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Abstract

Email is one of the most prevalent communication tools today, and solving the emailover-
load problem is pressingly urgent. A good way to alleviate email overload is to automatically
prioritize received messages f1ording to the priorities of each user. However, research on
statistical learning methods for fully personalized email prioritization has beensparse due to
privacy issues, since people are reluctant to share personal messages and priority judgments
with the research community. It is therefore important to develop and evaluatepersonalized
email prioritization methods under the assumption that only limited training examples can be
available, and that the system can only have the personal email data of each user during the
training and testing of the model for that user.

We focus on three aspects: 1) we investigate how to express the ordinal relations among the
priority levels through classification and regression. 2) we analyze personal social networks to
capture user groups and to obtain rich features that represent the social roles from the viewpoint
of a particular user. 3) We also developed a semi-supervised (transductive) learning algorithm
that propagates importance labels from training examples to test examples through messages
and user nodes in a personal email network. These methods together enable us to obtain both
a better modeling priority and an enriched vector representation of each new email message.

Our contribution is as follows. First, we have successfully collected multiple users’ private
email data with their fine grained personal priority labels. Second, we applyand propose learn-
ing approaches from multi-type information such as text, and sender / recipients information.
Third, to supplement additional information to sparse training data, we identifythe importance
of a contact and similar contacts from social networks. Fourth, we exploita semi-supervised
learning on the personal email networks. Finally, we conducted and completed systematic
evaluations with respect to email prioritization, targeting the discovery of better modeling of
email priorities. Through our suggested approaches, email prioritization alleviates email glut
and should help our daily productivity.
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1 Introduction

Email Prioritization aims at sorting or filtering incoming unread emails with respect to each user’s
criteria. This chapter introduces email overload problemsand our approaches. Then it differenti-
ates our work with others. This chapter also presents thesisstatement and contributions.

1.1 Motivation and Challenges

Email is one of the most prevalent personal and business communication tools today; however, it is
not without significant drawbacks. In contrast to telephoneconversations or face-to-face meetings,
communication through email is asynchronous in the sense that we receive all messages (after
some spam filtering) in the same way regardless of our level ofinterest, and a single sender can
flood multiple receivers (unlike telephone or instant messaging). Users are left with the burden of
having to process a large volume of email messages of differing importance. This tedious task has
been shown to cause significant negative effects on both personal and organization performance
[16, 42]. There is an urgent need to solve this information overload problem, i.e., we need to
develop systems that can automatically learn personal priorities for each user, and that can iden-
tify personally interesting and important messages among others for user’s attention. To alleviate
this email overloadproblem, this thesis targets to identify the priorities of unread emails through
machine learning approaches.

The first obstacle in email prioritization isprivacy issue. Since email overload problem has
been raised in 1982 [17], few researches have been done on email prioritization except spam fil-
tering. Especially email prioritization researches usingmachine learning is very rare. One of the
critical reasons for this phenomenon is the privacy issue. Unlike news corpus or web documents,
in case of email messages people need to share personal emailcontents although they do not mind
to share spams. Anonymization can be one of the solutions forthis problem [4, 30] but after
anonymization, many important information could not be extracted such as speech acts or tem-
poral expression anchoring. As a result, we must carefully design experiments before doing any
email related experiments.

Personalizationis also a tough problem. By personalization, we mean that the same email may
have different priority levels to different recipients so that we need each person’s priority labels
for their own emails. Suppose that a grant proposal email sent to multiple recipients. Depending
on each user, the importance of the same email could differ dramatically. If the user is irrelevant,
the message would be classified as spam. But for principal investigator or a key contributor of the
proposed work, it will be very important. Recently there are some publicly available datasets such
as Enron [27]. However, these datasets do not have the recipient’s personal labels.

Sparse training datafor each user makes personalized prioritization of emails particularly chal-
lenging. It is a crucial problem not only for building prioritization models but also for actual ap-
plications. If a deployed email prioritization system requires lots of training labels, users refuse to
use the system. Especially, busy users used to hesitate spending time on labeling or learning new
tools. Therefore we must find an effective way to overcome sparse training data.

Given these privacy, personalization and sparse training data challenges, we have to build ap-
propriate machine learning models for email prioritization and evaluate them systematically. Due
to limited research foundings for email prioritization, itis not clear what is the right direction for
email prioritization and what are the right evaluation metrics. For instance, we may model the

1



multiple priority levels through ordinal regression whichencodes the relations among the different
priority levels. However, the ordinal regression including support vector ordinal regression and
logistic ordinal regression are worse than classification approach including SVM classification and
logistic regression classifier.

1.2 Our Approach

This thesis models priority in terms ofintrinsic importance, although we collected the importance
and the urgencyof an email, known asEisenhowerpriority matrix [13]. The importance stands
for how important the email is to the recipient and urgency stands for how urgent the email is to
the recipient with respect to the recipient’s reaction. Forinstance, if the email is related to a grant
proposal and the recipient is actively engaged, then the importance of emails belongs to this grant
proposal is very high. However, if an email has no specific deadline, the urgency of the email
is not very urgent. Horvitz et al. [25] modeled the criticality as their priority. They defined the
criticality of a notification as the expected cost of delayedaction associated with reviewing the
message, which modeled in terms of only the urgency. Denning[17], Cadiz et al. [9] and Dabbish
et al. [16, 15, 14] modeled only the importance of an email as apriority. The reason people used
the same terminology, the priority, for these two differentfactors, the urgency and the importance,
is that both factors contribute to the priority.

Priority is modeled with five levels in terms of importance. Horvitz et al. [25] and Johansen et
al. [30] modeled priority into two levels, high and low priority. In that case, it is basically similar
to spam filtering. So we do not set just two levels. To make prioritization system realistic, at least
three levels or more are required, low, medium, and high. During user study of this thesis, it was
observed that the most dominant priority level is medium. Furthermore, depending on the amount
of email receiving, many people made distinction between highest priority and higher priority as
well as between lowest priority and lower priority on top of medium priority level. Therefore we
defined five levels for the priority. The other extreme is onlya rank based priority which sorts all
unread emails. It could be natural to sort unread emails but Hasegawa and Ohara [23] requested
label all ranks. Horvitz et al. [25] modeled 100 levels from 1to 100 during evaluation. Even this
100 levels are quite fuzzy to the users too because a user may have difficulty in distinguishing
between 32 and 33 priority levels. Instead of requesting every regression levels, we may learn a
partial rank based preference function to alleviate heavy load labeling burden. But it may not be
able to associate the predicted rank with certain actions. For instance, depending on the priority
levels, we may provide email coloring to show importance level or send SMS message to one’s
cell phone. Moreover Cadiz et al. [9] used five priority levelson their survey questions to identify
the importance relations.

We proposed a fully personalized methodology for technicaldevelopment and evaluation. By
fully personalized we mean that only the personal email data(textual or social network informa-
tion) of each user is available for the system during the training and testing of the user-specific
model. This is an important assumption for the generality ofpersonalized email prioritization
methods, i.e., we cannot rely on the availability of centralized access to customer private data,
neither in the development circle nor in the evaluation phase, and we cannot take the liberty to use
a particular user’s private data to build models for other users because the potential leak of private
information across users. This assumption makes our work inthis paper fundamentally different
from those in spam filtering and other previous work on email-based prediction tasks.
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We investigate various machine learning methods to model priorities including classification
and (ordinal) regression. How to model ordinal priority level is not studied well. The classification
model uses multiple models for each priority levels but (ordinal) regression model uses a single
model with multiple thresholds to determine multiple levels. Based on our pilot study, we observed
that separate models for each priority level such as classification is better than a single model
with multiple thresholds such as ordinal regression. However, the multiple models can not take
advantages of the adjacency priority relations natively. So we propose to use multiple models with
the considerations of adjacent priority relations. It is also interesting that the priority models are
consistent among the users.

To cope with the lack of training data, we would like to explore additional information which
requires any or partial prior priority labels. Since email is an interactive communication media, we
may find the interactions among the users by analyzing the relations of senders and receivers, from
which we can find social networks. We may identify who is the important person from my email
social network by analyzing social importance metric or whoare similar to a priori known person
through social clustering. We also investigate the effectsof email specific meta information such
as attachments, the length of email, the number of recipients, etc.

1.3 Related Work

1.3.1 Spam Filtering

Spam filtering [37, 38, 31] is a kind of email prioritization but the spam filtering only focuses on
filtering unwanted emails or two level prioritization systems. Sahami et al [37] reported surpris-
ingly good results in Spam filtering using Naive Bayes classifiers. After Sahami, lots of duplicated
experimental results confirm Sahami’s finding. Zhang et al [47] reported similar results on sev-
eral different spam collections with various machine learning algorithms. They also reported both
header and body information were important in identifying spam. However, spam filtering was
identified more difficult problems than what Sahami discovered because of the attacks of statisti-
cal classifiers [43]. One attack out of four identified attacks by Wittel [43] is tokenization attack,
which is working against the feature selection (tokenization) of a message by splitting or modify-
ing key message features such as splitting up words with spaces and using HTML layout tricks.
To overcome these attacks, Boykin and Roychowdhury [6] utilized social networks to fight spam.
Gray and Haahr [22] proposed collaborative spam filtering methods. Goodman et al [21] summa-
rized other advancements except machine learning in Spam filtering and they reported that Spam
filtering was under control to the user but the battle betweenspammer and spam resarcher was
on going. However, these spam filtering alleviate the overload of the recipients to certain degree
but it can not be solution for email overload because the recipients still need to read all incoming
legitimate emails and spam filters have not discriminated the difference among important emails.

1.3.2 Prior Email Prioritization

Among the early efforts in email prioritization, Horvitz etal. [25] built an email alerting system
which used Support Vector Machines to classify newly arrived email messages into two categories,
i.e., high or low in terms of utility. Probabilistic scores were also provided along with the system-
made predictions. Personalization, however, was not considered in their method, and priority
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modeling and social network analysis were not their technical focus.
Hasegawa and Ohara [23] proposed to use Linear Regression [28] and used two levels for eval-

uation. They used about one thousand rules to extract features. Even though they mentioned the
priority should be personalized, they again evaluated their model on only one user. No systematic
evaluation of different priority modeling approaches and social network analysis were addressed.

Not much work has been done on email prioritization researchand none of the prior works
evaluated their models on multiple users considering the personalization issues. Therefore, it is
difficult to draw meaningful observations from the prior works.

1.3.3 Social Clustering

Tyler et al. [39] utilized Newman clustering algorithm to discover social structures automatically
from email messages. They found that the automatically discovered social structures are quite
similar, or consistent, with human interpretation of organizational structures. They also used email
social networks to identify social leaders. However, they did not use the social network analysis
(clusters or leadership scores) to prioritize email messages.

Gomes et al. [20] used email messages to automatically groupusers in two ways, i.e., by sender
clusters and by recipient clusters, respectively. The senders were clustered based on similarity of
their recipient lists, and the recipients were clustered based on similarity of their sender lists as
well; email contents were not used. They examined the use of those clusters in spam detection, i.e.,
to separate spam messages from non-spam messages. Prioritization among non-spam messages,
however, was not addressed.

McCallum et al. [33] modeled the links between sender and recipients along with direction-
sensitive topic distribution built on Latent Dirichlet Allocation (LDA) [5], called Author-Recipient-
Topic (ART) model. With ART model, we could discover the probabilistic topic distribution ac-
cording to the relationships between people. Then they extended ART model to include social
roles, called Role-ART (RART) model. ART model encompassed text with social network and it
could be good features for email prioritization but we did not utilize it mainly because the slow
speed of LDA style algorithms keep us from using it on email prioritization.

Johansen et al. [30] proposed a social clustering approach to importance prediction of email
messages. They collected email data from multiple users andinduced social clusters of users. For
each user, some clusters are treated as ”important” and the others are not. The importance of each
test instance of email message is predicted based on the cluster membership of its sender: if the
sender belongs to an important cluster, then the messages isconsidered important; otherwise, it
is predicted as not important. The fundamental difference in their method from ours is that their
clusters were induced from a community social network, not based on personal social networks.
In addition, they only focused on social associations, not taking any textual features into account
in the modeling and the prediction of importance.

1.3.4 Social Importance Metrics

Various social metrics has been used in email research. Neustaedter et al. [34] defined metrics
for measuring the social importance of individuals based onthe observations in the email fields:
from, to and cc, and in the recorded actions of replying and reading. They used these metrics for
retrieving old email messages rather than prioritizing incoming email messages.
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Boykin and Roychowdhury [7] used clustering coefficients as enriched features to represent
email messages and a Bayesian classifier to detect spam messages. Martin et al. [32] used the
out-degree (the number of unique recipients) and in-degree(the number of unique senders) of each
person in an email social network to detect worms which propagated through the email messages.
Prioritization among non-spam messages was again not addressed by those methods.

1.4 Thesis Statement

Email prioritization can be done effectively by learning individual preferences and priorities of
each user. The most dramatic improvement comes from the proper modeling of personalized email
priority, our proposed ensemble learning. Further improvement can be achieved by combining the
textual content of the email(e.g. subject, body) and the induced social relations between the email
recipient and the various senders. With proper modeling andtext with enriched social relations, we
can effectively categorize email by importance for each user who provides sufficient importance
labels for supervised training.

1.5 Contributions

This thesis presents the first study with several statistical classification and clustering methods ad-
dressing the personalized email prioritization problem based on personal importance judgments by
multiple users. We constructed a new dataset, email messages from each user, and systematically
evaluate several hypothesis models. More specifically, ourcontribution is as follows:

1. We created a new collection of personal email data with fine-grained importance levels.
Previous work used datasets with only two priority levels, i.e., spam vs. non-spam [30],
which are not sufficient for discriminating personal importance levels on non-spam email
messages. On the other hand, past research with human subjects indicates that users would
have difficulties in producing consistent labels if too manylevels were required [29, 3].
Hence, we took a middle ground with 5 levels. To our knowledge, this is the first multi-user
email prioritization dataset with fine-grained importancelabels.

2. We proposed a fully personalized methodology for technical development and evaluation.
By fully personalized we mean that only the personal email data (textual or social network
information) of each user is available for the system duringthe training and testing of the
user-specific model. This is an important assumption for thegenerality of personalized email
prioritization methods, i.e., we cannot rely on the availability of centralized access to cus-
tomer private data, neither in the development circle nor inthe evaluation phase, and we
cannot take the liberty to use a particular user’s private data to build models for other users
because the potential leak of private information across users. This assumption makes our
work in this thesis fundamentally different from those in spam filtering and other previous
work on email-based prediction tasks.

3. We developed a supervised classification framework for modeling personal email message
priorities, and for predicting importance levels for new messages. Especially, we explored
and proposed the best model for a fully personalized email prioritization. The personal-
ized email prioritization can be modeled by several different approaches and among them,
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we identified two main stream of approaches, classification based and (ordinal) regression
based approach. We compared these two approaches in terms ofthe model assumptions
and identified the best working conditions for each approach. Further, we proposed models
taking advantages of both approaches.

4. We proposed to use enriched representation of each input email message, especially in the
part that represent the contact persons (sender or recipients in the CC list) in the message.
We explored four different types of enriched features that are automatically induced based
on personal social networks and meta information from emailheaders as follows:

• Clustering contact persons based on personal social networks We want to capture
social groups among senders and recipients, which can be learned from personal email
messages without importance labels (unsupervised learning). For example, email mes-
sages from two different senders who are members of the same team may carry similar
importance. A personal social network is constructed for each user using his or her own
data. Finding closely-associated user groups from the personal perspective enables us
to estimate the expected importance level per group, as a strategy for improving the
robustness of importance prediction when training data arerelative sparse.

• Measuring social importance of contactsWe want to capture leadership levels of
individual contacts, and we define eight centrality measures that can be automatically
computed using the graph structure of each personalized social network. Most of those
metrics have been commonly used in Social Network Analyses (SNA) research for
spam filtering; however, their use in personalized email prioritization has not been
studied in depth. As personal social networks are differentfrom user to user, using
multi-dimensional leadership metrics to jointly characterize different users would lead
to more robust predictions than using any single metric alone.

• Semi-supervised importance propagationWhen importance labels are available for
some email messages (e.g. older messages) but not availablefor other messages (e.g.
newer ones), we can use the personal social network of each user to propagate the
importance scores from messages to contacts, then from contacts to messages, and
repeat the propagation until all the scores are stabilized.By doing so, we make another
use of personal social networks, i.e., leveraging the transitivity of importance scores
through personal social connections.

• Meta information Given an email message, we may extract message size, the number
of attachments, whether the email is a reply to the recipient’s previously sent message,
whether the recipient’s email address is listed in To or CC list, etc. The meta informa-
tion extracted from the email header could be meaningful. Weinvestigated the effects
of such meta features on the personalized email prioritization.

5. We present an empirical evaluation of both (1) identifying the best personalized prioritization
models and (2) the usefulness of the enriched representation using social network and meta
information. First, we validated each modeling approach including our proposed models
with realistic personalized email prioritization data, ordinal regression benchmark datasets
and our synthetic dataset to test the controlled environment. We confirmed that our proposed
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approaches are more effective than ordinal regression in personalized email prioritization
dataset although the later has been the natural choice for predicting ordinal output in gen-
eral. The synthetic dataset experiments confirmed which approach would work best given
different data distributions. Second, with the enriched representation using social network
and meta information, we achieved further error-rate reduction. Our experiments also show
that for different users we need to rely on very different social network features for accurate
email priority predictions and that our system can automatically discover and utilize those
features.

7



2 Data Collection and Evaluation

Although this thesis is not the first one in email prioritization, the previous works have not evalu-
ated their algorithms or systems on an multiple users because of the privacy issue and the difficulty
of personalization. In this chapter, we introduce what are available information from email and
how we collected data from our email client program and explain the user study that allows us to
collect email data. After that, we explore several evaluation metrics for email prioritization.

2.1 Features in Email

We can capture six types of information from email: text, social link (sender or recipients), thread-
ing, meta information, attachment itself, and user feedbacks.

The text is available like any news articles. It also has title and body text. In other words,
we may apply text mining techniques such as classification orclustering on email data. However,
email has much rich representation than news article or other format of documents.

Email explicitly shows who are the recipients except bcc. News articles tend to write to general
public but email has a specific recipient list. Also we may induce social networks from this sending
and receiving relations [39]. We may draw a contact network,which has edges between senders
and recipients or an email network, which includes email itself as a node and has edges between
email and sender or between email and recipients.

Email contains the discussion context information throughemail threads. The thread is a series
of email communication about a topic but practically, we define email thread as a series of email
messages that share the same title within a limited time period.

Email also contains meta information such as time stamp, thelength of email, the number of
attachments, the number of recipients, and email body text type such as HTML or plain text.

The attached file itself can be served as additional information but we need to convert it to text
or extract meaningful information from the attached file. For instance, an image file is difficult to
be used except filename but if the attached file is a PDF or Word file, then it may be easy to extract
additional information.

Finally, we may collect user interaction with email client,also called implicit feedback such
as reading time, writing time, re-reading frequency of an email, and whether the email is replied,
forwarded, or replied to all. These user interaction features can be extracted from email client
directly. Note that these information is not available whenwe predict the priority of a new email.

This thesis use text features, sender and recipient list as our base features and the induced social
networks are considered in Chapter 4.1, 4.2 and 4.3. In Chapter4.4, we discuss the effects of meta
features. This thesis does not consider email threading or user interaction features as candidate
features.

2.2 Data Collection

Although email prioritization is very important and urgentresearch, it is not an easy research due
to the difficulty of collecting email messages with labels. As our target is personalized email prior-
itization, we could not use publicly available email corpussuch as Enron [27]. If somebody labels
whole emails of users or corpus, then it is no longer personalized and it could not correctly repre-
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sent the recipients’ interest and thus we could not verify our proposed models correctly. Therefore
we have to collect email and its labels by ourselves.

The first obstacle was going through IRB (Institutional ReviewBoard). Because the informa-
tion we collected from the subject had serious concerns on human subject matters and potential to
have social impact, it was not an easy process. Therefore, weoffered selectively Opt-In / Opt-Out
message functions, keyword based anonymization, encrypted storage of dumped email messages,
delayed submission to allow change the subject mind, cancellation of submitted email messages
even after submission, and anytime cancellation of participation of research.

The second obstacle was actually implementing data collection tools and recruiting the sub-
jects. We did the first data collection process but due to lackof the amount of collected messages,
we went through the second data collection process in addition. The following is detailed descrip-
tions of the design goal of such process and functionality ofimplemented tools and the collected
results.

2.2.1 The First Data Collection

During the first data collection period, our highest concernis how to protect the subject privacy.
In our study, although we provided anonymization functionality, we asked the subject to release
their textual data not to be anonymized as much as they can because we need to understand why a
certain algorithm fails and how we can improve our algorithmin response.

Due to its popularity among staff members and some students and faculty, we choose Mi-
crosoft Outlook as our email data collection platform, shown in Figure 2.1. All the user interaction
functions are listed on toolbar from SUBMIT to STATUS button.

First of all, we allow the subject to selectively submit their emails. We provide the manual
Opt-In / Opt-Out function for each email and the subject may choose which one is default. If the
email is private to the subject, the subject may Opt-Out in case of default Opt-In mode or may
not select Opt-In in case of default Opt-Out mode. But we advice the subjects to submit email
messages which are similar to email messages in the one’s inbox. However, we cannot control the
distribution of collected emails not to be different from the distribution of one’s inbox.

The second function to protect the subject privacy is that weallow user to redact the sensitive
keywords [2]. The subject may put any keyword to be anonymized in textbox of toolbar of Figure
2.1 and then the words in all the email that the subject decided to submit are converted to MD5
hash values when messages are submitted. To see the masking effect, user may click MASK
button, then it showed masked email messages. It is useful ifa subject has a concern releasing a
certain person’s name or an organization. However, most users did not use this functions.

The third feature is email encryption. The email client stores local copies of labeled emails
not to loose the labeled emails before deleting email messages. The email client stores encrypted
version of those labeled emails in user’s hard disk drive until it actually submitted.

The fourth feature is delayed submission. Even though the subject rates email priority labels,
we did not collect those messages immediately. We wait the user have time to consider whether
it’s fine or not and alway users may select Opt-Out button for that matters. Once the user click
SUBMIT button, the collected messages were transfered to theserver. However, to make sure we
did not loose any information, we manually collected the stored encrypted messages with logs at
the end of study and removed the email client Add-In program.

Also we provide STATUS button to show the status of message such as whether the message
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Figure 2.1: Outlook Add-In Snapshot of setting priorities in two selected email messages

was submitted or not, Opt-In / Opt-Out status, and current priority ratings. Such information
automatically was displayed on STATUS button when the user select only one message. When
the user clicks STATUS button, then it shows pop-up window for more detailed information with
explanation.

Finally the collected information from the users is the email messages and user interaction
feedback. The email message includes a header, subject, body text, attachment information, and
folder information. The user feedback information is basically all user interaction events between
users and email client program. Each event is time stamped with the event names. Based on these
events, we may construct the reading orders, reading time, foldering, etc.

We recruited 25 experimental subjects mainly from the LTI department of Carnegie Mellon
University. We recruited eight faculty member, five staff member, and twelve students. We asked
the subject to label at least 400 non-spam emails during one month period and suggested labeling
800 non-spam emails (or equivalently labeling 40 emails perday). The importance and urgency
level specified in 5 levels (importance levels – not important at all, not important, neutral, impor-
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tant, and very important). During data collection, 15 subjects gave up to submit email data or
labels due to personal reasons. Table 2.1 shows the summary statistics of finally collected emails
with labels. Among them we tested seven users who actually submitted more than 200 importance
labels for the first data collection.

2.2.2 The Second Data Collection

During the second data collection period, our highest concern is how to recruit more experimen-
tal subjects because we faced the extreme difficulty in recruiting additional experimental subjects.
Therefore, we support Thunderbird email client program because some users want to use Thunder-
bird email client and we want to support Hotmail or Yahoo! Mail through Thunderbird Add-On
programs.

Figure 2.2: Thunderbird Add-On Snapshot of setting options. It also shows the importance level
and urgency level setting tool bar

We removed some of features that were supported from Outlooksuch as redaction, email en-
cryption and user feedback collection functionalities from Thunderbird client Add-On program.
Redaction was not used because we observe that people do not submit emails if it contains sen-
sitive keywords. Email encryption is also meaningless because Thunderbird stores emails in un-
encrypted format. Since we are not using any user feedbacks in our study, the function collecting
user feedback was removed from Thunderbird email client program. Finally we also removed
SUBMIT button as well because we noticed that we had to visit the subject machine anyway to
uninstall our Add-On program.
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However, we changed the design and added new functionalities. First, we changed the layout
of setting priority from pop-up window to fixed button on toolbar as shown in Figure 2.2, which
enable the users to easily set priority. Second, to further speed up labeling process, we supported
keyboard short-cut based labeling. The subject can label email messages without using mouse,
which improved labeling speed. Third, additional information on priority labeling button such as
short-cut keys or the number of labeled messages were added due to the demand of the participants.
The new design and functionality made the labeling process to be faster and collect more users.

We recruited a few experimental subjects from the LTI but mainly recruited subjects from
the church, KCCP (Korean Central Church of Pittsburgh). Finallywe collected emails from two
pastors, six employees of institutions from Pittsburgh andKorea, two graduate students, one faculty
and one undergraduate student who had a job. Table 2.1 shows the final collection statistics.

Collection User # of emails

First 1 1750
2 503
3 519
4 989
5 275
6 279
7 234
* 153
* 167

Second 8 408
9 404
10 899
11 282
12 863
13 758
14 476
15 2989
16 569
17 816
18 582
19 1126

Avg 658.8

Table 2.1: The number of collected Emails with labels

2.3 Evaluation Metric

To evaluate the performance of email prioritization, we consider several different metrics in terms
of classification or regression point of views and discuss what would be better for email prioritiza-
tion.
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2.3.1 Classification Metrics

We may apply Recall, Precision, F-measure and Accuracy (or Error Rate) as the classification
performance measures, which have been conventional in benchmark evaluations for text classifi-
cation. LetA, B, C andD be, respectively, the number of true positives, false alarms, misses and
true negatives for a specific priority level, andN = A + B + C + D be the total number of test
emails. We used four different metrics defined as:

Precision = A/(A + B) (2.1)

Recall = A/(A + C) (2.2)

Fβ =
(1 + β2)A

A + B + β2(A + C)
(2.3)

Accuracy = (A + D)/N (2.4)

ErrorRate = (B + C)/N = 1 − Accuracy (2.5)

Parameterβ of Fβ was set to 1.0 to balance Recall and Precision.
There are two conventional ways to compute the performance average over multiple users. One

way is pooling the test instances from all users to obtain a joint test set, and computing the metrics
on the pool. This way has been called micro-average. The other way is to compute the metrics on
the test instances of each user and then take the average of the per-user metric values. This way
has been called the macro-average. The former gives each instance an equal weight, and tends
to be dominated by the system’s performance on the data of users who have the largest test sets.
The latter gives each user an equal weight instead. Both methods can be informative; therefore we
present the evaluation results in both variants of the metric.

The advantage of classification metrics is that Precision, Recall, F1 and Accuracy are very
intuitive and effectively measure the classification performance. However they ignore the ordinal
priority relations. In other words, the error between priority level 1 and priority level 5 is the same
as the error between priority level 1 and priority level 2, which is unfair.

2.3.2 Regression Metrics

The above disadvantage can be resolved by adopting regression metrics such as MAE (Mean Ab-
solute Error) or MSE (Mean Square Error).

MAE =
1

N

N
∑

i=1

|yi − ŷi| (2.6)

or

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2 (2.7)
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whereyi is true priority level and̂yi is predicted priority level. If there are only two priority levels,
thenMAE andMSE is the same as Accuracy. Otherwise,MAE andMSE may distinguish
different error levels. For instance, since we have five levels of importance, the MAE scores range
from zero (the best possible) to four (the worst possible).MAE can be interpreted as the error
distance on average butMSE is not.

Although MAEβ can tell the level of errors, it is a symmetric error metric. In other words,
the prediction error to priority level 5 when the truth is 1 isthe same to the prediction error to
priority level 1 when truth is 5. The latter case [5(truth) to1(predicted)] is more of a serious error
than the former [1(truth) to 5(predicted)] because the later error misses a very import message and
the former error just annoyed a user. For this reason, Sakkiset al. [38] used asymmetric metrics
in spam filtering tasks. So we propose Asymmetric MAE (AMAE) to the extension of Weighted
Accuracy.

AMAEα =
1

N

N
∑

i=1

c · |yi − ŷi| wherec =

{

1 if yi > ŷi

α otherwise
(2.8)

whereα is the relative directional cost to MAE. Ifα is 1, thenAMAE1 is reduced toMAEβ.
Otherwise, it will give more or less penalty. If we replaceN with

∑N

i=1 c and there are only two
levels, thenAMAEα is reduced to Weighted Accuracy of Sakkis et al. [38].

However,AMAE can still perform unfairly because the error rate between 1 (not important
at all) and that of 2 (not important) are treated as the same error rate between 3 (neutral) and
4 (important). The error rate between 3 and 4 should be more heavily penalized than the error
between 1 and 2. Therefore we propose Weighted AMAE (WAMAE).

WAMAEα,β =
1

N

N
∑

i=1

c · yi
β · |yi − ŷi| wherec =

{

1 if yi > ŷi

α otherwise
(2.9)

If β is 0, thenWAMAEα,0 is reduced toAMAEα. But if β is not 0, then it differentiates the error
according toyi. For instance, ifβ = 1, yi = 5 andŷi = 4, then it will give5 as error weight but
if β = 1, yi = 1 andŷi = 2, then we give only1 as an error weight. In summary,WAMAEα,β

gives more freedom to us to choose what a user wants but it is not clear how to chooseα andβ
values. In case ofα, Sakkis et al. [38] tried just 1, 9, and 99 forα but the choices ofα andβ should
be further studied. Therefore, we only proposeAMAE andWAMAE but we useAccuracy and
MAE as our main evaluation metric.
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Figure 3.1: Three ordinal levels with a regression model andtwo separating thresholds

3 Priority Modeling

3.1 Motivation

Personalized email prioritization (PEP) is an ordinal regression problem [46], which is different
from conventional text classification where for each category, there are only two levels, true or
false. Users may rate their importance from one to five or fromnot important at allto very im-
portant, resulted in ordinal regression problem. Given limited amount of time, users may want to
selectively read important emails or may associate actionsto certain importance levels.

The personalized email prioritization entails two main research challenges: (1) the sparse train-
ing data and (2) one’s own priority definition. First of all, unlike spam filtering, we could not share
training data among different users because of privacy issues and different interests. People hesitate
to share their very personal labeling information except spam emails. Even though there are users
who are willing to share the very personal labeling information, the personal labeling information
could not be shared. For instance, the importance of a grant proposal email could be extremely
important to the principal investigator but it could be marginally important or not important to the
person who is not actively working on the proposal.

Second, one’s own priority definition could lead to diverse way of defining priority. In that case,
the assumption of the current state-of-the-art ordinal regression such as Support Vector Ordinal
Regression (SVOR) [12] might not be good enough. For instance,regression-based approaches
assume one weight vector to model all levels of email priorities from the lowest priority level to the
highest priority level, resulted in all decision boundaries to be parallel. Since the email text is very
high dimensional space, it is not easy to visualize and checkwhether regression-based approach
assumption will be held or not. Therefore, we have to do any form of empirical evaluation to
conform what kinds of approaches are the best.

We present the first thorough study with both regression-based approach and classification-
based approach (including our new approaches) addressing the PEP problem based on personal
importance judgments of multiple users and further analyzing on ordinal regression benchmark
dataset for general performance and synthetic dataset for controlled study. Our primary research
question is:How can we effectively learn robust user-specific models for accurate prediction of
personalized importance using only small amount of labeledtraining data?
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Figure 3.2: Three ordinal classes with three hyperplanes (OVA)

3.2 Regression-based Approaches

3.2.1 Pure Regression

The natural choice to handle ordinal response variables such as priority levels, survey answers or
movie preference ratings is regression models. We may mapr ordinal level response variableyi to
any certain real numbers, i.e.yi ∈ {1, 2, . . . , r}. We may apply standard regression such as linear
regression [28] or support vector regression [19].

For instance, SVR (Support Vector Regression) optimizes thefollowing conditions:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

n
∑

i=1

(ξi + ξ∗i ) (3.1)

subject to
(w · xi − b) − yi ≤ ε + ξi, ξi ≥ 0,∀i

(w · xi − b) − yi ≥ −ε − ξ∗i , ξ
∗
i ≥ 0,∀i

(3.2)

wherew ∈ Rd is a row weight vector andxi ∈ Rd is a column vector for the input,ε is the margin
for regression,ξi andξ∗i are slack variables,C is a regularization parameter andb is the intercept
of a regression model. In case of prediction, we pick the closest levell from the predicted score of
w · xi − b.

There are two important assumptions we need to address when we model ordinal regression
problems by using pure regression model. The first assumption is that one weight vectorw defines
the whole ordinal relations among different levels from Equation 3.1. As shown in Figure 3.1, the
decision hyperplanes are parallel to each other and orthogonal to the weight vectorw. We call
it one model assumptionbecause there is only one weight vectorw compared to multiple weight
vectors of classification-based approach. Since it is biased to have only one model or parallel
decision hyperplanes, it is economical and it could be less sensitive to the noisy data than multiple
models as shown in Figure 3.2 where we have three hyperplanesand they are not parallel. Since
PEP (Personalized Email Prioritization) has to handle limited amount of training data, it would be
attractive to have only one model to represent whole priority relations. However, if the assumption
does not hold, the performance of regression model may not beguaranteed. In other words, the
decision hyperplanes may not be parallel. In practice, PEP has to handle personalized priorities
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and the user defined priority is not necessarily satisfying this assumption. If a priority is based on
a task or topic, then it could be more close to classification than regression.

The second underlying assumption is that it assumesthe fixed equal distancebetween adjacent
ordinal levels. This assumption could be less critical thanone model assumptionbut it is still
affecting the accuracy of prediction because regression model predicts to the closest level. For
instance, the difference betweenimportantandvery importantcould be smaller than the difference
betweenneutralandimportant.

3.2.2 Ordinal Regression

Rather than modeling ordinal regression problem through pure regression, we may explicitly model
ordinal regression. Ordinal regression models drop the second assumption,the fixed equal distance
between adjacent levels. Therefore, it provides multiple thresholds which tell us the predicted
priority levels as shown in Figure 3.1, although it still learns one regression weight vectorw.
These thresholds allow us to have different distances amongdifferent levels. For example, Support
Vector Ordinal Regression (SVOR) [12] learns a model weight vectorw andr−1 thresholds when
we haver priority levels.

More specifically, SVOR optimizes the following conditions:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

r−1
∑

j=1

nj
∑

i=1

(

ξj
i + ξ∗ji

)

(3.3)

subject to
(w · xj

i − bj) ≤ −1 + ξj
i , ξ

j
i ≥ 0,∀i, j

(w · xj

i − bj−1) ≥ 1 − ξ∗ji , ξ∗ji ≥ 0,∀i, j

bj−1 ≤ bj, forj = 2, · · · , r − 1.

(3.4)

wherenj is the number of training emails which belong to priority level j, bj is the threshold for
j or lower level threshold, andxj

i is jth priority level email. The formulation of SVOR is quite
similar to SVR but SVOR hasr − 1 thresholds,bj, compared to only one interceptb of SVR.

3.3 Classification-based Models

3.3.1 Multi-class Classification

We can even dropone model assumptionby treating ordinal regression problem as multi-class
classification problems and thus we may have multiple modelsfor each priority level. Multi-class
classification provides the most flexible model but there areno relations among different priority
levels. Although there are numerous ways to build multi-class classifiers from binary classifiers, we
focus on three popular approaches: OVA (One vs. All), OVO (One vs. One), and DAGSVM [36].

One vs. All (OVA), also known as One vs. Rest (OVR), is the most common way to handle
multi-class classification problem, Figure 3.2. OVA treatsremaining classes as negatives and thus
we needr models if we haver priority levels. When testing, we choose the most confident priority
level as our prediction.

One vs. One (OVO), also known as all pairs, build all possiblepairs of binary classifiers [26]
such as (1 vs. 2), (1 vs. 3), . . ., (r − 1 vs. r). When testing, each classifier votes and the
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Figure 3.3: Decision DAG (Directed Acyclic Graph) for One vs. One multi-class classification.
The rectangular represents a OVO classifier and the double circle shows the final decision. When
testing a decision node, take the left child if the left-handclass is more probable than the right-hand
class.

majority class will be the predicted class. Although One vs.One (OVO) classification requires
r · (r − 1)/2 classifiers, each classifier has less amount of training examples than OVA classifiers
and thus overall training time is reduced [26].

Instead of majority voting, we may use decision DAG (Directed Acyclic Graph) during testing
as shown in Figure 3.3. We call it DAG instead of DAGSVM [36] because we may apply it to
different classifiers too instead of SVM. DAG is faster than OVO during prediction because it
requires onlyr − 1 test. Although Plattet et al. [36] reported the order of classes from DAG did
not affect final results, we sorted the order of priority levels as shown in Figure 3.3.

3.3.2 Order Based DAG

Although regression model makes use of priority relations,their models are not flexible due toone
model assumption. It could be critical for personalized email prioritization because each person
might have different assumption about the priority levels.Multi-class classification provides flexi-
bility because they allow multiple models among the different priority levels. However, they ignore
the ordinal relations among the priority levels. Therefore, we propose models which have both the
flexibility of multi-class classification models and the ordinal relations of regression model.

Rather than directly predicting each priority level, we may use the order information for guiding
better specific cases. Figure 3.4 shows the decision directed acyclic graph (DAG) for Order-Based
(OB) classification models. When there are multiple paths available from top nodes to leaf nodes,
any path may guide to the correct decision as long as each node’s decision is correct. Since there
are multiple choices available, we can always choose themost confidentdecision node among
candidate decision nodes, OB-MC or we may domajority voting , OB-MV. For instance, when
we have three priority levels, we can start from both “12 vs 3”and “1 vs 23” of Figure 3.4. For
a testing emailxi, suppose that an SVM classifier trained “12” as positive and “3” as negative
training classes (12 vs 3) and the classifier predicted 0.7 but SVM trained with “1” as positive
and “23” as negative training labels (1 vs 23) and predicted -0.9. In case of OB-MC, we follow
“1 vs 23” decision path because -0.9 is more confident than 0.7and the next decision node is
“2v3” instead of “1” due to the negative prediction score. OB-MV test all possible paths and then
majority voting will determine which one is our final decision. If there are even votes, we may test
even votes results using one vs remaining even vote node classification. For instance, “12 vs 3”
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1v2 2v3

1v23 12v3

123

1 2 3

Figure 3.4: Decision DAG (Directed Acyclic Graph) for threelevel Order-Based (OB) classifi-
cation. The rectangular represents a OB classifier and the double circle shows the final decision.
When testing a decision node, take the left child if the lefthand class is more probable than the
righthand class.

predicted “1” for final decision but “1 vs 23” ended up with “3”. Then we choose the better one
out of “1 vs 3”.

Through Order-Based approaches, we have multiple flexible models as classification-based
models but we also have model bias to the order of priority levels as regression-based model,
resulted in robust modeling to the noisy data. If the priority levels have no relations (perfect for
classification) or satisfy ordinal regression assumption (perfect for regression), our proposed order-
based approach may not be able to outperform than two approaches. However, if users have set
any form of partial ordinal relations, then our proposed models have a potential to improve the
prediction accuracy.

When we applyr level prioritizer, the total number of basic classifier is
∑r

k=1 (r − k + 1) · (k − 1).
The classification models listed above can be paired with anykinds of classification algorithm and
we tested SVMs and Regularized Logistic Regression dependingon dataset.

3.4 Experiments and Analysis

We evaluated regression-based approach and classification-based approach on three different dataset.

3.4.1 Personalized Email Prioritization

Dataset and Preprocessing We used the dataset described in Section 2.2. Table 3.1 showsthe
training and testing split statistics of finally collected emails. We split the first 150 email messages
as training and the rest as testing based on the timestamp of email messages. If we did not reserve
the first 150 email messages as training, then we could build prioritization models from future data
and it would not be realistic.

We preprocessed email messages by tokenization but we did not remove stop words or apply
stemming. The basic features were the tokens in the sectionsof from, to, and cc address, title, and
body text of email messages.

Classifiers and Parameter Tuning For classification-based approaches, we used linear SVM
classifiers as our base classifiers. Each classifier took the vector representation of each message
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User # of emails # of train # of test

1 1750 150 1600
2 503 150 353
3 519 150 469
4 989 150 839
5 275 150 125
6 279 150 129
7 234 150 84
8 408 150 258
9 404 150 254
10 899 150 749
11 282 150 132
12 863 150 713
13 758 150 608
14 476 150 326
15 2989 150 2839
16 569 150 419
17 816 150 666
18 582 150 432
19 1126 150 1076

Avg 658.8 150 555.62

Table 3.1: Training and testing split of collected emails for prioritization model experiments

as its input, and produced a score with respect to a specific importance level. In case of OVA, the
importance level with the highest score is taken as the predicted importance level by our system
for the corresponding input message. We used theSV M light software package and tuned the
margin parameterC in SVM which controls the balance between training-set errors and model
complexity. We split the training set of each user into 10 subsets and repeated a 10-fold cross
validation procedure: using one subset for validation and the union of the remaining subsets for
training the SVM with a specific value ofC. We repeated this procedure on 10 validation subsets,
with theC values in the range from10−3 to 103. The value of each parameter which yielded the
best average performance on the 10 validation sets was selected for evaluation on the test set of
each user. We found the system’s performance relatively stable (with small variance) with the
settings ofC ∈ [1, 1000].

Regressiors For regression-based approach, we tested only SVOR with implicit constraints [12]
with linear kernel. We tested explicit constraints SVOR andother non-linear kernels but they
showed worse results than implicit constraints SVOR with linear kernels in terms ofMAE. Again
we tuned only regularization parameter with the same rangesof SVM classifiers.

Estimation and Baseline Since we want to show improvement on limited amount of training
data through learning curves, we randomly shuffled 150 training examples ten times and choose
every 30 training email increments from 30 emails to 150 emails. Our baseline is predicting to
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always priority level 3 out of 5 levels, which is the most common priority level on our data collec-
tion.

Significance Testing We also conducted four types of significance test, pairwise t-tests for macro
level MAE and Accuracy, Wilcoxon signed-rank test for microlevel MAE, proportional test (p-
test) for micro level Accuracy to assess the statistical significance of performance difference among
baseline, SVORs and SVMs.

In case of pairwise t-test, we calculated per-user performance difference in terms of MAE and
Accuracy between two approaches and used the mean of the per-user differences to estimate the
p-value under the null hypothesis (which assumes the zero mean). This test is most popular and
strong test but it requires normality assumption of score distribution.

For Wilcoxon signed-rank test, we calculated the difference in the absolute error of between
two approaches on each test message, and throw away no difference instances. We computed the
ranks of absolute values of two score difference. Then we multiply the sign of two score difference
to the rank, called signed rank. The test statistics is the minimum of the sum of positive ranks and
the sum of negative ranks, which is used to estimate the p-value under the alternative hypothesis
(which assumes one is better than the other). Wilcoxon signed-rank test is non-parametric test,
resulting that it does not require normality assumption. Our micro-level MAE is ordinal outcome
and we could not assume the normality assumption.

Last, p-test (proportional test) [44], also known as proportional z-test, was conducted for micro
level accuracy test because Accuracy is proportional metric. We can calculatedz score, based on
two proportional metric scores under the alternative hypothesis (which assumes one is better than
the other). It is naturally micro-level test along with Wilcoxon signed-rank test.

Results and Analysis First of all, surprisingly, the state-of-the-art regression-based approach,
SVOR, showed significantly worse performance than the performance of classification based ap-
proach, OB-MV, shown in Figure 3.5 and 3.6 and Table 3.2. The performance gap is not only
significant regardless of evaluation metric but also it is statistically significant regardless of the
types of significance test. It is evident that SVOR performance among machine learning models
suggested thatone model assumptiondid not hold on personalized email prioritization.

Second, we could validate the machine learning approaches significantly improve over base-
line. In other words, we could make use of machine learning approach to improve the prediction
performance of personal importance.

Third, among the classification methods, the evaluation results show that there are not much
distinctions among classification based methods on Figure A.5. However, OVA showed the worst
performance except 30 trainings and others did notably better. Also our proposed order based
approaches, especially OB-MV, showed the overall best performances in terms of MAE among the
classification approaches and the difference was statistically significant. We conjecture that order
based approaches could take advantages of the partial orderrelations. Between DAG and OVO,
DAG showed statistically significantly better but it was on limited ranges.

Suppose that we might have very limited amount of training data (less than 30 messages)
and we might not be sure aboutone model assumption, we might use OVA. However, we may
want to try order-based DAGs when we have more emails available. If we have to choose it
from popular classification-based approaches, then DAGs are good choice given enough amount
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of training email messages.

3.4.2 Benchmark Experiments

Dataset and Experimental Setups Our next research question was whether our proposed order-
based approaches would work well or not on benchmark dataset. Therefore, we tested order-based
approaches along with other approaches on ordinal regression benchmark dataset generated from
UCI dataset [11]1. [11] used two collections of dataset but we tested only one of them because
the size of the other collection was too small to test different training set size. The dataset was
normalized to be zero mean and unit variance for each feature. The response variable was split
into 10 ordinal levels using equal-size binning. Note that this procedure will satisfyone model
assumptionbut does not guaranteefixed equal distance assumption. In other words, they are good
for ordinal regression approach but not for pure regressionapproach such as linear regression or
support vector regression. We randomly selected training data from 25 instances to 300 instances
by 25 increments and then tested on the remaining. The training and testing splits were repeated
100 times independently. Table 3.3 summarizes datasets andtheir statistics.

For classification-based approaches, we could not use SVM classifiers as our base classifiers
due to the slow speed of SVM classifiers and thus we used Regularized Logistic Regression [45]
due to its convergence properties and comparable accuracies. We got similar performance with
regularized logistic regression performance compared to SVM classifier on this benchmark dataset
and [28] reported both of them showed similar performance. We tuned regularization parameterλ
from 10−8 to 10−1. We applied the same SVOR settings as in personalized email prioritization.

Results and Analysis On the contrary to personalized email prioritization dataset, we got quite
different results from UCI benchmark dataset, shown in Figure 3.7 and each dataset results in Fig-
ure A.7. First of all, SVOR showed the best performance regardless of training size and dataset and
OVA showed the worst performance in most cases. As personalized email prioritization dataset,
DAG is better than OVO in four out of seven dataset, Bank Domains (1), Bank Domains (2), Cen-
sus Domains (1), and California Housing dataset and showed similar performances on the rest of
dataset. Order-Based DAGs showed better performance than DAG on Bank Domains (1), Bank
Domains (2), and California Housing but the improvement is limited to the limited training size.
With the limited amount of training data, order informationwas more helpful but with enough
training data, DAG performance is similar to OB-DAG. The maindifference between personalized
email prioritization dataset and UCI dataset is whether the dataset satisfiesone model assumption
or not.

3.4.3 Principle Component Analysis

However, it was not clear why SVOR outperformed on certain datasets but it did not outperform on
the other dataset. To answer this question, we applied Principal Component Analysis (PCA), which
is one of most popular dimensionality reduction approach. We projected Email Prioritization and
UCI dataset onto two most correlated reduced dimensions withthe ordinal response variable by
using Pearson Correlation Coefficients. Note that, this projection should be the best projection for

1http://www.gatsby.ucl.ac.uk/ chuwei/ordinalregression.html
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Figure 3.5: Macro and Micro Average MAE Learning Curves with Baseline, SVOR and OB-MV
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Figure 3.6: Macro and Micro Average Accuracy Learning Curveswith Baseline, SVOR and OB-
MV
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# of tr Baseline(b) SVOR(o) OB-MV
MAE MAE p-value(b) MAE p-value(b) p-value(o)

30 1.1560 1.1340 0.3576 0.9980 * 0.0148 * 0.0288
60 1.1560 1.0736 0.1362 0.9185 * 0.0010 * 0.0197
90 1.1560 1.0459 0.0844 0.8837 * 0.0004 * 0.0189
120 1.1560 1.0441 0.0746 0.8791 * 0.0003 * 0.0141
150 1.1560 1.0480 0.0902 0.8689 * 0.0002 * 0.0143

(a) Macro MAE Results

# of tr Baseline(b) SVOR(o) OB-MV
MAE MAE p-value(b) MAE p-value(b) p-value(o)

30 1.0887 1.0992 * 0.0000 0.9700 * 0.0000 * 0.0000
60 1.0887 1.0647 * 0.0000 0.8597 * 0.0000 * 0.0000
90 1.0887 1.0406 * 0.0000 0.8140 * 0.0000 * 0.0000
120 1.0887 1.0278 * 0.0000 0.8083 * 0.0000 * 0.0000
150 1.0887 1.0259 * 0.0000 0.7907 * 0.0000 * 0.0164

(b) Micro MAE Results

# of tr Baseline(b) SVOR(o) OB-MV
ACC ACC p-value(b) ACC p-value(b) p-value(o)

30 0.2265 0.2668 * 0.0210 0.4358 * 0.0000 * 0.0000
60 0.2265 0.3237 * 0.0039 0.4679 * 0.0000 * 0.0000
90 0.2265 0.3499 * 0.0020 0.4868 * 0.0000 * 0.0002
120 0.2265 0.3554 * 0.0018 0.4908 * 0.0000 * 0.0006
150 0.2265 0.3565 * 0.0024 0.4938 * 0.0000 * 0.0010

(c) Macro Accuracy Results

# of tr Baseline(b) SVOR(o) OB-MV
ACC ACC p-value(b) ACC p-value(b) p-value(o)

30 0.2584 0.2771 * 0.0000 0.4276 * 0.0000 * 0.0000
60 0.2584 0.3144 * 0.0000 0.4682 * 0.0000 * 0.0000
90 0.2584 0.3330 * 0.0000 0.4919 * 0.0000 * 0.0000
120 0.2584 0.3365 * 0.0000 0.5006 * 0.0000 * 0.0000
150 0.2584 0.3365 * 0.0000 0.5061 * 0.0000 * 0.0000

(d) Micro Accuracy Results

Table 3.2: Evaluation results of varying training set size.It shows MAE with p-value (macro:
paired t-test, micro: signed rank test) and Accuracy (macro: paired t-test, micro: proportional
test), indicating the statistical significances of better performance compared to the baseline(b) or
SVOR(o). Numbers in bold font indicating the best approach for each fixed training-set size. The
star indicates the p-values equal or less than 5%.
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Data Sets Features Instances

Bank Domains(1) 8 8192
Bank Domains(2) 32 8192
Computer Activities(1) 12 8192
Computer Activities(2) 21 8192
California Housing 8 15640
Census Domains(1) 8 16784
Census Domains(2) 16 16784

Table 3.3: UCI Ordinal Regression Benchmark Dataset Statistics

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 50  100  150  200  250  300

M
A

E

Number of training examples

OVA
OVO
DAG

OB-MC
OB-MV
SVOR
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(b) PCA projection with Ordinal Regression Decision Hyperplanes

Figure 3.8: Computer Activities (2) on two the most correlated reduced dimensions with the re-
sponse levels. The drawn lines are threshold for each ordinal levels and the fixed equal distance
assumption do not hold here. Ordinal regression thresholdswell captured different levels except
level 1.
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Figure 3.9: Computer Activities (2) on two the most correlated reduced dimensions with the re-
sponse levels. The drawn lines are threshold for each classification decision hyperplanes and some
of hyperplanes are not shown here because the remaining hyperplanes are too high or low.
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(b) PCA projection with Ordinal Regression Decision Hyperplanes

Figure 3.10: One user of email prioritization dataset was projected on two most correlated reduced
direction with the response levels. The drawn lines are threshold for each ordinal levels. Ordinal
regression thresholds captured different levels to some degree but it was not as good as CPU
Activity (2).
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Figure 3.11: One user of email prioritization dataset was projected on two most correlated reduced
direction with the response levels. The drawn lines are threshold for each classification decision
hyperplanes. Classification did show better accuracy than the accuracy of regression approach on
the plotted data.
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regression based approach. We also learned OVA and SVOR models for benchmark dataset from
the projected two dimensional dataset and drew decision hyperplanes from Figure 3.8∼ 3.11.

Among seven ordinal regression benchmark datasets, we focus on Computer Activities (2)
datasets because the datasets well characterized ordinal regression conditions and with the same
reason we chose one user from email prioritization dataset.We observe the data distribution looks
quite different. First, the centroids of Computer Activities (2) on Figure 8(a) were well aligned
as a linear line according to the ordinal levels (except level 1), resulted in good alignment with
SVOR decision hyperplanes compared to email prioritization dataset where the centroids are not
well aligned to the line, so that we have better distributionfor classification hyperplanes.

In summary, this analysis tells us whether the dataset follows one model assumptionor not.
Computer Activities (2) followsone model assumptionpretty well, so that regression-based ap-
proach outperformed classification based approaches. However email prioritization dataset seemed
not well fitted withone model assumption, resulted in better classification performance.

Note that we projected data onto two most correlated directions and thus there were other
dimensions which were better suited for classification approaches. Also we could observe that
there were partial ordinal relations from email prioritization dataset, which confirmed why our
proposed order-based approaches worked better than other classification approaches.

3.4.4 Synthetic Experiments

Dataset and Experimental Setups Although we reflected the correlations to the response vari-
able on PCA, our two dimensional analysis may not be perfect. Through our synthetic analysis
experiments, we could confirm that what we discovered is still valid on the controlled study.

We generated two dimensional Gaussian data distribution with the centroids on (1,1), (2,2),
(3,3), (4,4) and (5,5) as shown in Figure 12(a). Note that it satisfiesone model assumptionand
fixed equal distance assumption. To control the linearity of the centroid distribution, we shifted
centroids from (2,2) to (0,4), from (4,4) to (2,6) and from (3,3) to (5,1), shown in Figure 12(b).
We repeated the above procedures 100 times independently and reported the average results along
with t-test. We apply the same evaluation strategy of UCI ordinal regression benchmark dataset to
this synthetic dataset.

Results and Analysis First of all, with linearly aligned centroids, SVOR did not show the better
performance. However, SVOR showed better performance thanOVA approaches. All classifica-
tion approaches except OVA they showed better performance than SVOR. But with more difficult
cases (high signal-to-noise ratio), we could observe SVOR showed better results than any other
classification based approaches.

When the centroids are not linearly aligned, classification based approaches showed signifi-
cantly better results than SVOR. Therefore, to be the best condition for SVOR, noisy and linearly
aligned centroids are required, which is favorable forone model assumption.

3.5 Summary

Personalized email prioritization requires effective mapping from a high-dimensional input feature
space to ordinal output variables. We presented a comparative study of two types of supervised
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learning approaches: ordinal regression-based and classification-based. Our conceptual analy-
ses and empirical evaluations show that the effectiveness of ordinal-regression based method cru-
cially depends on the separability of priority classes by parallel hyperplanes, which may be too
restrictive for personalized email prioritization based on our collected personalized email priori-
tization dataset. Classification-based methods, on the other hand, offer more general and robust
solutions when complex decision boundaries are needed because they allow multiple non-parallel
hyperplanes as decision functions. With the proposed OB-MV and OB-MC schemes, we effec-
tively combine the outputs of different binary classifiers into email priority predictions, yield-
ing significant improvements over the results of SVOR, a state-of-the-art method among ordinal-
regression based approach on our collected personalized email prioritization dataset. Our experi-
ments with synthetic datasets and ordinal-regression benchmark datasets further support our con-
clusions, and provide additional insights regarding when regression-based method work better and
when classification-based methods work better.
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(b) Star-shaped Centroids

Figure 3.12: Two synthetic data generation conditions (Linear and Star)
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Figure 3.13: Experiment results of two synthetic data conditions
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4 Learning from Social Network and User Interactions

Due to privacy and personalization, we do not have publicly available email data and enough labels
to investigate. However, in email inbox, there are lots of unlabeled email data that has no privacy
concerns and also there is meta information of email headersthat can be extracted. This chapter
investigates how we can improve email priority learning curves with the limited amount of labels.
Especially we focus on the social networks induced from email communication network and meta
information of messages.

4.1 Social Clustering

For predicting the importance of email messages, the senderinformation would be highly informa-
tive. For example, we may have multiple project teams or social activity groups, and membership
in such social groups may be naturally reflected through co-recipient lists of email messages. The
group members who share similar sender/recipient patternsmay have similar judgments on pri-
ority levels of messages. Thus, capturing such groups wouldbe informative for predicting the
importance of contact persons (senders or recipients) of email messages.

When we have a limited amount of training data, it is very likely that in the testing phase
we encounter a sender who does not have any labeled instancesin the training set. If we can
identify this user as a member of a group based on unsupervised clustering, then we can infer
that user’s importance from that of other group members. That is, we can cluster users based on
their communication patterns in a personal social network,and infer the importance of users in
each group. Further, the cluster membership of the sender ofeach email message can be treated
as features (in addition to a standard bag-of-word representation) of the message when making
inference about its importance. As a result, senders without labeled messages could also receive
non-zero weight through their clusters, effectively addressing the data sparsity problem.

We first discuss how to construct a social network from a user’s personal email INBOX and
how to extract the group information.

4.1.1 Personalized Social Networks

We construct apersonalizedsocial network for each particular user using only the emaildata of that
user. There are two reasons for this:Practicality -we want our method to not rely on the unrealistic
assumption that multi-user private data are always available for system development and model
optimization.Personalization-we want the social network best representing the user’s ownsocial
activity; a global social network may include noisy features and de-emphasize personalization in
the inductive learning of important features through the network.

Let us use a graphG = (V,E) to represent the email contact network where verticesV cor-
respond to the email contacts (users) in the network, and edgesE correspond to the messages
sending events among users. The edges are binary, i.e.,Eij = 1 if there is (at least) a message
from useri to userj, andEij = 0 otherwise. We ignore the direction of edges if it is not explicitly
mentioned. By default, a graphG is un-weighted symmetric graph.
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Figure 4.1:An example email contact network induced from email messages. Circles represent nodes in
the network. An edge between a nodei and a nodej impliesi sent email toj.

4.1.2 Social Clustering Algorithms

To select an appropriate clustering algorithm, our main criterion is an algorithm that finds social
clusters that represent real world social groups. We chooseNewman, CONCOR (CONvergence of
iterated CORrelations), K-means and Spectral clustering algorithms [18] on contact networks.

Newman Clustering We choose the Newman clustering algorithm, which has been reported to
successfully find social structures in large organizations[35, 39]. It defines theedge-betweenness
as a normalized number of shortest paths going through a specific link from all-pairs shortest
paths. If a link has a high edge-betweenness score, it means that the link is crucial between two
boundary nodes of two different highly-connected clusters. The algorithm assumes that members
in a highly-connected cluster have many communication passages within the cluster, but not many
links outside the cluster. Based on this assumption, it deletes links with high edge-betweenness
scores, which results in disconnect components as clusters.

To find more than two clusters, we need to specify the number ofclusters that the network may
have embedded. For this, users may use either their own knowledge about the network or they
can use an automatic selection algorithm, described in [35]. This automatic selection algorithm is
implemented in Organization Risk Analyzer (ORA) [10], and that is the implementation we use in
this work. Figure 4.2 shows embedded clusters inn a network where ORA selects 27 as the number
of clusters.

CONCOR Clustering CONCOR [41] is known for finding a structural equivalence in a social
network and has been one of the earliest approaches. CONCOR hinges on a procedure based on the
convergence of iterated correlations. Basically it repeatedly calculates Pearson Correlation Coeffi-
cients (PCC) between rows (or columns) of a matrix where the matrix has the Pearson Correlation
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Newman Cluster #3
Avg. of Importance = 2.50
Var. of Importance = 0.25

Newman Cluster #1
Avg. of Importance = 3.63
Var. of Importance = 0.74

Newman Cluster #5
Avg. of Importance = 1.98
Var. of Importance = 0.01

Figure 4.2:The analyzed user’s contact network from email exchanges, node colors represent the Newman
cluster affiliation of email contacts, node sizes are adjusted to the average importance of the contacts’ email
importance values. The average importance values of contacts within specific clusters are similar, which
means that members in a cohesive cluster shares similar importance. As an example, we add average and
variance of importance only from big three clusters only

Coefficient matrix of previous iteration.

X t+1
ij = PCC(X t

i , X
t
j) (4.1)

whereX0
ij = Eij, X0 is an adjacency matrix,X t

i is theith row (or column) after thetth iteration.
Whent = 0, X is an adjacency matrix but if the iterationt continues until it converges,Xij ∈
{−1, 1}. This procedure finds only two clusters of ‘-1’ and ‘1’.

To find more than two clusters, we need to repeatedly apply CONCOR to sub-clusters and it
should formulate binary tree structures. We regard the number of clusters as parameterk of kNN
algorithm. We determine the best number of clusters throughcross validation.

K-Means K-Means clustering algorithm is one of the most popular clustering algorithm due to
its simplicity. Since we will run K-Means on adjacency matrix, X, it will find structurally similar
persons.

K-Means algorithm tries to minimize the following objective function [18].

K
∑

i=1

∑

xj∈Ci

(xj − µi)
2 (4.2)

whereCi is the ith cluster andµi is the centroid of theith cluster. In other words, it tries to
minimize intra-cluster variance in the inner summation andfind the sum of each cluster variance
(inter-cluster variance) to be small in the outer summation. To solve Equation 4.2, the following
greedy iterative procedure can be used.

1. Randomly selectK seed nodes as centroids.

2. Assign each node to the closest centroid.

37



3. Recompute the centroids.

4. Repeat the second and third steps until it converges.

We use Euclidean distance as our distance metric. Since the above procedures will converge
to the local optimum, we repeat the above procedures 100 times and select the best cluster assign-
ments based on Equation 4.2. We again consider the number of cluster as our parameter and use
the best numberK determined by the cross validation.

Spectral Clustering Along with K-Means, spectral clustering algorithm is also widely used in
various domains [40]. We first define graph Laplacian matrixL:

L = D − X (4.3)

whereD is diagonal matrix and it contains the sum of its row elements, Di,i =
∑n

j=1 Xij. One of
interesting properties is that ifG has k connected components, then the firstk eigenvalues are 0
and the firstk eigenvectors will be indicator for each connected components [40].

To find k clusters, the normalized spectral clustering algorithms compute the firstk eigenvec-
tors,Lx = λDx and then apply K-Means clustering algorithm on thosek eigenvectors.

For K-Means, we use Euclidean distance but only 10 times to find the best K-Means cluster
assignments according to Equation 4.2. We also consider thenumber of clusters as our parameter
and used the best numberK determined by the cross validation.

4.2 Measuring Social Importance

4.2.1 Motivation

We want to measure the social importance levels of contacts,and this can be done without la-
beled training data. Instead, the personal contact networkinduced from senders and recipients link
relations provides useful information about the importance of each contact in the network. For in-
stance, the Newman Cluster #1 in Figure 4.2 is highly connected with others and the person in the
center of the cluster may be an important person in the network. We examine multiple graph-based
metrics to characterize the social importance of each node,which have been commonly used in
social network analysis (SNA) or link structure analysis.

4.2.2 Node Degree Metrics

In-degree centrality We defineInDegreeCent(i) as the normalized measure for the in-degree
of each contact (i):

InDegreeCent(i) =
1

|V |

|V |
∑

j=1

Eji (4.4)

where|V | is the total number of contacts in the personal email social network andEji ∈ {0, 1}. A
high in-degree may indicate that the recipient is a popular person.
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Out-degree centrality We defineOutDegreeCent(i) as the normalized measure for the out-
degree of each contact (i). Having a high out-degree may also imply some degree of importance,
e.g., as an announcement sender or a mailing-list organizer.

OutDegreeCent(i) =
1

|V |

|V |
∑

j=1

Eij (4.5)

Total-degree centrality TotalDegreeCent(i)is defined as the normalized number of unique
senders and recipients who had email communication with node i. That is, it is a simple or opera-
tion of the in-degree and out-degree of the node:

TotalDegreeCent(i) =
1

|V |

|V |
∑

j=1

d
Eij + Eji

2
e (4.6)

4.2.3 Neighborhood Metrics

Clustering Coefficient Clustering Coefficient of nodev, denoted asClustCoef(v), measures
the connectivity among the neighborhood of the node.

ClustCoef(v) =
1

Z

∑

i∈Nbr(v)

∑

j∈Nbr(v),j 6=i

Eij (4.7)

whereNbr(v) = {x : Ev,x 6= 0, Ex,v 6= 0} is the neighborhood andZ = |Nbr(v)| · (|Nbr(v)|− 1)
is the normalization denominator. Boykin and Roychowdhury [7] used this metric to discriminate
spam from non-spam email messages based on the neighborhoodconnectivity of the recipients of
messages.

Clique Count A clique is generally defined as a fully connected sub-graph in an undirected
graph. The clique count of a nodev in our case is defined as:

ClqCnt(v) =
∑

c∈G

I(c ∈ v) × I(|c| ≥ 3) (4.8)

wherec ∈ G is a cliquec in the personalized social networkG, I(c ∈ v) ∈ 0, 1 is the binary
indicator of whether or not cliquec contains nodev, andI(|c| ≥ 3) ∈ 0, 1 is a binary indicator of
whether or not the size of cliquec is at least three. This metric reflects the centrality of the node
in its local neighborhood, taking all the related non-trivial cliques (including the nested ones) into
account.

4.2.4 Global Metrics

Betweenness centrality Betweenness centrality of a nodev, BetCent(v), is the percentage of
existing shortest paths out of all possible paths that goes through the nodev. A node with high
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betweenness centrality means that the corresponding person is a contact point between different
social groups.

BetCent(i) =
1

(n − 1)(n − 2)

|V |
∑

j=1,j 6=i

|V |
∑

k=1,k 6=j,k 6=i

σjk(i)

σjk

(4.9)

whereσjk is the number of shortest paths containj andk andσjk(i) is the number of shortest paths
containj andk that goes throughi. This metric has been used in social network analysis [35].

PageRank We use the popular PageRank method in link analysis research [8] to induce a global
importance measure for email contacts. The difference between the PageRank importance from the
other metrics discussed so far is that it is recursively defined, taking the transitivity of popularity
into account. Let us use matrixX to represent email connections amongN contacts in a personal
network, and define the elements as:

Xij =
nij

∑N

j′=1 nij′

(4.10)

wherenij is the count of messages fromi to j. Matrix X is further combined with a teleportation
matrixU defined as:

E = ((1 − α)X + αU)T (4.11)

where U =

[

1

N

]

N×N

, and 0 ≤ α ≤ 1

Using an N-dimensional vector~r to store the PageRank scores of theN contacts, the vector is
initially set with equally valued elements of1/N , and then iteratively updated as:

~r (k+1) = E~r (k) (4.12)

The vector converges to the principal eigenvector of matrixE whenk is sufficiently large.

4.2.5 Social Importance Analysis

We call the above metrics theSocial Importance(SI) features of email messages. To illustrate that
the SI features would be informative for a personalized email prioritization system, we computed
the PCC (Pearson Correlation Coefficient, which ranges from -1 to +1). Figure 4.3 shows the abso-
lute values of the correlation coefficient scores: larger absolute values mean stronger dependencies
among the SI features and the importance levels. It can be observed that the multi-metric PCC
values differ from user to user, which is not surprising. Foruser 1, as an example, Clustering Coef-
ficient, Clique Count and HITS Hub scores are highly informative, but In-degree, Out-degree and
Total-degree are less informative. In contrast, for User 5,HITS Authority score is not a good in-
dicator but in-degree is highly informative. This observation suggest it is important for the system
to learn user-specific SI feature weights. We accomplish this goal by training user-specific SVM
classifiers. This is, we train five SVMs for each user based on his or her personal email dataset;
each SVM is responsible for learning the weights of features(including SI features and other types
of features) conditioned on a specific importance level and for the specific user. Our system does
not use the PCC’s because they do not take the interactions among features into account and hence
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Figure 4.3: The Pearson Correlation Scores (vertical axis) of social importance metrics (horizontal
axis) for different users

would be suboptimal compared to SVM-learned weights of SI features. We show the PCC sores in
Figure 4.3 just for illustrative purposes: they intuitively indicate dependencies among SI features
and importance levels.

4.3 Semi-Supervised Measure of Social Importance

4.3.1 Motivation

The social importance features are all induced from personal social networks without leveraging
human-assigned importance labels of email messages. Therefore, we call them unsupervised SI
features. Now we focus on how to induce semi-supervised SI features. Here semi-supervised
means that the features are induced from personal email datawhere only a subset of the messages
have human-assigned importance labels (in 5 levels), and the rest of messages do not have such
labels. We propose a new approach, namely the Level-Sensitive PageRank (LSPR) approach which
can be viewed as a new important variant of existing personalized PageRank or topic sensitive
PageRank methods [24].

4.3.2 LSPR Algorithm

First, we use a matrix to encode the information about how human-assigned importance labels of
messages are related to the users in a personal email collection. The rows of the matrix are the
users (i = 1,2,· · · ,N ), the columns are the importance levels (k =1,2,3,4,5 ), and each cell is
the count of labeled messages received by a user at the corresponding level. We further normalize
the elements of each column using the sum of all elements in the column as the denominator, i.e.,
making the normalized elements in each column sum to one. Letus denote the matrix (N -by-5) as
V = ~v1, ~v2, · · · , ~v5 where the column vectors show the distributions of labeled messages over all
users at each level, and the row vector~vi = (vi1, vi2, vi3, vi4, vi5) can be viewed as the initial LSPR
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profile of useri based on the labeled messages he or she received. Notice thatvjk = 0 if useri does
not have any labeled message in the personal email collection. Generally speaking, matrixV is
very sparse when only a few messages are labeled.

Next, we construct a different transition matrix for each importance level as:

Ek = (1 − α)X + αUk (4.13)

Maxtrix X is the same as we defined in Chapter 4.2.4 whose cells are the estimated transition
probabilities from each node (email contact) based on unlabeled email interactions. In the second
term we haveUk = ~vk · ~1 T , which depends on the labeled data at levelk and differs from the
teleportation matrix in standard PageRank. The balance between the two transition matrixes is
controlled using constant mixture weightα ∈ [0, 1] . Matrix Ek is used to calculate the Level-
Sensitive PageRank (LSPR) vector iteratively as:

~pk
(t+1) = Ek ~pk

(t)

= (1 − α)X ~pk
(t) + αUk ~pk

(t) (4.14)

= (1 − α)X ~pk
(t) + α~pk

(1)

whereUk ~pk
(t) = ~pk

(1)~1 T ~pk
(t) = ~pk

(1) and ~pk
(1) = ~vk is the initial vector. The LSPR vector

converges whent is sufficiently large, to the principal eigenvector of matrix Ek. The stationary
LSPR vector is denoted as~pk , whose elements sum to one, representing the expected proportion
for each node to receive the importance values from others through a biased transition network,
i.e., the messages at the same level (k) make their receivers more connected.

Applying this calculation to each importance level, we obtain five stationary vectors in matrix
P = (~p1, ~p2, ~p3, ~p4, ~p5). The row vectors of matrixP provide a 5-dimensional representation for
each user based on both partially available message labels,and the level-sensitive transition net-
works. The row vectors ofP are much denser than the initial user profiles, i.e., the row vectors
in matrix V . We use the LSPR row vectors as additional features in an enriched representation
of each message, i.e., as the semi-supervised social importance features of its sender. Those en-
riched vector representations are used both in the trainingphrase of our system (Support Vector
Machines), and in the testing phase as the input vector of each new message for the system to make
a prediction.

Notice that the elements in matrix P are typically small whenthe number of users (N ) in the
personal email network is large. To make the values of LSPR features in a range comparable
with those of other features (e.g., term weights and the values of unsupervised SI features) in
the enriched vector representation of email messages, we renormalize each LSPR sub-vector (5-
dimensional) into a unit vector as follows:

pki =
pki + s

∑5
j=1 pkj + 5 · s

(4.15)

wheres is smoothing constant for normalization. We added smoothing constant here because we
do not want to give too much weight forpki whenpki is too small value. These vectors provide 5
additional features (with the corresponding weights) in the enriched representation of the contact
person of each email message, in the input vector for importance prediction using a SVM.
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4.3.3 Connections between SIP and Topic Sensitive PageRank

Our formulae for LSPR are quite similar to those in Topic Sensitive PageRank (TSPR) and Person-
alized PageRank (PPR) methods where a topic distribution is used to represent the interest of each
user [24]. In fact the LSPR method is intrigued by the TSPR andPPR work. The main differences
in our problem and the LSPR solution are:

• Our graph structure is constructed using two types of objects (i.e., persons and messages)
while the graph structures in TSPR and PPR (and in PageRank) has nodes of only one type
(i.e., web pages). And, our method leverages both frequencies of messages and importance
of messages while there is only one type of linkage (directed) in conventional link analysis
methods.

• We focus on effective use of a partially labeled personal network, and we assume the transi-
tivity of importance among users is sensitive to the importance levels of messages exchanged
among these users. The assumption is conceptually different from conventional use of top-
ics or user profiles in TSPR and PPR methods. This is the fundamental difference between
LSPR from TSPR and PPR. Specifically, the stationary solutionin TSPR and PPR (and stan-
dard PageRank) is the vector of the expected probabilities ofweb pages being visited by
users in random browsing based on hyperlink connections; onthe other hand, the stationary
solution in LSPR is the vector of importance scores of email messages assuming their im-
portance levels are transitive with respect to each other through the interactions in a personal
email network.

Other than the above, our formulae are indeed quite similar to those in TSPR, PPR and PageR-
ank. The convergence analyses for those methods and the formulae of the closed-form solution
(i.e., the principal eigenvector) of the transition matrixalso apply here; we omit those details (see
[24][8]).

4.4 Meta Features

On top of email text and social network information, there ismeta information of email message
such as message size, the existence of attachment files, assigned folder, etc. They can be correlated
with different priority levels. Table 4.1 summarizes considered meta-level features.

4.5 Incorporating Additional Features into Prioritization Models

In case of extended feature vector space, each email’s extended feature vector isest
i = 〈t1, t2, · · · ,

tk, s1, s2, · · · , sm〉 whereet
i = 〈t1, t2, · · · , tk〉 are textual feature vector andes

i = 〈s1, s2, · · · , sm〉
are social network feature vector.e

t
i = 〈t1, t2, · · · , tk〉 is the feature vector of the baseline. These

email feature vectors then can be used as input to a learning algorithm. The basic features are full
text features such asfrom, to, cc, title, andbody textfrom the email.

The social-network based features are represented as follows: We use am-dimensional sub-
vector to represent the Newman (NM), K-Means (KM), Spectral(SC), or CONCOR clustering
(CC) wherem be the number of clusters produced by the clustering algorithm: each element of
the sub-vector is 1 if the user belongs to the corresponding cluster, or 0 otherwise; each user can
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Feature Description

ReplyToMine Reply to my message
MyAddrInFrom Whether my address is listed in FROM field
MyAddrInTo Whether my address is listed in TO field
MyAddrInCC Whether my address is listed in CC field
NumRecipients the number of recipients in TO and CC field
NumCC the number of recipients in CC field
Folder Folder that the email belongs to
Size log( size of email)
Attachment Whether the email has attachments

Table 4.1: The Meta-Level features

belong to one and only one cluster. We also use another sub-vector (7-dimensional) to represent
the social importance (SI) features per user, whose elements are real-valued. In addition, we use
a 5-dimensional sub-vector to represent the five LSPR scoresper sender, i.e., the mixture weights
of the user at the five importance levels. The concatenation of those sub-vectors together with the
full text (FT) vector yields a synthetic vector per email message as its full representation.

4.6 Experiments

Basically we tested two conditions, online condition and batch condition. Online condition does
not allow us to look at test instances at all as we can not see future data. However it does not
mean that our learning framework is online adaptive where wecontinuously re-train or update our
model whenever getting user feedback. Online condition is more close to real world settings but it
could not utilize the structure of test data. Especially ourdataset size is considerably smaller than
actual users’ INBOX size and thus our experimental analysis could be biased to the small sample
messages.

In contrast to online condition, batch condition allows us to take advantage of test data social
network structure during training and may produce better estimations. Therefore, we may have
more stable and close to one’s INBOX social network structures but we utilize the test dataset. Note
that we do not use any test label information. We first evaluate strict online evaluation condition
and then report batch evaluation condition experiments.

4.6.1 Online Condition

Data For this condition, we evaluated on the first data collectionwhich consists of seven users
who actually submitted more than 200 messages with importance labels. Specifically, we again
sort the email messages in a temporal order for each personalcollection, and split the sorted list
into 70% and 30% portions. The 70% portion was used for training and parameter tuning, and
the remaining 30% was used for testing. Table 4.2 summarizesthe dataset statistics (message
counts). The full set of training examples in each personal data collection was used to induce the
Newman-cluster (NC) features and the Social Importance (SI)features. For LSPR features, we
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used all the messages in the training set to propagate 30, 60,90, 120 and 150 labels in the training
set, respectively.

Note that all the test-set sizes are even smaller than the dataset in Chapter 3 due to 30% testing
and smaller dataset size. Here, the average number of test message is 169.4 among seven users
but we had 514.1 average test instances, which means we have less confidence on micro level
significance test.

User # of emails # of train # of labels # of test
1 1750 1225 30∼ 150 525
2 376 263 30∼ 150 113
3 484 339 30∼ 150 145
4 596 417 30∼ 150 179
5 233 163 30∼ 150 70
6 279 195 30∼ 150 84
7 234 164 30∼ 150 70

Average 564.6 395.2 30∼ 150 169.4

Table 4.2: 70% train and 30% test split on our early first data collection

Preprocessing We applied a multi-pass preprocessing to email messages. First, we applied email
address canonicalization. Since each person may have multiple email accounts, it is necessary to
unify them before applying social network analysis. For instance, ”John Smith” john.smith+@cs.cmu.edu,
”John” smith@cs.cmu.edu and ”John Smith” john747@gmail.com might be the email addresses
of the same person. We used regular expression patterns and longest string matching algorithms
to identify email addresses which may belong to the same user. We then manually checked all the
groups and corrected the errors in the process. We also applied word tokenization and stemming
using the Porter stemmer; we did not remove stop words from the title and body text.

Classifiers We use five linear SVM classifiers for the prediction of importance level per email
message (OVA). Each classifier takes the vector representation of each message (as described in
Chapter 4.5) as its input, and produces a score with respect toa specific importance level.

Our baseline is again predicting to always priority level 3 out of 5 levels, which is the most
common priority level on our data collection. We ran the SVM classifiers with the full text (FT) or
all social network features (SI+NC+LSPR) for machine learning approach basis where all social
network features are combining FT with Newman Clustering (NC), seven unsupervised social
importance (SI) features and five semi-supervised LSPR features (SI+NC+LSPR). We also tested
with FT with social network features, namely (FT+SI+NC+LSPR). We varied the number of the
training labels per user from 30 to 150 labeled email messages.

Results and Analysis First of all, It can be observed that Baseline shows again the worst per-
formance and the most results are statistically significant, shown in Figure 4.4, 4.5 and Table 4.3.
Second, social network only (SI+NC+LSPR) or full text only (FT) showed significant improve-
ment over baseline but full text (FT) showed better results than social network only features
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Figure 4.4: Overall MAE Results
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Figure 4.5: Overall Accuracy Results
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# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
MAE MAE p-value(b) MAE p-value(b) MAE p-value(b) p-value(f) p-value(s)

30 1.0387 0.8980 0.1382 0.9346 0.2127 0.8081 0.0755 * 0.0170 * 0.0239
60 1.0387 0.7928 * 0.0472 0.8543 0.0946 0.7345 * 0.0332 0.0642 * 0.0297
90 1.0387 0.7652 * 0.0419 0.8563 0.0908 0.7154 * 0.0248 * 0.0053 * 0.0197
120 1.0387 0.7282 * 0.0227 0.8599 0.0855 0.6927 * 0.0161 * 0.0012 * 0.0238
150 1.0387 0.7274 * 0.0233 0.8930 0.1429 0.6879 * 0.0143 * 0.0011 * 0.0029

(a) Macro MAE Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
MAE MAE p-value(b) MAE p-value(b) MAE p-value(b) p-value(f) p-value(s)

30 0.9619 0.8661 * 0.0022 0.9348 * 0.2931 0.7953 * 0.0000 * 0.0000 * 0.0000
60 0.9619 0.7624 * 0.0000 0.8381 * 0.0000 0.7207 * 0.0000 * 0.0099 * 0.0000
90 0.9619 0.7397 * 0.0000 0.8433 * 0.0014 0.6775 * 0.0000 * 0.0000 * 0.0000
120 0.9619 0.7058 * 0.0000 0.8544 * 0.0002 0.6658 * 0.0000 * 0.0011 * 0.0000
150 0.9619 0.7081 * 0.0000 0.8763 * 0.0053 0.6665 * 0.0000 * 0.0025 * 0.0000

(b) Micro MAE Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
ACC ACC p-value(b) ACC p-value(b) ACC p-value(b) p-value(f) p-value(s)

30 0.2657 0.5029 * 0.0095 0.4850 * 0.0162 0.5464 * 0.0041 * 0.0149 * 0.0069
60 0.2657 0.5496 * 0.0031 0.5269 * 0.0071 0.5793 * 0.0021 * 0.0131 * 0.0292
90 0.2657 0.5670 * 0.0024 0.5220 * 0.0061 0.5870 * 0.0015 * 0.0142 * 0.0121
120 0.2657 0.5779 * 0.0017 0.5257 * 0.0061 0.5913 * 0.0014 0.0531 * 0.0172
150 0.2657 0.5820 * 0.0018 0.5178 * 0.0056 0.5927 * 0.0015 0.0553 * 0.0020

(c) Macro Accuracy Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
ACC ACC p-value(b) ACC p-value(b) ACC p-value(b) p-value(f) p-value(s)

30 0.3186 0.4731 * 0.0000 0.4570 * 0.0000 0.5142 * 0.0000 * 0.0014 * 0.0000
60 0.3186 0.5164 * 0.0000 0.4925 * 0.0000 0.5422 * 0.0000 * 0.0197 * 0.0001
90 0.3186 0.5294 * 0.0000 0.4907 * 0.0000 0.5528 * 0.0000 0.0827 * 0.0000
120 0.3186 0.5397 * 0.0000 0.4908 * 0.0000 0.5554 * 0.0000 0.1748 * 0.0000
150 0.3186 0.5431 * 0.0000 0.4895 * 0.0000 0.5556 * 0.0000 0.2280 * 0.0000

(d) Micro Accuracy Results

Table 4.3: Evaluation results of varying training set size.It shows MAE with p-value (macro:
paired t-test, micro: signed rank test) and Accuracy (macro: paired t-test, micro: proportional test),
indicating the statistical significances of better performance compared to the baseline(b), FT(f) or
SI+NC+LSPR(s). Numbers in bold font indicating the best approach for each fixed training-set
size. The star indicates the p-values equal or less than 5%.
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(SI+NC+LSPR). When we combined text with social network features (FT+SI+NC+LSPR), we
could get further improvement and most of them are statistically significantly better than full text
(FT) or social network (SI+NC+LSPR) except 120 and 150 Accuracy over FT. Therefore, we could
verify that social network induced features are informative and we should consider both text and
social network induced features together.

4.6.2 Batch Condition

Data and Classifiers As a batch condition, we used the same split with Chapter 3, which is the
first 150 as training and the remaining as testing and the email messages were also sorted in a
temporal order for each personal collection. Table 3.1 summarizes the dataset statistics (message
counts). Note that this dataset has not only more number of users but also much large number of
test messages. We also ran the additional social clusteringfeatures such as CONCOR Clustering
(CC), KMeans Clustering (KM), and Spectral Clustering (SC).

Social Clustering Results First of all, the performance of baseline and FT is worse thanthe
performance of online conditioned baseline and FT, which tells us that without considering social
network structure, it is more difficult to predict with batchcondition.

Second, We could observe that the social context captured byunsupervised social clustering
is useful in predicting the personal importance of email messages, shown in Figure 4.6, 4.7 and
Table 4.4. So it can be candidate features for handling the paucity of training label. Most clustering
algorithm performed similarly in terms of Accuracy but Newman clustering (NC) showed the
little improvement over FT with MAE. For our additional analysis, we will use NC as further
consideration of social feature combinations due to consistency of our previous online experiments.

Social Importance and LSPR Results Social Importance (SI) features show consistent im-
provements and the improvement is significant, which means the social importance also can be
captures through social network analysis and it can leverage the burden of the lack of training label
in personalized importance prediction problem.

In case of LSPR, it did show improvement in terms of MAE but LSPRdid not show significant
improvement on Accuracy. Most p-values of SI is statistically significant and LSPR showed sta-
tistically significantly better than baseline. Semi-supervised LSPR, at least, showed the potential
of improvements and it will be further investigated on the combining social features.

Combining Diverse Social Features The results we got are similar to the results of our online
condition. Social features only (SI+NC+LSPR) show significant improvements over baseline and
the results are statistically significant but the social features only can not outperform full text (FT)
features, shown in Figure 4.10, 4.11 and Table 4.6.

Second, full combination of text and social features (FT+SI+NC+LSPR) showed significant
improvements over FT, SI+NC+LSPR, or baseline and most results are statistically significant
especially with micro level tests, which support our main claim that social network induced features
can leverage the paucity of training data and produce robustprediction.
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(b) Micro MAE Results

Figure 4.6: Social clustering algorithm comparison results (MAE)
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(a) Macro Accuracy Results
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Figure 4.7: Social clustering algorithm comparison results (Accuracy)
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# of tr Baseline(b) FT(f) FT+NC
MAE MAE p-value(b) MAE p-value(b) p-value(f)

30 1.1560 0.9920 * 0.0132 0.9960 * 0.0237 0.5523
60 1.1560 0.9342 * 0.0026 0.9264 * 0.0024 0.3540
90 1.1560 0.9153 * 0.0015 0.9049 * 0.0012 0.3148
120 1.1560 0.9022 * 0.0009 0.8963 * 0.0011 0.3931
150 1.1560 0.9004 * 0.0010 0.9005 * 0.0018 0.5007

(a) Macro MAE Results

# of tr Baseline(b) FT(f) FT+NC
MAE MAE p-value(b) MAE p-value(b) p-value(f)

30 1.0887 0.9614 * 0.0000 0.9632 * 0.0000 0.0615
60 1.0887 0.8809 * 0.0000 0.8645 * 0.0000 0.1338
90 1.0887 0.8520 * 0.0000 0.8470 * 0.0000 0.3188
120 1.0887 0.8435 * 0.0000 0.8368 * 0.0000 0.3290
150 1.0887 0.8347 * 0.0000 0.8365 * 0.0000 0.1799

(b) Micro MAE Results

# of tr Baseline(b) FT(f) FT+NC
ACC ACC p-value(b) ACC p-value(b) p-value(f)

30 0.2265 0.4367 * 0.0000 0.4391 * 0.0000 0.4189
60 0.2265 0.4704 * 0.0000 0.4706 * 0.0000 0.4896
90 0.2265 0.4791 * 0.0000 0.4847 * 0.0000 0.2455
120 0.2265 0.4844 * 0.0000 0.4905 * 0.0000 0.2391
150 0.2265 0.4861 * 0.0000 0.4913 * 0.0000 0.2747

(c) Macro Accuracy Results

# of tr Baseline(b) FT(f) FT+NC
ACC ACC p-value(b) ACC p-value(b) p-value(f)

30 0.2584 0.4397 * 0.0000 0.4482 * 0.0000 0.2980
60 0.2584 0.4771 * 0.0000 0.4912 * 0.0000 0.4777
90 0.2584 0.4889 * 0.0000 0.5067 * 0.0000 0.1112
120 0.2584 0.4978 * 0.0000 0.5135 * 0.0000 0.0925
150 0.2584 0.5008 * 0.0000 0.5152 * 0.0000 0.1307

(d) Micro Accuracy Results

Table 4.4: Evaluation results of varying training set size.It shows MAE with p-value (macro:
paired t-test, micro: signed rank test) and Accuracy (macro: paired t-test, micro: proportional
test), indicating the statistical significances of better performance compared to the baseline(b) or
FT(f). Numbers in bold font indicating the best approach foreach fixed training-set size. The star
indicates the p-values equal or less than 5%.
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(a) Macro MAE Results
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Figure 4.8: Social feature comparison results (MAE)
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(a) Macro Accuracy Results
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Figure 4.9: Social feature comparison results (Accuracy)
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# of tr Baseline(b) FT(f) FT+SI FT+LSPR
MAE MAE MAE p-value(b) p-value(f) MAE p-value(b) p-value(f)

30 1.1560 0.9920 0.9734 * 0.0110 0.1365 0.9614 * 0.0084 0.0757
60 1.1560 0.9342 0.9024 * 0.0010 * 0.0030 0.9205 * 0.0022 0.2341
90 1.1560 0.9153 0.8832 * 0.0005 * 0.0004 0.8919 * 0.0010 0.1376
120 1.1560 0.9022 0.8781 * 0.0005 * 0.0384 0.8873 * 0.0008 0.2369
150 1.1560 0.9004 0.8739 * 0.0005 * 0.0226 0.8869 * 0.0009 0.2575

(a) Macro MAE Results

# of tr Baseline(b) FT(f) FT+SI FT+LSPR
MAE MAE MAE p-value(b) p-value(f) MAE p-value(b) p-value(f)

30 1.0887 0.9614 0.9434 * 0.0000 * 0.0000 0.9216 * 0.0000 * 0.0000
60 1.0887 0.8809 0.8365 * 0.0000 * 0.0000 0.8708 * 0.0000 0.4104
90 1.0887 0.8520 0.8149 * 0.0000 * 0.0000 0.8396 * 0.0000 0.2405
120 1.0887 0.8435 0.8053 * 0.0000 * 0.0000 0.8382 * 0.0000 * 0.0052
150 1.0887 0.8347 0.8008 * 0.0000 * 0.0000 0.8344 * 0.0000 * 0.0252

(b) Micro MAE Results

# of tr Baseline(b) FT(f) FT+SI FT+LSPR
ACC ACC ACC p-value(b) p-value(f) ACC p-value(b) p-value(f)

30 0.2265 0.4367 0.4484 * 0.0000 * 0.0336 0.4433 * 0.0000 0.1729
60 0.2265 0.4704 0.4813 * 0.0000 * 0.0047 0.4670 * 0.0000 0.6730
90 0.2265 0.4791 0.4918 * 0.0000 * 0.0018 0.4833 * 0.0000 0.2778
120 0.2265 0.4844 0.4945 * 0.0000 * 0.0363 0.4837 * 0.0000 0.5340
150 0.2265 0.4861 0.4926 * 0.0000 0.0819 0.4805 * 0.0000 0.7258

(c) Macro Accuracy Results

# of tr Baseline(b) FT(f) FT+SI FT+LSPR
ACC ACC ACC p-value(b) p-value(f) ACC p-value(b) p-value(f)

30 0.2584 0.4397 0.4546 * 0.0000 * 0.0053 0.4546 * 0.0000 0.0748
60 0.2584 0.4771 0.4946 * 0.0000 * 0.0086 0.4796 * 0.0000 0.7690
90 0.2584 0.4889 0.5090 * 0.0000 * 0.0027 0.4988 * 0.0000 0.1803
120 0.2584 0.4978 0.5149 * 0.0000 * 0.0138 0.4985 * 0.0000 0.5583
150 0.2584 0.5008 0.5154 * 0.0000 0.0785 0.4999 * 0.0000 0.8885

(d) Macro Accuracy Results

Table 4.5: Evaluation results of varying training set size.It shows MAE with p-value (macro:
paired t-test, micro: signed rank test) and Accuracy (macro: paired t-test, micro: proportional
test), indicating the statistical significances of better performance compared to the baseline(b) or
FT(f). Numbers in bold font indicating the best approach foreach fixed training-set size. The star
indicates the p-values equal or less than 5%.
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(a) Macro MAE Results
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Figure 4.10: Combining social feature results (MAE)
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(a) Macro Accuracy Results
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Figure 4.11: Combining social feature results (Accuracy)
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# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
MAE MAE p-value(b) MAE p-value(b) MAE p-value(b) p-value(f) p-value(s)

30 1.1560 0.9920 * 0.0132 1.0345 0.0522 0.9740 * 0.0120 0.2612 * 0.0015
60 1.1560 0.9342 * 0.0026 0.9928 * 0.0248 0.8962 * 0.0009 * 0.0245 * 0.0010
90 1.1560 0.9153 * 0.0015 0.9577 * 0.0097 0.8802 * 0.0006 * 0.0414 * 0.0030
120 1.1560 0.9022 * 0.0009 0.9298 * 0.0070 0.8759 * 0.0007 0.1056 0.0551
150 1.1560 0.9004 * 0.0010 0.9391 * 0.0107 0.8790 * 0.0008 0.1557 * 0.0311

(a) Macro MAE Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
MAE MAE p-value(b) MAE p-value(b) MAE p-value(b) p-value(f) p-value(s)

30 1.0887 0.9614 * 0.0000 0.9953 * 0.0000 0.9374 * 0.0000 0.2509 * 0.0000
60 1.0887 0.8809 * 0.0000 0.9443 * 0.0000 0.8281 * 0.0000 * 0.0000 * 0.0000
90 1.0887 0.8520 * 0.0000 0.9056 * 0.0000 0.8147 * 0.0000 * 0.0000 * 0.0000
120 1.0887 0.8435 * 0.0000 0.8688 * 0.0000 0.8064 * 0.0000 * 0.0000 * 0.0000
150 1.0887 0.8347 * 0.0000 0.8656 * 0.0000 0.8077 * 0.0000 * 0.0000 * 0.0000

(b) Micro MAE Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
ACC ACC p-value(b) ACC p-value(b) ACC p-value(b) p-value(f) p-value(s)

30 0.2265 0.4367 * 0.0000 0.4147 * 0.0000 0.4455 * 0.0000 0.1850 * 0.0003
60 0.2265 0.4704 * 0.0000 0.4393 * 0.0000 0.4819 * 0.0000 0.0724 * 0.0001
90 0.2265 0.4791 * 0.0000 0.4589 * 0.0000 0.4923 * 0.0000 * 0.0369 * 0.0002
120 0.2265 0.4844 * 0.0000 0.4656 * 0.0000 0.4977 * 0.0000 0.0591 * 0.0035
150 0.2265 0.4861 * 0.0000 0.4690 * 0.0000 0.4988 * 0.0000 0.0640 * 0.0066

(c) Macro Accuracy Results

# of tr Baseline(b) FT(f) SI+NC+LSPR(s) FT+SI+NC+LSPR
ACC ACC p-value(b) ACC p-value(b) ACC p-value(b) p-value(f) p-value(s)

30 0.2584 0.4397 * 0.0000 0.4326 * 0.0000 0.4526 * 0.0000 * 0.0275 * 0.0000
60 0.2584 0.4771 * 0.0000 0.4659 * 0.0000 0.5048 * 0.0000 * 0.0058 * 0.0000
90 0.2584 0.4889 * 0.0000 0.4874 * 0.0000 0.5149 * 0.0000 * 0.0019 * 0.0000
120 0.2584 0.4978 * 0.0000 0.4936 * 0.0000 0.5230 * 0.0000 * 0.0018 * 0.0000
150 0.2584 0.5008 * 0.0000 0.5017 * 0.0000 0.5241 * 0.0000 * 0.0029 * 0.0000

(d) Micro Accuracy Results

Table 4.6: Evaluation results of varying training set size.It shows MAE with p-value (macro:
paired t-test, micro: signed rank test) and Accuracy (macro: paired t-test, micro: proportional test),
indicating the statistical significances of better performance compared to the baseline(b), FT(f) or
SI+NC+LSPR(s). Numbers in bold font indicating the best approach for each fixed training-set
size. The star indicates the p-values equal or less than 5%.
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(a) Macro MAE Results
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(b) Micro MAE Results

Figure 4.12: Meta feature results (MAE)
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(a) Macro Accuracy Results
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(b) Micro Accuracy Results

Figure 4.13: Meta feature results (Accuracy)
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Meta Information Results Although meta information of email (MT) helped on certain ranges
of training data (FT+MT) of Figure 4.12 and 4.13, the combined meta level features with social
features, FT+SI+NC+LSPR+MT, showed similar performance with FT+MT. However, if we could
incorporate additional information such as whether the user read the message or not, then meta
information might be more useful.

4.7 Summary

We focus on social network analysis to capture user groups ineach personal social network, and
un-supervised and semi-supervised learning of rich features for representing user-centric social
importance. These methods enable us to obtain an enriched vector representation of each new email
message, as the basis of accurate modeling of individual users and for generating robust predictions
for individual users in email prioritization. The effectiveness of the proposed approach is proved
in our experiments on personal email data from multiple users. Gathering data to infer social
networks of individual users requires only access to their email messages, no explicit labeling
required, and thus in a real deployment, the social networkswould be richer and perhaps even
more useful. In case of meta level features, we could not observe the usefulness of meta level
features when combined with other social network induced features but it could be the limitation
of our user study.
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5 Conclusions and Future Directions

5.1 Conclusions

To overcome email overloading, we proposed to prioritize email messages using machine learn-
ing methods. We face three major challenges: the lack of publicly available datasets, building
personalized prioritization models, and sparse training data.

• No Publicly Available DatasetsThe most difficult challenge was the lack of publicly avail-
able email prioritization datasets. Due to privacy issues,no one wants to share email mes-
sages. Unlike spam filtering, where people do not mind sharing spam messages, we need fine
grained priority labels with personal email messages. We had to build a new email prioritiza-
tion dataset. We went through the IRB (Institutional Review Board) process and developed
Microsoft Outlook and Mozilla Thunderbird plug-in programs. We recruited 39 subjects and
tested our approaches on 19 subjects who actually submittedmore than 200 messages.

• Modeling Personal Email Priority No one had addressed modeling personal email prior-
ity due to the lack of publicly available datasets. We analyzed the characteristics of email
prioritization datasets by empirical evaluation and visualization of personal email data and
observed that ordinal regression, generally believed to bethe best and natural choice, showed
worse results than classification based approaches on our email prioritization dataset. We fur-
ther improved the prediction accuracy by utilizing partialordinal relations among the priority
levels through our proposed order based ensemble approaches.

• Sparse Training DataTraining data is sparse because of personalization meaningthat the
same message might have different priority levels depending on the recipients. We enriched
the representation of email messages through social network analysis and meta level features
with no or little prior label information. Specifically, we captured social contexts through
social clustering, social importance through social metrics and semi-supervised social weight
through importance propagation on the personal social network. These personalized social
network induced features did not outperform full text features but when we combined full
text features with these induced social network features wefurther reduced the error rate of
priority prediction.

Through our proposed modeling and enriched features, we verified that personalized email
prioritization can be addressed by machine learning methods and we can alleviate the email over-
loading problem.

5.2 Future Directions

For future investigation, we would like to consider two maindirections: deployment and new
research in personalized email prioritization. Especially, we are eager to deploy what we learned
in real-world applications and the following is our considerations:

• User Interface Email prioritization may not be useful without a proper userinterface. One
of the most important concerns is how to present predicted priorities of messages. It includes
the layout of the reading pane of the email client, highlighting, fonts, colors, etc. How to
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get feedback from the user is another important concern because proper user feedback is
essential to adaptive personal priority learning. How and when to alert user are important as
well. We may alert users through SMS (Short Messaging Service), IM (Instant Messaging),
or a modal dialog box if the system detects a really importantmessage. The timing of
alert can be a critical issue for the productivity of users. If a system interrupts a user too
frequently, then the productivity of the user might be decreased. However, if the user is not
alerted, then the user may miss very important messages and loose one of reasons to use
email prioritization.

• Scalability If email prioritization is deployed in Web services such as GMail, Hotmail or
Yahoo! Mail, then our proposed approaches should be scalable, and thus we might seriously
consider more efficient learning models or alternative social network induced features. For
instance, we might consider triad count, the number of triangle, instead of clique counts
because triad count can be efficiently calculated.

• Benefits of Deployed Email ClientAfter an email client is deployed, the client program may
access all of personal email messages and collect implicit feedbacks whereas we collected
selectively submitted email messages and we did not be able to collect implicit feedback
features. There are two notable benefits. First, given wholeemail messages of a user, we may
build richer personal social network and we may improve the prediction accuracy further.
Second, we may use implicit feedback features such as reading time, print, reply, forward,
etc and may improve priority prediction accuracy. Such implicit feedback features can serve
as the evaluation of the effectiveness such as the number of message selections or reading
time changes.

As our future research direction toward personalized emailprioritization, we are considering
the following topics:

• Urgency PredictionAlthough our investigation of importance is indispensableto email pri-
oritization, investigation into urgency prediction is also crucial. Because we already have
collected urgency labels, we are ready to investigate similarities and dissimilarities between
importance and urgency.

• Topic Drifting Due to limited amount of collected email messages, we assumed static pri-
ority models in this thesis. However, if we have user activities from a long span of time, we
may also investigate the temporal nature of personal email priority such as topic or interest
drifting, which requires email prioritization to be onlineand adaptive.

• Dialog Structure Analysis In email messages, we not only have social relations throughthe
sending and receiving of messages but also thread structures. We may reconstruct dialog
structures through email threads and such dialog structures may have correlation to priority,
especially urgency prediction, because urgency is sensitive to the stage of discussion.

• Temporal ExpressionsUrgency can heavily depend on the remaining time to deadline. With
the help of temporal expression analysis, we may compute theamount of remaining time to
the event and it could be a critical feature for urgency prediction.
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• Joint Prediction of Importance and UrgencyDepending on users, importance and urgency
might have correlation. For instance, if a message is not important at all, then it tends to be
not urgent. The joint prediction of importance and urgency may provide better prioritization
than if they were done separately.
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Figure A.1: Per-User Accuracy Learning Curves with Baseline,SVOR and OVA SVM (User 1-6)
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Figure A.2: Per-User Accuracy Learning Curves with Baseline,SVOR and OB-MV (User 7-12)

69



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(a) User 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(b) User 14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(c) User 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(d) User 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(e) User 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20  40  60  80  100  120  140  160

A
cc

ur
ac

y

The amount of training data

Baseline
SVOR

OB-MV

(f) User 18

Figure A.3: Per-User Accuracy Learning Curves with Baseline,SVOR and OB-MV (User 13-18)
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Figure A.4: Per-User Accuracy Learning Curves with Baseline,SVOR and OB-MV (User 19)
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Figure A.5: Comparisons among classification based approaches using MAE
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Figure A.6: Comparisons among classification based approaches using Accuracy
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Figure A.7: UCI Dataset Results72
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Figure A.8: Email Prioritization PCA Analysis (User 1 - 6)
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Figure A.9: Email Prioritization PCA Analysis (User 7 - 12)
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Figure A.10: Email Prioritization PCA Analysis (User 13 - 18)
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Figure A.11: Email Prioritization PCA Analysis (User 19)
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