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Abstract
The study of actions has been on the frontier of dialog research since day

one. Rooted in speech act theory (Austin, 1962), actions represent the ba-
sic communication unit and define the types of interactions that a dialog
agent is capable of. This dissertation begins with the goal of developing
domain-agnostic dialog models that can learn to converse with induced ac-
tion representations. Achieving this first requires the models to be expressive
and general purpose so that we can create dialog agents in many different
domains via the same framework. It then requires the model to produce
semantic representations that encode actions in natural conversations and
fulfill the requirements of real-world dialog systems. Unfortunately, cur-
rent methodologies to create dialog systems are not adequate to achieve this
goal. The classical frame-based dialog pipeline have assumed the actions are
pre-defined by expert handcrafting, which struggle to generalize to complex
domains. More recent end-to-end (E2E) dialog models based on encoder-
decoder neural networks are designed to be not restricted by hand-crafted
semantic representations. Unfortunately, it is far from trivial to build a full-
fledged dialog system using encoder-decoder models and they suffer from
a range of limitations. Moreover, current E2E models only focus on the final
response word outputs and pays little attention to the action representation.

This dissertation advocates a new family of E2E dialog models based on
latent actions. Latent actions model the hidden actions in raw conversations
as latent variables and make it possible to learn explicit action represen-
tations at scale. Concretely, a general latent action framework is defined
and detailed, including desired properties, optimization techniques, and we
developed novel solutions to efficiently discover latent actions from large
datasets and seamlessly integrate the resulting latent actions into E2E neu-
ral dialog models. Then four different types of latent action are created to
address major limitations that current E2E dialog systems are facing: (1) the
dull response problem where models tend to generate generic responses, (2)
poor interpretability where E2E models cannot be easily interpreted (3) lim-
ited domain generalization where deep models requires a lot of in-domain
training data and (4) strategy optimization where is it challenging to apply
reinforcement learning for E2E models. This work shows that the above-
mentioned challenges can naturally be solved by using latent actions and sig-
nificant empirical performance gain can be observed. The proposed frame-
work also offers a new perspective to create E2E dialog models that focus
on action representation, which enables new research that connects to other
subjects, e.g., sentence representation learning, zero-shot learning etc. This
research is a first step towards bridging the classic dialog action research to
neural E2E models, and lays the foundation for building dialog systems that
can accomplish more complex tasks, understand and reason as human do.
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Chapter 1

Introduction

1.1 Overview

Teaching machines to converse like a human for real-world applications is arguably
one of the hardest challenges in Artificial Intelligence (AI). To carry out natural and
meaningful conversation with a human, a dialog system needs to be competent in un-
derstanding natural language, making intelligent decisions, and generating appropri-
ate responses. Moreover, unlike many other natural language processing (NLP) tasks,
a dialog system is a sequential decision-making problem that needs to look ahead and
plan about the future (Barto et al., 1989). Through decades of research and develop-
ment, dialog systems have evolved tremendously and have been transformed from re-
search projects into commercial systems that are constantly used by hundreds of mil-
lions of people every day. Apple Siri, Amazon Alexa, Google Home, and Microsoft
Xiao Ice (Zhou et al., 2018) are just a few examples of planet-level dialog systems to
showcase this steady growth of conversational interaction between human and ma-
chine. In the meantime, the state-of-the-art dialog systems are still very preliminary
in terms of matching up to the conversational ability of human, i.e., they mostly can
only talk about specific topics with limited memory and functionalities. New method-
ologies and frameworks are urgently needed to advance the capability of current dialog
agents further.

A central topic of dialog research is the meaning representation of utterances, i.e.
the basic unit of communications between two interlocutors (Searle et al., 1980; Allen
et al., 2001). People have also used the term actions to denote the system utterances that
an agent can output to human users (Williams and Young, 2003). Modeling actions in
a dialog system is very challenging due to the unbounded nature of natural language.
In principle, the output action space for a dialog system is infinite in order to appropri-
ately respond to all possible conversational context. The classic dialog systems (Young,
2006) takes a divide-and-conquer approach, i.e. dividing the process of dialog into nat-
ural language understanding (NLU), dialog management (DM) and natural language
generation (NLG). Then hand-crafted utterance (action) representations are used as the
interface between NLU and DM, and between DM and NLG. That is the NLU recog-

1



nize the user input into user actions, which are processed in the DM, which outputs the
next system action. Finally, the system action is transduced into natural language. For
example, in CMU Let’s Go Bus Information system (Raux et al., 2005), one of the early
real-world dialog deployments, has utilized dialog-act based meaning representations.
An example action can be: Implicit Confirm (Departure Time=now), Inform (Bus=28X; Ar-
rival Time=7pm). Dialog-act based representations contain one or more dialog acts for
propositional function and a set of slot arguments to capture the propositional content.
This approach has proven to be effective in simple task-oriented domains where it’s
feasible to enumerate most of the valid outputs from the systems. Yet this approach
struggles to generalize to more complex domains or transfer to other domains because
of the limitation of hand-crafted symbolic representation (Joty et al., 2011).

The recent revolution in deep learning has suggested an alternative path to model
conversations, i.e., developing end-to-end models that do not use hand-tailored inter-
mediate interfaces. This philosophy strives to create domain-agnostic models and learn-
ing algorithms that can learn useful intermediate representations by itself from data.
Following this approach, deep learning models have become the state-of-the-art meth-
ods in a wide range of NLP tasks, including language modeling (Mikolov et al., 2010),
syntax parsing (Socher et al., 2011), speech recognition (Hinton et al., 2012), neural ma-
chine translation (Cho et al., 2014), image captioning (Xu et al., 2015), entity recogni-
tion (Lample et al., 2016) etc. Pioneer work in end-to-end (E2E) dialog models has used
encoder-decoder neural networks (Sordoni et al., 2015; Vinyals and Le, 2015) and for-
mulates a dialog system as a response generation task: encode the dialog context via
an encoder network to dense vector representations, and then decode the next system
reply via a decoder network. The encoder and decoder networks are trained jointly
via maximizing the word log likelihood on training dialogs without the need for hand-
crafting. In this setting, the actions are implicitly modeled in the hidden representations
of the decoder network.

Unfortunately, despite the undeniable advantages and promising research results,
E2E models have their problems. For example, E2E dialog models are black box models
that are difficult to control and challenging to interpret, and these proprieties are often
required for real-world dialog applications. E2E models also suffer from the issue of
dull response, i.e. the models are only able to generate generic, not engaging responses
despite the fact of the large training corpus. One more problem is that E2E models are
notoriously data hungry whereas most of the dialog domains are scarce of abundant
data, and it is impossible to collect a large dialog dataset for every possible domain due
to its universal applicability. As we can see, these challenges cannot be solved merely
by collecting more data or using more computation power with larger models. Thus,
before we can address these challenges with a fundamentally novel solution, E2E dialog
models are still far away from becoming the standard solution to create dialog systems.

The goal of this dissertation is to develop novel methods to enable us to create dia-
log systems that can generalize to complex domains and accomplish more challenging
goals through conversation with human users. In order to achieve this goal, we build a
new family of E2E dialog models that is built upon the notion of latent actions. We will
show that this novel framework can achieve superior performance compared to vanilla
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E2E systems in the above mentioned challenges, while adequately maintaining the ben-
efits of E2E systems compared to the classic pipeline approach. We define latent actions
as the hidden discourse-level intents that the system-side speaker has used in the raw
conversational data. Unlike vanilla E2E system that naively hope such abstraction over
high-level decisions can be learned from next utterance prediction automatically, we
develop a set of novel algorithms to encourage the models to learn helpful and mean-
ingful latent representations about the next utterance, such as representations that are
transferable across domain which in turn reduces the training size needed for domain
adaption.

Figure 1.1: Illustration of the relationships between the proposed latent action approach
and hand-crafted systems or current end-to-end systems in terms of interpretability and
scalability.

There are many reasons why learning with latent actions is desired. One of them is
that human intelligence is superb in operating with abstractions, or “high-level” actions,
that span over multiple timestamps of primitive actions. This enables human to general-
ize better to unseen situations and obtain reusable knowledge to new domains (Parr and
Russell, 1998). This principle also applies to natural language. Research in plan recog-
nition (Litman and Allen, 1987) and natural language generation (Hovy, 1990; Rambow
et al., 2001) suggest that human produce their utterances during a conversation in a hi-
erarchical fashion with different level abstractions from “what to say” to “how to say
it”. Building systems with such hierarchy has enabled people to optimize dialog strat-
egy in parallel with improving the natural language generation quality and provides an
interpretable interface for researchers to understand the success or failure of a dialog
agent.

Another reason is that the introduction of latent action creates a bridge to connect
the classic symbolic dialog research with recent deep learning based NLP models. La-
tent variables can be used to correspond to the “dialog acts”, “intentions” that were
manually designed in classic research, and now can be inferred from data as part of a
neural network. Also, the latent actions are modelled as probabilistic latent variables,
which enable researchers to utilize techniques from Bayesian machine learning, varia-
tional inferences etc to improve the learning process of latent action E2E models. This
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can not only give us a better modeling of the actual underlying dialog process, but also
make neural dialog systems more explainable with human understandable interface.
Figure 1.1 shows the benefits of latent actions in terms of interpretability and scalability
compared to current methods.

Last but not least, as this thesis will show, having an explicit representation of system
actions in E2E dialog models can lead to various empirical performance gain and bring
novel features compared to standard E2E systems. Unlike standard E2E models that
solely aims to optimize the entire system for the main learning objective, latent variable
E2E systems creates opportunities for developers to gain insights and incorporate ad-
ditional knowledge, while remaining to be end-to-end trainable. These unique features
make latent action E2E dialog system powerful and practical for creating dialog systems
in a variety of usage and domains.

1.2 Thesis Statement

In this dissertation, we advocate a new family of E2E dialog systems centered around
latent actions, by proposing novel inference algorithms to infer latent system intentions
from raw conversational data and incorporating them into the response generation pro-
cess of a decoder neural network. We argue that this family of E2E models can com-
bine the best properties of classic hand-crafted dialog systems with the ones of cur-
rent encoder-decoder dialog models, but also yield entirely new proprieties that neither
prior systems can achieve.

Figure 1.2: A high-level overview of the proposed latent action framework and the four
pivot topics.

Specifically, we first define the framework of latent action for dialog systems. Then a
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set of novel unsupervised learning algorithms based on stochastic variational inference
is developed to train neural text generation systems with latent variables for a given di-
alog dataset. Based on these definitions, system architecture and optimization methods,
we create four types of latent actions to solve the following challenges: 1) a stochastic
continuous latent action that is designed to capture the distribution over discourse-level
intentions and results in diverse response generation for open-domain conversation 2) a
stochastic discrete latent actions that are easy for human to understand for model inter-
pretability 3) a cross-domain latent action that is used to establish alignments between
similar dialog moves from different domains and enable zero-shot domain transfer, 4) a
latent action-based reinforcement learning framework that optimizes the dialog policy
over the induced latent actions space. Each of the proposed latent action addresses one
essential challenge of current E2E dialog modeling and they can be stacked together to
provide solutions as a whole. Last but not least, the bigger picture is that this disser-
tation demonstrates how explicit latent variable can be incorporated into deep neural
natural language generation systems. Also, it shows how such synergy between latent
variable and neural networks can improve system performance, provide useful scien-
tific insights, and open doors to new research topics that leverage ideas from other fields
of study, such as zero-shot learning, discourse analysis, etc. We hope these promising
directions can encourage brand-new methodologies to be developed and advance dia-
log and natural language processing research as a whole.

1.3 Thesis Structure

The rest of the dissertation is organized as follows:

• Chapter 2: Foundational Work
This chapter gives an overview of related research areas, including both work
about dialog system and related work in machine learning.

• Chapter 3: The Latent Action Framework
This chapter defines the proposed the latent action approach and describes the
background. We lay out the overall structure, including problem definition, eval-
uation metric, basic system components and advantages of latent actions.

• Chapter 4: Learning Methods for Latent Actions
This chapter develops neural network architectures that create the base form of the
defined latent action framework. Then we present machine learning algorithms
based on stochastic variational inference to train these neural networks from raw
conversational data. In particular, we show that the posterior collapse problem is
a key challenge for training our proposed architectures and this chapter presents a
set of novel techniques to solve the posterior collapse problem, making the model
learn better latent action representations.
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• Chapter 5: Latent Actions for Discourse-level Diversity
This chapter demonstrates how to use latent action framework to solve the well-
known dull response problem in E2E open domain chatting system. Besides using
the base latent action models, we propose to use linguistic knowledge to guide the
learning of latent actions and achieve significant better performance. Also, this
chapter proposes a novel evaluation metric to overcome the difficulties of assess-
ing open-domain chatting systems.

• Chapter 6: Discrete Action Representation for Model Interpretability
Vanilla E2E systems are black-box systems that do not provide explainable inter-
faces for human to understand its internal operations. This chapter first shows
that non-contextual posterior distribution is desired to learn interpretable latent
variables. Then we create discrete latent actions with two distinct learning signals
in order to offer a human-readable interface for reading an E2E dialog model’s
intention of the next response, while maintaining its ability to be trained on unla-
belled dialog data

• Chapter 7: Zero-shot Generalization with Cross-Domain Latent Action
This chapter presents a cross-domain latent action that enables model to trans-
fer utterance-level knowledge from source domains to target domains, which can
greatly reduce the data needed to train an E2E system for a new domain. We show
that this in fact enables zero-shot transfer if two domains share similar discourse-
level structure, even though the lexical distributions are completely different at
utterance level.

• Chapter 8: Dialog Strategy Optimization with Latent Action Reinforcement
Learning
This chapter extends the latent action from supervised learning to reinforcement
learning. We propose a new paradigm of training E2E models via reinforcement
learning. The main novelty is to learn an induced new action space for optimiz-
ing discourse-level dialog strategy given task specific reward signals. Whereas the
traditional approach tunes the dialog policy at word-level from decoder outputs.

• Chapter 9: Conclusion and Future Work
This chapter concludes the main contributions and discusses a number of interest-
ing directions that can be explored in the future.
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Chapter 2

Foundational Work

This chapter presents an overview of the prior research that this work paves the foun-
dation for this dissertation. We will first go over the background of existing models for
building dialog systems and previous state-of-the-art approaches. Then we will sum-
marize machine learning techniques that the rest of this dissertation will build on.

2.1 Dialog Systems Foundations

2.1.1 Speech Acts

Before discussing practical computational solutions for dialog systems, we will briefly
discuss the linguistic foundations. The study of action has a long history. The theory of
speech acts is first developed by Austin in the field of linguistics and language philoso-
phy (Austin, 1962). Under this setting, utterances in conversations are actions that are
used to change the mental and interactions state of the speakers. Austin distinguishes
several types of actions that are performed when a speaker produces utterances. They
are:

1. Locutionary acts the literal meaning and structure of an utterance.

2. Illocutionary acts the intended meaning of an utterance. Illocutionary acts are also
divided into two parts: illocutionary force (the type of action, e.g. statement,
promise, request) and illocutionary content, which specifies the details of an ac-
tion. Many of dialog system frameworks have focused on creating action repre-
sentation for capture illocutionary acts, which will be discussed in the next section.

3. Perlocutionary acts: the effect achieved by the actions, such as persuading, convinc-
ing etc.

Besides theoretical work in studying human-human conversations, there have been
many pioneering works in developing computational models for speech acts in dia-
log based on classic AI expert systems to model various behavior that is needed for a
dialog systems, including grounding (Clark et al., 1991; Clark, 1996; Traum, 1999), plan
recognition and execution (Kautz and Allen, 1986; Litman and Allen, 1987) and mental
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state modeling (Larsson and Traum, 2000) etc. These work serve the foundation of our
understanding about the actions in human-human conversations.

Since then, there have been a constant effort in creating practical dialog systems that
can accomplish real-world tasks, which is also the focus of this dissertation. In terms
of usage, the research in dialog systems can be roughly divided into task-oriented sys-
tems and chat-oriented systems: task-oriented system are designed to achieve certain
goals, e.g. flight booking, hotel recommendation etc. Chat-oriented dialog systems are
designed to carry out open-domain conversations, so that are not restricted to a certain
domain or a specific goal. Chat-oriented dialog systems have been mainly used for en-
tertainment and social chat. Since the unlimited scope of chat-oriented dialog system,
it is more difficult than a task-oriented dialog system in one domain. In the following
sections, we will describe some of the most popular and related methods to create these
two types of dialog systems.

2.1.2 Frame-based Dialog Systems

Frame-based dialog systems are one of the most successful frameworks to create task-
oriented dialog systems (Glass et al., 1999; Young, 2006; Raux et al., 2005), and are some-
times also referred as slot-filling dialog systems. In this setting, a dialog state frame (aka
form) is designed to contain every information needed to accomplish its goal, e.g. de-
parture place, arrival place for a flight booking system (Glass et al., 1999). Through
conversation, the dialog agent needs to acquire these missing information from users,
aka. “slot filling” and provides the correct information to users once sufficient intelli-
gence is gathered. Frame-based dialog system often consists of 3 major components as
shown in Figure 2.1:

1. Natural language understanding (NLU): parses user utterances to semantic frames
that represent user-side speaker’s actions.

2. Dialog manager (DM): maintains the dialog state and decides the system next ac-
tion

3. Natural language generation (NLG): generates a natural language sentence based
on the DM’s decision of next move.

Figure 2.1: Dialog system pipeline for task-oriented dialog systems
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The frame system has evolved several times from its initial design. TrindiKit (Larsson
et al., 1999) defines a formalism to consume user/system input, update information
dialog state and generates the next systems moves based on the information state the-
ory for dialog management. CMU RavenClaw is another popular dialog management
framework (Bohus and Rudnicky, 2003) that adds agenda-based planning into frame-
based dialog systems, which enables developers to define the dialog policy via task
decomposition trees. Hidden Information State (HIS) dialog management (Young et al.,
2007) uses statistical models to model dialog systems as a Partially Observable Markov
Decision Making Process (POMDP) and uses reinforcement learning to optimize the de-
cision making policy. Also, HIS systems further divides the DM into two parts: dialog
state tracking (DST), which accumulates information from the entire dialog history and
dialog policy (DP) that selects the next system action based on the output from the DST
as shown in 2.1.

One limitation of the above approaches is that component is independently opti-
mized and may suffer from error propagation from module to modules. Therefore,
end-to-end trainable dialog models based on deep learning models are created to al-
leviate this problem by jointly learning all components in a frame-based system (Wen
et al., 2016a; Zhao and Eskenazi, 2016; Su et al., 2016; Williams and Zweig, 2016). Wen
et al., (Wen et al., 2016a) first introduced a fully differentiable network architecture that
can be trained on both oracle system responses and intermediate labels jointly. After su-
pervised training, the dialog policy of this model can be fine tuned using reinforcement
learning (Su et al., 2016). Zhao et al., (2016) first used deep reinforcement learning to en-
able a task-oriented E2E dialog system to learn to interface with external KB and learn
task oriented dialog state representations. Later work has extended this idea using soft
attention to reason over knowledge base (Dhingra et al., 2017). The above approaches
still retain a part of the intermediate representations (e.g. dialog acts) from the classical
pipeline and combine a subset of the dialog pipeline into one E2E model.

Meanwhile, despite the rapid development of learning methods in each component
of frame-based dialog systems, the basic architecture has stayed the same as shown in
Figure 2.1. The dialog state frame is always hand-crafted by domain experts and the
action frame for both user utterances and system actions are also manually created. The
improvement in machine learning models indeed continue to improve the estimation
accuracy of automatically recognizing semantic frame given raw text input (Williams
et al., 2013; Mesnil et al., 2015), the whole system is limited by the hand-crafted inter-
mediate representations so it struggles to generalize to new or more complex domains.
Therefore, frame-based dialog system have been only applied to task-oriented dialog
systems that operate in a constrained domain, and it is not expressive enough to model
conversations in domains where actions cannot be captured by hand-crafted dialog-act
frames.

2.1.3 Retrieval-based Dialog Systems

An alternative approach is retrieval-based dialog systems. The basic idea is simple,
i.e. giving a query dialog context, the system searches in a database of previous dialog

9



contexts and responses based on certain ranking function, e.g. nearest neighbour, and
returns the best matched response as the answer. Matching multi-turn dialog context
is a challenging task since multi-context are extremely sparse. Therefore, early work
has focused on 1-turn question answering retrieval which only matches the last user
question with every question in the database using semantic relatedness measures, e.g.
BM-25 (Graesser et al., 2004; Jeon et al., 2005; Banchs and Li, 2012). There have also
been research effort in extending nearest neighbour approach to multi-turn dialogs by
developing dialog context features extracted from long-term dialog history. This ap-
proach has successfully been applied to model multi-domain task-oriented dialogs (Lee
et al., 2009; Noh et al., 2012). The more recent deep learning-based E2E retrieval di-
alog systems solve the response matching problem by learning neural dialog context
encoders, e.g. recurrent neural networks, that are trained to rank the correct response
higher probability (Nio et al., 2014; Bordes and Weston, 2016; Lowe et al., 2017; Zhou
et al., 2016).

From action point of view, instead of coming up with a explicit representation of
the speech acts, retrieval models takes a non-parametric approach by storing all the
historical responses in the database and selects one of them at the testing time. The
advantages of example-based systems are (1) purely data-driven and are not limited to
hand-crafted semantic frames (2) response quality improves automatically with larger
databases (3) the return responses are human generated so that always grammatical and
coherent. On the other hand, example-based systems are limited in the following ways:
(1) they cannot generate novel responses that are not in the database, leading to poor
generalization given a limited database (2) same as other non-parametric approaches,
the query time linearly increases as the database becomes bigger, slowing down the
response speed at testing time.

2.1.4 Generation-based Dialog Systems

Generation-based dialog systems that builds on encoder-decoder networks (Cho et al.,
2014; Vinyals and Le, 2015) are perhaps the most expressive framework to create dia-
log systems to date. Similar to E2E retrieval models, E2E generation-based system also
utilizes neural encoder networks to transforms the raw dialog context, e.g. dialog his-
tory, external knowledge etc into distributed vector representations. Then generation
systems distinguish itself by using a auto-regressive decoder, e.g. recurrent neural net-
works that is trained to generate the response from left-to-right, word by word. Thus,
a generation system in principle can learn to generate free form natural responses and
generalize to novel utterances that are not included in the training data. In the mean
time, it is harder to train. E2E generation systems have been successfully applied to
both task and chat-oriented domains due to its flexibility.

Hierarchical encoders (Serban et al., 2015) have been proposed to exploit the hier-
archical structure in dialog and has shown better results then encoding the entire dis-
course history word-by-word. More fine-grained encoders (Henaff et al., 2016; Xing
et al., 2017) are also proposed to better extract key elements (e.g. entities) from the dis-
course history. Furthermore, recent research has found that encoder-decoder models
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tend to generate generic and dull responses, (e.g., I don’t know), rather than meaning-
ful and specific answers (Li et al., 2015a; Serban et al., 2016c). To tackle this problem, one
line of research has focused on augmenting the input of encoder-decoder models with
richer context information, in order to generate more specific responses. Li et al. (Li
et al., 2016a) captured speakers’ characteristics by encoding background information
and speaking style into the distributed embeddings, which are used to re-rank the gen-
erated response from an encoder-decoder model. Xing et al. (Xing et al., 2016) maintain
topic encoding based on Latent Dirichlet Allocation (LDA) (Blei et al., 2003) of the con-
versation to encourage the model to output more topic coherent responses. The second
category of solution is to improve the decoding algorithm to encourage more diverse re-
sponses, including decoding with beam search and its variations (Wiseman and Rush,
2016), encouraging responses that have long-term payoff (Li et al., 2016b) or adding
mutual-information loss in additional to standard maximum likelihood estimation (Li
et al., 2015a). The last category of solutions is to introduce a latent random variable to
model a distribution of responses given a dialog context (Serban et al., 2016c; Zhao et al.,
2017b; Cao and Clark, 2017).

As for generation-based task-oriented systems, the challenges mainly lies in integrat-
ing the system with external knowledge bases and improving the performance on han-
dling entities. Decoder network with copy mechanism was applied to task-oriented set-
ting and shows significant improvement on entity accuracy over standard decoder with
attention mechanism (Eric and Manning, 2017a). Prior work applies a pre-processing
technique named entity indexing that improves the entity independence of encoder-
decoder models (Zhao et al., 2017a). This approach is used to transformed a real-world
system, CMU Let's Go) into E2E generation model and tested with users through spo-
ken interface. There are two types of approach to integrate generation-based systems
with external knowledge bases (KBs). The first approaches treat the external knowl-
edge base as a part of the environment and the model is learned to interact with both
human (in natural language) and KBs (in API calls) (Zhao and Eskenazi, 2016; Williams
et al., 2017; Lei et al., 2018). The second approaches assumes that the generation-model
has full-access to the internal entries in the database and the system is trained to ac-
cess the database via some forms of attention mechanism (Dhingra et al., 2017; Eric and
Manning, 2017b; Madotto et al., 2018).

2.1.5 Hybrid Dialog Systems

Hybrid Domains

Although the task-oriented and chat-oriented systems have been usually explored in-
dependently, there is pioneer work in combining the two types of systems. Research
has found that interleaving chat with task-oriented systems can improve the robustness
of the system against misunderstanding errors, and improve user satisfaction by keep-
ing them engaged with the systems (Zhao et al., 2017a). Yu et al. (Yu et al., 2017b) has
used reinforcement learning to learn the interleaving strategy. Other work has used so-
cial chat reasoner to improve the rapport between the computer and human in order to
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develop a amicable long-term relationship (Zhao et al., 2014).

Hybrid Decoders

Neither generation nor retrieval-based systems are perfect so that there have been ef-
fort in combining the best of both worlds. One popular approach is to first retrieve N
responses from the database and then use these selected response as additional input to
a generation-based decoder to generate a better response (Song et al., 2016; Guu et al.,
2018).

2.2 Machine Learning Foundations

2.2.1 Encoder-Decoder Models

Generative modeling is an area of machine learning research which deals with models of
the distribution of data P (X), whereX are data points that can be high-dimensional and
structured. Generative models have been extensively studied in many fields, including
computer vision, natural language etc., and still remains to be one of the most exciting
field of research. This section will focus on backpropagation-based generative models
for natural language using neural networks, which sit at the core of this dissertation.
Also, besides introducing the generic generative models, we are more interested in con-
ditional generative model P (X|C) where C is an arbitrary variable in high-dimensional
space that can influence the distribution of X .

The most common yet very powerful conditional generative model for natural lan-
guage is the encoder-decoder model (Cho et al., 2014; Vinyals and Le, 2015). The stan-
dard form of encoder-decoder models the conditional distribution of target word tokens
P (X|C) conditioned on a given word sequence X , which is also known as the sequence-
to-sequence model. The basic idea is to use an encoder recurrent neural network (RNN)
to encode the context sentence C into a distributed representation and then use a de-
coder RNN to predict the words in the target sentence X . Let the wx

i and wc
j to denote

the ith and jth words in the target and context sentence respectively, and RNNe and
RNNd to denote the encoder and decoder RNNs. Then the source sentence is encoded
by recursively applying:

he0 = 0 (2.1)
hei = RNNe(wx

i ,h
e
i−1) (2.2)

Then the last hidden state of the encoder RNN he|c| is treated as the representation of c,
which in theory is able to encode all of the information in the context sentence. Then
the initial state of RNNd is initialized to be he|c|, and predicts the words in the target
sentence x sequentially via:

oj = softmax(Whd
j + b) (2.3)

hdj = RNNd(wc
j ,h

d
j−1) (2.4)
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where oj is the decoder RNN's output probability for every word in the vocabulary at
time step j. Also, in order to make the model predict the first word in the target sen-
tence and predict a terminal symbol indicating the end of generation, special symbols
BOS and EOS are usually padded at the beginning and end of the target sentence. More-
over, it is important to note that the encoder and decoder networks are not limited to
RNNs or text word sequences. Within the scope of X being word sequences, past re-
search has investigated a variety of encoders, including convolutional neural network
(CNN) to encode visual data (Vinyals and Le, 2015), a tree encoder to encode syntactic
trees (Eriguchi et al., 2016) or hierarchical RNNs to encode conversation (Serban et al.,
2015) etc. Although the standard encoder-decoder models are very simple, they have
achieved impressive results in a wide range of natural language processing (NLP) tasks,
including machine translation (Vinyals and Le, 2015), image captioning (Vinyals et al.,
2015) etc.

Memory-Augmented Encoder-Decoder

Although the standard encoder-decoder models are able to learn long-term dependen-
cies in theory, they often struggles to deal with long-term information in practice. At-
tention mechanism (Bahdanau et al., 2014; Luong et al., 2015) is an important extension
of encoder-decoder models that enable better modeling of long term context. The gen-
eral idea is instead of asking the encoder RNN to summarize a fixed-size distributed
representation of the context C, but allowing it to create dynamic size distributed rep-
resentation (usually a list of fixed size vectors), and then equip the decoder RNN with
a reading mechanism that can retrieve a subset of the information from the dynamic
source representation. Specifically, let the dynamic representation of the context sen-
tence be He = {he1, ..., he|c|}. Then at each decoder step, the update function now be-
comes:

oj = softmax(W [hd
j ,m

e
j ] + b) (2.5)

me
j =

|c|∑
i

αijh
e
i (2.6)

αij = f(he
i ,h

d
j ) (2.7)

hdj = RNNd(wx
j ,h

d
j−1) (2.8)

where α is the scalar attention score computed via a matching function f which can be
simple dot product, bi-linear mapping or a neural network (Luong et al., 2015).

A recent extension of attention mechanism is the copy-mechanism (Gu et al., 2016;
Merity et al., 2016). Similar to the attention mechanism, the copy-mechanism also uti-
lizes a pointer to dynamically read from a variable-length representation of the source
sentence. However, rather than asking the decoder RNN to output the next word via
its softmax layer, the copy-mechanism directly copies and outputs the selected word ac-
cording to the attention. The main advantage of copy-mechanism is its ability to handle
rare words and OOVs better in case where other encoder-decoder models fail (Merity
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et al., 2016). Also past work has found that copy-mechanism results into better gener-
alization performance when the task inherently has the copy-nature, e.g. entity refer-
ences (Zhong et al., 2017; Eric and Manning, 2017a).

2.2.2 Variational Latent Variable Models

The generation of real-world data usually involves a hierarchical process. For example,
given a dialog context, the speaker may first decide the high level action to respond
with, e.g. ask a question or give a suggestion, and then the second stage generates the
actual response in natural language which focuses on low-level factors. Such high-level
decisions are often unobserved in data and are referred as latent variables. The objective
to maximize for unconditional generation is the marginal probability of data X

P (X) =

∫
P (X|z; θ)P (z)dz (2.9)

One of the most successful framework to model such phenomenon is the variational
autoencoder (VAE) (Kingma and Welling, 2013; Rezende et al., 2014). The idea of VAE
is to encode the input x into a probability distribution z instead of a point encoding in
the autoencoder. Then VAE applies a decoder network to reconstruct the original input
using samples from z. To generate images, VAE first obtains a sample of z from the
prior distribution, e.g. N (0, I), and then produces an image via the decoder network.
To deal with the integral over the high-dimensional latent variable z, VAE utilizes the
Stochastic Gradient Variational Bayes (SGVB), which instead of directly optimizing the
marginal log likelihood of the data, optimizes the evidence lower bound (ELBO), which is
a lower bound of the actual data log likelihood. ELBO is usually expressed as:

logP (X) ≥ Ez∼q(z|x)[logP (X|z)]−DKL(q(z|x)‖P (z)) (2.10)

In order to do conditional generation, VAE has been extended to the conditional varia-
tional autoencoder (CVAE) (Yan et al., 2015; Sohn et al., 2015). CVAE introduces a new
random variable C that is given at the generation stage. The goal is then to maximize
the lower bound of the conditional probability, which can be expressed as:

logP (X|C) ≥ Ez∼q(z|x,c)[logP (X|z, C)]−DKL(q(z|X,C)‖P (z|C)) (2.11)

Both VAE and CVAE were first introduced for computer vision, and were later extended
to natural language. Although VAE/CVAE has achieved impressive results in image
generation, adapting this to natural language generators is non-trivial. Bowman et
al. (Bowman et al., 2015) have used VAE with Long-Short Term Memory (LSTM)-based
recognition and decoder networks to generate sentences from a latent Gaussian vari-
able. They showed that their model is able to generate diverse sentences with even a
greedy LSTM decoder. They also reported the difficulty of training because the LSTM
decoder tends to ignore the latent variable. We refer to this issue as the posterior collapse
problem. VAEs and CVAEs play critical roles in our proposed latent action framework
and are discussed in much more details starting from Chapter 3.
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2.2.3 Zero-shot Learning

Zero-shot learning (ZSL) refers to an extreme situation where there is no training data
available for the target domain so the label space Y is unseen in the source. Although
difficult for machines, a human is indeed capable of ZSL. For example, after a person
reads a detailed description about the look of a cat, this person should be able to rec-
ognize an image of cat even he/she has never seen a cat before. Therefore, the major
challenge of ZSL is to construct a shared representation g of the output space Y , so that
a model trained on the source P (g|X) can be still used to predict meaning outputs that
can be related to the new labels.

ZSL was first introduced in the computer vision community (Larochelle et al., 2008;
Palatucci et al., 2009), which has focused on recognizing unseen objects from images.
The major approach is to parameterize the object Y into semantic output attributes in-
stead of directly predicting the object class index. As a result, in the test time, the model
can first predict the semantic attributes of the input image. Then the final prediction can
be obtained by comparing the predicted attributes with a list of candidates objects. A
more recent work (Romera-Paredes and Torr, 2015) improves this idea by jointly learn
a bi-linear mapping to directly fuse the information from semantic codes and input im-
age for prediction. Besides image recognition, recent work has explored the notion of
task generalization in robotics, so that a robot can execute a new task that is not men-
tioned in training (Oh et al., 2017; Duan et al., 2017). In this case, a task is described
by one demonstration or a sequence of instructions and the system needs to learn to
breakdown the instructions into previously learned skills. ZSL has also been applied to
individual components in the dialog system pipeline. Chen et al. (Chen et al., 2016b)
developed an intent classifier that can predict new intent labels that are not included in
the training data. Bapna et al. (Bapna et al., 2017) extended the idea to the slot-filling
module to track novel slot types. Both papers leverage a natural language description
about the label (intent or slot-type) in order to learn a semantic embedding about the
label space. Then, given any new labels the model can still make predictions. More-
over, there has been extensive work on learning domain-adaptable dialog policy by
first training a dialog policy on K previous domains, and then testing the policy on the
K+1st new domain. Gasic et al. (Gasic and Young, 2014) used the Gaussian Process with
cross-domain kernel functions. The resulting policy can leverage the experience from
other domains to make educated decisions in a new one. Finally, ZSL has also been
applied to NLG. Wen et al. (Wen et al., 2016b) used delexicalized data to synthetically
generate NLG training data for a new domain.

In summary, past ZSL research for dialog has mostly focused on adapting individual
modules of a pipeline-based dialog system. We consider our proposal to be the first step
in exploring the notion of adapting an entire E2E dialog system to new domains for task
generalization.
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2.2.4 Deep Reinforcement Learning

Reinforcement learning (RL) is used to learn dialog policies in dialog systems (Walker,
2000; Williams and Young, 2007; Gašić et al., 2010). RL models are based on the Markov
Decision Process (MDP). An MDP is a tuple (S,A, P, γ, R), where S is a set of states; A
is a set of actions; P defines the transition probability P (s′|s, a); R defines the expected
immediate reward R(s, a); and γ ∈ [0, 1) is the discounting factor. The goal of reinforce-
ment learning is to find the optimal policy π∗, such that the expected cumulative return
is maximized (Sutton and Barto, 1998). MDPs assume full observability of the internal
states of the world, which is rarely true for real-world applications. The Partially Ob-
servable Markov Decision Process (POMDP) takes the uncertainty in the state variable
into account. A POMDP is defined by a tuple (S,A, P, γ, R,O, Z). O is a set of obser-
vations and Z defines an observation probability P (o|s, a). The other variables are the
same as the ones in MDPs. Solving a POMDP usually requires computing the belief state
b(s), which is the probability distribution of all possible states, such that

∑
s b(s) = 1. It

has been shown that the belief state is sufficient for optimal control (Monahan, 1982), so
that the objective is to find π∗ : b→ a that maximizes the expected future return.

The deep Q-Network (DQN) introduced by Mnih (Mnih et al., 2015) uses a deep neu-
ral network (DNN) to parametrize the Q-value function Q(s, a; θ) and achieves human-
level performance in playing many Atari games. DQN keeps two separate models: a
target network θ−i and a behavior network θi. For every K new samples, DQN uses θ−i
to compute the target values yDQN and updates the parameters in θi. Only after every
C updates, the new weights of θi are copied over to θ−i . Furthermore, DQN utilizes
experience replay to store all previous experience tuples (s, a, r, s′). Before a new model
update, the algorithm samples a mini-batch of experiences of size M from the memory
and computes the gradient of the following loss function:

L(θi) = E(s,a,r,s′)[(y
DQN −Q(s, a; θi))

2] (2.12)

yDQN = r + γmax
a′

Q(s′, a′; θ−i ) (2.13)

Recently, Hasselt et al. (Van Hasselt et al., 2015) leveraged the overestimation problem
of standard Q learning by introducing double DQN and Schaul et al. (Schaul et al., 2015)
improves the convergence speed of DQN via prioritized experience replay. We found both
modifications useful and included them in our studies.

An extension to DQN is a Deep Recurrent Q-Network (DRQN) which introduces a
Long Short-Term Memory (LSTM) layer (Hochreiter and Schmidhuber, 1997) on top of
the convolutional layer of the original DQN model (Hausknecht and Stone, 2015) which
allows DRQN to solve POMDPs. The recurrent neural network can thus be viewed as
an approximation of the belief state that can aggregate information from a sequence of
observations. Hausknecht (Hausknecht and Stone, 2015) shows that DRQN performs
significantly better than DQN when an agent only observes partial states. A similar
model was proposed by Narasimhan and Kulkarni (Narasimhan et al., 2015) and learns
to play Multi-User Dungeon (MUD) games (Curtis, 1992) with game states hidden in
natural language paragraphs.
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Chapter 3

The Latent Action Framework

This chapter describes the proposed latent action framework for dialog modeling from
a general point of view. Notations are first formalized and the fundamental questions
are highlighted. Then a principled framework is presented with evaluation metrics
and novel machine learning methods. At last, we describe the high-level reasons why
latent actions are desirable to advance the current state-of-the-art systems. The material
introduced in this chapter is kept as general as possible to serve as the foundation for
more specific applications presented in later chapters of this thesis.

3.1 Formulations and Notations

We first formally describe the variables involved in a dialog dataset. A dialog dataset
often involves a number of complete dialogs, where each conversation is a list of turns
that are interactively generated from two or more interlocutors. Without loss of gener-
ality, any dialog dataset can be always converted and represented as a list of (c,x) pairs,
where c can be arbitrary structured data that describe a dialog context, e.g. discourse
history, speaker information etc, and x is a system response to context c. Further, a dia-
log context c is a list of utterances [(u1,m1), ..., (ut,mt), ..., (uT ,mT )], where each ut is an
natural language utterance expressed as a sequence of word tokens [wt1, ..., w

t
i , ..., w

t
|ut|].

Also,mt contains meta features about ut, including speaker identity, ASR confidence etc.
Meanwhile, a system response x is also represented by a sequence of tokens [w1, ...wj, ...w|x|].
At last, we use C and X to denote the random variables corresponding to the context
and system response. Figure 3.1 shows an example dialog expressed in the above for-
mat.

Given the above notation, then in the supervised learning setting, the goal is often to
learn model parameter θ through maximum likelihood estimation (MLE) on observed
data:

θ̂ = argmax
θ∈Θ

Ex,c∼p̂data [pθ(x|c)] (3.1)

where p̂data is the empirical data distribution.
In the reinforcement learning setting, we assume to have access to an extra reward
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Figure 3.1: Dataset creation from an example dialog.

signal at each turn defined by a reward function r(c,x). We first define the joint proba-
bility over a dialog trajectory τ conditioned on the current dialog model θ. A trajectory
corresponds to a dialog between the current model with a human users and contains a
list of c,x at each timestamp. Specifically:

pθ(τ) = pθ(c1,x1, ...cT ,xT ) (3.2)

= p(c1)
T∏
t=1

pθ(xt|ct)p(ct+1|ct,xt) (3.3)

Then the goal is to learn model parameters θ that maximize the expected cumulative
reward returns over the dialog trajectories conditioned on the current model.

θ̂ = argmax
θ∈Θ

Eτ∼pθ(τ)

T∑
t=1

γtr(ct,xt) (3.4)

where γ < 1 is a discounting factor to prevent the summation over a trajectory going to
infinity.

3.2 Overview

To model the relationship between the dialog context c and the next response x, a dialog
system often processes information as shown in Figure 3.2. The dialog context first
needs to be parsed and understood in the first layer. Then the parsed information is
used as the basis for decision-making and for deciding the next move. Eventually the
decided action is converted into the surface form of x via natural language generation.
For standard E2E dialog models, the entire process is modeled by one jointly optimized
neural network, e.g. encoder-decoders (Cho et al., 2014). In this case, the information
is passed by as hidden states inside the E2E systems, and it is unclear which hidden
states of the network correspond to the understanding results from the 1st layer, and it
is neither clear about which hidden states correspond to the decision-making results.

On the contrary, the proposed latent action E2E dialog systems aim to model inter-
locutors’ high-level actions in a conversational corpus and treat them as random vari-
ables. Since these actions are not annotated in raw conversations, they are latent and
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Figure 3.2: Latent actions corresponds to the interface between decision-making and
generation in a dialog system.

need to be inferred from the data. These actions should represent the speaker’s output
ability to change the flow of the dialog and influence other interlocutors. In other words,
we want to create E2E neural dialog models where the actions (as shown in Figure 3.2)
is explicitly modeled as latent variables.

This goal is challenging because: even if the speaker is expressing the same action,
the surface realizations are often very different from each other and may have low word
overlap due to the rich variations in natural language. In MultiWoz (Budzianowski
et al., 2018) corpus, a large task oriented slot-filling dataset, among the 153,262 utter-
ances, there are 122,946 unique utterances. Therefore, most of the responses only occur
once in the entire corpus but many of them are similar and share the same meaning.
Thus they need to be merged judiciously in order to discover latent action groups. An-
other challenge is the term ”action” is not a clearly defined and groups of utterances
can be created at a different level of granularity. Should two utterances fall in the same
group just because they have similar intentions, or these two utterances should only
be combined if they carry the exact same information? These questions remain unan-
swered.

Moreover, as increasingly larger dialog datasets are created to fuel the training of
very deep neural networks, it becomes increasingly difficult to annotate the corpus or
even come up with a comprehensive annotation schema that can cover all response pat-
terns appeared in the data. Prior research in dialog act annotation such as Switchboard
Dialog Act (Godfrey et al., 1992) has created complex annotation systems that include
over 200 distinct dialog acts to only model a coarse representation of the speaker in-
tents, e.g. statement, yes/no-questions etc. Therefore the design of latent actions has to
be expressive and has the potential to model a large number of fine-grained actions.

To address the above challenges, we approach this grand goal with four key research
questions:

1. How to define a latent action and at what level of granularity? (this chapter)
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2. How to evaluate latent actions? (this chapter)

3. How to conduct efficient inference to discover the latent assignment of each re-
sponse in a large dataset? (Chapter 4)

4. Why are latent actions useful and how to evolve the basic latent actions to solve
real-world challenges? (Chapter 5-8)

In short, the following sections layout a path from designing, evaluating and learn-
ing latent actions from large dialog corpora.

3.3 Latent Action Definitions

Figure 3.3: Graphic models for partial (a) and full (b) latent actions.

The definition of latent action depends on the level of granularity that it should han-
dle. We identify two general types of latent actions and describe them via probabilistic
graphic models as shown in Figure 3.3 These two types are: full latent action and partial
latent action.

Full Latent Actions

First, we define full latent action Z as a random variable that captures the speech act of
a dialog agent, representing the utterance-level intention and propositional content of a
system. Full latent action factorizes the conditional distribution by:

P (X|C) = P (X|Z)P (Z|C) (3.5)

Z is a latent variable because the ground-truth speech act is usually unobserved in the
raw data. For example, in a restaurant recommendation domain,

• “Can you tell me your cuisine type preference?”
• “What type of restaurant are you looking for?”

should belong to the same latent assignment since they both express the same speech
act despite the differences in word choices. Another example is

• “Noodle Head is a great Thai restaurant”
• “Thai Palace is a nice place to have Thai food”

the above two responses represent the same illocutionary force but different proposi-
tional content (Noodle Head vs. Thai Palace), and therefore should belong to different
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but similar latent action assignments. Also, to infer the latent action value of an utter-
ance should be highly contextual, i.e. depending on the dialog context that precedes
this utterance. For example, the propositional content of “I need the first one” depends
on the preceding question, i.e. the meaning of “first one” depends on the reference.
Therefore, it is important to take account of the context when computing the posterior
distribution of Z.

Partial Latent Actions

The above definition assumes Z captures both intent and content information of the
speech act. However, in certain applications we only need to model certain aspect of
the full speech act and can leave the rest of the information to the standard encoder-
decoder neural networks. Therefore, we also define partial latent actions as opposed to
the full latent actions, which factorize the conditional distribution by:

P (X|C) = P (X|Z,C)P (Z|C) (3.6)

Chapter 5 will illustrate an example of auxiliary latent action used to solve the dull-
response problem open domain chatbot. The graphic model for partial latent action is
shown in Figure 3.3 (a). As we can see, we first sample a latent action z based on the
context and then generate the response x conditioned on both x and c from conditional
distribution P (X|C,Z). This allows the z only represents some aspects of the response
x since the generation of x can leverage information from both c and z. For example,
consider an application where latent action only needs to represent the sentiment of
the response, and other detailed information, e.g. topic, intent etc should be left to the
generation process P (X|Z,C). So given a context:

• User said: do you like to shop at Whole Foods?
Then the following responses should belong to the same action group since they are all
positive responses:

• Yes, I really like the food quality there.
• I love it, especially the furnishing style.
• It’s very close to my home and I go there every week.

These three responses should be mapped to the same group if the goal is to create a
latent action that represents sentiment, despite the fact that these three responses like
Whole Foods for entirely different reasons.

At last, the two factorizations defined in Eq 3.5 and Eq 3.6 naturally define two sets
of parameters that correspond to the encoder decoder neural networks. Specifically,
P (Z|C) corresponds to the encoder network, and resembles the roles of NLU, DST and
DM in frame-based dialog systems. Meanwhile P (X|Z) and P (X|Z,C) are the decoder
network and take the role of NLG in frame-based systems. The main difference between
the full and partial latent action is that (1) for partial latent actions, the encoder needs
to output a random variable Z as well as other deterministic hidden states that can be
used by the decoder (2) for partial latent actions, the decoder can take advantage of
information from the context directly.
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Types of Random Variables

Now let us consider the types of distribution that latent actions should follow. In order
to make the resulting latent actions capable of modeling a variety of speaker intentions,
several key design choices should be made, including continuous vs. discrete variables,
number of variable dimensions, distribution family and joint distribution factorization.

Both continuous and discrete random variables are considered in this thesis and we
will show each of its pros and cons. For continuous variable, a natural choice is a Gaus-
sian distribution. Concretely, multivariate Gaussian variable is chosen (e.g. dimension
size of 300). This allows the variable to be expressive enough to represent a rich set
of information about dialog responses. The joint distribution of multivariate Gaussian
variable of dimension size D is:

p(x;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
− 1

2
(µ− x)TΣ−1(µ− x)

)
(3.7)

where µ is the mean vector and Σ is the covariance matrix. In addition, although learn-
ing multivariate Gaussian variable with full covariance matrix is possible, it is often
preferable to constrain the covariance matrix to be diagonal and the diagonal values are
denoted by σ2

diag(Σ) = σ2 (3.8)

This choice is backed by two reasons: (1) it encourages disentangled representations,
i.e. each dimension corresponds to an orthogonal attributes of the data (2) it simplifies
the optimization and computation.

In practice, µ and σ2 are modeled by two neural networks:

µ = NeuralNet(•) (3.9)
log(σ2) = NeuralNet(•) (3.10)

On the other hand, for discrete variables, a categorical distribution is considered.
Similar to the setup in the continuous case, a discrete latent action is designed to be
multi-dimensional and factorized. That is a discrete latent action is composed of M
independent categorical random variable (each can take one of the K possible values)
and the joint probability mass function is defined by:

p(z1 = x1, ...zM = xM) =
M∏
i

p(zi = xi) (3.11)

=
M∏
i

K∏
j

p
[xi=j]
ij (3.12)

where [xi = j] evaluates to be 1 if xi equals j and otherwise 0. Note that the discrete la-
tent action can only represent a finite set of values and the continuous random variable
can represent an infinite number of values. However, our setup enables a discrete la-
tent action to represent exponentially many, i.e. KM , distinct configurations. Therefore,
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given a reasonably big M and K (e.g. K = 20, M = 10), it can capture a large enough
number of unique actions (e.g. 2010). In terms of implementation, each categorical ran-
dom variables can be achieved by passing logitis through a normalizing Softmax layer
as follows:

p(zi|c) = Softmax(NeuralNet(•)) i ∈ [1,M ] (3.13)

3.4 Objectives and Evaluation

What makes a latent action useful? We list several desired properties for latent actions
and specify objectives for optimization.

3.4.1 Likelihood

Maximum likelihood estimation (MLE) is a classic learning objective for training latent
variable models. That is we want to maximize the conditional distribution:

p(x|c) =

∫
z

p(x|z, c)p(z|c)dz (3.14)

There has been a long history in optimizing the above objective via expectation maxi-
mization, variational inference etc, which will be addressed in the next section. Regard-
less of the learning method, this expected conditional probability over the test dataset
is a primary evaluation metric to assess if a learned latent action is useful and encodes
salient information. In the context of dialog response generation, x is a sequence of
word tokens, so that the above equation can be further written as:

p(x|c) =

∫
z

|x|∏
i

p(wi|w<i, z, c)p(z|c)dz (3.15)

3.4.2 Mutual Information

Another useful metric to evaluate a latent action is by testing its mutual information
with respect to the response I(X,Z). After all, a latent action is designed to capture
salient information in the response and should have high mutual information with it.
The mutual information between X and Z can be further written as:

I(X,Z) = H(Z)−H(Z|X) (3.16)

The above decomposition suggests that high mutual information leads to high H(Z)
and H(Z|X). The second term is self-evident since we want the entropy of Z given
X to be low. In the discrete random variable case, the first term H(Z) implies that
the marginal distribution of Z without conditions should be as uniform as possible.
High H(Z) leads to interesting property because it encourages all the possible latent
assignment being used, at least in some situation. This is desirable for two reasons:
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1. Reduce the risk of exposure bias (Ross et al., 2011): using all latent actions makes
sure at testing time, the encoder network will not predict a latent z that is never
observed during training, which leads to undefined behavior in the decoder.

2. Create a safe exploration space: as we will show in Chapter 8, having all possible
latent actions tried create a safe exploration space for later fine-tuning based on
other objectives. Similar to the exposure bias problem in the first point. We will
utilize this property in Chapter 8 for better exploration in reinforcement learning.

Note that mutual information is much easier to calculate for discrete latent action,
and is often intractable to compute for continuous random variables.

3.4.3 Distributional Semantics

The distributional hypothesis (Harris, 1954) in natural language semantics suggests that
the meaning of words or sentences can be inferred from the context in which they are
used (Mikolov et al., 2013; Kiros et al., 2015). Learning latent actions can be also con-
sidered as creating a semantic representation for dialog responses in the form of latent
variables. Moreover, as we show before, the meaning of responses are also highly con-
textual, i.e. depends on the dialog context where it is used, and various lexically dif-
ferent responses can share the same meaning. These properties make the distributional
hypothesis highly relevant to create better latent actions.

Concretely, the optimization goal for learning latent actions with distributional hy-
pothesis can be maximizing the following likelihood:

p(c|x) = pz∼q(z|x)(c|z) (3.17)

where q(z|x) is a transformation function that maps a response x into latent embedding
z. Then the resulting latent action z can be used to infer the dialog context before and
after the response x is used. In chapter 6, the proposed variational skip thought is an
manifestation of this objective.

3.4.4 Downstream Tasks

Lastly, the ultimate evaluation metric for latent variable learning is if it can improve
the performance on the end task, e.g. producing a system that can have coherent con-
versation with human users. In the context of this thesis, techniques to evaluate the
performance of a E2E dialog agents can be divided into two categories:

Turn-level Evaluation

Given a corpus of dialog context-response (c,x) pairs, turn-level evaluation assesses
the system performance by comparing a generated response x̃ against the ground-truth
response x. To compare the similarity between x and x̃, many metrics have been devel-
oped and used, e.g. BLEU score (Papineni et al., 2002), word embedding matching (Liu
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et al., 2016) etc. The advantage of turn-level evaluation is that it is very easy to com-
pute, good reproducibility and does not require expensive human evaluation. On the
other hand, turn-level evaluation has many limitations, such as poor correlation with
human judgement for open-domain conversations when only one reference response
is presented (Liu et al., 2016). That said, turn-level evaluation still remains to be the
mainstream evaluation method for E2E systems. This thesis will also show that its ef-
fectiveness can be further improved by designing better metrics, e.g. including multiple
reference response at testing time.

Dialog-level Evaluation

Besides turn-level evaluation, a more challenging downstream task is dialog-level eval-
uation, which directly measures how well a dialog agent can converse. Often a dialog-
level reward is defined to quantify if a dialog between a human and a machine is suc-
cessful or not. For example, in task-oriented dialog domains, a dialog is successful if
the system inform the correct information to the user as fast as possible (Williams and
Young, 2007). Another example is for negotiation dialog agent, a dialog is successful if
the dialog agent is able to win the deal after negotiating with the opponent. For open
domain chatting, dialog-level evaluation is still an open-ended research challenge and
prior study has explored to assess systems from engagement (Zhou et al., 2018), user
satisfaction (Eskenazi et al., 2019) etc. Therefore, we only use dialog-level evaluation
for tasks that have clear definition of success and use turn-level evaluation instead for
tasks such as open-domain chatting.

3.5 Basic components

At last, given the above setup and learning objectives, our latent action framework in-
volves in learning three basic components as shown in Figure 3.4. These three sets of
parameters are:

1. a decoder network pθ(x|z, c) or pθ(x|z) for full or partial latent actions that is used
to generate the response x.

2. an encoder network pπ(z|c) that is used to predict the next latent action given the
context. In later chapters, we also refer to it as the policy network, since it corre-
sponds to the dialog policy that predict the next system action given the dialog
context.

3. a recognition network qφ(z|x, c) that is used to map raw utterances into latent
actions.

It is also worthwhile to note that the above three sets of parameters naturally correspond
to the components in the classic frame-based dialog pipeline. Specifically, the decoder
network corresponds to the NLG component, the recognition network resembles the
NLU and the prior network resembles the DM. By having this analogy in mind, we are
able to develop E2E dialog models that bridges the merits between E2E systems and
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traditional frame-based systems.

Figure 3.4: The basic model architecture of latent action framework. Dashed line indi-
cate recognition networks. Solid line denote the networks for generation.

3.6 Why Latent Actions?

What are the advantages of creating a explicit representation of the dialog actions? One
may argue that the standard E2E dialog models in theory can perfectly model the con-
ditional distribution p(x|c) as more powerful generative models are developed and
that is all we need for creating better dialog systems. We argue that only modelling
the conditional distribution p(x|c) is not sufficient to create dialog systems and it is
desired to intentionally factorize the generation process into p(x|c) = p(x|z)p(z|c) or
p(x|c) = p(x|z, c)p(z|c). This factorization is necessary for the following reasons:

1. Disentangle the hierarchical generation process of dialog response. Open do-
main chatting can be extremely open-ended. Given the same dialog context, even
the same speaker can lead the dialog towards different directions via different re-
sponses. Therefore, it is crucial to separate “what to say” from “how to say” and
create a model that can model the distribution over next possible “moves” given a
dialog context. This can be modeled by treating this distribution as a stochastic la-
tent action. This latent action is then responsible for modeling the discourse-level
intents while the decoder should only be responsible for mapping this intent to its
surface form.

2. Use latent actions as human-machine interface. Another use case is to design a
low-dimensional discrete latent variable that we can understand the “meaning”
of each latent assignment. This provides a interface for us to obtain compact at-
tributes about what the model is going to generate, and such symbolic interface
opens doors for integrating with manual-rules or linguistic knowledge with a neu-
ral dialog system.

3. Separate sentence-level representation from discourse-level for domain trans-
fer. Obtaining utterance data is far easier than collecting full conversations in a
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new domain. Latent actions allow us to obtain a cross-domain embedding space
where utterances with similar functions from different domains are encoded into
adjacency in the latent space. This cross-domain latent space will make an E2E
dialog model easier to adapt to a new domain, since all the model only needs to
learn domain-specific dialog flow and does not need to re-learn utterance level
representation.

4. Induce a latent action space for dialog strategy optimization with reinforcement
learning. In frame-based dialog models, people often optimize the dialog pol-
icy via reinforcement with task-specific dialog-level rewards, e.g. completing the
task as soon as possible, persuade a user to agree to an argument etc. This types
of dialog policy optimization has only been done with actions that are manually
crafted, which cannot be done for standard encoder-decoder models (e.g. high-
level actions are not in the form of random variables, but distributively hidden in
the hidden states of each decoding step). Naturally latent actions provides a simi-
lar action space that can be optimized via reinforcement learning, but at the same
time completely free from manual action crafting.

5. Better understanding of large dialog datasets. Besides developing better dia-
log systems, it is also highly valuable to get more insights about a dialog dataset,
which in turns can help developers to accumulate domain knowledge and fur-
ther improve performance. As dialog datasets are getting increasingly large, it
becomes harder to manually inspect a dialog dataset and summarize the major
action group that both sides of the speaker can use. Our latent action framework
provides a two birds, one stone solution that simultaneously creates a working
E2E dialog system and offers a powerful recognition network. The recognition
network is essentially a learned NLU that can map all the utterances in the data
into meaningful semantic groups. Therefore, having an explicit action representa-
tion will be helpful to scale dialog analysis to larger dataset and extract precious
information for further domain customization.
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Chapter 4

Learning Methods for Latent Actions

This chapters addresses the question on how to train latent variable neural networks
to induce meaningful latent representation from raw conversation data. Building upon
the stochastic variational inference (SVI) framework, we propose a neural network ar-
chitecture to model latent actions for dialog response generation. Moreover, we focus
on mitigating the well-known posterior collapse issue when training latent variable mod-
els with powerful auto-regressive decoders (Bowman et al., 2015). Concretely, posterior
collapse represents the situation where the posterior distribution q(z|x) is a constant,
so that the value of latent variable is independent on the response x. Then it is self-
evident that fixing posterior collapse is an essential step to deliver what is promised in
our proposed latent action framework.

We propose a set of general-purpose novel algorithms in order to better train latent
variable models for dialog response representation learning. Our solution show supe-
rior performance compared to baseline methods and we discuss in details the practical
implications and suggestions for using SVI methods for learning latent actions. At last,
we present the methods in this chapters as general learning algorithms that are not
tailored to specific usage for dialog systems, so that they are general-purpose and can
benefit related NLP text generation tasks, e.g. abstractive summarization, story genera-
tion, machine translation etc. The proposed methods are adapted and used for specific
improvement for dialog response generation in Chapters 5-8.

4.1 Foundations

Latent variable models can be trained by maximizing the marginalized likelihood, e.g.
p(x|c) or p(x). However, since the latent variable z is unobserved, we have to marginal-
ize over z which is intractable when z is continuous or z is a large discrete variable. Use
the full continuous latent action as an example:

p(x|c) =

∫
z

p(x|z)p(z|c)dz (4.1)
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The integration over z is intractable. Therefore, an approximation method is needed
overcome this challenge and variational inference (Wainwright et al., 2008) is one of
most powerful classes of algorithms to achieve this goal.

4.1.1 Stochastic Variational Inference

Variational inference suggests to maximize a lowerbound of p(x|z), aka evidence lower-
bound (ELBO), instead of the true marginal likelihood to train latent variable mod-
els (Wainwright et al., 2008). The first step is to define a proposal distribution q(z) to
approximate the unknown true posterior distribution p(z|x, c). Then ELBO can be de-
rived by:

DKL(q(z)‖p(z|x, c)) = −
∫
z

q(z) log
p(z|x, c)

q(z)
(4.2)

= −
∫
z

q(z) log
p(z,x|c)

q(z)p(x|c)

= −
∫
z

q(z) log
p(z,x|c)

q(z)︸ ︷︷ ︸
−LELBO

+

∫
z

q(z) log p(x|c)

= −LELBO + log p(x|c)

log p(x|c) = LELBO + DKL(q(z)‖p(z|x, c)) ≥ LELBO (4.3)

Since the Kullback-Leibler (KL) divergence between q(z) and p(z|x, c) is non-negative,
it is evident that LELBO is a lowerbound of the log likelihood log p(x|c) and the tightness
of the bound depends on how well q can approximate the true posterior distribution.
Therefore, we often design q to be q(z|x, c) so that we use the best of our knowledge
(based on x and c) to predict z. Then ELBO for full latent action can be written as:

LELBO =

∫
z

q(z|x, c) log
p(z,x|c)

q(z|x, c)
(4.4)

=

∫
z

q(z|x, c) log p(x|z) +

∫
z

q(z|x, c)
p(x|c)

q(z|x, c)

= Ez∼q(z|x,c)[log p(x|z) +DKL(q(z|x, c)‖p(z|c))]

Similarly, the ELBO for partial latent action can be written as:

LELBO = Ez∼q(z|x,c)[log p(x|z, c) +DKL(q(z|x, c)‖p(z|c))] (4.5)

where q is a proposal distribution is that is used to approximate the true but unknown
posterior distribution p(z|c,x).

The Reparametrization Trick

One challenge of learning latent variables in neural networks is that we cannot back-
propagate through a stochastic node by default. To see this, given a latent variable
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z ∼ pθ(z) and pθ is a parametric distribution of z, then its derivatives over certain func-
tion f can be written as:

5θ Ez∼pθ(z)[f(z)] (4.6)

Equation 4.6 shows the difficulty lies in evaluating the expectation over a distribution
over the model parameters θ. Reparameterization is a technique used in varational au-
toencoders (Kingma and Welling, 2013) that provides a solution to this issue and offers
low-variance gradients through a random variable for training deep neural network la-
tent variable models. Specifically, the Reparametrization Trick is to rewrite the latent
variable as:

z = gθ(ε) ε ∼ p(ε) (4.7)
5θ Ez∼pθ(z)[f(z)] = 5θ Eε∼p(ε)[f(g(ε)] (4.8)

where ε is a random number follows a noise distribution p(ε). The key observation
here is that Equation 4.8 transforms the original gradient function so that it no longer
depends on the model parameter θ, which allows us to easily have an unbiased estimate
about the gradient via Monte Carlo:

5θ Ez∼pθ(z)[f(z)] =
1

N

N∑
i

5θ[f(g(εi)] (4.9)

For Gaussian latent variables, the noise distribution used for reparametrization is (Kingma
and Welling, 2013):

z = µ+ σε ε ∼ N (0, 1) (4.10)

For discrete latent variables, the Gumbel-Softmax Distribution is used to achieve the
same goal (Jang et al., 2016; Maddison et al., 2016). Concretely, let the noise distribution
follows Gumbel distribution:

ε ∼ − log(− log(u)) u ∼ Uniform[0, 1] (4.11)

Jang et al (2016) shows that a continuous approximation for samples from a K-way
categorical distributions can be expressed:

exp((logαi + εi)/τ)∑K
j=1 exp(log(αj + εj)/τ)

i = 1, 2...K (4.12)

where τ is a temperature constant that is used to control how closely the sample approx-
imates a true one-hot categorical distribution. When τ approaches 0, Eq 4.12 approaches
one-hot distribution.

Thus using the Reparametrization Trick, both types of proposed latent actions can
be trained efficiently via gradient-based optimization methods in neural networks. Also
future improvements on reparametrization techniques from the machine learning com-
munity can be readily used in our proposed framework.
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4.1.2 The Posterior Collapse Problem

Unfortunately, despite the success of creating generative models for images using stan-
dard VAEs (Kingma and Welling, 2013; Jang et al., 2016), simply training VAEs for text
generation with auto-regressive decoders often leads to the posterior collapse issue (Bow-
man et al., 2015). Its symptom is defined as follows:

Definition: After training with ELBO, DKL(q‖p) is set to 0 for all data points, so that
the recognition network outputs a almost constant z regardless of the input x. As a
results, the latent code z is ignored by the decoder.

In other words, when the decoder is a auto-regressive model that can leverage the
language modeling information, the whole system is prone to overfit to a local optimal
by not leveraging any information from z, which easily decrease the loss by making
the KL-divergence term small. To given an example, we trained a LSTM-based VAEs
on Penn Tree Bank pre-processed by (Mikolov et al., 2010) using similar setup used
in (Bowman et al., 2015) to demonstrate how the loss function evolves over training
steps for both Gaussian latent variables as well as categorical latent variables in Fig-
ure 4.1.
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Figure 4.1: The evolution of reconstruction perplexity and KL-divergence for Gaussian
latent variable (left) and categorical latent variable (right) on PennTree Bank test dataset.
The yellow dotted line is the perplexity of a standard LSTM language model trained on
the same data. Note that the horizontal axis is in log-scale.

Figure 4.1 shows that for Gaussian (continuous) VAEs, the KL-divergence drops
down to 0 within 100 training steps. And after that although the reconstruction perplex-
ity (PPL) continues to decrease after more training, the KL term never becomes larger
again. Eventually, the model converges to a reconstruction perplexity that is equivalent
to a LSTM language model trained on the same data, which strongly suggests that only
the decoder (the language model) is being used. For discrete latent variables, the KL
term is almost 0 even in the beginning of the training and the KL term does not increase
until the very end of the training. Meanwhile, the reconstruction PPL is improved sim-
ilarly to the continuous counterparts, and converges to the same PPL as the standard
language model (LM). Again, this evidence suggests that the decoder is not utilizing
any additional information from the latent z and predicts the next word purely based
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on the context information at the decoder side. Note that the increase of KL in the dis-
crete case is interesting since we expect at that point the recognition network begins
to output meaningful z. Unfortunately, a closer inspection shows that this is only due
to overfitting, so that the recognition network begins to output a constant value of z
instead of uniform prior, while the decoder still ignores z.

The posterior collapse problem is destructive to latent action learning, since it under-
mines the basic assumption i.e. latent action contains salient features about the dialog
responses. During the development of this dissertation, several novel techniques are
proposed to mitigate the posterior collapse challenge for training VAEs for natural lan-
guage generators. This section presents those techniques that are universally applicable
to any latent variable neural text generator beyond dialog generation. In later chapters,
we will apply these solutions without duplicated explanations and focus on chapter
specific novelties, e.g. the action matching algorithm, knowledge-guided latent vari-
able learning and etc.

4.2 Proposed Solutions

We conjecture that the reasons behind posterior collapse for text generation VAEs are
two fold: (1) it is an optimization challenge since it is very easy for auto-regressive
decoder to find low hanging fruits, e.g. local pattern on the decoder side, and it is less
obvious on learning a global representation in the latent code (2) the standard ELBO
may not be the best learning objectives if the main interest is in discovering a latent code
that is highly correlated with the input. Based on these two hypothesis, two branches of
solutions are developed. The first branch of the proposed solution is through multi-task
learning by designing an auxiliary loss function that prevent the model from exploiting
local patterns in the auto-regressive decoders. The second branch takes a dive into
the evidence lowerbound and derivs a information maximization based objectives for
discrete latent variables.

4.2.1 Non-autoregressive Auxiliary Loss

a. Bag-of-word Auxiliary Loss

We first propose a simple yet effective auxiliary objective: bag-of-word loss. The idea is
to introduce an auxiliary loss that requires the decoder network to predict the bag-of-
words in the response x. Denote x = [w1, ...wT ] be the list of T words in the response x.
Bag-of-words prediction assumes conditional independence property, which in terms
force the latent variable to capture global information about the target response. In the
VAE case and full latent action case, we add a separate decoder fτ that predicts the
probability of the words in x independently given a sample of z from the recognition
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network, i.e.

log pτ (xbow|z) =
T∑
i=1

log pτ (wi|z)

=
T∑
i=1

log
efτ (z)∑V
j e

fτ (z)
(4.13)

Similarly, for partial latent action, this separate decoder takes in both dialog context
c and z as inputs and resulting into the following likelihood.

log pτ (xbow|z, c) =
T∑
i=1

log
efτ (z,c)∑V
j e

fτ (z,c)
(4.14)

In the end, we add the bag-of-word auxiliary objective into the standard ELBO objective
and creates the following multi-tasking objective:

L′(θ, φ, τ ;x, c) = LELBO

+ λEqφ(z|c,x,y)[log pτ (xbow|z, c)] (4.15)

In practice, fτ can be implemented as a multi-layer perceptron (MLP). We will show
that the bag-of-word loss in Equation 4.15 is very effective against the posterior collapse
and it is also complementary to other techniques proposed in related work, e.g. the KL
annealing technique (Bowman et al., 2015).

b. Response Selection Auxiliary Loss

An alternative auxiliary objective to encourage a meaningful latent z is through re-
sponse selection. Normally, an auto-regressive decoder factorizes the conditional distri-
bution p(x|c, z) through a product of next word prediction:

p(x|c, z) =
T∏
i

p(wi|w<i, c, z) (4.16)

where T is the length of the response x. Such a chain structure makes it easy for the
decoder to ignore the latent action z due to the availability of previous words in the
response w<i and strong temporal dependencies in natural language. On the contrary,
the response selection loss tries to model the conditional distribution at sentence-level,
i.e.:

p(x|z, c) =
egτ (x)T fτ (c,z)∑A
i e

gτ (xk)T fτ (c,z)
(4.17)

where gτ is a response encoder that maps candidate response xi into distributed vectors
and fτ is a separate decoder that transforms c and z into vector representations.
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However, it is intractable to enumerate through all possible responses in the de-
nominator due to the vast space of natural language since A can be prohibitively large.
Therefore, we approximate it via negative sampling (Mikolov and Zweig, 2012). That is
we randomly sample K distracting responses from all the utterances from the training
data and we modify the training objective to be:

log pτ (x|z, c) = log
egτ (x)T fτ (c,z)∑K
i e

gτ (xk)T fτ (c,z)
(4.18)

Similar to the bag-of-word loss, the response selection loss will be added to the original
ELBO objective during training.

L′(θ, φ, τ ;x, c) = L(θ, φ;x, c)

+ λEqφ(z|c,x,y)[log pτ (x|z, c)] (4.19)

4.2.2 Maximum Mutual Information

Anti-Information Nature of ELBO

We argue that the posterior collapse issue lies in ELBO and we offer a novel decom-
position to understand its behavior. For simplicity, we temporally drop the parameter
subscripts φ and θ for the recognition network and the decoder. First, instead of writing
ELBO for a single data point, we write it as an expectation over a dataset:

LVAE = Ex[Eq(z|x)[log p(x|z)]

−DKL(q(z|x)‖p(z))]
(4.20)

We can expand the KL term as Eq. 4.25 by following:

Ex[DKL(q(z|x)‖p(z))] = (4.21)
Eq(z|x)p(x)[log(q(z|x))− log(p(z)))]

= −H(z|x)− Eq(z)[log(p(z))] (4.22)
= −H(z|x) +H(z) + DKL(q(z)‖p(z)) (4.23)
= I(z,x) + DKL(q(z)‖p(z)) (4.24)

where q(z) = Ex[q(z|x)] and I(z,x) = H(z) − H(z|x) is mutual information between z
and x by definition. Then we rewrite ELBO as:

Ex[DKL(q(z|x)‖p(z))] = (4.25)
I(Z,X)+ DKL(q(z)‖p(z))

LVAE = Eq(z|x)p(x)[log p(x|z)]

− I(Z,X)−DKL(q(z)‖p(z))
(4.26)

where q(z) = Ex[q(z|x)] and I(Z,X) is the mutual information between Z and X . This
expansion shows that the KL term in ELBO is trying to reduce the mutual information
between latent variables and the input data, which explains why VAEs often ignore the
latent variable, especially when equipped with powerful decoders.
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VAE with Information Maximization and Batch Prior Regularization

A natural solution to correct the anti-information issue in Eq. 4.26 is to maximize both
the data likelihood lowerbound and the mutual information between z and the input
data:

LVAE + I(Z,X) =

Eq(z|x)p(x)[log p(x|z)]−DKL(q(z)‖p(z))
(4.27)

Therefore, jointly optimizing ELBO and mutual information simply cancels out the
information-discouraging term. Also, we can still sample from the prior distribution for
generation because of DKL(q(z)‖p(z)). Eq. 4.27 is similar to the objectives used in adver-
sarial autoencoders (Makhzani et al., 2015; Kim et al., 2017). Our derivation provides
a theoretical justification to their superior performance. Notably, Eq. 4.27 arrives at the
same loss function proposed in infoVAE (Zhao S et al., 2017). However, our derivation
is different, offering a new way to understand ELBO behavior.

The remaining challenge is how to minimize DKL(q(z)‖p(z)), since q(z) is an ex-
pectation over q(z|x). When z is continuous, prior work has used adversarial train-
ing (Makhzani et al., 2015; Kim et al., 2017) or moment matching based distance func-
tion, e.g. Maximum Mean Discrepancy (MMD) (Zhao S et al., 2017) to regularize q(z).
It turns out that minimizing DKL(q(z)‖p(z)) for discrete z is much simpler than its con-
tinuous counterparts. Let xn be a sample from a batch of N data points. Then we have:

q(z) ≈ 1

N

N∑
n=1

q(z|xn) = q′(z) (4.28)

where q′(z) is a mixture of softmax from the posteriors q(z|xn) of each xn. We can ap-
proximate DKL(q(z)‖p(z)) by:

DKL(q′(z)‖p(z)) =
K∑
k=1

q′(z = k) log
q′(z = k)

p(z = k)
(4.29)

We refer to Eq. 4.29 as Batch Prior Regularization (BPR). When N approaches infinity,
q′(z) approaches the true marginal distribution of q(z). In practice, we only need to use
the data from each mini-batch assuming that the mini batches are randomized. Last,
BPR is fundamentally different from multiplying a coefficient < 1 to anneal the KL term
in VAE (Bowman et al., 2015). This is because BPR is a non-linear operation log sum exp.
For later discussion, we denote our discrete infoVAE with BPR as DI-VAE.

Autoregressive Prior using Recurrent Neural Networks

After the BPR model is trained, we can also train a separate RNN, e.g. LSTM network to
model the real q(z) from the data. This is because although we encourage each dimen-
sion of z to be conditionally independent given x, it is possible that there are still corre-
lation among them, especially for models with information maximization. To see that,
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if there are only two types of data and we have 2 binary variables in z. Then z1 = [1, 0]

and z2 = [0, 1]. Given this condition, our estimated q(z) ≈ 1
N

∑N
n=1 q(z|xn) = [0.5, 0.5],

which has 0 BPR with the uniform prior. However, if we directly sample from prior
distribution, it has 25% to get [1, 1] and [0, 0], which are undefined in data. Thus, train-
ing a LSTM prior can solve this problem. To achieve this, we first train a discrete VAE
with only BPR regularization. After the model is trained and froze, an LSTM network
is trained to minimize the following objective:

L(π) =
K∑
k=1

DKL(qφ(zk|x)‖pπ(zi|zi<k)) (4.30)

where π is the parameters of the LSTM prior network. After this RNN prior network is
trained, we can obtain higher quality samples from z ∼ p(z) compared to the naive p(z)
in which each latent variable is independent.

4.3 Related Work

Besides the solutions proposed above, there are several related methods are developed
to address the posterior collapse issue in VAE text generator.

KL Annealing

A simple technique proposed in (Bowman et al., 2015), which gradually increases the
weight of the KL term from 0 to 1 during training.

Word drop decoding

Bowman et al (2015) also proposed to setting a certain percentage of the target words to
0. Although this approach has shown negative impact on the performance on the final
decoder.

Non-autoregressive Decoder

This approach replaces the typical RNN-based decoder by a non-autoregressive de-
coder that decodes sentence in an non-autoregressive manner (in parallel or semi auto-
regressive), and therefore the decoder is forced to utilize the latent variable better. De-
convolutional neural network decoders are used to replace LSTM and the authors show
improvement on learning latent variables (Semeniuta et al., 2017). Zichao et al., (2017b)
used Dilated Convolutions to achieve better VAE text generation for similar reasons.
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More Flexible Prior Distribution

One belief about why the standard VAE fail for text generation is that the latent space
should be highly multi-modal for natural language, but standard VAE assumes a sim-
ple uni-modal Gaussian distribution. Serban et al., (2016a) discretizes the continuous
distributions into chunks and provides analytic solutions to learn continuous distribu-
tion that can be multi-modal. Gu et al.,(2018) takes a further step by using GAN train-
ing (Miyato et al., 2018) to learn an arbitrary complex distribution for the posterior and
prior distribution for z. They show that by relaxing the KL divergence between two
simple isotropic Gaussian distribution in VAE, the model becomes easier to learn the
multi-modal behavior of dialog responses generation.

In summary, posterior collapse in text VAE is far from completely solved and deeper
understanding is required. As analyzed in (Xiao et al., 2018), there is a trade off between
the KL divergence and the reconstruction quality. That is whenever the system encodes
more information into the latent space, it inevitably leads to higher KL divergence be-
tween the posterior and prior. Our proposed methods will show strong performance in
terms of enable the models to encode more knowledge into the latent space while keep
the KL divergence reasonable. Furthermore, a novel evaluation metric is proposed to
facilitate finding the optimal balance between inference and generation.

4.4 Experiments

Experiments in this chapter will focus on unconditional response modeling. This setting
ignores the dialog context and use a VAE to model the dialog response only. This setting
is also known as language modeling with latent variable models (Bowman et al., 2015).
The results from unconditional response modeling can easily generalize to conditional
cases, including partial latent action and full latent actions. Experiments for conditional
cases are left to later chapters where we actually build systems for dialog applications.

4.4.1 Evaluation Metrics

Evaluation are conducted in two categories: inference performance and generation per-
formance.

Inference Performance

Inference performance tests if the posterior network learn to output latent code z that
capture salient information about the response x. Note here a latent z is not only ex-
pected to contain as much information about x as possible, but also expect to generalize
and focus on global semantics rather than local information. The following metrics
serve as indicators for the inference performance:

• Reconstruction Perplexity (Rec PPL): given z sampled from the posterior network,
how well can a decoder reconstruct the original response x.
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• Text classification: using the posterior network as an feature extractor for x and
use z as input feature to simple linear classifier and test if we can reliably use z to
classify the responses into the right label.

Generation Performance

Generation performance tests the quality of response that can be generated from la-
tent code sampled from the prior distribution. Ideally, the decoder should be able to
generate coherent and natural responses and any high likely samples from the prior
distribution should have reasonable generation performance rather than sudden drop
of generation quality. In other words, the valid set of latent code should concentrate
under the prior distribution and result in a smooth latent space without “holes” that
lead to undefined decoder behavior. The following metrics can be readily used to test if
this holds true.

• KL-divergence: the KL-divergence DKL(Q‖P ) between the proposed posterior dis-
tribution with the prior distribution. Smaller KL implies less exposure bias at test-
ing time for the decoder.

• Qualitative Analysis on Response Generation: given latent z sampled from the
prior distribution, we evaluate the text generation quality via manually inspect
the generated responses.

• Discriminator-based Evaluation: we further propose a novel method to test the
generation quality of a model. After a model is trained, we use the model to
unconditionally generate N sentences. Then we sample an additional N samples
from the actual data to create a 50:50 balanced real vs. fake dataset. Then an
RNN-based binary classifier is trained to classify if a given sentence is real or fake.
Therefore, for a perfect generator, this classifier should only be able to achieve 50%
accuracy since it is completely fooled by the generation results (Goodfellow et al.,
2014).

4.4.2 Dataset

Two datasets are used in the following experiments. Penn Treebank (PTB) (Marcus et al.,
1993), is a well-known used dataset for language modeling. The dataset consists of
929,000 training words, 73,000 validation words, and 82,000 test words. As part of the
pre-processing, words were lower-cased, numbers were replaced with N, newlines were
replaced with EOS, and all other punctuation was removed. The vocabulary is the most
frequent 10,000 words with the rest of the tokens replaced by an UNK token (Mikolov
et al., 2010). Models are evaluated based on perplexity, which is the average per-word
log-probability (lower is better).

The second dataset used is MultiWoz (Budzianowski et al., 2018), the largest multi-
domain slot filling dialog dataset. Multi-Woz is a slot-filling dataset that contains 10,438
dialogs on 6 different domains, 115,424 turns and 1,520,970 word tokens. 8,438 dialogs
are for training and 1,000 each are for validation and testing. All the system turns in
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MultiWoz is also manually annotated with domain/dialog acts and entities. Note that
there can be multiple domain/dialog acts frames for each responses, making it a multi-
label classification problem. For later text classification experiments, we remove the
entities leading to a label vocabulary size 31. The top-15 frequent labels are as follows.
(Format is: domain-dialog act (frequency)).

1. general-reqmore(13.01%)

2. general-bye(8.4%)

3. Hotel-Inform(7.6%)

4. Restaurant-Inform(7.5%)

5. Train-Inform(6.7%)

6. Attraction-Inform(6.5%)

7. Booking-Inform(5.3%)

8. Train-Request(5.1%)

9. Booking-Book(4.9%)

10. general-welcome(4.4%)

11. Hotel-Request(3.0%)

12. Restaurant-Request(2.9%)

13. Train-OfferBook(2.8%)

14. Booking-Request(2.5%)

15. Train-OfferBooked(2.1%)

4.5 Results and Discussion

4.5.1 Compared Models

For unconditional response modeling on PTB and MultiWoz datasets, a variety of mod-
els are compared. For VAEs with continuous (Gaussian) latent variables, we compared:

• VAE: the standard VAE trained with ELBO using LSTM encoder and decoder.
• KLA: the standard VAE trained with KL annealing as proposed in (Bowman et al.,

2015). We linearly increases the KL weight from 0 to 1 in the first 5000 batches.
• BOW: the standard VAE trained with the proposed bag-of-words auxiliary loss.
• SEL:the standard VAE trained with the proposed response selection auxiliary loss.
• BOW+KLA: apply KLA with bag-of-words at the same time.
• SEL+KLA: apply KLA with response selection at the same time.

For discrete latent variable VAEs, the above variations of models still apply. We use the
D- prefix to indicate that the latent variable is discrete. In addition to that, for discrete
latent variable, we also implemented the proposed batch prior regularization that max-
imize the mutual information between x and z. In summary, all the compared models
are shown in table 4.1.

The above models are all equipped with an LSTM encoder and LSTM decoder with 1
layer hidden states and a hidden state size of 512. The word embeddings are randomly
initialized with dimension 200. For Gaussian latent variable, the latent dimension is
set to 256. For discrete latent variable, there are 100 4-way categorical variables. The
optimization is done via Adam (Kingma and Ba, 2014) with learning rate 1E-4, dropout
rate 30% and gradient clipping at 3.0. All the parameters are uniformly initialized be-
tween [-0.08, 0.08]. For response selection loss, 300 negative responses are uniformly

40



Name Type of Var KLA Aux Loss Mutal Info
VAE Gaussian / / /
KLA Gaussian / / /
BOW Gaussian / bag-of-word /
SEL Gaussian / response selection /

BOW+KLA Gaussian Yes bag-of-word /
SEL+KLA Gaussian Yes response selection /

D-VAE Categorical / / /
D-KLA Categorical / / /
D-BOW Categorical / bag-of-word /
D-SEL Categorical / response selection /

D-BOW+KLA Categorical Yes bag-of-word /
D-SEL+KLA Categorical Yes response selection /

D-BPR(LSTM) Categorical / / Yes

Table 4.1: Compared models for unconditional response modeling.

sampled from all unique responses occur in the training set. The reported results are on
test dataset using models selected by the best ELBO loss on the validation data.

4.5.2 Results for Inference

Table 4.2 and Table 4.3 show the main results for training all the compared models on
Penn Treebank and MultiWoz. Based on the results, we can observe and draw the fol-
lowing insights.

Model PPL DKL(q‖p) Model PPL DKL(q‖p) DKL(q(z)‖p)
RNNLM 110.5 / / / / /

VAE 110.7 0.009 D-VAE 111.0 0.1591 0.03
KLA 111.5 2.02 D-KLA 110.2 0.261 0.01
BOW 97.72 7.41 D-BOW 95.3 5.89 0.03
SEL 92.19 7.26 D-SEL 91.25 10.53 0.01

BOW+KLA 66.94 15.23 D-BOW+KLA 88.5 9.79 0.02
SEL+KLA 72.58 18.08 D-SEL+KLA 92.1 17.5 0.02

/ / / D-BPR(LSTM) 45.2 203.2 (80.3) 0.01

Table 4.2: The reconstruction perplexity, DKL(q(z|x)‖p(z)), DKL(q(z)‖p(z)) (discrete
only) on Penn Treebank test set.

BOW and SEL both mitigate the posterior collapse problem: results of the KL-
divergence and reconstruction perplexity on both datasets show that by adding bag-of-
word or response selection loss to the original ELBO objectives enable the latent vari-
able to encode substantial more information into the latent space, which results in a
non-trivial KL-divergence and a much smaller reconstruction perplexity compared to
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Model PPL DKL(q‖p) Model PPL DKL(q‖p) DKL(q(z)‖p)
RNNLM 4.99 / / / / /

VAE 4.93 0.004 D-VAE 5.3 0.72 0.001
KLA 4.88 0.01 D-KLA 5.58 1.91 0.002
BOW 3.21 11.49 D-BOW 3.94 8.76 0.005
SEL 3.07 14.08 D-SEL 4.51 6.34 0.004

BOW+KLA 2.98 13.46 D-BOW+KLA 3.80 9.19 0.005
SEL+KLA 3.03 13.72 D-SEL+KLA 3.75 11.716 0.003

/ / / D-BPR (LSTM) 1.76 202.3 (61) 0.009

Table 4.3: The reconstruction perplexity, KL terms and mutual information (discrete
only) on MultiWoz test set.

the vanilla VAEs or RNNLMs. Furthermore, the results also show that KLA are comple-
mentary to both proposed objectives, since we can observe the reconstruction perplexity
both further improves by comparing BOW with BOW+KLA or SEL with SEL+KLA (at
a cost of a larger KL divergence).

KLA alone falls short Only using KLA alone has very limited effects in terms of
mitigating the posterior collapse challenge. Figure 4.2 visualizes the evolution of the KL
cost. We can see that for the standard model, the KL cost crashes to 0 at the beginning
of training and never recovers. On the contrary, the model with only KLA learns to
encode substantial information in latent z when the KL cost weight is small. However,
after the KL weight is increased to 1 (after 5000 batch), the model once again decides to
ignore the latent z and falls back to the naive implementation. The model with BOW
loss, however, consistently converges to a non-trivial KL cost even without KLA, which
confirms the importance of BOW loss for training latent variable models with the RNN
decoder. Similar trend can also be observed for response selection loss.

Figure 4.2: The value of the KL divergence during training with different setups on
Penn Treebank.

Information maximization leads to very different system behavior as we can see
the proposed D-BPR model achieve significantly lower reconstruction perplexity on
both datasets, at an expected cost with very big KL-divergence. This is expected since
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maximizing the mutual information leads to very peaky q(z|x), i.e. the posterior latent
codes are almost one-hot vectors. This is because the modified information maximiza-
tion objective only requires the marginal distribution of z to be similar to the prior, i.e.
DKL(q(z)‖p(z)) ∼ 0. From both tables, we can see that D-BPR ensure that DKL(q(z)‖p(z))
is very small while allowing DKL(q(zx)‖p(z)) to be very large. On the other hand, other
ELBO based VAEs encourage both quantities to be as small as possible.

Therefore, it is evident that the model with information maximization encodes sub-
stantially more information into its latent code, but the remaining question is if it can
still be used as a generative model by sampling from the prior distribution of uncondi-
tional response generation. This important question will be addressed shortly in Sec-
tion 4.5.3.

Continuous latent variables encode more information moreover, by comparing re-
sults horizontally, we can observe that the continuous latent models often enjoy lower
reconstruction perplexity with slightly larger KL-divergence. This is expected since the
discrete version can be thought as quantified version of a continuous counterpart, i.e.
discretize the original continuous variable into 3 categories in our case. Although it is
tempting to draw conclusion that continuous latent variable is better than discrete vari-
ables, discrete latent variable models have unique properties that are useful for practical
applications, including interpretability and safety. These two features will be exten-
sively discussed in Chapter 6 and Chapter 8.

Using z for Text Classification

It is well-understood that autoencoder style feature extraction without regularization
does not necessarily leads to robust and generalized features about the input since the
model is pruned to create one-to-one mapping instead of learning features that can gen-
eralize (Vincent et al., 2008; Hill et al., 2016). This principle can also be applied to latent
action learning and only a low reconstruction perplexity does not guarantee robust fea-
tures about the responses are acquired by the model. Therefore, we further test the in-
ference performance by using the trained recognition network as a feature extractor and
trained a simple 2-layer multi-layer perceptron to predict the 31 dialog acts on Multi-
Woz dataset. Since each system response in MultiWoz may contains more than 1 dialog
act, we created a multi-label classifier using Sigmoid output for each dialog act, and use
F-1 score to measure the classifier’s performance.

For models with Gaussian latent variables, the concatenation of mean vector µ and
variance σ2 is used as the feature and for Categorical latent variables, the posterior soft-
max output q(z|x) is used as the feature vectors. Therefore, the continuous latent models
has a feature vector size of 256 × 2 = 512 and discrete models have a feature vectors of
size 256× 3 = 768.

Table 4.4 shows the results. As we can see, the baseline VAE and KLA models per-
form poorly in prediction F-1 scores. For all models with proposed methods, i.e. BOW,
SEL or BPR achieve substantial performance improvement and validates that the re-
sulting latent variable contain salient features about the responses. Through the results,
we can also notice that BOW models in general perform better than SEL models. Also,
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Model F-1 Model F-1
VAE 38.7% D-VAE 19.7%
KLA 44.7% D-KLA 50.1%
BOW 81.0% D-BOW 75.4%
SEL 77.3% D-SEL 60.7%

BOW+KLA 80.2% D-BOW+KLA 70.5%
SEL+KLA 77.8% D-SEL+KLA 74.0%

/ / D-BPR 77.7 %

Table 4.4: F-1 score for predicting multi-label dialog acts using z as feature on MultiWoz
test set. Bold-face number indicate statistically significant best results using Wilcoxon
signed-rank test p-value < 0.01.

continuous models perform better than discrete ones.

4.5.3 Results for Generation from Prior

Given the effectiveness of learning meaningful posterior distribution, we now switch
gear to evaluate if the model can generate coherent dialog responses given latent sam-
ples from the prior distribution. Since in the extreme case, a unregularized VAE (remov-
ing the KL term from ELBO) can encode and reconstruct the input perfectly, but cannot
generate coherent samples by taking latent code drawing from prior distribution.

Results in Table 4.2 and Table 4.3 show that the proposed methods all lead to a
larger KL-divergence in order to encode non-trivial information into the latent space.
Meanwhile, although larger KL-divergence between the posterior and prior suggest
that higher risk of generating incoherent responses, we argue that it is difficult to decide
the optimal value of KL-divergence only based on its absolute value for the following
reasons:

1. There is trade off between KL divergence and reconstruction perplexity and it is
not easy to know the optimal balance point.

2. It is possible that the decoder can generalize and still generate high quality sam-
ples by using z ∼ p(z) even the there is a non-trivial KL divergence.

3. The baseline VAE has KL=0 and it will always generate the same sentence if sam-
pling from z and keep the decoder greedy. This obviously suggest bad generation
behavior but not captured by the KL term.

Table 4.5 shows qualitative example to illustrate the limitations of depending on KL
divergence to evaluate the generation performance of a model. We train 3 VAEs with
the proposed BOW loss with 3 different weights applied to the auxiliary loss. When
the weight is 0, the model degenerates to standard VAE where the posterior collapse.
Therefore, only sampling from p(z) leads to the same response output since we set the
decoder to be greedy. As the weight increases to 1 and later to 2, results in the table show
the reconstruction perplexity decreases and the KL-term increases as expected. Mean-
while, the generated samples become increasingly more diverse as the KL-divergence
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Model PPL DKL(q‖p) Generated Samples
BOW (0) 4.99 0.0 I am looking for a train leaving on Thurs-

day.
- I am looking for a train leaving on Thurs-
day.
- I am looking for a train leaving on Thurs-
day.
- I am looking for a train leaving on Thurs-
day.
- I am looking for a train leaving on Thurs-
day.

BOW (1) 2.98 13.46 - I need the address for the restaurant .
- you are welcome.
- what is the name of the college?
- I need a taxi to take me to the restaurant
and the restaurant .
- I have made that reservation for you and
your reference number is [number]

BOW (2) 2.7 17.33 - ok, you are booked at the [restaurant
name] at [number] mill road city centre, and
the phone number is [number].
- that would be fine. i need the hotel for
[number] nights starting on Wednesday.
- is there any in the moderate price range?
- I will need a destination in the destination
and your destination is [number] minutes
- yes. I need a train that is leaving on Mon-
day .

Table 4.5: Generation samples from BOW models with different λ weight to the bag-of-
word loss. As the weight to BOW becomes higher, there are more information encoded
into the latent space. Meanwhile, the generation performance decreases as the posterior
distribution becomes increasingly more different from the prior distribution.

term becomes larger, but it is difficult to quantitatively judge if the generation quality
decreases as the KL term increases. Therefore, although the KL term in ELBO correlates
with the amount of information and variations encoded in the latent space, it is poor
measurement for deciding on the actual generation quality.

Discriminator-based Evaluation

As a result, we propose to use a trained discriminator (described in Section 4.4.1) to
classify if an input response is from real data or it is generated from the model. This
has the advantages to automatically detect errors in outputs from VAEs as a generative
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model, including:
1. Incoherence and grammatical errors: if the generated responses contains signif-

icantly more language errors than the real data, these erroneous patterns can be
easily captured by the discriminator and used to predict which one is real vs. fake.

2. Posterior collapse and dullness: by training a classifier that classifies between real
data and generated responses that only sample from the latent variable, this clas-
sifier can detect if posterior collapse happen. If the generator only generate the
same or a few response all the time, then the classifier can utilize this pattern for
prediction. It also tells us how much variations are captured in the latent space.

Model Accx∼p(z) Accx∼p(z)p(x|z) Model Accx∼p(z) Accx∼p(z)p(x|z)

KLA 100% 62% D-KLA 95.3% 65.1%
BOW+KLA 76.4% 65.7% D-BOW+KLA 76.4% 75.9%
SEL+KLA 76.8% 61.5% D-SEL+KLA 72.3% 65.1%

/ / / D-BPR 96.2% 95.1%
/ / / D-BPR+LSTM 79.8% 78.1%

Table 4.6: Accuracy of an RNN classifier for distinguishing between the generated text
vs the real data. Lower the better and the ideal generator should have 50%, i.e. com-
pletely confuses the discriminator. The best results are in bold-face with statistical sig-
nificance using 2-proportion z-test p-value < 0.01 compared to the second best systems
in its column.

Table 4.4 summarizes the results on MultiWoz dataset. The classifier is trained on
25,120 pairs of real vs. fake sentencens generated from a trained VAE model. The results
is reported on a hold-out test set that contains 3,140 sentence pairs. The classifier accu-
racy is reported for discriminating real data between responses sampled from p(z) and
sampled from both p(z) and p(x|z). The results confirm that the baseline KLA meth-
ods can be detected 100% since it only generates the same output when only sample
from p(z). Furthermore, the proposed SEL and BOW auxiliary loss perform similarly
for continuous latent variables, achieving about 76% detection rate. For discrete latent
variables, the BOW loss performs worse than the SEL auxiliary loss. Eventually, the
VAE+BPR with uniform prior performs very badly, resulting in about 95% detection
rate. The following are some sample outputs form D-BPR:

• i am sorry when you finish is a place , but i need the price range and postcode .
• you are all set , i recommend ashley hotel in the south . can i get you too ?
• am sorry , any of those will be in the centre . can you please restate your needs ?
• hi , i need a cab to the restaurant and bar for you . is there anything else that

These responses contain utterance segments that clearly belong to multiple speakers or
intents. This confirms our hypothesis that although DKL(q(z)‖p(z)) = 0, sample from
p(z) will leads to specific combination of latent code that does not make sense as a
posterior. On the other hand, with the learned LSTM prior distribution, the detection
rate significantly decreases to about 80%.
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A follow up study is to see if we can further improve the performance of BPR-LSTM
models via latent space reshaping. Given the same model size, we can change the num-
ber of latent variables and the size of each variable. The hypothesis is by reducing the
number of latent variables, we can reduce the chance for improbable latent code at gen-
eration time. Table 4.7 shows that by reshaping the latent space into smaller number of

# of Var Latent Size PPL DKL(q‖p) Accx∼p(z) Accx∼p(z)p(x|z)

256 3 2.31 61.4 79.8% 78.1%
64 6 2.35 45.3 75.3% 75.9%
32 12 2.64 29.7 73.4% 71.8%
16 24 2.65 25.4 68.8% 67.0%

Table 4.7: Reconstruction perplexity, KL-divergence, detection rate for D-BPR-LSTM
with various latent size. The lower the detection rate, the better the generation quality.
Bold-face number indicate statistically significant best results using 2 proportion z-test
p-value < 0.01.

latent variables lead, D-BPR-LSTM can work really well in terms of both inference abil-
ity (i.e. low reconstruction PPL) and strong generation performance (i.e. low detection
rate) despite that fact that its KL-divergence is still significantly higher than the ones of
non-BPR discrete models.

Last but not least, Table 4.8 shows the detection rate can also be used to tune the
auxiliary loss weight of a continuous BOW model. As the weight on BOW loss increases,

Aux Weight PPL DKL(q‖p) Accx∼p(z) p-value
0 4.99 0 100% N/A

0.5 3.34 8.17 80.5% < 0.01
1.0 2.98 13.46 76.4% < 0.01
2.0 2.71 19.24 74.6% 0.1004
5.0 2.32 31.95 78.4% < 0.01

Table 4.8: Detection rate of BOW models with various weights multiplied to the aux-
iliary loss. The lower the detection rate the better. The p-value shows statistical sig-
nificance test for rejecting null hypothesis that the current detection rate is the same as
the previous row using 2 proportion z-test. Therefore, besides the difference between
weight=1.0 and 2.0, other differences are significant.

the KL-divergence monotonically increases as well, making it difficult to decide the
best point of stopping. However, the detection rate showing a U-shape curve where
the lowest detection rate suggests the optimal weight. When the weight is too small,
the detection rate is high because the latent space encodes little information and the
classifier can utilizes the dullness of the output to predict which response is fake. When
the weight becomes too large, the information encoded in the latent space increase,
but at the same time it increases the chance of ungrammatical generation. This also
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allows the classifier to detect which sample is generated from the model. Thus, using
the discriminator for evaluation provides a robust method to tune VAEs models.

4.6 Conclusions

In conclusion, this chapter presents a network architecture and a set of latent variables
algorithms to learn latent variable neural networks that can be used to create latent
action E2E dialog models. The contributions include (1) a description of network ar-
chitecture that utilizes SVI, Reparametrization Trick to achieve the proposed latent ac-
tion definitions. (2) two auxiliary objective function that mitigates the posterior col-
lapse problem for training text VAEs (3) a mutual information maximization approach
to learn discrete VAEs with batch prior regularization and auto-regressive prior net-
work (4) a comprehensive analysis on the performance of the proposed methods for
both inference and generation (5) a novel discriminator based evaluation measure to
evaluate the generation performance of text VAEs. Experiments are conducted on both
Penn Tree Bank and MultiWoz and results suggest that the proposed methods can sig-
nificantly improves both the inference and generation performance of baseline models.
The results from this chapter paves the foundation for introducing latent variables to
improve end-to-end dialog systems.
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Chapter 5

Latent Actions for Discourse-level
Diversity

This chapter presents a type of partial latent action that is designed to separate the high-
level intents from variations in surface realization. This in turn enables a generation-
based dialog system to generate a diverse set of appropriate responses with different
discourse-level intents meanings. We further improve the system by introducing a
knowledge guidance mechanism that integrates linguistic knowledge into the learn-
ing process of the latent action. We propose a novel evaluation metric that concerns the
one-to-many property to quantify an open-domain dialog performance. Experiments
validate the superiority of the proposed methods in terms of both diversity and appro-
priateness compared to other baseline models. 1

5.1 The Dull Response Problem

We are interested in building open-domain dialog agents that can chat with human
users about any topics without particular purpose. As pointed out in Chapter 2, this
task is categorized into chat-oriented dialog system and it is a extremely challenging
objective because:

1. Since there is no limitation in domains, the action space of a chat-oriented dialog
agent is infinite and is highly diverse in terms of content and surface realizations.

2. The system needs to model arbitrary multi-turn dialog history and extract salient
semantic information that are relevant to the rest of the conversations and resolv-
ing references spanning over multiple turns.

3. The systems needs to be equipped with world-knowledge in order to appropri-
ately introduce topic of discussion and respond with users’ input with suitable
responses.

All of the above challenges are far from solved even by the state-of-the-art technologies,
but significant progress has been made due to the development of E2E generation-based

1The code and data are available at https://github.com/snakeztc/NeuralDialog-CVAE.
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dialog systems. First generation based systems often uses a auto-regressive decoder
to factorize the response generation process as a conditional language modeling task:
p(x|c) =

∏T
i (p(wi|w<i, c)). At inference time, a well trained generation system can gen-

erate responses with an unbounded number of words, which gives the possibility of
modeling the infinite action space in open-domain conversations. Second, the dialog
encoder based on various neural network architectures (Cho et al., 2014) can encode
variable length dialog history and learn to extract useful features, which matches with
the second requirement. Last, generation-based dialog systems have been often trained
on massive conversational datasets, e.g. movie subtitles (Li et al., 2016a), forum discus-
sion (Lowe et al., 2015) and etc. Research has shown that language model type train-
ing in fact implicitly captures common sense knowledge into the model and makes the
model to learn information that are reasonable in the real world (Trinh and Le, 2018).

However, early attempts in training large generation-based dialog models using
encoder-decoder networks all suggest that the resulting system often generates generic
and dull responses (e.g. I don’t know), rather than meaningful and specific answers (Li
et al., 2015a; Serban et al., 2016c). Follow up research further discovers that even train-
ing very deep models on massive amounts of data (8-layer attention encoder decoder
network with more than 200 million training conversations), the resulting models still
suffer from the dull response problem (Shao et al., 2017). Therefore, the issue lies in
the model and training algorithm itself instead of the lack of training data or the in-
competence of the model. Prior to this work, there have been many attempts to explain
and solve this limitation, and they can be broadly divided into two categories: con-
text enrichment and decoder diversification. The first type has focused on augmenting
the input of encoder-decoder models with richer context information, in order to gen-
erate more specific responses. Li et al., (2016a) captured speakers’ characteristics by
encoding background information and speaking style into the distributed embeddings,
which are used to re-rank the generated response from an encoder-decoder model. Xing
et al., (2016) maintain topic encoding based on Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) of the conversation to encourage the model to output more topic coherent
responses.

In the second category, researchers have been improving the architecture of encoder-
decoder models. Li et al,. (2015a) proposed to optimize the standard encoder-decoder
by maximizing the mutual information between input and output, which in turn re-
duces generic responses. This approach penalized unconditionally high frequency re-
sponses, and favored responses that have high conditional probability given the input.
Wiseman and Rush (2016) focused on improving the decoder network by alleviating the
biases between training and testing. They introduced a search-based loss that directly
optimizes the networks for beam search decoding. The resulting model achieves better
performance on word ordering, parsing and machine translation. Besides improving
beam search, Li et al., (2016b) pointed out that the MLE objective of an encoder-decoder
model is unable to approximate the real-world goal of the conversation. Thus, they
initialized a encoder-decoder model with a MLE objective and leveraged reinforcement
learning to fine tune the model by optimizing three heuristic rewards functions: infor-
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mativity, coherence, and ease of answering.

5.1.1 The One-to-Many Nature in Response Generation

Building on the past work in dialog managers and encoder-decoder models, the key
idea of this chapter is to model dialogs as a one-to-many problem at the discourse level.
Previous studies indicate that there are many factors in open-domain dialogs that decide
the next response, and it is non-trivial to extract all of them. Intuitively, given a simi-
lar dialog history (and other observed inputs), there may exist many valid responses
(at the discourse level), each corresponding to a certain configuration of the latent vari-
ables that are not presented in the input. To uncover the potential responses, we strive to
model a probabilistic distribution over groups of responses that have different seman-
tics using a latent variable (Figure 5.1). This allows us to generate diverse responses
by drawing samples from the learned distribution and reconstruct their words via a
decoder neural network.

Figure 5.1: Given A’s question, there exists many valid responses from B for different
assumptions of the latent variables, e.g., B’s hobby.

Specifically, our contributions are 4-fold: 1. We present a novel neural dialog model
adapted from conditional variational autoencoders (CVAE) (Yan et al., 2015; Sohn et al.,
2015), which introduces a latent variable that can capture discourse-level variations as
described above. We propose Knowledge-Guided CVAE (kgCVAE), which enables easy
integration of expert knowledge and results in performance improvement and model
interpretability. 3. We develop a training method in addressing the difficulty of opti-
mizing CVAE for natural language generation (Bowman et al., 2015). 4. We evaluate
our models on human-human conversation data and yield promising results in: (a)
generating appropriate and discourse-level diverse responses, and (b) showing that the
proposed training method is more effective than the previous techniques.

5.2 Proposed Models

Following the (c − x) notation defined in Chapter 3, each dyadic conversation can be
represented via three random variables: the dialog context c (context window size k−1),
the response utterance x (the kth utterance) and a latent variable z, which is used to
capture the latent distribution over the valid responses. Further, c is composed of the
dialog history: the preceding k-1 utterances; conversational floor (1 if the utterance is
from the same speaker of x, otherwise 0) and meta features m (e.g. the topic).
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Figure 5.2: Graphical models of CVAE (a) and kgCVAE (b)

5.2.1 Partial Latent Action for Dialog Generation

We are interested in learning a latent action that represents the illocutionary force of
the response, so that partial latent action is a suitable choice. We define the conditional
distribution p(x, z|c) = p(x|z, c)p(z|c) and our goal is to use deep neural networks to
approximate p(z|c) and p(x|z, c). We refer to pπ(z|c) as the prior network or policy network
and pθ(x, |z, c) as the response decoder. Then the generative process of x is (Figure 5.2 (a)):

1. Sample a latent variable z from the prior network pπ(z|c).

2. Generate x through the response decoder pθ(x|z, c).

Note that this formulation also makes this model a Conditional Variational Autoen-
coder (CVAE) (Sohn et al., 2015; Yan et al., 2015). CVAE can be efficiently trained with
methods the SGVB framework described in Chapter 4 by maximizing the variational
lower bound of the conditional log likelihood. We assume z follows multivariate Gaus-
sian distribution with a diagonal covariance matrix and introduce a recognition network
qφ(z|x, c) to approximate the true posterior distribution p(z|x, c). Sohn and et al,. (2015)
have shown that the variational lower bound can be written as:

L(θ, π, φ;x, c) = −DKL[qφ(z|x, c)‖pπ(z|c)]

+ Eqφ(z|c,x)[log pπ(x|z, c)] (5.1)

≤ log p(x|c)

Figure 5.3 demonstrates an overview of our model. The utterance encoder is a bidirec-
tional recurrent neural network (BRNN) (Schuster and Paliwal, 1997) with a gated re-
current unit (GRU) (Chung et al., 2014) to encode each utterance into fixed-size vectors
by concatenating the last hidden states of the forward and backward RNN ui = [~hi, ~hi].
x is simply uk. The context encoder is a 1-layer GRU network that encodes the preced-
ing k-1 utterances by taking u1:k−1 and the corresponding conversation floor as inputs.
The last hidden state hc of the context encoder is concatenated with meta features and
c = [hc,m]. Since we assume z follows isotropic Gaussian distribution, the recognition
network qφ(z|x, c) ∼ N (µ,σ2I) and the prior network pθ(z|c) ∼ N (µ′,σ′2I), and then
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we have: [
µ

log(σ2)

]
= Wr

[
x
c

]
+ br (5.2)[

µ′

log(σ′2)

]
= MLPp(c) (5.3)

We then use the Reparametrization Trick (Kingma and Welling, 2013) to obtain sam-
ples of z either from N (z;µ,σ2I) predicted by the recognition network (training) or
N (z;µ′,σ′2I) predicted by the prior network (testing). Finally, the response decoder is
a 1-layer GRU network with initial state s0 = Wi[z, c] + bi. The response decoder then
predicts the words in x sequentially.

Figure 5.3: The neural network architectures for the baseline and the proposed
CVAE/kgCVAE models.

⊕
denotes the concatenation of the input vectors. The dashed

blue connections only appear in kgCVAE.

5.2.2 Knowledge-Guided CVAE (kgCVAE)

In practice, training CVAE is a challenging optimization problem and often requires
large amount of data. On the other hand, past research in spoken dialog systems and
discourse analysis has suggested that many linguistic cues capture crucial features in
representing natural conversation. For example, dialog acts (Poesio and Traum, 1998)
have been widely used in dialog managers (Litman and Allen, 1987; Raux et al., 2005;
Zhao and Eskenazi, 2016) to represent the propositional function of the system. There-
fore, we conjecture that it will be beneficial for the model to learn meaningful latent z if
it is provided with explicitly extracted discourse features during the training.

In order to incorporate the linguistic features, such as dialog acts or topics into the
basic CVAE model, we first denote the set of linguistic features as y. Then we assume
that the generation of x depends on c, z and y. y relies on z and c as shown in Figure 5.2.

53



Specifically, during training the initial state of the response decoder is s0 = Wi[z, c,y]+bi
and the input at every step is [et,y] where et is the word embedding of tth word in
x. In addition, there is an MLP to predict y′ = MLPy(z, c) based on z and c. In the
testing stage, the predicted y′ is used by the response decoder instead of the oracle
decoders. We denote the modified model as knowledge-guided CVAE (kgCVAE) and
developers can add desired discourse features that they wish the latent variable z to
capture. KgCVAE model is trained by maximizing:

L(θ, π, φ, τ ;x, c,y) = −DKL(qφ(z|x, c,y)‖pπ(z|c))

+ Eqφ(z|c,x,y)[log pθ(x|z, c,y)]

+ Eqφ(z|c,x,y)[log pτ (y|z, c)] (5.4)

Since now the reconstruction of y is a part of the loss function, kgCVAE can more
efficiently encode y-related information into z than discovering it only based on the
surface-level x and c. Another advantage of kgCVAE is that it can output a linguistic
label (e.g. dialog act) along with the word-level responses, which allows easier interpre-
tation of the model’s outputs. Note that we only assume y is available at training time,
and at testing time, predicted y will be used.

5.2.3 Optimization Challenges

Since our decoder φ is a auto-regressive LSTM, training both loss 5.1 and 5.4 suffer from
the posterior collapse problem. Furthermore, since the latent z is defined by to a contin-
uous variable, the proposed multi-task learning method is used to tackle the posterior
collapse problem. Specifically, the bag-of-word auxiliary loss defined in Chapter 4 is used
enforce the effectiveness of qφ(z|x, c). Note that for KgCVAE, we assume that even with
the presence of linguistic feature y regarding x, the prediction of xbow still only depends
on z and c. Therefore, we have:

L(θ, π, φ, τ ;x, c,y) = −DKL(qφ(z|x, c,y)‖pθ(z|c))

+ Eqφ(z|c,x,y)[log pθ(x|z, c,y)]

+ Eqφ(z|c,x,y)[log pτ (y|z, c)]

+ Eqφ(z|c,x,y)[log pτ (xbow|z, c)] (5.5)

5.2.4 Generalized Precision and Recall for Dialog Response Genera-
tion Evaluation

Automatically evaluating an open-domain generative dialog model is an open research
challenge (Liu et al., 2016). Following our one-to-many hypothesis, we propose the fol-
lowing metrics. We assume that for a given dialog context c, there exist Mc reference
responses rj , j ∈ [1,Mc]. Meanwhile a model can generate N hypothesis responses hi,
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i ∈ [1, N ]. The generalized response-level precision/recall for a given dialog context is:

precision(c) =

∑N
i=1 maxj∈[1,Mc]d(rj, hi)

N
Appropriateness

recall(c) =

∑Mc

j=1 maxi∈[1,N ]d(rj, hi))

Mc

Diversity

where d(rj, hi) is a distance function which lies between 0 to 1 and measures the sim-
ilarities between rj and hi. The final score is averaged over the entire test dataset and
we report the performance with 3 types of distance functions in order to evaluate the
systems from various linguistic points of view:

1. Smoothed Sentence-level BLEU (Chen and Cherry, 2014): BLEU is a popular met-
ric that measures the geometric mean of modified n-gram precision with a length
penalty (Papineni et al., 2002; Li et al., 2015a). We use BLEU-1 to 4 as our lexical
similarity metric and normalize the score to 0 to 1 scale.

2. Cosine Distance of Bag-of-word Embedding: a simple method to obtain sentence
embeddings is to take the average or extrema of all the word embeddings in the
sentences (Forgues et al., 2014; Adi et al., 2016). The d(rj, hi) is the cosine distance
of the two embedding vectors. We used Glove embedding described in Section 5.3
and denote the average method as A-bow and extrema method as E-bow. The
score is normalized to [0, 1].

3. Dialog Act Match: to measure the similarity at the discourse level, the same dialog-
act tagger from 5.3 is applied to label all the generated responses of each model.
We set d(rj, hi) = 1 if rj and hi have the same dialog acts, otherwise d(rj, hi) = 0.

Intuitively, assuming that the test set has high quality multiple reference responses
collected for each dialog context, the proposed evaluation metric should correlate much
better with a model’s actual performance compared to existing metrics that only com-
pare to a single reference response. We are glad to see that there are many research
groups have begun to use our proposed generalized precision and recall for evaluating
their response generation systems (Yang et al., 2017a; Gu et al., 2018; Gao et al., 2019;
Liu et al., 2019).

5.3 Experiments

5.3.1 Dataset

We chose the Switchboard (SW) 1 Release 2 Corpus (Godfrey and Holliman, 1997) to
evaluate the proposed models. SW has 2400 two-sided telephone conversations with
manually transcribed speech and alignment. In the beginning of the call, a computer
operator gave the callers recorded prompts that define the desired topic of discus-
sion. There are 70 available topics. We randomly split the data into 2316/60/62 dialogs
for train/validate/test. The pre-processing includes (1) tokenize using the NLTK to-
kenizer (Bird et al., 2009); (2) remove non-verbal symbols and repeated words due to
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false starts; (3) keep the top 10K frequent word types as the vocabulary. The final data
have 207, 833/5, 225/5, 481 (c,x) pairs for train/validate/test. Furthermore, a subset of
SW was manually labeled with dialog acts (Stolcke et al., 2000). We extracted dialog act
labels based on the dialog act recognizer proposed in (Ribeiro et al., 2015). The features
include the uni-gram and bi-gram of the utterance, and the contextual features of the
last 3 utterances. We trained a Support Vector Machine (SVM) (Suykens and Vande-
walle, 1999) with linear kernel on the subset of SW with human annotations. There are
42 types of dialog acts and the SVM achieved 77.3% accuracy on held-out data. Then the
rest of SW data are labelled with dialog acts using the trained SVM dialog act recognizer.

5.3.2 Collection of Multiple Reference Responses

We collected multiple reference responses for each dialog context in the test set by in-
formation retrieval techniques combined with traditional a machine learning method.
First, we encode the dialog history using Term Frequency-Inverse Document Frequency
(TFIDF) (Salton and Buckley, 1988) weighted bag-of-words into vector representation h.
Then we denote the topic of the conversation as t and denote f as the conversation floor,
i.e. if the speakers of the last utterance in the dialog history and response utterance are
the same f = 1 otherwise f = 0. Then we computed the similarity d(ci, cj) between two
dialog contexts using:

d(ci, cj) = 1(ti = tj)1(ti = tj)
hi · hj
||hi||||hj||

(5.6)

Unlike past work (Sordoni et al., 2015), this similarity function only cares about the
distance in the context and imposes no constraints on the response, therefore it is suit-
able for finding diverse responses regarding the same dialog context. Second, for each
dialog context in the test set, we retrieved the 10 nearest neighbors from the training
set and treated the responses from the training set as candidate reference responses.
Third, we further sampled 240 context-responses pairs from 5481 pairs in the total test
set and post-processed the selected candidate responses by two human computational
linguistic experts who were told to give a binary label for each candidate response about
whether the response is appropriate regarding its dialog context. The filtered lists then
served as the ground truth to train our reference response classifier. For the next step,
we extracted bigrams, part-of-speech bigrams and word part-of-speech pairs from both
dialogue contexts and candidate reference responses with rare threshold for feature ex-
traction being set to 20. Then L2-regularized logistic regression with 10-fold cross vali-
dation was applied as the machine learning algorithm. Cross validation accuracy on the
human-labelled data was 71%. Finally, we automatically annotated the rest of the test
set with this trained classifier and the resulting data were used for model evaluation.

5.3.3 Training Details

We trained with the following hyperparameters (according to the loss on the validate
dataset): word embedding has size 200 and is shared everywhere. We initialize the
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word embedding from Glove embeddings pre-trained on Twitter (Pennington et al.,
2014). The utterance encoder has a hidden size of 300 for each direction. The context
encoder has a hidden size of 600 and the response decoder has a hidden size of 400. The
prior network and the MLP for predicting y both have 1 hidden layer of size 400 and
tanh non-linearity. The latent variable z has a size of 200. The context window k is 10.
All the initial weights are sampled from a uniform distribution [-0.08, 0.08]. The mini-
batch size is 30. The models are trained end-to-end using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001 and gradient clipping at 5. We selected the
best models based on the variational lower bound on the validate data. Finally, we
use the BOW loss along with KL annealing (defined in Chapter 4) of 10,000 batches to
achieve the best performance.

5.4 Results

5.4.1 Baseline Model

We compared three neural dialog models: a strong baseline model, CVAE, and kgCVAE.
The baseline model is an encoder-decoder neural dialog model without latent vari-

ables similar to (Serban et al., 2016b). The baseline model’s encoder uses the same con-
text encoder to encode the dialog history and the meta features as shown in Figure 7.2.
The encoded context c is directly fed into the decoder networks as the initial state. The
hyperparameters of the baseline are the same as the ones reported in Section 5.3.3 and
the baseline is trained to minimize the standard cross entropy loss of the decoder RNN
model without any auxiliary loss.

Also, to compare the diversity introduced by the stochasticity in the proposed latent
variable versus the softmax of RNN at each decoding step, we generate N responses
from the baseline by sampling from the softmax. For CVAE/kgCVAE, we sample N
times from the latent z and only use greedy decoders so that the randomness comes
entirely from the latent variable z.

5.4.2 Quantitative Analysis

Following the information retrieval method described in Section 5.3.2, we gather 10
extra candidate reference responses/context from other conversations with the same
topics. Then the 10 candidate references are filtered by two experts, which serve as the
ground truth to train the reference response classifier. The result is 6.69 extra references
in average per context. The average number of distinct reference dialog acts is 4.2.
Table 5.1 shows the results.

The proposed models outperform the baseline in terms of recall in all the metrics
with statistical significance. This confirms our hypothesis that generating responses
with discourse-level diversity can lead to a more comprehensive coverage of the poten-
tial responses than promoting only word-level diversity. As for precision, we observed
that the baseline has higher or similar scores compared to CVAE in all metrics, which
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Metrics Baseline CVAE kgCVAE
perplexity (KL) 35.4 (n/a) 20.2 (11.36) 16.02 (13.08)
BLEU-1 prec 0.405 0.372 0.412
BLEU-1 recall 0.336 0.381 0.411
BLEU-2 prec 0.300 0.295 0.350
BLEU-2 recall 0.281 0.322 0.356
BLEU-3 prec 0.272 0.265 0.310
BLEU-3 recall 0.254 0.292 0.318
BLEU-4 prec 0.226 0.223 0.262
BLEU-4 recall 0.215 0.248 0.272
A-bow prec 0.951 0.954 0.961
A-bow recall 0.935 0.943 0.944
E-bow prec 0.827 0.815 0.804
E-bow recall 0.801 0.812 0.807
DA prec 0.736 0.704 0.721
DA recall 0.514 0.604 0.598

Table 5.1: Performance of each model on automatic measures. The highest score in each
row is in bold. Note that our BLEU scores are normalized to [0, 1]. A-bow/E-bow mean
average/extreme bag-of-words word embedding distance. DA stands for dialog acts.
Bold-face numbers indicate significantly better results compared to the baseline system
with p-value < 0.01.

is expected since the baseline tends to generate the mostly likely and safe responses
repeatedly in the N hypotheses. However, kgCVAE is able to achieve the highest pre-
cision and recall in the 4 metrics at the same time (BLEU1-4, A-BOW). One reason for
kgCVAE’s good performance is that the predicted dialog act label in kgCVAE can regu-
larize the generation process of its RNN decoder by forcing it to generate more coherent
and precise words. We further analyze the precision/recall of BLEU-4 by looking at
the average score versus the number of distinct reference dialog acts. A low number
of distinct dialog acts represents the situation where the dialog context has a strong
constraint on the range of the next response (low entropy), while a high number indi-
cates the opposite (high-entropy). Figure 5.4 shows that CVAE/kgCVAE achieves sig-
nificantly higher recall than the baseline in higher entropy contexts. Also it shows that
CVAE suffers from lower precision, especially in low entropy contexts. Finally, kgCVAE
gets higher precision than both the baseline and CVAE in the full spectrum of context
entropy.

5.4.3 Qualitative Analysis

Table 5.2 shows the outputs generated from the baseline and kgCVAE. In example 1,
caller A begins with an open-ended question. The kgCVAE model generated highly
diverse answers that cover multiple plausible dialog acts. Further, we notice that the
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Figure 5.4: BLEU-4 precision/recall vs. the number of distinct reference dialog acts.

Figure 5.5: t-SNE visualization of the posterior z for test responses with top 8 frequent
dialog acts. The size of circle represents the response length.

generated text exhibits similar dialog acts compared to the ones predicted separately
by the model, implying the consistency of natural language generation based on y. On
the contrary, the responses from the baseline model are limited to local n-gram varia-
tions and share a similar prefix, i.e. ”I’m”. Example 2 is a situation where caller A is
telling B stories. The ground truth response is a back-channel and the range of valid
answers is more constrained than example 1 since B is playing the role of a listener.
The baseline successfully predicts ”uh-huh”. The kgCVAE model is also able to gen-
erate various ways of back-channeling. This implies that the latent z is able to capture
context-sensitive variations, i.e. in low-entropy dialog contexts modeling lexical diver-
sity while in high-entropy ones modeling discourse-level diversity. Moreover, kgCVAE
is occasionally able to generate more sophisticated grounding (sample 4) beyond a sim-
ple back-channel, which is also an acceptable response given the dialog context.

In addition, past work (Kingma and Welling, 2013) has shown that the recognition
network is able to learn to cluster high-dimension data, so we conjecture that posterior
z outputted from the recognition network should cluster the responses into meaningful
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Example 1-Topic: Recycling Context: A: are they doing a lot of recycling out in
Georgia? Target-B (statement): well at my workplace we have places for alu-
minium cans and we have a separate trash can for recyclable paper
Baseline+Sampling kgCVAE+Greedy
1. well I’m a graduate student and have
two kids

1. (non-understand) pardon

2. well I was in last year and so we’ve
had lots of recycling

2. (statement) oh you’re not going to
have a curbside pick up here

3. I’m not sure 3. (statement) okay I am sure about a re-
cycling center

4. well I don’t know I just moved here in
new york

4. (yes-answer) yeah so

Example 2-Topic: Child Care Context: A: you know a private home to take their
children to when they’re young until they hit the preschool age and they Target-B
(backchannel): uh-huh
Baseline+Sampling kgCVAE+Greedy
1. um - hum 1. (backchannel) uh-huh
2. yeah 2. (turn-exit) um-hum
3. um - hum 3. (backchannel) yeah
4. uh-huh 4. (statement) oh yeah I think that’s part

of the problem

Table 5.2: Generated responses from the baselines and kgCVAE in two examples. KgC-
VAE also provides the predicted dialog act for each response. The context only shows
the last utterance due to space limit (the actual context window size is 10).

groups. Figure 5.5 visualizes the posterior z of responses in the test dataset in 2D space
using t-SNE (Maaten and Hinton, 2008). We found that the learned latent space is highly
correlated with the dialog act and length of responses, which confirms our assumption.

5.5 Conclusion

In conclusion, we identified the one-to-many nature of open-domain conversation and
proposed two novel models that show superior performance in generating diverse and
appropriate responses at the discourse level, which validates the effectiveness of latent
actions. The current chapter addresses diversifying responses in respect to dialogue
acts. This work is part of a larger research direction that targets leveraging both past
linguistic findings and the learning power of deep neural networks to learn better rep-
resentation of the latent factors in dialog. In turn, the output of this novel neural dialog
model will be easier to explain and control by humans. In addition to dialog acts, we
plan to apply our kgCVAE model to capture other different linguistic phenomena in-
cluding sentiment, named entities,etc. Last but not least, this chapter shows that the

60



recognition network in our model can serve as the foundation for designing a data-
driven dialog manager, which automatically discovers useful high-level intents. All
of the above suggest that our latent action framework provides unique properties that
previous state-of-the-art E2E dialog models that are not capable of.
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Chapter 6

Discrete Latent Action for Model
Interpretability

Like other deep learning models, an E2E generation-based dialog system cannot be
easily interpreted by human developers. The primary reason is its intermediate rep-
resentations are continuous hidden vectors that are automatically learned from data,
which are indecipherable from human perspectives. Paradoxically, this property is at
the same time the key feature that makes deep learning models powerful and scalable.
The chapter presents a new type of latent action that are discrete random variables,
which are possible for human to assign meanings. The proposed latent action can be
learned from data in an unsupervised fashion and seamlessly integrated into a normal
E2E generation-based dialog systems. Therefore, the resulting framework enjoys both
the scalability of neural dialog system, while offers a window for human developers to
peek into models’ decision making mechanism (via the discrete latent actions). 1

6.1 Towards Interpretable Generation

Classic dialog systems rely on developing a meaning representation to represent the
utterances from both the machine and human users (Larsson and Traum, 2000; Bohus
et al., 2007). The dialog manager of a conventional dialog system outputs the system’s
next action in a semantic frame that usually contains hand-crafted dialog acts and slot
values (Williams and Young, 2007). Then a natural language generation module is used
to generate the system’s output in natural language based on the given semantic frame.
This approach suffers from generalization to more complex domains because it soon
become intractable to manually design a frame representation that covers all of the fine-
grained system actions. The recently developed neural dialog system is one of the most
prominent frameworks for developing dialog agents in complex domains. The basic
model is based on encoder-decoder networks (Cho et al., 2014) and can learn to generate
system responses without the need for hand-crafted meaning representations and other

1The code and data are available at https://github.com/snakeztc/NeuralDialog-LAED.

63

https://github.com/snakeztc/NeuralDialog-LAED


annotations.

Figure 6.1: Our proposed models learn a set of discrete variables to represent sentences
by either autoencoding or context prediction.

Although generative dialog models have advanced rapidly (Serban et al., 2016c; Li
et al., 2016a; Zhao et al., 2017b), they cannot provide interpretable system actions as in
the conventional dialog systems. This inability limits the effectiveness of generative di-
alog models in several ways. First, having interpretable system actions enables human
to understand the behavior of a dialog system and better interpret the system inten-
tions. Also, modeling the high-level decision-making policy in dialogs enables useful
generalization and data-efficient domain adaptation (Gašić et al., 2010). Therefore, the
motivation of this chapter is to develop an unsupervised neural recognition model that
can discover interpretable meaning representations of utterances (denoted as latent ac-
tions) as a set of discrete latent variables from a large unlabelled corpus as shown in
Figure 6.1. The discovered meaning representations will then be integrated with en-
coder decoder networks to achieve interpretable dialog generation while preserving all
the merit of neural dialog systems.

We focus on learning discrete latent representations instead of dense continuous
ones because discrete variables are easier to interpret (van den Oord et al., 2017) and
can naturally correspond to categories in natural languages, e.g. topics, dialog acts
etc. Despite the difficulty of learning discrete latent variables in neural networks, the
recently proposed Gumbel-Softmax offers a reliable way to back-propagate through dis-
crete variables (Maddison et al., 2016; Jang et al., 2016). However, we found a simple
combination of sentence variational autoencoders (VAEs) (Bowman et al., 2015) and
Gumbel-Softmax fails to learn meaningful discrete representations. We then highlight
the anti-information limitation of the evidence lowerbound objective (ELBO) in VAEs
and improve it by proposing Discrete Information VAE (DI-VAE) that maximizes the
mutual information between data and latent actions. We further enrich the learning sig-
nals beyond auto encoding by extending Skip Thought (Kiros et al., 2015) to Discrete
Information Variational Skip Thought (DI-VST) that learns sentence-level distributional
semantics. Finally, an integration mechanism is presented that combines the learned
latent actions with encoder decoder models.

The proposed systems are tested on several real-world dialog datasets. Experiments
show that the proposed methods significantly outperform the standard VAEs and can
discover meaningful latent actions from these datasets. Also, experiments confirm the
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effectiveness of the proposed integration mechanism and show that the learned latent
actions can control the sentence-level attributes of the generated responses and provide
human-interpretable meaning representations.

6.2 Related Work

Our work is closely related to research in latent variable dialog models. The majority
of models are based on Conditional Variational Autoencoders (CVAEs) (Serban et al.,
2016c; Cao and Clark, 2017) with continuous latent variables to better model the re-
sponse distribution and encourage diverse responses. Zhao et al., (2017b) further intro-
duced dialog acts to guide the learning of the CVAEs. Discrete latent variables have also
been used for task-oriented dialog systems (Wen et al., 2017), where the latent space is
used to represent intention. The second line of related work is enriching the dialog con-
text encoder with more fine-grained information than the dialog history. Li et al., (2016a)
captured speakers’ characteristics by encoding background information and speaking
style into the distributed embeddings. Xing et al., (2016) maintain topic encoding based
on Latent Dirichlet Allocation (LDA) (Blei et al., 2003) of the conversation to encourage
the model to output more topic coherent responses.

The proposed method also relates to sentence representation learning using neural
networks. Most work learns continuous distributed representations of sentences from
various learning signals (Hill et al., 2016), e.g. the Skip Thought learns representations
by predicting the previous and next sentences (Kiros et al., 2015). Another area of work
focused on learning regularized continuous sentence representation, which enables sen-
tence generation by sampling the latent space (Bowman et al., 2015; Kim et al., 2017).
There is less work on discrete sentence representations due to the difficulty of pass-
ing gradients through discrete outputs. The recently developed Gumbel Softmax (Jang
et al., 2016; Maddison et al., 2016) and vector quantization (van den Oord et al., 2017)
enable us to train discrete variables. Notably, discrete variable models have been pro-
posed to discover document topics (Miao et al., 2016) and semi-supervised sequence
transaction (Zhou and Neubig, 2017)

Our work differs from these as follows: (1) we focus on learning interpretable vari-
ables; in prior research the semantics of latent variables are mostly ignored in the di-
alog generation setting. (2) we improve the learning objective for discrete VAEs and
overcome the well-known posterior collapsing issue (Bowman et al., 2015; Chen et al.,
2016a). (3) we focus on unsupervised learning of salient features in dialog responses
instead of hand-crafted features.

6.3 Proposed Methods

Our formulation contains three random variables: the dialog context c, the response x
and the latent action z. The context often contains the discourse history in the format
of a list of utterances. The response is an utterance that contains a list of word tokens.
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The latent action is a set of discrete variables that define high-level attributes of x. Be-
fore introducing the proposed framework, we first identify two key properties that are
essential in order for latent actions z to be interpretable:

1. z should capture salient sentence-level features about the response x.

2. The meaning of latent symbols z should be independent of the context c.
The first property is self-evident. The second can be explained: assume z contains a sin-
gle discrete variable with K classes. Since the context c can be any dialog history, if the
meaning of each class changes given a different context, then it is difficult to extract an
intuitive interpretation by only looking at all responses with class k ∈ [1, K]. Therefore,
the second property looks for latent actions that have context-independent semantics so
that each assignment of z conveys the same meaning in all dialog contexts.

With the above definition of interpretable latent actions, the overall structure is illus-
trated in Figure 6.2. We introduce:

• A recognition network R : qφ(z|x) and a generation network G : pφ. The role of
R is to map a sentence to the latent variable z and the generator G defines the
learning signals that will be used to train z’s representation. Notably, our recog-
nition network R does not depend on the context c as has been the case in prior
work (Serban et al., 2016c). The motivation of this design is to encourage z to cap-
ture context-independent semantics, which are further elaborated in Section 6.3.4.

• With the z learned by R and G, we then introduce an encoder decoder network
F : pθ(x|z, c) and and a policy network π : pπ(z|c). At test time, given a context c,
the policy network and encoder decoder will work together to generate the next
response via x̃ = pθ(x|z, c) z ∼ pπ(z|c).

In short,R,G, F and π are the four components that comprise our proposed framework.
The next section will first focus on developing R and G for learning interpretable z and
then will move on to integrating R with F and π in Section 6.3.3.

Figure 6.2: The network architecture for integrating the latent action into an encoder
decoder model. Essentially it falls into a type of partial latent action, with the difference
that the meaning of z is learned separately as a 2-step process.

6.3.1 Learning Sentence Representations from Auto-Encoding

Our baseline model is a sentence VAE with discrete latent space. We use an RNN as
the recognition network to encode the response x. Its last hidden state hR|x| is used to

66



represent x. We define z to be a set of K-way categorical variables z = {z1...zm...zM},
where M is the number of variables. For each zm, its posterior distribution is defined
as qqφ(zm|x) = Softmax(Wqh

R
|x|+ bq). During training, we use the Gumbel-Softmax Trick

to sample from this distribution and obtain low-variance gradients. To map the latent
samples to the initial state of the decoder RNN, we define {e1...em...eM} where em ∈
RK×D and D is the generator cell size. Thus the initial state of the generator is: hG0 =∑M

m=1 em(zm). Finally, the generator RNN is used to reconstruct the response given hG0 .
VAEs is trained to maximize the evidence lowerbound objective (ELBO) (Kingma and
Welling, 2013). For simplicity, later discussion drops the subscript m in zm and assumes
a single latent z. Since each zm is independent, we can easily extend the results below
to multiple variables. Our proposed auto-encoding model is the discrete BPR system
described in Chapter 4. For later discussion, we denote our discrete infoVAE with BPR
as DI-VAE.

6.3.2 Learning Sentence Representations from the Context

DI-VAE infers sentence representations by reconstruction of the input sentence. Past
research in distributional semantics has suggested the meaning of language can be in-
ferred from the adjacent context (Harris, 1954; Hill et al., 2016). The distributional hy-
pothesis is especially applicable to dialog since the utterance meaning is highly con-
textual. For example, the dialog act is a well-known utterance feature and depends on
dialog state (Austin, 1975; Stolcke et al., 2000). Thus, we introduce a second type of
latent action based on sentence-level distributional semantics.

Skip thought (ST) is a powerful sentence representation that captures contextual in-
formation (Kiros et al., 2015). ST uses an RNN to encode a sentence, and then uses the
resulting sentence representation to predict the previous and next sentences. Inspired
by ST’s robust performance across multiple tasks (Hill et al., 2016), we adapt our DI-
VAE to Discrete Information Variational Skip Thought (DI-VST) to learn discrete latent
actions that model distributional semantics of sentences. We use the same recognition
network from DI-VAE to output z’s posterior distribution qφ(z|x). Given the samples
from qφ(z|x), two RNN generators are used to predict the previous sentence xp and the
next sentences xn. Finally, the learning objective is to maximize:

LDI-VST = Eqφ(z|x)p(x))[log(pφ(xn|z)pφ(xp|z))]−DKL(qφ(z)‖p(z)) (6.1)

6.3.3 Integration with Encoder Decoders

We now describe how to integrate a given qφ(z|x) with an encoder decoder and a policy
network. Let the dialog context c be a sequence of utterances. Then a dialog context
encoder network can encode the dialog context into a distributed representation he =
F e(c). The decoder F d can generate the responses x̃ = F d(he, z) using samples from
qφ(z|x). Meanwhile, we train π to predict the aggregated posterior Ep(x|c)[qφ(z|x)] from
c via maximum likelihood training. This model is referred as Latent Action Encoder
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Decoder (LAED) with the following objective.

LLAED(θ, π;x, z, c) = Eqφ(z|x)p(x,c)[log pπ(z|c) + log pθ(x|z, c)] (6.2)

Also simply augmenting the inputs of the decoders with latent action does not guaran-
tee that the generated response exhibits the attributes of the given action. Thus we use
the controllable text generation framework (Hu et al., 2017) by introducing LAttr, which
reuses the same recognition network qqφ(z|x) as a fixed discriminator to penalize the
decoder if its generated responses do not reflect the attributes in z.

LAttr(θ) = Ez∼qφ(z|x)[log qφ(z|x̃)] (6.3)

Since it is not possible to propagate gradients through the discrete outputs at F d at each
word step, we use a deterministic continuous relaxation (Hu et al., 2017) by replacing
output of F d with the probability of each word. Let ot be the normalized probability at
step t ∈ [1, |x|], the inputs to qqφ at time t are then the sum of word embeddings weighted
by ot, i.e. hRt = RNN(hRt−1,Eot) and E is the word embedding matrix. Finally this loss is
combined with LLAED and a hyperparameter λ to have Attribute Forcing LAED.

LattrLAED = LLAED + λLAttr (6.4)

6.3.4 Relationship with Conditional VAEs

It is not hard to see LLAED is closely related to the objective of CVAEs for dialog genera-
tion (Serban et al., 2016c; Zhao et al., 2017b), which is:

LCVAE = Eq[log p(x|z, c)]−DKL(q(z|x, c)‖p(z|c)) (6.5)

Despite their similarities, we highlight the key differences that prohibit CVAE from
achieving interpretable dialog generation. First LCVAE encourages I(x, z|c) (Agakov,
2005), which learns z that capture context-dependent semantics. More intuitively, z in
CVAE is trained to generate x via p(x|z, c) so the meaning of a learned z can only be
interpreted along with its context c. Therefore this violates our goal of learning context-
independent semantics. Our methods learn qqφ(z|x) that only depends on x and trains
qqφ separately to ensure the semantics of z are interpretable standalone.

6.4 Experiments and Results

The proposed methods are evaluated on four datasets. The first corpus is Penn Treebank
(PTB) (Marcus et al., 1993) used to evaluate sentence VAEs (Bowman et al., 2015). We
used the version pre-processed by Mikolov (Mikolov et al., 2010). The second dataset is
the Stanford Multi-Domain Dialog (SMD) dataset that contains 3,031 human-Woz, task-
oriented dialogs collected from 3 different domains (navigation, weather and schedul-
ing) (Eric and Manning, 2017b). The other two datasets are chat-oriented data: Daily
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Dialog (DD) and Switchboard (SW) (Godfrey and Holliman, 1997), which are used to
test whether our methods can generalize beyond task-oriented dialogs but also to to
open-domain chatting. DD contains 13,118 multi-turn human-human dialogs annotated
with dialog acts and emotions. (Li et al., 2017). SW has 2,400 human-human telephone
conversations that are annotated with topics and dialog acts. SW is a more challenging
dataset because it is transcribed from speech which contains complex spoken language
phenomenon, e.g. hesitation, self-repair etc.

6.4.1 Comparing Discrete Sentence Representation Models

The first experiment used PTB and DD to evaluate the performance of the proposed
methods in learning discrete sentence representations. We implemented DI-VAE and
DI-VST using GRU-RNN (Chung et al., 2014) and trained them using Adam (Kingma
and Ba, 2014). Besides the proposed methods, the following baselines are compared.
Unregularized models: removing the KL(q|p) term from DI-VAE and DI-VST leads to
a simple discrete autoencoder (DAE) and discrete skip thought (DST) with stochastic
discrete hidden units. ELBO models: the basic discrete sentence VAE (DVAE) or varia-
tional skip thought (DVST) that optimizes ELBO with regularization term KL(q(z|x)‖p(z)).
We found that standard training failed to learn informative latent actions for either
DVAE or DVST because of the posterior collapse. Therefore, KL-annealing (Bowman
et al., 2015) and bag-of-word loss (Zhao et al., 2017b) are used to force these two models
learn meaningful representations. We also include the results for VAE with continuous
latent variables reported on the same PTB (Zhao et al., 2017b). Additionally, we report
the perplexity from a standard GRU-RNN language model (Zaremba et al., 2014).

The evaluation metrics include reconstruction perplexity (PPL), KL(q(z)‖p(z)) and
the mutual information between input data and latent variables I(x, z). Intuitively
a good model should achieve low perplexity and KL distance, and simultaneously
achieve high I(x, z). The discrete latent space for all models are M=20 and K=10. Mini-
batch size is 30.

Dom Model PPL KL(q‖p) I(x, z)
PTB RNNLM 116.22 - -

VAE 73.49 15.94* -
DAE 66.49 2.20 0.349
DVAE 70.84 0.315 0.286
DI-VAE 52.53 0.133 1.18

DD RNNLM 31.15 - -
DST xp:28.23 xn:28.16 0.588 1.359
DVST xp:30.36 xn:30.71 0.007 0.081
DI-VST xp:28.04 xn:27.94 0.088 1.028

Table 6.1: Results for various discrete sentence representations. The KL for VAE is
KL(q(z|x)‖p(z)) instead of KL(q(z)‖p(z)) (Zhao et al., 2017b). xp and xn are the per-
plexity for predicting the previous and next utterances.
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Table 6.1 shows that all models achieve better perplexity than an RNNLM, which
shows they manage to learn meaningful q(z|x). First, for auto-encoding models, DI-
VAE is able to achieve the best results in all metrics compared other methods. We found
DAEs quickly learn to reconstruct the input but they are prone to overfitting during
training, which leads to lower performance on the test data compared to DI-VAE. Also,
since there is no regularization term in the latent space, q(z) is very different from the
p(z) which prohibits us from generating sentences from the latent space. As for DVAEs,
it achieves zero I(x, z) in standard training and only manages to learn some information
when training with KL-annealing and bag-of-word loss. On the other hand, our meth-
ods achieve robust performance without the need for additional processing. Similarly,
the proposed DI-VST is able to achieve the lowest PPL and similar KL compared to the
strongly regularized DVST. Interestingly, although DST is able to achieve the highest
I(x, z), but PPL is not further improved. These results confirm the effectiveness of the
proposed BPR in terms of regularizing q(z) while learning meaningful posterior q(z|x).

In order to understand BPR’s sensitivity to batch size N , a follow-up experiment
varied the batch size from 2 to 60 (If N=1, DI-VAE is equivalent to DVAE). Figure 6.3

Figure 6.3: Perplexity and I(x, z) on PTB by varying batch size N . BPR works better for
larger N .

show that as N increases, perplexity, I(x, z) monotonically improves, while KL(q‖p)
only increases from 0 to 0.159. AfterN > 30, the performance plateaus. Therefore, using
mini-batch is an efficient trade-off between q(z) estimation and computation speed.

The last experiment in this section investigates the relation between representation
learning and the dimension of the latent space. We set a fixed budget by restricting the
maximum number of modes to be about 1000, i.e. KM ≈ 1000 (Note again K is the
size of each categorical latent dimension and M is the number of dimensions). We then
vary the latent space size and report the same evaluation metrics. Table 6.2 shows that
models with multiple small latent variables perform significantly better than those with
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large and few latent variables.

K, M KM PPL KL(q‖p) I(x, z)
1000, 1 1000 75.61 0.032 0.335
10, 3 1000 71.42 0.071 0.607
4, 5 1024 68.43 0.088 0.809

Table 6.2: DI-VAE on PTB with different latent dimensions under the same budget.

6.4.2 Interpreting Latent Actions

The next question is to interpret the meaning of the learned latent action symbols. To
achieve this, the latent action of an utterance xn is obtained from a greedy mapping:
an = argmax

k
qqφ(z = k|xn). We set M=3 and K=5, so that there are at most 125 dif-

ferent latent actions, and each xn can now be represented by a1-a2-a3, e.g. “How are
you?” → 1-4-2. Assuming that we have access to manually clustered data according to
certain classes (e.g. dialog acts), it is unfair to use classic cluster measures (Vinh et al.,
2010) to evaluate the clusters from latent actions. This is because the uniform prior p(z)
evenly distributes the data to all possible latent actions, so that it is expected that fre-
quent classes will be assigned to several latent actions. Thus we utilize the homogeneity
metric (Rosenberg and Hirschberg, 2007). B y definition, homogeneity measures if each
latent action contains only members of a single class. We tested this on SW and DD,
which contain human annotated features and we report the latent actions’ homogeneity
w.r.t these features in Table 6.3.

SW DD
Act Topic Act Emotion

DI-VAE 0.48 0.08 0.18 0.09
DI-VST 0.33 0.13 0.34 0.12

Table 6.3: Homogeneity results (bounded [0, 1]).

On DD, results show DI-VST works better than DI-VAE in terms of creating actions
that are more coherent for emotion and dialog acts. The results are interesting on SW
since DI-VST performs worse on dialog acts than DI-VAE. One reason is that the dialog
acts in SW are more fine-grained (42 acts) than the ones in DD (5 acts) so that distin-
guishing utterances based on words in x is more important than the information in the
neighbouring utterances.

We then apply the proposed methods to SMD which has no manual annotation and
contains task-oriented dialogs. Two experts are shown 5 randomly selected utterances
from each latent action and are asked to give an action name that can describe as many
of the utterances as possible. Then an Amazon Mechanical Turk study is conducted
to evaluate whether other utterances from the same latent action match these titles.
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5 workers see the action name and a different group of 5 utterances from that latent
action. They are asked to select all utterances that belong to the given actions, which
tests the homogeneity of the utterances falling in the same cluster. Negative samples
are included to prevent random selection. Table 6.4 shows that both methods work well
and DI-VST achieved better homogeneity than DI-VAE.

Model Expert Agree Worker κ Match Rate
DI-VAE 85.6% 0.52 71.3%
DI-VST 93.3% 0.48 74.9%

Table 6.4: Human evaluation results on judging the homogeneity of latent actions in
SMD.

Since DI-VAE is trained to reconstruct its input and DI-VST is trained to model the
context, they group utterances in different ways. For example, DI-VST would group
“Can I get a restaurant”, “I am looking for a restaurant” into one action where DI-VAE
may denote two actions for them. Finally, Table 6.4.2 shows sample annotation results,
which show cases of the different types of latent actions discovered by our models.

Model Action Sample utterance
DI-VAE scheduling - sys: okay, scheduling a yoga activity with Tom

for the 8th at 2pm.
- sys: okay, scheduling a meeting for 6 pm on
Tuesday with your boss to go over the quarterly
report.

requests - usr: find out if it ’s supposed to rain
- usr: find nearest coffee shop

DI-VST ask schedule
info

- usr: when is my football activity and who is
going with me?
- usr: tell me when my dentist appointment is?

requests - usr: how about other coffee?
- usr: 11 am please

Table 6.5: Example latent actions discovered in SMD using our methods.

6.4.3 Dialog Response Generation with Latent Actions

Finally we implement an LAED as follows. The encoder is a hierarchical recurrent en-
coder (Serban et al., 2016c) with bi-directional GRU-RNNs as the utterance encoder and
a second GRU-RNN as the discourse encoder. The discourse encoder output its last
hidden state he|x|. The decoder is another GRU-RNN and its initial state of the decoder
is obtained by hd0 = he|x|+

∑M
m=1 em(zm), where z comes from the recognition network of

the proposed methods. The policy network π is a 2-layer multi-layer perceptron (MLP)
that models pπ(z|he|x|). We use up to the previous 10 utterances as the dialog context
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and denote the LAED using DI-VAE latent actions as AE-ED and the one uses DI-VST
as ST-ED.

First we need to confirm whether an LAED can generate responses that are consis-
tent with the semantics of a given z. To answer this, we use a pre-trained recognition
network R to check if a generated response carries the attributes in the given action. We
generate dialog responses on a test dataset via x̃ = F (z ∼ π(c), c) with greedy RNN de-
coding. The generated responses are passed into R and we measure attribute consistency
rate by counting x̃ as correct if z = argmax

k
qqφ(k|x̃).

Domain AE-ED +Lattr ST-ED +Lattr

SMD 93.5% 94.8% 91.9% 93.8%
DD 88.4% 93.6% 78.5% 86.1%
SW 84.7% 94.6% 57.3% 61.3%

Table 6.6: Results for attribute consistency rate with and without attribute loss. P-value
< 0.01 using Mcnemar’s test compared to models w/o Lattr.

Table 6.6 shows our generated responses are highly consistent with the given latent
actions. Also, latent actions from DI-VAE achieve higher attribute consistency rate than
the ones from DI-VST, because z from auto-encoding is explicitly trained for x recon-
struction. Adding Lattr is effective in forcing the decoder to take z into account during
its generation, which helps the most in more challenging open-domain chatting data,
e.g. SW and DD. The consistency rate of ST-ED on SW is worse than the other two
datasets. The reason is that SW contains many short utterances that can be either a
continuation of the same speaker or a new turn from the other speaker, whereas the re-
sponses in the other two domains are always followed by a different speaker. The more
complex context pattern in SW may require special treatment. We leave it for future
work.

The second experiment checks if the policy network π is able to predict the right la-
tent action given just the dialog context. We report both accuracy, i.e. argmax

k
qqφ(k|x) =

argmax
k′

pπ(k′|c) and perplexity of pπ(z|c). The perplexity measure is more useful for

open domain dialogs because decision-making in complex dialogs is often one-to-many
given a similar context (Zhao et al., 2017b).

SMD
AE-ED 3.045 (51.5% sys 52.4% usr 50.5%)
ST-ED 1.695 (75.5% sys 82.1% usr 69.2%)

DD SW
AE-ED 4.47 (35.8%) 4.46 (31.68%)
ST-ED 3.89 (47.5%) 3.68 (33.2%)

Table 6.7: Performance of policy network. Lattr is included in training. The reported
numbers are in the format of perplexity (accuracy).
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Table 6.7 shows the prediction scores on the three dialog datasets. These scores pro-
vide useful insights to understand the complexity of a dialog dataset. For example,
accuracy on open-domain chatting is harder than the task-oriented SMD data. Also, it
is intuitive that predicting system actions is easier than predicting user actions on SMD.
Also, in general the prediction scores for ST-ED are higher the ones for AE-ED. The
reason is related to our previous discussion about the granularity of the latent actions.
Since latent actions from DI-VST mainly model the the type of utterances used in cer-
tain types of context, it is easier for the policy network to predict latent actions from
DI-VST. Therefore, choosing the type of latent actions is a design choice and depends
on the type of interpretability that is needed. We finish with an example generated from
the two variants of LAED on SMD as shown in Table 6.8. Given a dialog context, our
systems are able to output a probability distribution over different latent actions that
have interpretable meaning along with their natural language realizations.

c usr: Where does my friend live?
Model Action Generated Responses
AE-ED give loc info - Tom is at 753 University Ave, and a road block.

pπ(z|c)=0.34 - Comfort Inn is at 7 miles away.
give user info - Your home address is 5671 barringer street.
pπ(z|c)=0.22 - Your home is at 10 ames street.

ST-ED give loc info - Jill’s house is 8 miles away at 347 Alta Mesa
Ave.

pπ(z|c)=0.93 - Jill lives at 347 Alta Mesa Ave.

Table 6.8: Interpretable dialog generation on SMD with top probable latent actions. AE-
ED predicts more fine-grained but more error-prone actions.

6.5 Conclusion and Future Work

This chapter presents a novel unsupervised framework that enables the discovery of
discrete latent actions and interpretable dialog response generation. Our main contri-
butions reside in the two sentence representation models DI-VAE and DI-VST, and their
integration with the encoder decoder models. Experiments show the proposed methods
outperform strong baselines in learning discrete latent variables and showcase the effec-
tiveness of interpretable dialog response generation. Our findings also suggest promis-
ing future research directions, including learning better context-based latent actions and
using reinforcement learning to adapt policy networks. We believe that this work is an
important step forward towards creating generative dialog models that can not only
generalize to large unlabelled datasets in complex domains but also be explainable to
human users.
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Chapter 7

Cross-Domain Latent Action for
Zero-shot Generalization

There are unlimited application domains where a dialog system can be useful. Thus
collecting new datasets for every possible domain is not only tedious but also nearly
impractical. Nonetheless, E2E generation based systems requires at least thousands of
conversations for training to reach minimal performance, and this put generation-based
system into a place that are difficult to be used in the practise. How to create more data-
efficient E2E system is thus one of the crucial research challenge.

Now imagine a scenario where a human has learned to ride a bike and now requires
to learn to ride motorcycles. Human is able to transfer a lot of the prior knowledge
from the bike experience, e.g. holding the handles to keep balance, since they are sim-
ilar actions that are shared between these two tasks. Similar knowledge transfer can
be expected in human-human conversations. Imagine an customer support operator is
transferred from the clothing department to shoe department. Although this operator
now should ask very different questions and give completely different self-introduction
about his/her role, human operator requires no extra “training” for this type of adap-
tation. It is also evident that the human operator can establish connections between
similar “actions” between these two domains, so that they use the new available actions
in the shoe domain using their knowledge from the clothing department.

This chapter is an execution of this intuition by proposing cross-domain latent ac-
tions, which learns a latent alignment between actions from different domains and en-
able a model that is trained on old domain to directly operate in a new domain without
the needs to retrain on dialogs from the new domain. 1

7.1 The Challenge of Domain Generalization

The generation-based end-to-end dialog model (GEDM) is one of the most powerful
methods of learning dialog agents from raw conversational data in both chat-oriented
and task-oriented domains (Serban et al., 2016c; Wen et al., 2016a; Zhao et al., 2017a).

1The code and data are available at https://github.com/snakeztc/NeuralDialog-ZSDG.
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Its base model is an encoder-decoder network (Cho et al., 2014) that uses an encoder
network to encode the dialog context and generate the next response via a decoder net-
work. Yet prior work in GEDMs has overlooked an important issue, i.e. the data scarcity
problem. In fact, the data scarcity problem is extremely common in most dialog appli-
cations due to the wide range of potential domains that dialog systems can be applied
to. To the best of our knowledge, current GEDMs are data-hungry and have only been
successfully applied to domains with abundant training material. This limitation pro-
hibits the possibility of using the GEDMs for rapid prototyping in new domains and is
only useful for domains with large datasets.

The key idea of this chapter lies in developing domain descriptions that can capture
domain-specific information and a new type of GEDM model that can generalize to a
new domain based on the domain description. Humans exhibit incredible efficiency
in achieving this type of adaptation. Remember that a customer service agent in the
shoe department is transferred to the clothing department. After reading some relevant
instructions and documentation, this agent can immediately begin to deal with clothes-
related calls without the need for any example dialogs. We also argue that it is more
efficient and natural for domain experts to express their knowledge in terms of domain
descriptions rather than example dialogs. This is because creating example dialogs in-
volves writing down imagined dialog exchanges that can be shared across multiple
domains and are not relevant to the unique proprieties of a specific domain. However,
current state-of-the-art GEDMs are not designed to incorporate such knowledge and are
therefore incapable of adapting their behavior to unseen domains.

This chapter introduces the use of zero-shot dialog generation (ZSDG) in order to en-
able GEDMs to generalize to unseen situations using minimal dialog data. Building on
zero-shot classification (Palatucci et al., 2009), we formalize ZSDG as a learning problem
where the training data contains dialog data from source domains along with domain
descriptions from both the source and target domains. Then at testing time, ZSDG mod-
els are evaluated on the target domain, where no training dialogs were available. We
approach ZSDG by first discovering a dialog policy network that can be shared between
the source and target domains. The output from this policy is distributed vectors which
are referred to as latent actions. Then, in order to transform the latent actions from any
domain back to natural language utterances, a novel Action Matching (AM) algorithm
is proposed that learns a cross-domain latent action space that models the semantics of
dialog responses. This in turns enables the GEDM to generate responses in the target
domains even when it has never observed full dialogs in them.

Finally the proposed methods and baselines are evaluated on two dialog datasets.
The first one is a new synthetic dialog dataset generated by SimDial, which was devel-
oped for this study. SimDial enables us to easily generate task-oriented dialogs in a large
number of domains, and provides a test bed to evaluate different ZSDG approaches.
We further test our methods on a recently released multi-domain human-human cor-
pus (Eric and Manning, 2017b) to validate whether performance can generalize to real-
world conversations. Experimental results show that our methods are effective in incor-
porating knowledge from domain descriptions and achieve strong ZSDG performance.
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7.2 Related Work

Perhaps the most closely related topic is zero-shot learning (ZSL) for image classifica-
tion (Larochelle et al., 2008), which has focused on classifying unseen labels. A common
approach is to represent the labels as attribute values instead of class indexes (Palatucci
et al., 2009). As a result, at test time, the model can first predict the semantic attributes in
the input, then make the final prediction by comparing the predicted attributes with the
candidate labels’ attributes. More recent work (Socher et al., 2013; Romera-Paredes and
Torr, 2015) improved on this idea by learning parametric models, e.g. neural networks,
to map the label and input data into a joint embedding space and then make predic-
tions. Besides classification, prior art has explored the notion of task generalization in
robotics, so that a robot can execute a new task that was not mentioned in training (Oh
et al., 2017; Duan et al., 2017). In this case, a task is described by a demonstration or
a sequence of instructions, and the system needs to learn to break down the instruc-
tions into previously learned skills. Also generating out-of-vocabulary (OOV) words
from recurrent neural networks (RNNs) can be seen as a form of ZSL, where the OOV
words are unseen labels. Prior work has used delexicalized tags (Zhao et al., 2017a) and
copy-mechanism (Gu et al., 2016; Merity et al., 2016; Elsahar et al., 2018) to enable RNN
output words that are not in its vocabulary.

Finally, ZSL has been applied to individual components in the dialog system pipeline.
Chen et al. (Chen et al., 2016b) developed an intent classifier that can predict new intent
labels that are not included in the training data. Bapna et al. (Bapna et al., 2017) extended
that idea to the slot-filling module to track novel slot types. Both papers leverage a nat-
ural language description for the label (intent or slot-type) in order to learn a semantic
embedding of the label space. Then, given any new labels, the model can still make
predictions. There has also been extensive work on learning domain-adaptable dialog
policy by first training a dialog policy on previous domains and testing the policy on
a new domain. Gasic et al. (Gasic and Young, 2014) used the Gaussian Process with
cross-domain kernel functions. The resulting policy can leverage experience from other
domains to make educated decisions in a new one.

In summary, past ZSL research in the dialog domain has mostly focused on the in-
dividual modules in a pipeline-based dialog system. We believe our proposal is the
first step in exploring the notion of adapting an entire end-to-end dialog system to new
domains for domain generalization.

7.3 Problem Formulation

We begin by formalizing zero-shot dialog generation (ZSDG). Generative dialog mod-
els take a dialog context c as input and then generate the next response x. ZSDG
uses the term domain to describe the difference between training and testing data. Let
D = Ds

⋃
Dt be a set of domains, where Ds is a set of source domains, Dt is a set

of target domains and Ds ∩ Dt = ∅. During training, we are given a set of samples
{c(n),x(n), d(n)} ∼ psource(c,x, d) drawn from the source domains. During testing, a ZSDG
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model will be given a dialog context c and a domain d drawn from the target domains
and must generate the correct response x. Moreover, ZSDG assumes that every domain
d has its own domain description φ(d) that is available at training for both source and
target domains. The primary goal is to learn a generative dialog model F : C ×D → X
that can perform well in a target domain, by relating the unseen target domain descrip-
tion to the seen descriptions of the source domains. Our secondary goal is thatF should
perform similarly to a model that is designed to operate solely in the source domains.
In short, the problem of ZSDG can be summarized as:

Train Data: {c,x, d} ∼ psource(c,x, d)

{φ(d)}, d ∈ D
Test Data: {c,x, d} ∼ ptarget(c,x, d)

Goal: F : C ×D → X

7.4 Proposed Method

7.4.1 Seed Responses as Domain Descriptions

The design of the domain description φ is a crucial factor that decides whether robust
performance in the target domains is achievable. This paper proposes seed response (SR)
as a general-purpose domain description that can readily be applied to different dialog
domains. SR needs for the developers to provide a list of example responses that the
model can generate in this domain. SR’s assumption is that a dialog model can discover
analogies between responses from different domains, so that its dialog policy trained
on source domains can be reused in the target domain. Without losing generality, SRd

defines φ(d) as {x(i), a(i), d}seed for domain d, where x is a seed response and a is its anno-
tations. Annotations are domain-general salient features that are shared across source
and target domains, and help the system in infer the relationship amongst responses
from different domains. This may be difficult to achieve using only words in x, e.g.
two domains with distinct word distributions. For example, in a task-oriented weather
domain, a seed response can be: The weather in New York is raining and the annotation
is a semantic frame that contains domain general dialog acts and slot arguments, i.e.
[Inform, loc=New York, type=rain]. The number of seed responses is often much smaller
than the number of potential responses in the domain so it is best for SR to cover more
responses that are unique to this domain. SRs assume that there is a discourse-level
pattern that can be shared between the source and target domains, so that a system only
needs sentence-level knowledge to adapt to the target. This assumption holds in many
slot-filling dialog domains and it is easy to provide utterances in the target domain that
are analogies to the ones from the source domains.
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Figure 7.1: An overview of our Action Matching framework that looks for a latent action
space Z shared by the response, annotation and predicted latent action from F e.

7.4.2 Action Matching Encoder-Decoder

Figure 7.1 shows an overview of the model we use to tackle ZSDG. The base model is a
standard encoder-decoder F where an encoder F e maps c and d into a distributed repre-
sentation zc = F e(c, d) and the decoder F d generates the response x given zc. We denote
the embedding space that zc resides in as the latent action space. We follow the KB-as-
an-environment approach (Zhao and Eskenazi, 2016) where the generated x include
both system verbal utterances and API queries that interface with back-end databases.
This base model has been proven to be effective in human interactive evaluation for
task-oriented dialogs (Zhao et al., 2017a).

We have two high-level goals: (1) learn a cross-domain F that can be reused in all
source domains and potentially shared with target domains as well. (2) create a mech-
anism to incorporate knowledge from the domain descriptions into F so that it can
generate novel responses when tested on the target domains. To achieve the first goal,
we combine c and d by appending d as a special word token at the beginning of every
utterance in c. This simple approach performs well and enables the context encoder to
take the domain into account when processing later word tokens. Also, this context do-
main integration can easily scale to dealing with a large number of domains. Then we
encourage F to discover reusable dialog policy by training the same encoder decoder on
dialog data generated from multiple source domains at the same time, which is a form
of multi-task learning (Collobert and Weston, 2008). We achieve the second goal by pro-
jecting the response x from all domains into the same latent action space Z. Since x
alone may not be sufficient to infer its semantics, we rely on their annotations a to learn
meaningful semantic representations. Let zx and za be the projected latent actions from
x and a. Our method encourages zd1x1

≈ zd2x2
when zd1a1 ≈ zd2a2 . Moreover, for a given z from

any domain, we ensure that the decoder F d can generate the corresponding response x
by training on both SRd for d ∈ D and source dialogs.

Specifically, we propose the Action Matching (AM) training procedure. We first
introduce a recognition network R that can encode x and a into zx = R(x, d) and
za = R(a, d) respectively. During training, the model receives two types of data. The
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first type is domain description data in the form of {x, a, d}seed for each domain. The
second type of data is source domain dialog data in the form of {c,x, d}. For the first
type of data, we update the parameters in qφ and F d by minimizing the following loss
function:

Ldd(F d, R) = − log ppθ(x|qφ(a, d)) + λD[qφ(x, d)‖qφ(a, d)] (7.1)

where λ is a constant hyperparameter and D is a distance function, e.g. mean square
error (MSE), that measures the closeness of two input vectors. The first term in Ldd

trains the decoder F d to generate the response x given za = R(a, d) from all domains.
The second term in Ldd enforces the recognition network R to encode a response and its
annotation to nearby vectors in the latent action space from all domains, i.e. zdx ≈ zda for
d ∈ D.

Moreover, just optimizing Ldd does not ensure that the zc predicted by the encoder
F e will be related to the zx or za encoded by the recognition network qφ. So when we
receive the second type of data (source dialogs), we add a second term to the standard
maximum likelihood objective to train F and qφ.

Ldialog(F,R) = − log ppθ(x|F
e(c, d)) + λD(qφ(x, d)‖F e(c, d)) (7.2)

The second term in Ldialog completes the loop by encouraging zdc ≈ zdx, which resembles
the regularization term used in variational autoencoders (Kingma and Welling, 2013).
Assuming that annotation a provides a domain-agnostic semantic representation of x,
then F trained on source domains can begin to operate in the target domains as well.
During training, our AM algorithm alternates between these two types of data and op-
timizes Ldd or Ldialog accordingly. The resulting models effectively learn a latent action
space that is shared by the the response annotation a, response x and predicted latent
action based on c in all domains. AM training is summarized in Algorithm 1.

Algorithm 1: Action Matching Training
Initialize weights of F e, F d, R;
Data = {c,x, d}

⋃
{x, a, d}seed

while batch ∼ Data do
if batch in the form {c,x, d} then

Backpropagate loss Ldialog

else
Backpropagate loss Ldd

end
end

7.4.3 Architecture Details

We implement an AMED for later experiments as follows:
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Figure 7.2: Visual illustration of our AM encoder decoder with copy mechanism (Merity
et al., 2016). Note that AM can also be used with RNN decoders without the copy
functionality.

Distance Functions: In this study, we assume that the latent actions are determin-
istic distributed vectors. Thus MSE is used: D(z, ẑ) = 1

L

∑L
l (zl − ẑl)

2, where L is the
dimension size of the latent actions. Also, Ldialog and Ldd use the same distance func-
tion.

Recognition Networks: we use a bidirectional GRU-RNN (Cho et al., 2014) as qφ to
obtain utterance-level embedding. Since both x and a are sequences of word tokens, we
combine them with the domain tag by appending the domain tag in the beginning of the
original word sequence, i.e. {x, d} or {a, d} = [d, w1, ...wJ ], where J is the length of the
word sequence. Then theR will encode [d, w1, ...wJ ] into hidden outputs in forward and
backward directions, [( ~h0, ~hJ), ...( ~hJ , ~h0)]. We use the concatenation of the last hidden
states from each direction, i.e. zx or za = [ ~hJ , ~hJ ] as utterance-level embedding for x or
a respectively.

Dialog Encoders: a hierarchical recurrent encoder (HRE) is used to encode the di-
alog context, which handles long contexts better than non-hierarchical ones (Li et al.,
2015b). HRE first uses an utterance encoder to encode every utterance in the dialog and
then uses a discourse-level LSTM-RNN to encode the dialog context by taking output
from the utterance encoder as input. Instead of introducing a new utterance encoder, we
reuse the recognition networkR described above as the utterance encoder, which serves
the purpose perfectly. Another advantage is that using zx predicted by R as input en-
ables the discourse-level encoder to use knowledge from latent actions as well. Our
discourse-level encoder is a 1-layer LSTM-RNN (Hochreiter and Schmidhuber, 1997),
which takes in a list of output [z1, z2..zK ] from R and encodes them into [v1, v2, ...vK ],
where K is the number of utterances in the context. The last hidden state vK is used as
the predicted latent action zc.

Response Decoders: we experiment with two types of LSTM-RNN decoders. The
first is an RNN decoder with an attention mechanism (Luong et al., 2015), enabling the
decoder to dynamically look up information from the context. Specifically, we flatten
the dialog context into a sequence of words [w11, ...w1J ...wKJ ]. Using output from the
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R and the discourse-level LSTM-RNN, each word here is represented by mkj = hkj +
Wvvk. Let the hidden state of the decoder at step t be st, then our attention mechanism
computes the Softmax output via:

αkj,t = softmax(mT
kj tanh(Wαst)) (7.3)

s̃t =
∑
kj

αkj,tmkj (7.4)

pvocab(wt|st) = softmax(MLP(st, s̃t)) (7.5)

The second type is the LSTM-RNN with a copy mechanism that can directly copy words
from the context as output (Gu et al., 2016). Such a mechanism has already exhib-
ited strong performance in task-oriented dialogs (Eric and Manning, 2017a) and is well
suited for generating OOV word tokens (Elsahar et al., 2018). We implemented the
Pointer Sentinel Mixture Model (PSM) (Merity et al., 2016) as our copy decoder. PSM
defines the generation of the next word as a mixture of probabilities from either the Soft-
max output from the decoder LSTM or the attention Softmax for words in the context:
p(wt|st) = gpvocab(wt|st) + (1 − g)pptr(wt|st), where g is the mixture weight computed
from a sentinel vector u with st.

pptr(wt|st) =
∑

kj∈I(w,x)

αkj,t (7.6)

g = softmax(uT tanh(Wαsi)) (7.7)

7.5 Datasets for ZSDG

Two dialog datasets were used for evaluation.

7.5.1 SimDial Data

We developed SimDial2, which is a multi-domain dialog generator that can generate
realistic conversations for slot-filling domains with configurable complexity. Compared
to other synthetic dialog corpora used to test GEDMs, e.g. bAbI (Dodge et al., 2015),
SimDial data is significantly more challenging. First since SimDial simulates communi-
cation noise, the dialogs that are generated can be very long (more than 50 turns) and
the simulated agent can carry out error recovery strategies to correctly infer the users’
goals. This challenges end-to-end models to model long dialog contexts. SimDial also
simulates spoken language phenomena, e.g. self-repair, hesitation. Prior work (Eshghi
et al., 2017) has shown that this type of utterance-level noise deteriorates end-to-end
dialog system performance.

2https://github.com/snakeztc/SimDial
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Data Details

SimDial was used to generate dialogs for 6 domains: restaurant, movie, bus, restaurant-
slot, restaurant-style and weather. For each domain, 900/100/500 dialogs were gener-
ated for training, validation and testing. On average, each dialog had 26 utterances and
each utterance had 12.8 word tokens. The total vocabulary size was 651. We split the
data such that the training data included dialogs from the restaurant, bus and weather
domains and the test data included the restaurant, movie, restaurant-slot and restaurant
style domains. This setup evaluates a ZSDG system from the following perspectives:

Restaurant (in domain): evaluation on the restaurant test data checks if a dialog
model is able to maintain its performance on the source domains. Restaurant-slot (un-
seen slots): restaurant-slot has the same slot types and natural language generation
(NLG) templates as the restaurant domain, but has a completely different slot vocabu-
lary, i.e. different location names and cuisine types. Thus this is designed to evaluate
a model that can generalize to unseen slot values. Restaurant-style (unseen NLG):
restaurant-style has the same slot type and vocabulary as restaurant, but its NLG tem-
plates are completely different, e.g. “which cuisine type?” → “please tell me what kind
of food you prefer”. This part tests whether a model can learn to adapt to generate
novel utterances with similar semantics. Movie (new domain): movie has completely
different NLG templates and structure and shares few common traits with the source
domains at the surface level. Movie is the hardest task in the SimDial data, which chal-
lenges a model to correctly generate next responses that are semantically different from
the ones in source domains.

Finally, we obtain SRs as domain descriptions by randomly selecting 100 unique
utterances from each domain. The response annotation is a response’s internal semantic
frame used by the SimDial generator. For example, “I believe you said Boston. Where
are you going?” → [implicit-confirm loc=Boston; request location].

7.5.2 Stanford Multi-Domain Dialog Data

The second dataset is the Stanford multi-domain dialog (SMD) dataset (Eric and Man-
ning, 2017b) of 3031 human-human dialogs in three domains: weather, navigation and
scheduling. One speaker plays the role of a driver. The other plays the car’s AI assistant
and talks to the driver to complete tasks, e.g. setting directions on a GPS. Average dia-
log length is 5.25 utterances; vocabulary size is 1601. We use SMD to validate whether
our proposed methods generalize to human-generated dialogs. We generate SR by ran-
domly selecting 150 unique utterances for each domain. An expert annotates the seed
utterances with dialog acts and entities. For example “All right, I’ve set your next den-
tist appointment for 10am. Anything else?” → [ack; inform goal event=dentist appoint-
ment time=10am ; request needs]. Finally, in order to formulate a ZSDG problem, we
use a leave-one-out approach with two domains as source domains and the third one as
the target domain, which results in 3 possible configurations.

In order to effectively evaluate the proposed models’ ability to generalize to new
domains, multi-domain conversation dataset is needed. Unfortunately, currently avail-
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able dataset for both task-oriented and social-oriented dialogs are not designed to col-
lect conversations for different domain but similar task. The closest data we have is
from dialog state tracking challenge (DSTC) since 2013, which is mostly task-oriented
dialogs collected from various systems, including Let’s Go Bus Information System
(DSTC-1) (Raux et al., 2005), Cambridge Restaurant Recommendation System (DSTC2-
3) (Young, 2006). However, this dataset is not ideal for two main reasons: 1) the number
of domain is only 2, whereas we wish to train the models on a larger number of do-
mains (more than 5) to test the limit of domain generalization 2) the data is collected
from different hand-crafted dialog managers, which may not be complex enough to test
the expressive power of generative encoder-decoder models. Therefore, we develop
two new corpora, one synthetic and one real-world, that are designed to be used as the
benchmark of learning generative dialog models from multiple domains. The following
two sections describe them in details.

7.5.3 SimDial: A Multi-domain Dialog Generator

Collecting large conversational data is a tedious task via human. Therefore, using simu-
lated data has been a common approach as the initial test bed for evaluating and training
dialog system (Dodge et al., 2015). SimDial is a configurable domain-agnostic synthetic
conversation generator that can generate arbitrary number of conversations with vari-
ous number of noisy condition for any domains. The overall architecture of SimDial is
shown in Figure 7.3 To generate conversation data using SimDial, the developers needs

Figure 7.3: Overall Architecture of SimDial Data Generator

to provide two specifications: domain specification (DS) and complexity specification (CS).
DS decides which slot-filling domain the generator is targeting at, which is equivalent
to the concept of domain representation defined above. CS on the other hand defines
how complex the user simulator will be from three perspectives:

1. Environmental Complexity: defines the noise level of communication channel, i.e.
imitating ASR errors.
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Environment Interaction
ASR error Hesitation Self Restart Self Correct Don’t Care

Clean 0.0 0.0 0.0 0.0 0.0
Noisy 0.3 0.4 0.1 0.2 0.1

Propostion
Yes/No Question Mix Reject Two-slots Don’t Care Two Goals

Clean 0.0 0.0 0.0 0.0 0.0
Noisy 0.4 0.5 0.3 0.1 0.4

Table 7.1: Complexity Specifications for clean and noisy conditions
.

2. Propositional Complexity: including how many patterns the user simulator will
choose to express and receive information.

3. Interaction Complexity: defines how much lexical-level linguistic variations that
the user simulator will take.

Now we define two complexity spec that will be used in the rest of this chapter. The
first one is Clean which introduces 0 noise and the second one is Noisy, which we intro-
duce non-zero noise in all of the above three dimension. Details numbers are shown in
Table 7.1.

Given DS and CS the generator will initialize an instance of user simulator and an
instance of system simulator. The two simulator will converse with each at semantic
level (i.e. using dialog acts and slot values). We assume that user can understand the
system perfectly, while the users output is passed through a noisy channel which will
introduce uncertainty and errors. Therefore, the system will need to carry out error-
handling strategies, e.g. grounding to successfully complete the dialogs. The following
are two example dialog with clean CS and noisy CS respectively. (The number before
every user utterance is the simulated ASR confidence score).

Clean Complexity Spec
Sys: What can I do for you?
User(1.0): Hi. Recommend a restaurant.
Sys: Which place?
User(1.0): I am at Pittsburgh
Sys: What kind of food do you like?
User(1.0): Chinese food.
Sys: Restaurant xx is a good choice. Anything else?
User(1.0): What kind of parking options does it have?
Sys: It has street parking?
User(1.0): Thanks. Bye.

Noisy Complexity Spec
Sys: What can I do for you?
User (0.54): Hello robot. I need to find a restaurant.
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Sys: Which city are you interested in?
User (0.75): Boston. Oh no, at uhm Seattle actually. And I like Chinese food.
Sys: I believe you said Seattle and Chinese food. Restaurant xx is a nice place. Anything
else?
User (0.6): Not done yet. Is it open now?
Sys: Yes, it is right now. How can I help?
User (0.69): No more questions. Thanks.
Sys: Bye.

As we can see, the construction of SimDial is identical to our prior assumption of
transferring knowledge among domains, since the generator is essentially a domain-
agnostic function that can generate arbitrary dialogs just based on the information of
the DS. Thus if any proposed models in fact is able to learn the desired domain-agnostic
model, it should achieve very good results on data generated from SimDial, since the
data is actually generated from such a distribution. This allows us to rapidly test and
benchmark domain-agnostic dialog models without worrying about the fact the data is
generated from more complex distribution.

7.6 Experiments and Results

The baseline models include 1. hierarchical recurrent encoder with attention decoder
(+Attn) (Serban et al., 2016c). 2. hierarchical recurrent encoder with copy decoder (Mer-
ity et al., 2016) (+Copy), which has achieved very good performance on task-oriented
dialogs (Eric and Manning, 2017a). We then augment both baseline models with the
proposed cross-domain AM training procedure and denote them as +Attn+AM and
+Copy+AM.

Evaluating generative dialog systems is challenging since the model can generate
free-form responses. Fortunately, we have access to the internal semantic frames of the
SimDial data, so we use the automatic measures used in (Zhao et al., 2017a) that employ
four metrics to quantify the performance of a task-oriented dialog model. BLEU is the
corpus-level BLEU-4 between the generated response and the reference ones (Papineni
et al., 2002). Entity F1 checks if a generated response contains the correct entities (slots)
in the reference response. Act F1 measures whether the generated responses reflect the
dialog acts in the reference responses, which compensates for BLEU’s limitation of look-
ing for exact word choices. A one-vs-rest support vector machine (Scholkopf and Smola,
2001) with bi-gram features is trained to tag the dialogs in a response. KB F1 checks all
the key words in a KB query that the system issues to the KB backend. Finally, we in-
troduce BEAK = 4

√
bleu× ent× act× kb, the geometric mean of these four scores, to

quantify a system’s overall performance. Meanwhile, since the oracle dialog acts and
KB queries are not provided in the SMD data (Eric and Manning, 2017b), we only report
BLEU and entity F1 results on SMD.
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7.6.1 Main Results

In domain +Attn +Copy +Attn +AM +Copy +AM
BLEU 59.1 70.4 67.7 70.1
Entity 69.2 70.5 74.1 79.9
Act 94.7 92.0 94.1 95.1
KB 94.7 96.1 95.2 97.0
BEAK 77.2 81.3 81.9 84.7
Unseen Slot +Attn +Copy +Attn +AM +Copy +AM
BLEU 24.9 45.6 47.9 68.5
Entity 56.0 68.0 53.1 74.6
Act 90.9 91.8 86.0 94.5
KB 78.1 89.6 81.0 95.3
BEAK 56.1 71.1 64.8 82.3
Unseen NLG +Attn +Copy +Attn +AM +Copy +AM
BLEU 15.8 36.9 43.5 70.1
Entity 61.7 68.9 63.8 72.9
Act 91.5 92.2 89.3 95.2
KB 66.2 94.6 93.1 97.0
BEAK 49.3 65.9 69.3 82.9
New domain +Attn +Copy +Attn +AM +Copy +AM
BLEU 13.5 24.6 36.7 54.6
Entity 23.1 40.8 23.3 52.6
Act 82.3 85.5 84.8 88.5
KB 43.5 67.1 67.0 88.2
BEAK 32.5 48.8 46.8 68.8

Table 7.2: Evaluation results on test dialogs from SimDial Data. Bold values indicate the
statistically significant best performance.

Table 7.2 shows results on the SimDial data. Although the standard +Attn model
achieves good performance in the source domains, it doesn’t generalize to target do-
mains, especially for entity F1 in the unseen-slot domain, BLEU score in the unseen-
NLG domain, and all new domain metrics. The +Copy model has better, although still
limited, generalization to target domains. The main benefit of the +Copy model is its
ability to directly copy and output words from the context, reflected in its strong entity
F1 in the unseen slot domain. However, +Copy can’t generalize to new domains where
utterances are novel, e.g. the unseen NLG or the new domain. However, our AM algo-
rithm substantially improves performance of both decoders (Attn and Copy). Results
show that the proposed AM algorithm is complementary to decoders with a copy mech-
anism: HRED+Copy+AM model has the best performance on all target domains. In the
easier unseen-slot and unseen-NLG domains, the resulting ZSDG system achieves a
BEAK of about 82, close to the in-domain BEAK performance (84.7). Even in the new
domain (movie), our model achieves a BEAK of 67.2, 106% relative improvement w.r.t
+Attn and 38.8% relative improvement w.r.t +Copy. Moreover, our AM method also im-
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proves performance on in-domain dialogs, suggesting that AM exploits the knowledge
encoded in the domain description and improves the models’ generalization.

Navigate Oracle +Attn +Copy +Copy +AM
BLEU 13.4 0.9 5.4 5.9
Entity 19.3 2.6 4.7 14.3
Weather Oracle +Attn +Copy +Copy +AM
BLEU 18.9 4.8 4.4 8.1
Entity 51.9 0.0 16.3 31.0
Schedule Oracle +Attn +Copy +Copy +AM
BLEU 20.9 3.0 3.8 7.9
Entity 47.3 0.4 17.1 36.9

Table 7.3: Evaluation on SMD data. The bold domain title is the one that was excluded
from training. Bold values indicate the statistically significant best performance.

Table 7.3 summarizes the results on the SMD data. We also report the oracle per-
formance, obtained by training +Copy on the full dataset. The AM algorithm can sig-
nificantly improve Entity F1 and BLEU from the two baseline models. +Copy+AM also
achieves competitive performance in terms of Entity F1 compared to the oracle scores,
despite the fact that no target domain data was used in training.

Type Reference +Attn +Copy +Copy+AM
General
Utts

See you next
time.

Goodbye. See you next
time.

See you next
time.

Unseen
Slots

Do you mean ro-
mance movie?

Do you mean
Chinese food.

Do you mean ro-
mance food?

Do you mean ro-
mance movie?

Unseen Utts Movie 55 is a
great movie.

Bus 12 can take
you there.

Bus 55 can take
you there.

Movie 55 is a
great movie.

Table 7.4: Three types of responses and generation results (tested on the new movie
domain). The text in bold is the output directly copied from the context by the copy
decoder.

7.6.2 Model Analysis

Various types of performance improvement were also studied. Figure 7.4 shows the
breakdown of the BLEU score according to the dialog acts of reference responses. Mod-
els with +Copy decoder can improve performance for all dialog acts except for the greet
act, which occurs at the beginning of a dialog. In this case, the +Copy decoder has no
context to copy and thus cannot generate any novel responses. This is one limitation
of +Copy decoder since in real interactive testing with humans, each system utterance
must be generated from the model instead of copied from the context. However, models
with AM training learn to generate novel utterances based on knowledge from the SR,
so +Copy+AM can generate responses at the beginning of a dialog.
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Figure 7.4: Breakdown BLEU scores on the new domain test set from SimDial.

Figure 7.5: Performance on the schedule domain from SMD while varying the size of
SR.

A qualitative analysis was conducted to summarize typical responses from these
models. Table 7.4 shows three types of typical situations in the SimDial data. The first
type is general utterance utterances, e.g. “See you next time” that appear in all domains.
All three models correctly generate them in the ZSDG setting. The second type is utter-
ances with unseen slots. For example, explicit confirm “Do you mean xx?”. +Attn fails
in this situation since the new slot values are not in its vocabulary. +Copy still performs
well since it learns to copy entity-like words from the context, but the overall sentence
is often incorrect, e.g. “Do you mean romance food”. The last one is unseen utterance
where both +Attn and +Copy fail. The two baseline models can still generate responses
with correct dialog acts, but the output words are in the source domains. Only the mod-
els trained with AM are able to infer that “Movie xx is a great movie” serves a function
similar to “Bus xx can take you there”, and generates responses using the correct words
from the target domain.

Finally we investigate how the the size of SR affects AM performance. Figure 7.5
shows results in the SMD schedule domain. The number of seed responses varies from
0 to 200. Performance in the target domains is positively correlated with the number of
seed responses. We also observe that the model achieves sufficient SR performance at
100, compared to the ones trained on all of the 200 seed responses. This suggests that
the amount of seeding needed by SR is relatively small, which shows the practicality of
using SR as a domain description.
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7.7 Conclusion and Future Work

This chapter introduces ZSDG, dealing with neural dialog systems’ domain generaliza-
tion ability. We formalize the ZSDG problem and propose an Action Matching frame-
work that discovers cross-domain latent actions. We present a new simulated multi-
domain dialog dataset, SimDial, to benchmark the ZSDG models. Our assessment vali-
dates the AM framework’s effectiveness and the AM encoder decoders perform well in
the ZSDG setting.

From a latent action point of view, the proposed AM algorithm shows that (1) share-
able latent action enables knowledge transfer across domains at utterance level. This in-
cludes knowledge on both understanding (feeding latent action into the context encoder
as input) and decision-making (generating responses given latent actions in the new do-
main). In practices, there are many dialog applications that share similar discourse-level
structure, but very different utterances, e.g. recommendation dialog systems for various
categories of products. Thus there is a huge value for utterance-level knowledge trans-
fer (2) the proposed AM algorithm demonstrates that latent action enables a GEDM to
be trained with more than end-to-end maximum likelihood estimation. The introduc-
tion of latent action allows system designers to assign inductive bias to the purposes
these latent variables in the model (e.g. domain matching in the proposed AM), and
this creates opportunities for extra auxiliary loss signals and bringing novel improve-
ment.

ZSDG also provides promising future research questions. How can we reduce the
annotation cost of learning the latent alignment between actions in different domains?
How can we create ZSDG for new domains where the discourse-level patterns are sig-
nificantly different? What are other potential domain description formats? In summary,
solving ZSDG is an important step for future general-purpose conversational agents.
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Chapter 8

Optimizing Dialog Strategy with Latent
Action Reinforcement Learning

So far, we have presented three different types of latent actions that can be induced
from supervised learning. After the supervised learning stage, the model will be used
directly. This chapter takes a step beyond supervised learning and moves towards
improving the dialog policy according to task-level rewards with reinforcement learn-
ing. For E2E generation dialog systems, this is often done via policy gradients meth-
ods (Williams, 1992) at each word output in the decoder network. This approach has
shown to be effective in improving language generation quality when the reward sig-
nals is on evaluating the quality of language (Yu et al., 2017a; Zhong et al., 2017). Un-
fortunately, the reward function for dialog system is often calculated from higher level
signals, e.g. user satisfaction, task success etc. Thus direct application of these reward
functions for a generation-based dialog systems has been shown in previous research to
make the model stop generating natural language (Lewis et al., 2017; Das et al., 2017).
As a result, reinforcement learning for generation-based dialog models with is notori-
ously difficult to train.

We argue that the solution is to optimize the dialog policy over high-level actions
and learn new conversational strategy about discourse-level plans, instead of sentence
level variations. Using latent action becomes a natural choice, since previous chapters
have already shown that they can be trained to represent high-level actions for dialog
systems. In this chapter, we present a set of experiments on how to apply reinforcement
learning with latent actions as the action space for E2E dialog models. Moreover, we
propose a novel evaluation measure, Language Constrained Reward (LCR) curve, to
expliclty quantify the trade-off between task-level rewards and language generation
quality. Experimental results on two real-world dialog tasks show that latent action
reinforcement learning performs significantly better than the conventional word-level
approaches and does not suffer from many of the long lasting challenges. 1.

1The code and data are available at https://github.com/snakeztc/NeuralDialog-LaRL
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8.1 Reinforcement Learning for End-to-end Generation-
based Dialog Models

Optimizing dialog strategies in multi-turn dialog models is the cornerstone of build-
ing dialog systems that more efficiently solve real-world challenges, e.g. providing in-
formation (Young, 2006), winning negotiations (Lewis et al., 2017), improving engage-
ment (Li et al., 2016b) etc. A classic solution employs reinforcement learning (RL) to
learn a dialog policy that models the optimal action distribution conditioned on the
dialog state (Williams and Young, 2007). However, since there are infinite human lan-
guage possibilities, an enduring challenge has been to define what the action space is.
For traditional modular systems, the action space is defined by hand-crafted semantic
representations such as dialog acts and slot-values (Raux et al., 2005; Chen et al., 2013)
and the goal is to obtain a dialog policy that chooses the best hand-crafted action at each
dialog turn. But it is limited because it can only handle simple domains whose entire
action space can be captured by hand-crafted representations (Walker, 2000; Su et al.,
2017). This cripples a system’s ability to handle conversations in complex domains.

Conversely, end-to-end (E2E) dialog systems have removed this limit by directly
learning a response generation model conditioned on the dialog context using neural
networks (Vinyals and Le, 2015; Sordoni et al., 2015). To apply RL to E2E systems, the
action space is typically defined as the entire vocabulary; every response output word is
considered to be an action selection step (Li et al., 2016b), which we denote as the word-
level RL. Word-level RL, however, has been shown to have several major limitations
in learning dialog strategies. The foremost one is that direct application of word-level
RL leads to degenerate behavior: the response decoder deviates from human language
and generates utterances that are incomprehensible (Lewis et al., 2017; Das et al., 2017;
Kottur et al., 2017). A second issue is that since a multi-turn dialog can easily span
hundreds of words, word-level RL suffers from credit assignment over a long horizon,
leading to slow and sub-optimal convergence (Kaelbling et al., 1996; He et al., 2018).

This chapter proposes Latent Action Reinforcement Learning (LaRL), a novel frame-
work that overcomes the limitations of word-level RL for E2E dialog models, marry-
ing the benefits of a traditional modular approach in an unsupervised manner. The
key idea is to develop E2E models that can invent their own discourse-level actions.
These actions must be expressive enough to capture response semantics in complex do-
mains, thus decoupling the discourse-level decision-making process from natural lan-
guage generation. Then any RL technique can be applied to this induced action space
in the place of word-level output. We propose a flexible latent variable dialog frame-
work and investigate several approaches to inducing latent action space from natural
conversational data. We further propose (1) a novel training objective that outperforms
the typical evidence lower bound used in dialog generation (Zhao et al., 2017b) and
(2) an attention mechanism for integrating discrete latent variables in the decoder to
better model long responses. We test our proposed approach on two datasets, a nego-
tiation domain DealOrNoDeal (Lewis et al., 2017) and a multi-domain slot-filling Mul-
tiWoz (Budzianowski et al., 2018). The experiments are carefully designed in order to
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answer two research key questions: (1) what are the advantages of LaRL over Word-
level RL? (2) what are the effective methods that can induce this latent action space?

8.2 Related Work

Prior RL research in modular dialog management has focused on policy optimization
over hand-crafted action spaces in task-oriented domains (Walker, 2000; Young et al.,
2007). A dialog manager is formulated as a Partially Observable Markov Decision Pro-
cess (POMDP) (Young et al., 2013), where the dialog state is estimated via dialog state
tracking models from the raw dialog context (Lee, 2013; Henderson et al., 2014; Ren
et al., 2018). RL techniques are then used to find the optimal dialog policy (Gasic and
Young, 2014; Su et al., 2017; Williams et al., 2017). Recent deep-learning modular dia-
log models have also explored joint optimization over dialog policy and state tracking
to achieve stronger performance (Wen et al., 2016a; Zhao and Eskenazi, 2016; Liu and
Lane, 2017).

A related line of work is reinforcement learning for E2E dialog systems. Due to
the flexibility of encoder-decoder dialog models, prior work has applied reinforcement
learning to more complex domains and achieved higher dialog-level rewards, such as
open-domain chatting (Li et al., 2016b; Serban et al., 2017a), negotiation (Lewis et al.,
2017), visual dialogs (Das et al., 2017), grounded dialog (Mordatch and Abbeel, 2017)
etc. As discussed in Section 1, these methods consider the output vocabulary at every
decoding step to be the action space; they suffer from limitations such as deviation from
natural language and sub-optimal convergence.

Finally, research in latent variable dialog models is closely related to our work, which
strives to learn meaningful latent variables for E2E dialog systems. Prior work has
shown that learning with latent variables leads to benefits like diverse response de-
coding in Chapter 5, interpretable decision-making in Chapter 6 and zero-shot domain
transfer in Chapter 7. Our work differs from prior work for two reasons: (1) latent
action in previous work was only auxiliary, small-scale and mostly learned in a super-
vised or semi-supervised setting. This work focuses on unsupervised learning of latent
variables and learns variables that are expressive enough to capture the entire action
space by itself. (2) to our best knowledge, our work is the first comprehensive study of
the use of latent variables for RL policy optimization in dialog systems.

8.3 Baseline Approach

E2E response generation can be treated as a conditional language generation task which
uses neural encoder-decoders (Cho et al., 2014) to model the conditional distribution
p(x|c) where c is the observed dialog context and x is the system’s response to the con-
text. The format of the dialog context is domain dependent. It can vary from textual
raw dialog history (Vinyals and Le, 2015) to visual and textual context (Das et al., 2017).
Training with RL usually has 2 steps: supervised pre-training and policy gradient re-
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Figure 8.1: High-level comparison between word-level and latent-action reinforcement
learning in a sample multi-turn dialog. Dashed line denotes places where policy gradi-
ents from task rewards are applied to the model.

inforcement learning (Williams and Zweig, 2016; Dhingra et al., 2017; Li et al., 2016b).
Specifically, the supervised learning step maximizes the log likelihood on the training
dialogs, where θ is the model parameter:

LSL(θ) = Ex,c[log pθ(x|c)] (8.1)

Then the following RL step uses policy gradients methods, such as the REINFORCE al-
gorithm (Williams, 1992) to update the model parameters with respect to task-dependent
goals. We assume that we have an environment that the dialog agent can interact with
and that there is a turn-level reward rt at every turn t of the dialog. We can then write
the expected discounted return under a dialog model θ as J(θ) = E[

∑T
0 γ

trt], where
γ ∈ [0, 1] is the discounting factor and T is the length of the dialog. Often a baseline
function b is used to reduce the variance of the policy gradient (Greensmith et al., 2004),
leading to Rt =

∑T−t
k=0 γ

k(rt+k − b).
Word-level Reinforcement Learning: as shown in Figure 8.1, the baseline approach

treats every output word as an action step and its policy gradient is:

∇θJ(θ) = Eθ[
T∑
t=0

Ut∑
j=0

Rtj∇θ log pθ(wtj|w<tj, ct)] (8.2)

where Ut is the number of tokens in the response at turn t and j is the word index
in the response. It is evident that Eq 8.2 has a very large action space, i.e. |V | and
a long learning horizon, i.e. TU . Prior work has found that the direct application of
Eq 8.2 leads to divergence of the decoder. The common solution is to alternate with
supervised learning with Eq 8.2 at a certain ratio (Lewis et al., 2017). We denote this ratio
as RL:SL=A:B, which means for every A policy gradient updates, we run B supervised
learning updates. We use RL:SL=off for the case where only policy gradients are used
and no supervised learning is involved.

8.4 Latent Action Reinforcement Learning

We now describe the proposed LaRL framework. As shown in Figure 8.1, a latent vari-
able z is introduced in the response generation process. We follow the definition of full
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latent action that is defined in Chapter 3. The conditional distribution is factorized into
p(x|c) = p(x|z)p(z|c) and the generative story is: (1) given a dialog context c we first
sample a latent action z from pπ(z|c) and (2) generate the response x based on z via
pθ(x|z), where pπ is the dialog encoder network and pθ is the response decoder network.
Given the above setup, LaRL treats the latent variable z as its action space instead of
outputting words in response x. We can now apply REINFORCE in the latent action
space:

∇θJ(π) = Eθ[
T∑
t=0

Rt log pπ(z|ct)] (8.3)

Compared to Eq 8.2, LaRL differs by:
• Shortens the horizon from TU to T .
• Latent action space is designed to be low-dimensional, much smaller than V .
• The policy gradient only updates the policy network pπ and the decoder pθ stays

intact.
These properties reduce the difficulties for dialog policy optimization and decouple
high-level decision-making from natural language generation. The pπ are responsible
for choosing the best latent action given a context c while pθ is only responsible for
transforming z into the surface-form words. Our formulation also provides a flexible
framework for experimenting with various types of model learning methods. In this
chapter, we focus on two key aspects: the type of latent variable z and optimization
methods for learning z in the supervised pre-training step.

8.4.1 Types of Latent Actions

We explore both types of latent variables defined in Chapter 3: continuous Gaussian
distribution (Serban et al., 2016c) and multivariate categorical distribution (Zhao et al.,
2018). These two types are both compatible with our LaRL framework and can be de-
fined as follows:

Gaussian Latent Actions follow M dimensional multivariate Gaussian distribution
with a diagonal covariance matrix, i.e. z ∼ N (µ,σ2I). Let the policy encoder network
pπ consist of two parts: a context encoder F , a neural network that encodes the dialog
context c into a vector representation h, and a feed forward network π that projects h
into µ and σ. The process is defined as follows:

h = F(c) (8.4)[
µ

log(σ2)

]
= π(h) (8.5)

p(x|z) = pθ(z) z ∼ N (µ,σ2I) (8.6)

where the sampled z is used as the initial state of the decoder for response generation.
Also we use pθ(z|c) = N (z;µ,σ2I) to compute the policy gradient update in Eq 8.3.
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Categorical Latent Actions areM independent K-way categorical random variables.
Each zm has its own token embeddings to map latent symbols into vector space Em ∈
RK×D where m ∈ [1,M ] and D is the embedding size. Thus M latent actions can rep-
resent exponentially, KM , unique combinations, making it expressive enough to model
dialog acts in complex domains. Similar to Gaussian Latent Actions, we have

h = F(c) (8.7)
p(Zm|c) = softmax(πm(h)) (8.8)
p(x|z) = pθ(E1:M(z1:M)) zm ∼ p(Zm|c) (8.9)

For the computing policy gradient in Eq 8.3, we have pθ(z|c) =
∏M

m=1 p(Zm = zm|c)
Unlike Gaussian latent actions, a matrix RM×D comes after the embedding layers

E1:M(z1:M), whereas the decoder’s initial state is a vector of size RD. Previous work
integrated this matrix with the decoder by summing over the latent embeddings, i.e.
x = pθd(

∑M
1 Em(zm)), denoted as Summation Fusion for later discussion (Zhao et al.,

2018). A limitation of this method is that it could lose fine-grained order information in
each latent dimension and have issues with long responses that involve multiple dialog
acts. Therefore, we propose a novel method, Attention Fusion, to combine categorical
latent actions with the decoder. We apply the attention mechanism (Luong et al., 2015)
over latent actions as the following. Let i be the step index during decoding. Then we
have:

αmi = softmax(hTi WaEm(zm)) (8.10)

ci =
M∑
m=1

αmiEm(zm) (8.11)

h̃i = tanh(Ws

[
hi
ci

]
) (8.12)

p(wi|hi, ci) = softmax(Woh̃i) (8.13)

The decoder’s next state is updated by hi+1 = RNN(hi, wi+1), h̃i) and h0 is computed
via summation-fusion. Thus attention fusion lets the decoder focus on different latent
dimensions at each generation step.

8.4.2 Optimization Approaches

Full ELBO: Now given a training dataset {x, c}, our base optimization method is via
stochastic variational inference by maximizing the evidence lowerbound (ELBO), a lower-
bound on the data log likelihood:

Lfull(θ, π, φ) = Eqφ(z|x,c)[pθ(x|z)−DKL[qφ(z|x, c)‖pπ(z|c)]] (8.14)

where qγ(z|x, c) is a neural network that is trained to approximate the posterior distri-
bution q(z|x, c) and p(z|c) and p(x|z) are achieved by F , π and pθd . For Gaussian latent
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actions, we use the reparametrization trick (Kingma and Welling, 2013) to backprop-
agate through Gaussian latent actions and the Gumbel-Softmax (Jang et al., 2016) to
backpropagate through categorical latent actions.

Lite ELBO: a major limitation is that Full ELBO can suffer from exposure bias at la-
tent space, i.e. the decoder only sees z sampled from qφ(z|x, c) and never experiences
z sampled from pπ(z|c), which is always used at testing time. Therefore, in this chap-
ter, we propose a simplified ELBO for encoder-decoder models with stochastic latent
variables:

Llite(θ, π) = Ep(z|c)[pθ(x|z)− βDKL[pπ(z|c))‖p(z)]] (8.15)

Essentially this simplified objective sets the posterior network the same as our encoder,
i.e. qφ(z|x, c) = pπ(z|c), which makes the KL term in Eq 8.14 zero and removes the issue
of exposure bias. But this leaves the latent spaces unregularized and our experiments
show that if we only maximize Epπ(z|c) pθ(x|z)] there is overfitting. For this, we add the
additional regularization term βDKL[pπ(z|c))‖p(z)] that encourages the posterior to be
similar to certain prior distributions and β is a hyper-parameter between 0 and 1. We
set the p(z) for categorical latent actions to be uniform, i.e. p(z) = 1/K, and set the prior
for Gaussian latent actions to be N (0, I), which we will show that these design choices
are effective.

8.4.3 Language Constrained Reward (LCR) curve for Evaluation

It is notoriously difficult to automatically quantify the performance of RL-based neural
generation systems because it is possible for a model to achieve high task reward and
yet not generate human language (Das et al., 2017). On the hand, although human-in-
the-loop evaluation is the best metric to assess a system, it is expensive and hard to
reproduce. Therefore, we propose a novel measure, the Language Constrained Reward
(LCR) curve as an additional robust measure. The basic idea is to use an ROC-style
curve to visualize the tradeoff between achieving higher reward and being faithful to
human language. Specifically, at each checkpoint i over the course of RL training, we
record two measures: (1) the PPL of a given model on the test data pi = PPL(θi) and
(2) this model’s average cumulative task reward in the test environment Rt

i. After RL
training is complete, we create a 2D plot where the x-axis is the maximum PPL allowed,
and the y-axis is the best achievable reward within the PPL budget in the testing envi-
ronments:

y = maxiRt
i subject to pi < x (8.16)

As a result, a perfect model should lie in the upper left corner whereas a model
that sacrifices language quality for higher reward will lie in the lower right corner. Our
results will show that the LCR curve is an informative and robust measure for model
comparison.
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8.5 Experiment Settings

8.5.1 DealOrNoDeal Corpus and RL Setup

DealOrNoDeal is a negotiation dataset that contains 5805 dialogs based on 2236 unique
scenarios (Lewis et al., 2017). We hold out 252 scenarios for testing environment and
randomly sample 400 scenarios from the training set for validation. The results are
evaluated from 4 perspectives: Perplexity (PPL), Reward, Agreement and Diversity.
PPL helps us to identify which model produces the most human-like responses, while
Reward and Agreement evaluate the model’s negotiation strength. Concretely, Agree-
ment Diversity indicates whether the model discovers a novel discourse-level strategy
or just repeats dull responses to compromise with the opponent. We closely follow the
original paper and use the same reward function and baseline calculation. At last, to
have a fair comparison, all the compared models shared the identical judge model and
user simulator, which are a standard hierarchical encoder-decoder model trained with
Maximum Likelihood Estimation (MLE).

8.5.2 Multi-Woz Corpus and a Novel RL Setup

Multi-Woz is a slot-filling dataset that contains 10438 dialogs on 6 different domains.
8438 dialogs are for training and 1000 each are for validation and testing. Since no prior
user simulator exists for this dataset, for a fair comparison with the previous state-of-
the-art we focus on the Dialog-Context-to-Text Generation task proposed in (Budzianowski
et al., 2018). This task assumes that the model has access to the ground-truth dialog
belief state and is asked to generate the next response at every system turn in a dialog.
The results are evaluated from 3 perspectives: BLEU, Inform Rate and Success Rate. The
BLEU score checks the response-level lexical similarity, while Inform and Success Rate
measure whether the model gives recommendations and provides all the requested in-
formation at dialog-level. Current state-of-the-art systems struggle in this task and MLE
models only achieve 60% success (Budzianowski et al., 2018). To transform this task into
an RL task, we propose a novel extension to the original task as follows:

1. For each RL episode, randomly sample a dialog from the training set

2. Run the model on every system turn, and do not alter the original dialog context
at every turn given the generated responses.

3. Compute Success Rate based on the generated responses in this dialog.

4. Compute policy gradient using Eq 8.3 and update the parameters.
This setup creates a variant RL problem that is similar to the Contextual Bandits (Lang-
ford and Zhang, 2008), where the goal is to adjust its parameters to generate responses
that yield better Success Rate. One may argue that our setup creates a slightly simpler
problem compared to the typical RL setting where the dialog agent optimizes its pol-
icy via interacting with real/simulated users. However, the proposed setups has huge
advantages in reproducibility because it does not depend on external user simulation
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component. Moreover, our results show that this problem is challenging and that word-
level RL falls short.

8.6 Results: Latent Actions or Words?

We have created 6 different variations of latent action dialog models under our LaRL
framework. To demonstrate the advantages of LaRL, during the RL training step, we

Model Var Type Loss Integration
Gauss Gaussian Lfull /
Cat Categorical Lfull sum
AttnCat Categorical Lfull attn
LiteGauss Gaussian Llite /
LiteCat Categorical Llite sum
LiteAttnCat Categorical Llite attn

Table 8.1: All proposed variations of LaRL models.

set RL:SL=off for all latent action models, while the baseline word-level RL models are
free to tune RL:SL for best performance. For latent variable models, their perplexity
is estimated via Monte Carlo p(x|c) ≈ Ep(z|c)[p(x|z)p(z|c)]. For the sake of clarity, this
section only compares the best performing latent action models to the best performing
word-level models and focuses on the differences between them. A detailed comparison
of the 6 latent space configurations is addressed in Section 8.7.

8.6.1 DealOrNoDeal

The baseline system is a hierarchical recurrent encoder-decoder (HRED) model (Serban
et al., 2016b) that is tuned to reproduce results from (Lewis et al., 2017). Word-level
RL is then used to fine-tune the pre-trained model with RL:SL=4:1. On the other hand,
the best performing latent action model is LiteCat. Best models are chosen based on
performance on the validation environment.

PPL Reward Agree% Diversity
Baseline 5.23 3.75 59 109
LiteCat 5.35 2.65 41 58
Baseline +RL 8.23 7.61 86 5
LiteCat +RL 6.14 7.27 87 202

Table 8.2: Results calculated over the entire test set of DealOrNoDeal. Diversity is mea-
sured by the number of unique responses the model used in all scenarios from the test
data. Bold-face numbers show statistically significant better results by comparing Lite-
Cat+RL vs. Baseline+RL with p-value < 0.01.
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The results are summarized in Table 8.2 and Figure 8.2 shows the LCR curves for
the baseline with the two best models plus LiteCat and baseline without RL:SL. From
Table 8.2, it appears that the word-level RL baseline performs better than LiteCat in
terms of rewards. However, Figure 8.2 shows that the two LaRL models achieve strong
task rewards with a much smaller performance drop in language quality (PPL), whereas
the word-level model can only increase its task rewards by deviating significantly from
natural language.

Figure 8.2: LCR curves on DealOrNoDeal dataset.

Closer analysis shows the word-level baseline severely overfits to the user simulator.
The caveat is that the word-level models have in fact discovered a loophole in the sim-
ulator by insisting on ’hat’ and ’ball’ several times and the user model eventually yields
to agree to the deal. This is reflected in the diversity measure, which is the number of
unique responses that a model uses in all 200 testing scenarios. As shown in Figure 8.3,
after RL training, the diversity of the baseline model drops to only 5. It is surprising that
the agent can achieve high reward with a well-trained HRED user simulator using only
5 unique utterances. On the contrary, LiteCat increases its response diversity after RL
training from 58 to 202, suggesting that LiteCat discovers novel discourse-level strate-
gies in order to win the negotiation instead of exploiting local loopholes in the same
user simulator. Our qualitative analysis confirms this when we observe that our LiteCat
model is able to use multiple strategies in negotiation, e.g. elicit preference question, re-
quest different offers, insist on key objects etc. This is shown in Table 8.7 and Table 8.8,
which contains example dialogs from word-level and latent-level models.

8.6.2 MultiWoz

For MultiWoz, we reproduce results from (Budzianowski et al., 2018) as the baseline.
After RL training, the best LaRL model is LiteAttnCat and the best word-level model is
word RL:SL=off. Table 8.3 shows that LiteAttnCat is on par with the baseline in the su-
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Figure 8.3: Response diversity and task reward learning curve over the course of RL
training for both word RL:SL=4:1 (left) and LiteCat (right).

pervised learning step, showing that multivariate categorical latent variables alone are
powerful enough to match with continuous hidden representations for modeling dialog
actions. For performance after RL training, LiteAttnCat achieves near-human perfor-
mance in terms of success rate and inform rate, obtaining 18.24% absolute improvement
over the MLE-based state-of-the-art (Budzianowski et al., 2018). More importantly, per-
plexity only slightly increases from 4.05 to 5.22. On the other hand, the word-level RL’s
success rate also improves to 79%, but the generated responses completely deviate from
natural language, increasing perplexity from 3.98 to 17.11 and dropping BLEU from 18.9
to 1.4.

Figure 8.4 shows the LCR curves for MultiWoz, with a trend similar to the previous
section: the word-level models can only achieve task reward improvement by sacrific-
ing their response decoder PPL. Figure 8.4 also shows the LCR curve for the baseline
trained with RL:SL=100:1, hoping that supervised learning can force the model to con-
form to natural language. While PPL and BLEU are indeed improved, it also limits
final reward performance. The latent-level models, on the contrary, do not suffer from
this tradeoff. We also observe that LiteAttnCat consistently outperforms LiteCat on
MultiWoz, confirming the effectiveness of Attention Fusion for handling long dialog
responses with multiple entities and dialog acts. Lastly, Table 8.4 qualitatively exhibits
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PPL BLEU Inform Success
Human / / 90% 82.3%
Baseline 3.98 18.9 71.33% 60.96%
LiteAttnCat 4.05 19.1 67.98% 57.36%
Baseline +RL 17.11 1.4 80.5% 79.07%
LiteAttnCat
+RL

5.22 12.8 82.78% 79.2%

Table 8.3: Main results on MultiWoz test set. RL models are chosen based on perfor-
mance on the validation set. Bold-face numbers indicate that the LiteAttnCat+RL sig-
nificantly better than the baseline+RL with p-value < 0.01.

Figure 8.4: LCR curves on the MultiWoz dataset.

the generation differences between the two approaches. The RL:SL=off model learns to
continuously output entities to fool the evaluation script for high success rate, whereas
LiteCatAttn learns to give more information while maintaining the language quality.

8.7 Model Analysis

We compare the 6 variants of latent action models on DealOrNoDeal and MultiWoz.
Table 8.5 shows performance of the models that are pre-trained only with supervised
learning. Figure 8.5 shows LCR curves for the 3 models pre-trained with Llite and fine-
tuned with policy gradient reinforcement learning. The following are the main findings
based on these results.

Llite outperforms Lfull as a pre-train objective.

Table 8.5 shows that models with Lfull fall behind their Lite counterparts on PPL and
BLEU. We attribute this to the exposure bias in the latent space, i.e. the decoder is
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Context Sys I have [value count] trains matching your request .
Is there a specific day and time you would like to travel?
Usr I would like to leave on [value day] and arrive by
[value time].

Model Generated Response
word
RL:SL=off

[train id] is leaving [value place] on [value day] on
[value day] on [train id] [train id] [value count] [train id]
leaving ...

word
RL:SL=100

[train id] leaves at [value time] . would you like me to
book you a ticket ?

LiteAttnCat [train id] leaves [value place] at [value time] and arrives
in [value place] at [value time]. Would you like me to
book that for you ?

Table 8.4: Example responses from baselines and LiteCatAttn on MultiWoz. The base-
line system word RL:SL=off deviates from natural language by generating repetitive
entities to get higher success rate. On the contrary, LiteAttnCat learns to produce more
informative responses while maintaining grammatical correctness.

not trained to consider the discrepancy between the posterior network and actual di-
alog policy network. Meanwhile, the full models tend to enjoy higher diversity at
pre-training, which agrees with the diversity-promoting effect observed in prior re-
search (Zhao et al., 2017b). However, our previous discussion on Figure 8.3 shows that
Lite models are able to increase their response diversity in order to win more in negotia-
tion through RL training. This is fundamentally different from diversity in pre-training,
since diversity in LaRL is optimized to improve task reward, rather than to better model
the original data distribution. Table 8.6 shows the importance of latent space regular-
ization. When β is 0, both LiteCat and LiteGauss reach suboptimal policies with final
reward that are much smaller than the regularized versions (β = 0.01). The reason
behind this is that the unregularized pre-trained policy has very low entropy, which
prohibits sufficient exploration in the RL stage.

Categorical latent actions outperform Gaussian latent actions.

Models with discrete actions consistently outperform models with Gaussian ones. This
is surprising since continuously distributed representations are a key reason for the suc-
cess of deep learning in natural language processing. Our finding suggests that (1) mul-
tivariate categorical distributions are powerful enough to model complex natural dia-
log responses semantics, and can achieve on par results with Gaussian or non-stochastic
continuous representations. (2) categorical variables are a better choice to serve as action
spaces for reinforcement learning. Figure 8.5 shows that Lite(Attn)Cat easily achieves
strong rewards while LiteGauss struggles to improve its reward. Also, applying RE-
INFORCE on Gaussian latent actions is unstable and often leads to model divergence.
We suspect the reason for this is the unbounded nature of continuous latent space: RL
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Deal PPL Reward Agree% Diversity
Baseline 3.23 3.75 59 109
Gauss 110K 2.71 43 176
LiteGauss 5.35 4.48 65 91
Cat 80.41 3.9 62 115
AttnCat 118.3 3.23 51 145
LiteCat 5.35 2.67 41 58
LiteAttnCat 5.25 3.69 52 75
MultiWoz PPL BLEU Inform% Succ%
Baseline 3.98 18.9 71.33 60.96
Gauss 712.3 7.54 60.5 23.0
LiteGauss 4.06 19.3 56.46 48.06
Cat 7.07 13.7 54.15 42.04
AttnCat 12.01 12.6 63.9 45.8
LiteCat 4.10 19.1 61.56 49.15
LiteAttnCat 4.05 19.1 67.97 57.36

Table 8.5: Comparison of 6 model variants with only supervised learning training.

β 0.0 0.01 β 0.0 0.01
LiteCat 4.23 7.27 LiteGauss 4.83 6.67

Table 8.6: Average rewards over the entire test environments on DealOrNoDeal with
various β. The differences are statistically significant with p < 0.01.

exploration in the continuous space may lead to areas in the manifold that are not cov-
ered in supervised training, which causes undefined decoder behavior given z in these
unknown areas.

8.8 Conclusion and Discussion

In conclusion, this chapter proposes a latent variable action space for RL in E2E dia-
log agents. We present a general framework with a regularized ELBO objective and
attention fusion for discrete variables. The methods are assessed on two dialog tasks
and analyzed using the proposed LCR curve. Results show our models achieve supe-
rior performance and create a new state-of-the-art success rate on MultiWoz. Results
show that LaRL is significantly more effective than word-level RL for learning dialog
policies and it does not lead to incomprehensible language generation. Our models
achieve 18.2% absolute improvement over the previous state-of-the-art on MultiWoz
and discover novel and diverse negotiation strategies on DealOrNoDeal. Besides strong
empirical improvement, our model analysis reveals novel insights, e.g. it is crucial to
reduce the exposure bias in the latent action space and discrete latent actions are more
suitable than continuous ones to serve as action spaces for RL dialog agents. These ex-
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Figure 8.5: LCR curves on DealOrNoDeal and MultiWoz. Models with Lfull are not
included because their PPLs are too poor to compare to the Lite models.

tensive analyses enable us to gain insight on how to properly train latent variables that
can serve as the action spaces for dialog agents. This work is situated in the approach
concerning practical latent variables in dialog agents, being able to create action abstrac-
tion in an unsupervised manner. We believe that our findings are a first step that in this
promising research direction and can bring decades of reinforcement learning research
for classic frame-based dialog management to the development of better end-to-end
dialog models.
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Scenario 1
1 book, 1 hat and 3 balls available.
Value Function
Agent: book=1, hat=6, ball=1.
User: book=1, hat=6, ball=1.
Dialog
Agent: I’d like the hat and 2 balls.
User: Deal.
Agent: SELECTION
Outcome: Agreement
Agent: 1 hat and 2 balls; User: 1 book and
1 ball
Agent reward = 8; User reward = 2
Scenario 2
4 books, 1 hat and 1 ball available.
Value Function
Agent: book=0, hat=7, ball=3;
User: book=1, hat=6, ball=0.
Dialog
User: I can offer you 1 hat and 2 books.
Agent: I need the hat and ball.
User: That won’t work for me. I can offer
you one book and the hat.
Agent: I need the hat and ball.
User: I have to have the hat.
Agent: I need the hat and ball.
User: Okay.
Agent: SELECTION
Outcome: Agreement
Agent: 1 hat and 1 ball; User: 4 books
Agent reward = 10; User reward = 4

Table 8.7: Example dialogs between baseline with the user model. Agent is trained with
word-level policy gradient and the user is a supervised pre-trained model.
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Scenario 1
2 books, 2 hats and 1 ball available.
Value Function
Agent: book=3, hat=0, ball=4;
User: book=2, hat=3, ball=0.
Dialog
Agent: Can i have the books and one ball?
User: I would like the books and the hats
then.
Agent: I would like the ball and books.
User: Deal.
Agent: SELECTION
Outcome: Agreement
Agent: 2 books and 1 ball
User: 2 hats
Agent reward = 10, User reward = 6
Scenario 2
2 books, 1 hat and 3 ball available.
Value Function
Agent: book=0, hat=4, ball=2;
User: book=3, hat=1, ball=1.
Dialog
Agent: I would like the hat and balls.
User: I cannot accept that. I need the hat
and books.
Agent: Can I have the hat and balls, you
get the rest?
User: Okay, deal.
Agent: SELECTION.
Outcome: Agreement
Agent: 1 hat and 3 ball
User: 2 books
Agent reward = 10, Simulator reward = 6

Table 8.8: Example dialogs between LiteCat and the user model. Agent is trained with
latent-level policy gradient and the user is a supervised pre-trained model.
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Chapter 9

Conclusions and Future Work

9.1 Overview

In summary, this dissertation presents a new family of E2E dialog systems based on
the proposed latent actions and provides a complete framework starting from problem
definition, to learning algorithms, and from high-level motivations to complete imple-
mentations that solve real-world challenges. With one unified latent action framework,
we show that it can substantially improve current state-of-the-art E2E dialog systems
for four challenging problems: diversity, interpretability, transferability and strategy
optimization. Table 9.1 shows a summary on how our solutions can seamlessly fit into
the proposed latent action E2E framework and can be understood as special cases of the
overall architecture.

Challenge Action
Type

Var Type Recognition Net-
work

Learning Objective

Diversity Partial Continuous q(z|x, c) ELBO + Dialog Acts
Interpretability Partial Discrete q(z|x) ELBO or Distributional

Semantics
Transferability Full Continuous q(z|x) and q(z|a) ELBO + Seed Matching
Strategy Full Both q(z|x, c) or q(z|c) ELBO + RL

Table 9.1: A summary of the proposed latent actions for solving the real-world chal-
lenges of current E2E dialog systems.

Moreover, several intriguing insights can by drawn from the results of this thesis.
First of all, in order to scale up dialog systems to more complicated domains, it is
extremely useful for developing dialog systems that can be trained end-to-end with
no constraints from hand designed representation. The models proposed in this work
are able to easily create dialog models in multiple datasets, ranging from task-oriented
(i.e. MultiWoz, Stanford Multi-domain, DealOrNoDeal) to open-domain chatting (i.e.
Switchboard, Daily Dialog) without the needs for heavy hand engineering. Whereas
this result is infeasible to achieve with traditional modular-based dialog systems. There-
fore, we focus on developing unsupervised methods (e.g. training techniques in Chap-
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ter 6) or semi-supervised methods (e.g. seed responses in Chapter 7) so that no data
or only a subset of the data needs to be manually annotated with linguistic labels dur-
ing training. And at testing time, our models take only the raw dialog context as input
without demanding external labels.

Second, having an explicit abstraction of actions, i.e. latent actions, can naturally
solve many real-world dialog challenges for E2E dialog models. We argue that this is
because the latent action architecture matches closer to the actual underlying process
for a human to respond in a conversation. Experiment results from this study show
that the inductive bias on network structure is beneficial to improve the generalization
ability of the resulting systems. Other fields of study, e.g. the convolution filters in
Convolutional Neural Networks (LeCun et al., 1995), also suggest that specialized ar-
chitectures that are inspired by the natural process are important to create intelligent
systems that can learn faster and better. Therefore, it is a promising direction to develop
future E2E dialog models that are designed to resemble closer to the actual dialog pro-
cessing process. On the other hand, one may argue that recent success in pre-training
very large neural networks that are extremely flexible (e.g. BERT Transformers (De-
vlin et al., 2018)) is suggesting a opposite directions. We believe that pre-training very
large models on gigantic dataset is in fact a promising way to discover these specialized
network architecture automatically from data if such closely related data is available.
This may leads to a novel approach to establish useful network architectures in a more
data-driven fashion.

Third, the introduction of latent variables in an E2E neural networks has created an
new opportunity for encoding additional knowledge into an E2E models without break-
ing their scalability. For example, the Knowledge-guided CVAE in Chapter 5 is a way
to use linguistic knowledge to guide what information should be kept in the latent ac-
tion space. The seed response annotation in Chapter 7 is another example to control the
latent space via prior knowledge about utterances from different domains. We impose
these knowledge via auxiliary loss directly at the latent variables instead of the final re-
sponse outputs, which encourages further division of responsibilities and abstractions.
Furthermore, the success of discrete latent actions in Chapter 8 demonstrates a different
types of knowledge encoding where we discretize the action space so that it becomes
safer for the agent to do exploration in the reinforcement learning stage. All of the above
examples show that combining latent variables with E2E neural networks is an effective
approach to integrate prior knowledge into deep learning-based systems.

At last, the advantages of the proposed latent action E2E dialog systems are summa-
rized in the following. It is superior than hand-crafted frame-based dialog systems in
terms of:

• Our framework can model complex dialog domain without constraints to hand-
crafted representations and achieve much more natural and intelligent conversa-
tions with human users.

• Our framework can scale to larger dataset and can be trained directly on conver-
sational data.

ALso, the latent action framework surpasses current E2E dialog systems in terms of:
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• Our framework can separate the intention-level decision-making from word-level
response generation as a hierarchical generation process. Discrete latent action can
be used to further improve model explainability, which is infeasible for current
E2E systems.

• Our framework can enable injection of linguistic labels (e.g. dialog acts) to guide
the learning of models.

• Our framework can allow domain adaptation at utterance level via cross-domain
latent actions, which in turn achieving a zero-shot generalization under certain
conditions (i.e. similar discourse pattern).

• Our framework is easier to fine tune dialog strategy via policy gradient from a
pre-trained model and achieve substantially better converged performance.

9.2 Contributions by Chapters

In this thesis, each chapter makes the following contributions.
Chapter 3 lays out the base of this thesis and highlights the four basic research ques-

tions that we strive to answer: (1) how to define latent actions? (2) how to evaluate latent
actions (3) how to learn latent actions and (4) how to use latent actions. The rest of the
chapter provides detailed answers to the first two fundamental questions, including the
definition of full/partial latent actions and the types of studied random variables and
an overview of how latent actions can be used.

Chapter 4 describes three novel learning algorithms for improving the performance
of variational autoencoders for text modeling, including bag-of-word loss, response
selection loss, batch prior regularization with and without autoregressive prior. This
chapter also conducts detailed experiments on two datasets, Penn Treebank and Mul-
tiWoz to assess the performance of the proposed methods compared to previous base-
lines. A novel discriminator-based evaluation method is proposed in the experiment
part to more robustly tune VAE models that balance between the trade-off between in-
ference and generation.

Chapter 5 highlights the one-to-many nature of open-domain chatting. Besides ap-
plying the proposed partial continuous latent actions (aka CVAE) to solve the problem,
an additional knowledge-guided CVAE is proposed to further improve the performance
on response precision. Further, a novel generalized recall/precision evaluation metric
is designed to explicitly test an open-domain response system’s ability to generate di-
verse yet appropriate responses. Experiment results show that the proposed method
achieves significant improvement over baselines and confirms that CVAE/kgCVAE is
able to model the one-to-many properties in open-domain chatting. This work was
published at ACL 2017 (Zhao et al., 2017b).

Chapter 6 first defines the conditions that make a latent action interpretable to hu-
man users. Then besides using the proposed BPR model to learn latent action via auto-
encoding, an alternative context based variational skip thought is proposed to learn
distributional semantic style latent actions. Also, an integration training objective is
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proposed to combine the resulting latent action into any encoder-decoder E2E dialog
models. Experiments are conducted on three different datasets and results validate the
effectiveness of the proposed approach, resulting in the first step towards explainable
E2E dialog models. This work was published at ACL 2018 (Zhao et al., 2018).

Chapter 7 proposes a new task named Zero Shot Dialog Generation for advancing
E2E dialog models to generalize to new domains with minimal data. A novel action
matching algorithm is proposed to learn latent actions that are aligned cross-domain.
SimDial, a new dataset is also developed to benchmark the performance of ZSDG sys-
tems. The proposed algorithms significantly improve the zero-shot performance for E2E
models and also suggest a promising future research venue. This work was published
at SIGDIAL 2018 and awarded Best Paper Award (Zhao and Eskenazi, 2018).

Chapter 8 extends the work to reinforcement learning by first proposing to use latent
actions as the action space for reinforcement learning optimization. A novel variant of
ELBO, LiteELBO is proposed to mitigate the exposure bias problem at the testing time.
Moreover, a novel evaluation method named Language Constrained Reward (LCR)
curve is developed to visually quantify the trade-off between task-level rewards and
language generation for various approaches. Extensive experiments on two datasets
show that Latent Action Reinforcement Learning results into much more stable and
better dialog strategy learning compared the standard word-level policy gradient fine-
tuning for E2E dialog models. The results also discover that discrete latent actions are
far more suitable than continuous latent actions when used as a reinforcement learning
action space. This work will be published at NAACL 2019 (Zhao et al., 2019).

9.3 Open Source Software

For reproducibility and a more open environment of scientific research, we also release
code and data at GitHub for all the methods that are developed in this thesis. The code
repositories can be found at:

1. Chapter 5: https://github.com/snakeztc/NeuralDialog-CVAE

2. Chapter 6: https://github.com/snakeztc/NeuralDialog-LAED

3. Chapter 7: https://github.com/snakeztc/NeuralDialog-ZSDG

4. SimDial: https://github.com/snakeztc/SimDial

5. Chapter 8 https://github.com/snakeztc/NeuralDialog-LaRL

9.4 Summary of Comparative Results

We stress on both creating novel evaluation metrics and obtaining new state-of-the-art
results compared to prior research when existing evaluation metrics are convincing.
We argue that both aspects are important, especially considering the current state of
dialog research. In the last five years, dialog research is undertaking a fundamental
transformation where the entire field of research is advancing at a unprecedented speed.
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As a result, many of previous benchmark tasks, e.g. intent classification and dialog state
tracking, have become less relevant in the setting of the emerging E2E dialog models.
In fact, many of the popular evaluation metrics for response generation systems are
borrowed from other fields of research and some of them are questionable and require
improvement. One example is BLEU (Papineni et al., 2002), which is adapted from
the machine translation community. Research has shown that BLEU is sub-optimal to
evaluate open-domain chatting system (Liu et al., 2016). Therefore, this thesis strives
for finding new evaluation metrics that are designed for dialog systems, which in turns
creating a foundation for future research. In the meantime, our proposed methods are
compared to prior art as much as possible when qualified evaluation metrics exist. The
comparative results are summarized as follows:

Novel Evaluation Metrics

In Chapter 5, we proposes a novel generalized precision/recall metric that can automat-
ically assess an open-domain chatting systems in terms of both response appropriate-
ness and diversity. The multiple references are validated by two human experts. We
showed that the proposed CVAE and kgCVAE are able to achieve the state-of-the-art re-
sults on Switchboard Corpus (Godfrey et al., 1992) at the time of publication, comparing
to the best model at that time (Serban et al., 2017b). After that, there are many research
groups have begun to use our proposed generalized precision and recall for evaluating
their response generation systems (Yang et al., 2017a; Gu et al., 2018; Gao et al., 2019;
Liu et al., 2019).

In Chapter 6, we propose a novel task that aims to improve the interpretability of
a neural dialog system. To our best knowledge, it was the first step in this direction.
Despite of the difficulty to automatically quantify the performance of interpretability
for a neural dialog system, we propose homogeneity and action prediction accuracy to
assess the proposed methods on two popular dialog chatting datasets, including Daily
Dialog (Li et al., 2017) and Switchboard (Godfrey et al., 1992). We also use human evalu-
ation based on expert and crowd annotations to test the performance on Stanford Multi-
domain dataset.

In Chapter 8 we propose a novel language constrained reward (LCR) curve to visual-
ize the trade-off between language quality versus dialog-level rewards. The experiment
results show that LCR curves are more informative compared to a single point score
such as negotiation success rate. We believe this metric can be beneficial for future re-
search that centered around reinforcement learning and E2E text generation system.

Comparative Results using Existing Metrics

In the meantime, our proposed methods are able to achieve the state-of-the-art results
in a number of existing metrics.

In Chapter 4 the proposed anti-posterior collapse techniques enable a text VAE to
achieve better inference and generation performance compared to the best text VAEs at
the time of publication on PennTree Bank (PTB) language modeling dataset (Bowman
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et al., 2015). We used three types of evaluation metrics, including ELBO (reconstruc-
tion perplexity and KL distance), classifier-based evaluation for inference ability and
discriminator-based evaluation for generation quality. We did not provide comparison
in terms of perplexity with other state-of-the-art language modeling results on PTB be-
cause it is a known issue that latent variable model can only provide a lowerbound on
the likelihood and cannot provide exact likelihood on the observed data, which pro-
hibits us to compute a comparable perplexity.

In Chapter 7 our systems are able to achieve better performance compared to the
state-of-the-art generative task-oriented E2E dialog models on Stanford Multi-domain
Dialog dataset in terms of BLEU and entity F-1 in non-zero-shot setting (Eric and Man-
ning, 2017a). The proposed zero-shot dialog generation is a new task, so that our results
set the baseline for future research to tackle the challenge of zero-shot dialog generation.

In Chapter 8 our systems are able to achieve better results on DealOrNoDeal com-
pared to the original paper with their single point metrics, e.g. Reward and Agreement
Rate (Lewis et al., 2017). We further show that the proposed LCR curve is a more mean-
ingful assessment method, because it provides a quantitative measurement for the rela-
tionship between language quality and dialog-level reward. On the MultiWoz dataset,
the proposed latent RL systems are able to achieve 18.3% absolute improvement on suc-
cess rate and 14.8% absolute improvement on inform rate, compared to the previous
state-of-the-art systems (Budzianowski et al., 2018).

In summary, we provide solid comparison between the proposed latent action dialog
systems with the previous best E2E dialog models and show statistically significant
improvement. Moreover, we propose novel evaluation metrics that are designed to
better quantify dialog system performance, which we believe will create a healthier
environment for future E2E dialog research.

9.5 Future Research Directions

The presented framework also suggests many promising future research directions.
Some of them are:

• Latent Variables beyond Dialog Actions. In this work, we mainly focus on cre-
ating latent variables that correspond to the actions of dialog agents. There are a
number of other important variables that can be also modeled as latent variables.
These variables are also often not observed in the raw dialog corpora so that they
have to be inferred. For example, the persona of the system or the users can be
modelled as a dialog-level latent variable that influences the topics and style of the
conversation. Another example can be the users’ mental state, including their sat-
isfaction about the systems, sentiment, and goals, is another essential factor that if
it is appropriately captured, can significantly improve the capability of automated
dialog systems. Meanwhile, studying these variables can be more challenging
because it is unclear what kind of unsupervised learning signals can enforce the
latent variable to focus on these aspects. Perhaps semi-supervised learning or ex-
tensive inductive bias is needed to make the learning meaningful. That said, there
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can still exist novel yet to be found learning objectives enabling the models to
create levels of abstractions, where these critical aspects can be discovered in an
unsupervised manner.

• Disentanglement and Compositionality. Although the proposed multivariate la-
tent code are designed to be disentangled and should capture the compositionality
of natural language, there is still much room for improvement. First of all, there is
no standard dataset or evaluation metric yet to quantify the ability of neural dialog
models to handle compositionality. This metric needs to test from both inference
and generation perspectives. That is, for inference, can the model generalize to un-
derstand a combination of two smaller utterances; and for the generation, can the
model generalize to output responses that combine smaller utterances observed in
the training data. Besides than that, better algorithms and models are needed to
train models in a way that encourages compositional behavior over simply mem-
orizing the pattern.

• Better Modeling of Propositional Content. So far the proposed latent action has
been mainly focused on modeling the intents and has not tried to explicitly model
the content in the response, e.g. fine-grained entities that are mentioned. These
entities are extremely important for task-based dialog systems, because they need
to use these entities to search in external databases or back-end API lookup. There
remains many interesting research directions on how to encode these entities into
the latent actions because they are challenging for a number of reasons. First, the
vocabulary of entities are huge and there is high chance for encountering out-of-
vocabulary entities at testing time. How to develop a OOV robust representation
that can allow the latent action to encode the entity information while staying
compact and low dimension remains to be solved.

• Quantify Model Uncertainty. Measuring uncertainty is a crucial task for any in-
telligent agent. Uncertainty measure can contain detecting out-of-domain user
utterances, systems’ confidence in its current decisions, and inherited uncertainty
of the data itself. Quantifying these aspects are advantageous because it can im-
prove the robustness of a dialog agent at the testing, improve its learning speed
since it can actively choose to gather data in the most uncertain situations etc.
Latent variable provides a natural solution to these problems because it is often
equipped with uncertainty measure by itself, such as the variance for continuous
variables and entropy for discrete variables. Yet these features are under-explored
in this thesis and promising research can be done to fully utilize Bayesian learning
to advance systems performance in uncertainty measurement.

• Extension to End-to-end Retrieval Dialog Systems. This thesis is dedicated to
generation-based dialog systems due to its potential to generalize to new response
and complex domains. In the mean time, retrieval-based dialog models is an-
other important class of systems that is widely deployed in real world applica-
tions. For a retrieval-based system, it also suffers from many challenges that can
be improved via latent action learning. For example, a retrieval dialog systems
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would rank many similar responses high given a context because they share sim-
ilar words and often should belong to the same latent action. Then if the goal is
to extract N-best responses with diverse intents, it becomes challenging to extract
the N pivots responses from the full response ranking. Given our knowledge from
this thesis, it is natural to use latent action to separate the intentions from lexical
variations in the ranking and enable the models to output N-best responses eas-
ily. Moreover, hybrid dialog systems that combine generation based and retrieval
based dialog systems have become increasingly powerful. One can think of the re-
trieved response as a non-parametric representation of the “latent action”, which
can be further fine-tuned by the generation based decoder. How would this ap-
proach compared to the parametric latent action approach proposed in this thesis?
These topics all suggest fruitful research directions.

• Extension to Other Text Generation Tasks. Beside dialog systems, there are many
other NLP text generation tasks that require long-term planning and abstraction
over high-level ideas, such as story generation, caption generation, document
summarization etc. We believe the methods proposed in this thesis can also benefit
research in these related areas.
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Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. 2013. Pomdp-based
statistical spoken dialog systems: A review. Proceedings of the IEEE 101(5):1160–1179.
8.2

Steve J Young. 2006. Using pomdps for dialog management. In SLT. pages 8–13. 1.1,
2.1.2, 7.5.2, 8.1

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017a. Seqgan: Sequence genera-
tive adversarial nets with policy gradient. In Thirty-First AAAI Conference on Artificial
Intelligence. 8

Zhou Yu, Alan W Black, and Alexander I Rudnicky. 2017b. Learning conversational

129



systems that interleave task and non-task content. arXiv preprint arXiv:1703.00099 .
2.1.5

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329 . 6.4.1

Ran Zhao, Alexandros Papangelis, and Justine Cassell. 2014. Towards a dyadic com-
putational model of rapport management for human-virtual agent interaction. In
International Conference on Intelligent Virtual Agents. Springer, pages 514–527. 2.1.5

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards end-to-end learning for dialog
state tracking and management using deep reinforcement learning. arXiv preprint
arXiv:1606.02560 . 2.1.2, 2.1.4, 5.2.2, 7.4.2, 8.2

Tiancheng Zhao and Maxine Eskenazi. 2018. Zero-shot dialog generation with cross-
domain latent actions. arXiv preprint arXiv:1805.04803 . 9.2

Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi. 2018. Unsupervised discrete sen-
tence representation learning for interpretable neural dialog generation. arXiv preprint
arXiv:1804.08069 . 8.4.1, 8.4.1, 9.2

Tiancheng Zhao, Allen Lu, Kyusong Lee, and Maxine Eskenazi. 2017a. Generative
encoder-decoder models for task-oriented spoken dialog systems with chatting ca-
pability. arXiv preprint arXiv:1706.08476 . 2.1.4, 2.1.5, 7.1, 7.2, 7.4.2, 7.6

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi. 2019. Rethinking action spaces for
reinforcement learning in end-to-end dialog agents with latent variable models. arXiv
preprint arXiv:1902.08858 . 9.2

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017b. Learning discourse-level di-
versity for neural dialog models using conditional variational autoencoders. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). volume 1, pages 654–664. (document), 2.1.4, 6.1, 6.2, 6.3.4, 6.4.1,
6.1, 6.4.3, 8.1, 8.7, 9.2

Shengjia Zhao S, Jiaming Song, and Stefano Ermon. 2017. Infovae: Information maxi-
mizing variational autoencoders. arXiv preprint arXiv:1706.02262 . 4.2.2

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning. arXiv preprint
arXiv:1709.00103 . 2.2.1, 8

Chunting Zhou and Graham Neubig. 2017. Multi-space variational encoder-decoders
for semi-supervised labeled sequence transduction. arXiv preprint arXiv:1704.01691 .
6.2

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. 2018. The design and imple-
mentation of xiaoice, an empathetic social chatbot. arXiv preprint arXiv:1812.08989 .
1.1, 3.4.4

Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, Dianhai Yu, Hao Tian, Xuan Liu,
and Rui Yan. 2016. Multi-view response selection for human-computer conversation.
In EMNLP. 2.1.3

130


	1 Introduction
	1.1 Overview
	1.2 Thesis Statement
	1.3 Thesis Structure

	2 Foundational Work
	2.1 Dialog Systems Foundations
	2.1.1 Speech Acts
	2.1.2 Frame-based Dialog Systems
	2.1.3 Retrieval-based Dialog Systems
	2.1.4 Generation-based Dialog Systems
	2.1.5 Hybrid Dialog Systems

	2.2 Machine Learning Foundations
	2.2.1 Encoder-Decoder Models
	2.2.2 Variational Latent Variable Models
	2.2.3 Zero-shot Learning
	2.2.4 Deep Reinforcement Learning


	3 The Latent Action Framework
	3.1 Formulations and Notations
	3.2 Overview
	3.3 Latent Action Definitions
	3.4 Objectives and Evaluation
	3.4.1 Likelihood
	3.4.2 Mutual Information
	3.4.3 Distributional Semantics
	3.4.4 Downstream Tasks

	3.5 Basic components
	3.6 Why Latent Actions?

	4 Learning Methods for Latent Actions
	4.1 Foundations
	4.1.1 Stochastic Variational Inference
	4.1.2 The Posterior Collapse Problem

	4.2 Proposed Solutions
	4.2.1 Non-autoregressive Auxiliary Loss
	4.2.2 Maximum Mutual Information

	4.3 Related Work
	4.4 Experiments
	4.4.1 Evaluation Metrics
	4.4.2 Dataset

	4.5 Results and Discussion
	4.5.1 Compared Models
	4.5.2 Results for Inference
	4.5.3 Results for Generation from Prior

	4.6 Conclusions

	5 Latent Actions for Discourse-level Diversity
	5.1 The Dull Response Problem
	5.1.1 The One-to-Many Nature in Response Generation

	5.2 Proposed Models
	5.2.1 Partial Latent Action for Dialog Generation
	5.2.2 Knowledge-Guided CVAE (kgCVAE)
	5.2.3 Optimization Challenges
	5.2.4 Generalized Precision and Recall for Dialog Response Generation Evaluation

	5.3 Experiments
	5.3.1 Dataset
	5.3.2 Collection of Multiple Reference Responses
	5.3.3 Training Details

	5.4 Results
	5.4.1 Baseline Model
	5.4.2 Quantitative Analysis
	5.4.3 Qualitative Analysis

	5.5 Conclusion

	6 Discrete Latent Action for Model Interpretability
	6.1 Towards Interpretable Generation
	6.2 Related Work
	6.3 Proposed Methods
	6.3.1 Learning Sentence Representations from Auto-Encoding
	6.3.2 Learning Sentence Representations from the Context
	6.3.3 Integration with Encoder Decoders
	6.3.4 Relationship with Conditional VAEs

	6.4 Experiments and Results
	6.4.1 Comparing Discrete Sentence Representation Models
	6.4.2 Interpreting Latent Actions
	6.4.3 Dialog Response Generation with Latent Actions

	6.5 Conclusion and Future Work

	7 Cross-Domain Latent Action for Zero-shot Generalization
	7.1 The Challenge of Domain Generalization
	7.2 Related Work
	7.3 Problem Formulation
	7.4 Proposed Method
	7.4.1 Seed Responses as Domain Descriptions
	7.4.2 Action Matching Encoder-Decoder
	7.4.3 Architecture Details

	7.5 Datasets for ZSDG
	7.5.1 SimDial Data
	7.5.2 Stanford Multi-Domain Dialog Data
	7.5.3 SimDial: A Multi-domain Dialog Generator

	7.6 Experiments and Results
	7.6.1 Main Results
	7.6.2 Model Analysis

	7.7 Conclusion and Future Work

	8 Optimizing Dialog Strategy with Latent Action Reinforcement Learning
	8.1 Reinforcement Learning for End-to-end Generation-based Dialog Models
	8.2 Related Work
	8.3 Baseline Approach
	8.4 Latent Action Reinforcement Learning
	8.4.1 Types of Latent Actions
	8.4.2 Optimization Approaches
	8.4.3 Language Constrained Reward (LCR) curve for Evaluation

	8.5 Experiment Settings
	8.5.1 DealOrNoDeal Corpus and RL Setup
	8.5.2 Multi-Woz Corpus and a Novel RL Setup

	8.6 Results: Latent Actions or Words?
	8.6.1 DealOrNoDeal
	8.6.2 MultiWoz

	8.7 Model Analysis
	8.8 Conclusion and Discussion

	9 Conclusions and Future Work
	9.1 Overview
	9.2 Contributions by Chapters
	9.3 Open Source Software
	9.4 Summary of Comparative Results
	9.5 Future Research Directions

	Bibliography

