

associated with q.

X ′q =
X̄q + α× X̄q × δq

1 + α
, where δq =

r + 1− q
r

(5.2.5)

where r is the total number of trials and equal to 10 in our experiments. α is a coefficient to balance

the importance of individual trial scores and ranks of trials (aka q). We tried different values of α

and found similar resulting performance. In the following we set α = 0.4.

Lastly, we sum upX ′q scores from the first trial to the cutoff (called c), and sort the merged array

and generate the final ranking list RiF for the landmark building Li. Once the RiF is produced,

recognition results are evaluated by verifying the top x images to the ground truth.

Ric =
c∑
i=1

X ′q; (5.2.6)

RiF = sort(Rc,
′ descend′); (5.2.7)

5.3 Two Datasets

5.3.1 ZUBUD Dataset

ZuBuD [99] is a database of color images of 201 buildings in Zurich. Each building is repre-

sented by five snapshot taken from five different viewpoints which result in 1005 color images not
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Figure 5.3.1: Examples from Zubud dataset: (a) query images; (b) training images of one of

buildings shown in (a).

including test images. Illumination conditions may vary for different buildings/scenes. All the

buildings/scenes are random selected buildings in Zurich which is the biggest city of Switzerland.

The database, called ZuBuD, has been used to test image based recognition algorithms

All the images’ resolutions are fixed at 640 × 480, without flash. In the database, for each

building or scene, five images are acquired at random arbitrary view points. The database includes

a wide variety of photometric conditions since all the images are taken under different seasons,

weather conditions and by two different cameras. For some images purposely some occlusions by

tree and other objects are included. Fig.5.3.1 show some examples of query images and 5 training

examples of one of buildings.

Altogether 115 query (test) images have been collected to test the recognition performance.

All these images contain the buildings included in the database, however the imaging conditions

between query and training images do not match exactly. These query images are captured at

different viewpoints and under varying illumination.
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Figure 5.3.2: Some PHL training examples and their masks.

5.3.2 Pittsburgh Historic Landmarks Dataset

Pittsburgh Historic Landmarks Dataset (PHL) is a dataset of color images of 65 historic landmark

buildings/structures in Pittsburgh, USA, which we have built ourselves. These are representative

landmark buildings/structures in Pittsburgh. We first download a collection of 79 landmarks’ pho-

tographes with their location GPS coordinates from http://www.geosnapper.com by the photogra-

pher Kordite. These images’ resolutions are about 640× 480. From these we select 65 landmarks

(mainly buildings) into the dataset as landmark building model images. We manually label the

object mask for each image. Fig.5.3.2 show some PHL instances and their masks.

To collect real world driving imagery, we choose to collect images from Google Maps Street

View. Google Maps Street View is a newly launched feature. With Street View, we can virtually

explore city neighborhoods by viewing and navigating within 360-degree scenes of street-level

imagery. Currently Google Maps Street View provides street-level imagery for many cities, towns,

parks and remote parts of the world including Pittsburgh. Street View imagery is gathered by

vehicles equipped with advanced imaging devices and technology, driving on public roads. At

this time, Google is not accepting photo submissions for inclusion in Street View. Because he
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Figure 5.3.3: PHL data collection interface based on Google Map API.

images were taken in the past year by specialized vehicles driving around the cities, Street View

imagery is not real-time and does not reflect weather, season and other changes. Street View mainly

provides three functions. First, users can view street level photographs; secondly, users can take

virtual walks in 360-degree scenes; they can pan, rotate and zoom through cities around the world;

thirdly, users can find shops, restaurants, parks, hotels and other points of interest.

There are no available tools to automatically collect images from Street View. However, the

Google Maps API allows users embed Google Maps in their own web pages with JavaScript. The

API provides a number of utilities for manipulating maps (just like on the http://maps.google.com

web page) and adding content to the map through a variety of services, allowing users to create

robust maps applications on their websites. Therefore, we build a data collection interface in

Javascript using the Google Maps API. The interface allows users to walk through all 65 Pittsburgh

landmarks (whose GPS coordinates are stored in advance) and view/save images from the Street

View imagery which are at or near each landmark location. Fig.5.3.3 shows the interface. Users

can use buttons on the right to navigate through 65 landmarks and images at each location. The

bottom windows are for JavaScript debug purpose.
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Figure 5.3.4: PHL test examples: (a) 10 Street View images that contain No.11 landmark building

(Pittsburgh Athletic Association); (b) 10 Street View images around the location that do not contain

No.11 landmark building.

To simulate the real-world driving context, we collect 10 images at each landmark’s location

that contain the landmark by human judgement and 10 images within 50 meters from the land-

mark’s location that do not contain the landmark. The problem is formulated as follows: given

each landmark’s model image and its mask, identify 10 Street View images from the 20 images

that contain the landmark. Fig.5.3.4 shows 10 images that contain the No.11 landmark building

(Pittsburgh Athletic Association) in the PHL dataset and 10 images around the landmark location

that do not contain the building. Images collected from Street View have resolution at 700× 500.

Note that lighting and weather conditions remain relatively constant across the Google Street View

data. To protect privacy, Google blurs faces in the imagery. Fig.5.3.5 shows two common Street

View errors we encountered during the data collection.
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5.4 Experiments and Discussion

To evaluate our proposed recognition framework on our target task - recognizing landmark build-

ings in the driving context, we have performed experiments on two datasets: ZuBuD dataset and

PHL dataset. Some analysis and much discussion have been presented in the previous sections. In

our experiments, only one kind of low-level image feature is used: SIFT keypoints and descrip-

tors. We have described the parameter settings of the SIFT algorithm and our proposed matching

schemes in previous sections. Average accuracy computed over the top x images of the final rank-

ing list RiF for all landmarks is the chosen evaluation metric in our experiments with x = 10. In

the following we will show results on the ZuBuD dataset and the PHL dataset respectively.

5.4.1 Results on ZuBuD dataset

Table.5.4.1 summarizes the results on the ZuBuD dataset. Experimental setting is the same as

the first experiment in [125]. The first views of the 201 buildings are chosen as models and the

second views are chosen as test images. The table lists the results given two different parameter

sets whose descriptions are given previously. err and cos are the error and cosine thresholds used

in the ransac and cosine methods. Evaluation (accuracy) is performed on the first (1st), top 5

Figure 5.3.5: Errors of Google Street View images: (a) mismatch between actual address and

shown address; (b) corrupted image.
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1st top5 top10 avg rank match num ratio

parameters sTh=0.01,mTh=2.0,R=50,err=7,cos=0.99

model 1.000 1.000 1.000 1.000 66.27

ransac 1.000 1.000 1.000 1.000 52.76

cosine 0.995 1.000 1.000 1.005 47.38

parameters sTh=0.005,mTh=1.6,R=50,err=7,cos=0.99

model 1.000 1.000 1.000 1.000 22.07

ransac 0.990 1.000 1.000 1.015 23.46

cosine 0.995 1.000 1.000 1.000 20.57

Table 5.4.1: Experimental results on the ZuBuD dataset. Evaluation (accuracy) is performed on

the first (1st), top 5 images and top 10 images of the ranking lists produced by each method.

avg rank means the average rank of correct hits. match num ratio is the ratio of number of

correspondences of the first correct to that of the first wrong match.

images and top 10 images of the ranking lists produced by each method. avg rank means the

average rank of correct hits. If avg rank = 1.015, the algorithm finds the correct match at the

1.015-th rank. match num ratio is the ratio of number of correspondences of the first correct to

that of the first wrong match. The higher match num ratio is, the more robust is the matching

algorithm. As we can see from the table, all three methods produce very good results. Among

three, model gives the best performance with avg rank = 1.000 and match num ratio = 66.27

which shows the algorithm very robust in distinguishing the correct match from others. Again

sTh = 0.01,mTh = 2.0 give the better performance across all three methods. Since all three one-

step matching algorithms perform well on this dataset, it is not necessary to evaluate our proposed

re-ranking and merging algorithms. Fig.5.4.1 shows two detailed figures of match number ratio

which confirm our above observations.
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Figure 5.4.1: Comparing match number ratio (between the first correct pair and first wrong pair)

on the ZuBuD dataset (the higher the better): (a) comparing three methods; (b) comparing two

different parameter sets using the model method.

5.4.2 Results on PHL dataset

Some analysis and discussion have been presented in the previous sections. Here we present the re-

sults of re-ranking and merging algorithms on the PHL dataset. Fig.5.4.2 shows comparison among

re-ranking algorithms. Fig.5.4.2(a) shows matching by the whole images vs. finding repeating pat-

terns. We can see that finding repeating patterns lead to much performance improvement over the

matching-over-the-whole-image scheme. Fig.5.4.2(b) depicts performance of three matching al-

gorithms. It shows that the ransac method does the best and this confirms our motivation of using

the ransac method - buildings generally have one or two dominant planes. In general, the trends in

Fig.5.4.2(a) and (b) is going down and it intuitive since the higher rank images more likely contain
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c = 1 2 3 4 5 6 7 8 9 10

α = 0.2 0.79 0.84 0.88 0.90 0.90 0.92 0.93 0.94 0.93 0.94

α = 0.4 0.79 0.84 0.88 0.90 0.90 0.92 0.93 0.94 0.93 0.94

α = 0.8 0.79 0.84 0.88 0.90 0.90 0.92 0.93 0.94 0.94 0.93

Table 5.4.2: Merging re-ranking results by the ransac method using CORI, α = 0.2, 0.4, 0.8.

the target building and lead higher re-ranking performance.

Table.5.4.2 shows the results of merging re-ranking results by the Ransac method using CORI.

c is the cutoff parameter. As we can see, the greater c is higher performance the algorithm obtain.

But performance generally converges around c = 8. Another observation we can see from the table

is that values of α do not change the trend of performance. Thus we choose α = 0.4.

Fig.5.4.3 shows merging re-ranking results. Fig.5.4.3(a) depicts the comparison between the

count-based and the CORI-based merging methods. The count-based method generates the final

ranking list by sorting the accumulated numbers of correspondences of re-ranking trials. As we

can see from the figure, the CORI-based method does much better the count-based method. This

endorses our selection of CORI as the merging scheme in our framework. Fig.5.4.3(b) shows

Figure 5.4.2: Re-ranking comparison: (a) matching by the whole images vs. finding repeating

patterns; (b) comparing 3 methods by repeat-pattern-based re-ranking.
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three algorithms’ behavior of merging re-ranking results. Again, we can see the ransac method

performs better than the other two algorithms. In addition, performance usually converges at c = 8

with accuracy equal to 0.94. The high accuracy shows that our proposed method is sufficient for

recognizing the target landmark buildings.

Figure 5.4.3: Merging re-ranking results: (a) count-based vs. CORI; (b) merging re-ranking results

of 3 methods by CORI.

Fig.5.4.4 shows the summary of recognition errors the ransac method (where there are more

than one falsely recognized image) on the PHL dataset. The ransac method performs better than

the other methods on this dataset. As we can see, among the shown cases, there are at most two

falsely recognized images among ten predictions. Fig.5.4.4(b) shows correctly recognized images

with rank = 1. Although the landmarks appear dramatically different from the ones in model

images due to cropping, distortion, view point change, weather change, artifacts, lighting change,

our proposed recognition frame still correctly recognizes the target building. Another observation

is that falsely recognized images only get low ranks such as rank = 9 or rank = 10 which

shows the robustness of our proposed framework. Fig.5.4.5 shows some example of challenging

cases where even humans can hardly recognize the landmark buildings but our methods correctly

recognize: (a) landmark buildings are occluded by trees or other objects; (b) building appearance

is changed due to renovation.
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Figure 5.4.4: Errors of the Ransac method on PHL: (a) landmark images with their numbers; (b)

correctly recognized images with rank = 1; (c) and (d) falsely recognized with ranks.
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Figure 5.4.5: Some example of challenging cases where our methods correctly recognize landmark

buildings: (a) landmark buildings are occluded by trees or other objects (top row: testing data; the

2nd row: training data); (b) building appearance is changed due to renovation (top row: testing

data; the 2nd row: training data).
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Chapter 6

Human Vehicle Interface

In previous chapters we have discussed several computer vision-based multimedia technologies

for landmark-based car navigation. In this chapter, we will focus on human vehicle interface and

prototyping using a full-windshield head-up display system.

6.1 Introduction

Navigation user interfaces have changed dramatically over the last few years due to the availability

of electronic maps and GPS devices. With increasing popularity of GPS hardware and the Internet,

travel by driving has become much more convenient in terms of trip planning and navigation. Most

drivers rely on map services on the Internet for trip planning, and simple turn-by-turn guidance

(turn instruction symbols and voices) for navigation. During driving, a driver has to map abstract

driving instructions, e.g., an arrow indicator on a map, to real world coordinates, which adds extra

cognitive load to the cognitively intensive driving task. Therefore, new navigation technologies

are not necessarily effective.

Driving is a focus-attention multi-task process. The driver needs to distribute attention among
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different aspects of the process. First of all, the driver needs to pay attention to issues directly

related to driving, including the surrounding traffic, dashboard displays, and other influx of infor-

mation on the road such as traffic lights and road signs. In addition, the driver may choose to talk to

the passenger(s), listen to the radio, and talk on the cell phone. The limiting factor for information

flow during driving is the driver’s cognitive load. Although there are many ways to potentially

reduce the cognitive load of a driver, in this chapter we focus on the human vehicle interface for

landmark based navigation.

There has been much research and applications on in-vehicle navigation. Early research fo-

cused on human factor tests in navigation displays [47]. Green et al. surveyed human factors for

driver information systems [46]. They described objectives, principles and guidelines for the de-

sign of in-vehicle devices. Dale et al. studied the problem of generating natural route descriptions

for navigational assistance [29]. Nevertheless, landmarks have great potential in both route shar-

ing and driving contexts. Burnett et al. studied which landmarks are valued for driving navigation

and their salient characteristics [13]. They found the significance of so called ’road furniture’ land-

marks, such as traffic lights and petrol stations. Landmarks can also support pedestrian navigation

[44]. Combining visual cues with voice instructions was discussed in [12]. Lee et al. presents a

contextually optimized map system for in-vehicle navigation [66].

6.2 Prototype Development on Computer Display

Most current in-vehicle navigation systems give driving instructions in the form of map and synthe-

sized voice. However, the lack-visual-cue instruction is indirect and sometimes attention demand-

ing to the driver. In particular, it can cause problems when driving to an unfamiliar area or the

driver’s attention gets disturbed by other tasks, like receiving a phone call and talking. Sometimes

drivers just do not have enough time to map from the driving instructions to real world situations.

Then they get lost. Since the voice and turn-by-turn instructions are not good enough and even not

helpful in some cases, can we add additional visual cues for in-vehicle navigation?
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We develop a multimedia system to demonstrate landmark based navigation technologies on

computer display. We use captured video to simulate the driving course. The system automatically

gives driving instructions in three ways: a) overlaying navigational arrows on the top of the road, b)

highlighting relevant landmarks for key maneuvers and c) playing synchronized voice directions.

Studies have shown that that users’ performance can be significantly improved using a com-

bination of directional arrows and photographs in navigation tasks, and also that this combination

was highly preferred by users [24]. Following the same rational, we introduce a concept demo of

landmark-based navigation which hope to reduce the driver’s cognitive load and further enhance

driving safety. Our system combines visual cues with voice instructions. It overlays navigational

arrows on the road and gives landmark images at each turning intersection. In our system we use

driving videos to simulate the real scenes in front of the car. The driver can still navigate the route

by looking at the display even after missing the voice instructions.

Fig.6.2.1 shows the user interface for a concept demonstration of landmark-based navigation.

The system gives voice instructions based on landmark information. For example, a system such

as in Fig.6.2.1 tells drivers ”go straight”, ”stay right”, ”stay right and continue on route 51”, ”go

straight and pass the library”, ”turn left and pass the gymnasium”, ”turn left after passing the BP

gas station sign”, ”arriving Donner house on your left”, etc. Meanwhile, the electronic map shows

current position of the car and positions of referred landmarks such as buildings, store signs and

road signs. Our landmark-based navigation system with GPS aims to offer technologies necessary

for the John visiting Susan scenario that is introduced in the Chapter 1.

The system knows the vehicle’s current location from GPS and the distance, K, from the next

turning intersection from the map system. If K ≥ λ, the system shows flashing road boundaries

to indicate going straight as shown in Fig.6.2.1; otherwise, the system shows the turning arrow

(left or right) based on the direction. λ = 30m for out-door and λ = 6m for in-door. The task

involves two steps: a) measuring the distances from the vehicle to its surrounding objects; and b)

overlaying on the road in video the turn arrow with proper perspective. We adopt the stereo vision

technique for measuring the distance because of its cost advantages over other devices, like radar
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Figure 6.2.1: User interface for on-road navigation. The left window shows overlaying the naviga-

tional instructions (e.g., flashing lines) and highlighting the landmark (e.g., the library). The right

window shows the dynamic map.

and lidar. We use the Point Grey’s Bumblebee, a two-lens stereo camera, in this project. Stereo

processing is a three-part procedure. First, it establishes correspondence between image features in

two views of the scene. Second, it calculates the relative displacement between feature coordinates

in each image. The obtained displacements for every pixel constitute the disparity image. Third,

it determines the 3D location of each feature point relative to the camera by knowing the camera

geometry. Since we only need the depth for each point,xi, and it can be computed as, Z = Bf
d

,

where B is the distance between the optical centers of two stereo cameras, and called the baseline;

f is the focal length; d is the disparity at xi and Z is the distance (depth) between xi to the stereo

camera center. B = 12cm and f = 2mm.

Once we know where to mark, the next step is how to mark the navigational arrow perspectively
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Figure 6.2.2: Geometry template to depict the perspective arrow.

on the road. Take the go-ahead case as an example. Fig.6.2.2 illustrates the geometry template we

design to draw the perspective go-ahead arrow. OA and OC represent the left and right road

borders, O is the vanishing point and OB shows the dividing line. L1, L2, L3 show the three

horizontal lines controlling the vertical positions of the overlay arrow, and L4 represents the upper

boundary of the in-vehicle portion. Furthermore, a − g specify the seven key points of the arrow

sign. We estimate the coordinates of O,A,B,C from the data empirically by assuming the known

car and camera geometry. Other vanishing point and lane border detection algorithms can be

applied if high accuracy is desired. Coordinates of a − g are further determined according to the

template based on the estimations ofO,A,B,C. The same technique also applies to depict turning

arrows and we cannot elaborate it here due to limited space.

Performing a rigorous and comprehensive evaluation of the system of this kind is an extremely

costly work. Following the evaluation methodology of Dale et al. in [29], we have performed a

small-scale expert evaluation in a task-based context. Our user study group includes five users, one

vehicle manufactory designer, two experienced drivers, and another two junior drivers. The goal

of the evaluation is to obtain user feedback on the functions and user interfaces of the system. The

experiment is carefully designed to minimize the many factors which can influence the feedback

of the users. For the concept demo of landmark-based navigation, we test the system in both
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indoor and outdoor contexts. For the indoor case, we run the system on a laptop, put it on a trolley

and move in hallways. For outdoor case, we choose LCD as the in-vehicle display due to the

limited amount of vehicles which include reconfigurable FWDs. Originally, we design the icon-

based navigational arrows and later refine the system with the current perspective arrows. Fig.6.2.3

shows four examples. All five users prefer the perspective arrows over icon ones. For the route

sharing, we compare user feedback on two types of input modality, i.e., drawing a route on the

map or selecting way points. Among five users, three prefer selecting way points while other two

choose drawing the route.

Figure 6.2.3: Navigational arrows for on-road navigation in indoor context. (a)&(c): icon based

go-ahead and turn-right arrows; (b)&(d): perspective go-ahead and turn right arrows.
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6.3 Demonstration on a Full-Windshield Display System

A head-up display, or HUD, is any transparent display that presents data without obstructing the

user’s view 1. Although they were initially developed for military aviation, HUDs are now used

in commercial aircraft, automobiles, and other applications. Full-Windshield Display (FWD) is a

particular term for automobile application.

Figure 6.3.1: GMC Acadia Full-Windshield Display showing speed and other information.

FWDs have been available as factory equipment in some American and Japanese cars (primar-

ily to present speed information and warnings) since the 1988 model year [14]. The advantages

and disadvantages of FWD have been long researched since then. FWD may provide benefits be-

yond enhanced navigation performance. By placing navigation information in the driver’s field of

view, the amount of time the driver is looking away from the road should be reduced. Logically,

this should reduce accidents [107].

1http://en.wikipedia.org/wiki/Head-up display
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A typical FWD Development Kit includes a windshield, a laser scanner and a controller.

OpenVG based Scan Ray Vector Graphics library is usually developed so that the vector graphics

path can be rendered on the windshield. Fig.6.3.1 depicts a Acadia FWD displaying unobtrusively

projects speed and other information (circled in picture for clarity) right onto the windshield. The

purpose of this part of dissertation is to demonstrate our approach for street landmark recognition

on the FWD provided by our project sponsor General Motors Company [117]. Here is some infor-

mation about the FWD which we have used. It is a 2-color full-windshield display system. It has

high speed laser scanner, 30 kilo-points per second. 16 bit resolution (X & Y scan) , 256 levels of

laser intensity. 2

6.3.1 Motivation and Overview

Driving assistant systems are popular applications of multimedia technologies. A combination of

GPS (global positioning system) and electronic maps has led to revolutionary changes in car navi-

gation systems. These systems provide drivers with an efficient route planning tool through a map

database and allow convenient route guidance by GPS satellite signals. Users of such navigation

systems can take advantage of such digital navigation services not only in their daily lifes but also

in unfamiliar areas or in regions with complex road-layouts and intersections.

However, state-of-the-art navigation systems have not yet reached their full potential and their

use is often not intuitive and helpful to users with different abilities. There are two main kinds

of navigation interfaces in existing systems, i.e. voice commands and abstract map images on a

display, either integrated in the dashboard or being portable. Both interfaces have proven useful

and effective but not best. For example, current navigation systems can increase a driver’s cognitive

load because the driver has to map the information provided by the navigation system to the real

environment outside the windshield. Another distracting effect of current navigation systems is that

the driver has to move his/her attention away from the road to perceive navigation information.

2http://www.superimaging.com
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The head-up display (HUD) is a type of display that presents data without blocking the user’s

view. The technique was pioneered for military aviation and now used in commercial aviation, mo-

tor vehicle and other cases. Since 1988, General Motors has popularized HUDs on the Olds Cut-

lass, Pontiac Grand Prix, Bonneville, Buick LeSabre, Park Avenue and Rendezvous. In 1999, Au-

tomotive HUD technology made a big quality leap with the Chevrolet Corvette. The new Corvette,

which uses a HUD to display vehicle speed, engine RPM, navigation and more, has proven the

HUD to be one most popular option. As of 2006, BMW featured the HUD as an option on their

5 and 7 series vehicles, with more HUDs anticipated from other European and Japanese OEMs.

Despite the limited resolution and current generation HUDs’ sizes, they provide information such

as speed, turn by turn navigation and warnings via a virtual image projected onto the windshield by

mirrors within the driver’s normal field of vision. By adjusting the number of mirrors, display color

and illumination elements, installation space requirements and costs can be adapted to respective

vehicle models.

In this research, we are developing technologies for next generation navigation systems using

a full windshield head-up display (FWD) system manufactured by SuperImaging, Inc. [52]. FWD

can project information everywhere on the windshield while HUD projects information in a limited

windshield region. In driving applications, a FWD system provides a flexible way for delivering

information. A FWD can highlight important road signs such as speed limit signs. It can be

used to enhance the vision of the driver in dangerous situations. Infrared cameras or laser scanner

can gather information from the car surroundings which is not easily visible to the driver in poor

lighting conditions. Deer, pedestrians or bicyclists can be detected and highlighted. So common

dangerous situations can be avoided by showing threats on the FWD. In situations such as bad

weathers, FWD can also be used to highlight street boundaries which can especially help old

people with weak vision capabilities.

Directly projecting text, images and graphics on the FWD’s windshield causes distortion be-

cause of the windshield’s non-planer surface. We assume that the viewing angle of the driver is

fixed. Conceptually, our method can be extended to deal with changing viewing angles. Distortion
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correction is the prerequisite for a FWD. We have proposed to use a computer vision system to

automatically correct distortions at different locations of the windshield. Our system consists of

a FWD, a camera, and an LCD projector. In the calibration phase, the camera will capture the

patterns generated by the projector and the system will automatically model the distortions. In the

working phase, the LCD video projector projects a video sequence onto a wall to simulate driving

situation. We demonstrate the feasibility of the concept of landmark-based navigation using the

road sign detection results from our previously developed road sign detection system [120, 119].

There has been much research directed to driving assistance systems, car navigation and HUD.

Liu et al. [74] have compared driving performance and psychological workload of drivers using

a head-down display and an HUD. The results showed that the response time to urgent events is

faster produces less mental stress with an HUD. Wu et al. [124] presented a multimedia system for

route sharing among users and navigation by overlaying turning arrows and highlighting landmarks

in videos. Chu et al. [25] have recently proposed to use a full-windshield HUD to show various

information to a driver. However, they have not presented a working system in the paper. Sato et al.

[95] constructed a similar setup to ours with a full-windshield HUD but use a different projection

technology. Our system includes a new FWD model, a camera, a LCD projector and a road sign

detector.

6.3.2 Automatic FWD Windshield Distortion Correction and Prototyping

Our driving assistance system for highlighting landmarks on a FWD can be used in real-time ap-

plications and is robust to different lighting and road conditions. The main components of the

system are a laptop, a video camera, a laser projector, a dedicated controller, and a MediaGlassTM

windshield. The glass is covered with transparent phosphors to reflect blue or red light emitted by

the laser. The system provides easier navigation with less distraction for safer driving. Fig.6.3.2

shows the setup of our experimental system. We tested our system inside a laboratory and simu-

lated different test driving scenarios with an LCD projector.
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Figure 6.3.2: The FWD setup (a) a back-view of the set-up; (b) an overview with annotation and

(c) a front-view of the video projector and the FWD laser projector.

Before using the FWD we need solve one key problem - correcting the to-project data to

avoid windshield distortion. All images projected to the windshield are distorted. We solve this

problem, by applying two pre-warp functions f(x, y) and g(x, y) to all images before project-

ing them to the windshield. Assume projected laser points’s coordinates in the camera view as

(xi, yi) : i = 1, ..., N and in the laser projector plane as (ui, vi) : i = 1, ..., N . We want to find the

functions f(x, y) and g(x, y) such that f(xi, yi) ≈ ui, g(xi, yi) ≈ vi, i = 1, ..., N . The process

of generating the pre-warp information for the distortion correction is as follows: the first step is

to project a pattern on the windshield and capture the result. This pattern is used to compute the

correct pre-warped points. Any arbitrary point can be correctly projected on the windshield with

interpolation based on the pre-warped points. Creating the pre-warping information poses different

challenges, which are influenced by different aspects. The lighting conditions of the experimental

setup or partly occlusion of the windshield play a role here. The non-planar surface correction is

sensitive to movements of the FWD projector and the windshield which are fixed in our setups and

expected commercial uses.

The process to correct distortion on a windshield is as follows. The first step for constructing

the pre-warp mapping is measuring the windshield. Therefore we project a special pattern on the
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Figure 6.3.3: Distortion correction for FWD. (a) Initially corrected projected laser points from the

video. (b) Corrected projection grid. Upside down axis due to laser projection scheme. Note that

both images are scaled along the x-axis.

windshield and record it with a camera. The next step is to compute a pre-warp function by using

the correspondence from the projected points to the recorded points. With this function we can

adjust images so they do not look distorted to the driver. This image will then be projected to

the windshield. The calibration process for the pre-warp function must only be done once. After

registering the surface of the windshield one can use the pre-warp function independently of the

position of the driver just by small adjustments.

For the first step we project a pattern to the windshield. Our use pattern is a grid of blue points

which forms the shape of a rectangle. We choose a grid of 30 points per row and 20 points per

column. All points are projected for 250 ms. Shorter time intervals lead to disturbing artifact from

the laser moving between the points. A pattern of grid points is chosen, because other patterns

commonly used by a calibration process like check boards, cannot be projected by FWD because

FWD cannot project filled areas properly. The projected pattern is recorded to video by an ordinary

digital camera on a tripod. This camera represents the view of the driver.

Before extracting the points from the recorded video we have to compensate for different light-

ing conditions, because the recognition of the laser grid points is sensitive to bright spots. All
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possibly disturbing light sources should be removed, for example reflections on the windshield

frame. Therefore we mask the image from which we extract the coordinates and use solely the

part which contains the windshield. Additionally we limit the color information in the extracted

images to the blue color channel. The reasoning behind is that the calibration process only uses

blue laser rays. A different part of the complexity of the extraction process is due to small parts of

the windshield which are occluded from the laser projector. Additionally are several other points

which cannot be extracted from gathered data. The projected pattern is larger than the windshield

and therefore are some points not projected to the reflecting windshield. We must compensate for

them as we need to find the relations between all projected and captured points. Another problem

that occurs is that some extracted frames from the video contain artifacts from the previous pro-

jected grid points. Our approach to correct bad or missing points is creating an interpolating spline

curves for each row of points. These splines compensate for missing points or smooth out existing

points. We used piecewise polynomial functions of degree two because they fitted the best to the

curved windshield surface.

Based on the extracted points we create the pre-warped points. We are using the correspon-

dence of the coordinates of the distorted points extracted from the camera (x, y) to the coordinates

used to control the laser (u, v) to generate a mapping. Therefore we compute a new orthogonal

grid of points in the coordinates of the camera (x, y). For all these new points we use interpolation

to compute the warped points in the coordinate system of the laser (u, v). We use a 2D linear

hyper-surface fitting function for the interpolation which computes the pre-warped points from the

new grid points, the extracted laser coordinates and the corresponding coordinates (u, v). The new

interpolated points are used as input for pre-warp functions to project images on the FWD. The

pre-warped points can be used to project a grid of undistorted points to the windshield. To reach

the goal of projecting any image to an arbitrary position we use interpolation to correct points

between the pre-warped grid points. With the pre-warp function FWD can display arbitrary im-

ages on arbitrary positions. Fig.6.3.4a shows an image before pre-warping is applied. Fig.6.3.4b

shows the pre-warped image. One can see that not only is the image distorted, but the size changed

significantly.
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Figure 6.3.4: (a) shows a typical icon used as input for the FWD. (b) shows the same icon after the

pre-warp function was applied.

6.3.3 Results and Demos

Projecting a Moving Pattern

Fig.6.3.5 shows three testing examples of different icons that are projected at different locations

without any distortion in the camera view. Using a pre-warp function together with a look-up

table of pre-warped points allows for fast correction in real-time projections. Due to the use of

interpolation between the pre-warped points does the projection program need only little mem-

ory. This is especially valuable in cars with limited computer systems. As the installation of the

MediaGlassTM and the laser projector was not in a real car, we used video projection of different

self-recorded drives for the simulation. Qualitative evaluation of the resulting projection on the

windshield shows that the approach was successful. The pre-warp function completely compen-

sates distortion of the windshield. The FWD projection on the windshield is bright and clearly

visible. Thus our windshield distortion correction method is beneficial in other applications.
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Figure 6.3.5: Distortion correction test examples: a rectangle in (a), an arrow in (b) and another

arrow in (c). Regions in the blue boundary, which are projected by the FWD laser projector at

different windshield locations, show no distortion.

Highlighting Moving Road Signs in the Video

Another demo with highlighted road signs in a video on the FWD also shows promising results.

The demo use outputs from our previously developed road sign detector [120] that gives locations

of detected signs in the video. The detector naturally employs a divide-and-conquer strategy to

decompose the original task into the two subtasks, namely: 1) localizing road signs and 2) de-

tecting text. Because of government requirements on the design and placement of road signs, our

observation shows that 1) text on road signs has higher contrast compared to most sign background

colors; 2) text on the same road sign always has similar foreground and background patterns; 3)

most road signs exist on vertical planes; and 4) there are only a limited number of colors used as
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background colors. Our system has four steps: 1) Discriminative points detection and clustering

that detects discriminative feature points in every video frame and partition them into clusters. 2)

Road sign localization that selects candidate road sign regions corresponding to clusters of feature

points using a vertical plane criterion. 3) Text detection that detects text on candidate road sign

areas and track them. 4) Text extraction and recognition that extract text in candidate sign plane

for recognition given a satisfactory size. The sign is highlighted by FWD. Fig.6.3.6 shows two

demo sequences in which the highlighted (by FWD) road sign is presented in the simulated driver

view. Highlighting landmarks like roads signs can help the driver while navigating. It is not clear if

distraction of FWD projection revokes the advantages of the provided navigation info. Our results

shows FWD can give the driver helpful guidance with help of other vision sensors and systems and

offer a good basis for future research.
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Figure 6.3.6: A road sign is highlighted by FWD projection (in blue) over time that overlays the

sign on the wall projected by a video projector. Two demo sequences are in (a) and (b).

128



Chapter 7

Conclusions and Future Work

There are several contributions that have been made in the course of my exploration of this disser-

tation. Some are summarized in the following.

7.1 Summary of Contributions

Labeling Landmarks and Objects in Image

In the chapter of Semi-automatically Labeling Landmarks and Objects in Images, we have pre-

sented a family of semi-automatic object labeling methods based on Zhu’s SSL method [130] in

a semi-supervised learning framework. Given an image with a small-size ROI, our methods can

extract the contour of the object and also the same or similar objects at other locations in the im-

age [121]. In particular, we have proposed SmartLabel-2 to enhance SmartLabel by overcoming

three of its limitations [123]. Our experiments on various object classes have demonstrated that

SmartLabel-2 not only outperforms SmartLabel but also achieves close-to-fine extraction of object

contours in many classes. One future direction is to reinvent SmartLabel-2 for labeling objects in

videos.
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One question rises when using over-segmentation in SmartLabel-2 - why not use over-segmentation

patches (superpixels) directly as the labeling units? We offer three thoughts for discussion: 1)

Computation. Generating 100 superpixels on a 512×512 image can take>10 minutes but quadtree

normally takes <1 second, both using Matlab. We do not seek real time computing in this work.

2) Feature representation (FR). FR is not well addressed for superpixels yet. Many current FR

methods are for representing features on regular regions not arbitrary ones. Apart from the FR is-

sue, normalization and similarity measurement can be problematic too. 3) Effectiveness. Applying

quadtree partitioning and refinement by superpixels has led to promising results in our experiments.

We would like to leave this interesting direction for future audience.

Detection of Text on Road Signs from Video

Large amounts of information are embedded in natural scenes. Road signs are good examples of

objects in natural environments that have rich information content. In the chapter of Detection of

Text on Road Signs from Video, we have presented a new framework for incrementally detecting

text on road signs from video. The proposed framework efficiently embeds road sign plane local-

ization and text detection mechanisms with feature-based tracking into an incremental detection

framework. The framework can significantly improve the robustness and efficiency of text detec-

tion. The new framework has also provides a novel way to detect road sign text from video by

integrating image features and the vertical plane properties of road signs. Experimental results

have demonstrated the feasibility of the new incremental detection framework under real-world

settings.

Recognition of Other Signs

In the chapter of Recognition of Other Signs, we have proposed a novel approach for recognizing

other signs such as store signs from a sequence of images. Objects are basic units for multimedia

content analysis. Much research has focused on exploring similarity among objects and contexts
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for content analysis. In this chapter, we have proposed a novel approach for multimedia content

analysis based on objects’ unique characteristics which we call object fingerprints. In particular, we

have demonstrated its performance on the problem of street landmark localization. We introduce

the concept of object fingerprints to represent salient appearances of the object as well as the

geometric relationships among local features. Another contribution of this work is a way to deal

with object recognition and localization with very limited training data. We have focused on single

landmark recognition from images. However, our approach can be well generalized to tackle other

kinds of content analysis tasks. Our approach employs some state-of-the-art techniques for feature

extraction, and has achieved better results than existing methods. In addition, occlusion can be

handled by matching object fingerprints at various locations of the object as long as at least one

object fingerprint is matched.

Recognition of Landmark Buildings

In the chapter of Recognition of Landmark Buildings, we have proposed a three-stage approach

to recognize the landmark buildings for helping localize the vehicle’s current position while driv-

ing. We have collected images from Internet resources and built the Pittsburgh Historic Landmark

(PHL) dataset. To the best of our knowledge, the PHL dataset is one of the first driving-based

building image datasets. Evaluation done on the PHL dataset and the ZuBuD dataset (a public

image dataset of Zurich buildings) have both shown the robustness and effectiveness of our pro-

posed approach. We believe the proposed approach can be surely applied to larger datasets and

generalized to other recognition tasks in the driving application domain.

Human Vehicle Interface

In the chapter of Human Vehicle Interface, we have showed that highlighting landmarks on a Full-

Windshield Head-Up Display system (FWD) is possible and may help the driver to navigate. In

order of calibrate the FWD, we have proposed projecting a point grid using the FWD, recording
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the pattern and creating a interpolation-based function to correct for distortion due to non-planar

windshield surface. Our experimental setup was used to project route guidance information on a

prototype FWD. Highlighting landmarks such as road signs is demonstrated as support for navi-

gation. Although the current cost for the prototype is relatively expensive (more than $1000 for

a FWD), the prospect of proposed system is promising when the cost decreases in the future. In

our experiments we assume that the viewing angle of the driver is fixed (driver position and head

orientation), which is essential for our proposed automated distortion correction method to work.

The assumption is limited and always violated in the real driving situation. Detection of road signs

could be extended to detect pedestrians, bicyclists or crossing animals on the street, so the driver

could be warned in advance of dangerous situations.

7.2 Future Work

• For labeling landmarks and objects in images, future directions might include:

– Directly use over-segmentation patches (superpixels) as the labeling units.

– Reinvent the SmartLabel-2 algorithm for labeling objects in videos.

• For detection of text on road signs from video, future directions might include:

– Generalize the proposed framework to detect scene text on other surfaces.

– Apply the proposed road sign detection algorithm to classify and analyze other objects

in images and videos.

• For recognition of street landmarks, future directions might include:

– Study the importance of various features in selected object fingerprints for different

street landmarks.
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– Combine context and content for more robust object recognition and localization. Some

pioneer work in this direction has been published, using image context [110], geometric

scene context [50] and image location tags [59].

• For recognition of landmark buildings, future directions might include:

– Evaluate our proposed algorithm on the large-scale datasets by considering computa-

tion and accuracy at the same time.

– Study the problem of recognizing general buildings in both views of pedestrians and

moving vehicles.

• For human vehicle interface, future directions might include:

– Introduce a head-tracking system with the goal that the driver sees the correct projection

on the windshield matching the environment independent of his/her perspective.

– Analyze the psychological effects of using an FWD. Further research on this topic is

necessary to fully understand psychological workload of the driver before installing

FWDs in mass produced cars. The possible future design and implementation based on

FWD would be guided by the analysis of human psychological workload in a human-

centered design manner.

7.3 Conclusion

In the last decade, car navigation systems and tools have evolved considerably as briefly shown in

Fig.7.3.1. Many car navigation systems have become available. These systems offer the promise

of easily-accessible and friendly multimodal user interface, but the existence of such diverse navi-

gation tools raises the question of ”what is the better way to provide route guidance and navigation

information to the drivers?”
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Figure 7.3.1: A brief overview of evolvement of in-car navigation tools. Some images are from

www.Garmin.com and rest from the Internet.

Simple portable navigation devices are capturing the world car navigation market, accounting

for about 80% of the 45 million devices worldwide. This market is currently dominated by three

firms, which hold about 80% of the market among them: TomTom NV of the Netherlands, Garmin

International Inc of the US, and MiTAC International Corp of Taiwan [103]. Their massive market

shares are mainly made possible by low prices - about $200 per device. This situation is how-

ever changing. As the 3G mobile telephony network expands, smart-phones such as BlackBerry,

iPhone and other similar mobile terminals are beginning to offer the same - or sometimes better

- navigation functions as these simple portable navigation devices. The change in the car naviga-

tion market is affecting not only portable devices, but installed models as well. As a result, the

whole car navigation systems market is becoming to a tri-polar structure: mobile phones, portable

devices, and factory-installed navigation systems. The change allows more companies such as

Google and Apple enter and transform the car navigation market.

In this dissertation we offer an array of multimedia technologies that aim to achieve landmark-

based navigation in the next generation of vehicle navigation systems. We start by presenting

work done in how to label landmarks in images that provides labeled data for training detection
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or recognition algorithms. We note that our proposed semi-supervised learning-based SmartLabel

framework is but one of the possible methods for object labeling, a field that is currently active

with several method showing promise.

We then describe an automatic system which detects text on road signs from video input and

helps the driver maneuver in traffic. Our research and evaluation suggests that by decomposing

the original task into two subtasks via a divide-and-conquer strategy, we are able to naturally

incorporate two sub-solutions into an unified framework through a feature-based tracking algo-

rithm. The proposed framework provides a novel way to detect text from video by integrating

two-dimensional 2D image features in each video frame with the 3D geometric structure informa-

tion of objects extracted from video sequence. In addition, we have demonstrated the road sign

detection and recognition on a full-windshield head-up display system, which shows promising

results and potentials.

In coping with other street landmarks, we have focused on recognition of store signs and land-

mark buildings. Our research suggests that by mining and recognizing street landmarks’ object

fingerprints, we are able to bypass some of the more challenging recognition issues that typically

hinders object recognition algorithms. By developing a landmark recognition system that com-

bines salient region detection, segmentation, and object fingerprint extraction techniques, we are

able to recognize and localize street landmark from images and videos. We have demonstrated im-

proved results by using the object fingerprint-based recognition method. We have also developed a

robust re-ranking-based recognition framework which is able to recognize the buildings of interest

in diverse driving views. As an artifact of this dissertation, we have created two datasets for testing

above recognition algorithms that will be made available as a by-product of this dissertation.

Some of the issues are not within the scope of this dissertation, namely combining all proposed

technologies into an unified system including user interface, which certainly have an impact in

evaluating the proposed techniques systematically. We have chosen not to perform integration

of the proposed technologies due to the workload and also availability of evaluation results of

individual approaches. We believe evaluation based on an integrated system is valuable and a plus,
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however, current evaluation results are convincing and have shown the benefits and advantages

of each individual technology. Therefore, we suggest in the future work that by integrating and

merging proposed technologies in this dissertation, it is possible to find a set of research directions

that is of tremendous use to improve the overall system performance and user satisfaction.

Within the course of this dissertation research, some obstacles have been found in the evalu-

ation of proposed methods. The lack of standard datasets for evaluation in the field of this dis-

sertation hinders development of the field. The author of this dissertation with collaborators has

worked hard to collect real-world data that allow other researchers to continue exploration in the

field. We believe that in the end, the most important part of the work done for this dissertation is to

offer some technical possibilities of our dissertation question that is not fully answered yet, ”what

is the better way to provide route guidance and navigation information to the drivers?” Trying

answering this question has played a tremendous role in shaping the structure of this dissertation.

However, fully answering the question is beyond the scope of one single dissertation and requires

more than technology advances. We hope that we have succeeded in presenting some useful multi-

media technologies for landmark-based vehicle navigation and some interesting new directions in

the field. We look forward to contributing further to improve driving safety, efficiency and overall

experience.
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