
Learning with Graph Structures and Neural
Networks

Yuexin Wu

CMU-LTI-20-009

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Yiming Yang (Chair) Carnegie Mellon University

Aarti Singh Carnegie Mellon University
Leman Akoglu Carnegie Mellon University

Huan Liu Arizona State University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

Copyright c© 2020 Yuexin Wu

www.lti.cs.cmu.edu

Keywords: graph, deep learning, node embeddings, graph convolution networks

For all that lit up my journey in the past five years.

iv

Abstract
Graph-based learning focuses on the modeling of graphically structured data.

Significant applications include the analysis of chemical compounds based on molec-
ular structures, the prediction of solar-energy farm outputs based on radiation sensor
network data, the forecasting of epidemiology outbreaks based on geographical rela-
tions among cities and social network interactions and so on. Algorithms for graph-
based learning have been developed rapidly, addressing the following fundamental
challenges:
• To encode the rich information about each individual node and node combina-

tions in a graph, a.k.a. the graph-based representation learning challenge;
• To recover missing edges when graphs are only partially observed, a.k.a. the

graph completion challenge;
• To leverage active learning in graphical settings when labeled nodes are highly

sparse, a.k.a. the label sparse challenge;
• To enhance the tractability of training and inference over very large graphs,

a.k.a. the scaling challenge.

This thesis aims to enhance graph-based machine learning from all the above
aspects via the following key contributions:

1) Graph convolutional matrix factorization for bipartite edge prediction:
For a specific category of graphs, i.e. bipartite graphs, traditional matrix factor-
ization methods could not effectively leverage side information such as simi-
larity measurements within the two groups of nodes. We, therefore, propose to
use graph convolutions to enhance the learned factorized representations with
the structured side information for better prediction accuracy.

2) Using Graph Neural Networks (GNNs) for general edge prediction: While
GNNs have had a great success in node classification, their application to edge
prediction has not archived a matching level of performance. A possible inter-
pretation for such an phenomena is that the latent embeddings in GNNs heav-
ily rely on the input node features and that if those input features are not of
good quality, or rather noisy for the prediction tasks on hand, then sub-optimal
performance would not be avoidable. We propose to address this issue by a
combined use of a traditional GNN and the Transformer model which yields
improved embedding of notes via flexible positional embeddings in the Trans-
former model.

3) Graph-enhanced Active Learning (Graph-AL) for node classification: Ac-
tive learning has been intensively studied for addressing the label sparse issue
and successfully applied in text/video/audio data but not graphs. Popular AL
strategies may not be directly applicable to graphs. For example, density-based
document selection treats all the candidate documents as unrelated instances,
ignoring the dependency structures among nodes in the input graph. We pro-
pose the first graph-based active learning approach which is tailored for Graph
Neural Networks, which takes both node-internal features and cross-node con-
nections into account for node selection in AL.

4) Various real-world applications of large-scale graph-based learning: We
have applied graph-based learning to a variety of real-world problems, in-
cluding multi-graph based collaborative filtering, graph-based transfer learn-
ing across languages, graph-based deep learning for epidemiology prediction,
graph-enhanced node classification, edge detection and knowledge base com-
pletion; we obtained the state-of-the-art results in each of those domains at the
times. (Chang et al., 2017; Liu et al., 2017a; Wu et al., 2018b,c; Xu et al.,
2018b).

vi

Contents

1 Introduction 1
1.1 Scientific Challenges . 1
1.2 Thesis Overview . 2
1.3 Other Contributions . 3

2 Graph Convolutional Matrix Completion for Bipartite Edge Prediction 5
2.1 Introduction . 5
2.2 Background . 6
2.3 Related Matrix Completion Methods . 7

2.3.1 Hyper-ball Constraint . 8
2.3.2 Subspace Constraints . 8

2.4 Our Approach . 9
2.4.1 Simple Subspace Constraints . 9
2.4.2 Generalization via Graph Convolution 10
2.4.3 First Order Chebyshev Approximation 10
2.4.4 Nonlinear Multi-hop Convolution . 11
2.4.5 Construction of Input Matrices . 11
2.4.6 Overall Algorithm . 12

2.5 Experiments . 12
2.5.1 Datasets . 13
2.5.2 Methods to Compare . 14
2.5.3 Evaluation Metrics . 15
2.5.4 Empirical Settings and Parameter Tunning 16
2.5.5 Main Results . 16
2.5.6 Effect of Latent Dimensions . 18

2.6 Conclusion . 18
2.7 Appendix . 18

3 Making GNNs Suitable for Link Prediction 21
3.1 Introduction . 21
3.2 Background . 22

3.2.1 Graph Neural Networks . 22
3.2.2 Matrix Factorization Model and Transformer 23

3.3 Our Approach . 23

vii

3.4 Experiments . 25
3.4.1 Simulated Experiment . 25
3.4.2 Real-world Experiment . 25

3.5 Conclusion . 26
3.6 Appendix . 27

3.6.1 Reason for the Choice of SGC . 27

4 Active Learning for Graph Neural Networks via Node Feature Propagation 29
4.1 Introduction . 29
4.2 Related Works . 30
4.3 Preliminaries . 31

4.3.1 Graph Neural Network Framework . 31
4.4 Active Learning Strategy & Theoretical Analysis 32

4.4.1 Node Selection via Feature Propagation and K-Medoids Clustering . . . 32
4.4.2 Theoretical Analysis of Classification Loss Bound 33
4.4.3 Why not K-Center . 34

4.5 Experiments . 35
4.5.1 Baselines . 36
4.5.2 Experiment Results . 37

4.6 Theorem Proofs . 39
4.6.1 Proof of Theorem 1 . 39
4.6.2 Proof of Theorem 2 . 43

4.7 Conclusion . 43
4.8 Appendix . 43

4.8.1 Addendum to Experiments . 43
4.8.2 Hoeffding’s Inequality . 44

5 Cross-Domain Kernel Induction for Transfer Learning 47
5.1 Introduction . 47
5.2 Proposed Framework . 49

5.2.1 TL Definitions . 49
5.2.2 TL with the Graph Laplacian . 49

5.3 Graph Construction . 50
5.3.1 Homogeneous Graph Construction . 50
5.3.2 Heterogeneous Graph Construction . 50

5.4 Optimization Algorithms . 52
5.5 Experiments . 53

5.5.1 Datasets . 53
5.5.2 Methods for Comparison . 54
5.5.3 Detailed Experimental Settings . 55
5.5.4 Results . 56

5.6 Conclusions . 58

viii

6 Deep Learning for Epidemiological Predictions 61
6.1 Introduction . 61
6.2 Background . 62

6.2.1 Task Definition . 62
6.2.2 Autoregressive Methods . 62
6.2.3 Gaussian Process Regression . 63

6.3 Our Approach . 63
6.3.1 CNN Module . 63
6.3.2 RNN Module . 65
6.3.3 Residual Module . 65

6.4 Experiments . 65
6.4.1 Datasets . 65
6.4.2 Experiment Setup . 66
6.4.3 Results . 66
6.4.4 Ablation Tests . 67

6.5 Conclusion . 67

7 Concluding Remarks 69
7.1 Main Contributions . 69
7.2 Discussions . 70
7.3 Future Work . 71

Bibliography 73

ix

x

List of Figures

2.1 Illustration of the BEP problem. Given the intrinsic structures of G (left) and H
(right) about the similarity information and partially observed edges (labeled in
red), we want to predict whether the missing edges are valid. 7

2.2 Architecture of the Graph Convolutional Matrix Completion (GCMC) network.
The input bipartite graph B (equivalently observed bipartite matrix YI) is used
to extract features/signals XG and XH on G and H. Graph convolutions are
performed to transform the signals into hidden representations U and V on G
andH respectively. The prediction is made by doing product between U and V :
F = UV >. U = NetG(XG) is defined in Equation 2.16. NetH can be defined
similarly. 13

2.3 Performance of methods vs. the model dimensions (matrix column sizes for U
and V). For MAP, higher scores indicate better performances. For RMSE, lower
scores indicate better performances. 16

2.4 Result summary on all datasets when the hidden dimension is set to 5. For MAP,
higher scores indicate better performances. For RMSE, lower scores indicate
better performances. GCMC outperforms all the other methods in all binary
prediction tasks (left sub-figure). 17

3.1 The structure of TransformerSGC. The input H(0) = X is convolved using nor-
malized adjacency matrix S to a get a refined node representation (SGC-part)
after which the positional embeddings (P) are added to complete a Transformer
structure for the final layer embedding H(K). The output (a dot product between
its transpose or compressed to |Y| logits) is dependent on the different down-
stream tasks. 24

3.2 Link prediction results on Cora and Citeseer datasets. 26
3.3 GCN and SGC node classification performance vs. number of labeled nodes in

the training set in the Citeseer dataset. The shaded area denotes the standard
deviation computed over several runs. 27

4.1 Visualization of Theorem 1. Consider the set of selected points s and the re-
maining points in the dataset [n]\s. K-Medoids corresponds to the mean of all
red segments in the figure, whereas K-Center corresponds to the max of all red
segments in the figure. 35

4.2 Results of different approaches over benchmark datasets averaged from 5 differ-
ent runs. 38

xi

4.3 Results of different approaches over benchmark datasets averaged from 5 dif-
ferent runs. Similar to Coreset, the orange line denotes replacing the original
distance function in Eqn. (4.7) with L2 distance from the final GCN layer. The
blue line denotes the algorithm replacing the K-Medoids module with K-Center
clustering. 39

4.4 Results of different approaches over benchmark datasets averaged from 5 differ-
ent runs on an SGC framework. 45

4.5 Results of SGC vs GCN over benchmark datasets averaged from 5 different runs
by using FeatProp. 45

5.1 Comparison of all methods on APR and MNIST. 56
5.2 CorrNet, HHTL and KerTL on the APR dataset (left) and the MNIST dataset

(right) with a varying quantity of parallel data. 59
5.3 SVM, SSL and KerTL on the APR dataset (left) and the MNIST dataset (right)

with a varying quantity of labeled data in the target domain. 59

6.1 The proposed deep learning framework where the top portion is the temporal
sequence of epidemiology profiles (input vectors), the middle portion consists
of the CNN modules, and the bottom portion consists of the RNN modules with
residual links in-between. 64

6.2 Left: Image CNN filter, a uniform grid filter is applied on each node; the filter is
computed over each node one-by-one. Right: Adjacency CNN filter, a one-time
node-specific filter defined on the whole irregular graph is applied; the filter is
computed over all nodes at once. 64

6.3 Ablation test results in RMSE – lower scores mean better performance. 68

xii

List of Tables

2.1 Dataset statistics. VG and VH are the vertex sets and EB denotes the edge set of
the bipartite graph. 14

2.2 Method comparison. Side-info denotes the approach uses side information (in-
trinsic information from G and H). Multi-hop/nonlinear denotes the approach
supports multi-hop/nonlinear mechanisms. No-eigen denotes the approach does
not need to perform expensive eigen-decomposition on G and H . * using side-
info partially through graph convolution as initialization. 15

2.3 Result summary on benchmark datasets. The hidden dimension was set to 5 for
all the methods. The bold faces indicate the approach with the best score on each
dataset. For MAP, we denote with a * if the best score is statistically significantly
better in the proportional test (at 5% level of the p-value) than the 2nd best score
on each dataset (on Cora and Citeseer). We include the detailed statistics of Drug
and Course in the appendix. 17

2.4 Results in MAP and NDCG@3 on the subsets of the Course data: the hidden
dimension was set to be 5 for all the methods. The bold faces indicate the ap-
proach with the best score on each dataset with a * if the best score is statistically
significantly better in the proportional test (at 5% level of the p-value) than the
2nd best score on each dataset (for MAP scores). 19

2.5 Results in MAP and NDCG@3 on the subsets of the Drug data: the hidden di-
mension was set to be 5 for all the methods. The bold faces indicate the approach
with the best score on each dataset with a * if the best score is statistically sig-
nificantly better in the proportional test (at 5% level of the p-value) than the 2nd
best score on each dataset (for MAP scores). 19

3.1 Dataset Statistics. 25
3.2 Accuracy on the simulated dataset for link prediction. 26
3.3 Mean Average Precision for top 3 predictions of each node on citation networks

for link prediction. The bold faces indicate the approach with the best score
oneach dataset with a * if the best score is statistically significantly better in the
proportional test(at 5% level of the p-value) than the 2nd best score on each dataset. 26

3.4 Accuracy on citation networks for node classification. 27

4.1 Dataset statistics of different networks. 36

xiii

4.2 Comparison of running time of 5 different runs in seconds between our algorithm
(FeatProp) and Coreset. OOT denotes out-of-time. Note in order to get a more
accurate solution, CoresetMIP costs much more time than Coreset-greedy. 36

4.3 Comparison of Macro-F1±standard deviation averaged over different number
of labeled nodes for training. Bold fonts represent the best methods. CorsetMIP
does not scale up for PubMed and CoraFull datasets. 37

4.4 Comparison of Micro-F1±standard deviation averaged over different number of
labeled nodes for training. Bold fonts represent the best methods. CorsetMIP
does not scale up for PubMed and CoraFull datasets. 44

5.1 Data statistics. 54
5.2 Overall results on APR dataset with target domain training-set size of 2 and

parallel set size of 1024. Bold-faced numbers indicate the best result on each
row with a * if the best score is statistically significantly better in the proportional
test(at 5% level of the p-value) than the 2nd best score. 57

5.3 Overall results on MNIST dataset with target domain training-set size of 2 and
parallel set size of 1024. Bold-faced numbers indicate the best result on each row
with a * if the best score is statistically significantly better in the proportional
test(at 5% level of the p-value) than the 2nd best score. 58

6.1 Dataset statistics include min, max, mean and standard deviation (SD) of patient
counts or activity levels; dataset size means # of regions multiplied by # of weeks. 66

6.2 Results summary. Bold face indicates the best result of each column in a partic-
ular metric and the total number of bold-faced results of each method is listed
after the method name within parentheses. 67

xiv

Chapter 1

Introduction

1.1 Scientific Challenges

Traditional graph theory focuses on learning the relationships between the spectral of Laplacian
or adjacency matrices and graph statistics, such as the number of connected components, for
example. With the recent developments in machine learning, researchers become more interested
in finding informative patterns from graphs or performing prediction tasks over the data with
some graphical structures. Graph neural networks (GNNs) (Bruna et al., 2013; Defferrard et al.,
2016; Hamilton et al., 2017; Kipf and Welling, 2016), as representative examples, borrow the key
idea from convolutions neural networks for image processing, and generalize the applicability of
convolution operators from 2D grids to arbitrary graphs. Significant applications of graph-based
learning include the analysis of chemical compounds based on molecular structures (Jin et al.,
2018), the prediction of solar-energy farm outputs based on radiation sensor network data (Lai
et al., 2018), the forecasting of epidemiology outbreaks based on geographical relations among
cities and social network interactions (Liben-Nowell and Kleinberg, 2007), user-graph or item-
graph based recommendation systems (Monti et al., 2017), and more. Also, techniques that
convert graph structured data into Euclidean vector spaces have also drawn research attentions
(Belkin and Niyogi, 2002; Perozzi et al., 2014), as well as hierarchically summarizing graphs
structures (Ying et al., 2018).

Algorithms for graph-based learning have been developed rapidly, addressing the following
fundamental challenges:

• To encode the rich information about each individual node and node combinations in a
graph, a.k.a. the graph-based representation learning challenge;

• To recover missing edges when graphs are only partially observed, a.k.a. the graph com-
pletion challenge;

• To leverage active learning in graphical settings when labeled nodes are highly sparse,
a.k.a. the label sparse challenge;

• To enhance the tractability of training and inference over very large graphs, a.k.a. the
scaling challenge.

1

1.2 Thesis Overview
This thesis aims to enhance the state of the art of graph-based learning by addressing all the
above challenges, with the following technical building blocks in particular:
• Graph convolutional matrix factorization (Chapter 2): We enhance the matrix factor-

ization with side information fined-grained by graph convolutions. Specifically, for the
matrix factorization on recommender systems which can be regarded bipartite graphs, the
user-user and movie-movie similarity measurements can be regarded as side information
graphs. Existing methods, however, are facing open challenges in how to enrich model
expressiveness and reduce computational complexity for scalability by leveraging such in-
trinsic graph structures. We propose to address both challenges with a novel approach
that uses a multi-layer/hop neural network to model a hidden space, and the first-order
Chebyshev approximation to reduce training time complexity.

• Stacking Transformer and Graph Neural Network (GNN) for general edge prediction
(Chapter 3): For general attributed graphs, GNNs have demonstrated its strong power in
the node classification task. However, as most of GNNs rely on the input of node fea-
tures, the success of the prediction tasks thus requires having a high correlation with such
features. Adapting them directly for edge prediction tasks would not contribute to good
results if the input features are too noisy. We therefore propose a new framework which
concatenates a GNN model generating convolved embeddings from input node features
and a Transformer model which mimics the behavior of matrix factorization methods and
outputs flexible latent embeddings.

• Active learning over graphs (Chapter 4): Though GNNs are proved to be effective in a
lot of node classification tasks, the large quantity of labeled graphs are difficult to obtain
in reality, which significantly limit the true application of GNNs. Although active learning
has been widely studied for addressing label-sparse issues with other data types like text,
images, etc., how to make it effective over graphs is an open question for research. We
present the first investigation on active learning with GNNs for node classification tasks.
Specifically, we propose a new method, which uses node feature propagation followed by
K-Medoids clustering of the nodes for instance selection in active learning.

• Graph-based transfer learning (Chapter 5): An application of graph learning is transfer
learning where we could view data as points in the graph where the edges measure their
similarity in-between. Common methods so far require source and target domains to have
a shared/homogeneous feature space, or the projection of features from heterogeneous
domains onto a shared space so that the edges of similarity could be easily computed.
However, in settings where different domains share no common representations how to
induce the similarity measurement between cross-domain data is a key challenge in the
graph formulation. We therefore proposes a novel framework, which does not require a
shared feature space but instead uses a parallel corpus to calibrate domain-specific kernels
into a unified kernel, to leverage graph-based label propagation in cross-domain settings,
and to optimize semi-supervised learning based on labeled and unlabeled data in both
source and target domains.

• Graph-based epidemiology prediction (Chapter 6): Another application is in model-

2

ing the correlation between different signals of time series data. The temporal nature of
epidemiology data for example and the need for real-time prediction by the system makes
the problem residing in the category of time-series forecasting or prediction. While tra-
ditional autoregressive (AR) methods and Gaussian Process Regression (GPR) have been
actively studied for solving this problem, deep learning techniques have not been explored
in this domain. In this paper, we develop a deep learning framework, for the first time, to
predict epidemiology profiles in the time-series perspective. We adopt Recurrent Neural
Networks (RNNs) to capture the long-term correlation in the data and Graph Neural Net-
works (GNNs) to fuse information from data of different sources, which could learn the
correlation effectively. A residual structure is also applied to prevent overfitting issues in
the training process.

1.3 Other Contributions
Except for the chapters covered above I have also worked on several other topics which are not
listed as separate chapters listed below:
• Switch-based Active Deep Dyna-Q: Efficient Adaptive Planning for Task-completion Di-

alogue Policy Learning
Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, Yiming Yang in AAAI 2019 (Wu et al.,
2018a)

• Analogical Inference for Multi-relational Embeddings
Hanxiao Liu, Yuexin Wu, Yiming Yang in ICML 2017 (Liu et al., 2017a)

• Unsupervised Cross-lingual Transfer of Word Embedding Spaces
Ruochen Xu, Yiming Yang, Naoki Otani, Yuexin Wu in EMNLP 2018 (Xu et al., 2018b)

• Deep Learning for Extreme Multi-label Text Classification
Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, Yiming Yang in SIGIR 2017 (Liu et al.,
2017b)

• Graph-Revised Convolutional Network
Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, Yiming Yang in KDD 2020
(Yu et al., 2019)

• Contextual encoding for translation quality estimation in WMT 2018 (Hu et al., 2018)
Junjie Hu, Wei-Cheng Chang, Yuexin Wu, and Graham Neubig.

• StoryGAN: A Sequential Conditional GAN for Story Visualization in CVPR 2019 (Li
et al., 2019)
Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin,
David Carlson, Jianfeng Gao

3

4

Chapter 2

Graph Convolutional Matrix Completion
for Bipartite Edge Prediction

2.1 Introduction

Many machine learning applications can be formulated as the problem of predicting the missing
edges in a bipartite graph (Kunegis et al., 2010). For example, in collaborative filtering users and
items in a training set form a bipartite graph with partially observed (rated) edges, and the task is
to predict the unobserved ones in the graph. Another example is in the biomedical domain, where
we want to find out unknown pathogen candidates for a new drug given the known effective
pathogens in the drug history (Yamanishi et al., 2008, 2010). We call those the bipartite edge
prediction (BEP) problems.

A large body of work has been devoted to solving the BEP challenge. Typical approaches
treat it as a matrix completion problem (Candes and Recht, 2012; Lee and Seung, 2001; Salakhut-
dinov and Mnih, 2007). By representing observed edges using an adjacency matrix, the unob-
served entries in the matrix can be discovered by imposing a low-rank constraint on the under-
lying model of the data. In other words, by learning a low-dimensional vector representation for
each vertex, the missing entries (edges) in the adjacency matrix can be approximated using the
linear combination of the observed edges. A primary drawback, or limitation, of such methods is
that the prediction is solely based on the observed edges, not leveraging additional information
about the vertices. For example, users’ demographical information could be useful for inference
about the similarity among users in collaborative filtering, and such similarity would be infor-
mative for propagating our beliefs from observed edges to unobserved edges. However, standard
matrix completion methods do not leverage such side information.

Recent efforts for addressing the above limitation of BEP methods include the Graph Reg-
ularzied Matrix Factorization (GRMF) method (Cai et al., 2011; Gu et al., 2010) which adds a
graph Laplacian regularizer in its objective function for utilizing the vertex similarities on both
sides of a bipartite graph. Transductive Learning over Product Graphs (TOP) (Liu and Yang,
2015, 2016) is another remarkable approach, which projects the vertex-similarity graphs on both
sides of the bipartite graph onto a unified product graph for semi-supervised belief propagation.
Namely, by representing bipartite edges as the vertices in the product graph and by establish-

5

ing the similarity among edges based on the side information, TOP propagates its beliefs from
observed edges to unobserved edges over the product graph under smooth assumptions. Both
GRMF and TOP improve the performance of standard matrix completion methods, according to
the published evaluations; however, both have their own limitations or weaknesses. For instance,
the Laplacian regularizer in GRMF is equivalent to one-hop belief propagation from each vertex
to its neighbor vertices, which ignores the effects of multi-hop belief propagation as a natural
phenomenon. As for TOP, although it models multi-hop propagation explicitly in various ways
(using Kronecker product and spectral transformation for example), the hidden vector space of
the graph product is restricted within the linear combination of the eigenvectors of the input sim-
ilarity graphs, which could be too restrictive for some applications. Moreover, TOP requires the
eigendecomposition of each input graph and the multiplication of the eigenvectors as a necessary
step, which could be a computation bottleneck for scalability (see Section 2.3.2).

In order to address the aforementioned limitations of existing BEP methods, we propose a
novel approach which employs a neural network architecture to model graph convolutions in a
dimension-reduced hidden space. Specifically, by allowing the hidden representations of ver-
tices to be located in the non-linear space that combines the original bases of the input similarity
graphs, our method captures multi-hop effects with a more flexible/expressive model, and at the
same time enjoys its simplicity and computational efficiency by avoiding the eigendecomposi-
tion step in TOP. We also demonstrate a simple low-rank prior as the input of convolution for
robust prediction. In our experiments on BEP benchmark datasets in the application domains of
collaborative filtering, citation network analysis, course prerequisite prediction and drug-target
interaction prediction, the proposed approach showed advantageous performance over GRMF,
TOP and other representative baseline methods in most cases.

2.2 Background

Let us introduce a generic formulation for graph-convolution based matrix completions, based
on that of (Liu and Yang, 2015). We use bold upper cases for matrices, and bold lower cases for
vectors.

For graphs G and H, denote by B the bipartite graph over the node sets of G and H with
VB = {VG, VH} and EB = VG × VH, and by m = |VG| and n = |VH| the sizes of VG and VH,
respectively. Assume Y is the set for edge values and edges EB ∈ Ym×n can be divided into the
labeled part El

B and the unlabeled one Eu
B. Then, the BEP problem is defined as:

Problem 1. given G, H and El
B, find f : EB → Y such that f predicts Eu

B as accurately as
possible.

An illustration can be found in Figure 2.1.

Let us write G and H for the adjacency matrices of G and H, respectively, and Y ∈ Rm×n

as the complete adjacency matrix of EB. Also we use indicator matrix I ∈ {0, 1}m×n for the
observed edges in El

B, and F ∈ Rm×n for the predicted bipartite edges by the system. Then we

6

A

B

C

a

b

0.2

0.3 0.5

Figure 2.1: Illustration of the BEP problem. Given the intrinsic structures of G (left) and H
(right) about the similarity information and partially observed edges (labeled in red), we want to
predict whether the missing edges are valid.

can formulate our objective in matrix completion as the following:

min
F

LI(F ,Y) (2.1)

such that F = UV > (2.2)
U ,V ∈ ΩG,H (2.3)

The objective denotes the empirical loss between prediction F and ground truth Y based on
observed data I . The first constraint assumes that F should have a low-rank representation with
U ∈ Rm×d, V ∈ Rn×d and d < min{m,n}. This dimension constraint which pushes the hidden
space to focus only on the principal components allows the possibility of projecting two vertices
into similar embeddings even if they have minor disagreed linkages. The second constraint
requires the embeddings of vertices U ,V to lie within the subspace which is induced by the
manifold structures of G and H (i.e. ΩG,H). Here we slightly abuse the notation of G to refer
to the structure of G. This constraint basically influences the final prediction through injecting
similarity information into the hidden representations, such that vertices have to be close in the
latent space if the vertices themselves are similar based on the information from G,H .

It is important to notice that how to further specify Equation 2.3 would make fundamental
differences among methods and their performance in BEP tasks. In TOP (Liu and Yang, 2016),
for example, U ,V ∈ ΩG,H lies in the linear span of the (top-ranking) eigenvectors of G and
H . In our approach in this paper, U ,V ∈ ΩG,H lies in an enriched space which is both more
expressive in terms of modeling and more efficient with respect to the training-time complexity
(see more discussions in Section 2.4).

2.3 Related Matrix Completion Methods

We outline several competing methods in matrix completion, focusing on their constraints in
Equation 2.3.

7

2.3.1 Hyper-ball Constraint
One common type of constraints is the ball-shape constraint. In Probabilistic Matrix Factoriza-
tion (Salakhutdinov and Mnih, 2007) (PMF), for instance, the authors specify the priors of U
and V to be Gaussian:

‖U‖2F≤ c1, ‖V ‖2F≤ c2 (2.4)

where ‖·‖F is the Frobenius norm and c1, c2 are manually set hyperparameters. This form sug-
gests that the columns of U and V reside within hyper-balls of radii

√
c1 and

√
c2 respectively.

Though effectively limiting the size of the factorized representations, such constraints do not
utilize any prior information from the intrinsic structures of G and H , which makes it unable to
produce valid embeddings for vertices that have cold-start problems (vertices having few or no
linkages).

One fix for this limitation is to employ a different graph-related ball-shape constraint. Graph
Regularized Matrix Factorization (Cai et al., 2011; Gu et al., 2010) (GRMF), therefore, defines
the constraint as follows:

Tr
(
U>LGU

)
≤ c1,Tr

(
V >LHV

)
≤ c2 (2.5)

where Tr(·) denotes the trace, LG is the unnormalized graph Laplacian defined as LG = DG −
G, where (DG)ii =

∑
j Gij and LH has similar meanings. Since Tr

(
U>LGU

)
=
∑

i u
>
i LGui,

it is meaningful to consider the effect of each individual term in the summation. Actually, we
can show that:

u>i LGui =
1

2

∑
jj′

(Uji − Uj′i)2Gjj′ (2.6)

This indicates that vertices j and j′ should have close embeddings with respect to the i-th dimen-
sion. And this graph Laplacian plays as a smooth measure along such dimension.

Meanwhile, we can also relate this constraint to Equation 2.4. It is easy to prove that LG and
LH are positive semi-definite, which means we can write the constraint similarly as:

‖
√

LGU‖2F≤ c1, ‖
√

LHV ‖2F≤ c2 (2.7)

This suggests that the constraint is still of a hyper-ball shape after a linear transformation of
columns in U and V .

One drawback of this constraint is that the penalty is based on the one-hop similarity alone
(i.e. j’s coordinates are influenced only by its direct neighbors as indicated by Gjj′). The infor-
mation may not be enough to make effective regularization if the number of a vertex’s neighbors
is limited. e.g. in collaborative filtering, a person is hard to get enough useful recommendation
if he/she has a short item-review history and few similar friends.

2.3.2 Subspace Constraints
Other constraints can also be used to limit the subspace, instead of that on the hyper-balls. Trans-
ductive Learning over Product Graphs (Liu and Yang, 2016) (TOP), for example, imposes eigen-
space related constraints:

ui ∈ img (eigen(G)) ,vj ∈ img (eigen(H)) (2.8)

8

where ui is any column of U and vj is any column of V . Here img (eigen(G)) denotes the image
or equivalently the subspace spanned by the columns of eigen(G). These constraints are imposed
as a result of the eigen-transformation in TOP. Different from the one-hop penalty in Equation
2.7, TOP enables multi-hop information propagation through spectral transforming which gener-
ally amounts to exponential transformation of the eigen-space eigen (G) and eigen (H). Eigen-
vectors ui and vj typically have small coefficients within the coordinate system, similar to that
with the hyper-ball constraint.

One drawback of TOP is the running time. That is, it requires computation for eigen-
decompositions of G and H which are very costly when the graphs are large. Evaluating ui
in Equation 2.8 is also expensive, i.e. given a set of coordinates in the space of eigen(G), the
evaluation for ui will takeO(m2) since the eigen-matrix is always dense even if G is sparse. An-
other limitation of TOP is that it only takes a linear transformation of the eigensystems, which
may not be sufficiently expressive. Our proposed approach (next section) addresses both of the
issues in TOP.

2.4 Our Approach
In this section, we propose a new model which is more flexible and expressive for multi-hop
nonlinear modeling of graph convolution. We start with a rather simple linear constraint on the
sub-spaces (Section 2.4.1), and then show how to generalize it to a richer nonlinear multi-hop
framework via graph convolution (Section 2.4.2) and nonlinear transformation (Section 2.4.4),
with the first order Chebyshev approximation for efficient computation (Section 2.4.3). In addi-
tion, we show how to construct the initial input signals for the convolution in Section 2.4.5, and
the over-all algorithm in Section 2.4.6.

2.4.1 Simple Subspace Constraints

Our method resides in the category of subspace constraints. Instead of requiring the embedding
U and V to lie within the eigen-spaces of G or H , we only require it to be in the span of the
column space. Formally, we define the constraint to be: for any column ui of U and column vj
of V

ui ∈ img(G),vj ∈ img(H) (2.9)

Alternatively, we can use a normalized version:

ui ∈ img(D
−1/2
G GD

−1/2
G),vj ∈ img(D

−1/2
H HD

−1/2
H) (2.10)

We could observe that our method is computationally less costly than TOP. That is, given
the coordinates (e.g. x) for img(G), the multiplication of G and x (i.e. ui = Gx) only costs
O(nnz(G)) where nnz is the number of non-zero entries. Besides, when G is nearly fully-rank,
the column space would have close similarity as the eigen-space, which means our method could
enjoy similar spectral transformation power at less cost.

9

2.4.2 Generalization via Graph Convolution
For more expressive embeddings, we can extend the constraint in Equation 2.10 through graph
convolution.

First, note that Equation 2.10 could be viewed as a transformation over a given signal x ∈ Rm

(scaler features on each node of of graph G):

ui = D
−1/2
G GD

−1/2
G x (2.11)

= UGΛGU
T
Gx (2.12)

where UG and ΛG are the corresponding eigen-vector matrix and eigen-value matrix for normal-
ized G. The ΛG part specifies the scaling factor, which is fixed for a given G. It is thus beneficial
to replace this factor with a parameter to be learnt for more varied expressiveness:

ui = gθ ∗ x = UGdiag(gθ)U
T
Gx (2.13)

where diag(gθ) denotes the diagonal matrix parameterized by vector gθ ∈ Rm (called filter in the
later literature).

This is called a one-hop generalized graph convolution over G (Hammond et al., 2011).
The benefits for this replacement are two-fold. First, by using a parameter diag(gθ), we could

go beyond for a richer representation and even stack the expressions for multi-hop convolutions
(Section 2.4.4). Second, the introduction of new parameter diag(gθ) separates the coordinate x
and the learning parameters, which enables our model to use x to represent auxiliary information
(Section 2.4.5).

However, before we continue with the benefits of generalized graph convolution, we first
do an approximation in order to drop the cost in decomposing graph G, which keeps the time
complexity to be O(nnz(G) +m).

2.4.3 First Order Chebyshev Approximation
The original definition of graph convolution (Equation 2.13) requires to solve the eigen-decomposition
for G in the first place (e.g. in TOP), which can be expensive for large graphs. Even if G is
sparse, its eigen-matrix will not be sparse. Hence the evaluation of Equation 2.13 will take time
O(m2) for the dense matrix multiplication. This will lead to a computation bottleneck, as for
optimizing gθ through gradient descent, we need to perform this evaluation in every iteration.

In order to fix this problem, (Kipf and Welling, 2016) proposed a first order Chebyshev
approximation for this calculation. Denoting by G̃ = G + I the adjacency matrix of the graph
with self-loops added, and by D̃G the diagonal matrix with (D̃G)ii =

∑
j G̃ij , the approximated

convolution operation can be written as:

ui = gθ ∗ x ≈ gθ1D̃
−1/2
G G̃D̃

−1/2
G x (2.14)

where gθ1 is the first component of gθ. We see that this approximation no longer requires
the eigen-decomposition and the computation time is reduced from O(m2) to O(nnz(G̃)) ≤
O(nnz(G) +m).

10

Moreover, we can naturally write a compact matrix representation for U convoluting over
multiple filters as:

U = D̃
−1/2
G G̃D̃

−1/2
G XΘ (2.15)

where X ∈ Rm×c is a input signal matrix and Θ ∈ Rc×d is the concatenated filter parameter
matrix.

Note this expression enjoys the advantage of fast computation without doing decomposition
on G while approximately reserving the flexible representation power as in Equation 2.13. We
can further enhance such representation power through the following nonlinear multi-hop mech-
anisms.

2.4.4 Nonlinear Multi-hop Convolution
The formulation of Equation 2.15, can be regarded as one linear layer of feed-forward neural
networks if we view X as the input and U as the feature map convoluted through graph G.
Therefore, natural extensions will be to add in nonlinear activation functions and stack multiple
layers (LeCun et al., 2015), which will enhance the expressiveness of the model. And each layer
can be regarded as an intermediate representation. For simplicity, denote Ĝ = D̃

−1/2
G G̃D̃

−1/2
G .

Then, an example of the 2-layer model for the embedding of U can take the form of:

U = tanh
(
Ĝtanh

(
ĜXΘ1

)
Θ2

)
(2.16)

where Θ1 and Θ2 are the filter parameters on each layer. Note the final layer has to be tanh
instead of ReLU or sigmoid, as we need to allow the coordinates of the hidden embeddings to
have negative values in order for the final product of UV > to predict negative entries (or zero
entries). We denote the whole structure of Equation 2.16 as NetG, that is,

U = NetG(X). (2.17)

The network NetH for V can be defined similarly. We use such 2-layer structure in our experi-
ments (Table 2.3).

In order to distinguish between the signals on G and H , we use notations XG and XH in
the following literature. Similarly, ΘG and ΘH are used to represent parameters (concatenation
of Θ1 and Θ2) in the corresponding multi-layer networks.

2.4.5 Construction of Input Matrices
As shown in equation 2.16, graph convolution starts with input signals. This means that for all
the nodes in G and H, we need to have input matrices XG and XH whose rows are the feature
vectors of the corresponding nodes. We construct these matrices using the observed bipartite
matrix YI = Y ⊗ I , where ⊗ is the Hadamard product 1.

1Our framework allow the flexibility of using XG and XH to represent other types of node features as well,
such as vectorized demographical information about users or meta features about movies. However, in this paper
we only focus on the node features induced based on the observed bipartite matrix.

11

One natural way is to use the rows (or columns) of YI for XG (or XH), which essentially
views the edge profiles as node features. Such an approach leverages all given information in
YI . However, the computation would be too expensive when G and H are very large (e.g. with
thousands of node). Moreover, this would lead to over-fitting of our model as the observed edges
are typically highly sparse in the bipartite graph, not sufficient for robust estimation of models
with too many free parameters.

Therefore, for robust induction of node features and for efficient computation, we take a
simple strategy: use the top left/right singular vectors (those corresponding to the largest singular
values) of YI to construct XG and XH , respectively. Since we only need to compute the top few
eigenvectors of a sparse matrix instead of its full spectrum, the time/space complexities are linear
in the non-zero elements in matrix YI . The dimension-reduced representation of node features
should also effectively avoid overfitting.

2.4.6 Overall Algorithm

We summarize the overall training procedure and architecture in Algorithm 1 and Figure 2.2.
Note that we do not use any regularization tricks (dropout/L1 regularization). The result shows
that graph convolution and constructed low-rank input matrices have such regularization ability
and performs robustly with regard to the hidden dimension (Figure 2.3).

Algorithm 1 Training procedure for Graph Convolution Matrix Completion (GCMC) network
Input: Bipartite Matrix Y , Indicator Matrix I for training set, Adjacency Matrices G and H
YI = Y ⊗ I
Perform low-rank SVD on YI s.t. XGX>H ≈ YI

Initialize parameters ΘG, ΘH for NetG, NetH defined in Eq. 2.16
Set learning rate α
while not converging do

U = NetG(XG)
V = NetH(XH)
F = UV >

ΘG = ΘG − α∇ΘG
LI(F ,Y)

ΘH = ΘH − α∇ΘH
LI(F ,Y)

end while

2.5 Experiments

We used four benchmark datasets for evaluations in bipartite edge detection, including the ap-
plications to collaborative filtering, citation network analysis, course prerequisite prediction and
drug-target interaction prediction.

12

Input Graph ℬ

Feature Extraction
generate signals on each node of 𝒢 and ℋ

Graph Convolution
transform signals

Predict by 𝑼𝑽⊤

predict missing edges

Net𝑮

Output New Graph

𝑿𝑮

𝑿𝑯

𝑼

𝑽

[𝟏, 𝟎. 𝟐, …]

[𝟎, 𝟎. 𝟏, …]

[𝟎. 𝟑, 𝟐, …]

[𝟏, 𝟎. 𝟑, …]

[𝟐, 𝟎. 𝟑, …]

[𝟏, 𝟎. 𝟒, …]

[𝟎. 𝟐, 𝟎, …]

[𝟎. 𝟏, 𝟐, …]

[𝟏, 𝟎. 𝟑, …]

[𝟎. 𝟏, 𝟎, …]

[𝟐, 𝟎. 𝟑, …]

[𝟏, 𝟎. 𝟐, …]

[𝟎. 𝟒, 𝟏, …]

[𝟑, 𝟎. 𝟏, …]

Net𝑯

Figure 2.2: Architecture of the Graph Convolutional Matrix Completion (GCMC) network.
The input bipartite graph B (equivalently observed bipartite matrix YI) is used to extract fea-
tures/signals XG and XH on G and H. Graph convolutions are performed to transform the
signals into hidden representations U and V on G and H respectively. The prediction is made
by doing product between U and V : F = UV >. U = NetG(XG) is defined in Equation 2.16.
NetH can be defined similarly.

2.5.1 Datasets

• Collaborative Filtering MovieLens-100K2 (Harper and Konstan, 2016) is a collaborative
filtering benchmark where the intrinsic graphs are within users and movies. Specifically,
we have VG with 943 users and VH with 1682 movies. The task is to predict user-movie
ratings ranging from 1 to 5. Each user is provided with a binary vector indicating the
gender, occupation and zip code; for each movie, the corresponding genres are provided.

• Citation Networks in Cora (Sen et al., 2008) and Citeseer (Lawrence et al., 1999): Each
dataset uses the publications as its VG and VH, which are identical. The task is to predict
the missing citations for a given publication. Each publication has a sparse binary feature
vector, indicating whether or not a specific word is present within the publication. Cora
contains 2708 publication records and 5429 citations and Citeseer contains a slightly larger
publication set with 3312 documents and sparser citation records with 4715 links.

• Course Prerequisite Prediction with the Course dataset (Yang et al., 2015). This dataset
is comprised of course prerequisite data from the course sites of Massachusetts Institute of
Technology (2322 courses, 1173 links), California Institute of Technology (1048 courses,
761 links), Princeton University (56 courses, 90 links) and Carnegie Mellon University (83
courses and 150 links). The task is to predict missing prerequisite dependencies among
courses. Similar to citation network, VG and VH are identical, and for each course, a bag-
of-words vector from the course description is provided.

• Drug-target Interaction Prediction We use Drug dataset (Yamanishi et al., 2008). This
dataset contains drug-target interaction data, which can be divided into 4 categories based
on the corresponding target protein types: Enzymes (664 target proteins, 445 drugs), Ion

2https://grouplens.org/datasets/movielens/100k/. We do not use any larger MovieLens dataset since no user
demographic features are provided.

13

Channels (204 target proteins, 210 drugs), GPCRs (95 target proteins, 223 drugs) and
Nuclear Receptors (26 target proteins and 54 drugs). In this dataset, the task is to predict
missing interaction pairs between target proteins and drugs. Specifically, we use VG to
denote the target protein node set and VH for the drug node set. The similarity measures
between target proteins/drugs are calculated by SIMCOMP (Hattori et al., 2003) directly
on their chemical structures.

Table 2.1 summarizes the detailed dataset statistics.

Datasets |VG| |VH| |EB| Edge Value

MovieLens-100K 943 1,682 100,000 {1. . . 5}

Cora 2,708 2,708 5,429 {0,1}
Citeseer 3,312 3,312 4,715 {0,1}

Course-MIT 2,322 2,322 1,173 {0,1}
Course-CalTech 1,048 1,048 761 {0,1}
Course-CMU 83 83 150 {0,1}
Course-Princeton 56 56 90 {0,1}

Drug-Enzyme 664 445 2926 {0,1}
Drug-Ion Channel 204 210 1476 {0,1}
Drug-GPCR 95 223 635 {0,1}
Drug-Nuclear Receptor 26 54 90 {0,1}

Table 2.1: Dataset statistics. VG and VH are the vertex sets and EB denotes the edge set of the
bipartite graph.

2.5.2 Methods to Compare

We compare our method with other major matrix completion methods from the categories of
both hyper-ball constraints and subspace constraints. Also, two state-of-the-art neural network
methods tailored for collaborative filtering are added as baselines.
• GCMC: graph convolutional matrix completion. This is our method3.
• TOP (Liu and Yang, 2015, 2016): transductive learning over product-graph. This method

adopts a subspace constraint in the span of eigen-matrices of G and H . It utilizes spectral
transformation for multi-hop feature representations.

• GRMF (Cai et al., 2011): graph regularized matrix factorization. This method employs
a hyper-ball constraint. The ball shape is induced by the intrinsic structures of G and H,
which projects similar vertices into close proximity. This method considers only one-hop
relations.

3Code available at https://github.com/CrickWu/GCMC

14

• PMF (Salakhutdinov and Mnih, 2007): probabilistic matrix factorization. PMF uses a
hyper-ball constraint which is equivalent to imposing uniform Gaussian priors to the final
embeddings. PMF does not utilize the information within G andH.

• CF-NADE (Zheng et al., 2016): a state-of-the-art neural network based method. This
framework uses a feed-forward, multilayer autoregressive architecture for collaborative
filtering with an ordinal cost, which also uses nonlinear mechanism. It embeds the vertices
on G into a lower-dimension representation. The embedding is then multiplied with a
weight matrix as the prediction scores for new linkages. This method does not utilize the
information of G andH either.

• RGCNN (Monti et al., 2017): another state-of-the-art neural network based method for
collaborative filtering. This framework only uses side information as initialization embed-
dings through graph convolution, which are then finalized by a recurrent network. Side
information is not utilized during the updating process of the recurrent network.

We summarize the detailed properties of comparing methods in Table 2.2.

Methods Side-info Multi-hop Nonlinear No-eigen

GCMC 3 3 3 3

TOP 3 3 7 7

GRMF 3 7 7 3

PMF 7 7 7 3

CF-NADE 7 7 3 3

RGCNN 3∗ 3 3 3

Table 2.2: Method comparison. Side-info denotes the approach uses side information (intrin-
sic information from G and H). Multi-hop/nonlinear denotes the approach supports multi-
hop/nonlinear mechanisms. No-eigen denotes the approach does not need to perform expen-
sive eigen-decomposition on G and H . * using side-info partially through graph convolution as
initialization.

2.5.3 Evaluation Metrics
In the all datasets except MovieLens-100K, the edges to be predicted have a binary value. There-
fore, by treating each vertex in G as a query, we used the standard metric of Mean Average
Precision (MAP) to measure the returned ranked list by the algorithm. On the other hand, for the
collaborative filtering task on the MovieLens-100K dataset, MAP is no longer appropriate for
prediction with multiple values. Instead, we used the Root Mean Square Error (RMSE) to mea-
sure the performance, which has been widely used in collaborative filtering evaluations (Bennett
et al., 2007; Sedhain et al., 2015; Zheng et al., 2016). We also reported NDCG@3 on all datasets
in order to evaluate the ranking properties of high-scored prediction for all methods.

We run a 5-fold cross validation for each method on each dataset. Each time 20% of the
data is used for testing, 20% is used for hyper-parameter tuning, and the remaining is used for
training. The results on the test sets are then averaged.

15

20 40 60 80

30

40

50
M

AP
Course

20 40 60 80

25

30

35

M
AP

Drug

0 50 100 150

10

20

30

M
AP

Cora

0 50 100 150

20

40

M
AP

Citeseer

0 50 100 150
0.8

1.0

1.2

1.4

1.6

RM
SE

MovieLens-100K
GCMC
TOP
GRMF
PMF
CF-NADE
RGCNN

Figure 2.3: Performance of methods vs. the model dimensions (matrix column sizes for U and
V). For MAP, higher scores indicate better performances. For RMSE, lower scores indicate
better performances.

2.5.4 Empirical Settings and Parameter Tunning
Using the features of vertices in each graph, we construct sparse kNN graphs for both G and H,
and fix them for all methods to ensure they all utilize the same information.

We use the regularized versions of TOP, GRMF and PMFin our experiments. That is, instead
of specifying the size of the hyper-balls, we add the Lagrangian multiplier to the original loss
function. The parameter for the ratio between the original loss (Equation 2.1) and the constraint
(Equation 2.3) is tunned on the validation set. Squared loss is adopted as the objective function
for these 3 methods. We report the best performance from the set of {1e − 3, 1e − 2, 1e −
1, 1e0, 1e1}. For CF-NADE, we use the implementation from the authors4. The learning rate
and weight decay are set by cross-validation among {0.001, 0.0005, 0.0002} and {0.015, 0.02}
as suggested in the paper (Zheng et al., 2016). For RGCNN5, we use default parameters for
MovieLens-100K, and tune the feature numbers on validation set in other datasets.

For our proposed method (GCMC), we used the major singular-vectors (singular vectors
corresponding to the largest singular values) from random SVD as the input signals for XG and
XH . We use squared loss as the objective function and Adam (Kingma and Ba, 2014) with
default parameters (b1 = 0.1, b2 = 0.001 and ε = 10−8) for optimization. For binary edge
prediction tasks, (citation networks, course prerequisite prediction and drug-target interaction
prediction), we multiply the loss of positive edges by a factor of 10, which has a similar effect
as negative sampling strategy in most neural network algorithms and encourages more accurate
prediction on the positive instances.

2.5.5 Main Results
The main results of our experiments are summarized in Table 2.3 and Figure 2.4. Clearly, our
approach strictly outperforms all the other methods in the binary prediction tasks on Cora, Cite-

4https://github.com/Ian09/CF-NADE
5https://github.com/fmonti/mgcnn

16

Course Drug Citeseer Cora0

10

20

30

40

M
AP

MovieLens0.900

0.925

0.950

0.975

1.000

1.025

1.050

RM
SE

GCMC
TOP

GRMC
PMF

CF-NADE
RGCNN

Figure 2.4: Result summary on all datasets when the hidden dimension is set to 5. For MAP,
higher scores indicate better performances. For RMSE, lower scores indicate better perfor-
mances. GCMC outperforms all the other methods in all binary prediction tasks (left sub-figure).

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

MovieLens-100K
RMSE 0.9641 1.0276 0.9498 0.9907 0.9917 0.9600

NDCG@3 73.52 75.00 74.88 74.73 66.84 74.45

Cora
MAP 18.34* 13.89 5.38 8.62 12.85 9.94

NDCG@3 16.80 12.17 4.27 7.67 10.99 9.45

Citeseer
MAP 15.14* 11.20 3.53 7.22 8.97 7.00

NDCG@3 13.82 9.84 2.49 6.24 7.19 6.22

Course
MAP 46.02 36.56 34.32 31.23 31.62 31.30

NDCG@3 44.62 34.09 31.00 27.82 26.77 26.67

Drug
MAP 35.02 34.33 31.35 29.81 25.73 24.31

NDCG@3 30.96 30.03 26.77 24.78 20.97 19.27

Table 2.3: Result summary on benchmark datasets. The hidden dimension was set to 5 for all the
methods. The bold faces indicate the approach with the best score on each dataset. For MAP, we
denote with a * if the best score is statistically significantly better in the proportional test (at 5%
level of the p-value) than the 2nd best score on each dataset (on Cora and Citeseer). We include
the detailed statistics of Drug and Course in the appendix.

17

seer, Course and Drug both on MAP and NDCG@3. And the advantage is pronounced when the
dataset is large enough (Cora and Citeseer), which justifies the expressiveness of our framework
in data-sufficient settings. On MovieLens-100K, we see that our algorithm achieves comparable
second best result in RMSE (as collaborate filtering tailored RGCNN), which is the metric all
algorithms choose to optimize except CF-NADE. Since the similarity information between users
and movies is highly limited, it is reasonable that simpler method GRMF which concentrates on
combining major similarity features performs better. And not surprisingly, methods that utilize
the intrinsic structures of graphs (GCMC and TOP) dominate the performance of the methods
that do not use such information (PMF and CF-NADE) in most cases. C

2.5.6 Effect of Latent Dimensions
Figure 2.3 shows how the performance (in MAP or RMSE) of all methods change when the
hidden dimensions (i.e., the ranks of the matrices) vary. It can be seen that GCMC consistently
outperforms the other methods on Cora, Citeseer and Course data, and performs as the second
best method on Drug. Recall that Cora and Citeseer have highly sparse networks, i.e., with
many unknown links. The excellent performance of GCMC on these datasets suggests that our
approach successfully addresses the data sparse issue by effectively leveraging graph-structure
based knowledge and regulating the latent representations in the model.

We also find that comparing with the other complex multi-hop algorithm, TOP, our method
is more robust when the hidden dimension size changes. For instance, in datasets Course and
Drug, GCMC can almost get better performance when the hidden dimension increase, while
TOP easily achieves the highest score at a small dimension (40 for Course and 20 for Drug) and
drops quickly. Note this phenomenon is justified since we introduce the low-rank prior in the
input signals, which is effective in preventing over-fitting (Section 2.4.5).

2.6 Conclusion
In this chapter we presented a new approach to the bipartite edge prediction problem, which
uses a multi-hop neural network structure to effectively enrich the model expressiveness, and the
first-order Chebyshev approximation to substantially reduce the complexity of training time. We
also employ a low-rank prior in the input signals so as to make robust prediction. Our approach
consistently outperformed several state-of-the-art methods in our experiments on the benchmark
datasets for collaborative filtering, citation network analysis, course prerequisite prediction and
drug-target interaction prediction in most cases.

2.7 Appendix
Statistics for the sub-tasks in Course and Drug datasets. Our method achieves the best perfor-
mance on all sub-tasks except Drug-GPCR.

18

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

Course-MIT
MAP 35.39 33.64 31.12 26.10 30.76 24.16

NDCG@3 34.51 32.25 30.47 25.37 27.50 22.86

Course-CalTech
MAP 45.17* 31.70 33.48 29.12 32.79 23.66

NDCG@3 43.62 30.45 32.47 27.79 29.58 33

Course-CMU
MAP 53.24 49.68 34.11 41.25 49.84 40.46

NDCG@3 51.26 46.65 26.92 37.43 48.29 33.68

Course-Princeton
MAP 50.29 31.21 38.55 28.46 13.06 36.9

NDCG@3 49.08 27.01 34.16 20.68 1.71 27.11

Average
MAP 46.02 36.56 34.32 31.23 31.62 31.30

NDCG@3 44.62 34.09 31.00 27.82 26.77 26.67

Table 2.4: Results in MAP and NDCG@3 on the subsets of the Course data: the hidden dimen-
sion was set to be 5 for all the methods. The bold faces indicate the approach with the best score
on each dataset with a * if the best score is statistically significantly better in the proportional
test (at 5% level of the p-value) than the 2nd best score on each dataset (for MAP scores).

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

Drug-Enzyme
MAP 12.71* 8.81 6.46 7.60 6.29 9.94

NDCG@3 6.72 5.79 2.23 4.61 2.98 4.35

Drug-Ion Channel
MAP 24.90* 21.34 14.86 13.53 13.36 12.26

NDCG@3 19.96 13.87 7.21 7.42 6.17 6.32

Drug-GPCR
MAP 38.16 45.54 44.96 45.59 31.60 23.98

NDCG@3 33.95 44.78 44.58 44.72 28.97 21.18

Drug-Nuclear Receptor
MAP 64.30 61.64 59.13 52.53 51.67 51.04

NDCG@3 63.21 55.68 53.07 42.36 45.74 45.24

Average
MAP 35.02 34.33 31.35 29.81 25.73 24.31

NDCG@3 30.96 30.03 26.77 24.78 20.97 19.27

Table 2.5: Results in MAP and NDCG@3 on the subsets of the Drug data: the hidden dimension
was set to be 5 for all the methods. The bold faces indicate the approach with the best score on
each dataset with a * if the best score is statistically significantly better in the proportional test
(at 5% level of the p-value) than the 2nd best score on each dataset (for MAP scores).

19

20

Chapter 3

Making GNNs Suitable for Link Prediction

3.1 Introduction

Graph convolutional networks (GNNs) (Kipf and Welling, 2016; Veličković et al., 2017) have
been widely used in the domain of graph data processing. The successful applications include
promising results in areas such as node classification (Hamilton et al., 2017; Wu et al., 2019),
graph classification (Gao and Ji, 2019; Lee et al., 2019; Ying et al., 2018) and knowledge-base
completion (Schlichtkrull et al., 2018; Zhang et al., 2019). GNNs refine node embedding repre-
sentations by performing multiple-layer convolutions which transforms the initial node features
based on local node connectivity information. However, few works have proved that the di-
rect adaptation of such network structures can be effective in the area of link prediction (Zhang
and Chen, 2018). In practice, graph-enhanced matrix-factorization-like methods are usually the
preferable choices. For example, Graph Regularzied Matrix Factorization (GRMF) method (Cai
et al., 2011; Gu et al., 2010) which adds a graph Laplacian regularizer to its squared loss function
can utilize the vertex similarities induced by raw node features. The nature and structure of nor-
mal GNNs do restrict their use in link predictions. Specifically, Graph Convolutional Network
(GCN) (Kipf and Welling, 2016), for example, like many of other graph convolutional networks
is originally proposed for node classification tasks. The final layer node embeddings though
computed as a fusion and transformation between its neighbors after layers of convolutions are
still heavily dependent on the original feature representations. In fact, the success of such GNN
structure design attribute to high correlation between the prediction task and the input features,
and the multi-layer convolution framework may not be as effective when such correlation is
suppressed by the noise from the input.

On the other hand, in matrix-factorization methods, the final layer node embeddings (or latent
variables) are more influenced through the signal from the visible links with limited information
injected in the form of regularization from original node features. In most of cases, how to keep
the balance between node features and the flexibility of latent factorization variables can largely
influence the final accuracy and is a key component to tackle in link prediction tasks.

In this chapter, we introduce a framework (TransformerSGC) that leverages the power of ma-
trix factorization and graph convolutions. Specifically, we manifests resemblence of positional
embeddings in Transformer model and the feature transformation in GNNs and adapt the Trans-

21

former model into the link prediction task. We show that by a simple concatenation of these two
structures our model could achieve a descent improvement in the link prediction task without
harming the advantages in the original node classification task. Our contributions are basically
two-fold:
• We propose a new framework which combines both the characteristics of matrix-factorization

based method and graph convolution methods.
• We show the advantages of our method over other representative methods on several bench-

mark datasets.

3.2 Background
In the following part, we will use the lower case letters (e.g., x) to represent scalars, lower case
bold letters (e.g., x) to denote column vectors, and bold-face upper case letters (e.g., X) to
denote matrices. In a graph G = (V,E) composed of node set V and edge set E, we denote
by X the initial node features. Alternatively, we could use the adjacency matrix A to represent
information for its edge information. Basically, we are interested in two tasks: node classification
where each node v ∈ V is associated with a label y ∈ Y to predict and link prediction where we
need to decide whether an edge is missing between two given nodes. The major way that many
methods have adopted is to learn task-specific node embeddings before using a simple classifier
for node classification or performing pair-wise product for link prediction. Different frameworks
differ in the way to get the refined node embeddings, which we will discuss in details in the
following subsections.

3.2.1 Graph Neural Networks
A Graph Neural Network (GNN) is a multi-layer structure where the last layer output is used
as the refined node embeddings. The general GNN structure works in a two-step paradigm for
each layer: an aggregation step which gets information from every node’s local neighbors and
a combination step which updates its embedding based on the aggregated signals. Specifically,
for node v, given the k− 1-th layer embeddings, the aggregation step first combines embeddings
from v’s neighbors (denoted as N (v)) into a single one:

h′
(k)
v = AGGREGATE

({
h(k−1)
u , u ∈ N (v)

})
, (3.1)

where h
(k−1)
u is the k − 1-th layer embedding for node u. Operator AGGREGATE can be any

self-defined function and is a permutation-invariant function (e.g. summation) in most designs.
Given the aggregated signal, the combination function is used for updating the embedding for
next layer:

h(k)
v = COMBINE

(
h′

(k)
v ,h(k−1)

v

)
. (3.2)

The choices of these two functions can largely affect the behavior o f GNNs. For example, in
the simple type of SGC (Wu et al., 2019), AGGREGATE is a degree-weighted summation of v’s

22

neighbors and COMBINE is the direct summation. This design amounts to a linear diffusion of
node embeddings. When an activation function (e.g. ReLU) is introduced in COMBINE as in
GCN (Kipf and Welling, 2016), we would expect a more non-linear output from a multi-layer
structure with larger variance. The final embedding F = H(K) (stacking all nodes into a matrix)
can be used for different tasks.

However, it is easy to observe that in most of GNNs, there lacks a design of latent variables
for each individual node. That is, the learnable parameters are designed in the form of para-
metric functions while in matrix-factorization, latent variables replaces the role of final-layer
embeddings, which rely more directly on the present links. Instead of requiring F to be the
convolved output from raw node feature matrix, F in matrix-factorization methods are usually
controlled by added regularizers in the objective function (explanined in the section below).

3.2.2 Matrix Factorization Model and Transformer
For link prediction tasks, matrix-factorization methods are the major choice. For the adjacency
matrix A to be predicted, factorization-based methods require we learn the latent matrix F ∈
Rn×d with d < n for a low-rank assumption such that FF> ≈ A. By minimizing ‖FF>−A‖2,
we could generalize the model to predict unseen edges using dot product/cosine similarities
between latent representations. As in attributed graphs, node features can also aid in the final
prediction, some One way to inject the information of node is to add Laplacian regularizers:

min‖FF> −A‖2+β Tr (FLXF) , (3.3)

where LX = diag
(
XX>1

)
−XX> is the Laplacian matrix induced from the similarity graph

of X , Tr is the trace operator, and diag constructs a diagonal matrix. Intuitively, the Laplacian
regularizer pushes the learned embeddings F to have similar distance relations as in the original
input features X .

On the other hand, people (Zhang et al., 2020) try to address the issue of combining node
features and graph structures using the Transformer model (Vaswani et al., 2017). Originally de-
signed for natural language processing, Transformer utilizes attention layers to fuse the informa-
tion from words (node features) and its positional embeddings. The multi-layer fully-connected
structure requires high computational cost. Thus, people normally use sampled mini-graphs from
the original graph structure.

3.3 Our Approach
The basic idea of our framework, which we name it as TransformerSGC, is to combine the ad-
vantages of a Simplied Graph Convolutional Network (SGC) (Wu et al., 2019) and a Transformer
(Vaswani et al., 2017). As is explained above, SGC as one network from the GNN family, can
be effective in fusing features from local node clusters while lacking the flexibility of free latent
variables. The positional embeddings of Transformer, on the other hand, can be used in place of
latent variables, which makes it suitable to be stacked on top of an SGC network. We restrain to
use only a 1-layer Transformer, making it plausible to fit large datasets. The illustration can be
found in Figure 3.1.

23

𝐻(") 𝐻($) 𝐻(%&")𝐻(')

SGC-part

𝑄

𝐾

𝑉

𝑃

𝐻(%)

Transformer-part

𝑆 𝑆 𝑆

…

Figure 3.1: The structure of TransformerSGC. The input H(0) = X is convolved using nor-
malized adjacency matrix S to a get a refined node representation (SGC-part) after which the
positional embeddings (P) are added to complete a Transformer structure for the final layer em-
bedding H(K). The output (a dot product between its transpose or compressed to |Y| logits) is
dependent on the different downstream tasks.

To be specific, in the first part, we adopt an SGC model for fusing node feature with their
neighbors. That is, for the current node embedding h

(k)
v , the updating rule can be expressed as:

h(k)
v =

1

d(v) + 1
h(k−1)
v +

∑
u∈N (v)

1√
(d(u) + 1) (d(v) + 1)

h(k−1)
u (3.4)

In a compact representation, we can rewrite the above equation as:

H(k) = SH(k−1), (3.5)

where S = D̃−1/2ÃD̃−1/2 is the degree-normalized adjacency matrix with self-loop added:
D̃ = diag(Ã1) where Ã = A + I . Naturally, let the first layer H(0) = X .

With more layers involved, the features would converge to a steady point of S. Therefore,
after we get th (K − 1)-th layer output, we would feed it into a Transformer (Vaswani et al.,
2017) model:

H(K) = softmax
(
QK>
√
dk

)
V , (3.6)

where dk is the dimension of matrix Q and K. The matrices are defined as:

Q =
[
H(K−1), P

]
WQ (3.7)

K =
[
H(K−1), P

]
WK (3.8)

V =
[
H(K−1), P

]
WV , (3.9)

where P is the positional embedding matrix for all nodes. It is noticeable that P could be either
pre-defined or learned alongside the training procedure. When P is using a fix value, we adopt
the choice of a truncated SVD decomposition of A. This design resembles the trigonometric
function in the plaim Transformer model as the original function (sin and cos) is indeed the
eigen-vector of a chain-like graph which is the default setting in natural languages.

24

3.4 Experiments

Datasets Nodes Edges Classes Features

Cora 2,708 5,429 7 1,433
Citeseer 3,312 4,715 6 3,703

Table 3.1: Dataset Statistics.

We compared our method with the following baselines:
• GCN (Kipf and Welling, 2016): Graph Convolutional Network.
• SGC (Wu et al., 2019): Simplified Graph Convolutional Network.
• DirectProd: perform the direct dot product using raw node features.
• MF: a plain Matrix Factorization method with a low-rank assumption.
• Graph-Bert (Zhang et al., 2020): a recent neural method which first pretrains a Bert model

on extracted sub-graphs and fine-tunes its parameters based on different downstream tasks.

3.4.1 Simulated Experiment
We test the abilities of our framework on a simulated dataset where we can control the correlation
between the edge set and node features. We construct the data in two steps. We first generate
raw node features X from a fixed distribution, each node feature are assumed to be i.i.d. Then
a noise feature matrix X ′ is sampled from a different distribution. A linear combination F ′ =
(1 − α)X + αX ′ is used as the true embeddings for each node, which leads to the adjacency
matrix as A = F ′F ′>. We discretize A if its entry is larger than 0 and keep the top |E| edges.
Specifically, we generate a 2,000-node dataset with 20,000 links. The feature dimension is set
to be 3. X ∼ N (0, 1) and X ′ ∼ N (−3, 0.5) + N (7, 2). We divide 80% of the edges out as
observed ones in the training set and leave the remaining for the test set.

The results are shown in Table 3.2. As we can see, TransformerSGC outperforms the com-
paring methods in most of the settings with different noise level (α). And we do observe the
difference between MF and TransformerSGC is at its largest when the adjacency matrix can
be fully determined by node features X . DirectProd would also achieve its best performance
when α = 0. However, even with a little noise, DirectProd would completely fail at make any
meanigful predictions. This is also true for SGC. This suggests the original claim that the pre-
diction would not be accurate if the model relies too much on node features when the correlation
between links and node features is weak.

3.4.2 Real-world Experiment
We also test our method against all the baselines in real-world datasets on the link prediction
task. Specifically, we test our model in the citation networks. The detailed statistics of each
dataset can be found in Table 3.1 and Figure 3.2.

25

Noise level (α) 0. 0.1 0.5 0.9 1.0

DirectProd 1.0000 0.0000 0.0005 0.0030 0.0020
SGC 0.0015 0.0030 0.0025 0.0010 0.0005
MF 0.6475 0.6530 0.7500 0.7280 0.7770
TransformerSGC 0.7790 0.6635 0.7600 0.7310 0.7777

Table 3.2: Accuracy on the simulated dataset for link prediction.

Cora Citeseer
0.0

0.1

0.2

0.3

0.4

0.5

M
AP

@
3

DirectProd
SGC
GCN
MF
Graph-Bert
TransformerSGC

Figure 3.2: Link prediction results on Cora and Citeseer datasets.

As is shown in Table 3.3, our method achieves the best performance in all benchmark datasets,
while SGC and GCN can hardly achieve on-par results with MF. Meanwhile, we can see that even
for the node classification in Table 3.4, our method gets quite similar results as SGC. This demon-
strates that the learned/predefined positional embeddings would not deteriorate the performance
of our model on the traditional node classification task.

MAP@3 DirectProd SGC GCN MF Graph-Bert TransformerSGC

Cora 0.1025 0.2150 0.1902 0.4036 0.0394 0.4902*
Citeseer 0.1591 0.2133 0.0748 0.4108 0.3337 0.4266

Table 3.3: Mean Average Precision for top 3 predictions of each node on citation networks for
link prediction. The bold faces indicate the approach with the best score oneach dataset with a
* if the best score is statistically significantly better in the proportional test(at 5% level of the
p-value) than the 2nd best score on each dataset.

3.5 Conclusion
In this section, we have proposed the TransformerSGC framework which combines the advan-
tages of feature refinement from a normal SGC network and the positional embeddings from
the Transformer model which carries similar meanings as in the flexible hidden latent variables
in matrix factorization methods. We have tested our method over both simulated experiments

26

Accuracy SGC GCN Graph-Bert TransformerSGC

Cora 0.7708 0.7743 0.7730 0.7835
Citeseer 0.6258 0.6441 0.6850 0.6476

Table 3.4: Accuracy on citation networks for node classification.

and real-world experiments on link prediction tasks and outperform other competitive baselines
without compromising its power on the original node classification task.

3.6 Appendix

3.6.1 Reason for the Choice of SGC
It is noticeable that we choose SGC (Wu et al., 2019) to be the front part instead of GCN (Kipf
and Welling, 2016). This is due to the fact that SGC is more prone to the layer number is able to
achieve a good result with even limited training data. We could see in Figure 3.3 that SGCs get
smaller variances under all settings with different layer sizes.

100 200 300 400 500 600
Training set size

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

1-layer GCN
3-layer GCN
5-layer GCN

100 200 300 400 500 600
Training set size

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

1-layer SGC
3-layer SGC
5-layer SGC

Figure 3.3: GCN and SGC node classification performance vs. number of labeled nodes in the
training set in the Citeseer dataset. The shaded area denotes the standard deviation computed
over several runs.

27

28

Chapter 4

Active Learning for Graph Neural
Networks via Node Feature Propagation

4.1 Introduction

Graph Neural Networks (GNN) (Hamilton et al., 2017; Kipf and Welling, 2016; Veličković et al.,
2017; Wu et al., 2019) have been widely applied in many supervised and semi-supervised learn-
ing scenarios such as node classifications, edge predictions and graph classifications over the past
few years. Though GNN frameworks are effective at fusing both the feature representations of
nodes and the connectivity information, people are longing for enhancing the learning efficiency
of such frameworks using limited annotated nodes. This property is in constant need as the bud-
get for labeling is usually far less than the total number of nodes. For example, in biological
problems where a graph represents the chemical structure (Gilmer et al., 2017) of a certain drug
assembled through atoms, it is not easy to obtain a detailed analysis of the function for each atom
since getting expert labeling advice is very expensive. On the other hand, people can carefully
design a small “seeding pool” so that by selecting “representative” nodes or atoms as the training
set, a GNN can be trained to get an automatic estimation of the functions for all the remaining
unlabeled ones.

Active Learning (AL) (Settles, 2009), following this lead, provides solutions that select “in-
formative” examples as the initial training set. While people have proposed various methods for
active learning on graphs (Bilgic et al., 2010; Moore et al., 2011), active learning for GNN has
received relatively few attention in this area. (Cai et al., 2017) and (Gao et al., 2018) are two
major works that study active learning for GNN. The two papers both use three kinds of metrics
to evaluate the training samples, namely uncertainty, information density, and graph centrality.
The first two metrics make use of the GNN representations learnt using both node features and
the graph; while they might be reasonable with a good (well-trained) GNN model, the metrics
are not informative when the label budget is limited and/or the network weights are under-trained
so that the learned representation is not good. On the other hand, graph centrality ignores the
node features and might not get the real informative nodes. Further, methods proposed in (Cai
et al., 2017; Gao et al., 2018) only combine the scores using simple linear weighted-sum, which
do not solve these problems principally.

29

We propose a method specifically designed for GNN that naturally avoids the problems of
methods above. Our method select the nodes based on node features propagated through the
graph structure, making it less sensitive to inaccuracies of representation learnt by under-trained
models. Then we cluster the nodes using K-Medoids clustering; K-Medoids is similar to the
conventional K-Means, but constrains the centers to be real nodes in the graph. Theoretical
results and practical experiments prove the strength of our algorithm.
• We perform a theoretical analysis for our method and study the relation between its classi-

fication loss and the geometry of the propagated node features.
• We show the advantage of our method over Coreset (Sener and Savarese, 2017) by com-

paring the bounds. We also conjecture that similar bounds are not achievable if we use raw
unpropagated node features.

• We compare our method with several AL methods and obtain the best performance over
all benchmark datasets.

4.2 Related Works

Active Learning (AL) aims at interactively choosing data points from the training pool to max-
imize model performances, and has been widely studied both in theory (Hanneke, 2014) and
practice (Shen et al., 2017). Recently, (Sener and Savarese, 2017) proposes to compute a Core-
set over the last-layer activation of a convolutional neural network. The method is designed for
general-purpose neural networks, and does not take the graph structure into account.

Early works on AL with graph-structured data (Dasarathy et al., 2015; Mac Aodha et al.,
2014) study non-parametric classification models with graph regularization. More recent works
analyze active sampling under the graph signal processing framework (Ortega et al., 2018). How-
ever, most of these works have focused on the denoising setting where the signal is smooth over
the graphs and labels are noisy versions of node features. Similarly, optimal experimental design
(Allen-Zhu et al., 2017; Pukelsheim, 2006) can also apply to graph data but primarily deals with
linear regression problems, instead of nonlinear classification with discrete labels.

Graph Neural Networks (GNNs) (Hamilton et al., 2017; Kipf and Welling, 2016; Veličković
et al., 2017) are the emerging frameworks in the recent years when people try to model graph-
structured data. Most of the GNN variants follow a multi-layer paradigm. In each layer, the
network performs a message passing scheme, so that the feature representation of a node in the
next layer could be some neighborhood aggregation from its previous layer. The final feature of
a single node thus comprises of the information from a multi-hop neighborhood, and is usually
universal and “informative” to be used for multiple tasks. Recent works show the effectiveness of
using GNNs in the AL setting. (Cai et al., 2017), for instance, proposes to linearly combine un-
certainty, graph centrality and information density scores and obtains the optimal performance.
(Gao et al., 2018) further improves the result by using learnable combination of weights with
multi-armed bandit techniques. Instead of combining different metrics, in this paper, we ap-
proach the problem by clustering propagated node features. We show that our one-step active
design outperforms existing methods based on learnt network represenations, in the small label
setting, while not degrading in performance for larger amounts of labeled data.

30

4.3 Preliminaries

In this section, we describe a formal definition for the problem of graph-based active learning
under the node classification setting and introduce a uniform set of notations for the rest of the
paper.

We are given a large graph G = (V,E), where each node v ∈ V is associated with a feature
vector xv ∈ X ⊆ Rd, and a label yv ∈ Y = {1, 2, ..., C}. Let V = {1, 2, ..., n}, we denote
the input features as a matrix X ∈ Rn×d, where each row represents a node, and the labels as a
vector Y = (y1, ..., yn). We also consider a loss function l(M|G,X, Y) that computes the loss
over the inputs (G,X, Y) for a modelM that maps G,X to a prediction vector Ŷ ∈ Yn. Same
as previous works on deep learning theory (Allen-Zhu et al., 2018; Du et al., 2018), we assume
that l is Lipschitz with constant λ and bounded in [−L,L].

Following previous works on GNN(Cai et al., 2017; Hamilton et al., 2017), we consider the
inductive learning setting; i.e., a small part of Y is revealed to the algorithm, and we wish to
minimize the loss on the whole graph l(M|G,X, Y). Specifically, an active learning algorithm
A is initially given the graph G and feature matrix X . In step t of operation, it selects a subset
st ⊆ [n] = {1, 2, ..., n}, and obtains yi for every i ∈ st. We assume yi is drawn randomly
according to a distribution Py|xi supported on Y; we use ηc(v) = Pr[y = c|v] to denote the
probability that y = c given node v, and η(v) = (η1(v), ..., ηC(v))T . Then A uses G,X and yi
for i ∈ s0 ∪ s1 ∪ · · · ∪ st as the training set to train a model, using training algorithmM. The
trained model is denoted as MAt . If M is the same for all active learning strategies, we can
slightly abuse the notation At = MAt to emphasize the focus of active learning algorithms. A
general goal of active learning is then to minimize the loss under a given budget b:

min
s0∪···∪st

E[l(At|G,X, Y)] (4.1)

where the randomness is over the random choices of Y and A. We focus onM being the Graph
Neural Networks and their variants elaborated in detail in the following part.

4.3.1 Graph Neural Network Framework

Graph Neural Networks define a multi-layer feature propagation process similar to Multi-Layer
Perceptrons (MLPs). Denote the k-th layer representation matrix of all nodes asX(k), andX(0) ∈
Rn×d are the input node features. Graph Neural Networks (GNNs) differ in their ways of defining
the recursive function f for the next-layer representation:

X(k+1) ← f(X(k);G,Θk), (4.2)

where Θk is the parameter for the k-th layer. Naturally, the input X satisfies X(0) = X by def-
inition. Graph Convolution Network (GCN). A GCN (Kipf and Welling, 2016) has a specific
form of the function f as:

X(k+1) ← ReLU(SX(k)Θk), (4.3)

31

where ReLU is the element-wise rectified-linear unit activation function (Nair and Hinton, 2010),
Θk is the parameter matrix used for transforming the size of feature representations to a different
dimension and S is the normalized adjacency matrix. Specifically, S is defined as:

S = (I +D)−
1
2 (A+ I)(I +D)−

1
2 , (4.4)

where A is the original adjacency matrix associated with graph G and D is the diagonal degree
matrix of A. Intuitively, this operation updates node embeddings by the aggregation of their
neighbors. The added identity matrix I (equivalent to adding self-loops to G) acts in a similar
spirit to the residual links (He et al., 2016) in MLPs that bypasses shallow-layer representations
to deep layers. By applying this operation in a multi-layer fashion, a GCN encourages nodes that
are locally related to share similar deep-layer embeddings and prediction results thereafter.

For the classification task, it is normal to stack a linear transformation along with a softmax
function to the representation in the final layer, so that each class could have a prediction score.
That is,

Ŷ = softmax(X(K)ΘK), (4.5)

where softmax(x) = exp(x)/
∑C

c=1 exp(xc) which makes the prediction scores have unit sum
of 1 for all classes, and K is the total number of layers. We use the GCN structure as the fixed
unified modelM for all the following discussed AL strategies A.

4.4 Active Learning Strategy & Theoretical Analysis
Traditionally, active learning algorithms choose one instance at a time for labeling, i.e., with
|st|= 1. However, for modern datasets where the numbers of training instances are very large, it
would be extremely costly if we re-train the entire system each time when a new label is obtained.
Hence we focus on the “batched” one-step active learning setting (Contardo et al., 2017), and
select the informative nodes once and for all when the algorithm starts. This is also called the
optimal experimental design in the literature (Allen-Zhu et al., 2017; Pukelsheim, 2006). Aiming
to select the b most representative nodes as the batch, our target (4.1) becomes:

min
|s0|≤b

E[l(A0|G,X, Y)]. (4.6)

The node selection algorithm is described in Section 4.4.1, followed by the loss bound analysis in
Section 4.4.2, and the comparison with a closely related algorithm (K-Center in Coreset (Sener
and Savarese, 2017)) in Section 4.4.3.

4.4.1 Node Selection via Feature Propagation and K-Medoids Clustering
We describe a generic active learning framework using distance-based clustering in Algorithm 2.
It acts in two major steps: 1) computing a distance matrix or function dX,G using the node feature
representations X and the graph structure G; 2) applying clustering with b centers over this
distance matrix, and from each cluster select the node closest to the center of the cluster. After

32

Algorithm 2 Active Learning with Distance-based Clustering
Require: Node representation matrix X , graph structure matrix G and budget b

1: Compute a distance function dX,G(·, ·) : V × V → R # for FeatProp: use Eqn. (4.7)
2: Perform clustering using dX,G with b centers # for FeatProp: use K-Medoids
3: Select s to be the centers
4: Obtain labels for v ∈ s and train modelM

Ensure: ModelM

receiving the labels (given by matrix Y) of the selected nodes, we train a graph neural network,
specifically GCN, based on X,G and Y for the node classification task. Generally speaking,
different options for the two steps above would yield different performance in the down-stream
prediction tasks; we detail and justify our choices below and in subsequent sections.

Distance Function. Previous methods (Cai et al., 2017; Gao et al., 2018; Sener and Savarese,
2017) commonly use network representations to compute the distance, i.e., dX,G(vi, vj) = ‖(X(k))i−
(X(k))j‖2 for some specific k. While this can be helpful in a well-trained network, the represen-
tations are quite inaccurate in initial stages of training and such distance function might not select
the representatitive nodes. Differently, we define the pairwise node distance using the L2 norm
of the difference between the corresponding propagated node features:

dX,G(vi, vj) = ‖(SKX)i − (SKX)j‖2, (4.7)

where (M)i denotes the i-th row of matrix M , and recall that K is the total number of layers.
Intuitively, this removes the effect of untrained parameters on the distance, while still taking the
graph structure into account.

Clustering Method. Two commonly used methods are K-Means (Cai et al., 2017; Gao et al.,
2018) and K-Center (Sener and Savarese, 2017)1. We propose to apply the K-Medoids clustering.
K-Medoids problem is similar to K-Means, but the center it selects must be real sample nodes
from the dataset. This is critical for active learning, since we cannot try to label the unreal cluster
centers produced by K-Means. Also, we show in Section 4.4.3 that K-Medoids can obtain a more
favorable loss bound than K-Center.

We call our method FeatProp, to emphasize the active learning strategy via node feature
propagation over the input graph, which is the major difference from other node selection meth-
ods.

4.4.2 Theoretical Analysis of Classification Loss Bound
Recall that we use ‖(SKX)i − (SKX)j‖2 to approximate the pairwise distances between the
hidden representations of nodes in GCN. Intuitively, representation SKX resembles the output
of a simplified GCN (Wu et al., 2019) by dropping all activation functions and layer-related pa-
rameters in the original structure, which introduces a strong inductive bias. In other words, the
selected nodes could possibly contribute to the stabilization of model parameters during the train-
ing phase of GCN. The following theorem formally shows that using K-Medoids with propagated
features can lead to a low classification loss:

1For a group of nodes, K-Center problem aims to find a δ-cover with at most k nodes for smallest possible δ.

33

Theorem 1 (informal). Suppose that the label vector Y is sampled independently from the dis-
tribution yi ∼ η(i), and the loss function l is bounded by [−L,L]. Then under mild assumptions,
there exists a constant c0 such that with probability 1 − δ the expected classification loss of At
satisfies

1

n
l(A0|G,X, Y) ≤c0

n

n∑
i=1

min
j∈s0
‖(SKX)i − (SKX)j‖2

+

√
L log(1/δ)

2n

(4.8)

To understand Theorem 1, notice that the first term
∑n

i=1 minj∈s0‖(SKX)i − (SKX)j‖2
is exactly the target loss of K-Medoids (sum of point-center distances), and the second term√

L log(1/δ)
2n

quickly decays with n, where n is the total number of nodes in graph G. Therefore
the classification loss of A0 on the entire graph G is mostly dependent on the K-Medoids loss.
In practice, we can utilize existing robust initialization algorithms such as Partitioning Around
Medoids (PAM) to approximate the optimal solution for K-Medoids clustering.

The assumptions we made in Theorem 1 are pretty standard in the literature. For the integrity
of the paper, we defer the proof details to Section 4.6. While our results share some common
characteristics with Sener et al.(Sener and Savarese, 2017), our proof is more involved in the
sense that it relates to the translated features ‖(SKX)i − (SKX)j‖2 instead of the raw features
‖(X)i − (X)j‖2. In fact, we conjecture that using raw feature clustering selection for GCN will
not result in a similar bound as in (4.8): this is because GCN uses the matrix S to diffuse the
raw features across all nodes in V , and the final predictions of node i will also depend on its
neighbors as well as the raw feature (X)i. We could see a clearer comparison in practice in
Section 4.5.2.

4.4.3 Why not K-Center

In this subsection we provide justifications on using the K-Medoids clustering method as opposed
to Coreset (Sener and Savarese, 2017). The Coreset approach aims to find a δ-cover of the
training set. In the context of using propagated features, this means solving

δ = min
|s0|≤b

max
i

min
j∈s0

dX,G(vi, vj)

= min
|s0|≤b

max
i

min
j∈s0
‖(SKX)i − (SKX)j‖2

(4.9)

We can show a similar theorem as Theorem 1 for the Coreset approach:
Theorem 2. Under the same assumptions as in Theorem 1, with probability 1 − δ the expected
classification loss of At satisfies

1

n
l(A0|G,X, Y) ≤c0 max

i
min
j∈s0
‖(SKX)i − (SKX)j‖2

+

√
L log(1/δ)

2n

(4.10)

34

!" !#
!$

!%
!& !'

Figure 4.1: Visualization of Theorem 1. Consider the set of selected points s and the remaining
points in the dataset [n]\s. K-Medoids corresponds to the mean of all red segments in the figure,
whereas K-Center corresponds to the max of all red segments in the figure.

Let di = minj∈s0‖(SKX)i − (SKX)j‖2. It is easy to see that RHS of Eqn. (4.8) is smaller
than RHS of Eqn. (4.9), since 1

n

∑n
i=1 di ≤ maxi di. In other words, K-Medoids can obtain a

better bound than the K-Center method (see Figure 4.1 for a graphical illustration). We observe
superior performance of K-Medoid clustering over K-Center clustering in our experiments as
well (see Section 4.5.2).

4.5 Experiments

We evaluate the node classification performance of our selection method on the Cora, Citeseer,
and PubMed network datasets (Yang et al., 2016). We further supplement our experiment with
an even denser network dataset CoraFull (Bojchevski and Günnemann, 2017) to illustrate the
performance differences of the comparing approaches on a large-scale setting. Table 4.1 sum-
marizes the dataset statistics.

We evaluate the Macro-F1 of the methods over the full set of nodes. The sizes of the budgets
are fixed for all benchmark datasets. Specifically, we choose to select 10, 20, 40, 80 and 160
nodes as the budget sizes. After selecting the nodes, a two-layer GCN 2, with 16 hidden neurons,
is trained as the prediction model. We use the Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 0.01 and weight decay of 5× 10−4. All the other hyperparameters are kept as in

2In the past semi-supervised setting of citation networks, a two-layer GCN is the optimal structure for the node
classification task (Kipf and Welling, 2016).

35

Data # Nodes # Edges # Classes Feature size

Cora 2,708 5,429 7 3,703
Citeseer 3,327 4,732 6 1,433
PubMed 19,717 44,338 3 500
CoraFull 19,793 126,842 70 8,710

Table 4.1: Dataset statistics of different networks.

Cora Citeseer PubMed CoraFull

FeatProp 239 622 1,506 13,059
CoresetMIP 12,260 13,257 OOT OOT

Coreset-greedy 44 46 509 636

Table 4.2: Comparison of running time of 5 different runs in seconds between our algorithm
(FeatProp) and Coreset. OOT denotes out-of-time. Note in order to get a more accurate solution,
CoresetMIP costs much more time than Coreset-greedy.

the default setting (β1 = 0.9, β2 = 0.999). To guarantee the convergence of the GCN, the model
trained after 200 epochs is used to evaluate the metric on the whole set.

4.5.1 Baselines

We compared the following methods:
• Random: Choosing the nodes uniformly from the whole vertex set.
• Degree: Choosing the nodes with the largest degrees. Note that this method does not

consider the information of node features.
• Uncertainty: Similar to the methods in (Joshi et al., 2009), we put the nodes with max-

entropy into the pool of instances.
• Coreset (Sener and Savarese, 2017): This method performs a K-Center clustering over

the last hidden representations in the network. If time allows (on Cora and Citeseer), a
robust mixture integer programming method as in (Sener and Savarese, 2017) (dubbed
CoresetMIP) is adopted. We also apply a time-efficient approximation version (Coreset-
greedy) for all of the datasets. The center nodes are then selected into the pool.

• AGE (Cai et al., 2017): This method linearly combines three metrics – graph centrality,
information density, and uncertainty and select nodes with the highest scores.

• ANRMAB (Gao et al., 2018): This method enhances AGE by learning the combination
weights of metrics through an exponential multi-arm-bandit updating rule.

• FeatProp: This is our method. We perform a K-Medoids clustering to the propogated
features (Eqn. (4.7)), where X is the input node features. In the experiment, we adopts an
efficient approximated K-Medoids algorithm which performs K-Means until convergence

36

Cora Citeseer PubMed CoraFull

Random 59.83± 5.77 48.79± 4.03 71.66± 4.50 10.75± 0.92
Degree 63.30± 0.55 35.50± 0.82 60.54± 0.38 10.85± 0.30

Uncertainty 48.14± 8.18 39.14± 4.52 64.80± 8.21 6.76± 0.72
Coreset-greedy 59.99± 4.59 48.21± 3.78 68.41± 4.50 10.83± 1.28

CoresetMIP 55.86± 6.89 46.76± 3.99 − −
AGE 65.01± 2.43 49.65± 5.19 67.96± 2.73 13.52± 0.81

ANRMAB 63.71± 4.34 47.29± 3.33 71.06± 4.82 11.40± 0.98
FeatProp 74.89 ± 2.63 51.03 ± 2.80 73.20 ± 1.81 14.86 ± 0.70

Table 4.3: Comparison of Macro-F1±standard deviation averaged over different number of la-
beled nodes for training. Bold fonts represent the best methods. CorsetMIP does not scale up for
PubMed and CoraFull datasets.

and select nodes cloesest to centers into the pool.

4.5.2 Experiment Results
In our experiments, we start with a small set of nodes (5 nodes) sampled uniformly at random
from the dataset as the initial pool. We run all experiments with 5 different random seeds and
report the averaged classification accuracy as the metric. We plot the accuracy vs the number
of labeled points. For approaches (Uncertainty, Coreset, AGE and ANRMAB) that require the
current status/hidden representations from the classification model, a fully-trained model built
from the previous budget pool is returned. For example, if the current budget is 40, the model
trained from 20 examples selected by the same AL method is used.

Main results. As is shown in Figure 4.2, our method outperforms all the other baseline
methods in most of the compared settings. It is noticeable that AGE and ANRMAB which use
uncertainty score as their sub-component can achieve better performances than Uncertainty and
are the second best methods in most of the cases. We also show an averaged Macro-F1 with
standard deviation across different number of labeled nodes in Table 4.3. It is interesting to find
that our method has the second smallest standard deviation (Degree is deterministic in terms of
node selection and the variance only comes from the training process) among all methods. We
conjecture that this is due to the fact that other methods building upon uncertainty may suffer
from highly variant model parameters at the beginning phase with very limited labeled nodes.

Efficiency. We also compare the time expenses between our method and Coreset, which
also involves a clustering sub-routine (K-Center), in Table 4.2. It is noticeable that in order to
make Coreset more stable, CoresetMIP uses an extreme excess of time comparing to Coreset-
greedy in the same setting. An interesting fact we could observe in Figure 4.2 is that CoresetMIP
and Coreset-greedy do not have too much performance difference on Citeseer, and Coreset-
greedy is even better than CoresetMIP on Cora. This is quite different from the result in image
classification tasks with CNNs (Sener and Savarese, 2017). This phenomenon distinguishes
the difference between graph node classification with traditional classification problems. We
conjecture that this is partially due to the fact that the nodes no longer preserve independent

37

10 20 40 80 160
Labeled data

0.2

0.4

0.6

0.8

M
ac

ro
-F

1

Cora

Random
Degree

Uncertainty
Coreset-greedy

CoresetMIP
AGE

ANRMAB
FeatProp

10 20 40 80 160
Labeled data

0.2

0.4

0.6

M
ac

ro
-F

1

Citeseer

10 20 40 80 160
Labeled data

0.5

0.6

0.7

0.8

M
ac

ro
-F

1

PubMed

10 20 40 80 160
Labeled data

0.0

0.1

0.2

0.3

M
ac

ro
-F

1

CoraFull

Figure 4.2: Results of different approaches over benchmark datasets averaged from 5 different
runs.

embeddings after the GCN structure, which makes the original analysis of Coreset not applicable.

Ablation study. It is crucial to select the proper distance function and clustering subroutine
for FeatProp (Line 1 and Line 2 in Algorithm 2). As is discussed in Section 4.4.3, we test the
differences with the variant of using the L2 distance from the final layer of GCN as the distance
function and the one by setting K-Medoids choice with a K-Center replacement. We compare
these algorithms in Figure 4.3. As is demonstrated in the figure, the K-Center version (blue
line) has a lower accuracy than the original FeatProp approach. This observation is compatible
with our analysis in Section 4.4.3 as K-Medoids comes with a tighter bound than K-Center in
terms of the classification loss. Furthermore, as final layer representations are very sensitive
to the small budget case, we observe that the network representation version (orange line) also
generally shows a much deteriorated performance at the beginning stage.

Though FeatProp is tailored for GCNs, we could also test the effectiveness of our algorithm
over other GNN frameworks. Specifically, we compare the methods over a Simplified Graph
Convolution (SGC) (Wu et al., 2019) and obtain similar observations. Due to the space limit, we
put the detailed results in the appendix.

38

10 20 40 80 160
Labeled data

0.4

0.6

0.8

M
ac

ro
-F

1

Cora

FeatProp FeatProp w/ network reprensentation FeatProp w/ kcenter

10 20 40 80 160
Labeled data

0.2

0.4

0.6

M
ac

ro
-F

1

Citeseer

Figure 4.3: Results of different approaches over benchmark datasets averaged from 5 different
runs. Similar to Coreset, the orange line denotes replacing the original distance function in Eqn.
(4.7) with L2 distance from the final GCN layer. The blue line denotes the algorithm replacing
the K-Medoids module with K-Center clustering.

4.6 Theorem Proofs

4.6.1 Proof of Theorem 1

For simplicity, for any model M let (M)i = (M(G,X))i ∈ RC be the prediction for node i
under input G,X , and (M)i,c be the c-th element of (M)i (i.e., the prediction for class c). In
order to show Theorem 1, we make the following assumptions:
Assumption 1. We assumeA0 overfits to the training data. Specifically, we assume the following
two conditions: i) A0 has zero training loss on s0; ii) for any unlabeled data (xi, xj) with i 6∈ s0

and j ∈ s0, we have (A0)i,yj ≤ (A0)j,yj and (A0)i,c ≥ (A0)j,c for all c 6= yj . The second
condition states that A0 achieves a high confidence on trained samples and low confidence on
unseen samples. We also assume that the class probabilities are given by a ground truth GCN;
i.e., there exists a GCNM∗ that predicts Pr[Yi = c] on the entire training set. This is a common
assumption in the literature, and (Du et al., 2018) shows that gradient descent provably achieves
zero training loss and a precise prediction in polynomial time.
Assumption 2. We assume that there exists a constant α such that the sum of input weights
of every neuron is less than α. Namely, we assume

∑
i|(ΘK)i,j|≤ α. This assumption is also

present in (Sener and Savarese, 2017). We note that one can make
∑

i|(ΘK)i,j| arbitrarily small
without changing the network prediction; this is because dividing all input weights by a constant
t will also divide the output by a constant t.
Assumption 3. We assume that ReLU function activates with probability 1/2. This is a common
assumption in analyzing the loss surface of neural networks, and is also used in (Kawaguchi,
2016; Xu et al., 2018a). This assumption also aligns with observations in practice that usually
half of all the ReLU neurons can activate.

With these assumptions in place, we are able to prove Theorem 1.
Theorem 1 (restated). Suppose Assumptions 1-3 hold, and the label vector Y is sampled

independently from the distribution yv ∼ η(v) for every v ∈ V . Then with probability 1− δ the

39

expected classification loss of At satisfies

1

n
l(A0|G,X, Y) ≤(λ+ L)(α/2)K

n

n∑
i=1

min
j∈s0
‖(SKX)i

− (SKX)j‖2+
√
L log(1/δ)

2n
. (4.11)

Proof. Fix yj for j ∈ s0 and therefore the resulting model A0. Let i ∈ V \ s0 be any node and
j ∈ s0. We have

Ey∼η(i) [l((A0)i, y)]

=
C∑
c=1

Pr[Yi = c]l((A0)i,c, c)

=
C∑
c=1

Pr[Yj = c]l((A0)i,c, c)

+
C∑
c=1

(Pr[Yi = c]− Pr[Yj = c]) l((A0)i,c, c). (4.12)

For the first term we have

C∑
c=1

Pr[Yj = c]l((A0)i,c, c)

=
C∑
c=1

Pr[Yj = c] [l((A0)i,c, c)− l((A0)j,c, c)]

+
C∑
c=1

Pr[Yj = c]l((A0)j,c, c)

=
C∑
c=1

Pr[Yj = c] [l((A0)i,c, c)− l((A0)j,c, c)]

≤ λ

C∑
c=1

Pr[Yj = c] |(A0)i,c − (A0)j,c| (4.13)

The last inequality holds from the Lipschitz continuity of l. Now from Assumption 1, we
have (A0)i,c ≥ (A0)j,c for c 6= Yj and (A0)i,c ≤ (A0)j,c otherwise. Now taking the expection

40

w.r.t the randomness in ReLU we have

Eσ[(A0)i,c − (A0)j,c]

= Eσ
[
σ((SX(K−1))iΘ

c
K)− σ((SX(K−1))jΘ

c
K)
]

=
1

2
Eσ
[
(SX(K−1))iΘ

c
K − (SX(K−1))jΘ

c
K

]
≤ α

2
Eσ
[
(SX(K−1))i − (SX(K−1))j

]
≤ · · · ≤

(α
2

)K ∥∥(SKX)i − (SKX)j
∥∥ . (4.14)

Here Eσ represents taking the expectation w.r.t ReLU. Now for (4.13) we have

Eσ

[
C∑
c=1

Pr[Yj = c] |(A0)i,c − (A0)j,c|

]

=Eσ

∑
c 6=Yj

Pr[Yj = c] ((A0)i,c − (A0)j,c)

+

Eσ [Pr[Yj = yj] ((A0)j,yc − (A0)i,c)]

≤
C∑
c=1

Pr[Yj = c]
(α

2

)K ∥∥(SKX)i − (SKX)j
∥∥

=
(α

2

)K ∥∥(SKX)i − (SKX)j
∥∥ .

The inequality follows from (4.14).
Now for the second loss in (4.12) we use the property thatM∗ computes the ground truth:

(Pr[Yi = c]− Pr[Yj = c]) l((A0)i,c, c)

= ((M∗)i,c − (M∗)j,c) l((A0)i,c, c)

We now use the fact that ReLU activates with probability 1/2, and compute the expectation:

Eσ [((M∗)i,c − (M∗)j,c) l((A0)i,c, c)]

= Eσ [((M∗)i,c − (M∗)j,c)] l((A0)i,c

= (Eσ [(M∗)i,c]− Eσ [(M∗)j,c]) l((A0)i,c

=
1

2K
(
(SKX)i − (SKX)j

)
Θ1Θ2 · · ·Θc

K l((A0)i,c

≤ L
(α

2

)K
‖(SKX)i − (SKX)j‖.

Here Eσ means that we compute the expectation w.r.t randomness in σ (ReLU) inM∗. The last
inequality follows from definition of α, and that l ∈ [−L,L].

41

Combining the two parts to (4.12) and let j = argmin‖(SKX)i − (SKX)j‖, we obtain

Ey∼η(i),σ [l((A0)i, y)] ≤(λ+ L)(α/2)K min
j
‖(SKX)i

− (SKX)j‖. (4.15)

Now notice that

l(A0|G,X, Y) =
∑
i∈V \s0

l((A0)i, yi) +
∑
j∈s0

l((A0)j, yj)

=
∑
i∈V \s0

l((A0)i, yi). (4.16)

Consider the following process: we first get G,X (fixed data) as input, which induces η(i) for
i ∈ [n]. Note that M∗ gives the ground truth η(i) for every i so distributions η(i) ≡ ηX,G(i)
are fixed once we obtain G,X 3. Then the algorithm A choose the set s0 to label. After that,
we randomly sample yj ∼ η(j) for j ∈ s0 and use the labels to train model A0. At last, we
randomly sample yi ∼ η(i) and obtain loss l(A0|G,X, Y). Note that the sampling of all yi for
i ∈ V \ s0 is after we fix the model A0, and knowing exact values of yj for j ∈ s0 does not
give any information of yi (since η(i) is only determined by G,X). Now we use Hoeffding’s
inequality (Theorem 3) with Zi = l((A0)i, yi); we have −L ≤ Zi ≤ L by our assumption, and
recall that |V \ s0|= n− b. Let δ be the RHS of (4.21), we have that with probability 1− δ,

1

n− b
∑
i∈V \s0

l((A0)i, yi)

− 1

n− b
Ey∼η(i),σ [l((A0)i, yi)] ≤

√
L log(1/δ)

2(n− b)
. (4.17)

Now plug in (4.15), multiply both sides by (n− b) and rearrange. We obtain that

∑
i∈V \s0

l((A0)i, yi) ≤
∑
i∈V \s0

(λ+ L)(α/2)K min
j
‖(SKX)i (4.18)

− (SKX)j‖+
√
L log(1/δ)(n− b)

2
. (4.19)

Now note that since the random draws of yi is completely irrelevant with training of A0, we can
also sample yi together with yj for j ∈ s0 after receiving G,X and before the training of A0 (A
does not have access to the labels anyway). So (4.19) holds for the random drawings of all y’s.

3To make a rigorous argument, we get the activation of M∗ in this step, meaning that we pass through the
randomness of σ inM∗.

42

Now divide both sides of (4.19) by n and use (4.16), we have

1

n
l(A0|G,X, Y) ≤(λ+ L)(α/2)K

n

n∑
i=1

min
j∈s0
‖(SKX)i

− (SKX)j‖2+
√
L log(1/δ)(n− b)

2n2

≤(λ+ L)(α/2)K

n

n∑
i=1

min
j∈s0
‖(SKX)i

− (SKX)j‖2+
√
L log(1/δ)

2n
.

4.6.2 Proof of Theorem 2

The same proof as Theorem 1 applies for Theorem 2 using the max of distances instead of
averaging. We therefore omit the details here.

4.7 Conclusion

We study the active learning problem in the node classification task for Graph Convolution Net-
works (GCNs). We propose a propagated node feature selection approach (FeatProp) to comply
with the specific structure of GCNs and give a theoretical result characterizing the relation be-
tween its classification loss and the geometry of the propagated node features. Our empirical
experiments also show that FeatProp outperforms the state-of-the-art AL methods consistently
on most benchmark datasets. Note that FeatProp only focuses on sampling representative points
in a meaningful (graph) representation, while uncertainty-based methods select the active nodes
from a different criterion guided by labels, how to combine that category of methods with Feat-
Prop in a principled way remains an open and yet interesting problem for us to explore.

4.8 Appendix

4.8.1 Addendum to Experiments

We also evaluate the methods using the metric of Micro-F1 in Table 4.4.
We evaluate the performances of different active learning methods on a 2-layer SGC (Sim-

plified Graph Convolution) framework. The results can be seen in Figure 4.4.
Figure 4.5 shows the results of FeatProp on different GNN frameworks. We see that SGC

has a slightly inferior performance to GCN since it drops all the activation functions and in-layer
parameters, but not too much.

43

Cora Citeseer PubMed CoraFull

Random 65.19± 4.39 57.04± 3.39 73.11± 2.61 21.78± 1.97
Degree 68.61± 0.50 46.13± 0.77 68.44± 0.32 25.12± 0.53

Uncertainty 58.88± 6.07 46.08± 4.44 68.49± 5.55 14.66± 1.80
Coreset-greedy 66.94± 2.87 55.00± 3.09 70.74± 3.15 24.61± 2.35

CoresetMIP 63.98± 5.40 55.68± 3.43 − −
AGE 70.07± 1.36 57.27± 4.68 73.80± 1.91 28.35± 1.16

ANRMAB 68.62± 3.66 54.90± 3.61 73.98± 3.37 23.14± 1.79
FeatProp 77.68 ± 1.81 59.36 ± 1.98 74.64 ± 1.49 28.86 ± 1.22

Table 4.4: Comparison of Micro-F1±standard deviation averaged over different number of la-
beled nodes for training. Bold fonts represent the best methods. CorsetMIP does not scale up for
PubMed and CoraFull datasets.

4.8.2 Hoeffding’s Inequality
We attach the Hoeffding’s inequality here for the completeness of our chapter.
Theorem 3 (Hoeffding’s Inequality, (Hoeffding, 1994)). Suppose Z1, ..., Zn are independent
random variables such that ai ≤ Zi ≤ bi almost surely for 1 ≤ i ≤ n. Then we have

Pr

[
1

n

n∑
i=1

Zi − E

[
1

n

n∑
i=1

Zi

]
> t

]
(4.20)

≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (4.21)

44

10 20 40 80 160
Labeled data

0.4

0.6

0.8
M

ac
ro

-F
1

Cora

Random
Degree

Uncertainty
Coreset-greedy

AGE
ANRMAB

FeatProp

10 20 40 80 160
Labeled data

0.2

0.4

0.6

M
ac

ro
-F

1

Citeseer

10 20 40 80 160
Labeled data

0.5

0.6

0.7

0.8

M
ac

ro
-F

1

PubMed

10 20 40 80 160
Labeled data

0.1

0.2

0.3

M
ac

ro
-F

1

CoraFull

Figure 4.4: Results of different approaches over benchmark datasets averaged from 5 different
runs on an SGC framework.

10 20 40 80 160
Labeled data

0.60

0.65

0.70

0.75

0.80

M
ac

ro
-F

1

Cora

SGC GCN

10 20 40 80 160
Labeled data

0.2

0.4

0.6

M
ac

ro
-F

1

Citeseer

Figure 4.5: Results of SGC vs GCN over benchmark datasets averaged from 5 different runs by
using FeatProp.

45

46

Chapter 5

Cross-Domain Kernel Induction for
Transfer Learning

5.1 Introduction

Transfer learning (TL) aims to address the label-sparse problem arising in many real-world appli-
cations as acquiring a large quantity of labeled data is extremely expensive and labor-intensive.
TL methods address this problem by transferring the trained models from label-rich domain
(source domain) to a relevant but label-sparse domain (target domain) according for the task of
interest. Using topic classification of web blogs as an example (as in (Pan et al., 2011)), obtaining
a large set of labeled instances is often difficult especially when the web blogs are newly released.
On the other hand, large collections of labeled news stories in relevant topics may be easily found
on the internet. Thus if we can successfully transfer the classification models or the induced fea-
tures from the news-story domain to the web blog domain, then the label-sparse problem in the
target domain would be effectively addressed. Another motivating example is to transfer the text
classification models from a label-rich language (e.g., English) to a label-sparse or label-sparser
language (e.g., Italian or Turkish). Unlike English or a few internationally dominating languages,
most of the other languages in the world have much less labeled documents in comparison. This
means that TL would have a tremendous impact on the true success of text classification for all
languages in the world if we can solve TL in all the cross-lingual settings. Notice an important
difference between the two examples we have introduced, i.e., in the first example both source
and target domain share the same feature space (the same vocabulary of English), while in the
second example the two domains have different feature spaces (i.e., the vocabularies of two dif-
ferent languages). Nevertheless, TL across different feature spaces (heterogeneous) is usually a
tougher problem than TL within the common feature space (homogeneous).

The literature of TL methods (Pan and Yang, 2010) reveals promising results in a variety of
real-world applications, such as text classification (Duan et al., 2012; Pan et al., 2011), image
classification (Kulis et al., 2011; Zhu et al., 2011), sentiment analysis (Glorot et al., 2011; Zhou
et al., 2014), recommendation systems (Li et al., 2009), and more. Let us outline the major
differences among existing approaches based on their basic assumptions in relating source and
target domain, as well as on how labeled and unlabeled data in both domains are jointly leveraged

47

during the TL process.
The Naive Bayes Transfer Classifier (NBTC) (Pan et al., 2011) is a representative work on TL

for text classification, under the assumption that source and target domain share the same feature
space as well as the topic labels. However, the topic distribution and the distributions of topics
conditioned on words may differ in two domains. The goal of NBTC is to adapt source-domain
distributions to the target-domain distributions. A major limitation of the NBTC approach, and
any other methods under the same assumption of a shared feature space between the two do-
mains, is that they cannot handle TL across heterogeneous feature spaces. For example, those
methods are not applicable for performing TL from text classification to image classification (and
vice versa), or from classification of English documents to that of other languages.

Yet another kind of approaches, Transductive Transfer Learning (TTL), tackles TL problem
from a different angle. TTL focuses on cross-domain kernel construction and the utilization of
unlabeled data in both source and target domains during the learning procedure. Adaptation
Regularization based Transfer Learning (ARTL)(Long et al., 2014) is a representative work of
TTL methods. It constructs a unified kernel and applies graph-based label propagation technique
under certain regularized constraints to infer labels in target domain. This kernel-based approach
is highly effective even given limited training data. However, ARTL or any existing TTL-based
methods, to the best of our knowledge, is not applicable to the heterogeneous feature setting,
which is the focus of this paper. The difficulty arises in cross-domain kernel construction. How
could a kernel value between data from different domains be computed if they are not in the same
feature space?

One common stream of approaches, Feature Representation Transfer Learning (FRTL), which
can be used in heterogeneous settings addresses the problems by learning a common feature
space, and then performing model transfer or parameter adaptation within that subspace. An
important assumption adopted by most existing FRTL approaches is the availability of cross-
domain parallel data. i.e., corresponding instances that have both source and target representa-
tions. There are various way to learn the common feature representation. For example, (Argyriou
et al., 2007) tried to induce a shared projection matrix for both source and target domain. (Glorot
et al., 2011) applied a deep learning technique, the stack denoised autoencoder (SDA), for a non-
linear projection onto the shared latent space in cross-domain sentiment classification. (Chandar
et al., 2015) proposed a correlational neural network (CorrNet) approach that combines autoen-
coders (AE) and canonical correlation analysis (CCA) in the way that AE learns a generalized
representation for each domain while CCA captures the joint representation of the two domains
by maximizing the correlation in-between. Notice that above state-of-the-art neural network
methods (CorrNet) usually require large amount of parallel data to achieve competitive results.
Such large size of parallel data may not be realistic to obtain given fixed budgeted resources in
real world applications. (e.g. human labeling for parallel sentences in low-resource languages)

In this paper, we propose a novel framework called Kernel Induction for Heterogeneous
Feature TL (KerTL). Our approach addresses the limitation of TTL methods by introducing a
powerful kernel completion technique. This enables our approach not only to enjoy same degree
of smooth label propagation as in TTL from source to target domain but also to require only a
modest amount of parallel data as opposed to neural-network based methods. Furthermore, using
low-rank spectral transformation of the component kernels to obtain the global approximation of
kernel diffusion leads to additional power and computational efficiency of our framework.

48

5.2 Proposed Framework
Let us first formally define the Transfer Learning (TL) problem of interest, and then show how
to formulate TL as an optimization problem with graph regularization.

5.2.1 TL Definitions
For any single data domain D = X × Y , denote by D = O ∪ U the training set consisting of
both labeled examples O = {xi, yi} and unlabeled examples U = {xi} drawn from X × Y and
X respectively. If the context is clear, we abuse the notation of x to denote a feature vector in D
without distinguishing whether it comes from O or U .

In this paper, we focus on TL involving two domains with heterogeneous features but a
shared label space. Specifically, we are given a source domainDs = Xs×Y and a target domain
Dt = Xt × Y where Xs is allowed to differ from Xt. We in addition assume the accessibility to
a parallel set PL = {(x(pls)

i ,x
(plt)
i)} where x

(pls)
i ∈ Ds, x

(plt)
i ∈ Dt. Each feature pair in PL

corresponds to “one” datum’s representation in two domains. Given Ds, Dt and PL, our goal is
to make predictions on the unlabeled target-domain data Ut with low expected error.

Notice that all data points are already specified in Ds∪Dt. The parallel set PL only suggests
inter-domain relations, namely which data in Ds have counter-parts in Dt.

5.2.2 TL with the Graph Laplacian
The aforementioned parallel-data-based TL problem can be formulated in a way that is compat-
ible with graph-based SSL. Specifically, we view all (both labeled and unlabeled) data points
in Ds ∪ Dt as nodes in a graph, whose edges encode inter-node similarities summarized in a
|Ds ∪ Dt|×|Ds ∪ Dt| adjacency matrix W (Section 5.3). Our task therefore becomes making
predictions on the target-domain unlabeled nodes (Ut) in the graph. With limited supervision
available, it is desirable to propagate from labeled nodes to unlabeled ones with respect to the
manifold structure of the graph, on the assumption that nodes sharing high similarities should
also share similar labels.

For brevity we assume a binary label space Y = {−1, 1}. Denote by y the true label and by
f(x) the corresponding predicted value. Predicted values over all nodes in Ds ∪ Dt are further
concatenated to form a long vector f = [fs,ft]

> of length |Ds ∪ Dt|. Our problem is then
formalized as:

min
f

∑
(x,y)∈Os∪Ot

`(f(x), y) + γf>Lf , (5.1)

where L is the graph Laplacian characterizing smoothness of graph and γ is a positive scalar
controlling the regularization strength. Laplacian L is defined as L = W1−W .

The term in equation 5.1 is the empirical loss between predicted labels and true labels on
subsets Os and Ot. While the last term indicates the normalization penalty with respect to the
manifold structure of all data. Specifically, we can show that this Laplacian can be reformulated
as f>Lf = 1

2

∑
i,j wij(fi − fj)2, which reveals the motivation of the penalty: nodes that have

strong similarities (with large wij) should have close prediction scores (fi and fj).

49

5.3 Graph Construction
The adjacency matrix W and its associated Laplacian L play a key role in our formulation. In
the homogeneous setting, there are widely-accepted routines to compute W using either cosine
or radial basis function (RBF) measurements. Nonetheless, under the heterogeneity assumption,
all those methods would become inappropriate in evaluating similarities for the inter-domain
part. This implies the need of completing (instead of directly computing) the inter-domain sim-
ilarities through both the pre-computed intra-domain similarities and the information from the
parallel data, which is one of the key contributions in our work. In the following, we start from
homogeneous graph construction and then move on to the more generic framework of tackling
heterogeneous scenarios.

5.3.1 Homogeneous Graph Construction
Given a pair of data points xi,xj in homogeneous feature space X , one could compute the
pair-wise similarity wij using different functions, among which two typical choices are cosine
measurement and RBF measurement wij = exp(−‖xi−xj‖2

σ2). The choice of similarity function
is usually domain-specific. For example, with text data (term frequency), cosine measurement is
empirically often a better choice in characterizing documents with similar (proportional) word
counts.

Besides, one would usually consider “dropping out” some weights (i.e. truncating a subset
of wij’s to 0) which is called “sparsification” in order to emphasize local information and to
lower the computation cost. A common practice is to keep weights only of each node’s k nearest
neighbors (kNN). Compared to ε-graphs where one specifies a fixed threshold for truncating
all edge weights, the kNN graph allows “adaptive” neighborhood radius for both strongly and
weakly connected points (Zhu et al., 2005), and often leads to better classification results.

5.3.2 Heterogeneous Graph Construction
The construction for intra-domain similarities stays valid within the heterogeneity setting. How-
ever, the inter-domain scores cannot be directly computed (neither 〈xi,xj〉 (cosine) nor ‖xi−xj‖
(RBF) can be calculated as xi and xj are in different feature spaces). To simplify our discus-
sion, suppose the data are in a well-arranged order such that the adjacency matrix W is in the
following form:

W =

[
Ws,s Ws,t

Wt,s Wt,t

]
, (5.2)

where Ws,s, Wt,t represent the intra-domain parts, and Ws,t = W>
t,s represent the inter-domain

parts.
Suppose xi and xj are a pair of parallel data, which means they are two alternative views of

one datum. Then, it is always reasonable to set wij = 1 since a datum and itself should always
be similar to itself. However, these entries are the only observable cells in Ws,t and Wt,s. All
the remaining cells should be completed using information from intra-domain similarities and
parallel data.

50

Such off-diagonal matrix completion problem has strong resemblance with the bipartite graph
edge completion problem, where nodes in Ds and Dt form a bipartite graph and the goal is to
complete the bipartite edges (Ws,t) in the middle (Liu and Yang, 2015). In the following, we use
Ŵs,t to denote the completed matrix and Ws,t for the original (observed) version.

Random Walk Completion

Let us consider the task of completing the missing (p, q)-th entry in Ws,t. Although the value
of (ws,t)pq is unknown, some other entry (r, q) in the same column might have been observed
and hence (ws,t)pq should be close to (ws,t)rq if the two “must-links” (p, q) and (r, q) are similar.
Such similarity is provided as (ws,s)pr. This suggests completing (ws,t)pq by aggregating all
elements in the q-th column of Ws,t weighted by the p-th row in Ws,s. Namely (ŵs,t)pq ←∑

r(ws,s)pr(ws,t)rq. The above can be expressed in the matrix form

Ŵs,t ← Ws,sWs,t. (5.3)

When Ws,s is normalized as a column-stochastic matrix, equation equation 5.3 amounts to one-
step random walk for each column in Ws,t.

Alternatively, completion can be carried out row-wisely

Ŵs,t ← Ws,tWt,t. (5.4)

Combining equation 5.3 and equation 5.4 leads to one-step simultaneous random walk in both
the source and target domain:

Ŵs,t ← Ws,sWs,tWt,t. (5.5)

By further allowing varying number of random walk steps on both sides (k steps on both sides
in total), and by aggregating the effect of all different steps, we obtain

Ŵ
(k)
s,t =

k∑
i=0

(
k

i

)
W i
s,sWs,tW

k−i
t,t . (5.6)

Compared to one-step random walk completion, equation 5.6 takes into account multi-step trans-
duction over the graph, which is particularly desirable in our case where missing entries in Ws,t

may not have observed entries as its direct neighbor.
t

Diffusion Kernel Completion

We propose the following diffusion kernel completion

Ŵs,t = exp (αsWs,s)Ws,t exp (αtWt,t) . (5.7)

51

This is equivalent to the aggregation of infinite number of weighted Random Walk Completions.
Specifically,

Ŵs,t =
∞∑
k=0

Ŵ
(k)
s,t (αs, αt). (5.8)

where Ŵ (k)
s,t denotes the weighted Random Walk Completion:

Ŵ
(k)
s,t (αs, αt) =

k∑
i=0

(
k

i

)
αisW

i
s,sWs,tα

k−i
t W k−i

t,t . (5.9)

positive scalars αs and αt are corresponding to the weights for the source- and target- domain
graphs, respectively. Due to space limit, we do not provide the proof details.

Low Rank Approximation of Diffusion Kernel

As in many other matrix completion tasks, it can be useful to impose low-rank assumptions on
Ŵs,t. The compressed sensing theory (Candès and Recht, 2009) implies there is still hope to
recover Ŵs,t even if our intra-domain matrices are non-informative (e.g. identity matrices). To
some extent, the low-rank factorization process is a denoising procedure trying to recover the
missing signals.

Therefore, we first take the low-rank eigen-decomposition on both exp(αsWs,s) and exp(αtWt,t)
such that

exp(αsWs,s) ≈ Qs exp(αsΛs)Q
>
s (5.10)

exp(αtWt,t) ≈ Qt exp(αtΛt)Q
>
t , (5.11)

where Λs,Λt are the ks, kt leading eigen-values for Ws,s, Wt,t respectively, and Qs, Qt are the
corresponding stacked eigen-vectors for Ws,s, Wt,t.

The diffusion kernel completion equation 5.7 is then modified as

Ŵs,t =
(
Qs exp(αsΛs)Q

>
s

)
Ws,t

(
Qt exp(αtΛt)Q

>
t

)
. (5.12)

5.4 Optimization Algorithms
The proposed graph construction method gives us a joint adjacency matrix W for all data points
in both the source and target domains, along with its associated graph Laplacian. To recap, our
task is to solve the optimization problem:

min
f

h(f) ≡
∑

i∈O∫∪Ot

`(fi, yi) + γf>Lf , (5.13)

It is not hard to verify that equation 5.13 is a convex optimization problem when `(·, ·) is
convex. This enables us to adopt a wide range of optimization techniques. In particular, we

52

compute the exact solution for the square loss and use Adagrad which is a widely-tested sub-
gradient method (Duchi et al., 2011) for other losses (e.g. logistic and hinge loss).

Note that our computation could be fast when using the low-rank approximation. The compu-
tational bottleneck of our method during optimization lies in the multiplication of L and f when
calculating the gradient of equation 5.13. Recall L is a function of W , the gradient computation
can be carried out in linear time over |Dt| and |Ds|when the diagonal blocksWs,s, Wt,t take kNN
forms, making their multiplication with f cost as much as O(k|Ds|) and O(k|Ds|), respectively.
Similarly, the time complexity of doing matrix-vector multiplication with the off-diagonal block
Ŵs,t will be O(dmax(|Ds|, |Dt|)) where d is the low-rank dimension.

5.5 Experiments

5.5.1 Datasets
Amazon Product Reviews (APR)

The APR dataset (Prettenhofer and Stein, 2010) was designed for evaluations of sentimental
classification with transfer learning in cross-language and cross-domain settings. It consists of
Amazon product reviews on books (B), DVDs (D) and music (M), and written in English (EN),
German (GE), French (FR) and Japanese (JP). For each language on each product type (B, D or
M), there are 2000 labeled reviews for training and 2000 labeled reviews for testing, respectively.
Parallel data are also provided for each language pair, which we will describe with an example
task in the next.

Following the settings in (Zhou et al., 2014), we treat English as the source language, and
the remaining three languages (German, French and Japanese) as the target languages. For each
language pair (EN-GE, EN-FR or EN-JP), we have 6 cross-product-type pairs, constituting over-
all 18 cross-language and cross-product-type combinations (e.g. EN-B-FR-D as shown in the
first column of Table 5.2). Specifically, EN-B-FR-D represents TL task with English reviews on
Books as source domain, and French reviews on DVD products as target domain. The parallel
dataset for the EN-B-FR-D task is obtained by running Google translation over the 2,000 French
book reviews in the training set, and by treating the system-produced translations as the English
behalf of the parallel data.

MNIST Handwritten Images

The MNIST dataset consists of 70, 000 images in total, with digits from 0 to 9 as the class labels
(one per image). We follow the setting in (Chandar et al., 2015), to treat left half of each image
(28 × 28 pixels) as a source-domain instance, while right half of the image as a target-domain
instance. Raw pixel values are used as features. We randomly sampled 3, 000 images from
the full set as the unlabeled parallel set, 2, 000 images as the source-domain training set, 1, 024
images as the target-domain training set, and another of 2, 000 images as the test set (only the
target-domain portion is used). We call the classification with respect to each target label (a digit
from 0 to 9) as a task in image recognition. Although the source and target domains have same
feature dimensions, the features are indeed heterogeneous (direct cosine/RBF computation of

53

two half images would not indicate label similarity). The idea would be more clear if we cut
images in a 1/3 and 2/3 fashion, but for the ease of comparison with existing methods, we keep
the same cutting scheme (Chandar et al., 2015).

Constructing unbalance training sets and size-varying parallel sets

To simulate the label-sparse condition of target domain as in TL problem, we construct unbal-
anced training set for our experiments on the APR and MNIST data sets. Recall that in TL each
training set has the source-domain part and the target-domain part, respectively. For each task
in APR, we use the full set of 2000 source domain labeled instances, and a randomly sampled
subset of m target domain labeled instances (m = 2, 4, 8, 16, 32) from the full set as the final
training data. The remaining target-domain labeled instances (2000−m) are used for validation
(hyper-parameter tuning). In the MNIST data set, the source domain training pool has the full
size of 2, 000 instances. Another m instances (for m = 2, 4, 8, 16, 32) randomly sampled from
the target-domain training set are used to complete the full training set.

As for the parallel data set in each task, we also randomly sampled from the available pool
with the sample sizes of l = 64, 128, 256, 512, 1024, 2000 for APR (l = 64, 128, 256, 512, 1024, 2048, 3000
for MNIST). The size-reduced samples allow us to evaluate transfer learning under the label-
unbalanced and parallel-data-sparse conditions. For each value of m and l, we repeated the
random sampling 10 times, and averaged the performance of the target-domain classifiers over
the randomly sampled training sets and parallel data for each task in the evaluation.

Table 5.1 summarizes the statistics of the datasets we used in our experiments.

Data sets APR MNIST

Source domain training set 2000 2000
Target domain training set 2000 1024
Target domain test set 2000 2000
Parallel data size 2000 3000

Table 5.1: Data statistics.

5.5.2 Methods for Comparison

We include six methods as baselines for comparison. Two of them are representative methods
(SVM and SSL described below) in supervised classification where only the target-domain la-
beled data are used for training classifiers. We also include two state-of-the-art methods (HFA
and MMDT) in transfer learning, which can use labeled data in both the source domain and the
target domain for training but cannot leverage parallel data. The remaining two methods (HHTL
and CorrNet) are the state-of-the-art TL methods which can use both the labeled data in both do-
mains as well as parallel data in addition. Some details of these baseline methods are described
below.

54

• Support Vector Machine (SVM): We used the L2-SVM from LIBLINEAR (Fan et al.,
2008). 1

• Semi-Supervised Learning (SSL) (Zhu et al., 2005): We implemented the graph-based
label propagation method for Semi-Supervised Learning framework.

• Heterogeneous Feature Augmentation (HFA) (Li et al., 2014): This method embeds hetero-
geneous domain data into shared high-dimensional space, and deploys a Multiple Kernel
Learning solver (Kloft et al., 2011). We used the code from the website 2.

• Max Margin Domain Transform (MMDT) (Hoffman et al., 2013): This method uses an
asymmetric transformation matrix to map features across domains, which is optimized
with respect to all the target categories. We used the code from the website 3.

• Hybrid Heterogeneous Transfer Learning (HHTL) (Zhou et al., 2014): This method uses a
parallel corpus to learn the hidden layers which are shared by both the source domain and
the target domain, and allow classifiers to be trained on the labeled data in both domains
after projecting them onto the shared hidden layer. We used the code provided by the
authors.

• Correlational neural network (CorrNet) (Chandar et al., 2015): This method uses autoen-
coders to simultaneously minimize classification errors in both domains, and to capture
cross-domain correlations based on a parallel dataset. Similar to HHTL, classifiers are
trained after the data are mapped onto the shared latent space. We used the code from the
website 4.

5.5.3 Detailed Experimental Settings

Our experimental results involve two random factors. The first comes from the random sampling
of the target domain labeled training sets, and the second comes from the random sampling of the
parallel datasets, as we described in Section 5.5.1. All the experiments with random samples are
repeated 10 times with different random seeds. Mean and standard deviation of the Area under
Curve (AUC) of ROC are reported for evaluation and comparison.

In HHTL and CorrNet, after learning the projected matrices, we trained linear SVMs (Fan
et al., 2008) on the projected training data. For all the methods using SVM classifiers (in SVM,
HFA, MMDT, HHTL and CorrNet), we set the regularization parameter C = 1.

For hyper-parameter tuning, we set the default hyper-parameters of HFA and MMDT the
same as in their papers. We adopted the hyper-parameter of HHTL on the APR data, with a grid
search of the optimal regularization coefficient among λ = 0.001, 0.01, 1, 10, and 100, and the
corruption probability among p = 0.5, 0.6, 0.7, 0.8, and 0.9 on the MNIST dataset. Similarly,
for CorrNet on the MNIST dataset we used a grid search for the number of hidden units as
20, 50, 100, and 200, and λ = 0.2, 2, and 20 on the APR dataset. For KerTL, we used the cosine
similarity and RBF kernel on the APR and MNIST datasets, respectively. We keep the top 128

1https://www.csie.ntu.edu.tw/∼ cjlin/liblinear/
2https://github.com/transmatrix-github/HFA release
3https://github.com/jhoffman/MaxMarginDomainTransforms
4https://github.com/apsarath/CorrNet

55

eigenvectors in the eigen-decomposition part for efficient computation, and set the regularization
coefficient γ to be 2−10.

5.5.4 Results
TL methods vs. non-TL methods

In the first set of experiments we fixed the training-set size in the target domain asm = 2, and the
parallel-set size as l = 1024. Figure 5.1 shows the averaged AUC scores of those methods. All
the TL methods which leverage parallel data (HHTL, CorrNet and KerTL) significantly outper-
formed the methods that cannot take advantage of parallel data (SVM, SSL, HFA and MMDT).
Among the TL methods, our KerTL outperforms all the other methods on both the APR and
MNIST data sets. Tables 5.2 and 5.3 show the task-specific performance scores on the two data
sets, respectively. Again, the performance of KerTL dominates across most of those tasks. On
the MNIST dataset (Table 3) in particular, KerTL improved the result of CorrNet (which is the
strongest baseline) from 93.2% to 96.2% in AUC, which is equivalent to reducing the error rate
from 6.8% to 3.8%, i.e., a 44.1% reduction in error. Such an improvement is indeed significant.

On APR on MNIST
(target training-set size =2, parallel-set size = 1024)

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
 (

cr
o
ss

-t
a
sk

 a
ve

ra
g

e
) Results of all methods on APR and MNIST

SVM

SSL

HFA

MMDT

HHTL

CorrNet

KerTL

Figure 5.1: Comparison of all methods on APR and MNIST.

TL methods with varying-sized parallel data

The second set of experiments compares the performance of TL methods (HHTL, CorrNet and
KerTL) with varying sized parallel data, while the training-set size is fixed as m = 2 in the
target domain. As shown in Figure 5.2, KerTL outperforms HHTL and CorrNet in most regions
of the parallel-set sizes, on both the ARP and NMIST data sets. We also observed that the
performance of HHTL was very sensitive to the settings of its hyper-parameters. When we fixed
those parameter values and varied the sizes of the parallel data, HHTL’s performance was either
unstable (on MNIST) or decreasing (on APR) as the parallel data size increased.

56

Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

EN-B-GE-D 0.564 0.558 0.550 0.563 0.707 0.604 0.715
EN-B-GE-M 0.500 0.542 0.536 0.528 0.711 0.659 0.730
EN-B-FR-D 0.525 0.513 0.522 0.513 0.747 0.729 0.748
EN-B-FR-M 0.541 0.540 0.544 0.542 0.687 0.717 0.738
EN-B-JP-D 0.528 0.527 0.541 0.524 0.643 0.692 0.713
EN-B-JP-M 0.534 0.537 0.541 0.505 0.611 0.665 0.724
EN-D-GE-B 0.502 0.509 0.499 0.482 0.772 0.692 0.796*
EN-D-GE-M 0.500 0.542 0.517 0.531 0.737 0.672 0.755
EN-D-FR-B 0.548 0.549 0.547 0.514 0.743 0.739 0.785*
EN-D-FR-M 0.541 0.540 0.537 0.543 0.724 0.696 0.741
EN-D-JP-B 0.549 0.561 0.558 0.516 0.694 0.719 0.717
EN-D-JP-M 0.534 0.537 0.536 0.506 0.683 0.747* 0.713
EN-M-GE-B 0.502 0.509 0.520 0.476 0.704 0.668 0.786
EN-M-GE-D 0.564 0.558 0.519 0.561 0.728 0.631 0.740
EN-M-FR-B 0.548 0.549 0.542 0.515 0.745 0.672 0.789*
EN-M-FR-D 0.525 0.513 0.508 0.511 0.755 0.670 0.764
EN-M-JP-B 0.549 0.561 0.526 0.529 0.622 0.675 0.739
EN-M-JP-D 0.528 0.527 0.551 0.487 0.655 0.707 0.708

Average 0.532 0.537 0.533 0.519 0.704 0.687 0.745
± Std ±0.021 ±0.018 ±0.016 ±0.023 ±0.047 ±0.037 ±0.029

Table 5.2: Overall results on APR dataset with target domain training-set size of 2 and parallel
set size of 1024. Bold-faced numbers indicate the best result on each row with a * if the best
score is statistically significantly better in the proportional test(at 5% level of the p-value) than
the 2nd best score.

Influence of label sparsity in the target domain

The third set of experiments compares KerTL with SVM, SSL, HFA and MMDT under the con-
dition that the labeled training instances are extremely sparse in the target domain, specifically
with m = 2, 4, 8, 16, 32. Size of parallel datasets are l = 1024 in those experiments.

Figure 5.3 shows results on APR and MNIST datasets. On both data sets, the curves of SVM,
SSL and HFA increase rapidly when the training-set sizes are below 200. Without leveraging
parallel data, MMDT does not perform well on both data set as target domain training data
increase. We suspect the reason is that when source and target domain is very different (APR
and MNIST in our setting), linear transform of the mapping with max margin criterion is not
possible to find good representation without the help of parallel data. On the other hand, HFA
is only comparable to KerTL when target domain training data is large enough since it does not
utilize parallel data. KerTL has a nearly flat curve, substantially outperforming the others in the
label-sparse regions. This implies KerTL could successfully transferred source-domain training
data especially when source and target domain (m = 2 ∼ 32) training data are very imbalanced.

57

Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

Digit 0 0.950 0.965 0.891 0.855 0.971 0.987 0.989
Digit 1 0.906 0.915 0.500 0.838 0.989 0.994 0.996
Digit 2 0.699 0.739 0.539 0.567 0.867 0.931 0.962*
Digit 3 0.628 0.785 0.637 0.664 0.861 0.892 0.939*
Digit 4 0.672 0.613 0.500 0.477 0.867 0.937 0.958*
Digit 5 0.598 0.607 0.500 0.543 0.774 0.877 0.959*
Digit 6 0.848 0.877 0.677 0.536 0.937 0.962 0.985*
Digit 7 0.714 0.736 0.441 0.686 0.919 0.956 0.968*
Digit 8 0.494 0.592 0.720 0.651 0.823 0.890 0.936
Digit 9 0.674 0.690 0.430 0.623 0.846 0.918 0.929

Average 0.718 0.752 0.584 0.644 0.885 0.934 0.962
± Std ±0.143 ±0.133 ±0.138 ±0.118 ±0.067 ±0.041 ±0.023

Table 5.3: Overall results on MNIST dataset with target domain training-set size of 2 and parallel
set size of 1024. Bold-faced numbers indicate the best result on each row with a * if the best
score is statistically significantly better in the proportional test(at 5% level of the p-value) than
the 2nd best score.

But why the performance curve of KerTL is below that of SVM when the training-set size in
the target domain is beyond 200 on the APR data? We believe that it is caused by the imperfect
parallel data we used in KerTL. Recall that in our previous example of the EN-B-FR-D task, the
parallel data are the paired English/French book reviews, assuming that the ideal parallel set of
(manually aligned) English book reviews and French DVD reviews are not available. In other
words, the parallel data provided in APR has a domain mismatch with respect to the reviews on
different product types, which is most helpful when the label-sparse issue is severe.

In contrast, the parallel data sets in MNIST do not have a domain mismatch issue, as each pair
in the parallel set consists of the left-half (as the source-domain instance) and right-half (as the
target-domain instance) in the same image. We argue that the APR way of constructing parallel
data is more realistic than that in MNIST, because we usually cannot get each image instance
halfly labeled and halfly unlabeled in real-word applications of image classification.

5.6 Conclusions

In this chapter we proposed a novel framework for transfer learning with cross-domain kernel
induction. Our approach uses a parallel corpus to calibrate domain-specific graph Laplacians
into a unified kernel, and to optimize semi-supervised label propagation based on the labeled
and unlabeled data in both domains. Our extensive experiments show that all the TL methods in
our evaluation significantly outperformed non-TL ones (SVM and SSL), and that the proposed
method outperforms other state-of-the-art TL methods (HFA, MMDT, HHTL and CorrNet) when
the target-domain labeled data are extremely sparse and the quantity of available parallel data

58

0 500 1000 1500
Parallel Data Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

APR

CorrNet

HHTL

KerTL

0 1000 2000
Parallel Data Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

MNIST

CorrNet

HHTL

KerTL

Figure 5.2: CorrNet, HHTL and KerTL on the APR dataset (left) and the MNIST dataset (right)
with a varying quantity of parallel data.

100 200 300 400 500
Target Domain Training Data Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

APR

SVM

SSL

HFA

MMDT

KerTL

100 200 300 400 500
Target Domain Training Data Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

MNIST

SVM

SSL

HFA

MMDT

KerTL

Figure 5.3: SVM, SSL and KerTL on the APR dataset (left) and the MNIST dataset (right) with
a varying quantity of labeled data in the target domain.

is also limited. Those results indicates cross-language and cross-domain kernel induction is a
promising direction to pursue in transfer learning.

59

60

Chapter 6

Deep Learning for Epidemiological
Predictions

6.1 Introduction

Epidemic prediction over the world is an important problem for public health. Timely detection,
tracking and forecasting of key information of epidemics such as peak intensity and outbreak
time are crucial for effective health intervention. Classic work in computational epidemiology
mainly focused on compartmental models where the whole population is divided into different
groups (of susceptible, infective and recovered), and the transition among groups are modeled by
differential equations(Kermack and McKendrick, 1927). While being intuitive and popular, such
models have limited prediction power due to the rather narrow function space, lack of the ability
to model individual-level information, and do not embrace new developments in recent machine
learning and data mining technologies.

A recent interdisciplinary effort is to approach this problem from a time-series perspective, as
the temporal nature of epidemic observations and the need for real-time alerts makes the problem
residing in the scope of time-series prediction. Autoregressive (AR) models and their variants
(e.g., VAR), as the representing approaches, have been widely used to capture spatio-temporal
patterns (Achrekar et al., 2011; Perrotta et al., 2017). AR models use history data to make a
(usually linear) prediction about the future, and adapt the model parameters using updated history
over time. Gaussian Process Regression (GPR) (Senanayake et al., 2016) is another representing
method, which extends the prediction power by utilizing a non-linear kernel (e.g. radial basis
function) for modeling complex temporal patterns. The adaptive nature of time-series models
is a major departure from classic compartment models, which fix the model parameters in the
entire process. Both AR and GPR require a relative small number of parameters due to their
simplicity (relying on linear combination or predefined kernels). This makes them popular in
epidemiology prediction as weekly sampled epidemic statistics usually provide limited training
instances. However, such simplicity also limits the expressiveness of those models. How to
further enhance the prediction power for epidemic prediction with restricted training data is an
open question for research.

61

In this paper we propose a deep learning approach1 for the epidemic prediction problem from
a time-series forecasting perspective. Deep neural networks have not been studied for epidemic
modeling so far, to our best knowledge. With a non-trivial adaptation of deep learning methods
from other application domains to computational epidemiology, and more specifically by us-
ing adjacent graph convolution and a recurrent module, our proposed method shows significant
and consistent performance improvement over other representative baseline methods on multiple
real-world datasets in our evaluation. Furthermore, our ablation test shows that we can effectively
address the overfitting issue which is general in deep learning, by introducing densely-connected
residual links in our networks.

6.2 Background

6.2.1 Task Definition

Let us define the epidemic prediction problem precisely as a time series forecasting task. Denote
by xt ∈ Rm the multi-variate epidemiology profile, whose elements are the observations from
m different sources/signals at time stamp t, e.g., the influenza patient counts per week (t) in
m states of the U.S.. Further denote by X = [x1,x2, . . . ,xT] the available training data in a
time-span of size T . The task then is to predict epidemiology profile at a future time point T + h
where h is refer to the horizon of the prediction.

6.2.2 Autoregressive Methods

Autoregressive (AR) models have been most popular for time series forecasting (Perrotta et al.,
2017; Wang et al., 2015). The basic idea is to model the future state as a linear combination of
past data points. For example, the basic order-p autoregressive model can be formalized as:

x̃
(i)
t+h =

w−1∑
p=0

α(i)
p x

(i)
t−p + εt+h + c(i) (6.1)

where the prediction for the i-th signal of epidemiology profile x is the weighted sum of the
data points in past window of size w, and εt+h is a small random noise which is used to explain
the deviation between the linear sum and the true value; c is the intercept term. When training
data are limited and the signals from different sources exhibit similar patterns, we may train
the system with only one set of {αp} and c for all the sources; such a model is called Global
Autoregression (GAR) in the literature.

A potential shortcoming of AR models is that the signal sources are treated independently
from each other during the training process, which would be too simplistic. A direct extension
of AR is to model cross-signal dependencies via Vector Autoregression (VAR). It predicts the

1Code available at https://github.com/CrickWu/DL4Epi.

62

future profile as:

x̃t+h =
w−1∑
p=0

Apxt−p + εt+h + c (6.2)

where the signal-wise αp in AR is replaced with matrixAp to capture the correlation information.
Notably, the number of parameters for {Ap} is O(m2w) which is far larger than that of AR
(O(mw)). Thus VAR models are more expressive than AR models in general, with a higher
chance of overfitting as potential trade-off.

6.2.3 Gaussian Process Regression
Both AR and VAR methods rely on the linear combination of past signals in making predictions,
which may not be sufficiently expressive for some complicated real-world scenarios. A com-
mon approach to go beyond is to apply kernel tricks in a Gaussian Process Regression (GPR)
(Senanayake et al., 2016). Specifically, GPR assumes that the future predicting profiles alto-
gether are sampled from a Gaussian distribution, where the variance is specified by its past his-
tory. For the clarity of explanation, consider a dataset with one-dimension signals. Suppose the
future profiles are {y1, . . . , yn} and their past histories are {z1, . . . , zn} correspondingly where
yi ∈ R and zi ∈ RT . Then,y1...

yn

 ∼ N
0,

K(z1, z1) . . . K(z1, zn)
. . .

K(zn, z1) . . . K(zn, zn)

 (6.3)

where K is a kernel function (e.g. radial basis function) computing the covariance of two past
histories. Non-linearity, thus, appears along with this function as long as the kernel is beyond dot
product. Such non-linear design would yield more accurate predictions than linear models when
the dependency patterns are complex.

6.3 Our Approach
Our model framework is shown in Figure 6.1. The overall structure is composed of 3 parts:
a CNN for capturing correlation between signals, a RNN for linking up the dependencies in
the temporal dimension and the residual links for fast training and overfitting prevention. We
carefully restrain the parameter space, making the total model have a similar size as AR.

6.3.1 CNN Module
We use a convolutional Neural Network (CNN) module to fuse the information across different
sources. In the deep learning literature, CNN modules are known to be small in the number
of parameters and effective in capturing local dependency patterns. However, direct applica-
tion of CNNs in our framework would not work well as conventional CNNs are designed for

63

Figure 6.1: The proposed deep learning framework where the top portion is the temporal se-
quence of epidemiology profiles (input vectors), the middle portion consists of the CNN mod-
ules, and the bottom portion consists of the RNN modules with residual links in-between.

a grid structure of neighborhood in data (such as in images), but in our data the grid-structure
assumption does not hold. In order to preserve the ability to model local feature, we propose a
new structure. Precisely, we utilize a given adjacent nearest neighbor matrix G to regularize the
number of parameters while mimicking the convolution behavior. Let

ht = σ (ΦGxt) (6.4)

where ht is the transformed feature map and ΦG is the parameter matrix. ΦG’s entries can only
be non-zero if and only if the corresponding entry in G is non-zero. σ is an activation function
(e.g. sigmoid) making the transformation nonlinear.

Figure 6.2: Left: Image CNN filter, a uniform grid filter is applied on each node; the filter is
computed over each node one-by-one. Right: Adjacency CNN filter, a one-time node-specific
filter defined on the whole irregular graph is applied; the filter is computed over all nodes at once.

Comparing to the image CNN, the grid filters are replaced by the adjacent parameter graph,
enlarging the parameter number fromO(1) toO(km) where k is the number of nearest neighbors
kept in G. This number is only of comparable size of AR which is well within the acceptable
range, and we could gain more flexible non-linear representing power by stacking multiple CNNs
hierarchically. Besides, as adjacent convolution gets more node-specific parameters than grid
convolution, it is possible to use just one filter (i.e. one ΦG) to represent complex patterns which
can only be captured by multiple filters in the grid form.

64

6.3.2 RNN Module
We employ an recurrent neural network (RNN) module to capture the temporal dependencies
in the data. Specifically, we utilize an Gated Recurrent Unit (GRU) (Cho et al., 2014) in our
framework. The input data are passed through a gate, which is then used to compute the new
state in the memory cell of GRU given the old value. This process is repeatedly carried out
along with new inputs. Compared to the traditional Long-Short Time Machine (LSTM) where
there are 3 gates, an GRU has fewer parameters (2 gates) to be trained and thus is more suitable
in the data-deficient case. Moreover, as each gate links to the hidden memory, by effectively
constraining its size to a small number q, the parameter number can be limited to O(qm) which
is still of a similar size as AR.

6.3.3 Residual Module
For deep neural networks, it is well-known that overfitting issues arise when the amount of data
does not scale accordingly with the number of parameters. Therefore, we utilize the residual
links to let the training process bypass some of the intermediate layers, which can effectively
mitigate the overfitting issue. Instead of using the standard residual links that each layer may
only connect to its neighbors within 2-4 layers (He et al., 2016), we use a similar structure where
the final layer “densely” links to nearly all previous layers (Huang et al., 2017). The benefits
of such design are two-fold: such design alleviates the gradient vanishing phenomenon during
training which stabilizes the process; also the links may possibly introduce highly relevant long-
jump data information to the final output (e.g. the annual epidemiology patterns), thus giving out
a more accurate predictor. Similarly, to regularize the parameter number, we only introduce one
scaling factor for each residual link, contributing to at most O(w) parameters, which is smaller
than AR.

6.4 Experiments

6.4.1 Datasets
We prepared three real-world datasets for experiments.
• Japan-Prefectures This dataset contains the weekly influenza-like-illness statistics (pa-

tient counts) from 47 prefectures in Japan, ranging from 2009 to 2015.
• US-Regions This dataset, collected from the CDC FluView website2, contains the weekly

influenza activity levels (from 1 to 10) for all the states in U.S. from 2009 to 2016After
removing the states with missing data we kept 29 states remaining in this dataset.

• US-HHS This dataset is the ILINet portion of the US-HHS dataset 3, consisting of the
weekly influenza activity levels for the 10 districts of the mainland U.S. for the period of
2009 to 2016 measured using the weighted ILI metric4.

2https://gis.cdc.gov/grasp/fluview/main.html
3https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
4https://www.cdc.gov/flu/pdf/weekly/overview.pdf

65

Dataset Size Min Max Mean SD

Japan-Prefectures 47×312 0 18939 503.54 1368.31
US-Regions 29×451 1 10 2.17 2.39
US-HHS 10×364 0.05 10.62 1.52 1.17

Table 6.1: Dataset statistics include min, max, mean and standard deviation (SD) of patient
counts or activity levels; dataset size means # of regions multiplied by # of weeks.

6.4.2 Experiment Setup

For comparative evaluation we include GAR, AR and VAR as representative baselines of the
autoregressive family, GPR as a representative of non-linear models. We also adopt VAR for a
masked correlation learning variant where only correlations between adjacent regions are learned
(we term it VAR mask). For all datasets, we split them into three sets: training (60%), validation
(20%) and test (20%) in chronological order. We tune the window size for all methods from the
set {2, 8, 32, 64, 128}. To make GAR, AR and VAR more robust, we adopt a L2-regularization
term during training, where its coefficient is searched from the set {0.01, 0.1, 1}. For GPR, we
use the radial basis function (RBF) as its kernel function. The kernel bandwidth hyper-parameter
for RBF is chosen from {2−5, 2−4, . . . , 22}. For our method (CNNRNN-Res), we tune the hidden
dimension for GRU from {5, 10, 20, 40}. The number of residual links are searched from set
{4, 8, 16}. We construct the adjacency matrix G based on the real-world location of signals.

We adopt two evaluation metrics for comparison: Root Mean Squared Error (RMSE) and
Pearson’s Correlation Coefficient (CORR). Denote the prediction and true values to be {ŷ1, . . . ,
ŷn} and {y1, . . . , yn} respectively. The calculation for these metrics are defined as:

RMSE =

√
1

n

∑
i

(ŷi − yi)2 (6.5)

CORR =

∑
i(ŷi −mean(ŷ))(yi −mean(y))√∑

i(ŷi −mean(ŷ))2
√∑

i(yi −mean(y))2
(6.6)

6.4.3 Results

Table 6.2 summarizes the results of all the methods, where the proposed CNNRNN-Res has the
dominating performance. Notice that CNNRNN-Res has similar number of model parameters as
AR does, but a much better performance; VAR has the largest number of model parameters but
the worst results on two out of the three datasets. This suggests the importance of controlling
the model complexity (the effective number of model parameters) for data insufficient problems.
Also notice that on the Japan-Prefectures dataset, which has the largest standard deviation and
hence a hard dataset, our method has the strongest results in terms of relative improvements
over other methods on average. This suggest that our method can successfully capture nonlinear
features with deep learning, outperforming non-linear GP.

66

Japan-Prefectures US-Regions US-HHS

Horizon Horizon Horizon

Methods Metrics 1 2 4 8 1 2 4 8 1 2 4 8

GAR (3)
RMSE 584 786 932 949 1.2883 1.7513 2.1967 2.2538 0.2596 0.3798 0.5217 0.603
CORR 0.9127 0.8393 0.7655 0.7582 0.7917 0.6542 0.4692 0.5 0.9422 0.8813 0.7722 0.729

AR (0)
RMSE 652 839 1061 1061 1.3533 1.7685 2.3414 2.4983 0.2597 0.3667 0.472 0.5816
CORR 0.8725 0.7426 0.5779 0.5861 0.7655 0.6157 0.3311 0.3539 0.9438 0.892 0.8226 0.7277

VAR (0)
RMSE 627 754 1014 1007 1.6158 1.9144 2.3455 2.4417 0.3 0.4134 0.5039 0.5712
CORR 0.9212 0.8715 0.6538 0.6721 0.7461 0.6433 0.4528 0.3136 0.9318 0.868 0.8072 0.7441

VAR mask (0)
RMSE 629 845 1019 1021 1.4053 1.7892 2.3218 2.4658 0.3095 0.4008 0.5121 0.5583
CORR 0.9028 0.7975 0.6111 0.6229 0.7779 0.6462 0.3846 0.4008 0.9258 0.8711 0.7700 0.7615

GP (3)
RMSE 573 676 857 1022 1.3599 1.7279 2.2834 2.4084 0.2648 0.3736 0.4659 0.5719
CORR 0.9423 0.9043 0.7714 0.6237 0.7614 0.6312 0.3516 0.3465 0.9396 0.8921 0.8536 0.8096

CNNRNN-Res (18)
RMSE 547 543 707 684 1.314 1.6523 2.0631 2.3611 0.2591 0.3549 0.478 0.4821
CORR 0.9257 0.9326 0.9026 0.9292 0.8073 0.7037 0.6016 0.4494 0.9453 0.9044 0.8234 0.8259

Table 6.2: Results summary. Bold face indicates the best result of each column in a particular
metric and the total number of bold-faced results of each method is listed after the method name
within parentheses.

6.4.4 Ablation Tests
To analyze the effect of each component in our framework, we perform the ablation tests on all
the datasets with the follow settings:
• RNN (GRU): Only keeping the RNN layer but removing the CNN layer and the residual

links among the RNN modules;
• CNNRNN: Keeping both the CNN and RNN layers but removing the residual links among

the RNN modules;
• CNNRNN-Res: this is the full model.

The results are measured in RMSE in Fig. 6.3. It is interesting to see that CNNRNN does
not consistently improve the performance of using RNN only. Besides, adding both the CNN
layer and the residual modules improve the robustness. Notice that all the datasets are of a
relative small size (hundreds of training samples) which means that adding more parameters (the
consequence of adding the CNN modules) would hurt the performance due to overfitting. The
CNNRNN-Res (the full model) offers a remedy for this issue.

6.5 Conclusion
In this chapter, we presented the first study on deep learning to the epidemic prediction problem
from a time-series prediction perspective. Our method combines the strengths of CNN, RNN and
residual links for enhanced model expressiveness and robust prediction. Our experimental results
showed the consistent performance improvements by the proposed approach over representative
linear and non-linear methods on multiple real-world datasets.

67

Figure 6.3: Ablation test results in RMSE – lower scores mean better performance.

68

Chapter 7

Concluding Remarks

While traditional machine learning tasks majorly deal with data on the Euclidean space, graph
learning considers the scenario where rich dependency structures are provided. Such data sources
motivate people’s interest in developing methods that can effectively leverage the dependency
information in graph structures. Among all the methods, graph neural networks (GNNs) have
come to strike a great balance in fusing information from node features and graph structures.
The multi-layer structure has also enabled its fast adaption of people’s knowledge in multi-layer
perceptrons and architectures of similar kinds. With the convolution-manner layers built in as
backbones, GNNs have demonstrated significant gains in node classification tasks (Kipf and
Welling, 2016; Wu et al., 2019). By learning hierarchical refinement of abstracted graphs, GNNs
can also be combined with different pooling strategies to make whole-graph-level predictions
(Gao and Ji, 2019; Ying et al., 2018). However, their adaption to the link prediction task is not
always satisfactory when the node features are not available and/or the features are too noisy to
rely on. We investigated the proper modifications to GNNs in these challenging scenarios in our
thesis and also put efforts in making robust active learning queries for node classification with
the label sparsity constraint. We future explored two interesting applications of graph learning
techniques in time-series prediction and transfer learning settings when graphical data are pro-
vided and showed how it would improve the performance compared to algorithms that can not
properly leverage such information.

7.1 Main Contributions

In this paper, we mainly proposed methods to address challenging graph-related problems in
several directions: link prediction in both bipartite- and attributed-graph settings; enhancing
node classification with graph neural networks in active learning; application of graph-related
algorithms in domains such as time-series prediction and transfer learning. We highlight the
main contributions in details below.
• Link prediction in bipartite graphs (Chapter 2): For recommender systems with side

information represented as similarity graphs, we enhance the completion power via graph
convolution networks. Different to traditional matrix completion methods that mostly
adopt restricted constraint requirement for the hidden space, the proposed structure demon-

69

strates a flexible way in fusing the heterogeneous graph information with first-order Cheby-
shev approximation for fast training.

• Link prediction in attributed graphs (Chapter 3): For general attributed graphs, em-
pirical results show that direct adaptation of GNNs would not be optimal when attributes
are noisy and not correlated with graph structures. We address such an issue by proposing
TransformerSGC which concatenates a SGC and a Transformer model. The Transformer
part utilizes positional embeddings for delicate node-level representation learning which
is not present in normal GNN structures, and demonstrates robust performance under dif-
ferent noise level dataset cases.

• Active node classification learning over graphs (Chapter 4): While active learning is
a well-explored topic, its adaptation to graph-like data, which require consideration for
instance dependency is less explored. We demonstrate in this chapter a simple node fea-
ture propagation procedure followed by K-Medoids clustering of the nodes for instance
selection would contribute to state-of-the-art results on major benchmark datasets.

• Graph-learning applications (Chapter 5, 6): We apply graph-learning techniques to two
real-world applications, that is, transfer learning and time series prediction. To address the
multi-signal time series prediction problem, we adopt GNNs to capture correlation from
data of different sources along with RNNs to model its long-term time dependency. To
enable information transfer between source and target domain data in the transfer learning
problem, we leverage diffusion kernels to complete the sparse cross-domain linkages so
that the techniques of semi-supervised label propagation are applicable in the new scenario.

In the thesis, we mainly try to address two categories of tasks: node classification and link
prediction while the domain is certainly not limited to the aforementioned ones (e.g. whole
graph classification). The link prediction technique is also naturally applied in modeling signal
relations for the time-series prediction framework. With the recent development of GNNs, we see
that more and more graph-related tasks are migrated to this new architecture from regularization-
based methods. We are also the first of the time to explore the possibility of such methods on
bipartite graph prediction with heterogeneous side information graphs.

This GNN philosophy links up our chapters in its convolution-based nature and how to adapt
such structure to different scenarios requires non-trivial modifications (e.g. how to define in-
put features when they are not available (Chapter 2), reducing parameter size for resource-
constrained datasets (Chapter 6), and approximation compution for stability in label-sparsity
settings (Chapter 4)).

7.2 Discussions
There are some questions that worth making detailed explanations to enhance the understanding
of the problems we have explored in this thesis:
• Why is the one-time selection algorithm better than interactive active learning algo-

rithms? In most of the settings, active learning algorithms adopt an interactive paradigm
for selecting new nodes (Cai et al., 2017; Gao et al., 2018). While it can be the default
setting in the Euclidean space, we need to note that in graphs the link dependencies are

70

the new ingredient that traditional active learning algorithms do not clearly consider which
may be an important prior to guidance the node selection. In the explored datasets, we find
that such performance difference is universal but there is also possibility that the success
may be due to the bias in the selected citation datasets. While examining more datasets
is always a better way to evaluate the effectiveness of different approaches, it would be
an interesting to experiment with simulated datasets with different link-node correlation
scales for more controlled comparisons.

• Are GNNs the only way to model graph data? Though we have used GNNs in most
of the chapters, it is noted that there are other approaches that are effective and beyond
the convolution-based GNN structure (e.g. graph regularizers). The key strategy for most
graph data modeling problems is to transform the data onto the Euclidean space so that
traditional methods can be directly applied afterwards. People may argue that one direct
way is to utilize the adjacency matrix of the observed data row-wisely as vectorized data
points. However, such an approach is definitely not optimal due to two reasons: the dimen-
sionality of the data would scale linearly with respect to the graph size, causing intractable
computation problem for the downstream classifier; the sparsity of the matrix is inevitabil-
ity another obstacle, which would aggravate the overfitting issue in the overall framework.
Thus a proper preprocessing step (e.g. spectral decomposition) is always needed before
we feed the input to the downstream models.

7.3 Future Work

The thesis only covers a small portion of the interesting field of graph learning. There are many
on-going research directions worth further investigation. We would like to share some thoughts
on the possible directions to follow:
• Faster algorithms. With GNNs being applied in more and more problems, researchers

have shown a strong interest in developing efficient algorithms that are capable of process-
ing graphs composed of millions of nodes. While some initial works (Chen et al., 2018;
Chiang et al., 2019) have used partition strategies to train GNNs on subgraphs, it is barely
guaranteed that such designs would lead to the same results if we were to train the overall
model on the full graph scale. A theory for linking up such gaps is at the desire and the
limitation of empirically designed approximation algorithms is still unknown.

• New non-GNN-style networks. While GNNs are the de-facto state-of-the-art architec-
tures on most graph-related tasks, there is no guarantee that such a choice is optimal.
People recently find that deep GNNs would mostly lose its representation power (Oono
and Suzuki, 2019) and the convolution structure is very much no more than low-frequency
filters (NT and Maehara, 2019). Whether there are new architecture that could overcome
the known limitations so that we could obtain better outcome is an open challenge.

• Application of GNNs to other fields. People recently have established linkages between
GNNs and Transformers in a unified view in that Transformers are GNNs on complete
graphs. However, given the great success of Transformers on tremendous natural-language
tasks (Devlin et al., 2018; Vaswani et al., 2017) and recent trials in the image detection

71

field (Carion et al., 2020), no major exploration has been conducted using the techniques
from GNNs on tasks of similar kinds. One natural thought would be to inject structured
information (e.g. parsing trees, knowledge-base) into the procedure of training language
and image models. Another interesting direction lies in the field of neural architecture
search, which in essence considers finding the optimal “structured” framework for a certain
stream of predefined tasks.

72

Bibliography

Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.-H., and Liu, B. (2011). Predicting flu trends using
twitter data. In Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on, pages 702–707. IEEE. 6.1

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. (2017). Near-optimal discrete optimization for
experimental design: A regret minimization approach. CoRR, abs/1711.05174. 4.2, 4.4

Allen-Zhu, Z., Li, Y., and Song, Z. (2018). A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962. 4.3

Argyriou, A., Pontil, M., Ying, Y., and Micchelli, C. A. (2007). A spectral regularization frame-
work for multi-task structure learning. In Advances in neural information processing systems,
pages 25–32. 5.1

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding
and clustering. In Advances in neural information processing systems, pages 585–591. 1.1

Bennett, J., Lanning, S., et al. (2007). The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, NY, USA. 2.5.3

Bilgic, M., Mihalkova, L., and Getoor, L. (2010). Active learning for networked data. In Pro-
ceedings of the 27th international conference on machine learning (ICML-10), pages 79–86.
4.1

Bojchevski, A. and Günnemann, S. (2017). Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815. 4.5

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally con-
nected networks on graphs. arXiv preprint arXiv:1312.6203. 1.1

Cai, D., He, X., Han, J., and Huang, T. S. (2011). Graph regularized nonnegative matrix factoriza-
tion for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(8):1548–1560. 2.1, 2.3.1, 2.5.2, 3.1

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2017). Active learning for graph embedding. arXiv
preprint arXiv:1705.05085. 4.1, 4.2, 4.3, 4.4.1, 4.4.1, 4.5.1, 7.2

Candes, E. and Recht, B. (2012). Exact matrix completion via convex optimization. Communi-
cations of the ACM, 55(6):111–119. 2.1

Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772. 5.3.2

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-

73

to-end object detection with transformers. arXiv preprint arXiv:2005.12872. 7.3

Chandar, S., Khapra, M. M., Larochelle, H., and Ravindran, B. (2015). Correlational neural
networks. Neural computation. 5.1, 5.5.1, 5.5.2

Chang, W.-C., Wu, Y., Liu, H., and Yang, Y. (2017). Cross-domain kernel induction for transfer
learning. In Thirty-First AAAI Conference on Artificial Intelligence. (document)

Chen, J., Ma, T., and Xiao, C. (2018). Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247. 7.3

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 257–266. 7.3

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078. 6.3.2

Contardo, G., Denoyer, L., and Artières, T. (2017). A meta-learning approach to one-step active
learning. arXiv preprint arXiv:1706.08334. 4.4

Dasarathy, G., Nowak, R. D., and Zhu, X. (2015). S2: an efficient graph based active learning
algorithm with application to nonparametric classification. In Grünwald, P., Hazan, E., and
Kale, S., editors, Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris,
France, July 3-6, 2015, volume 40 of JMLR Workshop and Conference Proceedings, pages
503–522. JMLR.org. 4.2

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pages 3844–3852. 1.1

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805. 7.3

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. (2018). Gradient descent finds global minima
of deep neural networks. arXiv preprint arXiv:1811.03804. 4.3, 4.6.1

Duan, L., Xu, D., and Tsang, I. W. (2012). Learning with augmented features for heterogeneous
domain adaptation. In Proceedings of the International Conference on Machine Learning,
pages 711–718, Edinburgh, Scotland. Omnipress. 5.1

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159. 5.4

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A library
for large linear classification. The Journal of Machine Learning Research, 9:1871–1874. 5.5.2,
5.5.3

Gao, H. and Ji, S. (2019). Graph u-nets. arXiv preprint arXiv:1905.05178. 3.1, 7

Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., and Hu, Y. (2018). Active discriminative network
representation learning. In Proceedings of the 27th International Joint Conference on Artificial

74

Intelligence, pages 2142–2148. AAAI Press. 4.1, 4.2, 4.4.1, 4.4.1, 4.5.1, 7.2

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural mes-
sage passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1263–1272. JMLR. org. 4.1

Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 513–520. 5.1

Gu, Q., Zhou, J., and Ding, C. (2010). Collaborative filtering: Weighted nonnegative matrix fac-
torization incorporating user and item graphs. In Proceedings of the 2010 SIAM International
Conference on Data Mining, pages 199–210. SIAM. 2.1, 2.3.1, 3.1

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034. 1.1, 3.1,
4.1, 4.2, 4.3

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150. 2.4.2

Hanneke, S. (2014). Theory of active learning. Foundations and Trends in Machine Learning,
7(2-3). 4.2

Harper, F. M. and Konstan, J. A. (2016). The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 5(4):19. 2.5.1

Hattori, M., Okuno, Y., Goto, S., and Kanehisa, M. (2003). Development of a chemical struc-
ture comparison method for integrated analysis of chemical and genomic information in the
metabolic pathways. Journal of the American Chemical Society, 125(39):11853–11865. 2.5.1

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778. 4.3.1, 6.3.3

Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In The
Collected Works of Wassily Hoeffding, pages 409–426. Springer. 3

Hoffman, J., Rodner, E., Donahue, J., Darrell, T., and Saenko, K. (2013). Efficient learning of
domain-invariant image representations. arXiv preprint arXiv:1301.3224. 5.5.2

Hu, J., Chang, W.-C., Wu, Y., and Neubig, G. (2018). Contextual encoding for translation quality
estimation. arXiv preprint arXiv:1809.00129. 1.3

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. In CVPR, volume 1, page 3. 6.3.3

Jin, W., Barzilay, R., and Jaakkola, T. (2018). Junction tree variational autoencoder for molecular
graph generation. arXiv preprint arXiv:1802.04364. 1.1

Joshi, A. J., Porikli, F., and Papanikolopoulos, N. (2009). Multi-class active learning for image
classification. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
2372–2379. IEEE. 4.5.1

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural infor-

75

mation processing systems, pages 586–594. 4.6.1

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of
epidemics. In Proceedings of the Royal Society of London A: mathematical, physical and
engineering sciences, volume 115, pages 700–721. The Royal Society. 6.1

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980. 2.5.4, 4.5

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907. 1.1, 2.4.3, 3.1, 3.2.1, 3.4, 3.6.1, 4.1, 4.2, 4.3.1, 2,
7

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. (2011). `p-norm multiple kernel learning.
Journal of Machine Learning Research, 12(Mar):953–997. 5.5.2

Kulis, B., Saenko, K., and Darrell, T. (2011). What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 1785–1792. IEEE. 5.1

Kunegis, J., De Luca, E. W., and Albayrak, S. (2010). The link prediction problem in bipar-
tite networks. In International Conference on Information Processing and Management of
Uncertainty in Knowledge-based Systems, pages 380–389. Springer. 2.1

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling long-and short-term temporal
patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pages 95–104. ACM. 1.1

Lawrence, S., Giles, C. L., and Bollacker, K. D. (1999). Autonomous citation matching. In
Proceedings of the third annual conference on Autonomous Agents, pages 392–393. ACM.
2.5.1

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444. 2.4.4

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Ad-
vances in neural information processing systems, pages 556–562. 2.1

Lee, J., Lee, I., and Kang, J. (2019). Self-attention graph pooling. arXiv preprint
arXiv:1904.08082. 3.1

Li, B., Yang, Q., and Xue, X. (2009). Transfer learning for collaborative filtering via a rating-
matrix generative model. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 617–624. ACM. 5.1

Li, W., Duan, L., Xu, D., and Tsang, I. W. (2014). Learning with augmented features for super-
vised and semi-supervised heterogeneous domain adaptation. IEEE transactions on pattern
analysis and machine intelligence, 36(6):1134–1148. 5.5.2

Li, Y., Gan, Z., Shen, Y., Liu, J., Cheng, Y., Wu, Y., Carin, L., Carlson, D., and Gao, J. (2019).
Storygan: A sequential conditional gan for story visualization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6329–6338. 1.3

Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–1031.

76

1.1

Liu, H., Wu, Y., and Yang, Y. (2017a). Analogical inference for multi-relational embeddings.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2168–2178. JMLR. org. (document), 1.3

Liu, H. and Yang, Y. (2015). Bipartite edge prediction via transductive learning over product
graphs. In Proceedings of the 32nd International Conference on Machine Learning (ICML-
15), pages 1880–1888. 2.1, 2.2, 2.5.2, 5.3.2

Liu, H. and Yang, Y. (2016). Cross-graph learning of multi-relational associations. In Proceed-
ings of the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, pages 2235–2243. 2.1, 2.2, 2.3.2, 2.5.2

Liu, J., Chang, W.-C., Wu, Y., and Yang, Y. (2017b). Deep learning for extreme multi-label text
classification. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 115–124. ACM. 1.3

Long, M., Wang, J., Ding, G., Pan, S. J., and Yu, P. S. (2014). Adaptation regularization: A gen-
eral framework for transfer learning. Knowledge and Data Engineering, IEEE Transactions
on, 26(5):1076–1089. 5.1

Mac Aodha, O., Campbell, N. D. F., Kautz, J., and Brostow, G. J. (2014). Hierarchical subquery
evaluation for active learning on a graph. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 564–571.
IEEE Computer Society. 4.2

Monti, F., Bronstein, M., and Bresson, X. (2017). Geometric matrix completion with recurrent
multi-graph neural networks. In Advances in Neural Information Processing Systems, pages
3697–3707. 1.1, 2.5.2

Moore, C., Yan, X., Zhu, Y., Rouquier, J.-B., and Lane, T. (2011). Active learning for node
classification in assortative and disassortative networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 841–849.
ACM. 4.1

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814. 4.3.1

NT, H. and Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550. 7.3

Oono, K. and Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947. 7.3

Ortega, A., Frossard, P., Kovaevi, J., Moura, J. M. F., and Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–
828. 4.2

Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adaptation via transfer
component analysis. Neural Networks, IEEE Transactions on, 22(2):199–210. 5.1

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. Knowledge and Data Engineering,

77

IEEE Transactions on, 22(10):1345–1359. 5.1

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social represen-
tations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM. 1.1

Perrotta, D., Tizzoni, M., and Paolotti, D. (2017). Using participatory web-based surveillance
data to improve seasonal influenza forecasting in italy. In Proceedings of the 26th International
Conference on World Wide Web, pages 303–310. International World Wide Web Conferences
Steering Committee. 6.1, 6.2.2

Prettenhofer, P. and Stein, B. (2010). Cross-language text classification using structural corre-
spondence learning. In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1118–1127. Association for Computational Linguistics. 5.5.1

Pukelsheim, F. (2006). Optimal design of experiments. SIAM. 4.2, 4.4

Salakhutdinov, R. and Mnih, A. (2007). Probabilistic matrix factorization. In Nips, volume 1,
pages 2–1. 2.1, 2.3.1, 2.5.2

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and Welling, M. (2018).
Modeling relational data with graph convolutional networks. In European Semantic Web Con-
ference, pages 593–607. Springer. 3.1

Sedhain, S., Menon, A. K., Sanner, S., and Xie, L. (2015). Autorec: Autoencoders meet col-
laborative filtering. In Proceedings of the 24th International Conference on World Wide Web,
pages 111–112. ACM. 2.5.3

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008). Collective
classification in network data. AI magazine, 29(3):93. 2.5.1

Senanayake, R., Simon Timothy, O., and Ramos, F. (2016). Predicting spatio-temporal prop-
agation of seasonal influenza using variational gaussian process regression. In AAAI, pages
3901–3907. 6.1, 6.2.3

Sener, O. and Savarese, S. (2017). Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489. 4.1, 4.2, 4.4, 4.4.1, 4.4.1, 4.4.2, 4.4.3, 4.5.1,
4.5.2, 4.6.1

Settles, B. (2009). Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences. 4.1

Shen, Y., Yun, H., Lipton, Z., Kronrod, Y., and Anandkumar, A. (2017). Deep active learning for
named entity recognition. Proceedings of the 2nd Workshop on Representation Learning for
NLP. 4.2

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008. 3.2.2, 3.3, 3.3, 7.3

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph
attention networks. arXiv preprint arXiv:1710.10903. 3.1, 4.1, 4.2

Wang, Z., Chakraborty, P., Mekaru, S. R., Brownstein, J. S., Ye, J., and Ramakrishnan, N. (2015).

78

Dynamic poisson autoregression for influenza-like-illness case count prediction. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1285–1294. ACM. 6.2.2

Wu, F., Zhang, T., Souza Jr, A. H. d., Fifty, C., Yu, T., and Weinberger, K. Q. (2019). Simplifying
graph convolutional networks. arXiv preprint arXiv:1902.07153. 3.1, 3.2.1, 3.3, 3.4, 3.6.1,
4.1, 4.4.2, 4.5.2, 7

Wu, Y., Li, X., Liu, J., Gao, J., and Yang, Y. (2018a). Switch-based active deep dyna-
q: Efficient adaptive planning for task-completion dialogue policy learning. arXiv preprint
arXiv:1811.07550. 1.3

Wu, Y., Liu, H., and Yang, Y. (2018b). Graph convolutional matrix completion for bipartite edge
prediction. In International Joint Conference on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management (KDIR), pages 51–60. (document)

Wu, Y., Yang, Y., Nishiura, H., and Saitoh, M. (2018c). Deep learning for epidemiological
predictions. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 1085–1088. ACM. (document)

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018a). Representa-
tion learning on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536.
4.6.1

Xu, R., Yang, Y., Otani, N., and Wu, Y. (2018b). Unsupervised cross-lingual transfer of word
embedding spaces. arXiv preprint arXiv:1809.03633. (document), 1.3

Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008). Prediction
of drug–target interaction networks from the integration of chemical and genomic spaces.
Bioinformatics, 24(13):i232–i240. 2.1, 2.5.1

Yamanishi, Y., Kotera, M., Kanehisa, M., and Goto, S. (2010). Drug-target interaction prediction
from chemical, genomic and pharmacological data in an integrated framework. Bioinformat-
ics, 26(12):i246–i254. 2.1

Yang, Y., Liu, H., Carbonell, J., and Ma, W. (2015). Concept graph learning from educational
data. In Proceedings of the Eighth ACM International Conference on Web Search and Data
Mining, pages 159–168. ACM. 2.5.1

Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-supervised learning with
graph embeddings. arXiv preprint arXiv:1603.08861. 4.5

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018). Hierarchical
graph representation learning with differentiable pooling. In Advances in Neural Information
Processing Systems, pages 4805–4815. 1.1, 3.1, 7

Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. (2019). Graph-revised convolutional network.
arXiv preprint arXiv:1911.07123. 1.3

Zhang, J., Zhang, H., Sun, L., and Xia, C. (2020). Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140. 3.2.2, 3.4

Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems, pages 5165–5175. 3.1

79

Zhang, N., Deng, S., Sun, Z., Wang, G., Chen, X., Zhang, W., and Chen, H. (2019). Long-tail
relation extraction via knowledge graph embeddings and graph convolution networks. arXiv
preprint arXiv:1903.01306. 3.1

Zheng, Y., Tang, B., Ding, W., and Zhou, H. (2016). A neural autoregressive approach to collab-
orative filtering. In Proceedings of the 33nd International Conference on Machine Learning,
pages 764–773. 2.5.2, 2.5.3, 2.5.4

Zhou, J. T., Pan, S. J., Tsang, I. W., and Yan, Y. (2014). Hybrid heterogeneous transfer learning
through deep learning. In AAAI, pages 2213–2220. 5.1, 5.5.1, 5.5.2

Zhu, X., Lafferty, J., and Rosenfeld, R. (2005). Semi-supervised learning with graphs. Carnegie
Mellon University, language technologies institute, school of computer science. 5.3.1, 5.5.2

Zhu, Y., Chen, Y., Lu, Z., Pan, S. J., Xue, G.-R., Yu, Y., and Yang, Q. (2011). Heterogeneous
transfer learning for image classification. In AAAI. 5.1

80

	1 Introduction
	1.1 Scientific Challenges
	1.2 Thesis Overview
	1.3 Other Contributions

	2 Graph Convolutional Matrix Completion for Bipartite Edge Prediction
	2.1 Introduction
	2.2 Background
	2.3 Related Matrix Completion Methods
	2.3.1 Hyper-ball Constraint
	2.3.2 Subspace Constraints

	2.4 Our Approach
	2.4.1 Simple Subspace Constraints
	2.4.2 Generalization via Graph Convolution
	2.4.3 First Order Chebyshev Approximation
	2.4.4 Nonlinear Multi-hop Convolution
	2.4.5 Construction of Input Matrices
	2.4.6 Overall Algorithm

	2.5 Experiments
	2.5.1 Datasets
	2.5.2 Methods to Compare
	2.5.3 Evaluation Metrics
	2.5.4 Empirical Settings and Parameter Tunning
	2.5.5 Main Results
	2.5.6 Effect of Latent Dimensions

	2.6 Conclusion
	2.7 Appendix

	3 Making GNNs Suitable for Link Prediction
	3.1 Introduction
	3.2 Background
	3.2.1 Graph Neural Networks
	3.2.2 Matrix Factorization Model and Transformer

	3.3 Our Approach
	3.4 Experiments
	3.4.1 Simulated Experiment
	3.4.2 Real-world Experiment

	3.5 Conclusion
	3.6 Appendix
	3.6.1 Reason for the Choice of SGC

	4 Active Learning for Graph Neural Networks via Node Feature Propagation
	4.1 Introduction
	4.2 Related Works
	4.3 Preliminaries
	4.3.1 Graph Neural Network Framework

	4.4 Active Learning Strategy & Theoretical Analysis
	4.4.1 Node Selection via Feature Propagation and K-Medoids Clustering
	4.4.2 Theoretical Analysis of Classification Loss Bound
	4.4.3 Why not K-Center

	4.5 Experiments
	4.5.1 Baselines
	4.5.2 Experiment Results

	4.6 Theorem Proofs
	4.6.1 Proof of Theorem 1
	4.6.2 Proof of Theorem 2

	4.7 Conclusion
	4.8 Appendix
	4.8.1 Addendum to Experiments
	4.8.2 Hoeffding's Inequality

	5 Cross-Domain Kernel Induction for Transfer Learning
	5.1 Introduction
	5.2 Proposed Framework
	5.2.1 TL Definitions
	5.2.2 TL with the Graph Laplacian

	5.3 Graph Construction
	5.3.1 Homogeneous Graph Construction
	5.3.2 Heterogeneous Graph Construction

	5.4 Optimization Algorithms
	5.5 Experiments
	5.5.1 Datasets
	5.5.2 Methods for Comparison
	5.5.3 Detailed Experimental Settings
	5.5.4 Results

	5.6 Conclusions

	6 Deep Learning for Epidemiological Predictions
	6.1 Introduction
	6.2 Background
	6.2.1 Task Definition
	6.2.2 Autoregressive Methods
	6.2.3 Gaussian Process Regression

	6.3 Our Approach
	6.3.1 CNN Module
	6.3.2 RNN Module
	6.3.3 Residual Module

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Experiment Setup
	6.4.3 Results
	6.4.4 Ablation Tests

	6.5 Conclusion

	7 Concluding Remarks
	7.1 Main Contributions
	7.2 Discussions
	7.3 Future Work

	Bibliography

