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AbstratAn important problem in statistial mahine learning is how to e�etivelymodel the preditions of multiple related tasks, whih is known as multi-task learning. Di�erent from single-task learning where tasks are learnedseparately, multi-task learning aims to jointly model those tasks. The mainbene�t of multi-task learning is that it an more e�etively use trainingresoures from all tasks and ahieve better generalization performane whentasks are related. To be more spei�, suessfully addressing multi-tasklearning an not only allay the data pauity problem given many tasks,but also generalize to future tasks by transferring knowledge learned fromexisting tasks. Multiple tasks naturally exist in many appliations, suh astext lassi�ation, email anti-spam �ltering, image lassi�ation, et.We present a novel probabilisti framework for multi-task learning wheretask relatedness is modeled using a shared struture through latent variables.Within suh a framework, we study a series of important multi-task learningsenarios and propose suitable models aordingly, and show that the �exi-bility of the framework is ahieved by allowing di�erent assumptions aboutlatent variables and the shared struture. In partiular, we present sparsitymodels whih are parsimonious and suitable for high-dimensional tasks; wepropose the l1 ◦ lp regularization method whih is suitable for joint featureseletion; we propose to use mixture models as the solution of the lustersof tasks senario; we also extend our framework to unsupervised learningand show its onnetion to existing topi models. Furthermore, model se-letion tehniques for multi-task learning are investigated sine they playimportant roles in hoosing the best joint model and generalizing to futuretasks. Experiments are onduted to support our methods using both simu-lated datasets and real datasets from text lassi�ation, anti-spam �ltering,handwritten letter reognition and ollaborative �ltering.i
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NotationSymbol Meaningitali letters: x, y, z; f, g, h x, y, z : salars; f, g, h : funtionsbold letters: x,y, z vetors (olumn vetors by default)apital BOLD letters: X,Y,Z matriesGreeks: µ, θ, α, β,Θ,Λ model parameters
〈X,Y〉 and 〈x,y〉 XTX and xTy

K number of tasks
N number of data instanes
F number of features/preditors
H number of hidden soures (latent vari-ables)
Bernoulli(µ) Bernoulli distribution with mean µ
Multinomial(n; θ1, . . . , θF ) Multinomial distribution with param-eter n and proportional parameters

θ1, . . . , θF

Normal(m,V) Gaussian distribution with mean mand ovariane V

Laplace(m, v) Laplae distribution with mean m andvariane v
InvGamma(να, νβ) Inverse Gamma distribution
DP(ν,G0) Dirihlet proess with preision ν andbase distribution G0

GP(f,K) Gaussian proesses with mean fun-tion f(.) and ovariane funtion
K(., .)

E[x] Expetation of random variable x

V[x] Variane-ovariane matrix of randomvariable x

C[X,Y ] Covariane between random variables
X and Yiii
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Chapter 1Introdution
1.1 Why Multi-Task Learning?An important problem in statistial mahine learning is how to general-ize among multiple related predition tasks. This problem has been alled�Multi-Task Learning� [Caruana, 1997℄, �Learning to Learn� and �TransferLearning� [Thrun and Pratt, 1998℄, and sometimes �Preditions of Multivari-ate Responses� [Breiman and Friedman, 1997℄ in the mahine learning andstatistis literature. Multi-task learning has many potential appliations,and in the following we give several important examples whih an be reastas multi-task learning problems:
• Multi-label Text Classi�ation: Text lassi�ation is one fundamentalproblem in information retrieval, whose objetive is to automatiallylassify douments into pre-de�ned ategories. Multi-label text lassi-�ation refers to the situation where a doument is assigned to a subsetof K possible ategories, and many of the existing text olletions aremulti-labeled by nature. Most studies in text lassi�ation deomposethis problem into K binary lassi�ation problems and solve them in-dependently. However, sine it is often the ase that ategories arerelated to eah other (in terms of both semantis and statistial or-relations), it would be bene�ial to treat this problem as a multi-tasklearning problem. Furthermore, the existene of multiple taxonomiesalso leads to multi-task learning problems where eah task is a binarylassi�ation problem with respet to some ategory in one of the tax-onomies. 1



CHAPTER 1. INTRODUCTION 2
• Anti-spam Filtering: Email anti-spam �ltering has been an importantresearh topi as people get more and more disturbing spams in theirdaily emails. Typially this problem is treated as a binary lassi�ationproblem [Brutlag and Meek, 2000, Zhang, 2002℄ to distinguish spamsfrom non-spams. In a more realisti situation, the system will servemany users for anti-spam �ltering. This provides a good opportunityfor multi-task learning, where we ould treat the anti-spam �lteringfor a partiular user as one task and borrow information among users.Viewing in this way has the advantage that both user-spei� anduser-independent preferenes are e�etively aptured in the model.
• Multi-user Predition Problems: Essentially many predition problemsinvolved with multiple users an be treated as multi-task learning prob-lems, suh as adaptive �ltering [Roberson and Hull, 2001, Zhang, 2004,Yang et al., 2005℄ w.r.t. multiple users, ollaborative �ltering [Breeseet al., 1998℄ with auxiliary information about movies, et. Similar tothe ase of anti-spam �ltering, predition funtions for eah user areoften losely related to eah other and thus joint inferene an apturesuh dependenies and work more e�etively with all training resoures.
• Prediting Many Stoks: Consider the problem where we would like topredit the future stok pries of several ompanies in one industry orseveral related industries. Often preditions of individual ompany'sstok prie are made using models trained with eah ompany's previ-ous stok data. However, due to their possible ompetitive or ooper-ative relations and ross-industry e�ets, those predition tasks ouldbe very related. Consequently, this problem an be more e�etivelysolved as a multi-task learning problem.Multi-task learning simply generalizes single-task learning to a higher leveland as a result, it is able to apture the dependenies among tasks. Com-pared to single-task learning, multi-task learning has the following bene�ts:(1) It an provide better generalization performane espeially when theamount of training data is limited; (2) It an provide meta-level knowledge(whih is not available in single-task learning) whih is useful to generalizeto future tasks; (3) It an provide a joint, suint representation of all taskstrutures. Multi-task learning is partiularly appliable in the followingsituations:
• In many existing datasets instanes are naturally assoiated with mul-tiple responses (e.g., multi-labeled doument olletions) and thus it is



CHAPTER 1. INTRODUCTION 3bene�ial to use available resoure and borrow information from otherrelated tasks.
• From the data annotation viewpoint it is more onvenient to get re-sponses of multiple related tasks simultaneously if possible (e.g., as-signing douments or web pages to multiple ategories after reading)as opposed to obtain them in separate steps.
• There are situations (one suh example is anti-spam �ltering) wherefor some of the tasks it is more di�ult to get training resoure thanothers, and multi-task learning an be espeially bene�ial for thosetasks with limited training data.Many approahes have been proposed in the mahine learning literature onhow to e�etively learn multiple tasks, suh as [Baxter, 1996, 1997, Breimanand Friedman, 1997, Caruana, 1997, Minka and Piard, 1997, Baxter, 2000,Heskes, 2000, Ando and Zhang, 2004, Evgeniou et al., 2005, Teh et al., 2005,Yu et al., 2005, Zhang et al., 2005℄. Generally speaking, existing approahesshare the basi assumption that tasks are related to eah other. Based onhow task relatedness is handled we summarize existing methods into severalategories, suh as arti�ial neural networks, hierarhial Bayesian models,regularization methods, et. Details an be found in Chapter 2. The reasonwhy multi-task learning works an be seen from several aspets. Given theassumption is that the outomes in multiple tasks are related, it would bebene�ial to borrow information from other tasks as opposed to learning eahtask independently (e.g., single-task learning). The simplest example is that,if task parameters - whih index their orresponding predition funtions -are partly shared, then from a statistial estimation viewpoint we ouldobtain a more reliable estimation by using all training resoures togetherand better generalization performane an be ahieved.This thesis is aimed at developing models for multi-task learning problems.By presenting a uni�ed probabilisti framework, we gain insights in taskrelatedness and an systematially explore important multi-task senarios,whih are key omponents in order to suessfully address multi-task learn-ing. The resulting multi-task learning models an provide better generaliza-tion performane than onventional single-task learning methods when tasksare related, and e�ient algorithms are ahievable through (approximate)inferene and opitmization tehniques.



CHAPTER 1. INTRODUCTION 41.2 RoadmapIn this thesis we present a novel probabilisti framework for multi-task learn-ing. Unlike previous approahes, our framework is �exible and an supportmodels for a series of multi-task learning senarios, and task dependenies areaptured by using a shared struture through latent variables. The �exibil-ity omes from the statistial assumptions on latent variables and struturalassumptions on the shared omponents, and the onept of task relatednessan now be better explained by the underlying statistial assumption. Mo-tivated from this exploration, we develop suitable models for several tasksenarios that have not been studied before, as well as investigate modelseletion tehniques. The rest of the thesis is organized as follows:Chapter 2 �rst provides a brief introdution to statistial models and al-gorithms whih are the building bloks for the rest of the thesis, and thenreviews the literature on multi-task learning.Chapter 3 presents the uni�ed probabilisti framework for multi-task learn-ing, and analyzes a series of important task senarios with assoiated models.Chapter 4 presents learning and inferene algorithms for the generi modelssupported by the framework.Chapter 5 presents two types of sparsity models for multi-task learning, anddemonstrates their e�etiveness on multi-label text lassi�ation and emailanti-spam �ltering.Chapter 6 presents the l1◦lp regularization for joint feature seletion in multi-task learning. We show that it is a generalization of lasso-style algorithmsunder the multi-task learning setting, and our results support the theoretiallaims.Chapter 7 proposes to use mixture model for the �luster of tasks� senario.We present e�ient EM algorithm for the inferene, and apply it to theollaborative �ltering problem.Chapter 8 investigates the model seletion problem in multi-task learningusing ross-validation tehniques.Chapter 9 extends our framework to unsupervised multi-task learning. Weshow its onnetion to existing unsupervised topi models, and apply it tothe novelty detetion problem.Chapter 10 summarizes the thesis work.



Chapter 2Bakground and LiteratureReviewThis thesis relates to a broad set of urrent statistial tehniques. To makesure our terminology is learly de�ned, we �rst give a brief introdution tothe related statistial models, whih our proposed framework is based upon,inluding regression, lassi�ation and dimensionality redution tehniques.Then we brie�y outline some bakground knowledge on general algorithmsfor learning and inferene. The seond part of this hapter presents a liter-ature review for multi-task learning researh.2.1 Bakground2.1.1 Modeling using Linear RegressionLinear regression is the simplest but probably the most important model forregression problems. The linear regression model [Wasserman, 2005℄ assumesthat
yi = θTxi + ei

ei ∼ Normal(0, σ2) (2.1)or equivalently
yi ∼ Normal(θTxi, σ

2) (2.2)5



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6where xi ∈ R
F×1 is the i-th input data vetor, θ ∈ R

F×1 is the modelparameter vetor, i = 1, 2, . . . , N is the data index, and here we assumethat varianes of random noises ei's are isotropi. Given a training dataset
D = {(x1, y1), . . . , (xN , yN )} , the Maximum Likelihood Estimation (MLE)of θ is equivalent to the least square estimation due to the Gaussian noiseassumption:

θ̂ = arg min
θ

{

N
∑

i=1

(yi − θTxi)
2

} (2.3)whih has the analytial solution θ̂ = (XTX)−1XTy by using the suintmatrix/vetor notation X = (x1, . . . ,xN )T ∈ R
N×F and y = (y1, . . . , yN )T ∈

R
N×1.Note that the above optimization problem in equation (2.3) may not have aunique solution if the matrix XTX is singular. By adding a regularizationterm Ω(θ) we are guaranteed to get a more stable solution:

θ̂ = arg min
θ

{

N
∑

i=1

(yi − θTxi)
2 + λΩ(θ)

} (2.4)where λ > 0 is known as the regularization oe�ient whih trades o� be-tween empirial loss and model omplexity. Note that when Ω(θ) = ||θ||22or ||θ||1 the above model is known as ridge regression or lasso regressionrespetively. Ridge regression has a L2 regularization while lasso has a L1regularization, and they an both be interpreted as Maximum A Posterior(MAP) estimators of a Bayesian model by assuming a Gaussian or Laplaeprior over θ respetively. Finally, it is well understood that L1 regularizationtends to give a sparse solution where most of the elements of θ are zero val-ues; while L2 regularization shrinks all oe�ients to zero smoothly [Hastieet al., 2001℄.2.1.2 Modeling using Logisti RegressionClassi�ation problems need to be handled di�erently from regression due toits binary output y as well as the 0/1 or ross entropy loss whih is rather dif-ferent from the squared loss used by default in regression. Logisti regressionan be thought as a disriminative lassi�er (as opposed to generative las-si�ers like Naive Bayes [MCallum and Nigam, 1998℄, see also disussions onthose two kinds of lassi�ers in [Rubinstein and Hastie, 1997, Ng and Jordan,2002℄), and it is often preferred to generative lassi�ers by following Vapnik's



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7philosophy [Vapnik, 1998, 1999℄ that �When solving a given problem oneshould avoid solving a more general problem as an intermediate step�.Using probabilisti modeling language, the logisti regression model an beformulated as
yi ∼ Bernoulli(µ(θTxi))

µ(t) =

∫ t

−∞
p(z)dz (2.5)where yi is generated from a Bernoulli distribution with mean µ(θTxi) andits value is either 0 or 1, and p(z) is the probability density funtion (pdf) ofthe standard logisti distribution p(z) = exp(−z)

(1+exp(−z))2
. In this ase, equation(2.5) an be simpli�ed as

yi ∼ Bernoulli(µ(θTxi))

µ(t) = (1 + exp(−t))−1 (2.6)Note also that by plugging in di�erent random variable Z with its pdf
p(z) we are able to get several popular probabilisti lassi�ers. As an ex-ample, when p(z) is the pdf of standard Gaussian distribution the abovemodel beomes the so-alled probit regression. Given a training set D =
{(x1, y1), . . . , (xn, yn)}, the MLE solution of logisti regression an be de-rived using equation (2.6):
θ̂ = arg max

θ

{

n
∏

i=1

(

1

1 + exp(−θTxi)

)yi
(

exp(−θTxi)

1 + exp(−θTxi)

)1−yi
}

= arg max
θ

{

−
n
∑

i=1

yi log
(

1 + exp(−θTxi)
)

−
n
∑

i=1

(1− yi) log
(

1 + exp(θTxi)
)

}

yi=0 or 1
= arg min

θ

{

n
∑

i=1

log
(

1 + exp(−(2yi − 1)θTxi)
)

} (2.7)If we re-de�ne yi = −1 instead of yi = 0 for negative lass label, then theMLE solution of logisti regression an be represented as the solution of thefollowing optimization problem:
θ̂ = arg min

θ

{

N
∑

i=1

log(1 + exp(−yiθ
Txi))

} (2.8)Similar to linear regression we an also formulate L1 or L2 regularized logistiregression, and they an both be interpreted as MAP estimators as well.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 82.1.3 Modeling using Fator AnalysisFator Analysis (FA) is a tehnique originated from soial siene [Spear-man, 1904, Gorsuh, 1983℄ whih is used to disover underlying fators fromassoiated data. The intrinsi assumption in FA is that the hidden fatorsare distributed as Gaussian
y = Λs + µ + e

s ∼ Normal(0, I) (2.9)
e ∼ Normal(0,Ψ)where we have the observed variable y ∈ R

F×1, hidden soure s ∈ R
H×1, andmixing matrix Λ ∈ R

F×H . Often µ is set to the zero vetor by entering theobserved variable y sine we have E[y] = ΛE[s]+µ = µ. So the data vetor yan be thought as a weighted ombination of fators (olumns of Λ) where theweights are randomly generated from standard multivariate Gaussian, plussome random Gaussian noise. By integrating out the hidden soures s weget y again a multivariate Gaussian y ∼ Normal(µ,Ψ+ΛΛT ). Alternatively,FA an also be viewed as a way to represent the ovariane matrix V[y] withtwo omponents: a low rank matrix ΛΛT and Ψ whih is often assumedto be diagonal and orrespond to the ontribution of ommon fators andindividual fators [Gorsuh, 1983℄, respetively. Also note that probabilistiPrinipal Component Analysis (PCA) an be treated as a speial ase of FA[Tipping and Bishop, 1999℄.2.1.4 Modeling using Independent Component AnalysisIndependent Component Analysis (ICA) [Bell and Sejnowski, 1995, Giro-lami, 2000, Roberts and Everson, 2001℄ assumes the observed data y is gen-erated by the following model
y = Λs + µ + e

s ∼ p(.|Φ) (2.10)
e ∼ Normal(0,Ψ)from whih we an see that ICA an be thought as generalization of FA bythe fat that hidden soure s is no longer restrited to be Gaussian. Thisgeneralization has signi�ant onsequenes, whih serves as the basis of ICAappliations in signal proessing [Roberts and Everson, 2001℄. Brie�y speak-ing, non-Gaussian hidden soure s makes it possible to identify independent



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9omponents instead of just modeling the orrelation among elements of s asin the Gaussian ase.One losely related tehnique of ICA is alled Projetion Pursuit (PP) [Kruskal,1969, Friedman and Tukey, 1974, Huber, 1985℄, whih seeks one projetionat a time suh that the extrated signal is as non-Gaussian as possible. Thisontrasts with ICA, whih typially extrats H signals simultaneously fromthe observed mixtures. One pratial advantage of PP over ICA is that theextration proess is inremental and an be stopped as needed; on the otherhand, the parallel way of extrat hidden soures makes ICA more robust thanPP.2.1.5 Some ExtensionsBoth linear regression and logisti regression an be seen as speial asesof the Generalized Linear Models (GLM) [MCullagh and Nelder, 1989℄,whih an be expressed as y ∼ P (g(θTx)) with g(θTx) as the mean. Simplyspeaking, GLM generalizes linear regression in two ways: (1) allowing theresponse variable y to follow a distribution in the exponential family insteadof just Gaussian; (2) introduing a link funtion g(µ) other than the identityfuntion. Typial hoies of the distribution P (.) are normal, Bernoulli,Poisson and gamma, and details an be found in [MCullagh and Nelder,1989℄ or [Dobson, 2001℄.Linear models an be extended to the �nonlinear� ase by �rst applyinga feature mapping funtion φ : x 7→ φ(x), and this an also be ahievedby using the so-alled �kernel trik�: K(xi,xj) = 〈φ(xi), φ(xj)〉H in theReproduing Kernel Hilbert Spae. For example, Gaussian Proess (GP)for regression [Williams, 1998℄ and lassi�ation [Gibbs and MaKay℄ an bethought as kernelized linear regression and logisti regression, respetively.This partiular view has both oneptual and omputational advantages.Coneptually, a prior over the parameters (e.g., regression oe�ients) anoften be treated as speial ases of GP with properly hosen mean funtionand ovariane funtion. Computationally we an diretly ompute a kernelfuntion without the expliit omputation of the mapping φ(x) whih anbe high or even in�nite dimensional.Many of the regression and lassi�ation methods an be reformulated asoptimization problems, where we are trying to minimize some loss fun-tion. Viewing in this angle also has ertain advantages. For example, thispartiular view an also be thought as the M-estimators [van der Vaart,



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 102000℄ in statistis whih is a generalization of MLE estimators [Lehmannand Casella, 1998℄. Popular loss funtions for regression inlude squared er-ror loss, ε-insensitive loss, absolute error loss, huber loss, et. Popular lossfuntions for lassi�ation inlude exponential loss, logisti loss, hinge loss,asymmetri squared error loss and asymmetri huber loss, et.It is also possible to extend the basi FA and ICA models mentioned above.Note that both FA and ICA disregard any temporal or strutural informa-tion in modeling the hidden soures, and as a result they are unable toapture the temporal relationship among s if any, for example. This limita-tion omes from the fat that we assume hidden soures sk's are IID fromsome underlying distribution, whih in fat is not neessary and its relax-ation an be very helpful in some situations. In Chapter 3 we will presentone model whih is able to inorporate temporal information in the ontextof multi-task learning. Other possible extensions of ICA inlude non-linearICA, whih generalizes the linear relation Λs into a non-linear relation Λ(s).2.1.6 Algorithms for Point EstimationPoint estimation is used everywhere in estimating parameters of non-Bayesianmodels as well as hyper-parameters in the empirial Bayes approah, whihare all treated as �xed but unknown quantities (as opposed to be onsideredas random variables). Let us onsider the MLE as an example, whih is themost frequently used point estimation method. Given a training set D, thelikelihood an be written in general as p(D|Θ), and the objetive of MLE isto �nd the parameter Θ by maximizing the likelihood (or equivalently, thelog-likelihood):
Θ̂ = arg max

Θ
p(D|Θ) (2.11)whih might aompany onstraints like the non-negativity of some ompo-nents of Θ. This is essentially a numerial optimization problem, and inmany ases it an be onverted into a onvex optimization problem [Boydand Vandenberghe, 2004℄ whih is easy to solve for even large-sale sys-tems. Algorithms for solving onvex optimization problems are mature, andpopular ones are gradient desent, onjugate gradient, Newton method andquasi-Newton method, et [Noedal and Wright, 1999, Luenberger, 2003,Boyd and Vandenberghe, 2004℄.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 112.1.7 Algorithms for Bayesian InfereneWe start with direted graphial models as they are great tools to representand visualize hierarhial Bayesian models [Jordan, 2002℄. Given a graphialmodel G = (V, E) with V = {X1,X2, . . . ,XN} omposed of N random vari-ables and E expressing the set of onditional dependene1 among those vari-ables, we are interested in the inferene of p(H|E) where both H and E aresubsets of V, orrespond to unobserved nodes (hidden) and observed nodes(evidene). The omputation of p(H|E) an be di�ult beause of either aompliated graph struture or the existene of non-exponential link funtionamong variables. Generally speaking, inferene algorithms an be lassi�edas either deterministi approximation algorithms or non-deterministi ones(e.g., sampling methods). Note that inferene in Bayesian lassi�ation orregression is just a speial ase of the above general inferene, in whih theparameter θ is a random variable we want to do inferene on. For lassi�-ation tasks, future preditions are omputed by integrating out the θ overits posterior distribution, e.g. p(y|x) =
∫

p(θ|D)p(y|θ,x)dθ, and on�deneintervals an also be omputed in a straightforward way. However, the likeli-hood funtion of lassi�ation is not within the exponential family and thusapproximation is needed in the omputation.Variational Methods As an approah to funtion approximation, vari-ational methods [Jaakkola and Jordan, 1997, Ghahramani and Beal, 2000,Jordan, 2002, Beal, 2003℄ onvert the inferene problem into an optimizationproblem by the appliation of appropriate inequalities. The approximation isusually done by optimizing some variational parameters so that the distaneto the true quantity is minimized. It is deterministi and usually e�ient,and desirable lower/upper bounds an often be obtained. Mean Field method[Saul et al., 1996℄ is one of the ommonly used variational methods whihonstrains the andidate distribution to be fatorized into individual ompo-nents, and generalized Mean Field [Winn, 2003, Xing et al., 2003℄ allows thefatorization into lusters of variables instead of singletons. A disadvantageof variational methods is that they may yield suboptimal solutions due tooverly greedy assumptions.1Formally speaking it only spei�es the set of onditional independent relations. Tworandom variables an be independent even if the graphial model indiates their depen-dene.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12Laplae Method Laplae method [Kass and Raftery, 1993℄ is one of theoldest methods used in physis and statistis to approximate posterior dis-tributions. It is a very simple method whih approximates the posteriordistribution with a saled Gaussian distribution that mathes the true pos-terior through its mode, �rst and seond derivatives at the mode, where theseond derivative Hessian matrix is the ovariane of the target Gaussiandistribution. The disadvantage of Laplae method lies in the fat that itonly onsiders up to seond order derivative within a loal range near themode, whih may not be good enough in some situations.Belief Propagation Belief Propagation (BP) [Pearl, 1998℄ was �rst intro-dued for exat omputation of inferene in Bayesian networks, and later itis extended to loopy BP [Murphy et al., 1999℄ and generalized BP [Yedidiaet al., 2002℄ for more ompliated graphial models. For direted ayligraphial models, BP is de�ned as a message passing protool that onvergesafter two operations: �olleting evidene� and �distributing evidene�, whihare implemented by a set of sum and produt operations [Jordan, 2002℄. BPis a fairly good method in general, and an be thought as a speial ase ofthe following Expetation Propagation method.Expetation Propagation Expetation Propagation (EP) [Minka, 2001℄is another approximate Bayesian inferene algorithm whih an be thoughtas an improvement over the Assumed Density Filtering (ADF). ADF triesto approximate the posterior distribution using a distribution within the ex-ponential family F by minimizing the KL-divergene KL(p(x)||q(x)), where
p(x) is the true distribution and q(x) is the approximate one. It turns outthat for q(x) ∈ F , the exponential family, the minimization of KL-divergeneis equivalent to the established moment mathing method used in statististo �nd approximations to distributions [Satterthwaite, 1946℄. ADF does themoment mathing in a sequential order, while EP performs iterative ap-proximation using three steps: deletion, projetion and updating. EP is ageneralization of BP sine it allows the use of exponential funtions as anapproximation to non-exponential messages. The advantage of EP is thatmoment mathing is sensible in many aspets, but the disadvantage is thatit does not guarantee onvergene in general.Sampling Methods As opposed to the above deterministi approximateBayesian inferene algorithms, sampling methods [Neal, 1993, Robert and



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13Casella, 2005℄ are non-deterministi approximate algorithms for Bayesian in-ferene. The development of high-speed omputers in the last deade makessampling methods very popular for Bayesian methods. Furthermore, MarkovChain Monte Carlo tehniques further push the popularity of Bayesian mod-eling, and there even exists a generi software pakage BUGS implementingGibbs sampling. The advantages of sampling methods inlude its theoret-ial limiting properties and its relatively easy implementation; disadvan-tages inlude the di�ulty in hoosing onvergene riteria (e.g., mixing andburn-in time, multiple hains), as well as slow onvergene espeially forhigh-dimensional problems.2.2 Literature ReviewNext we review some of the literature with respet to multi-task learning.Our review is by no means exhaustive on suh a burgeoning area of researh.The hope is to give readers a global piture of what are the problems thathave already been explored and what are left, as well as the relative strengthsand possible onnetions of the methods.2.2.1 Basi ConeptsMulti-task learning is the problem whih tries to estimate models forK tasksin a joint manner. Traditional learning, on the other hand, only onsidersone task at a time and solves them separately. Multi-task learning an bebetter understood by answering the following questions:
• What is task relatedness?Although most methods in multi-task learning assume some related-ness among tasks, the de�nition of relatedness varies. For example,model parameters may be partly shared among tasks, models may betransformation related or probabilistially related. Impliitly or ex-pliitly, mathematially or proedurely, task relatedness must be spe-i�ed under ertain representation in order to play its role in multi-tasklearning. The main di�erene among existing methods lie in their as-sumptions and formulation of task relatedness, pretty muh like theparametri form assumption in parametri models.
• Why would multi-task learning methods work?There is more than one way to explain why multi-task learning methods



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14would work. From the statistial estimation viewpoint, if some of thetask parameters are shared, then they an be better estimated (e.g.with a smaller variane) given a lot of tasks. From the hierarhialBayesian viewpoint, multi-task learning is essentially trying to learna good prior (a.k.a. indutive bias in some ontext) over all tasks toapture task dependenies, whih is often not appliable in single-tasklearning. In other ontext, it an be thought as trying to learn a setof features that are informative for all tasks.
• When would multi-task learning be advantages?Relatively speaking, multi-task learning methods will work better un-der the following onditions:1. When eah task has limited amount of training resoures;2. When the number of tasks is large;3. When the assumption about task relatedness is lose to the truth.However, good multi-task learning methods should be robust in thesense that when some of the above onditions are violated the perfor-mane will not severely degrade.
• When would multi-task learning fail?If tasks are not related to eah other at all, then it su�es to learnthem separately (see also the answer to the previous question). If theassumption of task relatedness is inaurate, then multi-task learningould even hurt performane by introduing undesirable biases. Notethat even if the assumption is orret, multi-task learning might giveslightly worse results than single-task learning for some individual task.This is not unexpeted as all the arguments hold probabilistially andthe overall performane should still be boosted when evaluating overall the tasks.
• Is MTL omputationally more expensive than STL?On one hand, multi-task learning algorithms are often more ompli-ated than the orresponding single-task learning algorithms beausethey often use the latter as omponents and need to do joint infereneover all tasks parameters. Consequently, it an be more expensive tosolve them due to the joint inferene/oupling among task parame-ters. However, the omputation should still be in the same order ofmagnitude as eah iteration all to single-task learning modules doesnot require a full-blown solution. On the other hand, there are also



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15ases where multi-task learning an be omputationally heaper. Forexample, if we are able to selet a joint subset of relevant features overgiven tasks then the ost to learn a future task is greatly redued inthe newly learned representation.
• What form of data is required for multi-task learning?In order to model the information sharing, task parameters need toshare the same metri spae (or at least partly, through transformation,et). As a result, it often requires the input data spae for eah taskto be the same, i.e. X (k) = X (k = 1, 2, . . . ,K). If the training data ofthose tasks are not in the same metri spae, ertain transformationsare need in the pre-proessing steps. How to transform data frommultiple tasks into a uni�ed representation is usually guided by humanat the urrent stage.Next, we desribe the main approahes to multi-task learning in four at-egories: arti�ial neural networks, shrinkage methods, regularized learningmethods and hierarhial Bayesian models, respetively. Our goal is topresent a global prefae to the reader, with the aspets whih we see asbeing most fundamental for multi-task learning. Of ourse, we do not in-tend to over every method in the literature, and our lassi�ation is notneessarily perfet in the sense that some boundaries may be blurred.2.2.2 Arti�ial Neural NetworksArti�ial neural networks are originally motivated from brain studies [Rosen-blatt, 1959℄ and the simple pereptron is still one of the most widely usedalgorithms in mahine learning. Generally speaking, neural networks on-sist of three types of units: input units, hidden units and output units. Theset of input units take information about the example to be propagatedthrough the network. By propagation, we mean that the information fromthe input will be passed through the network and reah the output units.Hidden units take input as the weighted sum of outputs from input units.Often that the number of hidden units is smaller than the number of inputunits. A weighted sum of outputs from the hidden units is then taken asthe input to the output units. The training of a neural network is oftenahieved through the bak-propagation algorithm [Rumelhart et al., 1986℄.Neural networks are very powerful mathematial tools for mahine learning,and they are known to be universal approximators in the sense that they
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Figure 2.1: Multi-Task Learning using Neural Networksare �exible enough to approximate any ontinuous funtion up to any givenpreision [Ivakhnenko, 1971℄.Early work on multi-task learning [Thrun, 1996℄ [Caruana, 1997℄ [Silver andMerer, 2001℄ uses neural network as the learning mahine. Figure 2.1 showsa typial setting of multi-task learning with a two-layer neural network. Eahhidden unit an be thought as a funtion of input variables and the sharedomponents among tasks. The links in the �rst layer de�ne the mappingsfrom input variables to the shared omponents and the seond layer linksorrespond to mappings from the shared omponents to tasks. Both levelsof the mapping are jointly learned for all the tasks through bak-propagation.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 172.2.3 Shrinkage MethodsShrinkage is an approah to obtain estimators that have smaller risks. Stein[1955℄ �rst showed that for the many normal means problem (e.g. given
Xi ∼ Normal(µi, σ

2), estimate µi's, i = 1, 2, . . . ,m), the maximum likelihoodestimator µ̂i = Xi, i = 1, 2, . . . ,m is not admissible2 with respet to the totalsquare error risk when m > 2. In other words, there exist other estimatorswhih are uniformly better, suh as the James-Stein estimator [James andStein, 1961℄.The basi idea of shrinkage methods is to trade bias for variane so thatthe overall risk is redued ompared to the original unbiased estimator. Oneof the simplest forms of shrinkage methods is to do proportional shrinkage,whih de�nes a new estimator µ̃ = bµ̂ with 0 < b < 1. To get a �avor of whythis an help to redue the risk, notie that in our example
bias(µ̃) = (1− b)µ

var(µ̃) = b2var(µ̂) (2.12)From equation (2.12) it is obviously that there always exists some 0 < b < 1suh that risk = bias2 + var is redued, although the optimal amount ofshrinkage depends on fators suh as sample size. Shrinkage methods havebroad appliations and are related to regularization methods, as well ashierarhial Bayesian models.Shrinkage methods have been applied to multi-task learning setting by Breimanand Friedman [1997℄, where they developed the Curds & Whey method formultivariate responses linear regression. The C&W proedure is a formof multivariate shrinkage. Its basi idea is to �rst transform the responsevariables into the anonial oordinate system, then ondut a proportionalshrinkage estimation in this new oordinate system, and �nally it transformsbak into the original oordinate system. The optimal shrinkage in the trans-formed oordinate system an be determine by ross-validation tehniques.Aording to the authors, the power of C&W method is to shrink in the rightoordinate system and it an be viewed as a multivariate generalization ofproportional shrinkage based on ross-validation. From the stand point ofmulti-task learning, the transformation into the new oordinate system is akey step whih leverages information among multiple tasks.2An estimator is said to be admissible with respet to a loss funtion for a lass ofdistributions if there is no other estimator whih has less than or equal to its loss for alldistributions in the lass, with the strit inequality holding for at least one distribution.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18Shrinkage methods are intuitively simple and very e�etive methods for re-gression tasks. Furthermore, due to the fat that they are motivated by re-duing the risk, they an ahieve very good performane. However, shrinkagemethods are often post-proessing methods and it is not straightforward togeneralize them to new tasks (ompared to generative models, for example).Furthermore, the exat amount of shrinkage depends on the form of the riskfuntion.2.2.4 Regularized Learning MethodsIn standard setting of supervised learning, we aim to �nd a funtion mapping
f whih maps an input vetor x ∈ X to an output y ∈ Y. Usually we aregiven a training setD = {(x1, y1), (x2, y2), . . . , (xn, yn)} whih are identiallyand independently sampled from an unknown probability distribution P:
(xi, yi) ∼ P. The objetive is to �nd the best mapping funtion f ∈ H inthe sense that the expeted loss (with respet to P) is minimized:

f̂ = arg min
f∈H

EPL(f(X), Y ). (2.13)The most popular method is the empirial risk minimization [Vapnik, 1998℄approah whih replaes the unknown distribution P with the observed em-pirial distribution:
f̂ = arg min

f∈H

1

n

n
∑

i=1

L(f(xi), yi) (2.14)However, empirial risk minimization is prone to over�tting. Regularizationtehniques [Tikhonov, 1963℄ were proposed to avoid over�tting in empirialrisk minimization. They often have the form
f̂ = arg min

f∈H

1

n

∑

L(f(xi), yi) + λΩ(f) (2.15)where Ω(f) measures the model omplexity or roughness of the preditionfuntion f . Regularized learning methods have been widely and suess-fully used in statistis and mahine learning inluding ridge regression, lassoregression, regularized logisti regression, SVM, et., where the major di�er-enes lie in the hoie of loss funtion L(., .) and penalty funtion Ω(.).Regularized learning methods have reently been applied for multi-task learn-ing problems in [Evgeniou and Pontil, 2004℄ and [Evgeniou et al., 2005℄. In



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19their work, multi-task learning is ahieved by using a joint regularization:
θ̂1, . . . θ̂K = arg min

θ1,...,θK
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} (2.16)where L(., .) is taken to be the hinge loss and Ω(θ1, . . . ,θK) is taken to bea partiular form
Ω(θ1,θ2, . . . ,θK) =

(

θT
1 ,θ

T
2 , . . . ,θ

T
K

)

D











θ1

θ2...
θK











(2.17)in [Evgeniou et al., 2005℄. The method proposed in [Evgeniou and Pontil,2004℄ is similar to our �nosiy tasks� senario under some spei� settings, suhas assuming both µ and ek following a multivariate Gaussian and performingpoint esitmation to obtain µ̂ and êk.Ando and Zhang [2004℄ proposed a struture learning framework for multi-task learning. In their method, the preditive funtion for the k-th task isassumed to be
f (k)(x) = 〈w(k) + ΘTv(k),x〉

= 〈w(k),x〉+ 〈v(k),Θx〉 (2.18)where the parameter Θ an be thought as the shared struture for a set oftasks. When learning those parameters, regularization is put on w(k)'s and
v(k)'s. Alternatively, Θx an be thought as a set of good features that arelearned from many tasks. This method is similar to one speial ase of ourframework, if we assume the latent variables sk's are multivariate Gaussiandistributed and perform point estimations over sk's.2.2.5 Hierarhial Bayesian ModelsHierarhial Bayesian models [Box and Tiao, 1973, Bernardo and Smith,1993, Gelman et al., 2003℄ are natural ways to model parameters that arerelated by the struture of the problem. In partiular, the hierarhial stru-ture an provide a �exible yet ompat representation of the struture in thedata, and thus produe models that an both �t the data well and generalizewell on unseen, future data. As a result, we argue that hierarhial Bayesian



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20models are natural hoies for representing the relatedness among tasks andmodeling the task dependenies.Baxter [1996℄ disussed the usage of hierarhial Bayesian models for study-ing multi-task learning problems. Parameters that are shared among tasksare treated as hyper-parameters at a higher level as opposed to the task-spei� model parameters. Analysis are given from a Bayesian/informationtheoretial viewpoint.Heskes [2000℄ presented a model for multi-task learning by assuming thatresponse variables of eah task follow a normal distribution. The mean ofthe normal distribution is learned using a two-layer neural network, and thevariane is omposed of a task spei� omponent and a task independentomponent. Empirial Bayes method is used to learn the model hyper-parameters.Teh et al [2005℄ proposed a semi-parametri model for multi-task learning.Their model uses Gaussian proesses as the non-parametri omponents, andthe preditive funtion of eah task is a linear transformation of a set of basisGaussian proesses.In [Yu et al., 2005℄ Gaussian proesses is applied to learn multiple tasks.In partiular, the preditive funtion of eah task is assumed to be f (k) ∼
GP(m,K) wherem(.) and K(., .) are the mean funtion and ovariane fun-tion of the Gaussian proess, de�ned as:

E[f(x)] = m(x)

C(f(xi), f(xj)) = K(xi,xj) (2.19)Models proposed in this thesis an be generally seen as belonging to this at-egory. Unlike previous work, we present a uni�ed probabilisti frameworkand establish the onnetion between task relatedness and the underlyingstatistial assumptions. This also allows us to systematially explore impor-tant multi-task learning senarios whih are natural omponents of multi-task learning researh. For example, our mixture model in Chapter 7 is ageneralization of the work in [Yu et al., 2005℄.2.2.6 Other Issues2.2.6.1 Theoretial Analysis on Error BoundsIn standard supervised learning, generalization error bounds (a.k.a. largedeviation bounds in statistis) an be obtained through the onept of VC



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21dimension (whih measures the size of the hypothesis spae). Naively speak-ing, good generalization (at ertain auray ǫ with probability at least 1−δ)an be obtained as the number of examples is greater than a quantity thatis a funtion of ǫ, δ and VC dimension (for quantitative results see [Vapnik,1998℄, [Blumer et al., 1989℄ and [Ehrenfeuht et al., 1988℄).Early work on theoretial analysis of multi-task learning has been establishedin [Baxter, 1997, 2000℄. Compared to the result of standard supervisedlearning, the basi statement is that, under mild onditions, the numberof examples required of eah task for good generalization will derease asthe number of tasks inreases (and again the atual number depends on theauray and apaity of the hypothesis spae). This result learly justi�esthe bene�t of �borrow information� from a theoretial viewpoint. In [Ben-David and Shuller, 2003℄ and [Ando and Zhang, 2004℄ the authors alsodevelop spei� generalization error bounds for multi-task learning undertheir formulation.2.2.6.2 Parametri vs. Non-parametri MethodsConventional statistial methods an be lassi�ed as parametri or non-parametri methods based on whether we restrit f(x) to be of a parti-ular funtional form3. There is also a intermediate ategory alled semi-parametri methods, and examples inlude models whih have both paramet-ri and non-parametri omponents. Generally speaking, parametri modelsare muh more e�ient when the assumption is orret, while nonparametrimethods are free from model misspei�ation errors at the ost of a muhslower onvergene rate.In multi-task learning we often have (in terms of hierarhial Bayesian model)
f (k) ∼ P(.|Θ), k = 1, 2, . . . ,K. (2.20)We are not only required to model eah preditive funtion f (1), f (2), . . . , butalso faing the problem of how to model the distribution P(f |Θ). Here themodel P(f |Θ) itself ould be parametri, non-parametri, or semi-parametri.Our framework an be thought as having a �avor of semiparametri wherethe task sharing part Λs plays a parametri role and the task spei� part

ek works as a non-parametri omponent whih allows f (1), f (2), . . . , f (K) tobe �exible enough as K goes to in�nity.3As stated in [Wasserman, 2006℄, it is di�ult to give a preise de�nition for �non-parametri�. It means making as few assumptions as possible and an be understood asin�nite-dimensional parametri in most ases.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 222.2.6.3 Online vs. Retrospetive LearningThe phases �learning to learn� [Thrun and Pratt, 1998℄ and �transfer learn-ing� [Silver and Merer, 2001℄ often refer to the situation that, given the fatwe have learned K tasks, will the learning of the (K + 1)-th task be easier?We an see that the emphasis is slightly di�erent from the standard multi-task learning setting, i.e. after learning K tasks simultaneously, we wantto do a better job with new tasks. Thus, the di�erene between multi-tasklearning and transfer learning is analogous to the di�erene between onlinelearning and retrospetive learning in onventional supervised learning.Some of the multi-task learning methods annot be diretly applied to thetransfer learning setting, due to the fat that they are post-proessing and/orretrospetive methods, suh as the C&W method. On the other hand, forhierarhial Bayesian models it is straightforward to extend to the transferlearning setting as we have a generative model for f (1), f (2), . . . , f (K) andlearning a new task is easier given a better desription of P(f).



Chapter 3Probabilisti Models for MTLIn this hapter we present a uni�ed probabilisti framework for multi-tasklearning, whih is based on the assumption that tasks are related by sharingommon struture through latent variables. The framework allows �exiblemodeling of both the ommon struture as well as statistial distributionsof latent variables. Furthermore, we show that a series of important multi-task learning senarios an be supported within the framework and presentsuitable models for them.3.1 A Uni�ed Probabilisti Framework with LatentVariablesLet us assume that we have K related tasks, and suppose we use θ1, . . . ,θKto represent the model parameters of K tasks (for example, to index theirpredition funtions f(x;θk)) where θk ∈ R
F×1 is the parameter vetor ofthe k-th individual task. If we assume the existene of some latent variableswhih relate those θk's, then we an represent those model parameters θk'susing a general latent variable model [Everitt, 1984℄

p(θ) =

∫

f1(θ|z)f2(z)dz (3.1)where p(θ) is the density of θ and z stands for the underlying latent variablevetor. It is learly impossible to infer f1(.) and f2(.) uniquely from p(.) justbased on this de�nition; further assumptions are needed to ahieve suh agoal. 23



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 24Let us return to the multi-task learning setting, and onsider the followinggenerative framework of θk's:
θk = Λsk + µ + ek

s1, . . . , sK ∼ p(s1, . . . , sK |Φ) (3.2)
ek ∼ Normal(0,Ψ)where sk ∈ R

H×1 and p(.|Φ) is assumed to be the hidden soure model with
Φ denoting its general distribution parameter; Λ ∈ R

F×H is a linear trans-formation matrix on sk's; µ ∈ R
F×1 an be thought as the mean of theparameter vetors of multiple tasks, and the �noise� vetor ek ∈ R

F×1 isusually assumed to be multivariate Gaussian with diagonal ovariane ma-trix Ψ = diag(ψ11, . . . , ψFF ) or even Ψ = σ2I. In other words, we assumethat the entries of ek are independent from eah other. Note that in generalwe an use any member of the exponential families to model p(ek), howeverin most appliations the ek is taken to be a multivariate Gaussian distri-bution for onveniene. The prior p(s1, . . . , sK |Φ) is usually assumed to be
p(s1, . . . , sK |Φ) =

∏K
k=1 p(sk|Φ).Furthermore, we an also assume the parameters Λ and Ψ to be randomvariables by putting prior distributions over them to model partiularly in-teresting strutures, whih we will disuss in detail in later hapters:

Λ ∼ p(Λ|∆)

Ψ ∼ p(Ψ|Υ) (3.3)The above framework in equation (3.2) is learly a speial ase of equation(3.1) by deomposing
f(θ1, . . . ,θK) =

∫

p(s1, . . . , sK |Φ)

K
∏

k=1

p(θk|sk)ds1 . . . dsK (3.4)where p(θk|sk) = Normal(Λsk + µ,Ψ). This framework an be thought asa generative proess of how the θk's are generated from a low dimensionalspae as we often have H < F , by an unknown linear transformation plussome random noise.Even though the above framework is more spei�ed than the general la-tent variable model in equation (3.1), it is still �exible enough to inorpo-rate many models by speifying the distribution assumptions of sk's and/orputting ertain strutural onstraints on Λ and Ψ. Furthermore, the linear



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 25transformation Λsk is robust and an apture the �rst order dependeny,and it an be generalized to non-linear mapping funtion φ(sk; Λ) to enrihthe framework. Note that the model spei�ed in 3.1 is not identi�able duethe the oupling between Λ and sk. However, this an be solved trivially byeither putting a onstraint on the variane of p(sk) or the sale of Λ.One major di�erene between our framework in equation (3.2) and the gen-eral latent variable model [Everitt, 1984℄ lies in the fat that θk's are notobserved but need to be inferred from observed data (i.e. latent variables).For example, in multi-task lassi�ation problems θk is the parameter ve-tor of the k-th lassi�ation task, assuming we use some linear lassi�er
f (k)(x) = 〈θk,x〉 = θT

k x. The default probabilisti model we will use forlassi�ation is the logisti regression model introdued in Chapter 2:
y(k) ∼ Bernoulli(µ(θT

k x))

µ(t) =

∫ t

−∞
f(z)dz =

1

1 + exp(−t)
(3.5)where Bernoulli(µ) denotes the Bernoulli distribution with mean µ and f(z)is the probability density funtion of standard logisti distribution.The overall graphial model by ombining equation (3.2) and (3.5) for theabove learning framework is shown in Figure 3.1. In Figure 3.1 the observedvariables areD = D(1)∪. . .∪D(K) whereD(k) = {(x

(k)
1 , y

(k)
1 ), . . . , (x

(k)
nk , y

(k)
nk )},the set of unknown random variables are Z = {(θ1, s1), . . . , (θK , sK)}, andthe set of parameters are Ω = {Φ,Λ,µ,Ψ}. It is worth mentioning that inFigure 3.1 all tasks do not need to share the same set of input instanes(although that is the ase for some of our experiments). The only require-ment is that the input spae for those tasks are the same, i.e. X (1) = . . . =

X (K) △
= X .Finally, it is interesting to point out that our model in equation (3.2) hasa dual viewpoint. That is, if we onstrut θ̃f ∈ R

K×1 by taking the f -th orresponding oordinate of θ1, . . . ,θK , then those θ̃1, . . . , θ̃F an alsobe interpreted as a latent variable model where the meaning of the mixingmatrix Λ and hidden soures s would be di�erent and rather interesting.However, the assoiated di�ulty is that given the model parameters Ω,those θ̃f 's annot be separately estimated sine they will involve all thetasks.
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Figure 3.1: Graphial Model for Multi-task Learning



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 273.2 MTL Senarios and Assoiated Probabilisti Mod-elsFor multi-task learning, it is important to identify di�erent senarios1 �how tasks are related to eah other � and use appropriate assumptions foreah senario expliitly. Here we analyze a series of important and interest-ing multi-task learning senarios, and demonstrate how to use the generiframework presented above as a basis for the spei� probabilisti modelsto leverage their dependenies in those multi-task learning senarios. To bemore spei� we will show that the generality and �exibility mainly omefrom how to model the underlying soures sk's, as well as whether speialrestritions are put on the parameters Λ, Ψ, et.3.2.1 Independent TasksOur joint learning framework is learly a generalization of single-task learn-ing. By setting the parameters Λ = 0F×H and µ = 0F×1 we totally ignorethe onnetions among θ1, . . . ,θK in the learning framework and have:
θk = ek ∼ Normal(0,Ψ) (3.6)As a result it simply degenerates to learning K individual tasks separately.For example, if the lassi�ation model is logisti regression, then by doinga point estimation on θk we will get the standard Maximum A Posterior(MAP) estimation, and similarly we will get a Bayesian logisti regressionmodel by inferring the posterior distribution of θk given the observed data.This simple degeneralization is illuminating to show di�erent roles of Λskand ek played in modeling θk in equation (3.2). Λsk is supposed to apturethe shared information among tasks whih does not need to be exlusive orperfet; ek ontributes to the remaining part that is task spei�. In thisviewpoint multi-task learning is a full-spetrum while single-task learning isjust one end point!3.2.2 Noisy tasksSuppose our K tasks are all some noisy representations or versions of asingle underlying task θ0 ∈ R

F×1. Then the generi framework simpli�es1By �senario� we mean how tasks are related to eah other. Formally it an be thoughtas the hoie of parametri form in parametri density estimation.



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 28with Λ = 0F×H and µ = θ0. That is, one may think of the appliation asto use di�erent equipments to measure the same physial quantity of someobjet, the di�erenes among those equipments an be modeled as noise, andthe underlying model an be thought as the theoretially orret model. Inother words we have
θk = µ + ek ∼ Normal(µ,Ψ) (3.7)where the ovariane Ψ of ek re�ets our prior knowledge about how noisythose tasks are with respet to the entroid.3.2.3 Clusters of tasksThis senario an be thought as a generalization of the �noisy tasks� ase,with the prior knowledge telling us that tasks should be grouped into ertainnumber of lusters. One an simply use our framework in equation (3.2) tosubsume this as a speial ase by speifying

sk ∼ Multinomial(1; p1, p2, . . . , pH) (3.8)where Multinomial(1; p1, . . . , pH) stands for the Multinomial distribution withparameter n = 1 and proportional parameters p1, . . . , pH satisfying ph ≥ 0and ∑H
h=1 ph = 1.So sk will take the form [0, . . . , 0, 1, 0, . . . , 0] where only one element is 1 andthe rest are 0's. This means that eah θk randomly piks up one and onlyone olumn of the matrix Λ. As a result, the generated θk will be lusteredaround the individual olumn vetors of Λ, Λ.j's. This model resembles aGaussian mixture model over the task spae. In Chapter 7 we fous on thismodel and ompare it to the simpli�ed senario �noisy tasks�.3.2.4 Tasks sharing a linear subspaeIn this senario tasks are assumed to be generated from a linear subspaefor whih we would think of eah olumn of Λ as a basis and sk storesthe orresponding oordinates. In other words, the K tasks are sharing aommon linear subspae. By assuming the hidden soures

sk ∼ Normal(0, I) (3.9)to be standard multivariate Gaussian distribution, this generative model for
θk's beomes the standard fator analysis model. In other words, those K



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 29tasks share a linear subspae whose basis are the olumns of the mixingmatrix Λ, sine we have θk =
∑H

h=1 sk,hΛ.h where Λ.h is the h-th olumn of
Λ and sk,h is the h-th element of sk.More generally, we would assume the hidden soure sk to ome from a prod-ut of generalized Gaussian distributions [Hyvarinen et al., 2001℄, whoseprobability density funtion is de�ned as

p(z) =
λν

2Γ(1/ν)
exp (−λ|z|ν) (3.10)where ν denotes the shape parameter and λ relates to the variane, and Γ(.)is the Gamma funtion de�ned as

Γ(z) =

∫ ∞

0
tz−1e−tdt (z > 0). (3.11)When ν = 2 this redues to standard Gaussian distribution and ν = 1 itredues to Laplae distribution. Furthermore, it is known that ν > 2 willlead to sub-Gaussian distributions and ν < 2 will lead to super-Gaussiandistributions2. Figure 3.2 shows several plots of members in this distributionfamily.3.2.5 Tasks with sparse representationSparsity has beome one of the most important onepts in modern learningtheory, and many algorithms are suessful at least partially due to this prop-erty, inluding winnow, lasso, SVM, wavelet, et. Sparsity usually means thatonly a small number of omponents of the solution are non-zero. In termsof distribution, sparsity ould be generally explained as that the majority ofthe mass is distributed around zero.Sparsity is a nie property sine theoretially it is often related to the gen-eralization apability if the assumption is lose to truth (e.g. the relevantdimension is small), and pratially it is often assoiated with omputationaladvantages espeially for high-dimension problems. Here we are interestedin several types of sparsities:2Formally, super-Gaussian (leptokurti) are distributions whih have positive kurtosiswhile sub-Gaussian (platykurti) are distributions whih have negative kurtosis. For azero-mean random variable X, kurtosis is de�ned as K(X)

△

= E[X4] − 3(E[X2])2.
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Figure 3.2: Generalized Gaussian Distributions
• The �rst sparsity an be spei�ed by putting a super Gaussian dis-tribution (e.g., Laplae distribution) over the hidden soure sk, whihessentially means that we assume that the target predition funtionsof those K tasks are sparse linear ombinations of basis preditionfuntions. The generative model orresponds to this senario an bewritten as:

θk = Λsk + ek

sk ∼

H
∏

h=1

Laplace(0, 1) (3.12)
ek ∼ Normal(0,Ψ)Moreover, this model is of partiular interest if we have an over-ompletebasis [Lewiki and Sejnowski, 2000℄ (e.g., Λ has a relatively large ol-umn basis), sine in that situation sparsity ould be ruial to a keyproperty to have a reliable estimation.

• Alternatively, we ould assume the matrix Λ is sparse by itself. Thisassumption will lead to a natural sparse solution sine θk's are linearombinations of olumns of Λ and thus will also be sparse. This ould



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 31be ahieved, for example, if we put a Laplae prior over eah olumnof Λ in addition to the above model assumptions:
Λ.h ∼

F
∏

f=1

Laplace(0, 1) (3.13)As a result, a point estimation of Λ ould lead to a natural sparsematrix.In Chapter 6 we will show how to ondut joint feature seletion for multi-task learning, whih an be thought as another type of sparsity.3.2.6 Tasks sharing a single omponentThere are situations when we have multiple tasks sharing a single omponent.Although this is very similar to �noisy tasks� and an be thought as a speialase of treating the shared omponent as one olumn of Λ (or as µ), here weemphasize the point that di�erent priors an be put on both the task-spei�omponent and the task-independent omponent. Consider the followinggenerative model with k = 1, . . . ,K:
θk = β0 + βk

β0 ∼ Normal(0,V0) or

F
∏

f=1

Laplace(0, ν0) (3.14)
βk ∼ Normal(0,V) or

F
∏

f=1

Laplace(0, ν0)The shared omponent β0 among θ1, . . . ,θK has the same ontribution tothem, while β1, . . . ,βK an be thought as task spei� preferenes. Onemajor di�erene with the model in equation (3.2) is that we also put aprior over the shared omponent β0. By using the produt of Laplae asthe prior distribution of β0 and βk we are able to ahieve two types ofsparse solutions. Having a sparse solution over β0 means that we would likethe shared omponent to be signi�antly supported by evidene from dataif exists; while having a sparse solution over βk have the e�et that eahindividual task is assumed to only deviate from the shared ommunity (all
K tasks) when it is neessary.



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 323.2.7 Tasks sharing ommon relevant dimensionsAnother interesting senario is that we have the K tasks sharing a similarset of features (whih is only small subset of the original set of features),although the ontributions of those features to the K predition tasks an bequite di�erent (e.g., some of them an be positive ontribution while othersbeing negative ontribution). This senario an be thought as a variant of�sharing a linear subspae�, while the linear subspae is aligned with theoriginal feature spae. We would have the following generative model toapture the senario:
θk ∼ Normal(0, diag(α))

αf ∼ InvGamma(να, νβ) (3.15)where α = (α1, . . . , αF )T ∈ R
F×1 is a non-negative vetor whih spei�esthe variane of eah dimension of θk and its eah dimension follows a priordistribution suh as Inverse-Gamma distribution (or any other sensible dis-tribution over R

+):
InvGamma(z | να, νβ) =

ννα
β

Γ(να)
z−να−1 exp(−

νβ

z
) (3.16)By sharing the same α among all K tasks, we are able to re�et the as-sumption that those K tasks tend to share the same relevant dimensions,although positive/negative e�ets on eah dimension ould vary dependingon the data likelihood.Equivalently, this model an be represented as a speial ase of the frameworkin equation (3.2) as follows:

θk = ek

ek ∼ Normal(0,Ψ) (3.17)
Ψf,f ∼ InvGamma(να, νβ)where Ψ = diag(Ψ1,1, . . . ,ΨF,F ). That is, θk equals ek whose ovarianematrix Ψ is assumed to be diagonal and random. Figure 3.3 shows thegraphial model for this senario. In Chapter 6 we will disuss how to do jointfeature seletion for multi-task learning and its onnetion to this senario.3.2.8 Dupliated tasksIn reality it may happen that we need to solve exatly the same task whihwe have already solved previously, although there is no indiator telling us
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Figure 3.3: Graphial Model for Tasks Sharing Relevant Dimensionswhih task it is unless we infer from the training data. Formally, we wantto onsider the situation where it is likely that we have θk idential to oneof the previous models {θ1,θ2, . . . ,θK−1}. In other words, we assume thatthe probability that we will meet previously solved tasks again in the futureis positive and bounded away from zero (as opposed to the probability thata ontinuous variable takes a partiular value, whih equals zero). Havingthis in mind, we an use non-parametri Bayesian tehniques like DirihletProess [Ferguson, 1973℄ to model the generation proess of the θk's:
G ∼ DP(α,G0)

θk ∼ G (3.18)where α is the preision parameter of Dirihlet Proess and G0 is its basedistribution. By using Dirihlet Proess to model the generation of θk wewill have non-zero prior mass on previous seen tasks.Alternatively we ould use Dirihlet Proesses to model the generation of θkthrough sk as in our model in Figure 3.1. The advantage of that is we ouldstill have �exat� tasks subjet to some random noise ek, and those di�erenttasks are still related through the shared linear subspae. The hierarhialmodel to apture this senario an be summarized as:
G ∼ DP(α,G0)
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sk ∼ G (3.19)
θk = Λsk + ek

ek ∼ Normal(0,Ψ)where any appropriate distribution over sk ould be the andidate of thebase distribution G0. Due to the property of DP, given s1, . . . , sk−1, theprobability that sk equals one of them is stritly greater than zero. Conse-quently θk is idential to one previous model subjet to some random noise,and the generative model is able to apture the senario of dupliated tasks.It is worth mentioning that although this model ould be approximated bya �nite mixture model as in the �lusters of tasks� senario, DPs provide anatural way of handling inreasing number of lusters as the number of tasksgrows.3.2.9 Evolving tasksFor all previous disussions we assume that tasks are exhangeable, whihmeans that the order of those task parameters does not matter in our gen-erative model. However, there are ases of multi-task learning where tasksare evolving one after another. For this senario, the model should re�etthat fat that θk's are evolving. One of the simplest hoies, for example, isto assume that there is a �rst-order Markov hain over θk's:
θk−1 → θk (3.20)whih an be fully spei�ed using the transition probability p(θk|θk−1).Similar to the senario of �dupliated tasks�, we an make the sk's not IIDin Figure 3.1. That is, we assume a Markov hain over sk's instead of over

θk's:
θk = Λsk + µ + ek

sk−1 → sk (3.21)One partiular advantage of using the latter model is that we have a Markovhain over a relatively low dimensional spae of size H instead of size F . Asa result, we are only responsible for the estimation of parameters involvedin p(sk|sk−1) instead of p(θk|θk−1), whih is quadrati in the dimensional-ity of θ. This model is losely related to the linear State Spae Model inthe literature [Ghahramani and Hinton, 1996, Minka, 1999℄ whih is widely



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 35used in modeling dynami systems. By making assumptions on the tran-sition probability p(st | st−1) it is possible to do inferene on the multipleevolving tasks with observed data. For example, this model an be appliedto the problem of onept drift [Klinkenberg and Joahims, 2000℄ where theunderlying model for lassi�ation/regression drifts as it proeeds.3.3 SummaryIn this hapter we proposed a generi probabilisti framework for multi-tasklearning. The framework is a speial ase of hierarhial Bayesian model andlatent variable model. We analyze a series of important task senarios andpresent suitable models within the framework. From the exploration we ansee that the �exibility of the proposed framework in Figure 3.1 omes fromthe fat that we an model di�erent assumptions about the latent variablesand have ertain assumptions over the mixing matrix Λ, ovariane matrix
Ψ, et. It should be lear that there ould exist alternative ways of modelingthose task senarios, but putting them in a uni�ed framework make thedi�erent assumptions and restritions transparent and omparison easy.The hoie of the parametri form p(s|Φ) for hidden soure s is ruial in ourframework and an make a lot of di�erenes in terms of ombining the domainknowledge into the modeling proess, in pretty muh the same way as thehoie of parametri forms in parametri density estimation. As we alreadyshowed, when p(s|Φ) is assumed to be the multinomial distribution we areessentially performing lustering over the task spae; if p(s|Φ) is assumedto be super Gaussian distributions like Laplae, then we are expeting tohave a more sparse solution than using Gaussian instead. Furthermore, san be generalized to be a mixed type random vetor if needed, where someoordinates are ontinuous and others are disrete. Generally speaking, thehoie of p(s|Φ) should re�et the domain knowledge about how the tasksare assoiated with eah other, i.e. what people refer to as �task relatedness�.Furthermore, the shared parameters inluding Λ, µ, Ψ an also be modeledto apture di�erent senarios, suh as a sparsity onstraint on Λ.Although we presented most of the models for simultaneously learning Ktasks, it should be lear that multi-task learning an also be applied to situ-ations where we are learning those tasks sequentially. In that ase, learninga new task should be easier given the fat that we already learned the sharedomponents from previous related tasks. On the other hand, we would like topoint out that in order for the proposed framework to work e�etively with



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 36respet to learning eah task individually, there are some mild onditionsthat need to be satis�ed (refer to Chapter 2 for details):
• Task relatedness: Tasks should be related so that we an borrow in-formation from eah other when learn them jointly. If we use θk todenote the parameter of the k-th task's predition funtion, then it isneessary that those K tasks should share the same input spae (atleast partly) in order to have some ommon omponents in θk's.
• Number of related tasks: In order to have a reliable estimation of theshared part, we need to have ertain number of tasks in order to obtaina reliable estimation of the shared omponents among those tasks.Although the exat answer depends on the partiular task domain,in general we prefer to have more than �ve tasks to apply the jointlearning framework.
• Training resoures of individual tasks: There are limited training re-soures for those related tasks. Atually as the amount of availableresoures grows, under regularity onditions some general priniples(Maximum Likelihood Estimator, Bayes Estimator, et) for single-tasklearning will lead to the same, asymptoti optimal solution. On theother hand, the joint learning framework will bene�t the most whentraining resoures are quite limited, due to the fat that the sharedomponents will be learned using all resoures from K tasks.However, it is expeted that by ontrolling the model omplexity of theshared omponents, violations of some of the above onditions should notsigni�antly deteriorate the joint learning ompared to individual learning. Abetter question to ask is when is it appropriate to use whih partiular modelfor multi-task learning, and this is essentially a model seletion problem andwill be disussed in Chapter 8.



Chapter 4Learning and InfereneAlgorithmsThe probabilisti framework for multi-task learning presented in Chapter 3is a hierarhial Bayesian model [Gelman et al., 2003℄ as well as a latentvariable model [Everitt, 1984℄. Compared to onventional latent variablemodels suh as fator analysis [Gorsuh, 1983℄ or independent omponentanalysis [Hyvarinen et al., 2001℄, the key di�erene is that in multi-tasklearning those θk's are not observed (latent) and have to be estimated fromthe training data.In this hapter we fous on the learning and inferene algorithms for modelspresented in Chapter 3. Generally speaking, given a probabilisti model wean either use a full Bayesian approah, an empirial Bayes approah, or apoint estimation approah to learn the model. The full Bayesian approahhas the advantage of taking into onsideration the unertainties of parame-ters using their posterior distributions, and does not su�er from the over�t-ting problem. However it is omputationally expensive and often intratablefor high-dimensional problems, and thus ertain approximation algorithmsare neessary to apply it in realisti situations. The point estimation ap-proah disards the unertainty of parameters and just onsiders their pointestimations instead. By doing so it an be omputationally very e�ient, butmay su�er from over�tting. The empirial Bayes approah an be thoughtas in-between of these two approahes, whih inorporates the unertaintyof the intermediate level parameters but tries to perform point estimationfor hyper-parameters.We present algorithms for both the empirial Bayes approah and point37



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 38estimation approah, with the former being able to apture the unertaintyin the parameters while the later more suitable for high-dimensional tasks.Here we fous on how to ondut learning and inferene in the model shownin equation (4.1):
θk = Λsk + µ + ek

sk ∼ p(.|Φ)

ek ∼ Normal(0,Ψ) (4.1)
classification : y

(k)
ik

∼ Bernoulli(σ(θT
k x

(k)
ik

))

regression : y
(k)
ii

∼ Normal(θT
k x

(k)
ik
, σ2)where σ(t) = (1+exp(−t))−1 is the standard logisti funtion, k = 1, 2, . . . ,Kis the task index and ik = 1, 2, . . . , Nk is the index of data instanes for task

k. Supersript k on both x and y indiate the task that they are assoiatedwith, i.e., we have D(k) = {(x
(k)
ik
, y

(k)
ik

)Nk
ik=1} as the training set for the k-thtask.4.1 Empirial Bayes ApproahThe upper level of the graphial model in Figure 3.1 aptures the rela-tions among tasks. We an use an empirial Bayes approah to learn theparameters Ω = {Φ,Λ,µ,Ψ} from the data while treating the variables

Z = {(θk, sk)Kk=1} as hidden variables (and thus will integrate them out).Beause Λ and sk are always oupled together in our model, we have theusual identi�ability issue [Lehmann and Casella, 1998℄ in estimating thoseparameters. In partiular, to get around the un-identi�ability aused by theinteration between Λ and sk, we assume that Φ is of standard parametriform (e.g., zero mean and unit variane) and thus remove it from Ω. Thegoal is to learn point estimators Λ̂, µ̂ and Ψ̂ as well as obtain posteriordistributions over hidden variables given training data.Given the training data D = D(1) ∪ D(2) ∪ . . . ∪ D(K), the log-likelihood ofinomplete data log p(D | Ω)1 an be alulated by integrating out hiddenvariables
L =

K
∑

k=1

log







∫ Nk
∏

ik=1

p(y
(k)
ik
| x

(k)
ik
,θk)1Here for simpliity we just use p(D | Ω) to denote the likelihood instead of onditioningon input vetors.
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(∫

p(θk | sk,Λ,µ,Ψ)p(sk|Φ)dsk

)

dθk

} (4.2)for whih the maximization over parameters Ω = {Λ,µ,Ψ} involves twoompliated integrals on θk and sk, respetively.The integration over sk will be easy if p(sk|Φ) is Gaussian (p(θk|sk,Λ,µ,Ψ)is also Gaussian), otherwise approximation is needed. Furthermore, for las-si�ation tasks the likelihood funtion p(y|x,θ) is typially non-exponentialand thus exat alulation beomes intratable. However, we an approx-imate the solution by applying the Expetation Maximization (EM) algo-rithm [Dempster et al., 1977℄ to deouple the maximization proess into aseries of simpler E-steps and M-steps. In the EM formulation instead ofmaximizing the log-likelihood of the observed data p(D | Ω), we attemptto maximize the expetation of the joint log-likelihood of both the observeddata and the hidden variables in the model E[log p(D,Z | Ω)], where theexpetation is taken with respet to some distribution q(Z) over the hiddenvariable Z. It is straightforward to show that this expetation is alwaysa lower bound of the inomplete data likelihood with equality holding if
q(Z) = p(Z | D,Ω).The EM algorithm for the empirial Bayes approah an be brie�y stated asfollows:1. E-step: Given the parameter Ωt−1 = {Λ,µ,Ψ}t−1 alulated from theprevious (t− 1)-th step, alulate the distribution of hidden variablesgiven Ωt−1 and D:

p(Z | Ωt−1,D) (4.3)2. M-step: Maximize the expeted log-likelihood of omplete data (Z,D),where the expetation is taken over the distribution of hidden variablesobtained in the E-step, and the maximization is done with respet to
Ω:

Ωt = arg max
Ω

Ep(Z|Ωt−1,D) [log p(D,Z | Ω)] . (4.4)4.1.1 M-stepWe will begin with the M-step instead sine it is easier than the E-step. Thelog-likelihood of omplete data an be written as follows:
log p(D,Z | Ω)
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(4.5)and its expeted value with respet to q(Z) is:
E [log p(D,Z | Ω)]

=

K
∑

k=1







Nk
∑

ik=1

E[log p(y
(k)
ik
| x

(k)
ik
,θk)] + E[log p(θk | sk,Λ, µ,Ψ)] + E[log p(sk | Φ)]





(4.6)The �rst and third terms in the urly braket are the likelihood term forlassi�ation/regression and soure prior and do not depend on any of theparameters Ω (sine we assumed that p(s|Φ) is of standard form), and thusan be dropped o� in the M-step.Consequently, the M-step an be simpli�ed by maximizing the followingexpetation with respet to the parameters to be estimated, namely Λ,µ,Ψ:
arg max

K
∑

k=1

E[log p(θk | sk,Λ,µ,Ψ)]

= arg max

K
∑

k=1

E

[

−
1

2
log |2πΨ| −

1

2
(θk − Λsk − µ)T Ψ−1(θk − Λsk −µ)

]

= arg min
K
∑

k=1

{

log |Ψ|+ Tr
(

Ψ−1(E[θkθ
T
k ] + ΛE[sks

T
k ]ΛT + µµT

)

+ Tr
(

Ψ−1(−2E[θks
T
k ]ΛT − 2E[θk]µ

T + 2ΛE[sk]µ
T )
)} (4.7)where Tr(.) stands for the matrix trae operator that returns the sum of thediagonal elements. Setting the derivative with respet to Λ to zero we get

K
∑

k=1

{

2E[sks
T
k ]ΛT − 2E[skµ

T
k ] + 2E[sk]µ

T
}

= 0 (4.8)
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K
∑

k=1

{2µ− 2E[θk] + 2ΛE[sk]} = 0 (4.9)and for Ψ we have
Ψ =

1

K

K
∑

k=1

{

E[θkθ
T
k ] + ΛE[sks

T
k ]ΛT + µµT

− 2E[θks
T
k ]ΛT − 2E[θk]µ

T + 2ΛE[sk]µ
T
} (4.10)Combining the last three equations we an solve them to get the �nal esti-mations:

Λ̂ =

(

K
∑

k=1

E[θks
T
k ]−

1

K
(

K
∑

k=1

E[θk])(

K
∑

k=1

E[sk])
T

)

×

(

K
∑

k=1

E[sks
T
k ]−

1

K
(

K
∑

k=1

E[sk])(

K
∑

k=1

E[sk])
T

)−1 (4.11)
µ̂ =

(

K − (
K
∑

k=1

E[sk])
T (

K
∑

k=1

E[sks
T
k ])−1(

K
∑

k=1

E[sk])

)−1

×

(

K
∑

k=1

E[θk]−

K
∑

k=1

E[θks
T
k ](

K
∑

k=1

E[sks
T
k ])−1

E[sk]

) (4.12)Sine we assume Ψ to be a diagonal matrix it is only neessary to assign thediagonal elements to Ψ̂, whih an also be veri�ed by diretly onsideringthe onstrained optimization problem. If we do not assume that we knowthe parametri form of p(s|Φ) then we should also treat Φ as an unknownparameter and update it during the M-step as follows:
Φ̂ = arg max

K
∑

k=1

E[log p(sk | Φ)]. (4.13)Below we onsider the speial ase when µ = 0, whih an greatly simplifythe notation2. In this ase,
Λ̂ = (

K
∑

k=1

E[θks
T
k ])(

K
∑

k=1

E[sks
T
k ])−12This is usually �ne as µ's funtionality an be roughly ontributed by one olumn of

Λ if there is one element of sk that is onst aross tasks.
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Ψ̂ =

1

K

(

K
∑

k=1

E[θkθ
T
k ]− (

K
∑

k=1

E[θks
T
k ])Λ̂T

) (4.14)4.1.2 E-stepIn the E-step we need to alulate posterior distribution p(Z | D,Ω), giventhe parameter Ω alulated in previous M-step. Essentially only the �rst andseond order moments matters in the E-step, namely: E[θk], E[sk], E[θkθ
T
k ],

E[sks
T
k ] and E[θks

T
k ] are needed in the M-step.However, the exat alulation is often intratable for several reasons. First,

p(sk|Φ) may not be Gaussian or may not even be within the exponen-tial family; seond, for lassi�ation tasks the likelihood funtion p(y|θ,x)does not belong to the exponential family and thus annot be summa-rized with �nite su�ient statistis as data grows. Under suh situations,we need to ome up with a easy-to-handle (e.g., belonging to the expo-nential family) approximation q(Z) that minimizes some distane measure
Distance(p(Z|D,Ω), q(Z)) between the true posterior p(Z|D,Ω) and the ap-proximate one q(Z), where ommon distane measures inlude Kullbak-Leibler (KL) divergene KL(p(Z|D,Ω)||q(Z)) and KL(q(Z)||p(Z|D,Ω)) (sineKL-divergene is asymmetri), whih are de�ned as:

KL(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx. (4.15)Fortunately, the E-step for K tasks is deoupled given the parameter Ω,its alulation an be done by onduting inferene on a separate graphialmodel for eah task, as shown in Figure 4.1.Sine the resulting task for the E-step is essentially inferene in a graphi-al model. Inferene an be arried out using general-purpose algorithmslike variational methods, belief propagation or expetation propagation, asintrodued in Chapter 2. For example, if we use Gaussian distributions toapproximate the posterior distributions p(θk|Ω

t−1,D) and p(sk|Ω
t−1,D), onepartiular hoie of approximation riteria (atually EP only approximatesthis goal) an lead to the following E-step in ase of expetation propagation:

{E[θk],V[θk]} ≈ arg min
m,V

KL
(

p(θk | Ω
t−1,D) ‖ Normal(θ;m,V)

)

{E[sk],V[sk]} ≈ arg min
m,V

KL
(

p(sk | Ω
t−1,D) ‖ Normal(s;m,V)

)(4.16)
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Figure 4.1: Graphial Model for E-step Inferene of Task kFor p(.) belonging to the exponential family it is well-known that minimiz-ing KL-divergene is equivalent to moment mathing [Minka, 2001℄. If wereverse the order in the KL-divergene to minimize KL(q||p) then we endup using variational method for the approximate inferene. For now we usethe variational method whih is known to be more robust with guaranteedonvergene and often results in good quality approximations.The basi idea of variational methods is to lower bound the log-likelihoodusing Jensen's inequality:
L = log p(D) = log

∫

p(D,Z)dZ ≥

∫

q(Z) log
p(D,Z)

q(Z)
dZ

△
= O (4.17)where the inequality is due to the onavity of the logarithm funtion. TheRHS of the above equation is the objetive we want to maximize in thevariational method, and q(Z) is usually taken to be within the exponen-tial family so that it is easy to ompute. It is straightforward to show thatmaximizing this lower bound is equivalent to minimizing the KL-divergene

KL(q(Z)||p(Z|D)) and the alulated q(Z) an then be used as an approxi-mation to the true posterior distribution p(Z|D,Ω).For simpliity we will omit the task index k in the following and simply de-note the lassi�ation parameter vetor as θ and the hidden soure vetor as
s. Furthermore we also assume the q(s,θ) an be fatorized in the followingform

q(s,θ) = q(θ)q(s) (4.18)



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 44This is often a reasonable simplifying assumption and allows us to do theoptimization iteratively. Furthermore we assume q(θ) = Normal(mθ,Vθ) tobe a multivariate Gaussian distribution and q(s) = f(s|ms, I) whih followssome parametri distribution with mean ms and unit ovariane matrix.Note that Gaussian distribution is usually a good and onvenient hoie,partiularly onsidering the fat that we only need the �rst and seond orderstatistis in the M-step. Now we have
O =

∫ ∫

q(θ)q(s) log
p(s)p(θ|s)

∏N
i=1 p(yi|θ,xi)

q(θ)q(s)
dθds

=

∫

q(s)

[

log
p(s)

q(s)
+

∫

q(θ) log
p(θ|s)

∏N
i=1 p(yi|θ,xi)

q(θ)
dθ

]

ds (4.19)Although the posterior distribution q(s,θ) is assumed to be fatorized, s and
θ are still oupled in above equation by the distribution p(θ|s). In order totakle the problem we propose the following iterative algorithm to solve theE-step, whih optimizes q(s) and q(θ) interhangeably:1. Given q(s) = f(s|ms, I), the �rst term in equation (4.19) does notinvolve q(θ) and thus an be dropped o�. The seond term an also begreatly simpli�ed sine only log p(θ|s) involves s and it an be easilyintegrated out due to the Gaussianity of θ given s.

Eq(s)[log p(θ|s)] = Eq(s)[−
1

2
log |2πΨ|]

+ Eq(s)[−
1

2
(θ − Λs− µ)T Ψ−1(θ − Λs− µ)] (4.20)As a result, we an obtain an estimate of q(θ).2. Given q(θ) = Normal(θ;mθ ,Vθ), for similar reason the seond termin equation (4.19) an also be greatly simpli�ed. That is, only theterm log p(θ|s) involves s and its expetation with respet to q(θ) anbe written down. So the �nal objetive funtion of the optimizationover q(s) omposes of two terms: a ross entropy term and a quadratiterm whih penalizes the distane between q(s) and E[θ].The detailed algorithm about the E-step is listed in Algorithm 1 for referene,and we would like to omment on several things. First, we assume the formof q(θ) to be multivariate Gaussian, whih is a reasonable hoie espeially
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Algorithm 1 An Iterative Algorithm for E-step1. Initialize q(s) with some standard distribution, suh as

q(s) =

H
∏

h=1

Normal(0, 1) or

H
∏

h=1

Laplace(0, 1). (4.21)2. Calulate the expeted value of s: Eq(s)[s].3. Solve a Bayesian logisti/linear regression with a prior Normal(ΛE[s]+
µ,Ψ) on θ (see later setion for details):
q(θ) ← arg max

q(θ)
{

∫

q(θ) log
Normal(θ; ΛE[s] + µ,Ψ)

∏N
i=1 p(yi|θ,xi)

q(θ)
dθ

}(4.22)4. Calulate the expeted value of θ: Eq(θ)[θ].5. Update q(s):
q(s) ← arg max

q(s)

{∫

q(s)

[

log
p(s)

q(s)
−

1

2
Tr
(

Ψ−1(E[θθT ])
)

−
1

2
Tr
(

Ψ−1((Λs + µ)(Λs + µ)T − 2E[θ](Λs + µ)T )
)

]

ds

}(4.23)6. Repeat steps 2-5 until onvergene.



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 46onsidering the fat that only �rst and seond moments are needed in theM-step. Seond, the prior hoie of q(s) in step 3 is signi�ant sine foreah s we only have one assoiated �data point� θ. In partiular using theLaplae distribution will lead to a more sparse solution of E[s], and thiswill be made more lear in the orresponding point estimation algorithm.Finally, for sparsity models we ould take the parametri form of q(s) to bethe produt of Laplae distribution with unit variane but unknown mean,where the �xed variane is intended to remove the unidenti�ability issueaused by the interation between sales of s and Λ. Although using afull ovariane Gaussian for q(s) is another hoie, again due to the un-identi�ability reason aused by rotations of s and Λ we ould make it adiagonal Gaussian. As a result, we argue that the produt of Laplaes isbetter than the produt of Gaussians sine it has the same parametri formas the prior q(s), and the overall goal in step 5 is to estimate the distributionmean ms = (m1, . . . ,mH).In general we have q(s) = f(s|m) where m is the mean and q(s) is assumedto have standard variane. For p(s) a Gaussian distribution Normal(0, I),step 5 beomes
m̂ = arg min

m

{

mT m + mT ΛT Ψ−1Λm− 2mT ΛT Ψ−1
E[θ]

}

=
(

I + ΛT Ψ−1Λ
)−1

ΛT Ψ−1
E[θ] (4.24)and for p(s) produt of Laplae distributions ∏H

h=1 Laplace(0, 1) step 5 be-omes
m̂ = arg min

m

{

2||m||1 + 2
∑

exp(−|mf |)

+ mT ΛT Ψ−1Λm− 2mT ΛT Ψ−1
E[θ]

} (4.25)whih need to be solved numerially. Note that similar to the sparsity prop-erty of L1 norm, here we have when ||m||1 is large the l1 norm dominates
∑F

f=1 exp(−|mf |) and thus the distribution mean ahieves a more �sparse�solution in terms of the mean, e.g., more mass is around zero. Later we willshow that for point estimation approah the sparsity property will be mademore lear.4.1.3 Variational Method for Bayesian Logisti RegressionIn the following we restrit our disussions to logisti regression as our baselassi�er and present an algorithm for solving the Bayesian logisti regres-



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 47sion, whih is used in step 3 of Algorithm 1. Algorithms for other proba-bilisti lassi�ers an also be developed in priniple. Our algorithm here isbased on the variational method originally proposed by Jaakkola and Jordan[Jaakkola and Jordan, 1997℄, whih is an elegant algorithm that is guaran-teed to onverge, and experimentally it has been veri�ed to be stable ande�ient.Here we ignore the task index k as well. Given a Gaussian prior Normal(m0,V0)over the parameter vetor θ and a training set D = {(x1, y1), . . . , (xN , yN )},we would like to obtain an approximation to the true posterior distribu-tion p(θ|D). In the following we essentially use an exponential funtion toapproximate the non-exponential likelihood funtion
p(y|x,θ) =

1

1 + exp(−yθTx)
(4.26)whih in turn makes the Bayes formula tratable.Note that the funtion log(1/(1 + exp(−z))) is a onvex funtion in thevariable z2 (whih an be veri�ed by taking the seond derivative with respetto z2), we an use the �rst order Taylor series to expand at ξ2 with respetto z2. Due to the onavity, we have the following inequality:

p(y|x,θ) ≥ σ(ξ) exp
{

(yxT θ − ξ)/2− λ(ξ)((xT θ)2 − ξ2)
}

△
= p(y|x,θ, ξ) (4.27)where σ(z) = 1/(1 + exp(−z)) is the logisti funtion and λ(ξ) is de�ned as

λ(ξ) = tanh(ξ/2)/4ξ.Our goal is to maximize the lower bound of
p(y|x) =

∫

p(θ)p(y|x,θ)dθ ≥

∫

p(θ)p(y|x,θ, ξ)dθ (4.28)In order to maximize the RHS lower bound ∫ p(θ)p(y|x,θ, ξ)dθ, we formulatean EM algorithm by treating ξ as the parameter in MLE and θ as the hiddenvariable, and the resulting steps are:
E− step : Q(ξ, ξt) = E

[

log {p(θ)p(y|x,θ, ξ)} | x, y, ξt
]

M− step : ξt+1 = arg max
ξ

Q(ξ, ξt) (4.29)Sine both terms in the expetation are exponential funtions and the ex-petation is taken over a Gaussian distribution p(θ|x, y, ξt), the E-step an
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(Vt)−1 ← V−1 + 2λ(ξt)xxT

mt ← Vt(V−1m + yx/2) (4.30)where the supersript tmeans the t-th step, and we assume p(θ) = Normal(θ;m,V).Taking the derivative of Q(ξ, ξt) with respet to ξ and setting it to zero leadsto:
ξt+1 =

√

xTVtx + (xTmt)2. (4.31)Although solving this EM an give us a good lower bound of the log likelihoodfuntion p(y|x) =
∫

p(θ)p(y|x,θ)dθ, it involves expensive matrix inverse al-ulation in the E-step. Atually this EM proedure an be greatly simpli�edby realizing the Woodbury formula [Golub and Loan, 1996℄:
(

A + BCT
)−1

= A−1 −A−1B
(

I + CTA−1B
)−1

CTA−1. (4.32)The advantage of applying the Woodbury formula is that if both B and
C are low rank matries, omputing (I + CTA−1B)−1 an be muh moree�ient, whih is exatly our ase. By simplifying we an get the followingresults as follows:
• E-step:

Vt ← V −
2λ(ξ)

1 + 2λ(ξ)xT Vx
Vx(Vx)T

mt ← m−
2λ(ξ)

1 + 2λ(ξ)xT Vx
VxxTm

+
y

2
Vx−

y

2

2λ(ξ)

1 + 2λ(ξ)xT Vx
VxxTVx (4.33)

• M-step: solving a one-dimensional �xed point equation iteratively (c =
xTVx)

ξ2 = c−
2λ(ξ)

1 + 2λ(ξ)c
c2

+

(

xTm−
2λ(ξ)

1 + 2λ(ξ)c
cxTm +

y

2
c−

y

2

2λ(ξ)

1 + 2λ(ξ)c
c2
)2(4.34)Note the original EM steps is simpli�ed to �rst ompute a �xed-point so-lution of a one-dimensional problem, then ompute the E-step in one-shot.Furthermore, in the omputation of the E-step we do not need to alulatethe matrix inverse V−1 any more.



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 494.1.4 Variational Method for High Dimensional TaskAlthough the omputation of the above method is a�ordable for mediumsale problems (e.g., having several thousand features), the memory require-ment and time omplexity beome una�ordable as the number of featuresgrows. For high dimensional tasks we have θk ∈ R
F×1 where F ≫ 1. Forexample, this ould happen in text or image domain where the number offeatures an easily go up to more than ten thousand. Given suh a highdimensional vetor spae, approximations using full ovariane Gaussian dis-tributions are no longer appliable due to both time and memory onstraints.In order to handle suh ases we onsider a fully fatorized version of theabove variational method for whih we have:

q(θk) =

F
∏

j=1

q(θk,j) (4.35)This full fatorization assumption is essentially equivalent to the assumptionthat the approximating Gaussian distribution q(θk) has the following meanand diagonal ovariane matrix:
E[θk] = (µ(θk,1), . . . , µ(θk,F ))T

V(θk) = diag(σ2(θk,1), . . . , σ
2(θk,F )) (4.36)and thus for eah individual omponent we have q(θk,j) = Normal(µ(θk,j), σ

2(θk,j)).This additional assumption redues the memory omplexity from quadratito linear in terms of F , the number of features. As a result the algorithmould be very e�ient and ompetitive with point estimation approah. Sineit is not lear how to onstrut a tight bound for fully fatorizable approxi-mation, we ould use Laplae approximation method introdued in Chapter2, by �rst obtaining the MAP estimate θMAP :
θMAP = arg min

θ

{

N
∑

i=1

log(1 + exp(−yiθ
Txi))

+ log |2πV0|+
1

2
(θ −m0)

T V−1
0 (θ −m0)

} (4.37)The update rule of step 3 in Algorithm 1 now beomes �rst solving the MAPestimation of θMAP and then �nding the Laplae approximation using a fullyfatorized multivariate Gaussian distribution.
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Algorithm 2 Iterative Algorithm for L1 Regularized Problem1. Given the optimization objetive

ŵ = arg min
w
O(w) = arg min

w
{wTAw + bTw + λ||w||1}2. Initialize w = 0 ∈ R

F×1.3. Loop until onvergene:(a) Pik up a wf (an be sequentially or with other heuristis)(b) - wf > 0:
△wf =

−Af.w − bf/2− λ/2

Aff

wf ← max(0, wf +△wf )- wf < 0:
△wf =

−Af.w − bf/2 + λ/2

Aff

wf ← min(0, wf +△wf )- wf = 0: Update wf only if |Af.w + bf/2| > λ/2

△wf =
−Af.w − bf/2 + sign(−Af.w − bf/2)

Aff

wf ← △wf



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 514.2 Point EstimationIn our model if we also treat Z as non-random but unknown parameters as
Ω, then we an obtain their MLE estimators. Unfortunately, in the followingwe show that straightforward appliation of MLE to this generative modelwithout any onstraint will lead to fully deoupled MLE estimations for eahindividual task, and as a result the model fails to borrow information amongtasks. To see this, notie that for unonstrained MLE we have

{Z,Ω}MLE = arg max
Z,Ω
L(Z,Ω|D)

= arg max
Z,Ω
{p(D|Z)p(Z|Ω)} (4.38)and the following solution obviously maximizes the above joint likelihood

L(Z,Ω|D):
Λ̂ = 0, µ̂ = 0, Ψ̂→∞. (4.39)In fat as long as the variane Ψ goes to in�nity, the models of K tasks willbe fully deoupled and thus this generative framework fails to apture therelations among tasks. The failure of unonstrained MLE demonstrates theimportane of having a �nite value Ψ. Atually it is possible to assume Ψto be �xed when optimizing other parameters while use ross-validation asa wrapper to tune the optimal value of the diagonal elements of Ψ. Given Ψ�xed, point estimations of the rest parameters beome well-behaved. In Al-gorithm 1 if we take a limiting ase by letting both q(θ) and q(s) onvergingto the Dira delta funtion, then step 3 an be thought as �nding the MAPestimation of θ and step 5 beomes the following optimization problem forthe ase of Gaussian soures

m̂s = arg min
ms

{mT
s ms + mT

s ΛT Ψ−1Λms − 2mT
s ΛΨ−1

E[θ]} (4.40)and it beomes lasso-like optimization problem (ms denotes the point esti-mation of s here) for the ase of Laplae soures
m̂s = arg min

ms

{2||ms||1 + mT
s ΛT Ψ−1Λms − 2mT

s ΛΨ−1
E[θ]}

= arg min
ms

{O(ms) + ||ms||1} (4.41)whih an be solved numerially by Algorithm 2 below (note that the samealgorithm an be used to solve problems like lasso regression with slightmodi�ation). The solution of this optimization is sparse in ms. This is a



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 52nie property sine we would only like to onsider hidden soures for whihthe assoiation with tasks are signi�antly supported by evidene.Another way is to assign prior distributions over (some of) the parameters
Λ, µ and Ψ and do a point estimation (e.g., MAP over Ω):

{Z,Ω} ← arg max
Z,Ω
{p(Ω)p(Z|Ω)p(D|Z)} (4.42)Compared with MLE estimations, MAP has similar omputational ost butis usually better behaved due to its prior distribution, whih an also bethought as putting some regularization term log p(Ω) over the parameter Ω.4.3 SummaryIn this hapter we presented the algorithms of both empirial Bayes ap-proah and point estimation approah for the generi probabilisti model ofmulti-task learning. So far our hoie of the inferene algorithm for lassi-�ation, variational method, is based on the fats that they are guaranteedto onverge and e�ient for high dimensional problems. Also, we fousedon lassi�ation problems as regression problems an be solved in the sameproedure (but are muh simpler). However, there are other general possi-bilities like expetation propagation and sampling method whih might bemore aurate for small-saled tasks. Although the presented algorithmsdo not solve all the task senarios, this EM-based proedure an serve asthe basis for our later algorithms of other senarios. One advantage of theproposed probabilisti learning framework is that it provides a uni�ed viewof those algorithms. Based on spei� task domains, we ould use the fullBayesian approah, empirial Bayes approah or point estimation approah,and tradeo�s among those algorithms are also lear.



Chapter 5Sparsity Models for MTLIn this hapter we fous on multi-task learning senarios whih an lead tosparse solutions, as we previously disussed in Chapter 3. In partiular wefous on two types of sparsity models1 here: model that has sparse hiddensoure s and model that has sparse linear mixing matrix Λ (e.g., sparsebasis). We show that they lead to di�erent sparse solutions by reduing thejoint model omplexity and improve the lassi�ation performane.5.1 Sparsity ModelsSparsity is often observed in real appliations, and it is a both theoretiallyand pratially desirable property. From the theoretial viewpoint, sparsityan greatly redue the model omplexity; from the pratial viewpoint itredues the storage and omputation, espeially for high-dimensional data.As desribed in Chapter 3, there are two types of sparsity models that anbe ahieved within our probabilisti framework:
• sparse linear ombination of basis funtions:

θk = Λsk + ek

sk ∼

H
∏

h=1

Laplace(0, γ) (5.1)
ek ∼ Normal(0,Ψ)1Our joint feature seletion method in Chapter 6 an be seen as the third type ofsparsity model. 53



CHAPTER 5. SPARSITY MODELS FOR MTL 54where sk will be sparse due to the Laplae prior if onduting point es-timation to obtain ŝk. This is essentially assuming that eah preditionfuntion f (k) is a sparse linear ombination of basis lassi�ers.
• linear ombination of sparse basis funtions:

θk = Λsk + ek

sk ∼ p(sk|Φ)

Λ.,h ∼

F
∏

f=1

Laplace(0, γ) (5.2)
ek ∼ Normal(0,Ψ)where Λ.,h denotes the h-th olumn of matrix Λ. In other words, weassume that eah olumn vetor of Λ follows a sparse prior distribution.By performing a point estimation Λ̂, this model will lead to a set ofsparse basis lassi�ers.In summary, the �rst model is more appropriate when we believe that thosetask predition funtions share the same set of basis, but eah one is only aombination of small number of them (relatively pure tasks); in the seondmodel we do not put restrition on how many bases are used, but insteadassume that eah basis funtion is only represented by a few features.5.2 AlgorithmsWe name the �rst typee of sparsity model Latent ICA (LICA), for the reasonthat the generative model for θk's is very similar to the ICA model. For theLICA, generi algorithms presented in Chapter 4 an be diretly applied byusing produt of Laplae distributions as the prior of sk's.Here we fous on the algorithm for the seond type of sparsity, where eahpredition funtion is a linear ombination of sparse basis funtions. Toahieve the sparse solution for high-dimensional data like text, we will per-form point estimation to obtain both ŝk and Λ̂. Similar to the algorithmspresented in Chapter 4, we need to propagate information from the known(x's and y's) to the unknown (θk's, sk's and Λ) using some iterative proe-dure. Note that partiular attention needs to be paid to the estimation of

Ψ. Essentially point estimation for the ovariane matrix Ψ of ek's is not



CHAPTER 5. SPARSITY MODELS FOR MTL 55well-behaved, we instead restrit Ψ to take the form Ψ = λI in our algo-rithm, and use ross-validation in an outer loop to tune the salar parameter
λ, just as people usually do in traditional single-task learning to tune theregularization oe�ient. Details are given in Algorithm 3.5.3 ExperimentsWe show the experimental results of our models in multi-label text lassi�a-tion and email anti-spam �ltering. Sine joint learning will be most e�etivewhen we have limited training resoures, in our experiments we evaluate themodel by varying the number of training instanes.The model we applied here for text lassi�ation is the one in equation(5.1) where we use Laplae distribution to model the hidden soure s. Inother words, we assume that the predition funtion of eah task is a sparselinear ombination of basis lassi�ers that are shared among all K tasks.In the experiments of anti-spam E-mail �ltering we expliitly divide theontribution to �spam� into two omponents for eah user: the ommon spamomponent and the user-spei� spam omponent. As a result, the multi-task learning model we used is the model for the �noisy tasks� senario withsparse priors on both the µ and ek. Details of the model an be found inChapter 3.5.3.1 Multi-label Text Classi�ationWith the rapid growth of the Internet in reent years, people are faing aninreasingly large amount of information, with the majority stored in an ele-troni form. As a natural result, how to automatially and seletively obtainuseful information beomes a very important researh hallenge. Amongvarious types of information, textual information is arguably the most im-portant beause it has a large volume and its proessing is relatively easierthan other media types like audio and video so far. In the �eld of infor-mation retrieval, text lassi�ation, the task of lassifying natural languagedouments into a pre-de�ned set of semanti ategories, has beome one ofthe fundamental omponents for organizing information.There exists a rih literature about text lassi�ation in the past severaldeades, whih provides valuable information about individual lassi�ationmethods as well as their empirial evaluation [Yang and Liu, 1999, Zhang and
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Algorithm 3 Probabilisti Model for MTL with Sparse ComponentsLoop until onvergene:1. Learn θ̂k given Λ̂ and ŝk omputed in previous step (onditioned on Λand Ψ, tasks parameters will deouple and an be estimated separately)for k = 1, . . . ,K:

θ̂k = arg max
θk

{

nk
∑

i=1

log p(y
(k)
i |x

(k)
i ,θk) + log p(θk | Λ̂, ŝk)

} (5.3)This is essentially equivalent to solving the regularized linear methodsfor lassi�ation/regression, and we an apply any suitable optimiza-tion algorithm suh as onjugate gradient.2. Learn ŝk given Λ̂ and θ̂k for k = 1, . . . ,K:
ŝk = arg max

sk

{

log p(θk | Λ̂, sk)
} (5.4)3. Update Λ̂ given θ̂k's and ŝk (k = 1, . . . ,K):

Λ̂ = arg max
Λ

{

K
∑

k=1

log p(θ̂k | Λŝk) + log p(Λ)

}

= arg min
Λ







K
∑

k=1

(θ̂k − Λŝk)
T (θ̂k − Λŝk) + γ

H
∑

h=1

F
∑

f=1

|Λf,h|







(5.5)where γ ontrols how sparse the solution Λ̂ is. Plugging in the prior of
Λ, it an be solved as a set of Lasso-style problems.



CHAPTER 5. SPARSITY MODELS FOR MTL 57Oles, 2001, Zhang and Yang, 2003℄. Although many of the text olletions aremulti-labeled by their nature, most of the existing approahes will onvertthe problem into a set of independent binary lassi�ation problems, onefor eah ategory. Instead, here we treat multi-label text lassi�ation as amulti-task learning problem, where eah label orresponds to a task.There are several bene�ts of treating the multi-label text lassi�ation as amulti-task learning problem. First of all, it is more onvenient that whenpeople label douments, they simultaneously lassify the douments withrespet to all the ategories at hand. This an also be veri�ed from theexisting text lassi�ation olletions. Seond, those ategories for a givendata olletion are often related in both semantis and statistis. Third, it isknown that most of the ategories in existing olletions obey the Power Lawdistribution [Yang et al., 2003℄, whih means that we are often faing thesituation that there are very limited training resoures for most of the ate-gories. And this is blessing for multi-task learning sine multi-task learningwill be most e�etive under suh situation.For evaluation we often use the F1 measure instead of error rate due to thefat that for text lassi�ation the number of positive and negative dou-ments are often unbalaned and thus F1 is a better measure than error ratewhih an be insensitive. Given a two-way ontingeny tablepositive negativepredited positive A Bpredited negative C DTable 5.1: A Two-way Contingeny Tablethe preision p and reall r are de�ned as
p =

A

A+B

r =
A

A+ C
(5.6)and F1 is de�ned based on preision and reall as

F1 =
2pr

p+ r
. (5.7)Furthermore, we will also use the notation of maro-F1 and miro-F1 inour experimental results. Maro-F1 is alulated by averaging over the F1
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Figure 5.1: Multi-label Text Classi�ation Results on Reuters-21578 (�Indi-vidual� refers to the STL algorithm whih is the regularized logisti regres-sion; �LICA� is our MTL algorithm)values of all ategories; while miro-F1 is the F1 value alulated by using theontingeny table whose ell values are summed over all the orrespondingell values of every ategory's ontingeny table. As a result, maro-F1 willtreat eah ategory equally and thus dominated by small ategories due tothe Power Law ategory distribution; while miro-F1 will be dominated bylarge ategories by nature.5.3.1.1 Results on Reuters-21578Reuters-21578 has been one of the most widely used benhmark olletionfor evaluating text lassi�ation algorithms in the literature [Yang and Ped-ersen, 1997, Yang and Liu, 1999, Zhang and Oles, 2001, Zhang and Yang,2003℄. We use a pre-proessed version [Yang and Liu, 1999℄ whih has ninetyategories. Our training and test split is based on the standard ModApt splitas ommonly did in the literature.



CHAPTER 5. SPARSITY MODELS FOR MTL 59Sine multi-task learning will be most e�etive if orrelations of tasks arehigh, we hoose nine ategories out of its ninety ategories (those ategoriesare orn, wheat, grain, ship, rude, interest, money-fx, dlr, nat-gas), whihis based on the fat that those ategories are often orrelated by previousstudies [Koller and Sahami, 1997℄. In other words, the number of tasks forthis data olletion is K = 9, as we treat eah ategory as an individual task.After stemming, stopword and rare word (words that happen less than threetimes) removal, we get 3,358 unique features/words. We use the empirialBayes method in Chapter 4 to solve the problem, with Laplae priors over thehidden soures sk's, and furthermore we let H, the dimensionality of hiddensoure sk, to be the same asK in this experiment. For this data olletion weonly report the maro-F1 results beause this orpus is relatively easy andthe miro-F1 results are very similar for both our model and the single-tasklearning algorithm (whih is the regularized logisti regression lassi�er).Results in Figure 5.1 show that multi-task learning outperforms single tasklearning, espeially when the amount of training resoures is limited.5.3.1.2 Results on RCV1RCV1 is the new Reuters orpus whih was intended to onsist of all and onlyEnglish language stories produed by Reuters journalists between August 20,1996, and August 19, 1997. It onsists of over 800,000 newswire stories thathave been manually oded using three ategory sets. In our experiments weused the pre-proessed version [Lewis et al., 2004℄ whih is publily available.Sine there are three taxonomies for the orpus, we use the TOPIC odewhose total number of ategories K = 116 after taking into onsiderationsome intermediate level ategories suggested in [Lewis et al., 2004℄. We takethe standard training/test split for this olletion as well. However, sine thetest olletion is huge (more than 700k douments), we randomly selet 10kas our test set in the following experiments. As in the previous experiment,we take H = K in this experiment.After some preproessing, the total number of unique features of this dataolletion is 47, 236. Empirial Bayes method is not feasible here sine theinput spae is so high-dimensional that only the memory requirement to storethe ovariane V[θ] is O(F 2), whih is learly not a�ordable. Instead wetake the point estimation approah, whih redues the memory requirementto O(F ). In Figure 5.2 the result �individual� is again obtained by usingregularized logisti regression for eah ategory individually, and our modelwith Laplae prior over hidden soures sk's is estimated using the point
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Figure 5.2: Multi-label Text Classi�ation Results on RCV1estimation approah. For the RCV1 olletion we only report Miro-F1, andin fat we observed similar trend in Maro-F1 although values are muhlower due to the large number of rare ategories.The number of non-zero s elements indiates how sparse the solution is, e.g.,how many of the basis lassi�ers are atually used to form the ombinedlassi�er for eah task parameter θk in the joint learning framework. Wetake one random training set with 100 examples and ount the number ofnon-zeros elements of sk for k = 1, . . . ,K. It turns out that maximumnumber of non-zero elements is 5 (1 time), followed by 4 non-zero elements5 times, 3 non-zero elements 76 times, 2 non-zero elements 30 times, and�nally 1 non-zero element 4 times. The detailed results are shown in Table5.2.



CHAPTER 5. SPARSITY MODELS FOR MTL 61# of non-zero elements in sk 5 4 3 2 1 totalfrequeny 1 5 76 30 4 116Table 5.2: Distribution of Number of Non-zero Elements in sk (training sizeis 100)5.3.2 Anti-Spam FilteringEmails have beome more and more important in people's daily life andthe most important ommuniation tool sine the rapid growth of Internet.However, as the growth of its popularity, people are su�ering from reeiving�spam emails�, whih greatly slow down the e�etiveness of emails and be-ome quite annoying. As a result, anti-spam �ltering has beome a researhhallenge during the last several years. Anti-spam �ltering an in generalbe treated as a binary lassi�ation problem by providing ertain number oftraining emails - emails that are labeled �spam� or �non-spam� by users.A simple way to build an anti-spam �ltering system is to train a lassi�erfor all users in the system based on the training data they provided, whihwe name as �POOLED STL�. However, it is interesting to realize that usersmight have di�erent de�nitions of what is spam based on their preferene,although they do share a lot about the de�nition. This observation is espe-ially important as we gather more and more judgments for a spei� user,sine training a separate model for that user might be bene�ial. On theother hand, we usually have limited training resoures for most of the usersin the system and thus training a separate model for eah user may not bewise espeially onsidering the fat that users do share a lot on what is spam.We treat the anti-spam �ltering as a multi-task learning problem where eahuser is de�ned as a task. The predition funtion of eah task is omposedof two parts: a ommon omponent and a task-spei� omponent, as in the�noisy tasks� senario in Chapter 3. This method has the advantages of boththe individual learning and learning a single task using pooled data, sineall training resoures are used for eah user's predition while he still keepshis spei� omponent about what is a spam.The email orpus we used in our experiments were olleted at Carnegie Mel-lon University. It ontains personal emails from six users, and those emailswere olleted in around 3 months (roughly from September 2003 to Novem-ber 2003 and the exat time di�ers aross six users). Emails were originally



CHAPTER 5. SPARSITY MODELS FOR MTL 62lassi�ed into �ve ategories with di�erent priorities, namely �spam�, �what-ever �, �keep�, �important�, and �very important �. Figure 5.3 shows someorpus statistis about this email olletion. In our anti-spam �ltering ex-periments we simply treat all emails labeled other than �spam� as belongto a single �non-spam� ategory, and thus are able to formulate a binarylassi�ation problem for this dataset.

user1 user2 user3 user4 user5 user6 Total
0

100

200

300

400

500

600

700

800
Histogram of Emails

Nu
m

be
r o

f E
m

ai
ls 

in
 th

e 
Da

ta
se

t

spam (−1)
whatever (0)
keep (1)
important (2)
very important (3)

Figure 5.3: Email Corpus StatistisFrom the �gure we an see that even the spam populations are quite di�erentaross users, with the perentage ranging from 4.23% to 81.56% in our dataset. The total number of labeled emails is around 2, 300, and we randomlysample 50% as the test set2, while the training set is sampled from theremaining 50% randomly with varying size. The experimental results aremeasured in F1 measure and shown in Figure 5.4.In Figure 5.4 �MTL� refers our model for multi-task learning, �STL� refersto single task learning and is done using regularized logisti regression foreah user, while �POOLED STL� is also performed by regularized logistiregression by pooling all users' training resoures together. From the resultswe an see that our model is more e�etive in terms of deteting spams, dueto the fat that it onsiders both the ommon fator as well as individual2Here we did not onsider the temporal information inside the emails for simpliity.
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Figure 5.4: Email Anti-Spam Filteringspei� fator. On the other hand, it is not surprising to see that �STL�performs better as we get more and more training resoures, while �POOLEDSTL� is mostly e�etive when the training resoure is quite limited. It isimportant to have an anti-spam �ltering system that works well for bothases, sine for an email system it is unusual to have every user annotate alot of �spam� emails, but meanwhile it is quite possible that a ertain numberof users ould be willing to label a lot of their emails in order to ahieve abetter anti-spam �ltering e�et. The above experiment showed that with asfew as six users, we are able to ahieve a better system using the proposedmulti-task learning framework.It would be interesting to see what are the important features aptured inthe shared omponent and what are the features that are more e�etivefor eah individual user. To illustrate that, we rank the features based onthe absolute values of their orresponding parameter values. In Table 5.3we show the results of the feature ranking3 for further referene. From theresults we an see that all users getting spams with words like �viodin�3For privay reasons we removed words that are related to person identi�ation in thelist.



CHAPTER 5. SPARSITY MODELS FOR MTL 64rank shared user1 user2 user3 user4 user5 user61 ampus left hi re: buy title http:2 re: desk please you thanks ampus thanks3 hi put http: have question please re:4 thanks yesterday ourse time protet hi qg5 please hi play viodin tikets inex please6 you heers original do agent partiipants free7 viodin shool university me travel east kv8 have meeting subjet remember �ight garage mwg9 inex student shedule title http: work pm10 partiipants omputer available onvex know http: onlineTable 5.3: Informative Features for Anti-Spam Filtering as MTL (featuresare ranked based on their relative importane � whih is measured by theabsolute value of the orresponding parameter)and �inex�. User 6 is bothered about �free� and �online� things, while user4 is probably involved with booking tikets (and those are showed as mostinformative features for non-spams).5.4 SummaryWe onsidered two types of sparsity models for multi-task learning within ourframework, and onduted experiments on several text lassi�ation benh-mark olletions and one email orpus. The results show that our modelsoutperform the single-task learning methods espeially when the training re-soure for eah individual task is limited, whih often appears in pratie.Furthermore, we veri�ed that our models are able to ahieve the laimedsparsity property.



Chapter 6Joint Feature Seletion1Besides ahieving better generalization performane in supervised learningproblems, multi-task learning an also ontribute to other important sta-tistial mahine learning problems suh as feature/variable seletion2. Inthis hapter we formulate the feature seletion problem under the multi-tasklearning setting, whih an be seen to naturally generalize the traditionalfeature seletion problem in the single-task learning setting. We develop al-gorithms whih are able to identify features that are relevant to all (or most)of the tasks and our primary goal is to show that the proposed method formulti-task feature seletion an be more e�etive than traditional featureseletion when tasks share the same subset of relevant features.6.1 IntrodutionGiven a set of input variables (a.k.a. preditors, features) X1,X2, . . . ,XF ,the objetive of feature/variable seletion is to selet a subset of featuresR =
(r1, r2, . . . , rm) ⊂ {1, 2, . . . , F} that are relevant and/or informative. Hererelevane is often de�ned with ertain appliations in mind. For example,in the ontext of lassi�ation and regression, it usually means relevant tothe response variable Y ; while in an unsupervised learning setting suh as1An alternative name would be �Feature Seletion for Multi-Task Learning�.2Here we use the phrase �feature seletion� and �variable seletion� interhangeably, asthey do not di�er muh in our setting. Stritly speaking, feature seletion is more generalin the sense that eah feature an possibly be a funtion of several variables. We assumethat eah input variable is a feature throughout this hapter.65



CHAPTER 6. JOINT FEATURE SELECTION 66density estimation, it ould mean relevant to the probability density or massfuntion (in other words, densities hange the most along relevant featuredimensions). In statistial language, most of the ases an be approximatelysummarized through the onept of independene:supervised: f(Y |X1,X2, . . . ,XF ) = f(Y |Xr1 ,Xr2 , . . . ,Xrm)unsupervised: f(X1,X2, . . . ,XF ) ∝ f(Xr1 ,Xr2 , . . . ,Xrm) (6.1)Feature seletion has been an important problem in statistis [Tibshirani,1996, Hastie et al., 2001℄ and mahine learning [Blum and Langley, 1997,Yang and Pedersen, 1997, Liu and Setiono, 1998℄ for many years and is alsoknown as �variable seletion�, �dimensionality redution� in other slightlydi�erent ontext. Tehniques for feature seletion an ontribute in severalways, suh as:
• obtaining better preditive power
• ahieving e�ieny in (future) omputation and storage
• providing better interpretability and sienti� disoveryThere have been many feature seletion methods developed during the past,and they an be roughly ategorized into �lter-based methods and wrapper-based methods, see [Guyon and Elissee�, 2003℄ for a reent survey. In theformer, feature seletion is done by ranking features by orrelation oe�-ients or other riteria with respet to response variables; while in the lattersubsets of features are assessed in a wrapper (suh as lasso or SVM) aord-ing to their usefulness to some response variables. Generally speaking, �lter-based methods treat features independently and thus are easier to ondutand more e�ient; wrapper-based methods are omputationally expensivebut more aurate. In this hapter we will fous on wrapper-based methodssine they do not assume features are independent and provide prinipledand elegant solutions whih are often better than those o�ered by �lter-basedmethods [Guyon and Elissee�, 2003℄.6.2 Outline of Feature Seletion for STLStarting with a training set

D = {(x1, y1), (x2, y2), . . . , (xN , yN )} (6.2)



CHAPTER 6. JOINT FEATURE SELECTION 67where x ∈ X and y ∈ Y, the standard supervised learning problem tries to�nd an estimate f̂ of the funtion mapping f : X 7→ Y. Here our fous isto ondut variable seletion in the original feature spae, and we limit ourdisussion to linear predition funtions suh that X = R
F×1 and f(x) =

〈θ,x〉 where 〈., .〉 denotes the inner produt operation. It is assumed thatnon-linear feature mapping an be applied in the pre-proessing step if thegoal is to selet features whih are known funtions of the original set ofvariables.Equipped with any regularized linear method [Zhang and Oles, 2001, Zhangand Yang, 2003℄ as our wrapper, the above estimation problem an be on-verted into the following optimization problem:
θ̂ = arg min

θ

{

N
∑

i=1

L(yi, 〈θ,xi〉) + λΩ(θ)

} (6.3)where θ ∈ R
F×1 indexes the predition funtion f(x) = 〈θ,x〉, xi ∈ R

F×1 isthe i-th input data vetor, L(, ., ) is some onvex loss funtion for regressionor lassi�ation, Ω(θ) here is the penalty funtion whih an be thoughtas a measure of the model omplexity, and λ ∈ R
+ is the regularizationoe�ient whih ontrols the trade-o� between the empirial loss and themodel omplexity. Finally note that although we mostly use the square loss

L(y, 〈θ,x〉) = (y − 〈θ,x〉)2 (6.4)for regression tasks and the logisti loss
L(y, 〈θ,x〉) = log(1 + exp(−y〈θ,x〉)) (6.5)for lassi�ation tasks in the rest of the hapter, in general other hoies ofonvex loss funtions an be easily plugged into the framework, suh as theabsolute error loss for regression, or the hinge loss for lassi�ation.Ideally we would like to perform automati model seletion by seleting vari-ables using the l0 regularization, e.g. penalize ||θ||0 =

∑

f 1(θf 6= 0). Dueto its intrinsi non-smoothness, the omputation of l0-norm is notorious andknown to be NP-hard [Amaldi and Kann, 1998℄. As a surrogate, peoplehave used onvex approximations to the l0 regularization [Tibshirani, 1996,Weston et al., 2003℄.The most popular hoies of the penalty funtion are l2 and l1 regulariza-tions: Ω(θ) = ||θ||22 and Ω(θ) = ||θ||1. However, it is well-known that when



CHAPTER 6. JOINT FEATURE SELECTION 68
Ω(θ) takes the form of l1 regularization, the resulting estimator θ̂ will besparse and thus ahieves an e�et of variable seletion as a wrapper method[Tibshirani, 1996, Hastie et al., 2001℄. On the other hand, l2 regulariza-tion has the property of rotation invariane [Ng, 2004℄ and thus is often notreommended for the purpose of feature seletion.In partiular, equation (6.3) beomes the famous lasso algorithm [Tibshirani,1996℄ when L(, ., ) takes the form of the square loss and Ω(θ) is set to the
l1-norm:

θ̂lasso(λ) = arg min
θ







N
∑

i=1

(yi − 〈θ,xi〉)
2 + λ

F
∑

f=1

|θf |







(6.6)where we expliitly emphasize that θ̂lasso(λ) as a funtion of λ. We are ableto ahieve di�erent degree of sparsity by varying the value of λ. Atuallywhen θ̂lasso(0) is equivalent to least-square solution, and when θ̂lasso(∞) =
0. Another way to look at this is to notie that equation (6.6) is mathemat-ially equivalent [Luenberger, 2003, Boyd and Vandenberghe, 2004℄ to

minθ
∑N

i=1(yi − 〈θ,xi〉)
2subjet to: ∑F

f=1 |θf | ≤ A (6.7)where eah λ orresponds to a positive value A. Geometrially, the diamond-shaped onstraint in (6.3) results in the e�et that many θ̂f elements maybe exatly zero. Furthermore, the number of zero elements in θ̂lasso willgo up as we inrease λ (derease A). As a result, feature seletion an beautomatially onduted while onduting the optimization in equation (6.6)or (6.7).
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Figure 6.1: An example: # of non-zero elements versus λTo illustrate how to ondut feature seletion using the above wrapper-basedmethod, we give an example in text lassi�ation. We use the Reuters-21578data set [Yang and Liu, 1999℄ for this purpose, and the experiment is designedto lassify whether douments belong to the �earn� ategory or not. The lossfuntion is taken to be the logisti loss, and we use di�erent λ values fortraining. Figure 6.1 plots the number of nonzero elements in θ̂ versus λ. Wean see that as we inrease λ, we are able to ahieve more sparse results.Table 6.1 lists the ranked list of remaining features when λ = 100 (there areonly 10 features left in this ase), where the ranking is based on the absolutevalue |θf |.Finally, note that the reently developed least angle regression (LARS)[Efron et al., 2004℄ is an interesting idea whih an �nd all the solutions
θ̂lasso(λ) for all λ values very e�iently, and similar idea has been extendedto the SVM method [Hastie et al., 2004℄.6.3 Joint Feature Seletion for MTLOur primary interest is how to ondut e�etive feature seletion under themulti-task learning setting, whih we will also all joint feature seletion.The key question is: Given K predition tasks that are related, an weperform feature seletion in a more e�etive way? The answer, of ourse,again depends on the underlying assumption about the relatedness of the



CHAPTER 6. JOINT FEATURE SELECTION 70rank feature |θ| rank feature |θ|1 ts 2.49 6 dividend 0.782 net 1.69 7 earnings 0.373 shr 1.05 8 loss 0.174 pro�t 1.04 9 pt 0.125 reord 0.99 10 ompany 0.07Table 6.1: An example: seleted 10 features when λ = 100.0 (data set:Reuters-21578, ategory: earn)tasks. Here we take the most natural one: tasks share the same subset ofrelevant features. We show that when this is the ase, suitable models anbe designed to take that piee of information (the existene of a subset ofjoint relevant features) into onsideration, and thus have an advantage overtraditional methods whih selet features for eah task in a separate manner.Formally, suppose we have K predition tasks assoiated with K datasetsrespetively:
D(1) = {(x

(1)
1 , y

(1)
1 ) . . . , (x(1)

n1
, y(1)

n1
)}... ... ... (6.8)

D(K) = {(x
(K)
1 , y

(K)
1 ) . . . , (x(K)

nK
, y(K)

nK
)}where x

(k)
i = (x

(k)
i,1 , x

(k)
i,2 , . . . , x

(k)
i,F )T ∈ R

F×1. It is assumed that there ex-ists a subset R = {r1, r2, . . . , rm} ⊂ {1, 2, . . . , F} suh that the funtionalmappings f (k)'s an be written as
f (k)(x) = f (k)(x1, x2, . . . , xF ) = f (k)(xr1 , xr2 , . . . , xrm). (6.9)e.g. p(y|x) does not depend on the irrelevant dimensions I = {1, 2, . . . , F}\R.Generally speaking, joint feature seletion ould be useful in the followingways:1. to more aurately identify relevant features, espeially when the num-ber of tasks is large and the number of training instanes per task issmall;2. to get a more e�ient joint representation aross all tasks;



CHAPTER 6. JOINT FEATURE SELECTION 71As a result, models for multi-task feature seletion should also be evaluatedaordingly.To utilize the shared information among tasks, we an formulate the problemwithin the regularization learning framework as follows:
θ̂1, . . . θ̂K = arg min

θ1,...,θK

{

K
∑

k=1

Nk
∑

i=1

L(y
(k)
i , 〈θk,x

(k)
i 〉) + λΩ(θ1, . . . ,θK)

} (6.10)where Ω(θ1, . . . ,θK) is some penalty funtion whih measures the modelomplexity for allK funtions simultaneously. More importantly, Ω(θ1, . . . ,θK)ould impose oupling information between θi and θj whih is essentiallyused to model the task relatedness.Similar to the single-task learning ase, there are several speial ases of Ω.In partiular, when
Ω(θ1, . . . ,θK) =

K
∑

k=1

F
∑

f=1

|θk,f | (6.11)or
Ω(θ1, . . . ,θK) =

K
∑

k=1

F
∑

f=1

θ2
k,f (6.12)equation (6.10) deouples among K tasks and thus it is equivalent to learneah task separately with respet to l1 or l2 regularization. Furthermore,when l2 regularization is taken, a more general quadrati form an be ob-tained by applying [Evgeniou et al., 2005℄

Ω(θ1,θ2, . . . ,θK) =
(

θT
1 ,θ

T
2 , . . . ,θ

T
K

)

D











θ1

θ2...
θK











(6.13)with properly hosen matrix D ∈ R
KF×KF that an be used to speifyhow those task parameters should be o-regularized (or equivalently, howprior knowledge about those task parameters are orrelated in the Bayesiansetting). Also notie that setting D to diagonal matrix λI reovers theprevious speial ase.



CHAPTER 6. JOINT FEATURE SELECTION 726.3.1 l1 ◦ l∞ RegularizationIn pratial appliations, often only a small subset of features are rele-vant/informative to all K predition tasks. We would like to obtain a sparsesolution in terms of θk,f 's, espeially when the ardinality of the set of infor-mative/relevant features |R| = |{r1, r2, . . . , rm}| = m is muh smaller thanthe total number of features, e.g., m≪ F .Now, for the joint feature seletion problem of multi-task learning, we usethe following penalty funtion:
Ω(θ1, . . . ,θK) =

F
∑

f=1

sup
k
|θk,f |. (6.14)We name equation (6.14) the �l1 ◦ l∞ regularization�, whih omes from thefat that if we let Θ ∈ R

F×K

Θ = (θ1,θ2 . . . ,θK) =











θ1,1 θ2,1 . . . θK,1

θ1,2 θ2,2 . . . θK,2... ... . . . ...
θ1,F θ2,F . . . θK,F











(6.15)to be the parameter matrix, then the penalty funtion Ω(.) �rst does l∞regularization for eah row, and then it performs l1 regularization over theresulting elements. In the following we will also use the notation supk |θk,f | =
||θ.,f ||∞ where θ.,f = (θ1,f , θ2,f , . . . , θK,f) ∈ R

1×K to represent the param-eter vetor of the f -th feature aross all K tasks. Just like the reason why
l1 regularization leads to sparse solutions, the above formulation leads tosparse solutions aross all the tasks.Intuitively, if some feature is signi�antly relevant to at least one task, it willbe seleted; otherwise it is likely to be eliminated by having θ̂1,f = . . . =

θ̂K,f = 0. Similar intuition of taking the maximum value aross di�erenttasks have been used [Yang and Pedersen, 1997℄ in the setting of �lter-based methods suh as information gain [Cover and Thomas, 1991℄, mutualinformation [Cover and Thomas, 1991℄ and χ2-statistis [Yang and Pedersen,1997, Wasserman, 2005℄.6.3.2 Relaxation to l1 ◦ lp RegularizationIt is obvious that the assumption �all tasks share the same subset of relevantfeatures� is restritive. One way to relax the assumption is to assume that



CHAPTER 6. JOINT FEATURE SELECTION 73eah relevant feature is shared by many of the tasks, if not all. Notie thatin previous model we have Ω(θ1, . . . ,θK) =
∑

f supk |θk,f |, the penalizationon the f -th feature is deided by supk |θk,f |, whih in turn is ontributedto by exatly one of the K tasks by taking the supremum. This ould beappropriate if all tasks share the relevant feature, but less so if only someof tasks share it as relevant. On the other hand, we observe that the l1regularization will penalize ∑k |θk,f | whih is ontributed to by every taskwith the essentially same weight. To remove suh a restritive assumption,we an instead let Ω(.) to be the more general form
Ω(θ1, . . . ,θK) =

F
∑

f=1

||θ.,f ||p (6.16)with 1 ≤ p ≤ ∞, where ||x||p is the lp-norm and de�ned as
||x||p =

(

∑

i

|xi|
p

)1/p

. (6.17)We name this regularization the l1◦lp regularization. When p lies in the range
(1,∞), the above formulation also onsiders the joint seletion e�et but ina less rigorous way as the l1 ◦ l∞ regularization. Finally, this formulation anbe seen as a generalization of the lasso algorithm to the multi-task learningsetting no matter what p's value is. To see this, note that when K = 1,based on equation (6.16) we have

Ω(θ1) =

F
∑

f=1

||θ.,f ||p =

F
∑

f=1

|θ1,f |. (6.18)6.3.3 Numerial AlgorithmAll above methods (inluding our baseline, the l1 regularized method forsingle-task learning) need to solve the following optimization problem
θ̂1, . . . θ̂K = arg min

θ1,...,θK

O(D(1), . . . ,D(K);θ1, . . . ,θK)

= arg min
θ1,...,θK







K
∑

k=1

Nk
∑

i=1

L(y
(k)
i , 〈θk,x

(k)
i 〉) + λ

F
∑

f=1

||θ.,f ||p







(6.19)



CHAPTER 6. JOINT FEATURE SELECTION 74with 1 ≤ p ≤ ∞3. When p > 1, θk's (k = 1, . . . ,K) will be oupled togetherand the optimization problem needs to be solved in a joint manner.We take the oordinate desent approah by modi�ation of the Gauss Seidelalgorithm used in [Zhang and Oles, 2001℄, where in every step we only fouson a single variable θk,f and make sure that its hange from
θk,f ← θk,f + δ (6.20)will monotonially derease the objetive in equation (6.19). Having thismonotoniity property is elegant as we would easily stop whenever the au-ray su�es our appliation (suh as when the maximum value of δk,f in oneiteration is less than 1e−6, or the relative hange of loss O is small enough).For eah oordinate, a quadrati trust-region [Noedal and Wright, 1999℄is formed so that it uniformly upper bounds the Hessian of the objetivearound the urrent position. The pseudo ode is listed in Algorithm 4 forreferene.6.4 ExperimentsIn our experiments we �rst illustrate the e�etiveness of the proposed featureseletion methods for multi-task learning by using simulated data sets. Re-sults on l1 ◦ l∞ and l1 ◦ lp will be ompared to lasso under di�erent settings,and then we show empirially the relation between the number of tasks ande�etive sample size. Finally, we also evaluate its performane in terms oflassi�ation performane.6.4.1 Results on Feature SeletionIn order to verify the laimed theoretial properties of our methods, we willondut some experiments using simulated data. One of the main purposesof our experiments is to verify that when multiple tasks share a small sub-set of relevant features, whether our method an more aurately selet thesubset of relevant features (ompared to its orresponding single-task featureseletion method). To ondut the experiments, we generate a dataset forregression tasks with respet to squared loss L(yi, f(xi)) = (yi − f(xi))

2, asshown in Figure 6.2. Note that we only assume features 1, 2, . . . , R out of3Due to boundary problems, we treat p = 1 and p = ∞ separately from 1 < p < ∞ inour implementation. Both speial ases an be solved more easily in similar way.
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Algorithm 4 Pseudo-ode for l1 ◦ lp regularized algorithm1. Let θk = 0 (k = 1, 2, . . . ,K), and loop steps 2-5 until onvergene2. Pik up a parameter θk,f (in ertain order or random), and de�ne

O(δ) =
∑Nk

i=1 L(y
(k)
i , 〈θk,x

(k)
i 〉+ δx

(k)
i,f ) and a =

∑

k′ 6=k |θk′,f |
p3. If a = 0 (e.g. θ1,f = . . . = θk−1,f = θk+1,f = . . . = θK,f = 0):(a) if θk,f = 0 and |∂O/∂δ| > λ:

δ̂ = min
δ
{O(δ) + λ|δ|} (6.21)(b) if θk,f 6= 0:

δ̂ = min
δ∈[−|θk,f |,|θk,f |]

{O(δ) + λ|θk,f + δ|} (6.22)4. If a > 0:
δ̂ = min

δ

{

O(δ) + λ(a+ |θk,f + δ|p)1/p
} (6.23)5. Update θk,f ← θk,f + δ̂Note: equations 6.21-6.23 are solved using quadrati trust-region methodwhere the atual quadrati form (depends on the form of loss funtion L(., .))is taken to be the upper bound of the Hessian.
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F total number of features are relevant while the rest features are just ran-dom, irrelevant noise. We ompare how e�etive di�erent feature seletionmethods are in terms of identifying this small subset of relevant features.We evaluate methods based on the preision and reall of feature seletion,similar to those used in information retrieval:

precision =
# of orretly predited nonzero θ̂j's# of totally predited nonzero θ̂j's

=
|R̂ ∩R|

|R̂|

recall =
# of orretly predited nonzero θ̂j's# of nonzero θj's

=
|R̂ ∩R|

|R|
(6.24)where R̂ denotes the set of predited nonzero features. Ideally we have

precision = 1.0 and recall = |R̂|/|R| when |R̂| ≤ |R| and precision = |R|/|R̂|and recall = 1.0 otherwise.



CHAPTER 6. JOINT FEATURE SELECTION 771. Set the number of relevant features be R = 10, the total number offeatures be F = 100, and the number of tasks be K = 20.2. Generate xi ∈ R
F×1 ∼ Normal(0, I) for i = 1, 2, . . . , 100.3. Generate K number of tasks, for the k-th task we generate
θ
(k)
0 ∼ Normal(0, 1)

θ
(k)
j ∼ Normal(0, 1), j = 1, 2, . . . , R (6.25)
θ
(k)
j = 0, j = R+ 1, . . . , F.That is, we only assume that R = 10 features out of F = 100 featuresare atually relevant.4. Finally, for eah task we generate
y

(k)
i ∼ Normal(θ

(k)
0 +

R
∑

j=1

θ
(k)
j xi,j, 1) (6.26)for i = 1, 2, . . . , 100 as response variables for the regression tasks.Figure 6.2: Generation proess of a syntheti dataset6.4.1.1 E�etiveness of l1 ◦ l∞ regularizationIn our �rst experiment, we would like to ompare our algorithm l1 ◦ l∞ tolasso (whih is a speial ase of our algorithm when K = 1) whih appliesto eah task individually. Sine the numerial value of λ for lasso and the

l1 ◦ l∞ regularization method are not diretly omparable, we ontrol thetotal number of nonzero θ̂j's by varying the regularization parameter λ. Forlasso it is taken to be the average over K = 20 tasks; and for the l1 ◦ l∞regularization method it is the number of nonzero supk |θk,f |'s. The topgraph in Figure 6.3 shows the result of a typial run as we vary λ, whihlearly illustrates the advantage of the l1 ◦ l∞ regularization method overlasso when the assumption holds.As we mentioned earlier, the assumption that all tasks share the same subsetof featuresXR = {Xr1 ,Xr2 , . . . ,Xrm} is restritive. A more realisti assump-tion is that relevant features have signi�ant overlaps aross tasks. To study



CHAPTER 6. JOINT FEATURE SELECTION 78the robustness of the l1 ◦ l∞ regularization and later the more general l1 ◦ lpregularization method, we re-generate a simulated data set. The generationis similar to that in Figure 6.2 exept that we only assume the �rst k ≤ Rfeatures are shared among all tasks, while eah task has the remaining R−krelevant features randomly generated from indies k+ 1, . . . , 100. By hoos-ing di�erent values of k = 1, . . . , 10, we are able to measure how robust themethod is with respet to the underlying assumption. The bottom graph inFigure 6.3 shows that the results of the l1 ◦ l∞ regularization method is notrobust (sensitive to the assumption).6.4.1.2 E�etiveness of l1 ◦ lp regularizationAs pointed out earlier, the assumption that all tasks share the same subset ofrelevant features is learly restriting. Often when we �nd a good appliationof multi-task learning, the reality is that relevant features are shared bymany of the tasks. We would like to investigate how the relaxed model,the l1 ◦ lp regularization method (for general 1 < p < ∞) performs whenthe assumption is violated, and ompare it to the methods with p = 1 and
p =∞.
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Figure 6.3: Top: E�etiveness of Lasso vs. MTL Lasso on Simulated Re-gression Dataset (This is a typial run. In the setting of K = 20 tasks,the l1 ◦ l∞ regularized method always orretly predits all nonzero θ's inall 10 runs. E.g., they all have the same pieewise linear urve as shown inthe above graph.); Bottom: e�etiveness when assumption does not stritlyhold (k = 8)



CHAPTER 6. JOINT FEATURE SELECTION 801. Set the number of relevant features be R = 10, the total number offeatures be F = 100, and the number of tasks be K = 20.2. Generate xi ∈ R
F×1 ∼ Normal(0, I) for i = 1, 2, . . . , 100.3. Generate K number of tasks, for the k-th task we generate

θ
(k)
0 ∼ Normal(0, 1)

θ
(k)
j ∼ rNormal(0, 1) + (1− r)δ0, j = 1, 2, . . . , R (6.27)
θ
(k)
j ∼

R(1− r)

100−R
Normal(0, 1) +

100− 2R +Rr

100−R
δ0, j = R+ 1, . . . , F.The main motivation of the design is to make sure that on average wehave R = 10 features out of F = 100 features are atually relevant.4. Finally, for eah task we generate

y
(k)
i ∼ Normal(θ

(k)
0 +

F
∑

j=1

θ
(k)
j xi,j, 1) (6.28)for i = 1, 2, . . . , 100 as response variables for the regression tasks.Figure 6.4: Generation proess of syntheti dataset-2To ondut suh an investigation, in Figure 6.4 we use a modi�ed algorithmof Figure 6.2 to generate the task parameters and data set. For the k-th task,

βj ∼ Normal(0, 1) with probability r and equals 0 with probability 1− r, for
j = 1, . . . , R; βj ∼ Normal(0, 1) with probability R(1 − r)/(100 − R) andequals 0 otherwise, for j = R+ 1, . . . , F . Clearly when r = 1.0 this repeatsthe algorithm in Figure 6.2, and when r < 1.0 it relaxes the assumption,but the expeted number of relevant features per task still remains R = 10.In Figure 6.5 we generate simulated data by using r = 0.8 and ompare l1,
l1 ◦ l∞ and l1 ◦ lp for �nite p value. Results show that the l1 ◦ l∞ methodsu�ers a lot from the fat that the assumption does not hold, while the l1 ◦ lpmethod is muh more robust (after all, it onverges to lasso as p→ 1).6.4.1.3 Number of tasks vs. e�etive sample sizeOne way to understand why multi-task learning an help feature seletion isto view from the aspet of e�etive sample size. That is, training examples
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CHAPTER 6. JOINT FEATURE SELECTION 82from other tasks an also ontribute to the �e�etive� number of trainingexamples for one partiular task when tasks are related. Here we ondutexperiments on simulated data to verify suh theoretial laims. The ex-periment for single-task feature seletion is the same as before exept thatwe vary the number of training examples, from 100 to 1000. For multi-taskfeature seletion we vary K - the number of tasks - from 1 to 20 instead,where eah task has 100 training examples as before. Again, models are om-pared by requiring that they ahieve the same auray of feature seletion,and again this is ahieved by tuning the regularization parameter λ for eahmethod until they predit exatly 10 non-zero β's (that is, at the reall level10). To make the problem more di�ult, we set F = 1000 instead of 100,e.g. only 1% of the total features are atually relevant. Both the datasetand parameters are sampled 20 times aording to Figure 6.2 and results arereported in Figure 6.6.By omparing both graphs in Figure 6.6 we an see that when tasks arerelated, having additional tasks an signi�antly ontribute to the aurayof feature seletion, in pretty muh the same way as we inrease the samplesize for single-task learning4. This result further supports the e�etivenessof the proposed joint feature seletion method.6.4.1.4 SummaryWe onduted several experiments on several simulated datasets to show thee�etiveness of the our approahes. Under the assumption that all tasksshare the same set of relevant features, the proposed l1 ◦ l∞ regularizationmethod works very well, as shown in Figure 6.2. Furthermore, the experi-ments in Figure 6.6 learly indiate its strength ompared to having a largersample size in the single-task learning setting. When the assumption is vi-olated, espeially when relevant features are shared by many (but not all)tasks, we demonstrate that using the l1 ◦ lp regularization approah an workbetter due to its less rigid assumption.Furthermore, we also onduted simulated experiments for lassi�ation taskswith a similar proedure desribed as above. Spei�ally, the generation of4Note that the simulation results depend quantitatively on the signal/noise ratio in ourexperiments.



CHAPTER 6. JOINT FEATURE SELECTION 83

100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of training examples

ac
cu

ra
cy

 o
f f

ea
tu

re
 s

el
ec

tio
n

2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of tasks

ac
cu

ra
cy

 o
f f

ea
tu

re
 s

el
ec

tio
n

Figure 6.6: Top: auray of feature seletion (at reall level 10) versusnumber of training examples in l1 regularized lasso; Bottom: auray offeature seletion (at reall level 10) versus number of tasks in l1 ◦ l∞ regu-larized method



CHAPTER 6. JOINT FEATURE SELECTION 84response variables in Figure 6.2 is replaed by
y

(k)
i ∼ Bernoulli



µ(θ
(k)
0 +

10
∑

j=1

θ
(k)
j xi,j)



 (6.29)and square loss is replaed by logisti loss during the learning, where µ(t) =
(1+exp(−t))−1 is the sigmoid funtion. We do not report the results for las-si�ation tasks here sine they show very similar patterns to the regressionase and do not provide more insights.6.4.2 Results on Handwritten Digits ReognitionIn this experiment we investigate our proposed methods for the handwrittendigits reognition problem. The dataset we used is a subset of the MNISTwhih ontains 60,000 training images and 10,000 testing images. Eah digit(0-9) is represented in a matrix of 28 × 28 pixels. In our preproessingwe make eah pixel a binary value representing white or blak, and extratfeatures based on 4×4 shaped square patterns similar to those used in [Andoand Zhang, 2004℄ . After preproessing, eah digit is represented as a vetorwith around nine thousand features.

p 1.0 1.001 1.01 1.1 1.5 5.0error rate 0.1410 0.1238 0.1266 0.1328 0.1286 0.141Table 6.2: Results on Handwritten Digits ReognitionSine there are 10 digits (0-9) in our experiments, we ould treat it as a multi-task learning problem with K = 10 where eah task is a binary lassi�ationproblem with respet to a partiular digit. In the experiments we examinethe e�etiveness of our methods by using small number of features (100features in our ase). Given a set of andidate features desribed as above,we an tune λ to selet a subset of features for eah learning algorithm.Results are shown in Table 6.2, whih show that we an bene�t in terms ofpreditive power by using p > 1.0, whih in turn implies that there is ertainamount of information shared (in terms of relevant features) among the tenpredition tasks we study.



CHAPTER 6. JOINT FEATURE SELECTION 856.5 SummaryIn this hapter we propose a new approah for feature seletion in the multi-task learning setting, where the goal is to selet a joint subset of featuresthat are relevant to multiple predition tasks. We use a wrapper-based ap-proah by introduing the l1 ◦ l∞ regularization that penalizes the overallmodel omplexity and naturally imposes parameter sparsity aross all tasks,and show that it an be e�iently solved by e�ient onvex optimizationtehniques. Furthermore, we also relax the assumption whih leads to thedisovery of a full spetrum of regularization algorithms based on the l1 ◦ lp(1 ≤ p ≤ ∞) regularization. Our model an be thought as a generalizationof the lasso algorithm to multi-task learning setting.We ondut experiments on simulated data sets to verify the theoretialproperties and the e�etiveness of the proposed models. Furthermore, wedemonstrate the ontribution of multi-task learning to the e�etive sam-ple size. The results on handwritten digit reognition problem also showthe e�etiveness and advantages of the proposed method over onventionalsingle-task learning method.



Chapter 7Mixture ModelsOne of the multi-task learning senarios disussed earlier in hapter 3 is the�lusters of tasks�, whih is suitable for the situation where task parametersform several lusters. In this hapter we �rst introdue single-luster modelsfor multi-task learning [Yu et al., 2005℄ and then propose to use mixturemodels. The proposed method obviously generalizes the single-luster modeland has more �exibility, and it an be thought as applying a onventionalmixture model to a higher level - the funtional spae.7.1 Single-Cluster ModelsHere by single-luster model we mean that a uni-modal distribution (suhas multivariate Gaussian) is used as the parametri family. In our multi-task learning setting this means that tasks parameters θk's are �tted usinga multivariate Gaussian distribution (e.g., θk ∼ Normal(µ,Σ)).7.1.1 Bayesian Linear ModelGiven the linear preditive funtion f(x) = 〈θ,x〉 (assume x ∈ X = R
F×1),a Bayesian linear regression model assumes

θ ∼ Normal(µ,Σ)

yi|xi ∼ Normal(〈θ,xi〉, σ
2) (7.1)86



CHAPTER 7. MIXTURE MODELS 87where the parameter θ follows a multivariate normal prior. The probabilityof observing a set of i.i.d. data D = {(x1, y1), . . . , (xn, yn)} an be writtenas (with slight abuse of notation)
p(D|θ) =

n
∏

i=1

p(yi|θ,xi). (7.2)Consequently, the posterior distribution of θ after observing D an be al-ulated by applying the Bayes rule:
p(θ|D) =

p(θ)
∏n

i=1 p(yi|θ,xi)
∫

p(θ)
∏n

i=1 p(yi|θ,xi)dθ

=
Normal(θ | µ,Σ)

∏n
i=1 Normal(yi | 〈θ,xi〉, σ

2)
∫

[Normal(θ | µ,Σ)
∏n

i=1 Normal(yi | 〈θ,xi〉, σ2)] dθ

=
Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)

∫

[Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)] dθ

= Normal(θ | µ̃, Σ̃) (7.3)where X = (x1,x2, . . . ,xn)T ∈ R
n×F and y = (y1, y2, . . . , yn)T ∈ R

n×1,and the derivation an be easily obtained by using the onjugay property.In other words, p(θ|D), the posterior distribution of θ after observing thedataset D, is still a multivariate normal distribution with mean µ̃ and o-variane Σ̃ updated as:̃
Σ =

(

Σ−1 +
1

σ2
XTX

)−1

µ̃ = Σ̃

(

Σ−1µ +
1

σ2
XTy

) (7.4)To apply this to multi-task learning, we an assume that task parameters
θk ∼ Normal(µ,Σ), k = 1, . . . ,K. (7.5)The advantage of modeling multiple tasks using this method is: when tasksform a luster we an obtain a good estimate of their prior distribution bypulling information together from multiple tasks. Note that although it ispossible to learn the prior distribution for single-task learning, it is moredi�ult espeially when the number of parameters is large and the numberof training examples is small.



CHAPTER 7. MIXTURE MODELS 887.1.2 Gaussian ProessThe Bayesian linear regresssion an also be viewed in the funtion spae,and in that ase it beomes a speial ase of Gaussian proess. The Gaus-sian proess viewpoint does not only enhane our understand, but also havepratial advantages (as disussed below). We follow the steps in [Williams,1998℄. Note that based on equation (7.1), for any xi,xj ∈ X we have
E(f(xi)) = 〈µ,xi〉

C(f(xi), f(xj)) = 〈xi,Σxj〉 (7.6)So from the funtional viewpoint, this is a Gaussian proess over the re-gression funtions f ∼ GP(m(.),K(., .)) with the mean funtion de�ned as
m(x) = 〈µ,x〉 and the ovariane funtion de�ned as K(xi,xj)

△
= Ki,j =

〈xi,Σxj〉.Often one work with Gaussian proess using the kernel representer theorem[Kimeldorf and Wahba, 1971℄. Given a �nite set of training instanes, theestimation of the mean of the predition funtion an be represented as
E(f(x)) =

n
∑

i=1

αiK(xi,x). (7.7)It an be shown that [Yu et al., 2005℄ the model in equation (7.1) orrespondsto the following model
α ∼ Normal(µα,Σα)

y ∼ Normal(XXT α, σ2I) (7.8)with properly hosen µα and Σα suh that XT µα = µ and XTΣαX = Σ.There are several advantages of viewing Bayesian linear model in terms ofGaussian proesses. First of all, we an apply more �exible mean funtionand ovariane funtion in Gaussian proesses and thus easily extend tononlinear funtions. Seond, it is omputationally pleasant to work with GPwhen the number of features is greater than the number of instanes (whihoften happens in pratie). For example, the input vetor x in all previousderivations an be replaed by a non-linear, high-dimensional mapping φ(x).Even if φ(x) is in�nite dimensional, we an still work with Gaussian proessin the �nite sample spae as suggested by equation (7.8). In partiular,equation (7.8) beomes
α ∼ Normal(µα,Σα)

y ∼ Normal(Kα, σ2I) (7.9)



CHAPTER 7. MIXTURE MODELS 89whereK = ΦΦT is the kernel matrix andΦ is de�ned as (φ(x1), . . . , φ(xn))T .7.2 Mixture ModelsIt is well-known that a multivariate Gaussian/normal distribution an onlymodel single-luster distributions well. For exatly the same reason, whenused for multi-task learning problems, both the Bayesian linear model andGaussian proess have the limitation that task preditive funtions f (k)'s areassumed to form a single luster. In this setion we propose to use mixturemodels for the more general senario alled �luster of tasks� introdued inChapter 3. Clearly, mixture models are generalizations of the single-lustermodels and an handle more ompliated multi-task learning ases, and theexistene of many tasks makes the usage of mixture model justi�ed andestimatable.7.2.1 Mixture of Bayesian Linear ModelsTo extend the Bayesian linear model in equation (7.1), we assume that
θ(k) ∼ π1Normal(µ1,Σ1) + . . . + πHNormal(µH ,ΣH)

y(k) ∼ Normal(X(k)θ(k), σ2I) (7.10)where πh ≥ 0 (h = 1, . . . ,H) and ∑H
h=1 πh = 1. X(k) = (x

(k)
1 , . . . ,x

(k)
nk )T ∈

R
nk×F and y(k) = (y

(k)
1 , . . . , y

(k)
nk )T ∈ R

nk×1 are again the simpli�ed rep-resentation of the input and output data instanes for the k-th task. Inother words, tasks are assumed to be generated from one of the lusters. Tosimplify notations, we will use the notation
MoNormal

(

(πh,µh,Σh)Hh=1

)

△
= π1Normal(µ1,Σ1) + . . . + πHNormal(µH ,ΣH) (7.11)to represent the mixture of normal distributions.If we know the parameters Ω = {(πh,µh,Σh)Hh=1, σ

2} we an obtain theposterior distribution of p(θ(k) | D(k),Ω) similar to the ase of Bayesian linearmodel (and this is essentially the E-step in the EM algorithm introduedlater):
p(θ(k) | D(k))
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=

p(θ(k))p(D(k) | θ(k))
∫

[

p(θ(k))p(D(k) | θ(k))
]

dθ(k)

=
MoNormal

(

θ(k) | (πh,µh,Σh)Hh=1

)

Normal(y(k) | X(k)θ(k), σ2I)

∫

[

MoNormal
(

θ(k) | (πh,µh,Σh)Hh=1

)

Normal(y(k) | X(k)θ(k), σ2I)
]

dθ(k)

= MoNormal
(

θ(k) | (π̃h, µ̃h, Σ̃h)Hh=1

) (7.12)After some math manipulation, it is not surprisingly to see that the posteriordistribution of p(θ(k) | D(k)) is also a mixture of normal distribution, withparameters updated as
Σ̃

(k)
h =

(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)−1

µ̃
(k)
h = Σ̃h

(

Σ−1
h µh +

1

σ2
〈X(k),y(k)〉

) (7.13)
π̃

(k)
h =

c
(k)
h πh

∑H
h′=1 c

(k)
h′ πh′where ch is a normalization fator de�ned as

c
(k)
h

=

∫

Normal(θ(k) | µh,Σh)Normal(y(k) | X(k)θ(k), σ2I)dθ(k)

=
|Σ̃h|

1/2

(2πσ2)nk/2|Σh|1/2
exp

(

−
µT

h Σ−1
h µh + 1

σ2 〈y
(k),y(k)〉 − µ̃T

h Σ̃
−1
h µ̃h

2

)(7.14)The last step is obtained after some tedious alulation (see Appendix A).The above updating should be arried out for all tasks k = 1, . . . ,K.We use the empirial Bayes method to learn the parameters (πh,µh,Σh)Hh=1and σ2. This will be onduted by an EM algorithm that is summarized inAlgorithm 5. The details of the derivations an be found in Appendix B atthe end of this hapter.7.2.1.1 Hyper-prior smoothingIf we have a relatively small K (number of tasks) ompared to H, the num-ber of mixture omponents, we may over�t as the number of parameters to



CHAPTER 7. MIXTURE MODELS 91
Algorithm 5 EM Algorithm for Mixture of Bayesian Linear Regression1. InitializationGiven H, the number of lusters, initialize (πh,µh,Σh)Hh=1 and σ22. Loop until onvergene(a) E-step: for eah task and eah omponent luster (k = 1, . . . ,K;

h = 1, . . . ,H) update π̃(k)
h , µ̃

(k)
h and Σ̃

(k)
h as follows (appendix Bfor details):

π̃
(k)
h ∝ πh

|Σ̃
(k)
h |1/2

|Σh|1/2
exp

2

4−
µ

T
h Σ

−1
h µh − 〈µ̃

(k)
h , (Σ̃

(k)
h )−1

µ̃
(k)
h 〉

2

3

5

Σ̃
(k)
h =

„

Σ
−1
h +

1

σ2
〈X(k),X(k)〉

«−1

µ̃
(k)
h = Σ̃

(k)
h

„

Σ
−1
h µh +

1

σ2
〈X(k), y(k)〉

«(b) M-step: for eah omponent luster, update πh, µh, Σh

µh =

PK
k=1 π̃

(k)
h µ̃

(k)
h

PK
k=1 π̃

(k)
h

Σh =
1

PK
k=1 π̃

(k)
h

K
X

k=1

π̃
(k)
h

“

Σ̃
(k)
h + (µ̃

(k)
h − µh)(µ̃

(k)
h − µh)T

”

πh =
1

K

K
X

k=1

π̃
(k)
hand

σ2 =
1

PK
k=1 nk

K
X

k=1

"

〈y(k), y(k)〉 − 2〈y(k), X(k)〉(
H

X

h=1

π̃
(k)
h µ̃

(k)
h )

+
H

X

h=1

π̃
(k)
h 〈X(k)

µ̃
(k)
h , X(k)

µ̃
(k)
h 〉 +

H
X

h=1

π̃
(k)
h Tr

h

〈X(k),X(k)Σ̃
(k)
h 〉

i

#



CHAPTER 7. MIXTURE MODELS 92be estimated is large (µh's and Σh's). We would assoiate a hyper-prior dis-tribution H(µ,Σh) over {µh,Σh}
H
h=1 (espeially Σh's) to avoid over�tting.The main di�erene is in the M-step, where the maximization w.r.t. µh and

Σh is penalized by logH(µh,Σh). An even simpler method is to smooth theestimate in the M-step suh as
Σh =

1

λ+
∑K

k=1 π̃
(k)
h

K
∑

k=1

π̃
(k)
h

(

λI + Σ̃
(k)
h + (µ̃

(k)
h − µh)(µ̃

(k)
h − µh)T

) (7.15)so that estimates of Σh will not be ill-behaved.7.2.1.2 Connetion to the MTL FrameworkThe MTL framework proposed in Chapter 3 an be easily adapted to supportthe mixture of Bayesian linear models. Mixture of Bayesian linear modelsan be ahieved by assuming that eah olumn of the matrix Λ follow amultivariate normal distribution
θ(k) = Λsk

sk ∼ Multinomial(π1, π2, . . . , πH) (7.16)
Λ.,h ∼ Normal(µh,Σh)together with the observation model

y
(k)
i ∼ Normal(〈θ(k),x

(k)
i 〉, σ

2) k = 1, . . . ,K; i = 1, . . . , nk. (7.17)The prior probability of θ(k) an be easily seen to be a mixture of normaldistributions by summing over sk:
p(θ(k)) =

∑

sk

p(sk)p(θ
(k)|sk) =

H
∑

h=1

πhNormal(µh,Σh) (7.18)Thus it follows that equation (7.16) and (7.17) is equivalent to the model inequation (7.10).



CHAPTER 7. MIXTURE MODELS 937.2.1.3 Mixtures with Common CovarianeSometimes we would like to obtain simpler mixture model than the one usedin equation (7.16), where eah mixture omponent has its own mean butshare a ommon ovariane. One of the bene�ts of doing so is to redue thenumber of parameters and prevent over�tting. The model in equation (7.16)an be simply modi�ed to the following:
θk = Λsk + ek

sk ∼ Multinomial(π1, π2, . . . , πH) (7.19)
ek ∼ Normal(0,Σ)Geometrially, all task funtions form H lusters, where they share the sameovariane Σ. Details of algorithm an be found in Appendix B.7.2.2 Mixture of Gaussian ProessesMixture of Gaussian proesses an be seen as a partiular variant of mixtureof experts in [Jaobs et al., 1991℄. Tresp [Tresp, 2001℄ introdued the mixtureof Gaussian proess model with di�erent sale parameters and disussedits onnetion to related methods; Rasmussen and Ghahramani [Rasmussenand Ghahramani, 2002℄ proposed the in�nite mixture of Gaussian proesseswhose ovariane funtions are learned from the data.In the multi-task learning setting we will show that mixture of Gaussianproesses an naturally handle the �lusters of tasks� senario, where eahluster an be modeled by a Gaussian proess expert with di�erent meanand ovariane funtion.Under the assumption of mixture of Gaussian proesses, the hierarhialmodel an be written as

f (k)|sk = h ∼ GP(mh(.),Kh(., .))

sk ∼ Multinomial(π1, π2, . . . , πH) (7.20)whih has parameters π1, . . . , πH as well as mh(.)'s and Kh(., .)'s.Note that we are free to hoose any valid ovariane funtion, possibly dif-ferent ones for di�erent omponent. One �exible hoie that is often used inthe literature [Williams, 1998, Rasmussen and Ghahramani, 2002℄ takes the
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K(xi,xj) = v0 exp



−
1

2

F
∑

f=1

(xi,f − xj,f)2

w2
f



+ v1δ(i, j) (7.21)with hyper-parameters v0 ontrolling the signal variane, v1 ontrolling thenoise variane, and wf ontrolling the relevane of the f -th feature in pre-diting the response variable.By using the representation in equation (7.8), we an formulate the multi-task learning algorithm by learning µα,h and Σα,h as well as πh's. Sinethe derivation of the EM algorithm is similar to that of mixture of Bayesianlinear models, we only give the results in Algorithm 6 .7.3 Experiments7.3.1 Syntheti DatasetThe purpose of this experiment is to show that if tasks are formed intolusters, our model an orretly identify those lusters as well as give anaurate estimation of the sales of the lusters.We generate K samples {θ1, . . . ,θK} from a mixture of three 2-dimensionalnormal distributions with the following parameters: π1 = 0.5, µ1 = (2, 2)T ,
Σ1 = ((0.5, 0.4)T , (0.4, 0.5)T ); π2 = 0.3, µ2 = (2,−2)T , Σ2 = 0.5I; π3 = 0.2,
µ2 = (−2, 2)T , Σ3 = 0.5I. Figure 7.1 shows the probability density of thismixture distribution. For eah generated parameter θk, we further generatean assoiated dataset {(x(k)

i , y
(k)
i )ni=1} suh that

x
(k)
i ∼ Normal(0, 2I)

y
(k)
i ∼ Normal(〈θk,x

(k)
i 〉, 1). (7.22)In our simulation, we generate K = 100 tasks and for eah task we generate

n = 10 pairs of data instanes.We apply our algorithm where we use K(xi,xj) = 〈xi,xj〉 as the base ker-nel, and the number of lusters is hosen by 5-fold likelihood-based rossvalidation (see Chapter 8), and in this ase H∗ is found to be 3 whih is theorret number of lusters. Figure 7.1 shows the ontours of densities for
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Algorithm 6 EM Algorithm for Mixture of Gaussian Proesses1. InitializationGiven H, the number of lusters, initialize (πh,µα,h,Σα,h)Hh=1 and σ2;speify Kh's parametri form for h = 1, . . . ,H2. Loop until onvergene(a) E-step: for eah task and eah omponent luster (k = 1, . . . ,K;

h = 1, . . . ,H) update π̃(k)
h , µ̃

(k)
α,h and Σ̃

(k)
α,h:

π̃
(k)
h ∝ πh

|Σ̃
(k)
α,h|

1/2

|Σα,h|1/2
exp

2

4−
µ

T
αhΣ

−1
α,hµα,h − 〈µ̃
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α,h, (Σ̃

(k)
α,h)−1
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(k)
α,h〉

2

3

5

Σ̃
(k)
α,h =

„
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−1
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〈K

(k)
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«
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Σ
−1
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〈K

(k)
h ,y(k)〉

«where K
(K)
h is the kernel matrix between X(k) and X = ∪kX

(k), im-plemented with Kh.(b) M-step: for eah omponent luster, update πh, µα,h, Σα,h
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Figure 7.1: Left: mixture model (θ(k) ∼ MoNormal({πh,µh,Σh}
3
h=1));Right: estimated densitymodel SSE model SSEMixture 2.53± 0.19 Ridge λ = 0.1 2.84 ± 0.18MLE 2.89 ± 0.18 Ridge λ = 0.2 2.82 ± 0.19Ridge λ = 0.01 2.88 ± 0.18 Ridge λ = 0.5 2.83 ± 0.21Ridge λ = 0.02 2.88 ± 0.18 Ridge λ = 1.0 3.07 ± 0.25Ridge λ = 0.05 2.86 ± 0.18 Ridge λ = 2.0 3.86 ± 0.28Table 7.1: Sum of Squared Error (results are summarized over 10 randomtrials)both the true density and the estimated mixture model. From the graph wean see that the estimation niely resembles the true underlying density.Furthermore, we also evaluate the model in terms of the Sum Squared Errors(SSE):

SSE =

K
∑

k=1

(θ̂k − θk)
T (θ̂k − θk). (7.23)For the mixture model we use the posterior mean θMAE as the estimator,and ompare the results with ridge regression estimators with parameter λ(when λ = 0 it beomes the Maximum Likelihood Estimation). Results areshown in table 7.1, whih learly shows that the SSE of mixture model issigni�antly better than using single-task learning algorithms.



CHAPTER 7. MIXTURE MODELS 977.3.2 Preferene PreditionHere we apply our model to the task of prediting user preferenes in ollab-orative �ltering, whih has been used as a test bed for multi-task learning[Yu et al., 2006℄. The major di�erene is that here we would like to in-vestigate how well does mixture model perform. The dataset we use hereis the MovieLens dataset1, whih ontains 100,000 ratings olleted from943 users over 1,682 movies in total. Furthermore, the minimum number ofrated movies by any user is 20 in this data set. Eah rating is an integersore ranging from 1 to 5, with 1 meaning least favorable and 5 meaningmost favorable. Furthermore, eah movie in this dataset is assigned a setof genre labels. There are 19 di�erent genres in total: Unknown, Ation,Adventure, Animation, Children's, Comedy, Crime, Doumentary, Drama,Fantasy, Film-Noir, Horror, Musial, Mystery, Romane, Si-Fi, Thriller,War, Western. In the dataset eah genre is given as a binary feature andthey will be used to predit movie ratings for eah user.In the multi-task learning setting we treat eah user as a task and eah movieas a data point. Thus we have eah movie x ∈ R
20 representing 19 binaryfeatures plus one bias term. Sine the matrix is sparse we do not expetusers to rate the same set of movies, e.g. the data instanes are not sharedaross tasks in this ase. We use the Mean Absolute Error (MAE) as ourevaluation measure, as people usually do in this type of experiments. It isde�ned as

MAE =
1

n

n
∑

i=1

|r(i)− r̂(i)| (7.24)where i is the index of test pairs of (movie, user) for whih we have truerelevane judgment, r(i) is the user's true rating, and r̂(i) is the preditedrating by our algorithms.We ondut experiments by varying the number of movies known to thesystem (e.g. number of training examples) from 5, 10 to 20, where in eahrun we randomly sample 100 users (e.g., 100 tasks). First of all, we runsingle-task learning algorithms and report the results in Table 7.2. Thealgorithm we use is ridge regression (see Chapter 2), with the regularizationoe�ient λ hosen by ross-validation for eah ondition.1It is available at http://www.grouplens.org/.



CHAPTER 7. MIXTURE MODELS 98optimal λ (by ross-validation) MAE
nk = 5 λ∗ = 0.1 1.144 ± 0.0314

nk = 10 λ∗ = 1.0 1.024 ± 0.0189

nk = 20 λ∗ = 1.0 0.9313 ± 0.0119Table 7.2: Results on Movie Rating (single-task learning)We then run the mixture of Gaussian proesses with base kernel K(xi,xj) =
〈xi,xj〉 and results are shown in Table 7.3. From the results we an see thatusing mixture models for the preferene predition problem does not providebetter performane. This is a little bit surprising as before we expeted tosee lusters of users' preditive funtions based on the genres of di�erentmovies. In other words, the results suggest that a single multivariate normaldistribution does a very good job in terms of modeling the θk's.# of lusters nk = 5 nk = 10 nk = 20

H = 1 0.8759 ± 0.0129 0.8554 ± 0.0128 0.8253 ± 0.0060

H = 2 0.8764 ± 0.0135 0.8607 ± 0.0163 0.8317 ± 0.0096

H = 3 0.8761 ± 0.0134 0.8638 ± 0.0179 0.8321 ± 0.0078

H = 4 0.8769 ± 0.0139 0.8672 ± 0.0203 0.8361 ± 0.0077

H = 6 0.8775 ± 0.0145 0.8682 ± 0.0205 0.8399 ± 0.0089

H = 8 0.8772 ± 0.0143 0.8699 ± 0.0206 0.8419 ± 0.0094

H = 10 0.8784 ± 0.0153 0.8732 ± 0.0228 0.8441 ± 0.0091

H = 14 0.8783 ± 0.0152 0.8720 ± 0.0224 0.8469 ± 0.0122

H = 18 0.8796 ± 0.0160 0.8739 ± 0.0225 0.8477 ± 0.0116Table 7.3: Results on Movie Rating (base kernel K(xi,xj) = 〈xi,xj〉)We would like to verify our onjeture about the unimodality and normalityof the task parameters θk's. Proedurely we want to �rst obtain a set ofestimated θ̂k's, and then test their normality. Among all users who ratedmore than 50 movies, we randomly selet 500 users. And for the k-th userwe randomly selet 50 movies as training set for the k-th predition task.Now we are able to do maximum likelihood estimation on K = 500 tasksto obtain θ̂k's. We would like to ondut hypothesis testing about whether
θ̂1, . . . , θ̂K are from a multivariate normal distribution or not.If θ̂k's are one-dimensional we an easy ondut the test or even visual-ize the results. Sine θ̂k ∈ R

20, we instead onsider its projetion into



CHAPTER 7. MIXTURE MODELS 99one-dimensional real line. Based on the Cramer-Wold theorem, a ran-dom vetor x follows multivariate normal if and only if its every projetion(into 1-dimension) follows a univariate normal distribution. Furthermore,instead of testing for any projetion p whether pT θ̂1, . . . ,p
T θ̂K follows aone-dimensional normal distribution, we would �rst identify the most non-Gaussian diretion and then perform the test (e.g. the worst ase). In ourexperiments we use the fastICA algorithm [Hyvarinen et al., 2001℄ to �ndthe most non-Gaussian projetion from samples θ̂1, . . . , θ̂K , and then verifyhow far it is deviate from normal distribution.
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Figure 7.2: non-Gaussian projetion and qq-plot of θ̂1, . . . , θ̂KThe top graph in Figure 7.2 shows the projeted distribution of θ̂k's, wherethe projetion is the most non-Gaussian like projetion found by the fastICAalgorithm, and the density is smoothed using kernel density estimator. Wean see that even the most non-Gaussian projetion is not far from Gaussian.



CHAPTER 7. MIXTURE MODELS 101The bottom graph shows the qq-plot2 of the projeted samples, whih furtherveri�es our previous laim.Beause of the fat that the task parameters do roughly follow a multivari-ate normal distribution, we try to break the distribution by using di�erentbase kernel Kh's. In this new set of experiments, we hoose Kh=1(xi,xj) =
〈xi,xj〉. For h > 1 and eah data pair xi and xj, we randomly selet a subsetof features Ih = {i1, . . . , iqh

} ⊂ {1, . . . , F} and de�ne
Kh(xi,xj) = 〈x̃i, x̃j〉 (7.25)where x̃i,f = xi,f if f ∈ Ih and otherwise 0, and the same thing is done toget x̃j,f . That is, x̃i only keeps features whose index is in the random setby setting the rest of the features to zero. The way that we hoose Ih isvery simple: eah feature is randomly hosen with probability 0.5. By usingthis newly de�ned base kernel (as we an see, for eah luster omponentwe use a di�erent kernel due to the random feature seletion) we re-run theexperiments and the results are shown in Table 7.4.system nk = 5 nk = 10 nk = 20baseline: H = 1 0.8821 ± 0.0149 0.8527 ± 0.0096 0.8331 ± 0.0080mixture:H∗ by CV 0.8384 ± 0.0050 0.8365± 0.0057 0.8230 ± 0.0067Table 7.4: Results on Movie Rating (with random kernel)Note that H∗ denotes the optimal number of lusters, whih is obtained bya 5-fold likelihood-based ross-validation (see Chapter 8 for details). Fromthe results we an see that by using randomly seleted base kernels, ourmixture model improved the performane of the single-luster model in aseswhen the number of rated movies is small. Our way of seleting randombase kernel is motivated by the idea of Random Forest by Breiman. Thisresults illustrate that when single-luster models are not su�ient for thetask senario, mixture models an provide more powerful representation and�t the task senario better.2Brie�y speaking, qq-plot (quantile-quantile plot) is a graphial tehnique for determin-ing if two datasets have the same distribution. It shows the quantile of one dataset w.r.t.the quantile of another dataset. In our ase, it is the quantile of normal vs. the quantileof our data (whih is the projetion of θ̂k's). If the plot does not deviate muh from astraight line, then it is reasonable to aept that the data follows a normal distribution.



CHAPTER 7. MIXTURE MODELS 102Appendix A: Normalization ConstBelow we ignore sripts k and h:
∫

Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)dθ

=

∫

|2πΣ|−1/2

|2πσ2I|1/2
exp

(

−
(θ − µ)TΣ−1(θ − µ) + 1

σ2 (y −Xθ)T (y −Xθ)

2

)

dθLet us de�ne
A

△
= (θ − µ)TΣ−1(θ − µ) +

1

σ2
(y −Xθ)T (y −Xθ)

= θTΣ−1θ − 2µTΣ−1θ + µΣ−1µ +
1

σ2
yT y −

2

σ2
yT Xθ +

1

σ2
θT XTXθ

= θT (Σ−1 +
1

σ2
XTX)θ − 2(µTΣ−1 +

1

σ2
yT X)θ + µΣ−1µ +

1

σ2
yTy

= (θ − µ̃)T Σ̃
−1

(θ − µ̃) + µΣ−1µ +
1

σ2
yTy − µ̃T Σ̃

−1
µ̃where

Σ̃ = (Σ−1 +
1

σ2
XTX)−1

µ̃ = Σ̃(Σ−1µ +
1

σ2
XTy)As a result, we have

|2πΣ|−1/2

|2πσ2I|1/2

∫

exp(−
A

2
)dθ

=
|2πΣ|−1/2

|2πσ2I|1/2
|2πΣ̃|1/2 exp

(

−
µΣ−1µ + 1

σ2 y
T y − µ̃T Σ̃

−1
µ̃

2

)

=
|Σ̃|1/2

(2πσ2)n/2|Σ|1/2
exp

(

−
µΣ−1µ + 1

σ2 y
T y− µ̃T Σ̃

−1
µ̃

2

)

�



CHAPTER 7. MIXTURE MODELS 103Appendix B: EM for Mixture of Bayesian Linear Re-gressionThe parameters we would like to estimate are Ω = {(πh,µh,Σh)Hh=1, σ
2}, andthe basi idea is that we ompute them by maximizing the log-likelihood

∑K
k=1 log p(D(k) | Ω). Sine we have two set of variables to be integratedout (θ(k)'s and Z(k)'s, where Z(k) ∈ {1, . . . ,H} is the indiator variable ofthe mixture omponent for the k-th task), we derive the E-step and M-stepformulas from the beginning by using Jensen's inequalities.In the following derivations we will use the notation Ω̊ to denote the param-eter Ω obtained in previous M-step. For the k-th task, the log-likelihood anbe lower bounded as follows:

log p(D(k) | Ω)

= log

(

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))
p(Z(k) = h,D(k) | Ω)

p(Z(k) = h | Ω̊,D(k))

)

≥

H
∑

h=1

p(Z(k) = h | Ω̊,D(k)) log
p(Z(k) = h,D(k) | Ω)

p(Z(k) = h | Ω̊,D(k))

arg max
=

H
∑

h=1

p(Z(k) = h | Ω̊,D(k)) log p(Z(k) = h,D(k) | Ω)

=
H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

× log

(

∫

p(θ(k) | Ω̊,D(k), Z(k) = h)
p(θ(k), Z(k) = h,D(k) | Ω)

p(θ(k) | Ω̊,D(k), Z(k) = h)
dθ(k)

)

≥

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

×

(

∫

p(θ(k) | Ω̊,D(k), Z(k) = h) log
p(θ(k), Z(k) = h,D(k) | Ω)

p(θ(k) | Ω̊,D(k), Z(k) = h)
dθ(k)

)

arg max
=

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

×

(∫

p(θ(k) | Ω̊,D(k), Z(k) = h) log p(θ(k), Z(k) = h,D(k) | Ω)dθ(k)

)



CHAPTER 7. MIXTURE MODELS 104where the inequalities are due to Jensen inequality, and the operator arg max
=means �equivalent w.r.t. the arg max operation over parameters Ω�. So inthe E-step we should alulate

π̃
(k)
h

△
= p(Z(k) = h | Ω̊,D(k))

∝ π̊hp(D
(k) | Z(k) = h, Ω̊)

= π̊hp(D
(k) | µ̊h, Σ̊h, σ̊

2)

= π̊h

∫

Normal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)dθ(k)

=
π̊h|Σ̃

(k)
h |

1/2

(2πσ̊2)nk/2|Σ̊h|1/2

× exp
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µ̊T

h Σ̊
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(k),y(k)〉 − 〈µ̃
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(k)
h )−1µ̃

(k)
h 〉

2





∝ π̊h
|Σ̃

(k)
h |

1/2

|Σ̊h|1/2
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[

−
µ̊T

h Σ̊
−1
h µ̊h − 〈µ̃

(k)
h , (Σ̃

(k)
h )−1µ̃

(k)
h 〉

2

]and
p(θ(k) | Ω̊,D(k), Z(k) = h)

=
p(θ(k),D(k), Z(k) = h | Ω̊)

∫

p(θ(k),D(k), Z(k) = h | Ω̊)dθ

=
p(Z(k) = h | Ω̊)p(θ(k) | Ω̊, Z(k) = h)p(D(k) | θ(k), Ω̊, Z(k) = h)

∫

(

p(Z(k) = h | Ω̊)p(θ(k) | Ω̊, Z(k) = h)p(D(k) | θ(k), Ω̊, Z(k) = h)
)

dθ(k)

=
πhNormal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)

∫

(

πhNormal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)
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dθ(k)
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(k)
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(k)
h )where

Σ̃
(k)
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Σ̊
−1
h +

1

σ̊2
〈X(k),X(k)〉

)−1
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(k)
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(k)
h

(

Σ̊
−1
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1
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〈X(k),y(k)〉

)



CHAPTER 7. MIXTURE MODELS 105This �nishes the E-step. We plug in the E-step results and de�ne Q(k)(Ω)
△
=

log p(D(k) | Ω) to be
Q(k)(Ω) =

H
∑

h=1

π̃
(k)
h

(∫

Normal(θ(k) | µ̃
(k)
h , Σ̃

(k)
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]where C(k) = −F+nk
2 log 2π is a onstant that does not depend on any of theparameters, and
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(
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1
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〈y(k),X(k)〉

)

µ̃
(k)
hFinally, we have the log-likelihood

Q(Ω) =

K
∑

k=1

Q(k)(Ω).To obtain the M-step, we set the partial derivatives of Q w.r.t. task-dependent parameters (πh,µh,Σh)Hh=1 to zeros (note that for ∂Q/∂πh we



CHAPTER 7. MIXTURE MODELS 106should add the onstraint ∑h πh = 1 using Lagrange multiplier method):
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EM for Mixture Models with Common CovarianeMost of the derivations are the same exept that the subsripts h on Σ̃
(k),

Σ and Σ̊ will disappear, and the parameters to be estimated are Ω =
{(πh,µh)Hh=1,Σ, σ

2}. In the E-step we ompute
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Chapter 8Model Seletion in MTLModel seletion is an important step in standard supervised and unsuper-vised learning in order to ontrol model omplexity and to ahieve goodgeneralization performane on future test data. For multi-task learning italso plays an important role, sine we not only want to generalize well on fu-ture data of a partiular task, but also want to ahieve good performane onfuture tasks. There are two types of model omplexities in multi-task learn-ing: the model omplexity of eah preditive funtion f (k) and the modelomplexity of the joint modeling of all f (k)'s. Sine the former type of modelomplexity has been extensively studied in the literature [Hastie et al., 2001,Wasserman, 2005℄, in this hapter we fous on the investigation of the latter.8.1 IntrodutionModel seletion is a ommon topi that exists in almost every appliation ofmahine learning. Basially speaking, it aims to �nd the model that has the�best� trade-o� between good �t (explains the data well) and omplexity (sothat reliable estimation an be obtained). As stated in [Hastie et al., 2001℄,the goal of model seletion is to estimate the performane of di�erent modelsin order to hoose the (approximate) best one.A well-known statistial onept is that as the model omplexity inreases,the predition error of the model typially dereases �rst and then inreases.Figure 8.1 shows a toy example where we try to learn a one-dimensionalGaussian proess model for regression with kernel K(x, y) = exp(−||x −109
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y||2/2s2). For this model, we have high model omplexity when s is smalland vie versa. The data is generated aording to

x ∼ Uniform(0, 10)

y ∼ Normal(f(x), 0.52) (8.1)where the true funtion is set to
f(x) = log(x) sin(x1.2). (8.2)From the top graph in Figure 8.1 we an see that as the model omplexityinreases, the predition error �rst goes down and then goes up. �Over�tting�often refers to the situation where model omplexity is more than needed(supported by the amount of availability data), and in this ase the modelhas low bias but high variane. On the other hand, �under�tting� refers tothe situation where model is not omplex enough to explain the data well,and in this ase the model has low variane but high bias. The bottom graphshows the true regression funtion and the �tted funtion with appropriatelyhosen sale/bandwidth parameter s.Generally speaking there are many ways to do model seletion [Hastie et al.,2001, Wasserman, 2005℄, suh as AIC, BIC, ross-validation, et. Here wefous on the ross-validation approah beause it is simple to implement,easy to use and very powerful.8.2 Cross-Validation8.2.1 Cross-validation for STL

Kcv-fold1 ross-validation is a proedure de�ned as the following. Given atraining set D, �rst split it into Kcv equal-sized subsets D1, . . . ,DKcv , thenestimate the extra sample loss [Hastie et al., 2001℄ on eah subset using theremaining Kcv − 1 subsets as the training data, and average over all thesubsets to obtain the CV sore. The �nal CV sore an be written as
CV(θ) =

1

n

N
∑

i=1

L(yi, f
\D(i)(xi|θ)) (8.3)1Beause K is reserved for the number of tasks, we use Kcv to denote the number offolds in ross-validation.
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CHAPTER 8. MODEL SELECTION IN MTL 112where f\D(i)(.) denotes the funtion that is estimated using all data in Dexept the subset that ontains the i-th data point. Note that if the pre-dition funtion f(.) is indexed by its parameter θ ∈ Θ, then the modelseletion problem is to �nd the best parameter that gives the lowest sore
θ̂ = arg minθ CV(θ).Typial hoies ofKcv inlude 5, 10 and N . It is well-known that when Kcv islarge, the ross-validation sore an be a low bias but high variane estimatorof the true predition loss; while on the other hand when Kcv is small, we geta high bias but low variane estimation. When Kcv equals N it is also knownas Leave One Out Cross-Validation (LOOCV). Although ross-validationmethods are extremely simple, they are theoretially justi�ed. For example,it an be shown that the LOOCV sore is almost an unbiased estimation forthe true predition error.Based on the the hoie of the loss L(., .) we an have several variants of ross-validation methods, and ommon hoies inlude negative log-likelihood andpredition error:
• ross-validation by likelihood : when L(y, f(x)) takes the form of nega-tive log-likelihood, e.g.

L(y, f(x)) = − log p(y|x,θ). (8.4)In order to use this method we need to have a probabilisti model forthe response variable y onditioned on x, and thus it may be sensitiveto the model assumption.
• ross-validation by predition error : typially we use

regression : L(y, f(x)) = (y − f(x))2

classification : L(y, f(x)) = I(yf(x) < 0) (8.5)where I(.) equals 1 if the argument is true and 0 otherwise. The bene�tof this method is that the error measures do not need to be dependenton the model assumptions. For example, even if the response variableis assumed to be orrupted with Gaussian noise, we an still use theabsolute error |y − f(x)| as the hoie of the loss funtion if it makessense for the appliation.



CHAPTER 8. MODEL SELECTION IN MTL 1138.2.2 Cross-validation for MTLApplying ross-validation to multi-task learning is straightforward. The onlydi�erene from its onventional usage is that we apply it to the task-levelinstead of data-level. Given K tasks with their assoiated training datasets,we split the tasks into Kcv folds randomly suh that: T1 ∪ T2 ∪ . . . ∪ TKcv =
{1, 2, . . . ,K}. Again we an have two hoies for the CV loss funtion:
• ross-validation by likelihood : The c-th iteration of the ross-validationinvolves three steps: (1) a generative model p̂\c(θ) is �tted using the(Kcv-1) folds' tasks T1, . . . , Tc−1, Tc+1, . . . , TKcv by the MTL algorithm;(2) for eah task in the validation fold Tc, a single-task learning algo-rithm is used to obtain point estimations θ̂k's; (3) ompute the negativelog-likelihood − log p̂\c(θ̂k) for k ∈ Tc. The �nal sore is omputed as:

CV =

Kcv
∑

c=1

∑

k∈Tc

− log p̂\c(θ̂k). (8.6)
• ross-validation by predition error : For the c-th iteration of the ross-validation: (1) a generative model p̂\c(θ) is �tted using the (Kcv-1)folds' tasks (T1, . . . , Tc−1, Tc+1, . . . , TKcv); (2) for all tasks in the restfold (validation fold), prior p̂\c(θ) is evaluated in eah task, where theevaluation is onduted with another error-based ross-validation atthe data-level. The �nal objetive an be summarized as:

CV =

Kcv
∑

c=1

∑

k∈Tc

CVk(p̂
\c(θ)) (8.7)where CVk(p̂

\c(θ)) is the error-based ross-validation sore (like theone de�ned in equation (8.3)) obtained by using p̂\c(θ) as the prior ofthe θ for the k-th task, and the ross-validation is done by splittingthe training set D(k) for the k-th task.We an see that in order to ondut ross-validation at the task level, weneed a model2 to measure the loseness of the tasks (often in terms of theirparameters θk's). Also the latter one is omputationally more expensivesine another inner-loop ross-validation needs to be done to obtain the sore.2Although the model need not be probabilisti, having probabilisti model over θ is anatural hoie.



CHAPTER 8. MODEL SELECTION IN MTL 1148.3 ExperimentsWe ondut simulations to illustrate the use of the previously desribed ross-validation methods. For simpliity we fous on the mixture model presentedin Chapter 7. We use mixture models to generate the parameters θ's ofpredition funtions, in whih the true number of lusters varies from 1 to8. For eah mixture model we generate 100 tasks θ1, . . . ,θ100 from a priordistribution
θk ∼ MoNormal({πh,mh,Vh}

H
h=1). (8.8)The parameters πh, mh andVh of the mixture model are randomly generatedas follows:

πh ∝ 0.3 + Uniform(0, 1)

mh ∼ Uniform

([

−6
−6

]

,

[

6
6

]) (8.9)
Vh ∼

1

19
Wishart(I, 20).Finally, for eah task we generate 10 training examples and 100 test examplesusing

x
(k)
i ∼ Normal(0, I)

y
(k)
i ∼ Normal(〈θk,x

(k)
i 〉, σ

2) (8.10)where we simply use σ2 = 1.0.In our experiments we reate 6 generative models for θk's with the numberof lusters taken to be H = 1, 2, 3, 4, 6, 8 respetively. Figure 8.2 showsone sample of the generative models we used for the 6 ases. We repeat thesimulation proess 20 times, whih results in 20∗6 = 120 runs of our mixturemodel algorithm.We evaluate the results using the Mean Squared Error (MSE) measure withthe following notation:
• MSE(f̂Ĥ): MSE for the mixture model where the number of lusters
Ĥ is hosen by ross-validation;

• MSE(f̂H): MSE for the mixture model where the true number of lus-ters H is given;
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Figure 8.2: Example densities of generative models for θk's; H equals1,2,3,4,6,8 from top to bottom, left to right



CHAPTER 8. MODEL SELECTION IN MTL 116H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))1 1.0011 ± 0.0033 1.0028 ± 0.0029 1.0400 ± 0.02532 1.0000 ± 0.0064 1.0099 ± 0.0105 1.0357 ± 0.02153 0.9984 ± 0.0105 1.0084 ± 0.0079 1.0327 ± 0.01334 1.0025 ± 0.0080 1.0120 ± 0.0095 1.0321 ± 0.01886 1.0007 ± 0.0054 1.0186 ± 0.0155 1.0347 ± 0.01328 0.9984 ± 0.0067 1.0128 ± 0.0136 1.0255 ± 0.0191Table 8.1: Results for ross-validation by likelihoodH MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))1 1.0000 ± 0.0019 1.0016 ± 0.0055 1.0474 ± 0.02752 0.9993 ± 0.0081 1.0041 ± 0.0091 1.0408 ± 0.02363 0.9993 ± 0.0086 1.0091 ± 0.0088 1.0394 ± 0.02034 0.9985 ± 0.0101 1.0102 ± 0.0146 1.0359 ± 0.01696 1.0005 ± 0.0054 1.0113 ± 0.0100 1.0284 ± 0.01588 1.0050 ± 0.0144 1.0190 ± 0.0209 1.0256 ± 0.0259Table 8.2: Results for ross-validation by predition error
• MSE(f̂p(θ)): MSE for the mixture model where the true prior p(θ)(whih is a mixture of normal) is given3;
• MSE(f̂STL): MSE obtained by using single-task learning algorithms;We are interested in several omparisons from the experiments. First of all,we would like to know how good is our �tted model ompared to the oneobtained by knowing H, the true number of lusters. Seond, we want tomeasure the relative goodness of the �tted model with respet to the �goldenmodel� where we are given the true prior distribution of θk's. Finally, wewant to see how good is the model obtained by using single-task learningalgorithm whih does not onsider the relations among tasks.Table 8.1 and 8.2 show the results for the likelihood-based and error-basedross-validation, respetively. There are several observations. First, themodel f̂Ĥ (with the number of lusters identi�ed by ross-validation) is al-most idential to the one �tted by given the true number of lusters. Fur-thermore, it is slightly inferior to the �golden model� whih is given the3This is the upper bound of the performane we an possibly ahieve.



CHAPTER 8. MODEL SELECTION IN MTL 117true prior p(θk). Seond, the performane obtained by single-task learning(e.g. without learning a joint prior over θk's) an be signi�antly worse, asshown in the last olumn of both tables. Finally, we observed that boththe likelihood-based CV and error-based CV methods work well and theyperform very similarly.Also note that if those lusters are well-separated then they an be easilyidenti�ed by our algorithm; otherwise (e.g. when lusters are overlappingwith eah other) it is very di�ult to identify the orret number of lusters.In either ase, however, the identi�ed model works well in terms of preditivepower.8.4 SummaryIn our experiments we show the appliation of ross-validation tehniques tomulti-task learning, and results for two methods are omparable. Althoughwe only illustrated this ability using the learning of number of omponentsin mixture models, this should not be interpreted as the only appliation ofthe idea. We ould, as another example, selet the appropriate multi-tasklearning senario.The appliation of ross-validation tehniques to the model seletion prob-lem in multi-task learning is proedurely straight-forward yet oneptuallystimulating. In order to ondut ross-validation for multi-task learning (e.g.aross tasks), it is essentially for the MTL method to have the apability of�passing� or �transferring� knowledge from old tasks to new tasks. All MTLmethods proposed in this thesis an pass knowledge as a prior and pass itinto new tasks. The error-based ross-validation is omputationally moreexpensive sine an inner loop CV is needed to evaluate the prior learnedfrom other tasks.
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Chapter 9Unsupervised Multi-TaskLearningIn previous hapters we have foused on the probabilisti framework in equa-tion (3.2) for multi-task learning in a supervised learning setting, e.g. withlassi�ation and regression tasks. In this hapter we extend the frameworkto enable its use in unsupervised learning, and apply it to novelty dete-tion [Allan et al., 2000℄ as a signi�ant and onrete example. We alsoshow the theoretial onnetions between this new framework and other un-supervised learning methods, inluding Latent Dirihlet Alloation (LDA)[Blei et al., 2003b℄ and Correlated Topi Models (CTM) [Blei and La�erty,2005℄ proposed in information retrieval, by reasting the latter models froma multi-task learning point of view.9.1 Extending the Framework from Supervised toUnsupervisedReall that our probabilisti framework has been de�ned with K supervisedlearning tasks, eah of whih orresponds to a funtion f(x|θk) = θT
k x, whihthe prior over θk de�ned as

θk = Λsk + ek

sk ∼ p(.|Φ) (9.1)
ek ∼ Normal(0,Ψ)119



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 120where θk is the vetor of task-spei� oe�ients, the olumns of matrix
Λ = (β1, . . . ,βH) ∈ R

F×H are the shared omponents (e.g., the hidden�topis� or �fators�) among tasks; vetor sk onsists of the mixture weights ofthe omponents in the k-th task, generated at random from some distribution
p(sk|Ψ) (open to further spei�ation as a prior); and ek is the non-sharedomponent (random noise) in the k-th task. Given K training sets

D(k) = {(x
(k)
1 , y

(k)
1 ), . . . , (x(k)

nk
, y(k)

nk
)}, k = 1, . . . ,K, (9.2)the learning problem is to �t the model parameters that best explain the dataunder ertain Bayesian priors over the parameters. An alternative way tolook at the problem is that we have an in�nite spae of predition funtions,and we want to �nd the K optimal funtions simultaneously, one per task.By introduing the shared omponents as parameters of the models (i.e., thefuntions), we aim to learn more e�etively from limited training exampleswhen the tasks are not totally independent from eah other.To make this framework suitable for unsupervised learning, we introduesome di�erent settings. First, the training data are unlabeled, that is,

D(k) = {x
(k)
1 , . . . , ,x(k)

nk
}. (9.3)Seond, our objetive here is to optimize the generative model g(D(k)|θk)for eah dataset instead of the predition funtion f(x(k)|θk), although bothan be done using the likelihood priniple.Having the tasks re-de�ned, the remaining equation (3.2) in our frameworkare the same for both supervised learning and unsupervised learning. In thelatter, θk is a random variable (vetor), inheriting the randomness from skand ek, respetively, and spei�es the probability distribution for generating

D(k). The two-step proess, i.e. �rst generating the θk (with some Bayesianpriors over sk and ek) and seond generating the data D(k) using parame-ter θk, an be viewed as a hierarhial generative model for the data sets
D(1), . . . ,D(K). By modeling all the tasks together, more reliable estimationof the model parameters using limited training data is possible if the tasksare losely related to eah other, or, when the estimated density funtions
g(D(k)|θk) for k = 1, . . . ,K have ertain dependenies among eah other.Despite the di�erent settings, it should be point out that both supervised andunsupervised models an be put together into a omprehensive frameworkfor multi-task learning. That is, the learning problem is to searh through



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 121a funtion spae for the optimal one per task. The funtion spae onsistsof predition funtions (prediting output variables given input variables) inthe supervised settings, and of density funtions (generating input variables)in the unsupervised settings.In the remaining setions we show how to apply the omprehensive frame-work to onrete problems in unsupervised learning, and how to establishtheoretial onnetions from existing unsupervised methods to multi-tasklearning. Beause all the examples are used in modeling douments, we willhange our notation for onveniene in the rest of this hapter:1. We use x = (n
(x)
1 , n

(x)
2 , . . . , n

(x)
V ) to represent a doument vetor 1where eah element n(x)

v is the within-doument term frequeny of the
v-th word, and V is the total size of the voabulary.2. Every single doument xi is a task2 (i.e., xi is the training dataset forthe i-th task, D(i)), and thus we have i = 1, . . . , N tasks instead of Ktasks before.3. For eah doument, we try to estimate the density g(xi|θi), and we use
T instead of H to denote the number of hidden omponents (topis).It is interesting to point out that under this setting, single-task learning doesnot make muh sense: it just memorizes the bag-of-words representation inevery doument!9.2 Multi-Task Learning and Unsupervised Clus-teringLatent Dirihlet Alloation (LDA) [Blei et al., 2003b℄ and Correlated TopiModels (CTM) [Blei and La�erty, 2005℄ are two well-known approahes tounsupervised lustering of douments. By projeting a doument onto a setof �topis�, douments an be better represented, interpreted and visualized1This is the so-alled �bag-of-words� representation whih simply ignores the wordourring order in the doument.2This may seem a little bit weird. However, reall that if we want to model a doument

x using Multinomial distribution, then eah word xt an be thought as a �data point� forthe task. Thus we are still using a lot of data points to estimate eah task here.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 122using the estimated topis rather than the original bag-of-words representa-tion. Next we show that the above two topi models an be seen as speialases of equation (9.1) for multi-task learning3.Reall that in LDA, a doument x is generated in the following steps:1. A topi distribution variable s ∈ R
T×1 is �rst generated as s ∼ Dirichlet(α)(that is, s belongs to the (T − 1) dimensional simplex);2. For eah word w in the doument4:(a) Choose a topi z ∼ Multinomial(s);(b) Choose a word w ∼ Multinomial(βz), where βz ∈ R

F×1 is themultinomial parameter vetor for topi z.It is important to realize that, by ombining steps 2(a) and 2(b), we anintegrate out the latent variable z whih represents the topi:
p(w) =

T
∑

z=1

p(z)p(w|z)

=

T
∑

z=1

Multinomial(z|s)Multinomial(w|βz)

=

T
∑

z=1

szβz(w)

= θ(w) (9.4)where T is the total number of topis, βz(w) is the element of βz thatorresponds to word w, and θ =
∑T

z=1 szβz ∈ R
F×1. That is, by integratingout z, we have w ∼ Multinomial(θ)5. Thus, the overall generation proessan be summarized using the following suint form

θi = Λsi

si ∼ Dirichlet(α) (9.5)3Note that it has been previously pointed out in [Buntine, 2002℄ that LDA an also beseen as multinomial PCA.4We ignore the doument length here as it does not a�et the LDA model.5Basially it results from the fat that a mixture of multinomial is still a multinomial,if we limit our disussion to the speial ase of multinomial distributions Multinomial(N =
1, p1, . . . , pJ) where only one ball is seleted out of a bag of J olored balls with propor-tional probabilities p1, . . . , pJ .



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 123where θi is the multinomial parameter for the i-th doument, si lies in the
(T −1) dimensional simplex and denotes the topi proportional distribution,and olumns of Λ = (β1, . . . ,βT ) ∈ R

F×T are the multinomial parametersof those topis.Comparing these formulae to equation (9.1), it is easy to see that our multi-task learning framework resembles the LDA formula exept that now eaholumn of Λ is restrited to a high-dimensional simplex in order to be avalid model. That is, it has to satisfy Λt,f ≥ 0 and ∑F
f=1 Λt,f = 1 for

∀t = 1, . . . , T . In other words, LDA an be thought as a speial appliationof the multi-task learning framework to unsupervised lustering.Correlated Topi Models (CTM) is an alternative approah to unsupervisedlustering. It an be viewed as a modi�ation of LDA so that the orrelationsamong topis an be expliitly modeled. The model an be written in asuint form as
θi = Λs̃i

si ∼ LogNormal(µ,Σ) (9.6)where the vetor s̃i is a re-saled version of si suh that ∑H
h=1 s̃i,h = 1,a neessary ondition for ensuring θk to be a valid multinomial parameter(belongs to a (F − 1) dimensional simplex).Comparing the si formula in CTM with the one in LDA: By using the

LogNormal distribution [Gelman et al., 2003℄ 6 instead of the Dirichlet dis-tribution, orrelations among topi ourrene (e.g., elements of si) an beenoded in the ovariane parameter Σ and thus the topi models estimatedare generally orrelated. As a result, the CTM model is more �exible thanthe LDA model in the sense it users T + T (T + 1)/2 number of parame-ters to model si while in LDA only T parameters are used to model si. Inother words, CTM an model both the �rst-order (mean) and seond-orderstatistis (ovariane) of si while LDA is only apable of modeling the �rst-order statistis. Nevertheless, omparing the CTM formula to equation (9.1),again our multi-task learning framework resembles the CTM model, exeptthe assumed prior distribution si is di�erent from the prior used in LDA.The above onnetion between those topi models and models for multi-task learning is simple, yet interesting. Ideas and insights from one �eldan motivate researh problems in the other. For example, it is known in6Brie�y speaking, if a random variable X has a Normal distribution, then exp(X) hasa LogNormal distribution.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 124multi-task learning that task-spei� omponents ek's are important in orderto have good performane as the number of training examples grows. Indoument modeling although eah doument is a task (and thus has �xednumber of words), adding a task-spei� omponent might be helpful inmodeling topis as well. Sine in the ontext of topi modeling eah taskorresponds to a single doument, task-spei� omponent ould be learned,say, by limiting its deviation from a general English multinomial distribution[Miller et al., 1999, Zhang et al., 2004℄.As a summarization statement, the onnetions between LDA, CTM andmodels for multi-task learning have not been analyzed so far, to our knowl-edge. Nevertheless, these onnetions are not surprising to see, but ratheroneptually natural. From a higher-level point of view, the ommon goalof LDA, CTM and multi-task learning is to model funtions f (k) in somegeneri metri spae H, either in a supervised or unsupervised way, and ourframework supports the searh for solutions under di�erent senarios.9.3 Unsupervised Learning of Novelty Detetion7In this setion we illustrate how to use a probabilisti model for noveltydetetion. The task of online doument lustering is to group douments intolusters as long as they arrive in a temporal sequene. Generally speaking,it is di�ult for several reasons: First, it is unsupervised learning and thelearning has to be done in an online fashion, whih imposes onstraints onboth strategy and e�ieny. Seond, similar to other learning problems intext, we have to deal with a high-dimensional spae with tens of thousandsof features. And �nally, the number of lusters an be as large as thousandsin newswire data. The objetive of novelty detetion is to identify the novelobjets from a sequene of data, where �novel� is usually de�ned as dissimilarto previous seen instanes. Here we are interested in novelty detetion in thetext domain, where we want to identify the earliest report of every newevent in a sequene of news stories. The most obvious appliation of noveltydetetion is that, by deteting novel events, systems an automatially alertpeople when new events happen, for example. Applying online doumentlustering to the novelty detetion task is straightforward by assigning the�rst seed of every luster as novel and all its remaining ones as non-novel.Our probabilisti model an also be seen as a very speial ase of equa-tion (9.1). To be more spei�, we use non-parametri Dirihlet proess7This part is primarily based on our previous paper [Zhang et al., 2004℄.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 125prior to model the growing number of lusters (whih is modeled by multi-nomial distribution with parameter θ), and use a prior of general Englishlanguage model as the base distribution of DP to handle the generation ofnovel lusters. Furthermore, luster unertainty is modeled with a BayesianDirihlet-multinomial distribution. The Bayesian inferene an be easily ar-ried out due to onjugay, and model hyper-parameters are estimated usinga historial dataset by the empirial Bayes method. The probabilisti modelis applied to the novelty detetion task in Topi Detetion and Traking(TDT), whih has been regarded as the hardest task in TDT [Allan et al.,2000℄, and ompared with existing approahes in the literature.9.3.1 A Probabilisti Model for Online Doument ClusteringBelow we desribe the generative probabilisti model for online doumentlustering.Dirihlet-Multinomial ModelThe multinomial distribution has been the most frequently used languagemodel for probabilisti representation of douments in information retrieval.Let x = (n
(x)
1 , . . . n

(x)
V ) be the vetor representation of a doument and θ =

(θ1, . . . , θV ) be the model parameter of a doument luster, a doument x isgenerated with the following probability:
p(x|θ) =

(

∑V
v=1 n

(x)
v

)

!

∏V
v=1 n

(x)
v !

V
∏

v=1

θn
(x)
v

v . (9.7)From the formula we an see the so-alled naive assumption: words in adoument are assumed to be independent of eah other8. Given a olletionof douments generated from the same model, the parameter θ an be es-timated with Maximum Likelihood Estimation. In a Bayesian approah wewould like to put a Dirihlet prior over the parameter (θ ∼ Dirichlet(α)) suhthat the probability of generating a doument is obtained by integrating overthe parameter spae:
p(x) =

∫

p(θ|α)p(x|θ)dθ (9.8)This integration an be easily written down due to the onjugay betweenDirihlet and multinomial distributions. The key di�erene between the8Stritly speaking, words are weakly dependent given N , the doument length, wherethe weak dependeny omes from the fat that N =
P

v nv(x).



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 126Bayesian approah and the MLE is that the former uses a distribution tomodel the unertainty of the parameter θ, while the latter gives only a pointestimation.Online Doument Clustering with Dirihlet Proess Mixture ModelIn our system douments are grouped into lusters in an online fashion. Eahluster is modeled with a multinomial distribution whose parameter θ followsa Dirihlet prior. First, a luster is hosen based on a Dirihlet proess prior(an be either a new or existing luster), and then a doument is drawn fromthat luster. We use Dirihlet Proess (DP) to model the prior distributionof θ's, and our hierarhial model is as follows:
θi ∼ G

G ∼ DP(λ,G0) (9.9)
xi|ci ∼ Multinomial(.|θci)where ci is the luster indiator variable, θi is the multinomial parameter foreah doument, and θ(ci) is the unique θ for the luster ci. G is a randomdistribution generated from the Dirihlet proess DP(λ,G0) [Ferguson, 1973℄,whih has a preision parameter λ and a base distribution G0. Here our basedistribution G0 is a Dirihlet distribution Dirichlet(γπ1, γπ2, . . . , γπV ) with

∑V
t=1 πt = 1, whih re�ets our expeted knowledge about G. Intuitively,our G0 distribution an be treated as the prior over general English wordfrequenies, whih has been used in information retrieval literature [Zaragozaet al., 2003℄ to model general English douments.The exat luster-doument generation proess an be desribed as follows:1. Let xi be the urrent doument under proessing (the i-th doumentin the input sequene), and C1,C2, . . . ,Cm are already generated lus-ters.2. Draw a luster ci based on the following Dirihlet proess prior [Fer-guson, 1973℄:

p(ci = Cj) =
|Cj|

λ+
∑m

j=1 |Cj|
(j = 1, 2, . . . ,m)

p(ci = Cm+1) =
λ

λ+
∑m

j=1 |Cj|
(9.10)where |Cj| stands for the ardinality of luster j with∑m

j=1 |Cj| = i−1,and with ertain probability a new luster Cm+1 will be generated.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 1273. Draw the doument xi from the luster ci.Model UpdatingOur models for eah luster need to be updated based on inoming dou-ments. We an write down the probability that the urrent doument xi isgenerated by any luster as
p(xi|Cj) =

∫

p(θ(Cj)|Cj)p(xi|θ
(Cj))dθ(Cj) (j = 1, 2, . . . ,m,m+ 1) (9.11)where p(θ(Cj)|Cj) is the posterior distribution of parameters of the j-th lus-ter whose update is based on equation (9.14) and we use p(θ(Cm+1)|Cm+1) =

p(θ(Cm+1)) to represent the prior distribution of the parameters of the newluster for onveniene. Although the dimensionality of θ is high (V ≈
105 in our ase), losed-form solution an be obtained under our Dirihlet-multinomial assumption. One the onditional probabilities p(xi|Cj) areomputed, the probabilities p(Cj|xi) an be easily alulated using Bayesrule:

p(Cj|xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

(9.12)where the prior probability of eah luster is alulated using equation (9.10).Now there are several hoies we an onsider on how to update the lustermodels. The �rst hoie, whih is orret but obviously intratable, is tofork m + 1 hildren of the urrent system where the j-th hild is updatedwith doument xi assigned to luster j, while the �nal system is a proba-bilisti ombination of those hildren with the orresponding probabilities
p(Cj|xi). The seond hoie is to make a hard deision by assigning theurrent doument xi to the luster with the maximum probability:

ci = arg max
Cj

p(Cj |xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

. (9.13)The third hoie is to use a soft probabilisti updating, whih is similarin spirit to the Assumed Density Filtering (ADF) [Minka, 2001℄ in the lit-erature. That is, eah luster is updated by exponentiating the likelihoodfuntion with probabilities:
p(θ(Cj)|xi,Cj) ∝

(

p(xi|θ
(Cj))

)p(Cj |xi)
p(θ(Cj)|Cj) (9.14)



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 128However, we have to speially deal with the new luster sine we annota�ord both time-wise and spae-wise to generate a new luster for eahinoming doument. Instead, we will update all existing lusters as above,and new luster will be generated only if ci = Cm+1. We will use HD and PD(hard deision and probabilisti deision) to denote the last two andidatesin our experiments.9.3.2 Learning Model ParametersIn the above probabilisti model there are still several hyper-parameters notspei�ed, namely the π and γ in the base distribution
G0 = Dirichlet(γπ1, γπ2, . . . , γπV ), (9.15)and the preision parameter λ in the DP(λ,G0). Sine we an obtain apartially labeled historial dataset9, we now disuss how to estimate thoseparameters respetively. We will mainly use the empirial Bayes method[Gelman et al., 2003℄ to estimate those parameters instead of taking a fullBayesian approah, sine it is easier to ompute and generally reliable whenthe number of data points is relatively large ompared to the number ofparameters. Beause the θi's are IID. from the random distribution G, byintegrating out the G we get

θi|θ1,θ2, . . . ,θi−1 ∼
λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj
(9.16)where the distribution is a mixture of ontinuous and disrete distributions,and the δθ denotes the probability measure giving point mass to θ.Now suppose we have a historial dataset H whih ontains K labeled lus-ters Hj(j = 1, 2, . . . ,K), with the k-th luster Hk = {xk,1,xk,2, . . . ,xk,mk

}having mk douments. The joint probability of θ's of all douments an beobtained as
p(θ1,θ2, . . . ,θ|H|) =

|H|
∏

i=1





λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj



 (9.17)9Although douments are grouped into lusters in the historial dataset,we annotmake diretly use of those labels due to the fat that lusters in the test dataset aredi�erent from those in the historial dataset.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 129where |H| is the total number of douments. By integrating over the un-known parameter θ's we an get
p(H) =

∫





|H|
∏

i=1

p(xi|θi)



 p(θ1,θ2, . . . ,θ|H|)dθ1dθ2 . . . dθ|H|

=

|H|
∏

i=1





∫

p(xi|θi)





λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj



 dθi



 (9.18)Empirial Bayes method an be applied to equation (9.18) to estimate themodel parameters by maximization10. In the following we disuss how toestimate parameters individually in detail.Estimating πt'sOur hyper-parameter π vetor ontains V number of parameters for the basedistribution G0, whih an be treated as the expeted distribution of G �the prior of the luster parameter θ's. Although π ontains V ≈ 105 numberof atual parameters in our ase, we an still use the empirial Bayes to doa reliable point estimation sine the amount of data we have to representgeneral English is large (in our historial dataset there are around 106 dou-ments, around 1.8×108 English words in total) and highly informative about
π. We use the smoothed estimation

π ∝ (1 + n
(H)
1 , 1 + n

(H)
2 , . . . , 1 + n

(H)
V ) (9.19)where n(H)

t =
∑

x∈H n
(x)
t is the total number of times that term t happenedin the olletion H, and ∑V

t=1 πt should be normalized to 1. Furthermore,the pseudo-ount one is added to alleviate the out-of-voabulary problem (amore systemati way is to assign a Dirihlet prior).Estimating γThough γ is just a salar parameter, it has the e�et of ontrolling theunertainty of the prior knowledge about how lusters are related to thegeneral English model with the parameter π. We an see that γ ontrolshow far eah new luster an deviate from the general English model11. It10Sine only a subset of douments are labeled in the historial dataset H , the maxi-mization is only taken over the union of the labeled lusters.11Reall that the mean and variane of a Dirihlet distribution (θ1, θ2, . . . , θV ) ∼

Dirichlet(γπ1, γπ2, . . . , γπV ) are: R[θv] = πv and V[θv] = πv(1−πv)
(γ+1)

.
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γ̂ = arg max

γ

K
∏

k=1

p(Hk|γ)

= arg max
γ

K
∏

k=1

∫

p(Hk|θ
(k))p(θ(k)|γ)dθ(k) (9.20)By setting the derivative to zero, γ̂ an be numerially omputed by solvingthe following equation:

0 = KΨ(γ)−K

V
∑

v=1

Ψ(γπv)πv

+

K
∑

k=1

V
∑

v=1

Ψ(γπv + n(Hk)
v )πv −

K
∑

k=1

Ψ(γ +

V
∑

v=1

n(Hk)
v ) (9.21)where the digamma funtion Ψ(x) is de�ned as Ψ(x) ≡ d

dx ln Γ(x). Alter-natively we an hoose γ by evaluating over the historial dataset. This isappliable (though omputationally expensive) sine it is only a salar pa-rameter and we an pre-ompute its possible range based on the result ofequation (9.20).Estimating λThe preision parameter λ of the DP is also very important for the model,whih ontrols how far the random distribution G an deviate from thebaseline model G0. In our ase, it is also the prior belief about how quiklynew lusters will be generated in the sequene. Similarly we an use equation(9.20) to estimate λ, sine items related to λ an be fatored out as
|H|
∏

i=1

λyi

λ+ i− 1
. (9.22)Suppose we have a labeled subset HL = {(x1, y1), (x2, y2), . . . , (xM , yM )} oftraining data, where yi is 1 if xi is a novel doument or 0 otherwise. Herewe desribe two possible hoies:1. The simplest way is to assume that λ is a �xed onstant during theproess, and it an be omputed as

λ̂ = arg max
λ

∏

i∈HL

λyi

λ+ i− 1
, (9.23)



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 131here HL denotes the subset of indies of labeled douments in thewhole sequene.2. The assumption that λ is �xed may be too restritive in reality, espe-ially onsidering the fat that it re�ets the generation rate of newlusters. More generally, we an assume that λ is some funtion ofvariable i12. In partiular, we assume λ = a/i + b + ci where a, band c are non-negative numbers. This formulation is a generalizationof the above ase, where the i−1 term allows a muh faster dereaseat the beginning, and c is the asymptoti rate of events happening as
i → ∞. Again the parameters a, b and c are estimated by MLE overthe training dataset:

â, b̂, ĉ = arg max
a,b,c>0

∏

i∈HL

(a/i+ b+ ci)yi

a/i+ b+ ci
. (9.24)9.3.3 ExperimentsWe apply the above online lustering model to the novelty detetion task inTopi Detetion and Traking (TDT). TDT has been a researh ommunitysine its 1997 pilot study, whih is a researh initiative that aims at teh-niques to automatially proess news douments in terms of events. Thereare several tasks de�ned in TDT, and among them Novelty Detetion (a.k.a.First Story Detetion or New Event Detetion) has been regarded as thehardest task in this area [Allan et al., 2000℄. The objetive of the noveltydetetion task is to detet the earliest report for eah event as soon as thatreport arrives in the temporal sequene of news stories.DatasetWe use the TDT2 orpus as our historial dataset for estimating parameters,and use the TDT3 orpus to evaluate our model13. Notie that we have asubset of douments in the historial dataset (TDT2) for whih events labelsare given. The TDT2 orpus used for novelty detetion task onsists of62,962 douments, among them 8,401 douments are labeled in 96 lusters.Stopwords are removed and words are stemmed, and after that there areon average 180 words per doument. The total number of features (uniquewords) is around 100,000.12It is not a DP anymore after this adaptation.13Stritly speaking we only used the subsets of TDT2 and TDT3 that is designated forthe novelty detetion task.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 132Evaluation MeasureIn our experiments we use the standard TDT evaluation measure [Yang et al.,2002℄ to evaluate our results. The performane is haraterized in terms ofthe probability of two types of errors: Miss and False Alarm (FA) (PMissand PFA). These two error probabilities are then ombined into a singledetetion ost, Cdet, by assigning osts to Miss and FA errors:
Cdet = CMiss · PMiss · Ptarget + CFA · PFA · Pnon−target (9.25)where1. CMiss and CFA are the osts of a miss and a false alarm, respetively,2. PMiss and PFA are the onditional probabilities of a miss and a falsealarm, respetively and,3. Ptarget and Pnon−target is the priori target probabilities suh that Ptarget =

1− Pnon−target.It is the following normalized ost that is atually used in evaluating variousTDT systems:
(Cdet)norm =

Cdet

min(CMiss · Ptarget, CFA · Pnon−target)
(9.26)where the denominator is the minimum of two trivial systems. Besides,two types of evaluations are used in TDT, namely maro-averaged (topi-weighted) and miro-averaged (story-weighted) evaluations. In maro-averagedevaluation, the ost is omputed for every event, and then the average istaken. In miro-averaged evaluation the ost is averaged over all douments'deisions generated by the system, thus large event will have bigger impaton the overall performane. Note that maro-averaged evaluation is used asthe primary evaluation measure in TDT.In addition to the binary deision �novel� or �non-novel�, eah system isrequired to generated a on�dene sore for eah test doument. The higherthe sore is, the more likely the doument is novel. Here we mainly usethe minimum ost to evaluate systems by varying the threshold, whih isindependent of the threshold setting.Methods



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 133One simple but e�etive method is the �GAC-INCR� lustering method[Yang et al., 1998, 1999℄ with osine similarity metri and TFIDF termweighting, whih has remained to be the top performing system in TDT2002 & 2003 o�ial evaluations. For this method the novelty on�denesore we used is one minus the similarity sore between the urrent luster
xi and its nearest neighbor luster:

s(xi) = 1.0−max
j<i

sim(ci, cj) (9.27)where ci and cj are the lusters that xi and xj are assigned to, respe-tively,and the similarity is taken to be the osine similarity between twoluster vetors, where the lt TFIDF term weighting sheme [Salton andBukley, 1988℄ is used to sale eah dimension of the vetor. Our seondmethod is to train a logisti regression model whih ombines multiple fea-tures generated by the GAC-INCR method. Those features not only inludethe similarity sore used by the �rst method, but also inlude the size of itsnearest luster, the time di�erene between the urrent luster and the near-est luster, et. We all this method �Logisti Regression�, where we use theposterior probability p(novelty|xi) as the on�dene sore. Finally, for ouronline lustering algorithm we hoose the quantity s(xi) = log p(Cnew|xi) asthe output on�dene sore.Experimental ResultsOur results for three methods are listed in Table 9.1, where both maro-averaged and miro-averaged minimum normalized osts are reported. Fur-thermore, we also report the Miss and FA results to show the trade-o�(reall that they are the two omponents of the ost in equation 9.25).The GAC-INCR method performs very well, so does the logisti regressionmethod. For our DP results, we observed that using the optimized γ̂ willget results (not listed in the table) that are around 10% worse than usingthe γ obtained through validation, whih might be due to the �atness ofthe optimal funtion value as well as the sample bias of the lusters in thehistorial dataset14. Another observation is that the probabilisti deisiondoes not atually improve the hard deision performane, espeially for the
λvar option (remember that in the ase of λfix option we learn λ̂ from thedata; in the ase of λvar-option we atually assume it to be a funtion ofdoument index λ = a/i+ b+ ci and learn the funtion parameters â, b̂ and
ĉ). Generally speaking, our DP methods are omparable to the other twomethods, espeially in terms of topi-weighted measure.14It is known that the luster labeling proess of LDC is biased toward topis that are



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 134Method Topi-weighted Cost(Miss, FA) Story-weighted Cost(Miss, FA)GAC-INCR 0.6945 (0.5614, 0.0272) 0.7090 (0.5614, 0.0301)Logisti Regression 0.7027 (0.5732, 0.0264) 0.6911 (0.5732, 0.0241)DP with λfix, HD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)DP with λvar, HD 0.6901 (0.5789, 0.0227) 0.7541 (0.5789, 0.0358)DP with λfix, PD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)DP with λvar, PD 0.9025 (0.8772, 0.0052) 0.9034 (0.8772, 0.0053)Table 9.1: Results for Novelty Detetion on TDT3 Corpus9.4 SummaryIn this hapter we presented an extended version of our multi-task learn-ing framework, to inlude both supervised and unsupervised settings. As aonrete and signi�ant example, we show how to apply the framework tothe novelty detetion problem, with the evaluation results on a benhmarkorpus that are omparable to the results of the best system in novelty de-tetion. We also establish theoretial onnetions between our frameworkand other well-known Bayesian approahes to unsupervised learning of topimodels suh as the Latent Dirihlet Alloation and Correlated Topi Models.Related work in unsupervised learning are the follows. Zaragoza et al.[Zaragoza et al., 2003℄ applied a Bayesian Dirihlet-multinomial model tothe ad ho information retrieval task and showed that it is omparable toother smoothed language models. Blei et al. [Blei et al., 2003a℄ used Chi-nese Restaurant Proesses to model topi hierarhies for a olletion of do-uments.Another interesting and related researh topi is semi-supervised learningwhere some of the response variable y's are given and some of them aremissing. Various approahes have been proposed, suh as [Zhu et al., 2003,Zhou et al., 2005, Zhang and Ando, 2005℄. Viewed from the multi-task learn-ing perspetive, it is possible to extend our multi-task learning frameworkfurther to model parameters θunlabeled and θlabeled jointly while onsidering
p(x|θunlabeled) and p(y|x,θlabeled). By apturing the dependenies between
θunlabeled and θlabeled, we may be able to make more e�etive use of bothlabeled and unlabeled data.overed in multiple languages instead of one single language.



Chapter 10Summary and DisussionsIn this thesis we have presented a uni�ed probabilisti framework for multi-task learning, together with a series of models suitable for di�erent tasksenarios. In our framework task relatedness is explained by sharing a om-mon struture through latent variables, and mathematially a �exible priordistribution is learned for task parameters using all training resoures. Ex-periments show that they are able to take advantage of multiple related tasksto improve performane. Contributions of the thesis inlude:
• A Uni�ed Probabilisti Framework for Multi-Task Learning: We pro-posed a novel probabilisti framework for multi-task learning. It an beseen as a hierarhial Bayesian model or latent variable model, whose�exibility (i.e., the apability to support a variety of task senarios)mainly omes from two soures: the statistial assumption about la-tent variable s and the form of the shared struture (e.g., the mixingmatrix Λ).
• Systemati Exploration of Multi-Task Learning Senarios: We ana-lyzed a series of important multi-task learning senarios, and presentedsuitable models within the framework. The senario analysis also shedslight on how to properly formulate various appliations into multi-tasklearning problems.
• Sparsity Models for Multi-Task Learning: We proposed sparsity modelsfor multi-task learning, where the sparsity is either in terms of thehidden soure sk or the linear mixing matrix Λ. In the former eahpredition funtion is a sparse linear ombination of basis funtions;135



CHAPTER 10. SUMMARY AND DISCUSSIONS 136while in the later eah predition funtion is a linear ombination ofbasis funtions that are sparse.
• New Algorithms for Joint Feature Seletion for Multi-Task Learning:We proposed the l1 ◦ lp regularization algorithm whih an be seen asa generalization of lasso for the multi-task learning setting. It ouplesthe the same feature oe�ients of all tasks by using a lp-norm penalty,and thus is apable of utilizing information from all tasks.
• Mixture Models for �Clusters of Tasks�: We generalize previous workby proposing mixture models for multi-task learning, whih are theright hoie for the �lusters of tasks� senario. An e�ient learningalgorithm based on EM is presented and we ahieved good results onboth simulated data and ollaborative �ltering tasks.
• Investigation on Model Seletion for Multi-Task Learning: We adaptedthe general idea of model seletion to the multi-task learning setting,where the best joint model of all task parameters is hosen. This e�ortovers an unexplored area in multi-task learning, and is indispensablein order to �nd good models, espeially when domain knowledge doesnot lead to an obvious hoie.There are still many open questions and opportunities in multi-task learningresearh:
• The performane gain of multi-task learning depends a lot on the num-ber of tasks available. Ando and Zhang [2004℄ used heuristis to reatemany auxiliary tasks from unlabeled data and got good performanein several appliations. How to design auxiliary tasks suh that themulti-task learning an most bene�t is an open question and deservesareful investigation.
• Classi�ation with strutured outputs has beome a very popular re-searh topi and has been applied to many interesting problems in nat-ural language proessing, information extration and bio-informatis,where strutured outputs naturally exist. A deep understanding of itsonnetion to multi-task learning will be ontribute to both researh�elds.
• In this thesis we mainly foused on supervised learning problems, andbrie�y disussed unsupervised multi-task learning. More generally we



CHAPTER 10. SUMMARY AND DISCUSSIONS 137an onsider semi-supervised learning, where we have both labeledand unlabeled tasks. Can we develop e�etive approahes to semi-supervised multi-task learning?
• All senarios disussed in this thesis assume that tasks have the sameinput spae X . However, it is not neessary sine we an have multipletasks with the their input spae X (k) = X ⊕ Z(k) where the X partof the input spae is shared. In partiular, semi-parametri models[Bikel et al., 1998℄ might be a good andidate whih an have a non-parametri part for Z(k) and a ommon parametri omponent for X .It is still unlear how e�etive multi-task learning methods are for thispartially sharing situation.
• In Chapter 8 we have foused on ross-validation tehniques for modelseletion in multi-task learning. It is meaningful to investigate howwell other model seletion tehniques perform, suh as Bayesian modelseletion, AIC, BIC, MDL, GCV, et. Another important questionis, an we design e�ient algorithms to obtain ross-validation errorswithout arrying out the expensiveK-fold omputation (using approxi-mation or bounds?), espeially the leave-one-task-out ross-validation?We think that suessfully addressing the above problems will signi�antlyontribute to multi-task learning and make multi-task learning a more ma-ture �eld.
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