
Leveraging Textual Semantics for
Knowledge Graph Acquisition and Application

Donghan Yu

CMU-LTI-23-010

Language Technology Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Yiming Yang (Chair)

Emma Strubell
Chenyan Xiong

Chenguang Zhu (Microsoft)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

© 2023, Donghan Yu

Keywords: knowledge graph, textual semantics, pre-trained language model, graph neural
network, question answering

For my grandfather

iv

Abstract
Knowledge Graphs (KGs), which represent world knowledge through entities

and relations, are ubiquitous in real-world applications. Besides their structural na-
ture, KGs offer rich textual information, as entities usually correspond to real-world
objects with specific names and descriptions. Despite the importance of such infor-
mation, it has been largely overlooked or inadequately explored in existing studies.

This thesis aims to integrate the textual information into the modeling of KGs by
utilizing Pre-trained Language Models (PLMs), which have demonstrated effective-
ness in capturing the semantic meanings of natural language. This goal is carried out
on two complementary parts: the acquisition of KGs to enhance their qualities, and
the application of KGs to address user queries.

In Part I, we focus on KG acquisition through text. We begin with a pre-training
framework that jointly learns the vector representations of KGs and text. It features
KG-text dual modules that mutually enhance each other, achieving strong results
on relation extraction and entity classification. (Chapter 2). To address scalabil-
ity challenges in large KGs, we propose a retrieval-enhanced text-generation model
for KG completion. It leverages semantically relevant triplets from KGs to guide
the generation of missing entities, demonstrating state-of-the-art performance while
maintaining low memory usage (Chapter 3).

In Part II, we turn our attention to applying KGs to the crucial task of Question
Answering (QA). In the setting that the answers are sourced from KGs, we propose
a framework that jointly generates logical queries and text answers to produce more
accurate and robust results (Chapter 4). Then we extend to the scenarios where the
answers mainly stem from text corpora instead of KGs. Our proposed method lever-
ages KGs to construct links among the text passages. Such structural information is
leveraged to re-rank and prune related passages for each question, significantly re-
ducing computational costs (Chapter 5). Finally, we tackle the setting of incomplete
KGs. We introduce the first benchmark dataset to assess the impact of KG com-
pletion methods on question answering. Our experiments highlight the necessity to
jointly study the acquisition and application of KGs (Chapter 6).

vi

Acknowledgments
Pursuing a PhD is difficult, and I’ve been fortunate to receive support in both

academic and personal aspects, giving me the strength to finish the journey.
First and foremost, I would like to express my gratitude to my PhD advisor,

Yiming Yang, who has taught me the art of critical thinking and the skill of academic
writing. She stresses the importance of advocating for what we genuinely believe is
significant, rather than merely what is currently trending in the field. This thesis
would not be possible without her guidance and support.

I would also like to extend my appreciation to my thesis committee members–
Chenguang Zhu, Chenyan Xiong, and Emma Strubell–for their valuable feedback. I
am particularly grateful to Chenguang, who was also my internship mentor at Mi-
crosoft. He showed me what qualities make a good team manager and how to lead a
team of research scientists to achieve significant results in the industry.

I want to thank my group members and collaborators: Yuexin Wu, Zihang Dai,
Ruochen Xu, Wei-Cheng Chang, Guokun Lai, Jingzhou Liu, Ruohong Zhang, Zhiqing
Sun, Aman Madaan, Yuwei Wu, Shanda Li, Shengyu Feng, Zhengbao Jiang, Yuwei
Fang, Wenhao Yu, Shuohang Wang, Yichong Xu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu, William Wang, Zhiguo Wang, Xi-
ang Ren, and many others not listed here. Working with you all has been a truly
enjoyable experience.

My life in Pittsburgh has been greatly enriched thanks to my friends. In particu-
lar, Jacob Arnold and Kelly Arnold stand out as my best friends in the US, and the
friends I’ve spent the most time with during my PhD. I feel fortunate to have found
such compatible and supportive friends in a foreign country. Special mention must
also go to Wei Dong and Chunyu Shen. Our get-togethers are consistently filled
with laughter and joy. Their delicious cooking is one of the things that I’ll truly
miss. In addition, I want to thank my little furry friend, Plus. Every time I see her,
any negative moods fade away, leaving me filled with happiness.

I’d like to express my deepest gratitude to my parents for teaching me the most
essential lesson in life, something even the most advanced machines fail to under-
stand: the concept of love. This thesis is dedicated to my grandfather. His guidance
and care for me are the memories that I will cherish forever. I wish he would be
proud of what I’ve accomplished.

Last but not least, special thanks to my wife, Jessica Lee. For more than five
years, she has been by my side, supporting me through many important moments in
my life. I’m fortunate to have her in the past, grateful to be with her in the present,
and I look forward to sharing life with her in the future.

viii

Contents

1 Introduction 1
1.1 Thesis Overview . 2

1.1.1 KG Acquisition Through Text . 2
1.1.2 Answering Text Questions with KGs . 3

1.2 Preliminary . 4
1.3 Related Publications . 5

I KG Acquisition Through Text 7

2 Joint Pre-training of Knowledge Graph Embedding and Language Modeling 9
2.1 Introduction . 9
2.2 Method . 11

2.2.1 Definition . 11
2.2.2 Knowledge Module . 12
2.2.3 Language Module . 13
2.2.4 Solving the Cyclic Dependency . 13
2.2.5 Entity Context Embedding Memory . 14
2.2.6 Pre-training . 15
2.2.7 Fine-tuning . 16

2.3 Experiment . 16
2.3.1 Basic Settings . 16
2.3.2 Downstream Tasks . 17
2.3.3 Computation Analysis . 19

2.4 Summary . 19

3 Retrieval-Enhanced Generative Model for KG Completion 21
3.1 Introduction . 21
3.2 Preliminary . 22
3.3 Method . 23

3.3.1 KG to Text Passages . 23
3.3.2 Retrieval . 23
3.3.3 Generation . 24
3.3.4 Training Process . 24

ix

3.4 Experiment . 25
3.4.1 Basic Setting . 25
3.4.2 Main Results . 25
3.4.3 Ablation Study . 26

3.5 Summary . 28

II Answering Text Question with KGs 31

4 Joint Generation of Answers and Logical Queries 33
4.1 Introduction . 33
4.2 Method . 34

4.2.1 KG Linearization . 34
4.2.2 Retrieval . 36
4.2.3 Reading . 36
4.2.4 Joint Decoding Answers and Logical Forms 37

4.3 Experiment . 38
4.3.1 Main Result . 39
4.3.2 Ablation Study . 40
4.3.3 Error Analysis . 43

4.4 Summary . 45

5 KG-Enhanced Passage Reranking for Answer Generation 47
5.1 Introduction . 47
5.2 Method . 48

5.2.1 Construct Passage Graph using KG . 50
5.2.2 Passage Retrieving & Stage-1 Reranking 50
5.2.3 Joint Stage-2 Reranking and Answer Generation 51
5.2.4 Improving Efficiency via Intermediate Representation in

Stage-2 Reranking . 52
5.2.5 Analysis on Computational Complexity 53

5.3 Experiment . 54
5.3.1 Implementation Details . 54
5.3.2 Baseline Methods . 55
5.3.3 Preliminary Analysis . 55
5.3.4 Main Results . 55
5.3.5 Ablation Study . 58
5.3.6 FLOPs Computation . 60

5.4 Summary . 61

6 Benchmarking the Impacts of KG Completion on Question Answering 63
6.1 Introduction . 63
6.2 Benchmark Construction . 64
6.3 Methods and Evaluation Metrics . 66

x

6.3.1 For Question Answering . 66
6.3.2 For KG Completion . 66

6.4 Experiments . 67
6.5 Summary . 70

7 Concluding Remarks and Future Work 73

Bibliography 75

xi

xii

List of Figures

2.1 A simple illustration on the novelty of our proposed model JAKET: (1) The lan-
guage module and knowledge module mutually assist each other; (2) JAKET can
adapt to unseen knowledge graphs during fine-tuning. 10

2.2 A demonstration for the structure of JAKET, where the language module is on the
left side while the knowledge module is on the right side. Symbol i⃝ indicates the
steps to compute context representations. “E:”, “R:” and “C:” stand for Entities,
Relations and Categories in KG respectively. Entity mentions in text are marked
red and bold such as Sun. 11

3.1 Illustration of the proposed framework ReSKGC. Given an incomplete triplet
with head entity ID and relation ID, we first verbalize it to a text sequence us-
ing their name labels (Q626490 → Viva La Vida, P175 → Performer), then a
retriever is used to retrieve relevant information from the KG, followed by the
application of a seq2seq model to generate the name label of the missing entity,
which is mapped back into an entity ID (Coldplay→ Q45188). 22

3.2 The performance of ReSKGC (base) over the validation sets based on different
numbers of retrieval passages and sampled training queries. 27

3.3 The performance of ReSKGC (base) on the Wikidata5M test set triplets, cate-
gorized according to their relation frequencies. n represents the number of test
triplets within that particular range of relation frequencies. 28

4.1 Model framework of DECAF. We use text-based retrieval instead of entity link-
ing to select question-related information from the KG. Then, we add differ-
ent prefixes into the reader to generate logical forms and direct answers respec-
tively. The logical-form-executed answers and directly-generated answers are
combined to obtain the final output. 34

4.2 KG linearization. We show examples of how we linearize triplets (two entities
and one relation) and hyper-triplets (multiple entities and relations with a central
CVT node). 35

4.3 DECAF (FiD-large) performance based on different number of retrieval passages. 43

4.4 Ablation study on training data size and generation beam size over GrailQA (dev)
dataset. 43

xiii

5.1 Overall Model Framework. Pi indicates the node of the passage originally ranked
the i-th by the DPR retriever, with the article title below it. The left part shows
passage retrieval by DPR, passage graph construction based on KG (Section
5.2.1) and stage-1 reranking (Section 5.2.2). The right part shows joint stage-2
reranking and answer generation in the reading module (Section 5.2.3 and 5.2.4). 49

5.2 Preliminary Analysis on the retrieved passages by DPR. 56
5.3 Passage ranking results over NQ test set of DPR retriever and our proposed two-

stage rerankings over base model. 59

6.1 We compare the performance between incomplete and completed KGs by ex-
amining their question-answering results. Dashed arrows in the completed KG
denote new triplets added by KGC. 64

6.2 QA performance under different completed KGs. “QA only” means using the
original incomplete KG for QA. “KGC + QA” means using the KGC-completed
KG. KGC* means only keeping the correct triplets while discarding all the in-
correct ones. 69

6.3 Performance variation with different score threshold. Each plot depicts the per-
formance trends for one KGC method at 50% KG incompleteness level. The
curves represent changes in KGC F1 scores on the validation split and QA w/
DecAF F1 scores on the test split as the score threshold varies. 71

xiv

List of Tables

2.1 Accuracy results (mean across 5 different runs) on the dev set of FewRel 1.0.
All the models are equipped with the same state-of-the-art few-shot framework
PAIR [29]. 18

2.2 Accuracy results (mean across 5 different runs) on the entity classification task
over an unseen Wikidata knowledge graph. RoB+G+M is the abbreviation for
the baseline model RoBERTa+GNN+M. 18

3.1 Dataset Statistics . 25
3.2 KG completion results on Wikidata5M. The best result in each column is marked

in bold. The second best is marked in ∗. † results are from the best pre-trained
models made available by Graphvite [131]. †† results are from [55]. Other base-
line results are from the corresponding papers. 26

3.3 KG completion results on WikiKG90Mv2 (validation set). The best result is
marked in bold. The second best is marked in ∗. All the baseline results are
taken from the official leaderboard of [43] except that † results are from [86]. . . 27

4.1 Results on the test splits of 3 benchmark datasets: WebQSP, CWQ, and Free-
baseQA. The two blocks of baselines are direct-answer-prediction and semantic
parsing based methods respectively. We run 5 independent experiments for FiD-
large based DECAF and report mean and standard deviation. ⋆ means that we
replace the original reader T5-base with T5-large and rerun experiments to have
a fair comparison with our method. 38

4.2 F1 scores on the test split of GrailQA. The numbers in the parentheses are F1
scores on the dev split. ⋆ means that we replace the original reader T5-base with
T5-large and rerun experiments. 39

4.3 F1 scores on GrailQA and WebQSP and Hits@1 scores on CWQ using DECAF
(FiD-large) based on different values of λ, which is the weight of LF-executed
answers in the answer combination function. S(k) is the score function of answer
rank k and B is the generation beam size. 40

4.4 We study the performance of our model when only using generated answers (An-
swer Only) or executed answers by logical forms (LF Only). O, I, C, Z means
overall, i.i.d., compositional and zero-shot. DECAFsep means using a separate
reader for answer generation and logical form generation respectively instead
of a joint reader. We also show the percentage of questions where none of the
generated LFs are executable. 41

xv

4.5 Retrieval results (answer name match). H@100 and R@100 stand for the answer
hits rate and recall rate of 100 passages, respectively. 42

4.6 Case-based error analysis over GrailQA (dev) dataset, where Gen is the abbre-
viation for Generated. We show 3 cases where only generated answer is wrong,
only generated LF is wrong, and both of them are wrong. 44

5.1 Exact match score of different models over the test sets of NQ and TriviaQA
datasets. ⋆ means that additional knowledge source Wikipedia-Tables is used in
this method. 57

5.2 Inference #FLOPs, Latency (second) and Exact match score of FiD (base) and
KG-FiD (base). N1 is the number of passages into the reader and L1 is the
number of intermediate layers used for stage-2 reranking as introduced in Section
5.2.4. The details of flop computation is introduced in Appendix 5.3.6. 57

5.3 Inference #FLOPs, Latency (second) and Exact match score of FiD (large) and
KG-FiD (large). N1 is the number of passages into the reader and L1 is the
number of intermediate layers used for stage-2 reranking as introduced in Section
5.2.4. The details of flop computation is introduced in Appendix 5.3.6. 58

5.4 Ablation study of our graph-based reranking method in two stages. EM scores
are reported over NQ and Trivia datasets with both base and large model version. 58

5.5 Passage Retrieval Results on NQ dev data of our model under different GNN
types and number of layers. 59

5.6 EM scores on NQ dev data of our model under different choices of filtered pas-
sage numbers and weights of reranking loss. 59

5.7 #GFLOPs of FiD (base) and KG-FiD (base) over different stages in the model. . 60
5.8 #GFLOPs of FiD (large) and KG-FiD (large) over different stages in the model. . 61

6.1 Data Statistics of the QA dataset. 65
6.2 Data Statistics of the KGC dataset. 65
6.3 Experiment results on KG completion and question answering of our benchmark

CompleQA. Results are averaged across 3 independent runs with different ran-
dom seeds. “QA w/ X” signifies the QA performance using model X. The top
performance in each column of each section is highlighted in bold. For QA
performance, we provide a percentage change against scenarios where no KG
completion was used, which is color-coded: green for positive changes and red
for negative ones. 67

6.4 Spearman’s rank correlation coefficient between KGC metrics (MRR and F1)
and QA metrics (F1) with two models. QAD denoted the performance of DecAF
model while QAP means the Pangu model. 68

xvi

Chapter 1

Introduction

Objects in the real world don’t exist in isolation; they share semantic connections with one
another. For example, a medicine can be related to a disease as its treatment, and a company can
be linked to a video game as its developer. Knowledge Graphs (KGs) capture these connections,
representing them as graph structures. In KGs, the objects are referred to as entities (nodes),
while the connections between them are known as relations (edges). The fundamental unit within
a KG is called a triplet, comprised of three elements: the head entity, relation, and tail entity,
such as (Elden Ring, developed by, FromSoftware), which conveys that the video game Elden
Ring is developed by the game company FromSoftware. The graph structures of KGs allow
them to illustrate various connections between real-world objects and facilitate complex queries
and analyses. In addition, KGs focus on capturing essential connections over important objects
and eliminating incorrect or irrelevant details. Given these benefits, KGs have been applied to
various real-world scenarios such as question answering [118], information retrieval [64], and
recommender systems [104], and they are implemented in different domains including finance
[26], marketing [27], medicine [82], and more.

The significance of KGs has drawn widespread interest within the machine learning field.
Many studies predominantly concentrate on the structure of KGs, while representing entities or
relations as mere indices, thereby overlooking their textual information. For example, the entity
Elden Ring is just represented as a random unique index like 1203 with no semantic meaning,
ignoring its textual name “Elden Ring” and description “Elden Ring is a 2022 action role-playing
game developed by FromSoftware...”. This hinders both the acquisition and application of KGs.

To illustrate, consider the process of extracting triplets from text statements. When encoun-
tering a statement such as “FromSoftware received wide recognition for developing the video
game Elden Ring”, it’s much easier to add or verify the text-enriched triplet (“Elden Ring”, “de-
veloped by”, “FromSoftware”), as opposed to a purely index-based triplet like (1203, 47, 1580).
Similarly, when applying KGs to assist with a user’s text query, such as “Can I play Elden Ring
on PS5?”, having the text-enriched triplet (“Elden Ring”, “platform”, “PlayStation 5”) eases the
generation of an accurate answer. Without such textual information, aligning the text sentence or
user query with mere entity and relation indices can become a complex obstacle. These examples
highlight the essential role of textual information in KGs. It not only simplifies the acquisition
of relational data but also enhances the functionality of KGs in real-world applications.

To effectively leverage such textual information, sematic-level understanding is necessary.

1

Consider again the query “Can I play Elden Ring on PS5?” To accurately respond to such a
query, the model must recognize that “PS5” refers to the entity PlayStation 5, and the phrase
”play...on...” corresponds to the relation platform. Then the model can locate the corresponding
triplet (Elden Ring, platform, PlayStation 5) and provide the correct answer. This interpretation
goes beyond mere word recognition; it demands an understanding of the underlying semantics
of textual information. This kind of understanding is especially critical in real-world situations,
where KGs often have formal and limited naming conventions, while user queries or statements
can be informal and diverse.

1.1 Thesis Overview
This thesis aims to develop novel models for effectively utilizing textual semantics in both KG
acquisition and application. It builds on the foundation laid by existing Pre-trained Language
Models (PLMs) [9, 22, 77], which have shown dominance in textual semantics modeling. PLMs
are pre-trained on large-scale corpora by predicting subsequent or masked words to learn repre-
sentations of language. Leveraging deep learning architectures, such as transformer [97]-based
models, they serve as powerful feature extractors and can easily adapt to various downstream
tasks. However, since PLMs are designed for unstructured text sequences, their application to
structured KGs presents a significant challenge. To address this challenge, our thesis is carried
out through two important parts of concentration: 1) KG acquisition through text, which focuses
on building more accurate and comprehensive KGs; 2) Answering text questions with KGs, tar-
geting the application of KGs in resolving user queries.

1.1.1 KG Acquisition Through Text
The objective of KG acquisition is to enhance the quality of KGs through multiple tasks such as
relation extraction and entity classification. The former focuses on adding or validating triplets
based on textual evidence, whereas the latter aims to categorize entities into pre-defined labels.
One effective technique for these tasks is to learn the vector representations of text sentences
or KG entities. To achieve a synergistic improvement of both text and KG representations, we
developed JAKET. It is a joint pre-training framework that features two modules designed to
learn their specific representations while also mutually enhancing each other. On the one hand,
the KG module creates structural embeddings for entities found in text, thereby enriching the
text-based embeddings. On the other hand, the text module generates textual embeddings for
KG entities and relations by using their names and descriptions. This dual approach enables a
comprehensive modeling of structural and textual aspects within KGs. Our experiments reveal
that JAKET offers superior performance in KG acquisition tasks like relation extraction and
entity classification (Chapter 2).

Although effective, learning representation for all the entities can be memory-consuming,
particularly when scaling to large KGs with millions of entities. This becomes a challenge in
tasks like KG completion, which involves predicting missing entities in incomplete triplets. For
scalability, recent research has framed KG completion as a Sequence-to-Sequence (Seq2Seq)
problem, converting both the incomplete triplet and the missing entity into text sequences. While

2

various PLMs can assist in this transformation, inference with these methods relies solely on
the model parameters for implicit reasoning while neglecting the use of KG itself. This lim-
its their performance since the models usually lack the capacity to memorize a vast number of
triplets. To tackle this issue, we introduce ResKGC, a Retrieval-enhanced Seq2Seq KGC model,
which retrieves semantically relevant triplets from the KG and uses them as evidence to guide
output generation via explicit reasoning. For example, given the incomplete triplet (Hidetaka
Miyazaki, work at, ?), ResKGC could retrieve existing triplets like (Elden Ring, director, Hide-
taka Miyazaki) and (Elden Ring, developer, FromSoftware) to assist in predicting the missing en-
tity FromSoftware. ResKGC has demonstrated state-of-the-art performance on large-scale KGC
benchmark datasets, while maintaining a lightweight parameter configuration (Chapter 3).

1.1.2 Answering Text Questions with KGs
In this part, we turn our attention to how KGs can be applied in question answering. Firstly,
we focus on scenarios where the answers are restricted to the information available in KGs,
commonly known as KGQA. Given a question such as “where is the company that won GOTY
2022 located?”, previous methods either parse it into a logical query (JOIN headquarter
(JOIN developer (JOIN (R award) Q110028874)) that can be executed over KGs
to obtain the final answers or predict the answer “Tokyo” directly without generating the inter-
mediate queries. Empirical results show that the former often produces more accurate answers,
but it suffers from non-execution issues due to potential syntactic and semantic errors in the gen-
erated logical queries. We propose a novel framework DecAF that jointly generates both logical
queries and direct answers, which are produced by a reading comprehension module, and then
combines them to get the final answers. In this case, if the logical queries are not executable, the
direct answers can still serve as output (Chapter 4).

Then we go beyond to the task of Open-Domain Question Answering (ODQA), where the
answers mainly locate in text corpora, instead of KGs. Current ODQA models typically include
a retrieval module and a reading module: for a given question such as “Can I upgrade weapons
in souls series?”, the retriever selects potentially relevant text passages such as “In Dark Souls
series, players can increase the levels of weapons by ...” from open-source documents, and the
reader produces an answer “Yes” based on the retrieved passages. The Fusion-in-Decoder (FiD)
framework [46] is a representative example, built on top of PLM-based retriever and reader,
achieving state-of-the-art performance. Despite its effectiveness, the framework processes each
passage independently, thereby overlooking the interrelationship among passages. In this study,
we further improve the FiD approach by introducing a KG-enhanced version, namely KG-FiD.
Our new model uses a knowledge graph to establish the structural relationships among the re-
trieved passages. For example, given the triplet (Dark Souls Series, contain, Weapon), the pas-
sages with title “Dark Souls Series” will be connected to the passages with title “Weapon”. Such
structural relationships are leveraged within both the retriever and reader to re-rank the passages
and select only the top-ranking ones for subsequent processing (Chapter 5).

Finally, we aim to bridge KG acquisition and application by answering an essential but un-
explored question: How much success in KG completion would translate into performance en-
hancement in KGQA? We introduce a novel benchmark, namely CompleQA, to comprehen-
sively answer this question. This benchmark includes a knowledge graph with 3 million triplets

3

across 5 distinct domains, coupled with over 5000 question-answering pairs and a KGC dataset
that is well-aligned with these questions. Our evaluation of four well-known KGC methods
in combination with two state-of-the-art KGQA systems validates the common belief that KG
completion can improve question-answering performance in most cases. On the other hand, sur-
prisingly we also find that the best-performing KGC method(s) does not necessarily lead to the
best question-answering results, owing to the complexity of PLM-based KGQA methods. Our
findings highlight the significance of jointly studying KG acquisition and application under the
context of PLMs, rather than investigating them in isolation (Chapter 6).

1.2 Preliminary
In this section, we introduce some mathematical notations and definitions related to KGs for
easier interpretation of subsequent sections.

A knowledge graph can be represented by the notation KG = (E ,R, T), where E is the set
of entities, R is the set of relationships among entities, and T is the set of entity-relation-entity
triplets which are semantically valid. A triplet can be denoted as (eh, r, et), including head entity
eh ∈ E , relation r ∈ R, and tail entity et ∈ E . Nv = {(r, u)|(v, r, u) ∈ T } ∪ {(u, r)|(u, r, v) ∈
T } represents the set of neighboring relations and entities of an entity v.

Representation learning for KGs, also known as knowledge graph embedding, aims to map
the entities and relations into a continuous low-dimensional space while preserving the semantics
inherent in the data, which is symbolized below:

fembedding : E ∪ R → Rde ∪ Rdr (1.1)

where de and dr represent the dimensionality of the entity and relation embedding spaces, re-
spectively. These learned representations can then be used in various downstream tasks covering
both KG acquisition and application.

Knowledge Graph Completion (KGC), is the task of predicting missing triplets in KGs, and
can be defined as the mapping from the initially incomplete KG to the extended (completed) KG:

fKGC : KG = {E ,R, T } → KG ′ = {E ,R, T ′} (1.2)

where T ′ = T ∪ Tnew constitutes the enriched triplet set containing original triplets and newly
predicted triplets. To facilitate easier evaluation, many research studies focus on a surrogate task
of KGC: missing entity prediction. In this task, given an incomplete triplet either in the form of
(eh, r, ?) or (?, r, et), the model is required to predict the missing entity et or eh.

The application of KGs to Question Answering (QA) targets the interaction between KGs
and natural language questions. This task, also known as KGQA, can be represented as follows:

fQA : KG ∩Q→ A (1.3)

where Q represents the question, expressed by a text sequence, such as “Which game company
developed the Dark Souls?”, and A signifies the answers, which can be a text string like “From-
Software” or a set of text strings. In a more general setting, the input can be (KG∪D)∩Q, where
D refers to other data sources where answers may locate besides KG, such as text documents.

4

1.3 Related Publications
The KG-text joint pre-training framework in Chapter 2 was published at AAAI 2022 [123].
The retrieval-enhanced seq2seq KGC method in Chapter 3 was accepted to SIGIR 2023. The
joint answer and logical form generation framework for KGQA in Chapter 4 was published at
ICLR 2023 [124]. The KG-enhanced open-domain question answering method in Chapter 5 was
published at ACL 2022 [122]. Finally, the benchmark study on the impact of KGC on KGQA in
Chapter 6 is currently under review at a top conference.

The thesis also led to several other related works not listed as individual chapters, includ-
ing a GNN framework that jointly learns edge prediction and node classification published at
ECML-PKDD 2020 [121], the introduction of a new task of relation entailment prediction pub-
lished at AKBC 2020 [48], a language model pre-training framework enhanced with dictionary
information published at ACL 2022 [125], and an extreme multi-label text classification method
leveraging dense neural retrieval and pseudo label generation published at EACL 2023 [127].

5

6

Part I

KG Acquisition Through Text

7

Chapter 2

Joint Pre-training of Knowledge Graph
Embedding and Language Modeling

2.1 Introduction

Pre-training has demonstrated significant effectiveness in both text and KGs, although they excel
in different aspects. In the context of text, pre-trained language models (PLMs) like BERT [22],
T5 [77], and GPTs [9, 75, 76] employ transformer [97]-based architectures to learn token repre-
sentations. Specifically, they learn by predicting masked or subsequent tokens and, as a result,
generate high-quality, context-aware representations. Such models have achieved outstanding
performance in a range of NLP tasks. However, a key limitation is their struggle to encode world
knowledge about entities and relations effectively.

In the realm of KGs, pre-training focuses on learning both entity and relation representa-
tions. This is generally achieved through masked entity or relation prediction tasks. Methods
for this include both non-neural network ones like TransE [6] and RotatE [91], as well as neu-
ral network-based ones such as ConvE [21] and RGCN [87]. These models excel at capturing
the structural information present in KGs, but they often fall short when it comes to integrating
textual information.

Recent efforts have aimed to bridge the gap between text and KG pre-training. These ap-
proaches generally fall into two categories. The first category enhances text-based pre-training
by incorporating knowledge from KGs [28, 71, 100, 129]. The second category utilizes PLMs
to improve the pre-training on KGs [107, 117]. However, these efforts are unidirectional in their
enhancement strategy. They tend to prioritize either text or KGs, but not both, leading to a lack
of mutual improvement between the two domains.

Therefore, we propose JAKET, a Joint pre-trAining framework for KnowledgE graph and
Text. Our framework contains a knowledge module and a language module, which mutually
assist each other by providing required information to achieve more effective semantic analysis.
The knowledge module is based on a graph attention network [98] to provide structure-aware
entity embeddings for language modeling. And the language module produces contextual repre-
sentations as initial embeddings for KG entities and relations given their descriptive text. Thus,
in both modules, content understanding is based on related knowledge and rich context. On one

9

Language
Module

Knowledge
Information

Context
Information

Pretraining: Fine-tuning:

KG A

Knowledge
Module

…
KG B

KG A

Figure 2.1: A simple illustration on the novelty of our proposed model JAKET: (1) The lan-
guage module and knowledge module mutually assist each other; (2) JAKET can adapt to unseen
knowledge graphs during fine-tuning.

hand, the joint pre-training effectively projects entities/relations and text into a shared semantic
latent space, which eases the semantic matching between them. On the other hand, as the knowl-
edge module produces representations from descriptive text, it solves the over-parameterization
issue since entity embeddings are no longer part of the model’s parameters.

In order to solve the cyclic dependency between the two modules, we propose a novel two-
step language module LM1 and LM2, respectively. LM1 provides embeddings for both LM2 and
KG. The entity embeddings from KG are also fed into LM2, which produces the final represen-
tation. LM1 and LM2 can be easily established as the first several transformer layers and the rest
layers of a pre-trained language model such as BERT and RoBERTa. Furthermore, we design
an entity context embedding memory with periodic update which speeds up the pre-training by
about 15x.

The pre-training tasks are all self-supervised, including entity category classification and
relation prediction for the knowledge module, and masked token prediction and masked entity
prediction for the language module.

A great benefit of our framework is that it can easily adapt to unseen knowledge graphs in the
fine-tuning phase. As the initial embeddings of entities and relations come from their descriptive
text, JAKET is not confined to any fixed KG. With the learned ability to integrate structural
information during pre-training, the framework is extensible to novel knowledge graphs with
previously unseen entities and relations, as illustrated in Figure 2.1.

We conduct empirical studies on KG acquisition tasks, including few-shot relation classi-
fication and entity classification. The results show that JAKET achieves the best performance
compared with strong baseline methods on all the tasks.

10

Masked entity prediction
Earth → E: Earth

Language model 2

Input text

Graph neural network

Entity description text

Masked token prediction
[MASK] → source

Entity category prediction
E: Earth → C: Planet

Relation prediction
(E: Earth, E: Solar System) → R: part_of

Sun is the most important [MASK]
of energy for life on Earth.

The Sun is the star at the
center of the Solar System…

Earth is the third pl-
anet from the Sun…

R: support

categoryR: part_of

E: Sun E: Earth

E: Solar system C: Star

Information fusion

Language
model 1

Knowledge graph

Pre-training tasks Pre-training tasks

Context representation Entity representation

1

2

3
4

Language
model 1

tie

Entity context
embedding memory

Figure 2.2: A demonstration for the structure of JAKET, where the language module is on the left
side while the knowledge module is on the right side. Symbol i⃝ indicates the steps to compute
context representations. “E:”, “R:” and “C:” stand for Entities, Relations and Categories in KG
respectively. Entity mentions in text are marked red and bold such as Sun.

2.2 Method

In this section, we introduce the JAKET framework of joint pre-training knowledge graph and
language understanding. We begin by defining the mathematical notations, and then present our
model architecture with the knowledge module and language module. Finally, we introduce how
to pre-train our model and fine-tune it for downstream tasks. The framework is illustrated in
Figure 2.2.

2.2.1 Definition

We define V = {[MASK], [CLS], [EOS], w1 . . . wV } as a vocabulary of tokens and the contextual
text x = [x1, x2, . . . , xL] as a sequence of tokens where xi ∈ V . In the vocabulary, [MASK] is
the special token for masked language modeling [22] and [CLS], [EOS] are the special tokens
indicating the beginning and end of the sequence. We define F as the dimension of token em-
beddings, which is equal to the dimension of entity/relation embeddings from the KG.

The text x has a list of entity mentions m = [m1, . . . ,mM], where each mention mi =
(emi

, smi
, omi

): emi
is the corresponding entity and smi

, omi
are the start and end index of this

mention in the context. In other words, [xsmi
, . . . , xomi

] is linked with entity emi
1. We assume

the span of mentions are disjoint for a given text sequence.
As entities in the knowledge graph are represented by nodes without context, we use entity

description text to describe the concept and meaning of entities. For each entity ei, its description
text xei describes this entity. The mention of ei in xei is denoted as mei = (ei, s

e
i , o

e
i), similarly

defined as above. For instance, the description text for the entity “sun” can be “[CLS] The Sun

1We do not consider discontinous entity mentions in this work.

11

is the star at the center of the Solar System [EOS]”. Then the mention is mSun = (Sun, 3, 3).
If there are multiple mentions of ei in its description text, we choose the first one. If there’s no
mention of ei in its description text, we set sei = oei = 1. Similarly, we define relation description
text as the text that can describe each relation.

2.2.2 Knowledge Module

The goal of the knowledge module (KM) is to model the knowledge graph to generate knowledge-
based entity representations.

To compute entity node embeddings, we employ the Graph Attention Network (GAT) [98]2,
which uses the self-attention mechanism to specify different weights for different neighboring
nodes. However, the vanilla GAT is designed for homogeneous graphs with single-relation edges.
To leverage the multi-relational information, we adopt the idea of composition operator [96] to
compose entity embeddings and relation embeddings. In detail, in the l-th layer of KM, we
update the embedding E

(l)
v of entity v as follows: First for each relation entity pair (r, u) ∈ Nv,

we combine the embedding of entity u with the embedding of relation r:

M (l−1)
u,r = f(E(l−1)

u , Rr) (2.1)

Note that the relation embedding Rr is shared across different layers. The function f(·, ·) :
RF × RF → RF merges a pair of entity and relation embeddings into one representation. Here,
we set f(x, y) = x+y inspired by TransE [6]. More complicated functions like MLP network can
also be applied. Then the combined embeddings are aggregated by graph attention mechanism:

mk
v = σ

 ∑
(r,u)∈Nv

αk
v,r,uW

kM (l−1)
u,r

 (2.2)

where k is the index of attention head and W k is the model parameter. The attention score αk
v,r,u

is calculated by:

Su,r = aT
[
W kE(l−1)

v ⊕W kM (l−1)
u,r

]
(2.3)

αk
v,r,u =

exp (LeakyReLU (Su,r))∑
(r′,u′)∈Nv

exp (LeakyReLU (Su′,r′))
(2.4)

Finally the embedding of entity v is updated through combining the message representation mk
v

and its embedding in layer (l − 1):

E(l)
v = LayerNorm

(
K⊕
k=1

mk
v + E(l−1)

v

)
(2.5)

2We also tried the vanilla Graph Convolutional Network (GCN) [54] but it performs worse than GAT on the
pre-training tasks.

12

where LayerNorm stands for layer normalization [3].
⊕

means concatenation and K is the
number of attention heads.

The initial entity embeddings E(0) and relation embeddings R are generated from our lan-
guage module, which will be introduced in Section “Solving the Cyclic Dependency”. Then,
the output entity embeddings from the last GAT layer are used as the final entity representations
EKM. Note that the knowledge graph can be very large, making the embedding update over all
the entities not tractable. Thus we follow the minibatch setting [37]: given a set of input entities,
we perform neighborhood sampling to generate their multi-hop neighbor sets and we compute
representations only on the entities and relations that are necessary for the embedding update.

2.2.3 Language Module

The goal of the language module (LM) is to model text data and learn context-aware representa-
tions. The language module can be any model for language understanding, e.g. BERT [22]. In
this work, we use the pre-trained model RoBERTa-base [63] as the language module.

2.2.4 Solving the Cyclic Dependency

In our framework, the knowledge and language modules mutually benefit each other: the lan-
guage module LM outputs context-aware embedding to initialize the embeddings of entities and
relations in the knowledge graph given the description text; the knowledge module (KM) outputs
knowledge-based entity embeddings for the language module.

However, there exists a cyclic dependency which prevents computation and optimization in
this design. To solve this problem, we propose a decomposed language module which includes
two language models: LM1 and LM2. We employ the first 6 layers of RoBERTa as LM1 and the
remaining 6 layers as LM2. The computation proceeds as follows:

1. LM1 operates on the input text x and generates contextual embeddings Z.

2. LM1 generates initial entity and relation embeddings for KM given description text.

3. KM produces its output entity embeddings to be combined with Z and sent into LM2.

4. LM2 produces the final embeddings of x, which includes both contextual and knowledge
information.

In detail, in step 1, suppose the context x is embedded as Xembed. LM1 takes Xembed as input
and outputs hidden representations:

Z = LM1(X
embed) (2.6)

In step 2, suppose xej is the entity description text for entity ej , and the corresponding men-
tion is mej = (ej, s

e
j , o

e
j). LM1 takes the embedding of xej and produces the contextual em-

bedding Zej . Then, the average of embeddings at position sej and oej is used as the initial entity
embedding of ej , i.e.

E
(0)
j = (Z

ej
sej
+ Z

ej
oej
)/2 (2.7)

13

The knowledge graph relation embeddings R are generated in a similar way using its description
text.

In step 3, KM computes the final entity embeddings EKM, which is then combined with the
output Z from LM1. In detail, suppose the mentions in x are m = [m1, . . . ,mM]. Z and EKM are
combined at positions of mentions: for each position index k, if ∃i ∈ {1, 2, . . . ,M} s.t. smi

≤
k ≤ omi

,

Zmerge
k = Zk + EKM

emi
(2.8)

where EKM
emi

is the output embedding of entity emi
from KM. For other positions which do not

have corresponding mentions, we keep the original embeddings: Zmerge
k = Zk. Then we apply

layer normalization [3] on Zmerge:

Z ′ = LayerNorm(Zmerge) (2.9)

Finally, Z ′ is fed into LM2.
In step 4, LM2 operates on the input Z ′ and obtains the final embeddings:

ZLM = LM2(Z
′) (2.10)

The four steps are marked by the symbol X⃝ in Figure 2.2 for better illustration.

2.2.5 Entity Context Embedding Memory
Many knowledge graphs contain a large number of entities. Thus, even for one sentence, the
number of entities plus their multi-hop neighbors can grow exponentially with the number of
layers in the graph neural network. As a result, it’s very time-consuming for the language module
to compute context embeddings based on the description text of all involved entities in a batch
on the fly.

To solve this problem, we construct an entity context embedding memory, Econtext, to store
the initial embeddings of all KG entities. Firstly, the language module pre-computes the con-
text embeddings for all entities and places them into the memory. The knowledge module
only needs to retrieve required embeddings from the memory instead of computing them, i.e.
E(0) ← Econtext.

However, as embeddings in the memory are computed from the “old” (initial) language mod-
ule while the token embeddings during training are computed from the updated language module,
there will be an undesired discrepancy. Thus, we propose to update the whole embedding mem-
ory Econtext with the current language module every T (i) steps, where i is the number of times
that the memory has been updated (starting from 0). T (i) is set as follows:

T (i) = min(Iinit ∗ a⌊i/r⌋, Imax) (2.11)

where Iinit is the initial number of steps before the first update and a is the increasing ratio of
updating intervals. r is the number of repeated times of the current updating interval. Imax is the
maximum number of steps between updates. ⌊·⌋ means the operation of rounding down. In our

14

experiments, we set Iinit = 10, a = 2, r = 3, Imax = 500, and the corresponding sequence of T
is [10, 10, 10, 20, 20, 20, 40, 40, 40, . . . , 500, 500]. Note that we choose a > 1 because the model
parameters usually change less as training proceeds.

Moreover, we propose a momentum update to make Econtext evolve more smoothly. Suppose
the newly calculated embedding memory by LM is Econtext

new , then the updating rule is:

Econtext ← mEcontext + (1−m)Econtext
new (2.12)

where m ∈ [0, 1) is a momentum coefficient which is set as 0.8 in experiment.
This memory design speeds up our model by about 15x during pre-training while keeping

the effectiveness of entity context embeddings. For consideration of efficiency, we use relation
embeddings only during fine-tuning.

2.2.6 Pre-training

During pre-training, both the knowledge module and language module are optimized based on
several self-supervised learning tasks listed below. The examples of all the training tasks are
shown in Figure 2.2.

At each pre-training step, we first sample a batch of root entities and perform random-walk
sampling on each root entity. The sampled entities are fed into KM for the following two tasks.

Entity category prediction. The knowledge module is trained to predict the category label
of entities based on the output entity embeddings EKM. This task has been demonstrated to
be effective in pre-training graph neural networks [42]. The loss function is cross-entropy for
multi-class classification, denoted as Lc.

Relation prediction. KM is also trained to predict the relation between a given entity pair
based on EKM. The loss function is cross-entropy for multi-class classification, denoted as Lr.

Then, we uniformly sample a batch of text sequences and their entities for the following two
tasks.

Masked token prediction. Similar to BERT, We randomly mask tokens in the sequence and
predict the original tokens based on the output ZLM of the language module. We denote the loss
as Lt.

Masked entity prediction. The language module is also trained to predict the corresponding
entity of a given mention. For the input text, we randomly remove 15% of the mentions m. Then
for each removed mention mr = (er, sr, or), the model predicts the masked entity er based on
the mention’s embedding. In detail, it predicts the entity whose embedding in Econtext is closest
to q = g((ZLM

sr + ZLM
or)/2), where g(x) = GELU(xW1)W2 is a transformation function. GELU

is an activation function proposed by [40]. Since the number of entities can be very large, we
use er’s neighbours and other randomly sampled entities as negative samples. The loss function
Le is cross entropy based on the inner product between q and each candidate entity’s embedding.
Figure 2.2 shows an concrete example, where the mention “Earth” is not marked in the input text
since it’s masked and the task is to link the mention “Earth” to entity “Q2: Earth”.

15

2.2.7 Fine-tuning

During fine-tuning, our model supports using either the knowledge graph employed during pre-
training or a novel custom knowledge graph with previously unseen entities3. If a custom KG is
used, the entity context embedding memory is recomputed by the pre-trained language module
using the new entity description text.

Our model also supports KG-only tasks such as entity classification or link prediction where
the input data are entity description text and KG without context corpus. In this case, the Lan-
guage Model 1 takes entity description text as input and output entity embeddings into the knowl-
edge module (i.e. graph neural network) for downstream tasks. The Language Model 2 will not
be used.

In this work, we do not update the entity context memory during fine-tuning for consideration
of efficiency. We also compute the relation context embedding memory using the pre-trained
language model.

2.3 Experiment

2.3.1 Basic Settings

Data for Pre-training. We use the English Wikipedia as the text corpus, Wikidata [103] as the
knowledge graph, and SLING [79] to identify entity mentions. For each entity, we use the first 64
consecutive tokens of its Wikipedia page as its description text and we filter out entities without
a corresponding Wikipedia page. We also remove entities that have fewer than 5 neighbors in
the Wikidata KG and fewer than 5 mentions in the Wikipedia corpus. The final knowledge
graph contains 3,657,658 entities, 799 relations and 20,113,978 triplets. We use the instance of
relation to find the category of each entity. In total, 3,039,909 entities have category labels of
19,901 types. The text corpus contains about 4 billion tokens.

Implementation Details. We initialize the language module with the pre-trained RoBERTa-
base [63] model. The knowledge module is initialized randomly. Our implementation is based
on the HuggingFace framework [111] and DGL [106]. For the knowledge module, we grid-
search the number of layers within [1, 2] (we do not consider more than 2 layers due to model
efficiency), the number of attention heads in GAT in [1, 4, 8, 12]. We choose the best performing
hyper-parameters based on the validation loss of pre-training tasks after training for 1 epoch: the
number of layers is 2 and the number of attention heads is 8. The number of sampled neighbors
in each hop is 10. The dimension of hidden states in the knowledge module is 768, the same as
the language module. The number of parameters of the whole model is 111M, which is almost
the same as RoBERTa-base.

During pre-training, the batch size and length of text sequences are 1024 and 512 respectively.
The batch size of KG entities is 16,384. The number of training epochs is 8. JAKET is optimized
by AdamW [65] using the following parameters: β1 = 0.9, β2 = 0.999, ϵ = 1e-8, and weight
decay of 0.01. The learning rate of the language module is warmed up over the first 3,000 steps

3We assume the custom domain comes with NER and entity linking tools which can annotate entity mentions in
text. The training of these systems is beyond the scope of this work.

16

to a peak value of 1e-5, and then linearly decayed. The learning rate of our knowledge module
starts from 1e-4 and then linearly decayed. The computing infrastructure we use is the NVIDIA
V100 GPU in all the experiments.

Baselines. We compare our proposed model JAKET with the pre-trained RoBERTa-base [63]
and four knowledge-enhanced pre-trained model ERNIE (THU) [129], KnowBERT [71], KE-
PLER [107] and CoLAKE [90] using their officially released models which are also pre-trained
on English Wikipedia corpus and Wikidata KG. We also test two variants of our model: RoBERTa
+GNN and RoBERTa+GNN+M. The two models have the same model structure as JAKET, but
they are not pre-trained on our data. Moreover, the entity and relation context embedding memo-
ries of RoBERTa+GNN are randomly generated while the memories of RoBERTa+GNN+M are
computed by RoBERTa.

2.3.2 Downstream Tasks

Few-shot Relation Classification

Relation classification requires the model to predict the relation between two entities in text.
Few-shot relation classification takes the N -way K-shot setting. For each query instance, N
relations with K supporting examples for each relation are given. The model is required to
classify the instance into one of the N relations. In this paper, we evaluate our model on a widely
used benchmark dataset FewRel 1.0 [38].

We use the pre-trained knowledge graph for FewRel as it comes with entity mentions from
Wikidata knowledge graph. To predict the relation label, we build a sequence classification layer
on top of the output of LM. More specifically, we use the PAIR framework proposed by [29],
which pairs each query instance with all the supporting instances, concatenate each pair as one
sequence, and send the concatenated sequence to our sequence classification model to get the
score of the two instances expressing the same relation. We do not use relation embeddings in
this task to avoid information leakage.

As shown in Table 2.1, in all three few-shot settings, our model consistently outperforms
both ERNIE and KnowBERT, and performs on par with KEPLER. We didn’t compare with
CoLAKE since its original paper tests on this dataset in a different setting. Comparing the results
between RoBERTa and RoBERTa+GNN, we see that adding GNN with randomly generated
entity features does not improve the performance. The difference between RoBERTa+GNN+M
and RoBERTa+GNN demonstrates the importance of generating context embedding memory by
the language module, while JAKET can further improve the performance by pre-training.

Entity Classification

To further evaluate our model’s capability to reason over unseen knowledge graphs, we design
an entity classification task. Here, the model is given a portion of the Wikidata knowledge
graph unseen during pre-training, denoted as KG ′. It needs to predict the category labels of
these unseen entities. Our entity classification dataset contains a KG with 23,046 entities and
316 relations. The number of triplets is 38,060. Among all the entities, 16,529 of them have
category labels and the total number of distinct labels is 1,291. We conduct experiments under

17

Table 2.1: Accuracy results (mean across 5 different runs) on the dev set of FewRel 1.0. All the
models are equipped with the same state-of-the-art few-shot framework PAIR [29].

Model 5-way 1-shot 5-way 5-shot 10-way 1-shot
BERT [22] 85.7 89.5 76.8
ERNIE [129] 86.9 91.4 78.6
KnowBERT [71] 86.2 90.3 77.0
KEPLER [71] 87.3 90.5 79.4
RoBERTa [63] 86.4 90.3 77.3
RoBERTa+GNN 86.3 - -
RoBERTa+GNN+M 86.9 - -
JAKET 87.4 92.1 78.9

Table 2.2: Accuracy results (mean across 5 different runs) on the entity classification task over
an unseen Wikidata knowledge graph. RoB+G+M is the abbreviation for the baseline model
RoBERTa+GNN+M.

Model
Training Size

100% 20% 5%
GNN 48.2 - -
RoBERTa 33.4 - -
RoB+G+M 79.1 66.7 53.5
JAKET 81.6 70.6 58.4

a semi-supervised transductive setting by splitting the entities in KG ′ into train/dev/test splits of
20%, 20% and 60%. To further test the robustness of models to the size of training data, we also
evaluate models when using 20% and 5% of the original training set.

In this task, RoBERTa takes the entity description text as input for label prediction while
neglecting the structure information of KG. JAKET and RoBERTa+GNN+M make predictions
based on the entity representation output from the GNN of the knowledge module. We also
include vanilla GNN as a baseline, which uses the same GAT-based structure as our knowledge
module, but with randomly initialized model parameters and context embedding memory.

As shown in Table 2.2, our model achieves the best performance under all the settings. The
performance of GNN or RoBERTa alone is significantly lower than RoBERTa+GNN+M, which
demonstrates the importance of integrating both context and knowledge information using our
proposed framework. Also, the gap between JAKET and RoBERTa+GNN+M increases when
there’s less training data, showing that the joint pre-training can reduce the model’s dependence
on downstream training data.

18

2.3.3 Computation Analysis
The computation of the KG module is much less than the LM module. For the RoBERTa-base
model, the number of inference computation flops (#flops) over each sequence (length 128) is
over 22 billion [92]. Here, we theoretically compute the number of flops of the KG module as
follows: The sequence length N = 128, and hidden dimension H = 768. The number of entities
in a sequence is usually less than N/5. The number of sampled neighbors per entity r = 10.
And the number of layers of the GNN based KG module L = 2. It follows that the #flops of KG
module is about N/5×rL×2H2 ≈ 3 billion, less than 1/7 of the language module computation.
If we set r = 5, the #flops can be further reduced to about 1/30 of LM computation.

During pre-training, another computation overhead is entity context embedding memory up-
date (Section 3.5): Firstly, the number of entities is about 3 million and the update step inter-
val is about 500. Thus for each step on average the model processes the description text of
3 × 106/500 = 6000 entities. Secondly, the length of description text is 64, much smaller than
the length of input text 512, and we only use LM1 (the first half of LM module) for entity context
embedding generation, which saves half of the computation time compared to using the whole
LM module. Thirdly, the embedding update only requires forward propagation, costing only half
of computation compared to training process which requires both forward and backward prop-
agation. Thus, generating context embedding of 6k entities consumes about the same number
of flops as training 6000 × 64/(512 × 2 × 2) ≈ 200 input texts, much smaller than the batch
size 1024. In short, the entity context embedding memory update only costs 200/1024 ≈ 1/5
additional computation. Note this computation overhead only exists during pre-training, since
entity embedding memory will not be updated during fine-tuning.

2.4 Summary
This chapter presents a novel framework, JAKET, to jointly pre-train models for knowledge
graph and language understanding. Under our framework, the knowledge module and language
module both provide essential information for each other. After pre-training, JAKET can quickly
adapt to unseen knowledge graphs in new domains. Moreover, we design the entity context
embedding memory which speeds up the pre-training by 15x. Experiments show that JAKET
outperforms baseline methods in KG acquisition tasks including few-shot relation classification
and entity classification.

Although effective, JAKET learns vector embeddings for all the entities, leading to high
memory usage when dealing with large KGs. This poses a challenge for tasks such as KG
completion. In the following chapter, we begin with a light-weight KG completion approach that
does not require learning embeddings for all the entities, and propose a novel method to improve
it by retrieving relevant triplets from KGs.

19

20

Chapter 3

Retrieval-Enhanced Generative Model for
KG Completion

3.1 Introduction

Knowledge Graph Completion (KGC), which aims to predict semantically valid but unobserved
triplets based on the observed ones, has been a central focus of research in this field. Most
studies in KGC have been focusing on relatively small knowledge graphs. For example, the two
most common benchmarks namely FB15k-237 [94] and WN18RR [21] contain only 14k and 40k
entities, respectively. On the other hand, large KGs in the real world such as Wikidata [102] and
Freebase [4] contain millions of entities, which present a scalability challenge to many methods.
Traditional KGC methods such as TransE [6] and DistMult [115] have the learn-able embedding
parameters for each entity, which means that the number of parameters increases proportionally
to the number of entities. Some methods [107, 117] tried to avoid this by employing pre-trained
language models (PLM) to embed entities based on their names and/or descriptions. Those
methods, however, still suffer from scalability issues at inference due to the need to traverse all
the entities for prediction. This means that the inference computation of those methods is linear
in the total number of entities.

Recent studies [12, 86] utilize a sequence-to-sequence (seq2seq) generation methodology for
knowledge graph completion, by verbalizing each incomplete triplet as the input text sequence
and then applying Transformer [97]-based models to predict each missing entity as the output
sequence. Those methods are advantageous as the model parameters and inference computation
are independent of the size of the knowledge graph. And furthermore, the training of such models
does not require negative sampling.

Despite the advantages of existing seq2seq KGC methods, they have one major weakness:
That is, their inference only involves implicit reasoning with trained model parameters, neglect-
ing the direct use of the KG itself. In other words, due to the occurrence of catastrophic forgetting
during the training process, the models lack the capacity of memorizing all the triplets in large-
scale KGs and directly utilizing the triplets for inference. This chapter addresses such limitation
by proposing a Retrieval-enhanced Seq2seq KG Completion model, namely ReSKGC. It firstly
converts the triplets in the entire KG into text passages, secondly uses a free-text retrieval mod-

21

(Q626490, P175, ?) Predict tail: Viva La Vida |
Performer

verbalize

Retriever

Encoder-Decoder

Coldplay
map

Q45188

Fix You | followed by | Viva La Vida,
Fix You | Performer | Coldplay, ...

KG

Input Incomplet Triplet

Output Entity

Figure 3.1: Illustration of the proposed framework ReSKGC. Given an incomplete triplet with
head entity ID and relation ID, we first verbalize it to a text sequence using their name labels
(Q626490 → Viva La Vida, P175 → Performer), then a retriever is used to retrieve relevant
information from the KG, followed by the application of a seq2seq model to generate the name
label of the missing entity, which is mapped back into an entity ID (Coldplay→ Q45188).

ule (such as BM25 [81]) to find the relevant triplets for each incomplete triplet (the query), and
thirdly uses the retrieved triplets to enhance the generation of the missing entity. Figure 4.1 illus-
trates such a process, with the example of predicting the performer for the song of Viva La Vida.
Given the query, the retrieved triplets such as (Fix You, followed by, Viva La Vida) and (Fix You,
Performer, Coldplay), can be used to enhance the likelihood of generating the correct answer.

Our comparative evaluation shows that the proposed approach can significantly enhance the
state-of-the-art performance on two large-scale datasets, Wikidata5M [107] and WikiKG90Mv2
[43], which contain 5M and 90M entities, respectively. Ablation tests were also conducted to
analyze the effects of different settings in the retrieval module and for relations with different
frequencies.

3.2 Preliminary

Knowledge Graph Completion (KGC) In this chapter, KGC refers to the sub-task of missing
entity prediction: given an incomplete triplet (eh, r, ?) or (?, r, et) where its head or tail entity is
missing, the model is required to predict the missing entity.
Sequence-to-Sequence KGC Given an incomplete triplet, it was first verbalized into a text query

22

q:

q =

{
concat(prefixt, L(eh), L(r)) if et is missing
concat(prefixh, L(r), L(et)) if eh is missing

(3.1)

where L(·) maps the entity or relation into its name label. prefixt (or prefixh) refers to a sequence
of tokens that are added to the beginning of a query in order to inform the model which side,
whether it be the head or tail entity, is the target for prediction. For example, as shown in Figure
4.1, (Q626490, P175, ?) is transformed to Predict tail: Viva La Vida — Performer. Similarly, (?,
P175, Q45188) will be transformed to Predict head: Performer — Coldplay. Then the text query
will be passed into an encoder-decoder language model such as T5 [77] to generate the output
tokens:

Toutput = Decoder(Encoder(q)) (3.2)

The aim is to produce the name label of the missing entity. The cross-entropy loss of token
prediction is utilized during the training of the generative model. During the process of making
predictions, the generated name label will be mapped to an entity ID êt = L−1(Toutput). To
generate multiple prediction candidates, beam search can be employed, but invalid entity names
will be discarded. Constrained decoding methods [12, 20] can be utilized to ensure the validity
of the output.

3.3 Method
Instead of directly passing the verbalized incomplete triplet into a seq2seq model for entity gen-
eration, we propose ReSKGC, which retrieves relevant information from the knowledge graph
to guide the generation process.

3.3.1 KG to Text Passages
To facilitate retrieval based on text semantics of entities and relations, we convert the entire
knowledge base into text passages through a process of linearization. To prevent data leakage,
we only transform the triplets in the training data. We begin by transforming each triplet into
a sentence, accomplished by concatenating the name labels of entities and relations and incor-
porating a special symbol | to delimit the elements. For example, the triplet (Q1991309, P175,
Q45188) will be transformed to the sentence Fix You — Performer — Coldplay. Subsequently,
we group the sentence into passages if they share a common head entity, such as Fix You — Per-
former — Coldplay. Fix You — followed by — Viva La Vida.... Finally, each long passage would
be separated into multiple non-overlapping passages, with each passage having a maximum of
100 words.

3.3.2 Retrieval
After converting the knowledge graph into text passages, we proceed to conduct retrieval given
an incomplete triplet. To achieve this, we first verbalize the triplet using Equation 3.1. We

23

then employ the widely-used retrieval method BM25 [81], which is based on TF-IDF scores of
sparse word matches between input queries and passages. We have opted for sparse retrieval
as opposed to dense retrieval [51], which involves computing passage embeddings and query
embeddings using pre-trained language models. The reason for this is that we place value on
the generalization and efficiency of sparse representation. Dense retrieval methods typically
require additional model training and consume significant amounts of memory in order to save
the passage embeddings. Through retrieval, we are able to obtain K passages [pi]i=1,··· ,K that are
potentially relevant to the input question.

3.3.3 Generation
Ultimately, we employ a generation module that takes the query and retrieved passage as inputs
and produces the desired output entity. One approach is to concatenate all the passages and
the query as a single input sequence for the model. However, this can become inefficient when
a large number of passages are retrieved due to the quadratic computational complexity in the
self-attention mechanism of the Transformer model. To achieve both cross-passage modeling
and computation efficiency, we apply Fushion-in-Decoder (FiD) [46] based on T5 [77] as the
generation module. FiD separately encodes the concatenation of the query and each passage but
decodes the output tokens jointly. Specifically, the encoding process for each passage pi is as
follows:

Pi = Encoder(concat(q, pi)). (3.3)

Next, the token embeddings of all passages outputted from the encoder are concatenated before
being sent to the decoder to produce the output tokens Toutput:

Toutput = Decoder([P1;P2; · · · ;PK]). (3.4)

In this manner, the decoder can generate outputs based on joint modeling of multiple passages.
Similar to vanilla seq2seq KGC, we utilize beam search to generate multiple candidates and
constrained decoding as [12] to ensure validity. After generation, we simply map the name back
to the corresponding entity.

3.3.4 Training Process
The training of ReSKGC only involves optimizing the generation module, since the retrieval
component (BM25) is unsupervised and does not require any model training. Similar to vanilla
seq2seq KGC methods, we employ the cross-entropy loss of token prediction for training. How-
ever, there are two crucial considerations:
Removing query triplet from retrieved passages: It is important to note that all of the training
triplets are included within the linearized passages as mentioned in Section 3.3.1. Therefore,
throughout the training process, it is necessary to ensure that the retrieved passages do not include
the query triplet itself, as failure to do so would render the training task insignificant. As a result,
we simply remove the linearized triplet from the retrieved passages if it is present in them.

24

Table 3.1: Dataset Statistics

Dataset #Entities #Relations #Triplets
Wikidata5M 4.8M 828 21M
WikiKG90Mv2 91M 1,387 601M

Sampling query triplets: Large-scale KGs may contain hundreds of millions of triplets, making
it excessively costly to enumerate them all during training. In this study, we address this issue
by randomly sampling a subset of triplets to generate training queries to optimize the model.
We demonstrate in Section 3.4.3 that such sampling does not impair performance while keeping
training highly efficient. It should be noted that we still utilize all the training triplets to construct
the passages as mentioned in Section 3.3.1.

3.4 Experiment

3.4.1 Basic Setting
We conduct experiments on the two large-scale KGC datasets: Wikidata5M [107], and WikiKG90Mv2
[43], where the dataset statistics are shown in Table 3.1. We follow the conventional train/valid/test
split setting according to the original paper of each dataset. For the training process, we use
Adam [53] as the optimizer and set the learning rate as 0.0001. The number of training steps
is 30,000 for all the datasets with the same batch size of 16. For Wikidata5M, we retrieve 10
passages per query and sampled 100k queries for training. For WikiKG90Mv2, we retrieve 20
passages and sampled 200k queries. During inference, constrained decoding is utilized for the
Wikidata5M dataset, while it is not used for WikiKG90Mv2 due to the dataset’s extensive num-
ber of entities, making the construction of a prefix tree excessively memory and time-consuming.
For the generation module, we use T5-small and T5-base [77] with numbers of parameters 60M
and 220M, respectively. All experiments are carried out on NVIDIA 2080-Ti GPUs.

For the evaluation metric, we use the filtered setting [6] for computing mean reciprocal rank
(MRR) and hits at 1, 3, and 10 (H@1, H@3, and H@10). Higher MRR and hits scores indicate
better performance. For Wikidata5M, the metrics are computed for head entity and tail entity
prediction separately and then averaged. For WikiKG90Mv2, we follow the original paper to
only compute metrics for tail entity prediction.

3.4.2 Main Results
As demonstrated in Table 3.2, ReSKGC attains state-of-the-art results on Wikidata5M, exhibit-
ing a significant enhancement of MRR by 10.6% as compared to the most superior baseline
technique. The first section of baselines comprises conventional KGC approaches, which demon-
strate satisfactory performance but have a considerably larger number of parameters than the sec-
ond section, comprising PLM-based techniques. It is noteworthy that SimKGC employs PLM
to create embeddings for each entity. Despite having a relatively small number of parameters,
it still necessitates substantial memory usage to store all entity embeddings, which is avoided

25

Table 3.2: KG completion results on Wikidata5M. The best result in each column is marked
in bold. The second best is marked in ∗. † results are from the best pre-trained models made
available by Graphvite [131]. †† results are from [55]. Other baseline results are from the
corresponding papers.

Model MRR H@1 H@3 H@10 #Params
TransE [6]† 0.253 0.170 0.311 0.392 2.4B
DistMult [115]† 0.253 0.209 0.278 0.334 2.4B
SimplE [52]† 0.296 0.252 0.317 0.377 2.4B
RotatE [91]† 0.290 0.234 0.322 0.390 2.4B
QuatE [128]† 0.276 0.227 0.301 0.359 2.4B
ComplEx [95]†† 0.308 0.255 - 0.398 614M
KEPLER [107] 0.210 0.173 0.224 0.277 125M
MLMLM [17] 0.223 0.201 0.232 0.264 355M
KGT5 [86] 0.300 0.267 0.318 0.365 60M
SimKGC [105] 0.358 0.313 0.376 0.441 220M
ReSKGC (small) 0.363∗ 0.334∗ 0.386∗ 0.416 60M
ReSKGC (base) 0.396 0.373 0.413 0.437∗ 220M

by our proposed methodology. It is also noteworthy that our method outperforms the baselines
significantly on Hits@1, with an improvement of 19.1%, but it performs slightly worse than the
best baseline SimKGC on Hits@10. We posit that the generation-based approach utilized by our
model may produce less diverse predicted answers in contrast to the matching-based approach.
Thus, having more predictions through the matching approach can result in better improvement
of answer coverage.

Table 3.3 presents results on the extremely large-scale dataset WikiKG90Mv21, which con-
tains 90 million entities. Our proposed method surpasses the current state-of-the-art technique2

by 13.2%, while utilizing only 1% of the parameters. Moreover, our method outperforms the
seq2seq KGC baseline KGT5, even when both models have an equivalent number of parameters.

3.4.3 Ablation Study

In this section, we aim to answer the following essential questions for a more comprehensive
understanding of our proposed method.
Q1. How does the number of retrieved passages affect the model performance? First, we
demonstrate the efficacy of retrieval through the variation in the number of passages retrieved,
ranging from 0 to 20, where 0 implies the application of vanilla seq2seq KGC without retrieval.
Figure 3.2 indicates that retrieval yields considerable advantages on both datasets. Notably, the
retrieval of 10 passages can increase the MRR by 16.1% and 89.2% for the respective datasets
when compared to non-retrieval. Furthermore, we note that enhancing the number of passages

1We only show results obtained from the validation set since the test set is not publicly available.
2We conduct a fair comparison by solely considering a single model, without any ensemble methods.

26

Table 3.3: KG completion results on WikiKG90Mv2 (validation set). The best result is marked
in bold. The second best is marked in ∗. All the baseline results are taken from the official
leaderboard of [43] except that † results are from [86].

Model MRR #Params
TransE-Shallow-PIE [11] 0.234∗ 18.2B
TransE-Concat [43] 0.206 18.2B
ComplEx-Concat [43] 0.205 18.2B
ComplEx-MPNet [43] 0.126 307K
ComplEx [95] 0.115 18.2B
TransE-MPNet [43] 0.113 307K
TransE [6] 0.110 18.2B
KGT5 [86]† 0.221 60M
ReSKGC (small) 0.230 60M
ReSKGC (base) 0.265 220M

01 5 10 20
#Passages

0.15

0.20

0.25

0.30

0.35

0.40

M
RR

Wikidata5M
WikiKG90Mv2

2050 100 200 400
#Training Queries (k)

0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

M
RR Wikidata5M

WikiKG90Mv2

Figure 3.2: The performance of ReSKGC (base) over the validation sets based on different num-
bers of retrieval passages and sampled training queries.

from 10 to 20 produces minimal performance enhancement, indicating that the information pre-
sented in later passages is overshadowed by noise. Therefore, an additional increase in the num-
ber of retrieved passages to the generation module will not lead to a significant improvement in
performance.
Q2. How does the sampling of training queries affect the final performance? As mentioned
in Section 3.3.4, we randomly sample a subset of triplets as training queries. Figure 3.2 illus-
trates the performance of the model with varying numbers of triplets used as training queries.
Our results indicate that for Wikidata5M, a mere 100K triplets are sufficient to achieve good per-
formance, which represents less than 0.5% of the total number of triplets. For WikiKG90Mv2,
200K triplets are sufficient, representing only 0.03% of the total triplets. These findings sug-
gest that a retrieval-enhanced model can effectively learn patterns from a considerably smaller
amount of training data.
Q3. What’s the effect of retrieval on relations with different frequencies? In a knowledge

27

<104

(n=156)
104~105

(n=787)
105~106

(n=2347)
> 106

(n=1843)
Relation Frequency

0.0

0.1

0.2

0.3

0.4

M
RR

w/o Retrieval
w/ Retrieval

Figure 3.3: The performance of ReSKGC (base) on the Wikidata5M test set triplets, categorized
according to their relation frequencies. n represents the number of test triplets within that partic-
ular range of relation frequencies.

graph, relations manifest in variable quantities of triplets. To classify relations by their frequency,
we have grouped them into four categories based on the number of occurrences: less than 104,
104 to 105, 105 to 106, and more than 106. Figure 3.3 illustrates that the incorporation of retrieval
yields more pronounced gains for relations that occur less frequently. An illustrative example
can be observed in the relations that occur less than 104 times. In this scenario, the inclusion
of retrieval results in a 59% MRR increment. In contrast, for relations that appear in more than
106 triplets, the MRR increment is merely 2% when utilizing retrieval. This finding is logical,
as the generation module may lack adequate training data to comprehend relations that are less
commonly observed. Therefore, retrieval-enhanced explicit reasoning can facilitate performance
improvement in such cases.

3.5 Summary
This chapter presents a Retrieval-enhanced Seq2seq KG Completion model, namely ReSKGC,
which converts the triplets in the entire KG into text passages and uses a free-text retrieval mod-
ule to find the relevant triplets for each incomplete triplet. The retrieved triplets are then used
to enhance the generation of the missing entity. Comparative evaluations on two large-scale
datasets, Wikidata5M and WikiKG90Mv2, demonstrate that the proposed approach significantly
outperforms the state-of-the-art models by 10.6% and 13.2% in terms of mean reciprocal rank.
Additionally, we conducted ablation studies to explore the effects of the number of retrieved
passages, training data, and relation frequencies. Our approach shows a promising direction for
large-scale KG completion, where further improvements can be achieved by research on improv-
ing the retrieval modules and generation modules.

Now we conclude our exploration of KG acquisition using textual semantics, by proposing
a joint pre-training framework of both KG and text, and a retrieval-enhanced KG completion
method by transforming triples to text. In the next part, we’ll explore how to leverage textual

28

semantics for the application of KGs to question answering. We’ll start with the scenarios where
answers are sourced solely from the KGs, then expand to cases where answers are primarily
drawn from textual data. Lastly, we’ll bridge KG acquisition and application by proposing a new
benchmark studying the effects of KG completion over question answering.

29

30

Part II

Answering Text Question with KGs

31

Chapter 4

Joint Generation of Answers and Logical
Queries

4.1 Introduction

Knowledge Graph Question Answering (KGQA) aims to answer natural language questions
based on knowledge from KGs such as DBpedia [2], Freebase [5] or Wikidata [102]. Existing
methods can be divided into two categories. One category is based on semantic parsing, where
models first parse the input question into a logical form (e.g., SPARQL [41] or S-expression [33])
then execute the logical form against KGs to obtain the final answers [18, 33, 118]. The other
category of methods directly outputs answers without relying on the the logical-form executor
[70, 86, 88]. They either classify the entities in KGs to decide which are the answers [88] or
generate the answers using a sequence-to-sequence framework [70, 86].

Previous empirical results [18, 35, 118] show that the semantic parsing based methods can
produce more accurate answers over benchmark datasets. However, due to the syntax and se-
mantic restrictions, the output logical forms can often be non-executable and thus would not
produce any answers. On the other hand, direct-answer-prediction methods can guarantee to
generate output answers, albeit their answer accuracy is usually not as good as semantic pars-
ing based methods, especially over complex questions which require multi-hop reasoning [93].
To our knowledge, none of the previous studies have leveraged the advantages of both types of
methods. Moreover, since KGs are usually large-scale with millions of entities, most previous
methods rely on entity linking to select relevant information from KGs for answering questions.
However, these entity linking methods are usually designed for specific datasets, which inevitably
limits the generalization ability of these methods.

In this chapter, we propose a novel framework DECAF to overcome these limitations:
(1) Instead of relying on only either logical forms or direct answers, DECAF jointly decodes

them together, and further combines the answers executed using logical forms and directly gen-
erated ones to obtain the final answers. Thus the advantages of both methods can be leveraged in
our model. Moreover, unlike previous methods using constrained decoding [15] or post revision
[18] to produce more faithful logical forms, we simply treat logical forms as regular text strings
just like answers during generation, reducing efforts of hand-crafted engineering.

33

KB

Retriever

Documents
Linearize

what video game
engine did incentive
software develop?

Input Question:

Freescape
Answer:

(AND game_engine (JOIN
game_engine.developer

m.0d_qhv))

Logical Form:

Semantic Parsing:
what video game...

Add Prefix:

Freescape

Output Answer: Reader

Question Answering:
what video game...

Add Prefix:

Execution

Freescape
Answer:

Combiner

Figure 4.1: Model framework of DECAF. We use text-based retrieval instead of entity linking to
select question-related information from the KG. Then, we add different prefixes into the reader
to generate logical forms and direct answers respectively. The logical-form-executed answers
and directly-generated answers are combined to obtain the final output.

(2) Different from previous methods which rely on entity linking [60, 119] to locate enti-
ties appeared in questions and then retrieve relevant information from KG, DECAF linearizes
KGs into text documents and leverages free-text retrieval methods to locate relevant sub-graphs.
Based on this simplification, DECAF brings better adaptation to different datasets and potentially
different KGs due to the universal characteristic of text-based retrieval. Experiments show that
simple BM25 retrieval brings surprisingly good performance across multiple datasets.

We conduct experiments on four benchmark datasets including WebQSP [120], ComplexWe-
bQuestions [93], FreebaseQA [47], and GrailQA [33]. Experiment results show that our model
achieves new state-of-the-art results on WebQSP, FreebaseQA, and GrailQA benchmarks, and
gets very competitive results on the ComplexWebQuestions benchmark. This demonstrates the
effectiveness of DECAF across different datasets and question categories.

4.2 Method

In order to (1) leverage the advantages of both logical forms and direct answers and (2) reduce
the dependency on entity linking models, we propose a novel framework DECAF. As shown in
Figure 1, the whole KG is first transformed into text documents. Then, for an input question,
the retriever retrieves relevant passages from linearized KG documents, which will be combined
with the input question into the reader. DECAF reader is a sequence-to-sequence generative
model and uses different prefixes to generate logical forms (LFs) and direct answers respectively.
Finally, the executed answers by LFs and generated direct answers are combined to obtain the
final answers.

4.2.1 KG Linearization

Given a question, retrieving relevant information from KGs is non-trivial since KGs are large-
scale and complicated with both semantic (names of entities and relations) and structural (edge

34

Freescape Incentive Software

developer

Proprietary software

license

...

Original KB Triplets

Converted Text

Freescape license Proprietary software. Freescape
developer Incentive Software...

CVT node Pat Nixon

marriage.spouse

Richard Nixon

marriage.spouse

marriage.location

The Mission Inn Hotel & Spa

marriage spouse Richard Nixon. marriage spouse Pat
Nixon. marriage location The Mission Inn Hotel & Spa.

Converted Text

Original KB Hyper-Triplets

Figure 4.2: KG linearization. We show examples of how we linearize triplets (two entities and
one relation) and hyper-triplets (multiple entities and relations with a central CVT node).

between entities by relations) information. On the other hand, recent studies have shown the
effectiveness of text-based retrieval for question answering [13, 46, 51]. By linearizing KGs to
text corpus, we can easily leverage these successful text-retrieval methods to select semantically
relevant information from KGs.

We describe how to linearize the knowledge graph. Considering the original KG format to be
the most common Resource Description Format (RDF), which contains triplets composed of one
head entity, relation, and tail entity. For example, (Freescape, game engine.developer, Incentive
Software) means that Incentive Software is the developer of a game engine called Freescape. To
linearize this triplet, we simply concatenate them with spaces to be a sentence as Freescape game
engine developer Incentive Software. Note that we also replace punctuation marks in relation to
spaces. In this case, this sentence contains both semantic information (entity and relation names)
and structural information (relation between two entities). Then we further group sentences with
the same head entity to become a document like Freescape game engine developer Incentive
Software. Freescape release date 1987.... This grouping is mainly to preserve the structural
information of the 1-hop subgraph corresponding to the head entity. Following [51], we truncate
each document into multiple non-overlap passages with a maximum of 100 words.

Note that triplets have semantic constrains to express complicated relations. For example,
it is hard to express that Richard Nixon and Pat Nixon got married in The Mission Inn Hotel
& Spa, which involves three entities. In Freebase, this is solved by introducing a new node
called CVT node, which serves as a connecting entity for such hyper-triplets but has no meaning
(name) itself. In this example, an entity with id m.02h98gq is introduced which involves triplets
(m.02h98gq, marriage.spouse, Pat Nixon), (m.02h98gq, marriage.spouse, Richard Nixon), and
(m.02h98gq, marriage.location of ceremony, The Mission Inn Hotel & Spa). In this case, instead
of concatenating CVT node id into sentence, we ignore this node while grouping other entities
and relations into one passage: marriage spouse Richard Nixon. marriage spouse Pat Nixon.
marriage location of ceremony The Mission Inn Hotel & Spa. We illustrate our KG linearization

35

in Figure 4.2. In the next section, we show how to conduct retrieval from these passages.

4.2.2 Retrieval

The retriever retrieves relevant passages from the linearized KG based on the input question.
We consider two kinds of retrieval methods: sparse retrieval and dense retrieval. For sparse
retrieval, we use BM25 [81], which is based on TF-IDF scores of sparse word match between
input questions and KG-linearized passages. For dense retrieval, we apply the DPR [51] frame-
work, which is based on similarity in the embedding space between input questions and passages
from two fine-tuned BERTs [23]. We refer readers to the original paper for details of the fine-
tuning process. During inference, suppose there are totally N passages in the knowledge source
{p1, p2, . . . , pN}. DPR applies the passage encoder EP (·) to encode all the passages and store
embeddings in memory. For an input question q, DPR applies the question encoder EQ(·) to
obtain its representation, and then the passages are retrieved based on the dot-product similarity:
Iretrieve = argtop-ki(EP (pi) ·EQ(q)). Then it applies FAISS[49] to conduct an efficient similarity
search due to the large number of passages N . Through this step, we can retrieve |Iretrieve| ≪ N
passages which are potentially relevant to the input question.

4.2.3 Reading

The reader takes the retrieved passages and the original question as input and generates the tar-
geted output. Recent advanced sequence-to-sequence models like BART [58] and T5 [77] can
be utilized here. In order to answer complicated multi-hop questions, cross-passage reasoning
is important for the reader. One way is to concatenate all the passages and let the self-attention
in the Transformer module capture these patterns. However, this can be inefficient when the
number of retrieved passages is very large because of the quadratic computation complexity in
self-attention. To achieve both cross-passage modeling and computation efficiency, we apply
Fushion-in-Decoder (FiD) [46] based on T5 as the reader model. FiD encodes the concatenation
of the input question and each passage separately but decodes the output tokens jointly. Specifi-
cally, we denote the question as q and the retrieved passages as {pri |ri ∈ Iretrieve}. The encoding
process for each passage pri is:

Pi = Encoder(concat(q, pri)) ∈ RLp×H , (4.1)

where H is the hidden dimension, and Lp is the total sequence length of a question concatenated
with a passage. T5-Encoder(·) is the encoder module of T5. Then the token embeddings of all
passages output from the last layer of the encoder are concatenated and sent to the decoder to
generate the output tokens Toutput:

Toutput = Decoder([P1;P2; · · · ;P|Iretrieve|] ∈ R|Iretrieve|Lp×H) (4.2)

By concatenating the encoder output embeddings, the decoder can generate outputs based on
joint modeling of multiple passages.

36

4.2.4 Joint Decoding Answers and Logical Forms
Motivated by the success of adding prefixes to control the generation of large-scale language
models [77, 112], we use a shared sequence-to-sequence model to generate both logical forms
and direct answers, and differentiate the two processes by prompting the model with different
prefixes. The encoding-decoding process in Equation (5.5) and (5.6) becomes:

Panswer
i = Encoder(concat(prefixanswer, q, pri)), Tanswer = Decoder([Panswer

1 ; · · · ;Panswer
|Iretrieve|]); (4.3)

PLF
i = Encoder(concat(prefixLF, q, pri)), TLF = Decoder([PLF

1 ; · · · ;PLF
|Iretrieve|]) (4.4)

where Tanswer and TLF are the output answer tokens and logical form tokens respectively.
prefixanswer and prefixLF are the prefixes for answer generation and logical form generation re-
spectively, which we set as Question Answering: and Semantic Parsing:. For example, given
the question What video game engine did incentive software develop?, we’ll first retrieve rel-
evant passages using the retriever. Then we add these two prefixes to produce two different
inputs: Question Answering: what video game engine did incentive software develop? and Se-
mantic Parsing: what video game engine did incentive software develop?” For the first input, we
train the model to generate the target output answer Freescape directly1. While for the second
input, we aim to generate the logical form (AND cvg.computer game engine (JOIN
cvg.computer game engine.developer m.0d qhv)), which is simply treated as text
strings during generation without constrained decoding. However, instead of directly gener-
ating the entity ID like m.0d qhv in the logical form, we replace it with the corresponding
entity name like Incentive Software and add special tokens “[” and “]” to identify it. The re-
vised logical form to be generated becomes (AND cvg.computer game engine (JOIN
cvg.computer game engine.developer [Incentive Software])). After gen-
eration, we replace the entity names with their IDs for execution. During training, we fine-tune
the whole reader in a multi-task learning manner, where one input question contributes to two
training data pairs with one for answer generation and the other one for logical form generation.
During inference, we use beam search to generate multiple candidates for both logical forms and
answers, with the same beam size B.

Next, we show how we combine them to obtain the final answer. We first execute these
logical forms against the KG using an executor2. Suppose the list of executed answer set is
[ALF

1 , · · · , ALF
B′] (B′ ≤ B since some logical forms can be non-executable) and the list of directly

generated answer set is [Aanswer
1 , · · · , Aanswer

B]. We consider two situations: (1) If B′ = 0 means
none of these logical forms are executable, the final answer is simply Aanswer

1 ; (2) Otherwise when
B′ ≥ 1, we use weighted linear combination: we first assign the score λS(k) for ALF

k and the
score (1 − λ)S(k) for Aanswer

k , where 0 ≤ λ ≤ 1 is a hyper-parameter controlling the weight of
each type of answers, and S(k) is a score function based on the answer rank k. If an answer set
appears both in executed answer list and generated answer list with ranks i and j respectively,
then its score is the sum of two scores: λS(i) + (1 − λ)S(j). Finally, we select the answer set
with the highest score as the final output. We leave the exploration of other combination methods
as future work.

1For direct answer generation, we only consider returning one single answer.
2We locally set up a Virtuoso triplestore service following the GrailQA paper.

37

Model
WebQSP CWQ FreebaseQA

Hits@1 F1 Hits@1 Hits@1
PullNet [88] 67.8 62.8 47.2 -
EmQL [89] 75.5 - - -
NSM+h [39] 74.3 - 53.9 -
FILM [101] 54.7 - - 63.3
KGT5 [86] 56.1 - 36.5 -
CBR-SUBG [19] 72.1 - - 52.1
SR+NSM [126] 69.5 64.1 50.2 -
UniK-QA [70] 79.1 - - -
QGG [57] - 74.0 44.1 -
HGNet [16] 70.6 70.3 65.3 -
ReTrack [15] 74.7 74.6 - -
CBR-KBQA [18] - 72.8 70.4 -
ArcaneQA [32] - 75.3 - -
Program Transfer [10] 74.6 76.5 58.1 -
RnG-KBQA [118] - 75.6 - -
RnG-KBQA (T5-large)⋆ - 76.2 ± 0.2 - -
DECAF (BM25 + FiD-large) 79.0 ± 0.4 74.9 ± 0.3 68.1 ± 0.5 78.8 ± 0.5
DECAF (DPR + FiD-large) 80.7 ± 0.2 77.1 ± 0.2 67.0 ± 0.4 79.0 ± 0.6
DECAF (BM25 + FiD-3B) - - 70.4 -
DECAF (DPR + FiD-3B) 82.1 78.8 - -

Table 4.1: Results on the test splits of 3 benchmark datasets: WebQSP, CWQ, and FreebaseQA.
The two blocks of baselines are direct-answer-prediction and semantic parsing based methods
respectively. We run 5 independent experiments for FiD-large based DECAF and report mean
and standard deviation. ⋆ means that we replace the original reader T5-base with T5-large and
rerun experiments to have a fair comparison with our method.

4.3 Experiment
Experiment Settings. We use the full Freebase [5] data pre-processed by [109] as the KG for all
benchmarks. The total number of entities, relations, and triplets are about 88 million, 20k, and
472 million respectively. The total number of passages after linearization is about 126 million.
For the retrieval module of DECAF, we use BM25 implemented by Pyserini [61] and Dense
Passage Retrieval (DPR) [51] with BERT-base [23] as question and passage encoders. We train
separate DPRs on each dataset following the same training process and use the same model
architecture in the original paper. The number of retrieved passages is 100 if not specified. For
the reading module, we leverage Fusion-in-Decoder [46] based on the T5 [77] model: FiD-large
and FiD-3B with 770 million and 3 billion model parameters respectively. For the decoding
beam size, we use 10 for FiD-large model and 15 for FiD-3B model.

We evaluate DECAF on four benchmark datasets: WebQSP [120], ComplexWebQuestions
(CWQ) [93], FreebaseQA [47], and GrailQA [33]. Specifically, GrailQA provides the categories
of questions: i.i.d., compositional, and zero-shot, which can be used to evaluate model perfor-

38

Model Overall I.I.D. Compositional Zero-Shot
QGG [57] 36.7 40.5 33.0 36.6
Bert+Ranking [33] 58.0 67.0 53.9 55.7
ReTrack [15] 65.3 87.5 70.9 52.5
S2QL (Anonymous) 66.2 72.9 64.7 63.6
ArcaneQA [32] 73.7 - 75.3 66.0
RnG-KBQA [118] 74.4 (76.9) 89.0 (88.3) 71.2 (69.2) 69.2 (75.1)
RnG-KBQA (T5-large)⋆ - (77.1) - (88.5) - (69.8) - (75.2)
UniParser (Anonymous) 74.6 - 71.1 69.8
DeCC (Anonymous) 77.6 - 75.8 72.5
TIARA (Anonymous) 78.5 - 76.5 73.9
DECAF (BM25 + FiD-large) 76.0 (78.7) 90.5 (90.2) 79.0 (78.7) 68.0 (73.7)
DECAF (DPR + FiD-large) - (75.4) - (89.7) - (75.8) - (69.0)
DECAF (BM25 + FiD-3B) 78.7 (81.4) 89.9 (89.7) 81.8 (80.1) 72.3 (78.4)

Table 4.2: F1 scores on the test split of GrailQA. The numbers in the parentheses are F1 scores
on the dev split. ⋆ means that we replace the original reader T5-base with T5-large and rerun
experiments.

mance over different levels of generalization. All datasets provide both ground-truth answers and
logical forms except FreebaseQA, where our model only generates answers as the final output
without using the logical form. More details about these datasets are shown in the appendix.
Following previous work [18, 70, 118], we evaluate our model based on metrics Hits@1 and F1,
where Hits@1 focus on the single top-ranked answer while F1 also considers coverage of all the
answers.

4.3.1 Main Result

We compare with both direct answer prediction and semantic parsing based methods and run
5 independent experiments for FiD-large based DECAF to report mean and standard deviation.
We don’t do this for DECAF with FiD-3B due to the limitation of computation resource. We
denote our model in the form of DECAF ({Retriever} + {Reader}) such as DECAF (BM25 +
FiD-large). If the retriever is not specified, it means we choose the better one for each dataset
respectively.

As shown in Table 4.1, DECAF achieves new SOTA on WebQSP and FreebaseQA dataset,
outperforming both direct-answer-prediction (first block) and semantic parsing based (second
block) baselines. On WebQSP, DECAF improves the previous highest Hits@1 by 3.0% and
F1 by 2.3%. Note that one of the best-performing baseline UniK-QA uses STAGG [119] for
entity linking on WebQSP, which is not publicly available and thus can not be applied to other
datasets. Compared to UniK-QA, we see that DECAF (DPR + FiD-large) improves the Hits@1
by 1.6% with the same model size, demonstrating the effectiveness of our method even without
entity linking. On FreebaseQA, DECAF improves the SOTA Hits@1 significantly by 15.7%.
On CWQ dataset, DECAF achieves very competitive results, the same as the current SOTA
method CBR-KBQA. CBR-KBQA is based on the K-Nearest Neighbors approach, which is

39

GrailQA / λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 54.7 54.7 56.1 56.3 56.5 78.7 78.7 78.7 78.7 78.7
S(k) = B − k + 1 54.7 55.6 56.4 56.5 56.5 78.3 78.3 78.4 78.6 78.7
WebQSP / λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 49.8 49.8 50.6 51.0 51.3 76.7 76.7 76.9 77.1 77.1
S(k) = B − k + 1 49.8 51.0 51.5 51.8 51.9 75.2 75.2 75.2 76.0 77.1
CWQ / λ 0.0 0.2 0.4 0.45 0.49 0.51 0.55 0.6 0.8 1.0
S(k) = 1/k 50.5 50.5 52.7 53.5 54.4 68.5 68.5 68.6 68.6 68.6
S(k) = B − k + 1 50.5 53.1 54.3 54.6 54.6 68.3 68.3 68.4 68.6 68.6

Table 4.3: F1 scores on GrailQA and WebQSP and Hits@1 scores on CWQ using DECAF (FiD-
large) based on different values of λ, which is the weight of LF-executed answers in the answer
combination function. S(k) is the score function of answer rank k and B is the generation beam
size.

complementary to our method. We also see that increasing reader size from large (770M) to 3B
significantly improves model performance. Moreover, BM25 and DPR lead to different results:
DPR performs significantly better than BM25 on WebQSP, slightly better on FreebaseQA, and
worse on CWQ. The possible reason is that DPR is trained to retrieve passages containing the
answers based on distant supervision [51], which do not necessarily contain the relations and
entities that appeared in the logical form, especially for complex questions. Thus it may hurt the
performance of logical form generation which results in a final performance degeneration.

Table 4.2 shows results on the GrailQA dataset, where we listed F1 scores of Overall, I.I.D.,
Compositional, and Zero-shot questions respectively. We see that with FiD-large reader, DE-
CAF achieves better overall performance than the published SOTA method RnG-KBQA. Since
original RnG-KBQA uses T5-base, we also equip it with T5-large for a fair comparison and list
the results on the dev set, where DECAF (BM25 + FiD-large) still significantly outperforms it
by 1.6% in overall F1 score. With FiD-3B reader, the overall F1 of DECAF is improved by 2.7%
compared to using FiD-large reader, and surpasses the current SOTA method TIARA3, which is
an anonymous submission on the GrailQA leaderboard. Notably, DECAF performs the best in
compositional questions with an F1 score 5.3% higher than the best-performing method.

Overall we see that DECAF achieves new SOTA results on WebQSP, FreebaseQA, and
GrailQA with very competitive results on the CWQ benchmark. Even with simple BM25 re-
trieval, DECAF outperforms most of the baselines across all the benchmark datasets, which
previous studies usually use different entity linking methods specially designed for different
datasets.

4.3.2 Ablation Study

In this section, we conduct some ablation studies to answer the following questions:
What is the best way to combine LF-executed answers and generated answers? In Section
4.2.4, we introduced a way of combining LF-executed answers and generating answers to obtain

3We achieve the 1st rank on the GrailQA leaderboard as of 09/06/2022.

40

Model
WebQSP CWQ GrailQA (dev)

Hit@1 F1 Hit@1 F1 (O) F1 (I) F1 (C) F1 (Z)
DECAF (Answer only) 74.7 49.8 50.5 54.7 59.4 38.3 59.5
DECAF (LF only) 74.3 74.0 55.2 72.4 88.2 76.3 63.9
DECAF 80.7 77.1 68.1 78.7 90.2 78.7 73.7
Non-Executable LF% 11.3 30.2 15.8 6.2 9.6 22.5
DECAFsep (Answer only) 74.2 49.5 47.9 54.6 57.7 38.8 59.8
DECAFsep (LF only) 72.7 73.1 54.3 74.0 91.4 75.2 66.0
DECAFsep 80.6 77.1 66.5 80.3 92.9 78.9 75.3
Non-Executable LF% 12.3 32.8 15.9 5.2 11.9 22.4

Table 4.4: We study the performance of our model when only using generated answers (Answer
Only) or executed answers by logical forms (LF Only). O, I, C, Z means overall, i.i.d., composi-
tional and zero-shot. DECAFsep means using a separate reader for answer generation and logical
form generation respectively instead of a joint reader. We also show the percentage of questions
where none of the generated LFs are executable.

the final answer. (1) When none of the LFs are executable, we use the top-1 generated answer as
output. In Table 4.4, we show the percentage of questions where none of the generated LFs are
executable. It can be observed that directly generating LFs for hard questions, such as CWQ and
Zero-shot GrailQA, shows a significantly higher non-executable rate than that for easy questions.
(2) If any LF is executable, we use the answer with the highest combination scores λS(i) + (1−
λ)S(j), where λ is the hyper-parameter weight for LF-executed answers, and i and j are the
rank in the LF-executed answer list and generated answer list respectively. We test two different
score functions S(k) = 1/k and S(k) = B − k + 1 where B is the beam size, and k is the
rank in the candidate list. From the results in Table 4.3, we see that the model performance is
improved when λ increases. Specifically (1) the F1 score increases dramatically when λ changes
from 0.49 to 0.51, where the former usually chooses generated answer as a final answer while
the latter selects the LF-executed one. This demonstrates that LF-executed answers are much
more accurate compared to generated ones, which can also be validated in the next section. (2)
λ = 1.0 gives the best results, which means that we can simply select the first executed answer
if exists, otherwise choose the first direct answer. Thus we set λ = 1.0 as the default setting of
DECAF in all the experiments.
How do answer generation and LF generation perform respectively? DECAF combines
generated answers and executed answers to obtain the final answers. In this section, we study
the impact of them separately. We introduce two new models to (1) only use generated answers
(Answer Only) and (2) only use executable answers by logical form (LF Only). As shown in the
first group of models in Table 4.4, the performance of LF Only is consistently better than Answer
Only. Except on WebQSP, the latter has similar Hits@1, but the former has a significantly better
F1 score, which shows that LF can produce much better answer coverage. We also see that
the combination of these two strategies is significantly better than any of them separately. For
example, on the dev set of GrailQA, the overall F1 of DECAF is 6.3% higher than DECAF (LF
only) and 24.0% higher than DECAF (Answer Only).
Should we use a joint reader or separate readers for answer and LF generation? We add

41

Model
WebQSP CWQ GrailQA FreebaseQA

H@100 R@100 H@100 R@100 H@100 R@100 H@100 R@100
BM25 81.2 67.7 63.5 57.7 89.9 84.7 93.5 93.5
DPR 91.6 80.6 71.4 65.6 87.6 81.0 95.0 95.0

Table 4.5: Retrieval results (answer name match). H@100 and R@100 stand for the answer hits
rate and recall rate of 100 passages, respectively.

another variation of our model called DECAFsep, which uses two separate readers to generate
direct answers and logical forms respectively instead of a shared reader, while other parts remain
the same as DECAF. As shown in the second group of models in Table 4.4, we see that the overall
performance is similar to DECAF, showing that a shared reader with prefix is as capable as two
separate readers. However, it is interesting to see that on CWQ, a shared reader with multi-task
training performs better on answer generation and LF generation while on GrailQA, it performs
worse on LF generation compared to two separate readers.
Does retrieval capture useful information for answering questions? We first evaluate the
retrieval results of BM25 and DPR on 4 datasets in Table 4.5. We observe that: (1) DPR performs
better than BM25 on all the datasets except GrailQA, which contains zero-shot questions where
DPR may have poor performance due to generalization issues. (2) On WebQSP, GrailQA and
FreebaseQA, the retrieval method can achieve over 80% hits rate and recall rate, demonstrating
the effectiveness of retrieval. (3) The performance is not as good on CWQ dataset, where most
questions require multi-hop reasoning. This problem can be potentially mitigated by iterative
retrieval [72, 113], which we leave as future work. We then analyze the effect of retrieval on
the final QA performance in Figure 4.3, where we show the results over 4 datasets with different
numbers of retrieved passages. We see that on all the datasets, with the increase of passage
number (from 5 to 100), the model performance is improved. Specifically, on GrailQA dataset,
over different categories of questions, we see that the performance over I.I.D. questions increases
the least while it improves the most over zero-shot questions. This is because I.I.D. questions
can be handled well by memorizing training data while zero-shot questions require external
knowledge from KG to be well answered.
How does the size of training data affect the model performance? In this section, we further
study the influence of the size of the training data. Specifically, we want to study how it influences
answer generation and LF generation respectively. We focus on the GrailQA dataset, and vary
the number of training data from 500, 2000, 10000 to 44337 (all). As shown in Figure 4.4(a),
the performance of DECAF improves as the increase of training data. More importantly, we see
that the performance of LF generation improves much more significantly than DECAF (Answer
Only). This shows that training the logical form generation requires more data than answer
generation, because logical forms are usually more complicated than answers.
During inference, what is the effect of beam size? In this section, we study the effects of
generation beam size during inference. As shown in Figure 4.4(b), when we vary the beam size
from 1,2,5,10 to 20, the performance of DECAF improves. However, we see that the performance
DECAF (LF Only) is significantly improved while DECAF (Answer Only) barely changes. This
shows that the overall performance improvement mainly comes from logical form generation
instead of answer generation. This is because the logical form is difficult to generate, and beam

42

510 20 50 100
#Passages

55

60

65

70

75

80

85

90

F1

I.I.D.
Compositional
Zero-Shot
Overall

(a) Results on GrailQA.

510 20 50 100
#Passages

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Hi
ts

@
1 WebQSP

CWQ
FreebaseQA

(b) Results on WebQSP, CWQ, and FreebaseQA

Figure 4.3: DECAF (FiD-large) performance based on different number of retrieval passages.

500 2,000 10,000 44,337 (All)
#Training Data

30

40

50

60

70

80

F1

DecAF
DecAF (Answer Only)
DecAF (LF Only)

(a) Results based on different sizes of training data

1 2 5 10 20
Beam Size

55

60

65

70

75

80

F1
DecAF
DecAF (Answer Only)
DecAF (LF Only)

(b) Results based on different beam sizes

Figure 4.4: Ablation study on training data size and generation beam size over GrailQA (dev)
dataset.

size is important to long sequence generation especially when we enumerate the generated logical
forms until we find the one that is executable. However, for answer generation, which is usually
in short length, beam size won’t have a large effect.

4.3.3 Error Analysis
We conduct case-based error analysis on our model. As shown in Table 4.6, we list 3 cases where
Answer Only generation is wrong, LF Only generation is wrong, and both of them are wrong.
In the first example, we need to find the “earlies” composition. We see that the logical form is
not complicated while the direct answer generation needs to reason over the completion time of
compositions and find the minimum of them, which is difficult. In the second example, we see
that the reasoning is not difficult since it only contains one relation about locomotive class, but
the logical form is relatively long which makes the generation more challenging. We see that
the generated logical form misses the steam part and results in an non-executable prediction. For

43

Question: Which composition was completed the earliest?
Gold Answer: Ce fut en mai
Gold Logical Form: (ARGMIN music.composition music.composition.date

completed)
Gen Answer: Composition for Piano and Orchestra by David Bowie
Gen Logical Form: (ARGMIN music.composition music.composition.date

completed)
LF Executed Answer: Ce fut en mai
DECAF’s Answer: Ce fut en mai
Question: British rail class 04 belongs to which locomotive class?
Gold Answer: 0-6-0
Gold Logical Form: (AND rail.steam locomotive wheel configuration

(JOIN rail.steam locomotive wheel configuration.
locomotive classes m.02rh)))

Gen Answer: 0-6-0
Gen Logical Form: (AND rail.locomotive wheel configuration

(JOIN rail.locomotive wheel configuration.
locomotive classes m.02rh)))

LF Executed Answer: Not Executable
DECAF’s Answer: 0-6-0
Question: Which browser was most recently released by the creators of mpd?
Gold Answer: Internet Explorer for Mac
Gold Logical Form: (ARGMAX (AND computer.web browser (JOIN (R computer.

software developer.software) (JOIN (R computer.
file format.format creator) m.02l0900)))
computer.software.first released)

Gen Answer: WebKit
Gen Logical Form: (ARGMAX (AND computer.web browser (JOIN (R computer.

software developer.software) m.02l0900))
computer.software.release date)

LF Executed Answer: Not Executable
DECAF’s Answer: WebKit

Table 4.6: Case-based error analysis over GrailQA (dev) dataset, where Gen is the abbreviation
for Generated. We show 3 cases where only generated answer is wrong, only generated LF is
wrong, and both of them are wrong.

44

these two cases, DECAF can still output the correct answer due to answer combination. However,
this is not the case for the last example, which is a compositional question involving multiple
relations. We see that both the generated answer and logic form are wrong. The generated
logical form neglects one join operation and makes mistake on the relation about release date.
This means that our model can be further improved to deal with such complicated questions.

4.4 Summary
In this chapter, we present a novel method DECAF to jointly generate direct answers and logical
forms (LF) for knowledge graph question answering. We found that combining the generated
answers and LF-executed answers can produce more accurate final answers. Instead of relying
on entity linking, DECAF is based on a sequence-to-sequence framework enhanced by retrieval,
where we transform the knowledge graph into text and use sparse or dense retrieval to select rele-
vant information from KG to guide output generation. Experimental results show that we achieve
the new state-of-the-art on WebQSP, FreebaseQA, and GrailQA. Our work sheds light on the re-
lationship between more general semantic parsing based methods and direct-answer-prediction
methods. It would be interesting to further explore this direction on other tasks involving both
semantic parsing and end-to-end methods like table-based question answering or programming
code generation.

The joint generation of direct answers and logical forms in DecAF is both robust and effec-
tive, but it’s limited to cases where answers come from KGs. What happens when answers are
sourced from different mediums, like text corpora? In the following chapter, we’ll demonstrate
that in such settings, we can still utilize both KGs and textual semantics to enhance question-
answering performance.

45

46

Chapter 5

KG-Enhanced Passage Reranking for
Answer Generation

5.1 Introduction

Open-Domain Question Answering (ODQA) is the task of answering natural language questions
from open-domain text corpora. A successful ODQA model relies on effective acquisition of
world knowledge. A popular line of work treats a large collection of open-domain documents
(such as Wikipedia articles) as the knowledge source, and design a ODQA system that consists
of a retrieving module and a reading module. The retriever pulls out a small set of potentially
relevant passages from the open-source documents for a given question, and the reader produces
an answer based on the retrieved passages [36, 45, 51]. An earlier example of this kind is DrQA
[14], which used an traditional search engine based on the bag of words (BoW) document repre-
sentation with TF-IDF term weighting, and a neural reader for extracting candidate answers for
each query based on the dense embedding of the retrieved passages. With the successful devel-
opment of Pre-trained Language Models (PLMs) in neural network research, dense embedding
based passage retrieval (DPR) models [51, 74] have shown superior performance over BoW/TF-
IDF based retrieval models due to utilization of contextualized word embedding in DPR, and
generative QA readers [59, 80] usually outperform extraction based readers [24, 36] due to the
capability of the former in capturing lexical variants with a richer flexibility.

The recently proposed Fusion-in-Decoder (FiD) model [46] is representative of those meth-
ods with a DPR retriever and a generative reader, achieving the state-of-the-art results on ODQA
evaluation benchmarks. FiD also significantly improved the scalability of the system over pre-
vious generative methods by encoding the retrieved passages independently instead of encoding
the concatenation of all retrieved passages (which was typical in previous methods).

Inspired by the success of FiD, this chapter aims further improvements of the state of the
art of ODQA in the paradigm with a DPR retriever and a generative reader. Specifically, we
point out two potential weaknesses or limitations of FiD as the rooms for improvements, and we
propose a novel solution namely KG-FiD to address these issues with FiD. The two issues are:

Issue 1. The independent assumption among passages is not justified. Notice that both the
DPR retriever and the generative reader of FiD perform independent encoding of the retrieved

47

passages, which means that they cannot leverage the semantic relationship among passages for
passage embedding and answer generation even if such relational knowledge is available. But we
know that rich semantic connections between passages often provide clues for better answering
questions [67].

Issue 2. Efficiency Bottleneck. For each input question, the FiD generative reader receives
about 100 passages from the DPR module, with a relatively high computational cost. For ex-
ample, the inference per question takes more than 6 trillion floating-point operations. Simply
reducing the number of retrieved passages sent to the reader will not be a good solution as it will
significantly decrease the model performance [46]. How to overcome such inefficient computa-
tion issue is a challenging question for the success of FiD in realistic ODQA settings.

We propose to address both of the above issues with FiD by leveraging an existing knowledge
graph (KG) to establish relational dependencies among retrieved passages, and employing Graph
Neural Networks (GNNs) to re-rank and prune retrieved passages for each query. We name our
new approach as KG-FiD.

Specifically, KG-FiD employs a two-stage passage reranking by applying GNN to model
structural and semantic information of passages. Both stages rerank the input passages and only
a few top-reranked passages are fed into subsequent modules. The first stage reranks passages
returned by the retriever, where we use the passage embeddings generated by DPR as the initial
GNN node representation. This allows reranking a much larger set of initial candidate passages
to enhance coverage of answers. The second stage performs joint passage reranking and answer
generation, where the node embeddings are initialized by the embeddings of passage-question
pairs output from the reader encoder. This stage operates on a smaller candidate set but aims for
more accurate reranking and passage pruning.

To improve the efficiency, in the second-stage reranking, our GNN model adopts represen-
tations from the intermediate layer in the reader encoder instead of the final layer to initiate
passage node embeddings. Then only a few top reranked passages will be passed into the higher
layers of encoder and the decoder for answer generation, while other passages will not be further
processed. This is coupled with a joint training of passage reranking and answer generation.
As shown in Section 5.3.4, these strategies significantly reduce the computation cost while still
maintaining a good QA performance.

Our experiments on ODQA benchmark datasets Natural Questions and TriviaQA demon-
strate that KG-FiD can achieve comparable or better performance in answer prediction than FiD,
with only 40% of the computation cost of FiD.

5.2 Method

In the following sections, we first introduce how to apply KG to build a graph structure among
the retrieved passages (Section 5.2.1). Then we show how we adopt the graph-based stage-1
reranking with DPR retriever to improve passage retrieval (Section 5.2.2). Next we introduce
joint stage-2 reranking and answer generation in the reading module (Section 5.2.3). Finally we
illustrate the improvement of efficiency by using intermediate layer representation for stage-2
reranking (Section 5.2.4). The overview of our framework is illustrated in Figure 5.1.

48

Encoder
L1 Layers

Text
Knowledge

Source

DPR
Retriever

P1

P3

P5

P6

P2

P4

P7
P8

KG

Decoder

Input
Question

Encoder
L1 Layers

Encoder
L-L1 Layers

Encoder
L1 Layers

Encoder
L1 Layers

Concatenation

Output
Answer

P1

P3

P5

P2

P7

Question + P1

Question + P2

Question + P3

Question + P5

Encoder
L1 Layers

Question + P7

Encoder
L-L1 Layers Retrieved

Passages &
Embeddings

Stage-1 Reranking Reading Module

When did the Yankees
move to New York?

1903

New York
Yankees

Yankee
Stadium

Staten Island
Yankees

New York
Yankees

OperatorYankee
Stadium

New York
Yankees

Parent
Club

Staten Island
Yankees

......

N0
 Passages

N1
 Passages

N2
 Passages

Stage-2 Reranking

Figure 5.1: Overall Model Framework. Pi indicates the node of the passage originally ranked
the i-th by the DPR retriever, with the article title below it. The left part shows passage retrieval
by DPR, passage graph construction based on KG (Section 5.2.1) and stage-1 reranking (Section
5.2.2). The right part shows joint stage-2 reranking and answer generation in the reading module
(Section 5.2.3 and 5.2.4).

49

5.2.1 Construct Passage Graph using KG
The intuition behind using KG is that there exists the structural relationship among the retrieved
passages which can be captured by the KG. Similar to [67], we construct the passage graph where
vertices are passages of text and the edges represent the relationships that are derived from the
external KGs as KG = {(eh, r, et)}, where eh, r, et are the head entity, relation and tail entity of
a triplet respectively.

First, we formalize the definition of a passage. Following previous works [51, 108], each
article in the text corpus is split into multiple disjoint text blocks of 100 words called passages,
which serve as the basic retrieval units. We assume there is a one-one mapping between the KG
entities and articles in the text corpus. Specifically, we use English Wikipedia as the text corpus
and English Wikidata [102] as the knowledge graph, since there exists an alignment between the
two resources1. For example, for the article titled with “New York Yankees”, it contains passages
such as “The New York Yankees are an American professional baseball team ...”. The article also
corresponds to a KG entity with the same name as “New York Yankees”.

Then we define the mapping function e = f(p), where the KG entity e corresponds to the arti-
cle which p belongs to. Note that one passage can only be mapped to one entity, but multiple pas-
sages could be mapped to the same entity. The final passage graph is defined as G = {(pi, pj)},
where passages pi and pj are connected if and only if their mapped entities are directly connected
in the KG, i.e., (f(pi), r, f(pj)) ∈ KG.

Since the total number of passages is very large, e.g., more than 20M in Wikipedia, construct-
ing and maintaining a graph over all the passages is inefficient and memory-consuming. Thus,
we build a passage graph on the fly for each question, based on the retrieved passages.

5.2.2 Passage Retrieving & Stage-1 Reranking
DPR Retriever: Our framework applies DPR [51] as the retriever, which uses a BERT based
passage encoder to encode all the N passages in the text corpus {p1, p2, · · · , pN}. Suppose all
the passage embeddings are fixed and stored in memory as M ∈ RN×D where D is the hidden
dimension:

Mi = BERT(pi) for i ∈ {1, 2, · · ·N} (5.1)

For an input question q, DPR applies another BERT-based question encoder to obtain its repre-
sentation Q, then it builds on FAISS [49] to conduct fast dot-product similarity search between
Q and M , and returns N1 (N1 ≪ N) passages with the highest similarity scores.

Stage-1 Reranking: We see that the DPR retriever returns N1 passages which are indepen-
dently retrieved based on the similarity between the question and each passage, without consider-
ing inter-passage relationship. Thus instead of directly retrieving N1 passages for the reader, we
propose to first retrieve N0 (N0 > N1) passages, then rerank them and output top-N1 reranked
passages into the reader.

Following Section 5.2.1, we construct a graph among the N0 retrieved passages denoted as
G0. We aim to rerank the retrieved passages based on both the structural information and the
textual semantic information of them.

1Entity recognition and linking can be used if there is no such alignment.

50

To represent the semantic information of passages, one can use another pre-trained language
model to encode the passage texts, but this will not only include lots of additional model pa-
rameters, but also incur heavy computational cost as N0 can be large. To avoid both additional
memory and computation cost, we propose to reuse the offline passage embeddings M gener-
ated from the DPR retriever in Equation 5.1 as the initial node representation: E(0)

i = Mri where
{ri|i ∈ {1, 2, · · · , N0}} is the set of retrieved passage indices.

Then we employ a graph attention network (GAT) [98] with Lg layers as GNN model to
update representations for each node based on the passage graph and initial representation. The
l-th layer of the GNN model updates the embedding of node i as follows:

E
(l)
i = h(E

(l−1)
i , {E(l−1)

j }(i,j)∈G0) (5.2)

where h is usually a non-linear learnable function which aggregates the embeddings of the node
itself and its neighbor nodes. The reranking score for each passage pri is calculated by sstage-1

i =

QTE
(Lg)
i , where Q is the question embedding also generated by the DPR retriever. Then we sort

the retrieved passages by the reranking scores, and input the top-N1 passages into the reader. The
training loss of passage ranking for each question is:

Lstage-1
r = −

N0∑
i=1

yi log

(
exp(sstage-1

i)∑N0

j=1 exp(s
stage-1
j)

)
(5.3)

where yi = 1 if pri is the gold passage2 that contains the answer, and 0 otherwise.
As we only add a lightweight graph neural network and reuse the pre-computed and static

DPR passage embeddings, our reranking module can process a large number of candidate pas-
sages efficiently for each question. In experiments, we set N0 = 1000 and N1 = 100.

5.2.3 Joint Stage-2 Reranking and Answer Generation
In this section, we briefly introduce the vanilla FiD reading module before illustrating our joint
reranking method. We suppose the reader takes N1 retrieved passages {pa1 , pa2 , · · · , paN1

} as
input.

Vanilla FiD Reading Module: We denote the hidden dimension as H and number of encoder
layers and decoder layers as L, FiD reader first separately encodes each passage pai concatenated
with question q:

P(0)
i = T5-Embed(q + pai) ∈ RTp×H , (5.4)

P(l)
i = T5-Encoderl(P

(l−1)
i) ∈ RTp×H , (5.5)

where Tp is the sequence length of a passage concatenated with the question. T5-Embed(·) is
the initial embedding layer of T5 model [77] and T5-Encoderl(·) is the l-th layer of its encoder
module. Then the token embeddings of all passages output from the last layer of the encoder are
concatenated and sent to the decoder to generate the answer tokens A:

A = T5-Decoder
(
[P(L)

1 ;P(L)
2 ; · · · ;P(L)

N1
]
)

(5.6)

2We follow Karpukhin et al. [51] on the definition of gold passages.

51

Stage-2 Reranking: Note that vanilla FiD reader neglect the cross information among pas-
sages, and the joint modeling in the decoding process makes it vulnerable to the noisy irrelevant
passages. Thus, we propose to leverage the passage graph to rerank the input N1 passages during
the encoding and only select top-N2 (N2 < N1) reranked passages into the decoder, which is
named as stage-2 reranking.

Similar to stage-1 reranking, the reranking model is based on both the structural information
and the textual semantic information of passages. We denote the passage graph as G1, which is
a subgraph of G0. To avoid additional computation and memory cost, we propose to reuse the
encoder-generated question-aware passage representation from FiD reader for passage reranking
as it is already computed in Equation 5.5. Specifically, the initial node embeddings Z

(0)
i for

passage pai comes from the first token embedding of the final layer in the FiD-Encoder, i.e.,
Z

(0)
i = P(L)

i (0) ∈ RD. Then same as stage-1 reranking, we also employ a GAT [98] with Lg

layers as the graph neural network (GNN) model to update representations for each node based
on the passage graph, similar to Equation 5.2: Z(Lg) = GAT(Z(0),G ′1). The reranking score of
passage pai is calculated by sstage-2

i = W TZ
(Lg)
i where W is a trainable model parameter. After

reranking, only the final top-N2 (N2 < N1) passages are sent for decoding. Suppose their indices
are {g1, g2, · · · , gN2}, the decoding process in Equation 5.6 becomes:

A = T5-Decoder
(
[P(L)

g1
;P(L)

g2
; · · · ;P(L)

gN2
]
)

(5.7)

where A is the generated answer. Similar to stage-1 reranking, the training loss of passage
ranking for each question is:

Lstage-2
r = −

N1∑
i=1

yi log

(
exp(sstage-2

i)∑N1

j=1 exp(s
stage-2
j)

)
(5.8)

where yi = 1 if pai is the gold passage that contains the answer, and 0 otherwise.
The passage reranking and answer generation are jointly trained. We denote the answer

generation loss for each question is La, then the final training loss of our reader module is L =
La + λLstage-2

r , where λ is a hyper-parameter which controls the weight of reranking task in the
total loss.

Note that the first stage reranking is based on DPR embeddings, which are are high-level
(one vector per passage) and not further trained. While the second stage is based on reader-
generated passage-question embeddings, which are semantic-level and trainable as part of the
model output. Thus the second stage can better capture semantic information of passages and
aims for more accurate reranking over a smaller candidate set. In the experiment, we set N1 =
100 and N2 = 20.

5.2.4 Improving Efficiency via Intermediate Representation in
Stage-2 Reranking

Recall that in the stage-2 reranking, we take the passage representation from the last layer of
reader encoder for passage reranking. In this section, we propose to further reduce the computa-
tion cost by taking the intermediate layer representation rather than the last layer. The intuition is

52

that answer generation task is more difficult than passage reranking which only needs to predict
whether the passage contains the answer or not. Thus we may not need the representation from
the whole encoder module for passage reranking.

Suppose we take the representation from the L1-th layer (1 ≤ L1 < L), i.e., Z(0)
i = P(L1)

i (0)
for i ∈ {1, 2, · · · , N1}, and the reranking method remains the same. Then only the top N2

(N2 < N1) reranked passages will go through the rest layers of FiD-encoder. Suppose their
indices are Ig = {g1, g2, · · · , gN2}, for l ≥ L1 + 1:

P(l)
i =

{
T5-Encoderl(P

(l−1)
i) if i ∈ Ig

Stop-Computing else
(5.9)

Then P(L)
g1

,P(L)
g2

, · · · ,P(L)
gN2

are sent into the decoder for answer generation as in Equation 5.7. In
Section 5.3.4, we demonstrate this can reduce 60% computation cost than the original FiD while
keeping the on-par performance on two benchmark datasets.

5.2.5 Analysis on Computational Complexity
Here we analyze the theoretical time complexity of our proposed KG-FiD compared to vanilla
FiD. More practical computation cost comparison is shown in Appendix 5.3.6. Because both the
computations of DPR retrieving and stage-1 reranking are negligible compared to the reading
part, we only analyze the reading module here.

Suppose the length of answer sequence A is denoted as Ta and the average length of the
passage (concatenated with question) is Tp. For vanilla FiD reader, the time complexity of the
encoder module is O(L · N1 · T 2

p), where L,N1 denote the number of encoder layers and the
number of passages for reading. The square comes from the self-attention mechanism. The
decoder time complexity is O(L · (N1 · Tp · Ta + T 2

a)), where N1 · Tp · Ta comes from the cross-
attention mechanism. For our reading module, all the N1 candidate passages are processed by
the first L1 layers of encoder. But only N2 passages are processed by the remaining L − L1

encoder layers and sent into the decoder. Thus, the encoder computation complexity becomes
O((L1 ·N1 + (L−L1) ·N2) ·T 2

p), and the decoder computation takes O(L · (N2 ·Tp ·Ta +T 2
a)).

Because L1 < L,N2 < N1, both the encoding and decoding of our method is more efficient than
vanilla FiD.

Furthermore, the answer is usually much shorter than the passage (which is the case in our
experiments), i.e., Ta ≪ Tp. Then the decoding computation can be negligible compared to
the encoding. In this case, the approximated ratio of saved computation cost brought by our
proposed method is:

S = 1−
(L1 ·N1 + (L− L1) ·N2) · T 2

p

L ·N1 · T 2
p

= (1− L1

L
)(1− N2

N1

)

This shows that we can reduce more computation cost by decreasing L1 or N2. For example, if
setting L1 = L/4, N2 = N1/5, we can reduce about 60% of computation cost. More empirical
results and discussions will be presented in Section 5.3.4.

53

5.3 Experiment

In this section, we conduct extensive experiments on two most commonly-used ODQA bench-
mark datasets: Natural Questions (NQ) [56] which is based on Google Search Queries, and
TriviaQA [50] which contains questions from trivia and quiz-league websites. The open-domain
version of NQ is obtained by discarding answers with more than 5 tokens. For TriviaQA, its
unfiltered version is used for ODQA. We follow the same setting as [46] to preprocess these
datasets. We convert all letters of answers in lowercase except the first letter of each word on
TriviaQA. When training on NQ, we sample the answer target among the given list of answers,
while for TriviaQA, we use the unique human-generated answer as generation target. For both
datasets, we use the original validation data as test data, and keep 10% of the training set for
validation. All our experiments are conducted on 8 Tesla A100 40GB GPUs.

5.3.1 Implementation Details

Knowledge Source: Following [46, 51], we use the English Wikipedia as the text corpus, and
apply the same preprocessing to divide them into disjoint passages with 100 words, which pro-
duces 21M passages in total. For the knowledge graph, we use English Wikidata. The number of
aligned entities, relations and triplets among these entities are 2.7M, 974 and 14M respectively.
Model Details: For the retrieving module, we use the DPR retriever [51] which contains two
BERT (base) models for encoding question and passage separately. For the GNN reranking
models, we adopt 3-layer Graph Attention Networks (GAT) [98]. For the reading module, same
as [46], we initialize it with the pretrained T5-base and T5-large models [77], and we name
the former one as KG-FiD (base) and the latter one as KG-FiD (large). Our implementation is
based on the HuggingFace Transformers library [110]. For number of passages, we set N0 =
1000, N1 = 100, N2 = 20.
Model Training: For training our framework, we adopt the separate-training strategy to avoid
out-of-memory issue: we first train the DPR model following its original paper, then freeze the
DPR model to train the stage-1 reranking module, and finally jointly train stage-2 reranking and
reader part. For the training of stage-1 reranking, the optimizer is AdamW [65] with learning
rate as 1e-3 and linear-decay scheduler. The weight decay rate is 0.01. Batch size is set as 64.
The number of total training steps is 15k, and the model is evaluated every 500 steps and the
model with best validation results is saved as the final model. For the training of reading part, we
adopt the same training setting except that the learning rate is 1e-4 for the base model and 5e-5
for the large model. We also adopt learning rate warm up with 1000 steps.
Evaluation: We follow the standard evaluation metric of answer prediction in ODQA, which
is the exact match score (EM) [78]. A generated answer is considered correct if it matches any
answer in the list of acceptable answers after normalization3. For all the experiments, we conduct
5 runs with different random seeds and report the averaged scores.

3The normalization includes lowercasing and removing articles, punctuation and duplicated whitespace.

54

5.3.2 Baseline Methods
We mainly compare KG-FiD with the baseline model FiD [46]. For other baselines, we compare
with representative methods from each category: (1) not using external knowledge source: T5
[80] and GPT-3 [8]; (2) reranking-based methods: RIDER [66] and RECONSIDER [44]; (3)
leveraging knowledge graphs or graph information between passages: Graph-Retriever [67],
Path-Retriever [1], KAQA [130], and UniK-QA [68]. We also compare with methods (4) with
additional large-scale pre-training: REALM [36], RAG [59] and Joint Top-K [83].

5.3.3 Preliminary Analysis
We conduct preliminary analysis on the graph constructed among passages. Note that for each
question, we first apply the retriever to retrieve a few candidate passages, then build edge connec-
tion only among the retrieved passages, which means that the passage graph is question-specific.
Since the passage graph depends on the retrieved passages, before further utilizing the graph, we
need avoid two trivia situations: (1) all the retrieved passages come from the same article; (2)
The number of graph edges is very small. Thus we conduct statistics of the passage graphs on
two ODQA benchmark datasets, which is shown in Figure 5.2. For each question, the number of
retrieved passages is 100. We see that the two trivia situations only happen for a small portion of
questions.

5.3.4 Main Results
Comparison with Baselines: Table 5.1 shows the results of our method and all baselines. We
see that our proposed model KG-FiD consistently and significantly improves FiD on both NQ
and TriviaQA datasets over both base and large model. Specifically, for large model, KG-FiD
improves FiD by 1.5% and 1.1% on two datasets respectively, which has larger improvement
compared to base model. We think the reason is that more expressive reader will also benefit
the stage-2 reranking since the initial passage embeddings are generated by the reader encoder
module. We also see that our proposed method outperforms all the baseline methods except
UniK-QA [68]. However, UniK-QA uses additional knowledge source Wikipedia-Table for re-
trieval, which is highly related with the NQ dataset and makes it unfair to directly compare with
our method.
Efficiency & Accuracy: Table 5.3 show the detailed comparison between our method and FiD
in the large model version. The results of base model version is shown in Table 5.2. Besides
EM score, we also report the ratio of computation flops (#FLOPs) and inference latency (per
question). The detailed calculation of #FLOPs is shown in Appendix 5.3.6. From table 5.3, we
see that (1) for KG-FiD, decreasing L1 can improve the computation efficiency as analyzed in
Section 5.2.4, while increasing L1 can improve the model performance. We think the perfor-
mance improvement comes from the noise reduction of passage filtering. For a larger L1, the
passage embeddings for reranking will have a better quality so that the gold passages are less
likely to be filtered out. (2) Simply reducing the number of passages N1 into vanilla FiD reader
can reduce computation cost, but the performance will also drop significantly (from 51.9 to 50.3
on NQ dataset). (3) Our model can achieve the performance on par with FiD with only 38% of

55

(a) Results on NQ (b) Results on TriviaQA

(c) Results on NQ (d) Results on TriviaQA

Figure 5.2: Preliminary Analysis on the retrieved passages by DPR.

56

Table 5.1: Exact match score of different models over the test sets of NQ and TriviaQA datasets.
⋆ means that additional knowledge source Wikipedia-Tables is used in this method.

Model #params NQ TriviaQA
T5 11B 36.6 -
GPT-3 (few-shot) 175B 29.9 -
RIDER 626M 48.3 -
RECONSIDER 670M 45.5 61.7
Graph-Retriever 110M 34.7 55.8
Path-Retriever 445M 31.7 -
KAQA 110M - 66.6
UniK-QA⋆ 990M 54.0⋆ 64.1⋆

REALM 330M 40.4 -
RAG 626M 44.5 56.1
Joint Top-K 440M 49.2 64.8
FiD (base) 440M 48.2 65.0
FiD (large) 990M 51.4 67.6

Our Implementation
FiD (base) 440M 48.8 66.2
KG-FiD (base) 443M 49.6 66.7
FiD (large) 990M 51.9 68.7
KG-FiD (large) 994M 53.4 69.8

Table 5.2: Inference #FLOPs, Latency (second) and Exact match score of FiD (base) and KG-
FiD (base). N1 is the number of passages into the reader and L1 is the number of intermediate
layers used for stage-2 reranking as introduced in Section 5.2.4. The details of flop computation
is introduced in Appendix 5.3.6.

Model #FLOPs
NQ TriviaQA

EM Latency (s) EM Latency (s)
FiD (N1=40) 0.40x 47.2 0.27 (0.47x) 64.1 0.27 (0.46x)
FiD (N1=100) 1.00x 48.8 0.58 (1.00x) 66.2 0.59 (1.00x)
KG-FiD (N1=100, L1=3) 0.38x 48.4 0.27 (0.47x) 65.6 0.26 (0.44x)
KG-FiD (N1=100, L1=6) 0.56x 49.0 0.35 (0.60x) 66.1 0.34 (0.58x)
KG-FiD (N1=100, L1=9) 0.73x 49.3 0.43 (0.74x) 66.3 0.43 (0.73x)
KG-FiD (N1=100, L1=12) 0.91x 49.6 0.50 (0.86x) 66.7 0.49 (0.83x)

57

Table 5.3: Inference #FLOPs, Latency (second) and Exact match score of FiD (large) and KG-
FiD (large). N1 is the number of passages into the reader and L1 is the number of intermediate
layers used for stage-2 reranking as introduced in Section 5.2.4. The details of flop computation
is introduced in Appendix 5.3.6.

Model #FLOPs
NQ TriviaQA

EM Latency (s) EM Latency (s)
FiD (N1=40) 0.40x 50.3 0.74 (0.45x) 67.5 0.73 (0.44x)
FiD (N1=100) 1.00x 51.9 1.65 (1.00x) 68.7 1.66 (1.00x)
KG-FiD (N1=100, L1=6) 0.38x 52.0 0.70 (0.42x) 68.9 0.68 (0.41x)
KG-FiD (N1=100, L1=12) 0.55x 52.3 0.96 (0.58x) 69.2 0.94 (0.57x)
KG-FiD (N1=100, L1=18) 0.72x 52.6 1.22 (0.74x) 69.8 1.22 (0.73x)
KG-FiD (N1=100, L1=24) 0.90x 53.4 1.49 (0.90x) 69.8 1.48 (0.89x)

Table 5.4: Ablation study of our graph-based reranking method in two stages. EM scores are
reported over NQ and Trivia datasets with both base and large model version.

Model
NQ TriviaQA

base large base large
FiD 48.8 51.9 66.2 68.7
KG-FiD 49.6 53.4 66.7 69.8
w/o Stage-1 49.3 53.1 66.2 69.5
w/o Stage-2 49.4 52.3 66.5 69.2

computation cost. When consuming the same amount of computations (L1 = 24), our model
significantly outperforms FiD on both NQ and TriviaQA datasets. These experiments demon-
strate that our model is very flexible and can improve both the efficiency and effectiveness by
changing L1.

5.3.5 Ablation Study
Effect of Each Reranking Stage: Since our proposed graph-based reranking method are applied
in both retrieving stage (Section 5.2.2) and reading stage (Section 5.2.3). We conduct ablation
study to validate the effectiveness of each one. Table 5.4 shows the experiment results by re-
moving each module. We see the performance of KG-FiD drops when removing any of the two
reranking modules, demonstrating both of them can improve model performance. Another thing
we observe is that stage-1 reranking is more effective in base model while stage-2 reranking is
more effective in large model. This is reasonable since stage-2 reranking relies on the effective-
ness of reader encoder module, where the large model is usually better than the base model.
Passage Ranking Results: We additionally show that our proposed GNN reranking method
can improve the passage retrieval results. This is demonstrated in Figure 5.3, where we report
Hits@K metric over NQ test set, measuring the percentage of top-K retrieved passages that

58

10 20 50 100
K

76

78

80

82

84

86

88

Hi
ts

@
K

DPR
DPR+stage-1
DPR+stage-1&2

Figure 5.3: Passage ranking results over NQ test set of DPR retriever and our proposed two-stage
rerankings over base model.

Table 5.5: Passage Retrieval Results on NQ dev data of our model under different GNN types
and number of layers.

Model H@1 H@5 H@10 H@20
GCN 49.1 69.7 75.7 79.9
GAT 50.1 70.1 76.1 80.2

#Layers
1 49.0 69.7 75.8 79.8
2 49.6 70.0 76.0 80.2
3 50.1 70.1 76.1 80.2
4 49.5 69.9 76.1 80.1

Table 5.6: EM scores on NQ dev data of our model under different choices of filtered passage
numbers and weights of reranking loss.

Model N2=10 N2=20 N2=30
KG-FiD 47.6 48.0 48.0

λ=0.01 λ=0.1 λ=1.0
KG-FiD 47.7 48.0 46.6

59

Table 5.7: #GFLOPs of FiD (base) and KG-FiD (base) over different stages in the model.

Model Retrieving
Stage-1

Reranking
Reader

Encoding
Stage-2

Reranking
Reader

Decoding
All

FiD 4.4 - 5772.3 - 714.2 6491.0 (1.00x)
KG-FiD (L1=3) 4.4 3.5 2308.9 0.4 143.9 2461.1 (0.38x)
KG-FiD (L1=6) 4.4 3.5 3463.4 0.4 143.9 3615.5 (0.56x)
KG-FiD (L1=9) 4.4 3.5 4617.9 0.4 143.9 4770.0 (0.73x)
KG-FiD (L1=12) 4.4 3.5 5772.3 0.4 143.9 5924.5 (0.91x)

contain the gold passages (passages that contain the answer). We see that DPR+stage-1 reranking
consistently outperforms DPR for all the K ∈ {10, 20, 50, 100}. With two stages of reranking,
the retrieval results are further improved for K ∈ {10, 20} (We only cares about K ≤ 20 for
stage-2 reranking since N2 = 20). This shows that such reranking can increase the rank of
gold passages which are previously ranked lower by DPR retriever and improve the efficacy of
passage pruning.
GNN Model Design: We conduct tuning on the model type and number of layers of our GNN
based reranking model. For efficiency, we rerank 100 passages returned by DPR retriever and
search them based on the passage retrieval results. Table 5.5 shows the Hits scores for different
choices. We see that GAT outperforms vanilla GCN model [54] which is reasonable since GAT
leverage attention to reweight neighbor passages by their embeddings. The best choice for the
number of GNN layers is 3. Note that other GNN models such as GIN [114], DGI [99] can also
be applied here and we leave the further exploration of GNN models as future work.
N2 and λ. For the stage-2 reranking part in Section 5.2.3, we also conduct hyper-parameter
search on the number of passages after filtering: N2 ∈ {10, 20, 30} and the weight of reranking
loss when training the reading module: λ ∈ {0.01, 0.1, 1.0}. As shown in Table 5.6, N2 = 20
achieves better results than N2 = 10, but further increasing N2 does not bring performance
gain while decreasing the efficiency of model since the number of passages to be processed by
the decoder is increased. Thus we choose N2 = 20. For the loss weight λ, we found that
with its increment, the performance first increases then significantly drops. This shows that it’s
important to balance the weight of two training losses, as we want the model to learn better
passage reranking while not overwhelming the training signal of answer generation.

5.3.6 FLOPs Computation
In this section we compute the FLOPs of each module4. The results are shown in Table 5.7 and
5.8 for base model and large model respectively. Before the computation, we first show some
basic statistics on two benchmark datasets: the average question length is 20, and the average
answer length is 5. For the reading part, the length of concatenated passage question pair is 250,
number of input passages is N1 = 100.

We first calculate the number of FLOPs of vanilla FiD model. For the retrieving part, it
contains both question encoding and passage similarity search. We only consider the former part

4Our computation is based on https://github.com/google-research/electra/blob/master/flops computation.py

60

Table 5.8: #GFLOPs of FiD (large) and KG-FiD (large) over different stages in the model.

Model Retrieving
Stage-1

Reranking
Reader

Encoding
Stage-2

Reranking
Reader

Decoding
All

FiD 4.4 - 17483.2 - 2534.5 20022.0 (1.00x)
KG-FiD (L1=6) 4.4 3.5 6993.3 0.6 510.0 7511.8 (0.38x)
KG-FiD (L1=12) 4.4 3.5 10489.9 0.6 510.0 11008.4 (0.55x)
KG-FiD (L1=18) 4.4 3.5 13986.5 0.6 510.0 14505.1 (0.72x)
KG-FiD (L1=24) 4.4 3.5 17483.2 0.6 510.0 18001.7 (0.90x)

as the latter part depends on the corpus size and search methods and is usually very efficient. The
question encoding flops by BERT-based model is about 4.4 Gigaflops (GFLOPs). For the reading
part, the encoding of each question passage pair takes about 57/174 GFLOPs for base/large
model, and the encoding of 100 passages takes 5772/17483 GFLOPs. The decoder part only
costs 714.2/2534.5 GFLOPs for base/large model since the average length of answer is very
small. In summary, vanilla FiD base/large model costs 6491.0/20022.0 GFLOPs.

For our model, the computation cost of retrieving part is the same as vanilla FiD. Since we
set N0 = 1000 and N1 = 100, the GAT [98] computation in stage-1 reranking takes about 3.5
GFLOPs, and the stage-2 reranking takes only 0.4/0.6 GFLOPs for base/large model. For the
reader encoding part, the computation cost depends on L1 and N2, which is analyzed in Section
5.2.5. For the reader decoding part, where cross attention takes most of the computation, KG-FiD
only takes about N2/N1 = 1/5 cost of vanilla FiD, which is 143.9/510.0 for base/large model
respectively. The detailed flops are shown in Table 5.7 and 5.8.

5.4 Summary
This chapter tackles the task of Open-Domain Question Answering. We focus on the current
best performed framework FiD and propose a novel KG-based reranking method to enhance the
cross-modeling between passages and improve computation efficiency. Our two-stage reranking
methods reuses the passage representation generated by DPR retriver and the reader encoder and
apply graph neural networks to compute reranking scores. We further propose to use the inter-
mediate layer of encoder to reduce computation cost while still maintaining good performance.
Experiments on Natural Questions and TriviaQA show that our model can significantly improve
original FiD by 1.5% exact match score and achieve on-par performance with FiD but reducing
over 60% of computation cost.

After presenting how to use KGs for question answering when answers are sourced from
either KGs or text corpora, we’ve operated under the assumption that these KGs are complete.
However, real-world KGs are often incomplete with missing triplets. Although we’ve shown that
KG completion methods can help mitigate this limitation, a more important question arises: how
much can they improve the performance of downstream tasks like question answering? In the
upcoming chapter, we will introduce a benchmark designed to thoroughly answer this question.

61

62

Chapter 6

Benchmarking the Impacts of KG
Completion on Question Answering

6.1 Introduction

As presented in Chapter 3, The inherent incompleteness of Knowledge Graphs (KGs) is a well-
recognized problem. As such, a multitude of methods have been proposed to address this is-
sue, spanning statistical relational learning [30], embedding-based models [6, 91, 115], neural-
symbolic methods [73, 84, 116], and recent language model-based methods [86, 107, 117]. How-
ever, prior studies (including the one in Chapter 3) have largely viewed KG completion as an end
in itself, neglecting to investigate its potential impact on subsequent applications that utilize the
completed KGs.

On the other hand, Knowledge Graph Question Answering (KGQA), designed to answer nat-
ural language questions using information from KGs, is one of the most important applications
of KGs. As presented in Chapter 4, extensive KGQA approaches have been proposed in recent
years. Despite the rapid advancement, previous studies either operate on complete KGs or handle
incompleteness via specific question-answering methods [62, 85, 86], lacking a comprehensive
investigation into different approaches. The impact of KGC on KGQA performance remains
largely unexplored.

In our study, we seek to rectify this oversight by introducing a novel benchmark CompleQA
designed to directly and holistically assess the influence of KG completion on KGQA. This
benchmark comprises over three million triplets and approximately 400 000 entities across 5 dif-
ferent domains, collectively forming the KG. The corresponding QA dataset includes over 5000
questions, featuring both single-hop and multi-hop questions. These questions are sorted into
three generalization levels and are sourced from the GrailQA [33] dataset. For KG completion,
we employ entity-centric incompleteness to align with the QA dataset, where the entities in the
missing triplets correspond to those appearing in the questions. Importantly, different from pre-
vious studies, we actually incorporate predicted triplets into the KG, and use this completed KG
for question answering, allowing a seamless study of various KGC and KGQA methods. Our in-
vestigation incorporates the study of four representative KG completion models, namely TransE
[6], DistMult [115], ComplEx [95], and RotatE [91]. For the KGQA models, we employ two

63

KGC

Question Answering

Question Answering

Completed KG

Incomplete KG

KGC
Performance
Comparison

Figure 6.1: We compare the performance between incomplete and completed KGs by examining
their question-answering results. Dashed arrows in the completed KG denote new triplets added
by KGC.

published leading methods DecAF [124] and Pangu [34].
Our experiments show that the incompleteness of KGs can adversely affect QA performance,

and effective KG completion can help alleviate this and improve performance by up to 6.1%
across varying degrees of incompleteness. Furthermore, we discern that KG completion perfor-
mance does not always align with downstream performance, due to the limited overlap in triplet
predictions between models and the disparate influence of these triplets on KGC and QA perfor-
mance. We hope our findings stimulate more research that perceives KG completion not merely
as an isolated objective but as a crucial step toward enhancing the performance of downstream
tasks.

6.2 Benchmark Construction

In this section, we delineate the procedural steps employed in the development of our benchmark,
including the knowledge graph, the question-answering dataset, and the completion dataset.
2.1 Knowledge Graph The choice of the knowledge graph is a fundamental aspect, and in our
study, we opt for Freebase [5], primarily owing to its widespread usage in academic circles. The
original Freebase contains over 80 million entities. To facilitate affordable exploratory research,
we select a subset of Freebase as our final knowledge graph by specifically confining the KG to
five important domains: medicine, computer, food, law, and business. Within this sub-sample
of Freebase, we encompass 395 965 entities, 383 relations, and 3 042 911 triplets. Despite the
reduction in scale, we posit that this knowledge graph retains a substantial breadth and can accu-
rately emulate real-world conditions and challenges. Following this, we explain the construction
of the QA and completion datasets derived from this KG.
2.2 Question Answering over KG We denote a QA model intended for KG as fQA(KG), and
follow previous KGQA settings [33, 95, 120], where each natural language question q aligns

64

Table 6.1: Data Statistics of the QA dataset.

Question Category Train Valid Test
Total 3395 997 973
I.I.D. - 366 381
Compositional - 232 225
Zero-Shot - 399 367

Table 6.2: Data Statistics of the KGC dataset.

Incompleteness Train Valid Test
20% 1 674 405 1807 2864
50% 1 667 397 4519 7160
80% 1 660 390 7230 11 456

with an answer set A and a logical form l, used to extract answers from the KG. We adopt
GrailQA [33] as our foundation, which contains both single-hop and multi-hop questions and
provides comprehensive evaluation over three generalization difficulty levels: i.i.d., composi-
tional, and zero-shot, determined by whether the KG schemas that appeared in the test set have
been observed in the training set. The original GrailQA is based on the full set of Freebase, thus
we eliminate questions that cannot be answered or contradict the provided answer labels given
our sub-sampled Freebase, This refinement process results in a total of 5365 questions with the
statistical details in Table 6.1.
2.3 KG Completion The completion task here refers to the missing entity prediction task: given
an incomplete triplet (eh, r, ?) or (?, r, et) where its head or tail entity is missing, the model is
required to predict the missing entity1. To align it with the QA task for studying its impact, we
first identify all the unique entities from the validation and test questions2, denoted as Evalid and
Etest respectively. We then retrieve all triplets linked to these entities, denoted as T ′

valid and T ′
test.

We randomly choose a proportion P of these triplets as the final validation and test sets, Tvalid and
Ttest for KG completion. All remaining triplets, including those unlinked to those entities, form
the training data Ttrain. We adjust P to be 20%, 50%, and 80% to introduce varying degrees of
incompleteness. The quantity of triplets is detailed in Table 6.2. Note that compared with random
sampling from the entire KG, sampling triplets based on entities appeared in the questions can
better align the two tasks. Furthermore, this is also seen as a realistic scenario where relatively
new entities in KGs often come with incomplete triplets and their related questions are both
important and challenging.
2.4 Effect of KGC over KGQA To study the impact of knowledge graph completion on question
answering, we incorporate the completed triplet into the KG, then compare the QA performance
using the original incomplete KG with the completed KG. This allows us to freely explore any
KGC and question-answering methods. The process of incorporating triplets is detailed below.

1Following previous conventions, we don’t consider the situation of missing classes or literals in this study.
2GrailQA provides annotated labels for those entities.

65

In the case of each incomplete triplet (eh, r, ?), the model first predicts N candidate tail
entities eti with scores si denoted as [(et1 , s1), · · · , (etN , sN)], where s1 ≥ · · · ≥ sN . To de-
termine whether triplet (eh, r, eti) should be incorporated into the incomplete KG, we establish
a threshold sT . If the score si ≥ sT , the triplet (eh, r, eti) is added to the KG. Note that we
don’t add the triplet which is already in the KG. The same process is followed for missing
head entity (?, r, et). Suppose T pred

valid represents the collection of all added triplets for the val-
idation set and T pred

test for the test set. KG(T) represents the KG that maintains the consistent set
of entities, relations, classes, and literals but incorporates a variable set of triplets T . Finally,
we evaluate the performance of the incomplete KG fQA(KG(Ttrain)) versus the completed KG
fQA(KG(Ttrain ∪ T pred

valid ∪ T
pred
test)). The performance difference can indicate the utility of KG

completion over the QA task. Further details on the utilized models, evaluation metrics, and how
to determine sT are provided in the following section.

6.3 Methods and Evaluation Metrics
This section presents the methods implemented on our benchmark and the evaluation metrics
employed to assess their effectiveness.

6.3.1 For Question Answering
We employ two state-of-the-art methods, namely DecAF [124] and Pangu [34]. For simplicity,
we employ oracle entity linking to Pangu, avoiding the need to train a specially designed entity
linker. In contrast, DecAF operates based on text retrieval without the need for entity linking.
Due to computational limitations, we chose T5-base [77] as the backbone model for DecAF and
BERT-base [23] for Pangu. F1 scores of answer matching are used for the evaluation of QA
performance.

6.3.2 For KG Completion
The KGC methods employed in this study comprise four representative models: TransE [6],
DistMult [115], ComplEx [95], and RotatE [91]. For the implementation of these methods, we
turn to LibKGE [7], a highly developed KGC library. The dimensionality of our embeddings is
set to 200, utilizing xavier uniform initialization [31]. Following previous approaches [6, 91],
we employ negative sampling for training. In this process, negative triplets are created for every
triplet in the training dataset by randomly substituting either the head or tail entity. Each triplet
gives rise to 50 negative triplets, half by replacing the head entity and half by substituting the
tail. The batch size is 4096, with a maximum of 500 epochs. We deploy early stopping after 5
evaluations over the validation set, with one evaluation after every 10 epochs. When it comes to
optimization, we leverage Adam [53] for TransE and RotatE with a learning rate of 0.001. For
ComplEx and DistMult, we employ Adagrad [25] with a learning rate within the range [0.01,
1.0]. For RotatE and TransE, we choose from binary cross entropy (BCE), Kullback-Leibler
divergence (KL), and margin ranking (MR) for the training losses, and explore the loss argument
within [0, 50]. For ComplEx and DistMult, we utilize BCE loss with a loss argument of 0.0. We

66

Table 6.3: Experiment results on KG completion and question answering of our benchmark
CompleQA. Results are averaged across 3 independent runs with different random seeds. “QA
w/ X” signifies the QA performance using model X. The top performance in each column of each
section is highlighted in bold. For QA performance, we provide a percentage change against
scenarios where no KG completion was used, which is color-coded: green for positive changes
and red for negative ones.

Incompleteness Model
KGC QA w/ DecAF QA w/ Pangu

MRR H@1 H@3 H@10 F1 F1 F1

0% - - - - - - 0.782 0.880

20%

None - - - - - 0.742 0.846
TransE 0.614 0.533 0.667 0.761 0.467 0.750 ↑1.1% 0.864 ↑2.1%

RotatE 0.667 0.612 0.700 0.763 0.573 0.765 ↑3.1% 0.864 ↑2.1%

DistMult 0.671 0.618 0.718 0.754 0.637 0.757 ↑2.0% 0.865 ↑2.2%

ComplEx 0.681 0.630 0.722 0.756 0.660 0.757 ↑2.0% 0.868 ↑2.6%

50%

None - - - - - 0.672 0.773
TransE 0.462 0.392 0.500 0.590 0.439 0.684 ↑1.8% 0.765 ↓1.0%

RotatE 0.509 0.455 0.538 0.607 0.524 0.701 ↑4.3% 0.778 ↑0.6%

DistMult 0.506 0.471 0.528 0.564 0.565 0.713 ↑6.1% 0.798 ↑3.2%

ComplEx 0.504 0.467 0.527 0.564 0.582 0.712 ↑6.0% 0.798 ↑3.2%

80%

None - - - - - 0.586 0.638
TransE 0.299 0.240 0.324 0.408 0.335 0.578 ↓1.4% 0.650 ↑1.9%

RotatE 0.312 0.265 0.328 0.403 0.373 0.591 ↑0.9% 0.636 ↓0.3%

DistMult 0.255 0.218 0.270 0.320 0.311 0.585 ↓0.2% 0.640 ↑0.3%

ComplEx 0.252 0.212 0.272 0.323 0.320 0.588 ↑0.3% 0.650 ↑1.9%

experimented with other training losses and arguments, but found them ineffective. Hyperpa-
rameter search is conducted via Bayesian optimization using the Ax framework (https://ax.dev/),
with the number of trials as 40.

To measure the performance of KGC, we adhere to standard metrics for missing entity predic-
tion: Mean Reciprocal Rank (MRR) and Hits@K (H@K) in the filtered setting [6]. Importantly,
considering our goal to incorporate predicted triplets into the KG for subsequent question an-
swering, we propose to measure triplet prediction by F1 score: F1 = 2 · |Tpred∩Tgold|

|Tpred|+|Tgold|
where Tpred

represents the set of predicted triplets while Tgold denotes the set of missing ground-truth triplets.
We adjust the threshold sT introduced in Section 2.4 on the validation split to achieve the best F1
score. We show such adjustment also produces good QA performance in the following section.

6.4 Experiments
In this section, we delve into the outcomes of our empirical investigations. Firstly, from Table
6.3, it’s clear that the KG incompleteness negatively affects performance. Specifically, the F1

67

Table 6.4: Spearman’s rank correlation coefficient between KGC metrics (MRR and F1) and QA
metrics (F1) with two models. QAD denoted the performance of DecAF model while QAP means
the Pangu model.

Incompleteness Metrics QAD-F1 QAP-F1

20%
KGC-MRR 0.32 0.95
KGC-F1 0.32 0.95

50%
KGC-MRR 0.40 0.32
KGC-F1 0.80 0.95

80%
KGC-MRR 0.20 -0.63
KGC-F1 0.40 -0.30

scores of DecAF and Pangu drop by 14.0% and 12.1% respectively when the KG incompleteness
level is 50%. Subsequently, we aim to address the following questions:
Q1: How much does the good performance in KGC translate to the enhancement in QA?
The experimental results in Table 6.3 demonstrate that KGC can indeed enhance the QA perfor-
mance in the majority of the cases. Notably, the ComplEx algorithm for KGC boosted the QA
performance of DecAF alone (without KGC) by 6.0% and of Pangu by 3.2% at 50% incomplete-
ness level. However, at the 80% incompleteness level, the same ComlEx algorithm only boosted
the QA performance of DecAF by 0.3% and of Pangu by 1.9%, which are much less than the
performance gains at the 50% and 20% incompleteness levels. The observations on other KGC
methods demonstrated similar patterns; some of them even lead to decreased QA results. This
could be attributed to that incorrect triplets introduced by the KGC methods outweigh the cor-
rectly predicted ones.

To validate this, we construct a scenario that incorporates only the correctly-predicted triplets
into the KG, while all the incorrect triplets are discarded. Figure 6.2 clearly illustrates a signif-
icant performance enhancement in this scenario, especially at the 80% incompleteness level,
thereby substantiating the detrimental impact of incorrect predicted triplets on the QA model.
Q2: Does the best KGC method(s) always lead to the best QA performance? According
to Table 6.3, we see that better KGC does not always translate to better downstream outcomes.
As an illustration, although ComplEx achieves exceptional KGC results at 20% incompleteness,
it does not outperform RotatE in terms of QA performance when DecAF is used. Similarly,
even though RotatE produces top-tier KGC outcomes at 80% incompleteness, it even leads to the
worst QA performance when Pangu is utilized.

We use Spearman’s rank correlation coefficient to quantitatively assess the relationship be-
tween the performance of KGC and QA. This coefficient measures the Pearson correlation be-
tween the ranked values of two variables. In many instances, we find that the correlation between
the KGC metric and QA metric is weak, with a value below 0.5. Another observation is that the
F1 score of KGC performance corresponds better with QA performance than the mean recipro-
cal rank (MRR). This is reasonable because QA performance relies on the completed knowledge
graph, which includes predicted triplets. The F1 score, in this context, is a more direct measure
of the quality of predicted triplets compared to MRR.

To delve further, we measured the overlap of predicted triplets among various models and

68

20 50 80
Incompleteness%

0.600
0.625
0.650
0.675
0.700
0.725
0.750

F1

ComplEx-DecAF

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.65

0.70

0.75

0.80

0.85

F1

ComplEx-Pangu

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.600
0.625
0.650
0.675
0.700
0.725
0.750

F1

DistMult-DecAF

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.65

0.70

0.75

0.80

0.85

F1

DistMult-Pangu

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750

F1

TransE-DecAF

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.65

0.70

0.75

0.80

0.85

F1

TransE-Pangu

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775

F1

RotatE-DecAF

QA only
KGC + QA
KGC* + QA

20 50 80
Incompleteness%

0.65

0.70

0.75

0.80

0.85

F1

RotatE-Pangu

QA only
KGC + QA
KGC* + QA

Figure 6.2: QA performance under different completed KGs. “QA only” means using the orig-
inal incomplete KG for QA. “KGC + QA” means using the KGC-completed KG. KGC* means
only keeping the correct triplets while discarding all the incorrect ones.

69

found that no model’s predictions, correct or incorrect, fully encompassed the other’s. For ex-
ample, in a 20% incomplete KG, ComplEx and RotatE had about 80% shared correct predictions
and 30% shared incorrect ones. In this case, despite ComplEx’s superior performance in KGC,
it doesn’t solely determine QA performance as various predicted triplets impact QA differently,
and this impact may not align well with their contribution to KGC performance. This discrep-
ancy points to the need for KGC methods that optimize both KG completion and downstream
task performance.
Q3: How does the score threshold affect the KGC and QA performance? We aimed to study
the effect of score threshold sT for each KGC method, which is introduced in Section 2.4. We
vary this threshold for each method to evaluate the corresponding KGC and QA performance.
As shown in Figure 6.3, the KGC F1 score initially rises and then falls, as increasing the score
threshold leads to fewer triplets being added, which although improves precision, it negatively
impacts recall. We see that the curve representing the relationship between the score threshold
and the KGC F1 score appears to coincide well with the QA performance curve. However,
there are instances where this alignment is less pronounced, indicating that utilizing KGC F1 to
pinpoint the task-specific score threshold provides a useful starting point, but is not sufficient on
its own. We believe that further investigation of this issue could provide valuable insights for
future research.

6.5 Summary
In this chapter, we introduced a novel benchmark to investigate the impact of representative KGC
methods on the Knowledge Graph Question Answering (KGQA) task. Our findings demonstrate
that KG incompleteness negatively affects KGQA, and effective KGC can significantly mitigate
this issue. However, we also discovered that best-performing KGC method does not necessarily
lead to the best KGQA results. Our work underlines the necessity to view KGC not merely as a
standalone goal, but as a vital step toward improving downstream tasks. Furthermore, we hope
this chapter can facilitate the joint study of KG acquisition and application in future research, as
opposed to studying them separately.

Finally, in the concluding chapter, we will synthesize the key findings and propose potential
avenues for further research grounded in our acquired knowledge.

70

1.9 2.9 3.9 4.9 5.9
score threshold sT

0.45
0.50
0.55
0.60
0.65
0.70

F1

ComplEx

KGC
QA w/ DecAF

1.5 2.5 3.5 4.5 5.5
score threshold sT

0.45
0.50
0.55
0.60
0.65
0.70

F1

DistMult

KGC
QA w/ DecAF

12.7 11.7 10.7 9.7 8.7
score threshold sT

0.3

0.4

0.5

0.6

0.7

F1

TransE

KGC
QA w/ DecAF

17.8 16.8 15.8 14.8 13.8
score threshold sT

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

F1

RotatE

KGC
QA w/ DecAF

Figure 6.3: Performance variation with different score threshold. Each plot depicts the per-
formance trends for one KGC method at 50% KG incompleteness level. The curves represent
changes in KGC F1 scores on the validation split and QA w/ DecAF F1 scores on the test split
as the score threshold varies.

71

72

Chapter 7

Concluding Remarks and Future Work

This thesis aims to effectively leverage textual semantics for KG acquisition and application,
with a primary focus on Pre-trained Language Models (PLMs). This goal is achieved through
two key dimensions, and the related contributions are summarized as follows:

• KG Acquisition Through Text: We started our exploration with a KG representation
learning framework called JAKET in Chapter 2. This framework leverages joint pre-
training to optimize both KG and text embeddings simultaneously, enhancing each other
in the process. These optimized representations have shown outstanding results in KG
acquisition tasks including relation extraction and entity classification. To address the
challenges of scaling to large knowledge graphs and performing KG completion, we in-
troduce ResKGC in Chapter 3. This seq2seq model takes a text-based incomplete triplet
as input and returns the name of the missing entity as output. We propose a text-based re-
trieval method to identify relevant triplets to the incomplete one, subsequently improving
the accuracy of missing entity prediction.

• Answering Text Question with KGs: We next explored how to leverage KGs for question-
answering applications. Firstly, we created DecAF, as presented in Chapter 4, a framework
capable of generating both logical queries and direct answers simultaneously. This ad-
dresses the issue of non-executable logical queries found in previous methods. We then
developed KG-FiD in Chapter 5, which improves open-domain question answering by in-
corporating a KG-based passage reranking mechanism. We demonstrated that even when
answers are sourced from text corpora, KGs can still be utilized to enhance the QA perfor-
mance. Lastly, we evaluated the influence of KG completion on question-answering per-
formance by proposing a new benchmark, CompleQA in Chapter 6. Our findings indicate
that while KG completion can improve downstream QA performance, the best-performing
KG completion methods do not necessarily yield the best QA results. This underscores the
importance of jointly studying KG acquisition and applications.

We provide a summary of this thesis at the methodological level on how to effectively lever-
age textual semantics in the context of structural KGs. This is illustrated through two distinct
approaches, as detailed below.

• Hybrid Model: This involves the integration of Graph Neural Networks (GNNs) with
PLMs. In this approach, each type of model focuses on its area of expertise—PLMs on

73

textual data and GNNs on graph structures. For instance, in the JAKET framework (Chap-
ter 2), the PLM initially computes entity representations that are then fed into the GNN for
further processing. Conversely, the GNN outputs refined entity representations back into
the PLM. In the case of KG-FiD (Chapter 5), GNNs utilize the PLM-output embeddings
as initial inputs, which are then employed for passage reranking.

• KG Linearization: This approach converts the structural KG into a linear text sequence,
thereby allowing the exclusive use of PLMs for processing. In frameworks like ResKGC
(Chapter 3) and DecAF (Chapter 4), a KG triplet is linearized into a sentence by concate-
nating the names of the head entity, relation, and the tail entity. These sentences are then
grouped into passages based on the head entity.

Each approach has its own advantages and disadvantages: The Hybrid Model offers ex-
plicit structural modeling through GNNs, but this complicates the joint optimization process
with PLMs. Conversely, the KG Linearization simplifies the optimization by relying solely on
PLMs, but converting KGs to text leads to a loss of structural information. For future exploration,
the former should aim for more effective integration of GNNs and PLMs, while the latter should
work on improving KG linearization methods to preserve more structural information.

Recognizing the foundational importance of PLMs in our studies, and observing the transfor-
mative impact of evolving large language models (LLMs), the future implications of KGs in the
LLM era are worth exploring. LLMs, despite their many strengths, have identifiable limitations.
A major one is the occurrence of hallucinations, where the model produces factually incorrect
information. For instance, if one were to ask GPT-4 [69], “How many main bosses does Dark
Souls I have?”, it may incorrectly reply “11” when the accurate answer is “13”.

How can KGs mitigate such hallucinations? During the training phase, KGs can serve as ad-
ditional data to improve the pre-training process so that LLMs can store more factual knowledge,
similar to our work JAKET (Chapter 2) which pre-trains on KG and text jointly. In the inference
stage, relevant information from KGs can be retrieved to supplement the input queries and in-
crease response accuracy. Our DecAF (Chapter 4) framework can be regarded as an example
where LLMs can serve as the reader module.

Conversely, KGs have their own limitations, such as a restricted domain scope due to the
challenges of constructing them. For instance, a KG focused primarily on finance may be ill-
suited for answering medical queries. To address this, targeted and efficient KG construction
is essential. LLMs have great potential to facilitate this process by automatically generating
or refining KGs. Our ResKGC (Chapter 3), which uses PLMs for sequence-to-sequence KG
completion, suggests that LLMs can take this role effectively.

In summary, our thesis stands as a meaningful contribution to leverage textual semantics for
both KG acquisition and application. We also anticipate that it will offer valuable perspectives
on the future role of KGs in the LLM landscape.

74

Bibliography

[1] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming
Xiong. Learning to retrieve reasoning paths over wikipedia graph for question answering.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SJgVHkrYDH. 5.3.2

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages
722–735. Springer, 2007. 4.1

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016. 2.2.2, 2.2.4

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data, pages 1247–
1250, 2008. 3.1

[5] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In SIG-
MOD Conference, 2008. 4.1, 4.3, 6.2

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Ok-
sana Yakhnenko. Translating embeddings for modeling multi-relational data. In
Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 2787–
2795, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html. 2.1, 2.2.2, 3.1,
3.4.1, 3.2, 3.3, 6.1, 6.1, 6.3.2

[7] Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer Gemulla.
LibKGE - a knowledge graph embedding library for reproducible research. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations. Association for Computational Linguistics, 2020. doi:
10.18653/v1/2020.emnlp-demos.22. URL https://aclanthology.org/2020.
emnlp-demos.22. 6.3.2

75

https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://aclanthology.org/2020.emnlp-demos.22
https://aclanthology.org/2020.emnlp-demos.22

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-
itors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. 5.3.2

[9] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 1.1, 2.1

[10] Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei Hou, Juanzi Li, Zhiyuan Liu, and
Jinghui Xiao. Program transfer for answering complex questions over knowledge bases. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8128–8140, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.559. URL https://
aclanthology.org/2022.acl-long.559. 4.3

[11] Linlin Chao, Taifeng Wang, and Wei Chu. Pie: a parameter and inference efficient solution
for large scale knowledge graph embedding reasoning. arXiv preprint arXiv:2204.13957,
2022. 3.3

[12] Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan Lam. Knowledge is flat: A Seq2Seq
generative framework for various knowledge graph completion. In Proceedings of the 29th
International Conference on Computational Linguistics, pages 4005–4017, Gyeongju, Re-
public of Korea, October 2022. International Committee on Computational Linguistics.
URL https://aclanthology.org/2022.coling-1.352. 3.1, 3.2, 3.3.3

[13] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to
answer open-domain questions. In ACL, 2017. 4.2.1

[14] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to
answer open-domain questions. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada, 2017. Association for Computational Linguistics. doi: 10.18653/
v1/P17-1171. URL https://aclanthology.org/P17-1171. 5.1

[15] Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-Guang Lou, and Feng Jiang.
Retrack: A flexible and efficient framework for knowledge base question answering. In
ACL, 2021. 4.1, 4.3, 4.3

[16] Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and Tenggou Wang. Outlining and
filling: Hierarchical query graph generation for answering complex questions over knowl-

76

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2022.acl-long.559
https://aclanthology.org/2022.acl-long.559
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/P17-1171

edge graph. ArXiv, abs/2111.00732, 2021. 4.3

[17] Louis Clouatre, Philippe Trempe, Amal Zouaq, and Sarath Chandar. MLMLM: Link
prediction with mean likelihood masked language model. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pages 4321–4331, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.
378. URL https://aclanthology.org/2021.findings-acl.378. 3.2

[18] Rajarshi Das, Manzil Zaheer, Dung Ngoc Thai, Ameya Godbole, Ethan Perez, Jay Yoon
Lee, Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning
for natural language queries over knowledge bases. In EMNLP, 2021. 4.1, 4.3, 4.3

[19] Rajarshi Das, Ameya Godbole, Ankita Rajaram Naik, Elliot Tower, Robin Jia, Manzil Za-
heer, Hannaneh Hajishirzi, and Andrew McCallum. Knowledge base question answering
by case-based reasoning over subgraphs. In ICML, 2022. 4.3

[20] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive
entity retrieval. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=5k8F6UU39V. 3.2

[21] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 2.1, 3.1

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/
N19-1423. 1.1, 2.1, 2.2.1, 2.2.3, 2.1

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.
4.2.2, 4.3, 6.3.1

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423. 5.1

[25] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. In Adam Tauman Kalai and Mehryar Mohri,

77

https://aclanthology.org/2021.findings-acl.378
https://openreview.net/forum?id=5k8F6UU39V
https://openreview.net/forum?id=5k8F6UU39V
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

editors, COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June
27-29, 2010. Omnipress, 2010. URL http://colt2010.haifa.il.ibm.com/
papers/COLT2010proceedings.pdf#page=265. 6.3.2

[26] Sarah Elhammadi, Laks VS Lakshmanan, Raymond Ng, Michael Simpson, Baoxing Huai,
Zhefeng Wang, and Lanjun Wang. A high precision pipeline for financial knowledge
graph construction. In Proceedings of the 28th international conference on computational
linguistics, pages 967–977, 2020. 1

[27] Anna Fensel, Zaenal Akbar, Elias Kärle, Christoph Blank, Patrick Pixner, and Andreas
Gruber. Knowledge graphs for online marketing and sales of touristic services. Informa-
tion, 11(5):253, 2020. 1

[28] Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom
Kwiatkowski. Entities as experts: Sparse memory access with entity supervision. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4937–4951, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.400. URL https://www.aclweb.
org/anthology/2020.emnlp-main.400. 2.1

[29] Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
FewRel 2.0: Towards more challenging few-shot relation classification. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 6250–6255, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1649. URL https://www.aclweb.
org/anthology/D19-1649. (document), 2.3.2, 2.1

[30] Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press,
2007. 6.1

[31] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.
6.3.2

[32] Yu Gu and Yu Su. Arcaneqa: Dynamic program induction and contextualized encoding
for knowledge base question answering. ArXiv, abs/2204.08109, 2022. 4.3, 4.3

[33] Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su.
Beyond iid: three levels of generalization for question answering on knowledge bases. In
Proceedings of the Web Conference 2021, pages 3477–3488, 2021. 4.1, 4.3, 6.1, 6.2

[34] Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding
language models to real-world environments. ArXiv preprint, abs/2212.09736, 2022. URL
https://arxiv.org/abs/2212.09736. 6.1, 6.3.1

[35] Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su. Knowledge base question answering:
A semantic parsing perspective. arXiv preprint arXiv:2209.04994, 2022. 4.1

[36] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:

78

http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
https://www.aclweb.org/anthology/2020.emnlp-main.400
https://www.aclweb.org/anthology/2020.emnlp-main.400
https://www.aclweb.org/anthology/D19-1649
https://www.aclweb.org/anthology/D19-1649
https://arxiv.org/abs/2212.09736

Retrieval-augmented language model pre-training. arXiv preprint arXiv:2002.08909,
2020. 5.1, 5.3.2

[37] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 1024–
1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html. 2.2.2

[38] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-
art evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 4803–4809, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1514. URL https:
//www.aclweb.org/anthology/D18-1514. 2.3.2

[39] Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji rong Wen. Improving multi-
hop knowledge base question answering by learning intermediate supervision signals.
Proceedings of the 14th ACM International Conference on Web Search and Data Min-
ing, 2021. 4.3

[40] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. 2.2.6

[41] E. Prud hommeaux. Sparql query language for rdf. 2011. 4.1

[42] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and
Jure Leskovec. Strategies for pre-training graph neural networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
HJlWWJSFDH. 2.2.6

[43] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021. (document), 3.1, 3.4.1, 3.3

[44] Srinivasan Iyer, Sewon Min, Yashar Mehdad, and Wen-tau Yih. RECONSIDER: Im-
proved re-ranking using span-focused cross-attention for open domain question answer-
ing. In Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 1280–
1287, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.100. URL https://aclanthology.org/2021.naacl-main.100.
5.3.2

[45] Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for
question answering. arXiv preprint arXiv:2012.04584, 2020. URL https://arxiv.
org/abs/2012.04584. 5.1

[46] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative mod-

79

https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://www.aclweb.org/anthology/D18-1514
https://www.aclweb.org/anthology/D18-1514
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://aclanthology.org/2021.naacl-main.100
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584

els for open domain question answering. In Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics: Main Vol-
ume, pages 874–880, Online, 2021. Association for Computational Linguistics. URL
https://aclanthology.org/2021.eacl-main.74. 1.1.2, 3.3.3, 4.2.1, 4.2.3,
4.3, 5.1, 5.3, 5.3.1, 5.3.2

[47] Kelvin Jiang, Dekun Wu, and Hui Jiang. Freebaseqa: A new factoid qa data set matching
trivia-style question-answer pairs with freebase. In NAACL, 2019. 4.1, 4.3

[48] Zhengbao Jiang, Jun Araki, Donghan Yu, Ruohong Zhang, Wei Xu, Yiming Yang, and
Graham Neubig. Learning relation entailment with structured and textual information. In
Automated Knowledge Base Construction, 2020. 1.3

[49] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 2019. 4.2.2, 5.2.2

[50] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large
scale distantly supervised challenge dataset for reading comprehension. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1601–1611, Vancouver, Canada, 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.
org/P17-1147. 5.3

[51] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question
answering. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 6769–6781, Online, 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https:
//aclanthology.org/2020.emnlp-main.550. 3.3.2, 4.2.1, 4.2.2, 4.3, 4.3.1,
5.1, 5.2.1, 5.2.2, 2, 5.3.1

[52] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowl-
edge graphs. Advances in neural information processing systems, 31, 2018. 3.2

[53] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015. URL http://arxiv.org/abs/1412.6980. 3.4.1, 6.3.2

[54] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=SJU4ayYgl. 2,
5.3.5

[55] Adrian Kochsiek and Rainer Gemulla. Parallel training of knowledge graph embedding
models: a comparison of techniques. Proceedings of the VLDB Endowment, 15(3):633–
645, 2021. (document), 3.2

[56] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina

80

https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl

Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question
answering research. Transactions of the Association for Computational Linguistics, 7:
452–466, 2019. doi: 10.1162/tacl a 00276. URL https://aclanthology.org/
Q19-1026. 5.3

[57] Yunshi Lan and Jing Jiang. Query graph generation for answering multi-hop complex
questions from knowledge bases. In ACL, 2020. 4.3, 4.3

[58] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.
acl-main.703. 4.2.3

[59] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html. 5.1, 5.3.2

[60] Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad, and Wen-tau Yih. Ef-
ficient one-pass end-to-end entity linking for questions. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
6433–6441, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.522. URL https://aclanthology.org/2020.
emnlp-main.522. 4.1

[61] Jimmy J. Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, Ro-
drigo Nogueira, and David R. Cheriton. Pyserini: A python toolkit for reproducible in-
formation retrieval research with sparse and dense representations. Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2021. 4.3

[62] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. Joint knowledge
graph completion and question answering. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022. 6.1

[63] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019. 2.2.3, 2.3.1, 2.1

[64] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. Entity-duet neural

81

https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/2020.emnlp-main.522
https://aclanthology.org/2020.emnlp-main.522

ranking: Understanding the role of knowledge graph semantics in neural information
retrieval. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 2395–2405, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1223. URL
https://aclanthology.org/P18-1223. 1

[65] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7. 2.3.1, 5.3.1

[66] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han,
and Weizhu Chen. Reader-guided passage reranking for open-domain question an-
swering. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pages 344–350, Online, 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.findings-acl.29. URL https://aclanthology.org/2021.
findings-acl.29. 5.3.2

[67] Sewon Min, Danqi Chen, Luke Zettlemoyer, and Hannaneh Hajishirzi. Knowledge
guided text retrieval and reading for open domain question answering. arXiv preprint
arXiv:1911.03868, 2019. URL https://arxiv.org/abs/1911.03868. 5.1,
5.2.1, 5.3.2

[68] Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko,
Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unified open-
domain question answering with structured and unstructured knowledge. arXiv preprint
arXiv:2012.14610, 2020. URL https://arxiv.org/abs/2012.14610. 5.3.2,
5.3.4

[69] R OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023. 7

[70] Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stanislav Peshterliev, Dmytro Okhonko,
M. Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified repre-
sentations of structured and unstructured knowledge for open-domain question answering.
In NAACL-HLT, 2022. 4.1, 4.3, 4.3

[71] Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer
Singh, and Noah A. Smith. Knowledge enhanced contextual word representations. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D19-1005. URL https://www.aclweb.org/
anthology/D19-1005. 2.1, 2.3.1, 2.1

[72] Peng Qi, Haejun Lee, Tg Sido, and Christopher Manning. Answering open-domain ques-
tions of varying reasoning steps from text. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 3599–3614, Online and Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.emnlp-main.292. URL https://aclanthology.org/

82

https://aclanthology.org/P18-1223
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2021.findings-acl.29
https://aclanthology.org/2021.findings-acl.29
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/2012.14610
https://www.aclweb.org/anthology/D19-1005
https://www.aclweb.org/anthology/D19-1005
https://aclanthology.org/2021.emnlp-main.292
https://aclanthology.org/2021.emnlp-main.292
https://aclanthology.org/2021.emnlp-main.292

2021.emnlp-main.292. 4.3.2

[73] Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang.
Rnnlogic: Learning logic rules for reasoning on knowledge graphs. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-
7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
tGZu6DlbreV. 6.1

[74] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. RocketQA: An optimized training approach
to dense passage retrieval for open-domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 5835–5847, Online, 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.466. URL
https://aclanthology.org/2021.naacl-main.466. 5.1

[75] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. https://s3-
us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language understanding paper.pdf, 2018. 2.1

[76] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019. 2.1

[77] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019. URL
https://arxiv.org/abs/1910.10683. 1.1, 2.1, 3.2, 3.3.3, 3.4.1, 4.2.3, 4.2.4,
4.3, 5.2.3, 5.3.1, 6.3.1

[78] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas,
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL
https://aclanthology.org/D16-1264. 5.3.1

[79] Michael Ringgaard, Rahul Gupta, and Fernando CN Pereira. Sling: A framework for
frame semantic parsing. arXiv preprint arXiv:1710.07032, 2017. 2.3.1

[80] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack
into the parameters of a language model? In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 5418–5426, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
437. URL https://aclanthology.org/2020.emnlp-main.437. 5.1, 5.3.2

[81] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25
and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009. 3.1,
3.3.2, 4.2.2

[82] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David Sontag.
Learning a health knowledge graph from electronic medical records. Scientific reports, 7

83

https://aclanthology.org/2021.emnlp-main.292
https://aclanthology.org/2021.emnlp-main.292
https://aclanthology.org/2021.emnlp-main.292
https://openreview.net/forum?id=tGZu6DlbreV
https://openreview.net/forum?id=tGZu6DlbreV
https://aclanthology.org/2021.naacl-main.466
https://arxiv.org/abs/1910.10683
https://aclanthology.org/D16-1264
https://aclanthology.org/2020.emnlp-main.437

(1):1–11, 2017. 1

[83] Devendra Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping,
William L. Hamilton, and Bryan Catanzaro. End-to-end training of neural retrievers for
open-domain question answering. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 6648–6662, Online, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.519. URL
https://aclanthology.org/2021.acl-long.519. 5.3.2

[84] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 6.1

[85] Apoorv Saxena, Aditay Tripathi, and Partha Pratim Talukdar. Improving multi-hop ques-
tion answering over knowledge graphs using knowledge base embeddings. In ACL, 2020.
6.1

[86] Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge
graph completion and question answering. In ACL, 2022. (document), 3.1, 3.2, 3.3, 4.1,
4.3, 6.1

[87] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In Euro-
pean Semantic Web Conference, pages 593–607. Springer, 2018. 2.1

[88] Haitian Sun, Tania Bedrax-Weiss, and William W. Cohen. Pullnet: Open domain question
answering with iterative retrieval on knowledge bases and text. ArXiv, abs/1904.09537,
2019. 4.1, 4.3

[89] Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and William W.
Cohen. Faithful embeddings for knowledge base queries. arXiv: Learning, 2020. 4.3

[90] Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuanjing Huang, and
Zheng Zhang. Colake: Contextualized language and knowledge embedding. arXiv
preprint arXiv:2010.00309, 2020. 2.3.1

[91] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019. URL https://openreview.net/forum?id=HkgEQnRqYQ. 2.1,
3.2, 6.1, 6.1, 6.3.2

[92] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv preprint
arXiv:2004.02984, 2020. 2.3.3

[93] Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex
questions. In NAACL, 2018. 4.1, 4.3

[94] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge
base and text inference. In Proceedings of the 3rd Workshop on Continuous Vector

84

https://aclanthology.org/2021.acl-long.519
https://openreview.net/forum?id=HkgEQnRqYQ

Space Models and their Compositionality, pages 57–66, Beijing, China, July 2015. As-
sociation for Computational Linguistics. doi: 10.18653/v1/W15-4007. URL https:
//aclanthology.org/W15-4007. 3.1

[95] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org, 2016. URL
http://proceedings.mlr.press/v48/trouillon16.html. 3.2, 3.3, 6.1,
6.2, 6.3.2

[96] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. Composition-
based multi-relational graph convolutional networks. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020. URL https://openreview.net/forum?id=BylA_C4tPr.
2.2.2

[97] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fer-
gus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–
6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 1.1, 2.1, 3.1

[98] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=rJXMpikCZ. 2.1, 2.2.2, 5.2.2, 5.2.3, 5.3.1, 5.3.6

[99] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and
R. Devon Hjelm. Deep graph infomax. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=rklz9iAcKQ. 5.3.5

[100] Pat Verga, Haitian Sun, Livio Baldini Soares, and William W Cohen. Facts as experts:
Adaptable and interpretable neural memory over symbolic knowledge. arXiv preprint
arXiv:2007.00849, 2020. 2.1

[101] Pat Verga, Haitian Sun, Livio Baldini Soares, and William Cohen. Adaptable and inter-
pretable neural memoryover symbolic knowledge. In NAACL, 2021. 4.3

[102] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014. 3.1, 4.1, 5.2.1

[103] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014. 2.3.1

85

https://aclanthology.org/W15-4007
https://aclanthology.org/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=BylA_C4tPr
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ

[104] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. Multi-
task feature learning for knowledge graph enhanced recommendation. In The world wide
web conference, pages 2000–2010, 2019. 1

[105] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple contrastive
knowledge graph completion with pre-trained language models. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 4281–4294, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.295. URL https://aclanthology.
org/2022.acl-long.295. 3.2

[106] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing
Zhou, Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep
learning on graphs. arXiv preprint arXiv:1909.01315, 2019. 2.3.1

[107] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li,
and Jian Tang. KEPLER: A unified model for knowledge embedding and pre-trained
language representation. Transactions of the Association for Computational Linguistics,
9:176–194, 2021. doi: 10.1162/tacl a 00360. URL https://aclanthology.org/
2021.tacl-1.11. 2.1, 2.3.1, 3.1, 3.4.1, 3.2, 6.1

[108] Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage
BERT: A globally normalized BERT model for open-domain question answering. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 5878–5882, Hong Kong, China, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1599. URL https://aclanthology.org/
D19-1599. 5.2.1

[109] Zhiguo Wang, Patrick K. L. Ng, Ramesh Nallapati, and Bing Xiang. Retrieval, re-ranking
and multi-task learning for knowledge-base question answering. In EACL, 2021. 4.3

[110] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Hug-
gingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019. URL https://arxiv.org/abs/1910.03771. 5.3.1

[111] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771, 2019. 2.3.1

[112] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Ya-
sunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong,
Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caim-
ing Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu.
Unifiedskg: Unifying and multi-tasking structured knowledge grounding with text-to-text

86

https://aclanthology.org/2022.acl-long.295
https://aclanthology.org/2022.acl-long.295
https://aclanthology.org/2021.tacl-1.11
https://aclanthology.org/2021.tacl-1.11
https://aclanthology.org/D19-1599
https://aclanthology.org/D19-1599
https://arxiv.org/abs/1910.03771

language models. arXiv preprint arXiv:2201.05966, 2022. 4.2.4

[113] Wenhan Xiong, Xiang Lorraine Li, Srinivasan Iyer, Jingfei Du, Patrick Lewis,
William Yang Wang, Yashar Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, and
Barlas Oğuz. Answering complex open-domain questions with multi-hop dense retrieval.
International Conference on Learning Representations, 2021. 4.3.2

[114] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. 5.3.5

[115] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6575. 3.1, 3.2, 6.1, 6.1, 6.3.2

[116] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base reasoning. Advances in neural information processing systems, 30, 2017.
6.1

[117] Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph comple-
tion. arXiv preprint arXiv:1909.03193, 2019. 2.1, 3.1, 6.1

[118] Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. Rng-kbqa:
Generation augmented iterative ranking for knowledge base question answering. In Pro-
ceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
2022. 1, 4.1, 4.3, 4.3

[119] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing
via staged query graph generation: Question answering with knowledge base. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1321–1331, Beijing, China, July 2015. Association for Computa-
tional Linguistics. doi: 10.3115/v1/P15-1128. URL https://aclanthology.org/
P15-1128. 4.1, 4.3.1

[120] Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh.
The value of semantic parse labeling for knowledge base question answering. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 201–206, 2016. 4.1, 4.3, 6.2

[121] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-
revised convolutional network. In Joint European conference on machine learning and
knowledge discovery in databases, pages 378–393. Springer, 2020. 1.3

[122] Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao Yu, Shuohang Wang, Yichong Xu,
Xiang Ren, Yiming Yang, and Michael Zeng. KG-FiD: Infusing knowledge graph in
fusion-in-decoder for open-domain question answering. In Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

87

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://aclanthology.org/P15-1128
https://aclanthology.org/P15-1128

pages 4961–4974, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.340. URL https://aclanthology.org/2022.
acl-long.340. 1.3

[123] Donghan Yu, Chenguang Zhu, Yiming Yang, and Michael Zeng. Jaket: Joint pre-training
of knowledge graph and language understanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 11630–11638, 2022. 1.3

[124] Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang,
Yiqun Hu, William Yang Wang, Zhiguo Wang, and Bing Xiang. DecAF: Joint de-
coding of answers and logical forms for question answering over knowledge bases.
In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=XHc5zRPxqV9. 1.3, 6.1, 6.3.1

[125] Wenhao Yu, Chenguang Zhu, Yuwei Fang, Donghan Yu, Shuohang Wang, Yichong Xu,
Michael Zeng, and Meng Jiang. Dict-BERT: Enhancing language model pre-training with
dictionary. In Findings of the Association for Computational Linguistics: ACL 2022,
pages 1907–1918, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-acl.150. URL https://aclanthology.org/
2022.findings-acl.150. 1.3

[126] Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen.
Subgraph retrieval enhanced model for multi-hop knowledge base question answering. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5773–5784, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.396. URL https://
aclanthology.org/2022.acl-long.396. 4.3

[127] Ruohong Zhang, Yau-Shian Wang, Yiming Yang, Donghan Yu, Tom Vu, and Likun Lei.
Long-tailed extreme multi-label text classification by the retrieval of generated pseudo
label descriptions. In Findings of the Association for Computational Linguistics: EACL
2023, pages 1092–1106, Dubrovnik, Croatia, May 2023. Association for Computational
Linguistics. URL https://aclanthology.org/2023.findings-eacl.81.
1.3

[128] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embed-
dings. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 2731–
2741, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
d961e9f236177d65d21100592edb0769-Abstract.html. 3.2

[129] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. ERNIE:
Enhanced language representation with informative entities. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1441–1451, Flo-
rence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1139. URL https://www.aclweb.org/anthology/P19-1139. 2.1, 2.3.1,
2.1

88

https://aclanthology.org/2022.acl-long.340
https://aclanthology.org/2022.acl-long.340
https://openreview.net/forum?id=XHc5zRPxqV9
https://aclanthology.org/2022.findings-acl.150
https://aclanthology.org/2022.findings-acl.150
https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2023.findings-eacl.81
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html
https://www.aclweb.org/anthology/P19-1139

[130] Mantong Zhou, Zhouxing Shi, Minlie Huang, and Xiaoyan Zhu. Knowledge-aided open-
domain question answering. arXiv preprint arXiv:2006.05244, 2020. URL https:
//arxiv.org/abs/2006.05244. 5.3.2

[131] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance
cpu-gpu hybrid system for node embedding. In The World Wide Web Conference, pages
2494–2504, 2019. (document), 3.2

89

https://arxiv.org/abs/2006.05244
https://arxiv.org/abs/2006.05244

	1 Introduction
	1.1 Thesis Overview
	1.1.1 KG Acquisition Through Text
	1.1.2 Answering Text Questions with KGs

	1.2 Preliminary
	1.3 Related Publications

	I KG Acquisition Through Text
	2 Joint Pre-training of Knowledge Graph Embedding and Language Modeling
	2.1 Introduction
	2.2 Method
	2.2.1 Definition
	2.2.2 Knowledge Module
	2.2.3 Language Module
	2.2.4 Solving the Cyclic Dependency
	2.2.5 Entity Context Embedding Memory
	2.2.6 Pre-training
	2.2.7 Fine-tuning

	2.3 Experiment
	2.3.1 Basic Settings
	2.3.2 Downstream Tasks
	2.3.3 Computation Analysis

	2.4 Summary

	3 Retrieval-Enhanced Generative Model for KG Completion
	3.1 Introduction
	3.2 Preliminary
	3.3 Method
	3.3.1 KG to Text Passages
	3.3.2 Retrieval
	3.3.3 Generation
	3.3.4 Training Process

	3.4 Experiment
	3.4.1 Basic Setting
	3.4.2 Main Results
	3.4.3 Ablation Study

	3.5 Summary

	II Answering Text Question with KGs
	4 Joint Generation of Answers and Logical Queries
	4.1 Introduction
	4.2 Method
	4.2.1 KG Linearization
	4.2.2 Retrieval
	4.2.3 Reading
	4.2.4 Joint Decoding Answers and Logical Forms

	4.3 Experiment
	4.3.1 Main Result
	4.3.2 Ablation Study
	4.3.3 Error Analysis

	4.4 Summary

	5 KG-Enhanced Passage Reranking for Answer Generation
	5.1 Introduction
	5.2 Method
	5.2.1 Construct Passage Graph using KG
	5.2.2 Passage Retrieving & Stage-1 Reranking
	5.2.3 Joint Stage-2 Reranking and Answer Generation
	5.2.4 Improving Efficiency via Intermediate Representation in Stage-2 Reranking
	5.2.5 Analysis on Computational Complexity

	5.3 Experiment
	5.3.1 Implementation Details
	5.3.2 Baseline Methods
	5.3.3 Preliminary Analysis
	5.3.4 Main Results
	5.3.5 Ablation Study
	5.3.6 FLOPs Computation

	5.4 Summary

	6 Benchmarking the Impacts of KG Completion on Question Answering
	6.1 Introduction
	6.2 Benchmark Construction
	6.3 Methods and Evaluation Metrics
	6.3.1 For Question Answering
	6.3.2 For KG Completion

	6.4 Experiments
	6.5 Summary

	7 Concluding Remarks and Future Work
	Bibliography

