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Abstract

Nowadays it becomes more and more challenging to tackle the quickly growing

amounts of data to extract useful information for making informed decisions. Even

with the recent advancements in deep learning, however, the question of how to

make use of such enormous data for a diverse set of tasks in an efficient and scalable

manner has yet to be resolved.

To undertake the two main aspects of representation learning from data, namely

efficiency and scalability, this thesis presents techniques to deal with diverse tasks

including sentiment analysis, handwriting recognition and document intelligence

where data appear in different forms: multimodal data that includes text, audio, and

videos, noisy scanned handwriting images, or long documents with differing layouts.

Due to the availability and potential issues of their data and the distinct objectives of

the associated tasks, there is no one-size-fits-all solution but a specific approach to

each problem. In addition, in dealing with large-scale data, this thesis also presents

some approximation techniques and analysis to estimate the essential components,

learn effective representation and speed up the learning process, including matrix

trace approximation with a parallel non-adaptive method, spectrum approximation

in Gaussian Processes training, and task-based mixture-of-experts models for large-

scale multitask neural machine translation models. Throughout those works, this

thesis introduces novel approaches for tackling issues that are presented in the data

and the tasks, learning efficient representation, and approximating models for prac-

tical scalability in the real world.
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Chapter 1

Introduction

Given a task in machine learning, e.g. regression or classification, typically the main approach is

to learn a function ỹ = f(x) from input data x. In the context of supervised learning, there are

equivalent labels y to build a loss for optimization of them against the representation just learned

ỹ. There has been no conclusive definition of representation that the models learn from data.

The typical understanding is that representation is the result obtained by a learning model upon

input data. As a result, representation can be ỹ or can also be any intermediate learned product

between ỹ and x.

In an alternative setting which is more and more common nowadays where a huge amount

of data are presented, the labels y are not–or in many cases, too prohibitively expensive to be–

provided, themodels have to apply approaches that are different from the fully-supervised setting

above for the representation. In many cases, such representations are rich enough for generating

fake data that look realistic (Goodfellow et al., 2014; Song et al., 2023; Song and Ermon, 2019).

In practice, data can appear in many forms such as numbers, text, images, audio, videos,

or any combination of them. Whether there is supervision in the setting, the main problem of

machine learning methods is to obtain the efficient representation–from such data–that serves to

solve the task. Despite the optimistic prospect and many advancements in machine learning and

artificial intelligence in general, however, there has been a lack of a systematic methodology on

how to properly learn the efficient representation for task-oriented objectives, how to interpret

such representation, and importantly, how to scale up the solutions to enterprise-scale levels.

This dissertation helps answer part of those questions in the context of different applications

such as multimodal sentiment analysis, handwriting recognition, document understanding and

multitask machine translation.
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1.1 Thesis Statement

Whether there is supervision or not in a given learning problem, at the heart of the approach is

the representation learning. How to undertake this task properly is an open question, however.

This thesis aims to address twomain aspects of representation learning via multiple problems and

data, which are efficiency and scalability. Each focus of the two aspects plays an essential role

in machine learning solutions in the real world that require not only satisfactory representation

to solve the task suitably but also a versatile model that can save resources and be implemented

in a large-scale deployment. Those two aspects are not opposing each other, but in fact, can

complement each other to make up a consistent and practical solution.

1.2 Thesis Contributions

At a high level, the contributions that this thesis has made include the following topics.

• Novel models in learning multimodal data in sentiment analysis problem by applying the

classical translation techniques to cross-domain data.

• Implementing a robust real-world handwriting recognition system in the face of limited

and exceedingly noisy data

• Theory of sample complexity efficiency in approximatemodels in popularmachine learning

problems of Gaussian Processes and Implicit Trace Estimation.

• Implementing a scalable transformer-based pre-train model with multimodal approximate

self-attention that can deal efficaciously with long input with diverse layouts.

• Introducing new task-based techniques that effectively link the application level and the

infrastructure level of Mixture-of-Experts in the transformer-based architectures, given the

discordant nature in data of multitask learning problems.

• Throughout many works, it is shown that efficiency and scalability can be integral parts of

a practical performant solution.

1.3 Thesis Layout

As stated, there are two main parts to this thesis which are the efficiency and scalability of repre-

sentation learning. As a result, the layout is following those topics sequentially. Note that it does

not necessarily means each chapter only covers only efficiency or only scalability. But rather

there are several models that concurrently contribute to both topics.

• In Section 2.1, we present our work on representation learning in the context of multi-

modal sentiment analysis (Pham et al., 2019), in which input data has three types: text,

2



audio, and videos. Unlike other approaches, we cast our problem as a cross-domain trans-

lation problem where one modality is trained to translate into another modality, e.g. text

to audio or audio to video. With three modalities, we simply apply a hierarchical approach:

two phases of translation are undertaken, in which two modalities are involved in the first

phase and the third modality is added in the next phase. The embedded representation of

the translationmodel is the output that we used for sentiment analysis. Our modality trans-

lation model, namely MCTN, outperformed various state-of-the-art methods on different

benchmark datasets. In addition, MCTN has a big advantage in that only one modality is

required for inference or prediction, unlike any other methods. This part is mainly based

on our AAAI publication (Pham et al., 2019).

• Section 2.2 deals with image data but requires textual output. The particular task is hand-

writing recognition, in the context where input data is limited. In addition, the task is even

more challenging since the data has lots of random noise. We break down this problem

into two sequential small problems that are object detection and text recognition. In object

detection, unlike common approaches for color images with multiple objects, we cast our

problem as a text spotting problem, in which the model is trained to detect text from the

background and noises. Furthermore, the input is converted to grayscale images to simplify

the task. For text recognition, we explore two methods that are word-based and character-

based recognition. Both of them are based on convolutional neural networks and each of

them has pros and cons in our data. We also compare our whole pipeline’s performance to

the contemporary state-of-the-art methods. Along with experimental results, we discuss in

detail the rationale of choices that were made for the pipeline and its components, as well

as the reasons and hypothesis for the results. This work is based on our ICFHR 2020 (Pham

et al., 2020).

• Section 2.3 introduces a novel pre-train model where multimodal positional encoding is

employed along with the important approximate self-attention with multimodal context

information. We explore the pros and cons of the traditional textual-based attention with

the novel distance-based one and also examine the possibilities of combining the best of

both types in a single attention head module. The pre-trained model is nevertheless simple,

which is based on the popular Mask Language Model (Devlin et al., 2019) and thus easy to

train and deploy. Our experiments show that our new models outperform the state-of-the-

art models in both criteria: performance by having higher scores in document and token

classifications, and computation by having a much larger input limit of 4096 tokens instead

of 512 on the identical hardware and infrastructure platform. Thiswork is under submission

to a natural language processing conference.

• Section 3.1 and Section 3.2 deal with different methods of approximating the model for big

data input, which is typically the case in practice, where deep neural networks are em-

ployed. On one hand, Section 3.1 introduces a sparse approximation based on spectrum
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in the context of Gaussian Processes, which are known to suffer from the heavy computa-

tion. On the other hand, Section 3.2 analyses the practicality of the non-adaptive Hutch++

method, which has the best tradeoff in terms of performance and running time based on var-

ious benchmarks including synthetic and real datasets. Those approximation methods offer

another angle into big data approaches besides other traditional methods which deal with

algorithms, neural network architectures, operating systems, or hardware. Those works

are based on our recent NeurIPS publications (Hoang et al., 2020; Jiang et al., 2021) and are

different from other chapters in that they emphasize more on theoretical contributions of

sample complexity, which is the main concern in practical models.

• Section 3.3 proposes new approaches to representation learning in a large-scale deployment

where Mixture-of-Experts (MoE) models are being used to boost the transformer-based

models. The main contribution is to integrate the task-based information from the top level

of the technology stack with the lower-level MoE layers. To enable that, it also designs a set

of task adapters to follow up with task-based MoE routed data into proper adapters, which

are learned to group similar task data and separate dissimilar data, in order to alleviate the

interference problems that are prevalent in multitask learning. This work is in preparation

for submission.

At the high level, those aforementioned sections sequentially address the two main topics of

this thesis, namely efficiency (Chapter 2) and scalability (Chapter 3) of representation learning.

Such allocation is, however, rather descriptive than disconnected. As those sections are unfolded

in their main contents, it is achievable to take advantage of scalability techniques to help with

task-oriented representation learning to have a more practical and scalable approach without

sacrificing the capabilities. Consequently, those two topics help convey the argument that this

thesis conveys that in practice, one should plan the two topics collectively to have the best of

both in a single solution.
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Chapter 2

Efficiency of Task-Oriented

Representation Learning

Without knowledge about the task including its data, it is almost impossible to design a efficient

model to solve the task. Likewise, since there are too many diverse tasks, as well as data types

ranging from various fields, there is no one-size-fits-all approach. On the contrary, with such

expert knowledge acquired, the representation learning from data can be efficiently learned and

used to optimize towards the final target using machine learning optimization techniques.

The following sections will enumerate the representation learning techniques for different

tasks ranging from sentiment analysis, handwriting recognition to rich document understanding.

Data for those tasks are also available divergently includingmultimodal data with text, audio, and

video, noisy scanned handwritten images, and multimodal long documents with diverse formats.
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2.1 LearningMultimodalRepresentation for SentimentAnal-

ysis

The first task addresses an important problem of sentiment analysis, which is an essential part

of interactive platforms such as forums or social networks. The problem here is complex since it

contains not only text but also videos and audio. The intra- and inter-interactions among those

three modalities require an architecture that is capable of modeling such complexities in both

efficient and swift manners. The model in the following sections possesses those two capabilities.

2.1.1 Problem and Movitation

Figure 2.1: The representation learning of multimodal data is complicated due to not only intra-

modal but also cross-modal interactions between different modalities.

Given a complicated set of multimodal data, the question is how to effectively learn the rep-

resentation from it. This question is not totally clear yet, because it is not based on the context of

usage. In more detail, how do we evaluate that representation after learning? As a result, when

we want to learn a representation of any data, it has to be put in concrete evaluation metrics,

such as in the form of a downstream task, such as multimodal sentiment analysis, an open re-

search problem in machine learning, and natural language processing which involves identifying

a speaker’s opinion based on given data (Pang et al., 2002).

This problem is one of the cornerstones of unsupervised learning where we learn the repre-

sentation directly from the data. Techniques used for representation learning vary depending on

the specific downstream tasks, but they do all share the same characteristics that this is a very

challenging problem. For example, text-only sentiment analysis through words, phrases, and

their compositionality can be found to be insufficient for inferring sentiment content from spo-

ken opinions (Morency et al., 2011), especially in the presence of rich nonverbal behaviors which

can accompany language (Shaffer, 2018). In another example for the newly emerged task of doc-

ument understanding (or in some contexts known as document intelligence), text-only models
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show the disadvantages compared to the ones using text with more modalities, e.g. text+layout

or text+layout+images (e.g. in (Xu et al., 2020a,b)). Finally, as an illustration, Figure 2.1 shows

the inherent complication of dealing with learning with multimodal data where the complex in-

teractions amongst them are usually not straightforward.

To address this problem, we propose a method of how to effectively learn the representation

of data given different data sources and objectives. As a specific case, in the challenging task of

multimodal sentiment analysis, where we have to make use of all modalities including text, audio,

and videos, and in turn effectively produce the fused representation of such sources after being

aligned, it will be shown that the simple model of Sequence-to-Sequence (Sutskever et al., 2014),

which is the combination of 2 recurrent neural networks (RNNs) with different lengths originally

used for machine translation because it can model the sequential relationship of languages and

able to learn the alignment between two different sets of representations. We will be referring to

this model as Seq2Seq.

Bimodal Cyclic Translations
Joint Representation Visual Modality

Today was a great day!
Language Modality forward

backward

forward

backward

Sentiment Prediction

Joint Representation

Visual Modality

Today was a great day!
Language Modality forward

Trimodal Cyclic Translations

backward

forward

backward

Sentiment Prediction

Acoustic Modality

Figure 2.2: Learning robust joint representations via multimodal cyclic translations. Top: cyclic

translations from a source modality (language) to a target modality (visual). Bottom: the repre-

sentation learned between language and vision is further translated into the acoustic modality,

forming the final joint representation. In both cases, the joint representation is then used for

sentiment prediction.

We draw inspiration from the recent success of Seq2Seq models for unsupervised representa-

tion learning (Tu et al., 2016; ?). We propose the Multimodal Cyclic Translation Network model

(MCTN) to learn robust joint multimodal representations by translating between modalities. Fig-

ure 2.2 illustrates these translations between two or three modalities. Our method is based on the

key insight that translation from a source modality S to a target modality T results in an interme-

diate representation that captures joint information between modalities S and T . MCTN extends
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this insight using a cyclic translation loss involving both forward translations from source to tar-

get modalities, and backward translations from the predicted target back to the source modality.

Together, we call thesemultimodal cyclic translations to ensure that the learned joint representa-
tions capture maximal information from both modalities. We also propose a hierarchical MCTN

to learn joint representations between a source modality and multiple target modalities. MCTN

is trainable end-to-end with a coupled translation-prediction loss which consists of (1) the cyclic

translation loss, and (2) a prediction loss to ensure that the learned joint representations are task-

specific (i.e. multimodal sentiment analysis). Another advantage of MCTN is that once trained

with multimodal data, we only need data from the source modality at test time to infer the joint

representation and label. As a result, MCTN is completely robust to test time perturbations or

missing information on other modalities.

In more detail, the intermediate representation of this model offers interpretable information

for the sentiment task if we cast the learning of multiple modalities as cross-domain translation

tasks. Likewise, one of our contributions is that we use this model to translate not between

texts/languages but between two different modalities, e.g. text and audio, of different domains.

In addition, if we arrange two Seq2Seq models in a hierarchical manner, where we have two

phases of cross-domain translation, we can achieve state-of-the-art (SoTA) results on multiple

multimodal datasets. One key advantage of this simple technique is the simplicity and ease of

prediction, unlike all other methods, in which we only need only 1 input modality, e.g. either text

or audio.

2.1.2 Related Work

Early work on sentiment analysis focused primarily on written text (Pang and Lee, 2008; Pang

et al., 2002; Socher et al., 2013). Recently, multimodal sentiment analysis has gainedmore research

interest (Baltrusaitis et al., 2017). Probably the most challenging task in multimodal sentiment

analysis is learning a joint representation of multiple modalities. Earlier work used fusion ap-

proaches such as concatenation of input features (Lazaridou et al., 2015; Ngiam et al., 2011). Sev-

eral neural network models have also been proposed to learn joint multimodal representations.

(Liang et al., 2018) presented a multistage approach to learn hierarchical multimodal representa-

tions. The Tensor Fusion Network (Zadeh et al., 2017) and its approximate low-rank model (Liu

et al., 2018) presented methods based on Cartesian-products to model unimodal, bimodal and

trimodal interactions. The Gated Multimodal Embedding model (Chen et al., 2017) learns an on-

off switch to filter noisy or contradictory modalities. Other models have been proposed using

attention (Cheng et al., 2017) and memory mechanisms (Zadeh et al., 2018) to learn multimodal

representations.

In addition to purely supervised approaches, generative methods based on Generative Adver-

sarial Networks, or GANs (Goodfellow et al., 2014) have attracted significant interest in learning

joint distributions between two or more modalities (Donahue et al., 2016; Li et al., 2017). An-
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other method for multimodal data is to develop conditional generative models (Kingma et al.,

2014; Pandey and Dukkipati, 2017) and learn to translate one modality to another. Generative-

discriminative objectives have been used to learn either joint (Kiros et al., 2014; Pham et al., 2018)

or factorized (Tsai et al., 2018) representations. Our work takes into account the sequential de-

pendency of modality translations and explores the effect of a cyclic translation loss on modality

translations.

Finally, there has been some progress in accounting for noisy or missing modalities at test

time. One general approach is to infer the missing modalities by modeling the probabilistic rela-

tionships among different modalities. Srivastava and Salakhutdinov (2014) proposed using Deep

Boltzmann Machines to jointly model the probability distribution over multimodal data. Sam-

pling from the conditional distributions over each modality allows for test-time inference in the

presence of missing modalities. Sohn et al. (2014) trained Restricted Boltzmann Machines to min-

imize the variation of information between modality-specific latent variables. Recently, neural

models such as cascaded residual autoencoders (Tran et al., 2017), deep adversarial learning (Cai

et al., 2018), or multiple kernel learning (Mario Christoudias et al., 2010) have also been proposed

for these tasks. It was also found that training with modalities dropped at random can improve

the robustness of joint representations (Ngiam et al., 2011). These methods approximately infer

the missing modalities before prediction (Collell et al., 2017; Hill et al., 2014), leading to possible

error compounding, because the final results have to go through the prediction, which adds (and

intensify) the current errors of the previous inference, which is sometimes uncontrollable. On the

other hand, our method, described in Section 2.1.3 remains fully robust to missing or perturbed

modalities during testing.

2.1.3 ProposedModel: MultimodalCyclic TransalationNetwork (MCTN)

2.1.3.1 Problem Formulation

A multimodal dataset consists of N labeled video segments defined as X = (Xl,Xv,Xa) for

the language, visual, and acoustic modalities respectively. The dataset is indexed by N such that

X = (X1,X2, ...,XN)whereXi = (Xl
i,X

v
i ,X

a
i ), 1 ≤ i ≤ N . The corresponding labels for these

N segments are denoted as y = (y1, y2, ..., yN), yi ∈ R. Following prior work, the multimodal

data is synchronized by aligning the input based on the boundaries of eachword and zero-padding

each example to obtain time-series data of the same length (Liang et al., 2018). The ith sample is

given by Xl
i = (wi

(1),wi
(2), ...,wi

(L)) where wi
(ℓ)

stands for the ℓth word and L is the length of

each example (after padding). To accompany the language features, we also have a sequence of

visual featuresXv
i = (vi

(1),vi
(2), ...,vi

(L)) and acoustic featuresXa
i = (ai

(1), ai
(2), ..., ai

(L)).
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2.1.3.2 Learning Joint Representation

Learning a joint representation between two modalitiesXS
andXT

is defined by a parametrized

function fθ that returns an embedding EST = fθ(X
S,XT ), where S stands for source and T

for target. From there, another function gw is learned that predicts the label given this joint

representation: ŷ = gw(EST ).
Most work follow this framework during both training and testing (Liang et al., 2018; Liu

et al., 2018; Tsai et al., 2018; Zadeh et al., 2018). During training, the parameters θ and w are

learned by empirical risk minimization over paired multimodal data and labels in the training set

(XS
tr,X

T
tr,ytr):

EST = fθ(X
S
tr,X

T
tr), (2.1)

ŷtr = gw(EST ), (2.2)

θ∗, w∗ = argmin
θ,w

E [ℓy(ŷtr,ytr)]. (2.3)

for a suitable choice of loss function ℓy over the labels (tr denotes training set).

During testing, paired multimodal data in the test set (XS
te,X

T
te) are used to infer the label (te

denotes test set):

EST = fθ∗(X
S
te,X

T
te), (2.4)

ŷte = gw∗(EST ). (2.5)

2.1.3.3 Multimodal Cyclic Translation Network

Multimodal Cyclic Translation Network (MCTN) is a neural model that learns robust joint rep-

resentations by modality translations. Figure 2.3 shows a detailed description of MCTN for two

modalities. Our method is based on the key insight that translation from a source modality XS

to a target modalityXT
results in an intermediate representation that captures joint information

between modalitiesXS
andXT

, but using only the source modalityXS
as input during test time.

To ensure that our model learns joint representations that retain maximal information from

all modalities, we use a cycle consistency loss (Zhu et al., 2017) during modality translation. This

method can also be seen as a variant of back-translation which has been recently applied to style

transfer (Prabhumoye et al., 2018; Zhu et al., 2017) and unsupervised machine translation (Lample

et al., 2018). We use back-translation in a multimodal environment where we encourage our

translation model to learn informative joint representations but with only the source modality

as input. The cycle consistency loss for modality translation starts by decomposing function fθ
into two parts: an encoder fθe and a decoder fθd . The encoder takes in XS

as input and returns

a joint embedding ES→T :

ES→T = fθe(X
S), (2.6)

10



Source  

Target 

Seq2Seq

Forward
Translation

Forward
Translation

 Backward 
Translation 

Backward 
Translation 

Sentiment

Sentiment 
Prediction 

1

23

4

5

Encoder RNN

Decoder RNN

Embedded Representation Prediction RNN

Figure 2.3: MCTN architecture for two modalities: the source modalityXS
and the target modal-

ity XT
. The joint representation ES⇆T is obtained via a cyclic translation between XS

and XT
.

Next, the joint representation ES⇆T is used for sentiment prediction. The model is trained end-

to-end with a coupled translation-prediction objective. At test time, only the source modalityXS

is required.

which the decoder then transforms into target modalityXT
:

X̂T = fθd(ES→T ), (2.7)

following which the decoded modality T is translated back into modality S:

ET→S = fθe(X̂
T ), X̂S = fθd(ET→S). (2.8)

The joint representation is learned by using a Seq2Seq model with attention (Bahdanau et al.,

2014) that translates source modality XS
to a target modality XT

. While Seq2Seq model has

been predominantly used for machine translation, we extend its usage to the realm of multimodal

machine learning.

The hidden state output of each time step is based on the previous hidden state along with

the input sequence and is constructed using a recurrent network. In more detail, for a single

source input sampleXS
i , i ∈ [1, 2 . . . N ], the recurring encoding happens at every single timestep

(each one is corresponding to a word) in the sequential order, in which the previous hidden state

(denoted as h) is used as part of the encoding input for the very next timestep:

h
(ℓ)
i = RNN(h

(ℓ−1)
i ,X

S, (ℓ)
i ) ∀ℓ ∈ [1, 2, . . . , L], (2.9)

where X
S, (ℓ)
i is the encoded representation of XS

i at timestep ℓ. The final encoder’s output for

that particular sample is the concatenation of all hidden states of the encoding RNN,

ES→T = [h
(1)
i ,h

(2)
i , ...,h

(L)
i ], (2.10)
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where L is the length of the source input XS
i . We eliminate the index i from the LHS of Equa-

tion 2.10 and in the following equations of this subsection to avoid cluttering.

The decoder maps the representation ES→T into the target modality XT
. This is performed

by decoding each token XT
t at a time based on ES→T and all previous decoded tokens, which is

formulated as (in terms of probability):

p(XT ) =
L∏

ℓ=1

p(XT
ℓ |ES→T ,X

T
1 , ...,X

T
ℓ−1). (2.11)

MCTN accepts variable-length inputs ofXS
andXT

, and is trained to maximize the translational

condition probability p(XT |XS). The best translation sequence is then given by

X̂T = argmax
XT

p(XT |XS). (2.12)

We use the traditional beam search approach (?) for decoding.

To obtain the joint representation for multimodal prediction, we only use the forward trans-

lated representation during inference to remove the dependency on the target modality at test

time. If the cyclic translation is used, we denote the translated representation with the symbol

⇆:

ES⇆T = ES→T . (2.13)

ES⇆T is then used for sentiment prediction:

ŷ = gw(ES⇆T ). (2.14)

2.1.3.4 Coupled Translation-Prediction Objective

Training is performed with paired multimodal data and labels in the training set (XS
tr,X

T
tr,ytr).

The first two losses are the forward translation loss Lt defined as

Lt = E[ℓXT (X̂T ,XT )], (2.15)

and the cycle consistency loss Lc defined as

Lc = E[ℓXS(X̂S,XS)] (2.16)

where ℓXT and ℓXS represent the respective loss functions. We use theMean Squared Error (MSE)

between the ground truth and translated modalities. Finally, the prediction loss Lp is defined as

Lp = E[ℓy(ŷ,y)] (2.17)

with a loss function ℓy defined over the labels.
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Our MCTN model is trained end-to-end with a coupled translation-prediction objective func-

tion defined as

L = λtLt + λcLc + Lp, (2.18)

where λt, λt are weighting hyperparameters. MCTN parameters are learned by minimizing this

objective function

θ∗e , θ
∗
d, w

∗ = argmin
θe,θd,w

[λtLt + λcLc + Lp]. (2.19)

Parallel multimodal data is not required at test time. Inference is performed using only the

source modalityXS
:

ES⇆T = fθ∗e (X
S), (2.20)

ŷ = gw∗(ES⇆T ). (2.21)

This is possible because the encoder fθ∗e has been trained to translate the source modalityXS
into

a joint representation ES⇆T that captures information from both source and target modalities.

2.1.3.5 Hierarchical MCTN for Three Modalities

We extend the MCTN in a hierarchical manner to learn joint representations frommore than two

modalities. Figure 2.4 shows the case for three modalities. The hierarchical MCTN starts with a

source modality XS
and two target modalities XT1

and XT2
. To learn joint representations, two

levels of modality translations are performed. The first level learns a joint representation fromXS

and XT1
using multimodal cyclic translations as defined previously. At the second level, a joint

representation is learned hierarchically by translating the first representation ES→T1 into XT2
.

For more than three modalities, the modality translation process can be repeated hierarchically.

Two Seq2Seq models are used in the hierarchical MCTN for three modalities, denoted as

encoder-decoder pairs (f 1
θe
, f 1

θd
) and (f 2

θe
, f 2

θd
). A multimodal cyclic translation is first performed

between source modalityXS
and the first target modalityXT1

. The forward translation is defined

as

ES→T1 = f 1
θe(X

S
tr), X̂

T1
tr = f 1

θd
(ES→T1), (2.22)

and followed by the decoded modalityXT1
being translated back into modalityXS

:

ET1→S = f 1
θe(X̂

T1
tr ), X̂

S
tr = f 1

θd
(ET1→S). (2.23)

A second hierarchical Seq2Seq model is applied on the outputs of the first encoder f 1
θe
:

ES⇆T1 = ES→T1 , (2.24)

E(S⇆T1)→T2 = f 2
θe(ES⇆T1), X̂

T2
tr = f 2

θd
(E(S⇆T1)→T2). (2.25)
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Figure 2.4: Hierarchical MCTN for three modalities: the source modality XS
and the target

modalities XT1
and XT2

. The joint representation ES⇆T1 is obtained via a cyclic translation be-

tween XS
and XT1

, then further translated into XT2
. Next, the joint representation of all three

modalities, E(S⇆T1)→T2 , is used for sentiment prediction. The model is trained end-to-end with a

coupled translation-prediction objective. At test time, only the source modality XS
is required

for prediction.
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The joint representation between modalities XS
, XT1

and XT2
is now E(S⇆T1)→T2 . It is used for

sentiment prediction via a recurrent neural network via regression method.

Training the hierarchical MCTN involves computing a cycle consistent loss for modality T1,

given by the respective forward translation lossLt1 and the cycle consistency lossLc1 . We do not

use a cyclic translation loss when translating from ES⇆T1 toX
T2

since the ground truth ES⇆T1 is

unknown, and so only the translation loss Lt2 is computed. The final objective for hierarchical

MCTN is given by

L = λt1Lt1 + λc1Lc1 + λt2Lt2 + Lp. (2.26)

We emphasize that for MCTN with three modalities, only a single source modality XS
is

required at test time. Therefore, MCTN has a significant advantage over existing models since it

is robust to noisy or missing target modalities.

2.1.4 Experimental Setup

In this section, we describe our experimental methodology to evaluate the joint representations

learned by MCTN
1

2.1.4.1 Dataset and Input Modalities

We use the CMUMultimodal Opinion-level Sentiment Intensity dataset (CMU-MOSI) which con-

tains 2199 video segments each with a sentiment label in the range [−3,+3]. To be consistent

with prior work, we use 52 segments for training, 10 for validation, and 31 for testing. The same

speaker does not appear in both training and testing sets to ensure that our model learns speaker-

independent representations. We also run experiments on ICT-MMMO (Wöllmer et al., 2013) and

YouTube (Morency et al., 2011) which consist of online review videos annotated for the sentiment.

2.1.4.2 Multimodal Features

Following previous work (Liang et al., 2018), GloVe word embeddings (Pennington et al., 2014),

Facet (iMotions, 2017), and COVAREP (Degottex et al., 2014) features are extracted for the lan-

guage, visual and acoustic modalities respectively. The detail for each modality is as follows.

Language: We used 300-dimensional Glove word embeddings trained on 840 billion tokens

from the common crawl dataset (Pennington et al., 2014). These word embeddings were used to

embed a sequence of individual words from video segment transcripts into a sequence of word

vectors that represent spoken text.

Visual: The library Facet (iMotions, 2017) is used to extract a set of visual features including

facial action units, facial landmarks, head pose, gaze tracking, and HOG features (Zhu et al.,

1
Our source code is released at https://github.com/hainow/MCTN.
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Dataset CMU-MOSI

Model Test Inputs Acc(↑) F1(↑) MAE(↓) Corr(↑)
RF {ℓ, v, a} 56.4 56.3 - -

SVM {ℓ, v, a} 71.6 72.3 1.100 0.559

THMM {ℓ, v, a} 50.7 45.4 - -

EF-HCRF {ℓ, v, a} 65.3 65.4 - -

EF-LDHCRF {ℓ, v, a} 64.0 64.0 - -

MV-HCRF {ℓ, v, a} 44.8 27.7 - -

MV-LDHCRF {ℓ, v, a} 64.0 64.0 - -

CMV-HCRF {ℓ, v, a} 44.8 27.7 - -

CMV-LDHCRF {ℓ, v, a} 63.6 63.6 - -

EF-HSSHCRF {ℓ, v, a} 63.3 63.4 - -

MV-HSSHCRF {ℓ, v, a} 65.6 65.7 - -

DF {ℓ, v, a} 74.2 74.2 1.143 0.518

EF-LSTM {ℓ, v, a} 74.3 74.3 1.023 0.622

EF-SLSTM {ℓ, v, a} 72.7 72.8 1.081 0.600

EF-BLSTM {ℓ, v, a} 72.0 72.0 1.080 0.577

EF-SBLSTM {ℓ, v, a} 73.3 73.2 1.037 0.619

MV-LSTM {ℓ, v, a} 73.9 74.0 1.019 0.601

BC-LSTM {ℓ, v, a} 75.2 75.3 1.079 0.614

TFN {ℓ, v, a} 74.6 74.5 1.040 0.587

GME-LSTM(A) {ℓ, v, a} 76.5 73.4 0.955 -

MARN {ℓ, v, a} 77.1 77.0 0.968 0.625

MFN {ℓ, v, a} 77.4 77.3 0.965 0.632

LMF {ℓ, v, a} 76.4 75.7 0.912 0.668

RMFN {ℓ, v, a} 78.4 78.0 0.922 0.681

MCTN (Ours) {ℓ} 79.3 79.1 0.909 0.676

Table 2.1: Sentiment prediction results on CMU-MOSI. Best results are highlighted in bold. MCTN

outperforms the current state-of-the-art across most evaluation metrics and uses only the lan-

guage modality during testing.

2006). These visual features are extracted from the full video segment at 30Hz to form a sequence

of facial gesture measures throughout time.

Acoustic: The software COVAREP (Degottex et al., 2014) is used to extract acoustic features

including 12 Mel-frequency cepstral coefficients, pitch tracking and voiced/unvoiced segmenting

features (Drugman and Alwan, 2011), glottal source parameters (Alku, 1992; Alku et al., 2002,

1997; Childers and Lee, 1991; Drugman et al., 2012), peak slope parameters andmaxima dispersion

quotients (Kane and Gobl, 2013). These visual features are extracted from the full audio clip of
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Dataset ICT-MMMO YouTube

Model Test Inputs Acc(↑) F1(↑) Acc(↑) F1(↑)
RF {ℓ, v, a} 70.0 69.8 33.3 32.3

SVM {ℓ, v, a} 68.8 68.7 42.4 37.9

THMM {ℓ, v, a} 53.8 53.0 42.4 27.9

EF-HCRF {ℓ, v, a} 50.0 50.3 44.1 43.8

EF-LDHCRF {ℓ, v, a} 73.8 73.1 45.8 45.0

MV-HCRF {ℓ, v, a} 36.3 19.3 27.1 19.7

MV-LDHCRF {ℓ, v, a} 68.8 67.1 44.1 44.0

CMV-HCRF {ℓ, v, a} 36.3 19.3 30.5 14.3

CMV-LDHCRF {ℓ, v, a} 51.3 51.4 42.4 42.0

EF-HSSHCRF {ℓ, v, a} 50.0 51.3 37.3 35.6

MV-HSSHCRF {ℓ, v, a} 62.5 63.1 44.1 44.0

DF {ℓ, v, a} 65.0 58.7 45.8 32.0

EF-LSTM {ℓ, v, a} 66.3 65.0 44.1 43.6

EF-SLSTM {ℓ, v, a} 72.5 70.9 40.7 41.2

EF-BLSTM {ℓ, v, a} 63.8 49.6 42.4 38.1

EF-SBLSTM {ℓ, v, a} 62.5 49.0 37.3 33.2

MV-LSTM {ℓ, v, a} 72.5 72.3 45.8 43.3

BC-LSTM {ℓ, v, a} 70.0 70.1 45.0 45.1

TFN {ℓ, v, a} 72.5 72.6 45.0 41.0

MARN {ℓ, v, a} 71.3 70.2 48.3 44.9

MFN {ℓ, v, a} 73.8 73.1 51.7 51.6

MCTN (Ours) {ℓ} 81.3 80.8 51.7 52.4

Table 2.2: Sentiment prediction results on ICT-MMMO and YouTube. Best results are highlighted

in bold. MCTN outperforms the current state-of-the-art across most evaluation metrics and uses

only the language modality during testing.

each segment at 100Hz to form a sequence that represents variations in tone of voice over an

audio segment.

2.1.4.3 Multimodal Alignment

We perform forced alignment using P2FA (Yuan and Liberman, 2008) to obtain the exact utterance

time-stamp of each word. This allows us to align the three modalities together. Since words are

considered the basic units of language we use the interval duration of each word utterance as

one time-step. We acquire the aligned video and audio features by computing the expectation of

their modality feature values over the word utterance time interval (Liang et al., 2018).
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2.1.4.4 Evaluation Metrics

For parameter optimization on CMU-MOSI, the prediction loss function is set as the Mean Abso-

lute Error (MAE): ℓp(ŷtrain,ytrain) = |ŷtrain − ytrain|. We report MAE and Pearson’s correlation

r. We also perform sentiment classification on CMU-MOSI and report binary accuracy (Acc) and

F1 score (F1). On ICT-MMMO and YouTube, we set the prediction loss function as categorical

cross-entropy and report sentiment classification and F1 score. For all metrics, higher values

indicate stronger performance, except MAE where lower values indicate stronger performance.

2.1.4.5 Baseline Models
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Figure 2.5: Variations of our models: (a) MCTN Bimodal with cyclic translation, (b) Simple Bi-

modal without cyclic translation, (c) No-Cycle Bimodal with different inputs of the samemodality

pair, and without cyclic translation, (d) Double Bimodal for two modalities without cyclic trans-

lation, with two different inputs (of the same pair), (e) MCTN Trimodal with input from (a), (f)

Simple Trimodal for three modalities, with input as a joint representation taken from previous

MCTN for two modalities from (b) or (c), (g) Double Trimodal with input from (d), (h) Concat

Trimodal which is similar to (b) but with input as the concatenation of 2 modalities, (i) Paired

Trimodal using one encoder and 2 separate decoders for modality translations. Legend: black
modality is ground truth, red (“hat”) modality represents translated output, blue (“hat”) modality

is target output from previous translation outputs, and yellow box denotes concatenation.

We compare to the following multimodal models: RMFN (Liang et al., 2018) uses a multistage

approach to learn hierarchical representations (current state-of-the-art on CMU-MOSI). LMF (Liu
et al., 2018) approximates the expensive tensor products in TFN (Zadeh et al., 2017) with effi-

cient low-rank factors. MFN (Zadeh et al., 2018) synchronizes sequences using a multimodal

gated memory. EF-LSTM concatenates multimodal inputs and uses a single LSTM (Hochreiter

and Schmidhuber, 1997).

We also implement the Stacked, a.k.a. EF-SLSTM (Graves et al., 2013), Bidirectional, a.k.a.

EF-BLSTM (Schuster and Paliwal, 1997), and Stacked Bidirectional (EF-SBLSTM) LSTMs, as well

as the following baselines: BC-LSTM (Poria et al., 2017), EF-HCRF (Quattoni et al., 2007), EF/MV-
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Dataset CMU-MOSI

Model Translation Acc F1 MAE Corr

MCTN Bimodal (2.5a)

V ⇆ A 53.1 53.2 1.420 0.034

T ⇆ A 76.4 76.4 0.977 0.636

T ⇆ V 76.8 76.8 1.034 0.592

MCTN Trimodal (2.5e)

(V ⇆ A) → T 56.4 56.3 1.455 0.151

(T ⇆ A) → V 78.7 78.8 0.960 0.650

(T ⇆ V ) → A 79.3 79.1 0.909 0.676

Table 2.3: MCTN performance improves as more modalities are introduced for cyclic translations

during training.

LDHCRF (Morency et al., 2007),MV-HCRF (Song et al., 2012), EF/MV-HSSHCRF (Song et al., 2013),

MV-LSTM (Rajagopalan et al., 2016), DF (Nojavanasghari et al., 2016), SAL-CNN (Wang et al.,

2016), C-MKL (Poria et al., 2015), THMM (Morency et al., 2011), SVM (Cortes and Vapnik, 1995;

Park et al., 2014) and RF (Breiman, 2001).

2.1.5 Results and Discussion

This section presents and discusses our experimental results.

2.1.5.1 Comparison with Existing Work

Q1: How does MCTN compare with existing state-of-the-art approaching for multimodal sentiment
analysis?

We compare MCTN with previous models. From Table 2.1, MCTN using language as the

source modality achieves new start-of-the-art results on CMU-MOSI for multimodal sentiment

analysis. State-of-the-art results are also achieved on ICT-MMMO and YouTube (Table 2.2). It

is important to note that MCTN only uses language during testing, while other baselines use all

three modalities.

2.1.5.2 Adding More Modalities

Q2: What is the impact of increasing the number of modalities during training for MCTN with cyclic
translations?

We run experiments with MCTN using combinations of two or three modalities with cyclic

translations. From Table 2.3, we observe that adding more modalities improves performance, in-

dicating that the joint representations learned are leveraging the information from more input

modalities. This also implies that cyclic translations are a viable method to learn joint repre-

sentations from multiple modalities since little information is lost from adding more modality
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Dataset CMU-MOSI

Model Translation Acc(↑) F1(↑) MAE(↓) Corr(↑)

MCTN Bimodal (2.5a)

V ⇆ A 53.1 53.2 1.420 0.034

T ⇆ A 76.4 76.4 0.977 0.636

T ⇆ V 76.8 76.8 1.034 0.592

Simple Bimodal (2.5b)

V → A 55.4 55.5 1.422 0.119

T → A 74.2 74.2 0.988 0.616

T → V 75.7 75.6 1.002 0.617

No-Cycle Bimodal (2.5c)

V → A, A → V 55.4 55.5 1.422 0.119

T → A, A → T 75.5 75.6 0.971 0.629

T → V, V → T 75.2 75.3 0.972 0.627

Double Bimodal (2.5d)

[V → A,A → V ] 57.0 57.1 1.502 0.168

[T → A,A → T ] 72.3 72.3 1.035 0.578

[T → V, V → T ] 73.3 73.4 1.020 0.570

Table 2.4: Bimodal variations results on CMU-MOSI dataset. MCTN Bimodal with cyclic trans-

lations performs best.

translations. Another observation is that using language as the source modality always leads to

the best performance, which is intuitive since the language modality contains the most discrim-

inative information for sentiment (Zadeh et al., 2017).

In addition, we visually inspect the joint representations learned fromMCTN as we add more

modalities during training (see Table 2.5). The joint representations for each segment in CMU-

MOSI are extracted from the best-performing model for each number of modalities and then

projected into two dimensions via the t-SNE algorithm (van der Maaten and Hinton, 2008). Each

point is colored red or blue depending on whether the video segment is annotated for positive or

negative sentiment. From Figure 2.6, we observe that the joint representations become increas-

ingly separable as more modalities are added when the MCTN is trained. This is consistent with

increasing discriminative performance with more modalities (as seen in Table 2.3).

2.1.5.3 Ablation Studies

We use several models to test our design decisions. Specifically, we evaluate the impact of cyclic

translations, modality ordering, and hierarchical structure.

For bimodal MCTN, we design the following ablation models shown in the left half of Fig-

ure 2.5: (a) MCTN bimodal between XS
and XT

, (b) simple bimodal by translating from XS
to

XT
without cyclic loss, (c) no-cycle bimodal which does not use cyclic translations but rather

performs two independent translations between XS
and XT

, (d) double bimodal: two Seq2Seq

models with different inputs (of the same modality pair) and then using the concatenation of the
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Dataset CMU-MOSI

Model Translation Acc(↑) F1(↑) MAE(↓) Corr(↑)

MCTN Trimodal (2.5e)

(V ⇆ A) → T 56.4 56.3 1.455 0.151

(T ⇆ A) → V 78.7 78.8 0.960 0.650

(T ⇆ V ) → A 79.3 79.1 0.909 0.676

Simple Trimodal (2.5f)

(V → T ) → A 54.1 52.9 1.408 0.040

(V → A) → T 52.0 51.9 1.439 0.015

(A → V ) → T 56.6 56.7 1.593 0.067

(A → T ) → V 54.1 54.2 1.577 0.028

(T → A) → V 74.3 74.4 1.001 0.609

(T → V ) → A 74.3 74.4 0.997 0.596

Double Trimodal (2.5g) [T → V, V → T ] → A 73.3 73.1 1.058 0.578

Concat Trimodal (2.5h)

[V,A] → T 55.0 54.6 1.535 0.176

[A, T ] → V 73.3 73.4 1.060 0.561

[T, V ] → A 72.3 72.3 1.068 0.576

A → [T, V ] 55.5 55.6 1.617 0.056

T → [A, V ] 75.7 75.7 0.958 0.634

[T,A] → [T, V ] 73.2 73.2 1.008 0.591

[T, V ] → [T,A] 74.1 74.1 0.999 0.607

Paired Trimodal (2.5i) [T → A, T → V ] 73.8 73.8 1.022 0.611

Table 2.5: Trimodal variations results on CMU-MOSI dataset. MCTN (hierarchical) with cyclic

translations performs best.

joint representations ES→T and ET→S as the final embeddings.

For trimodal MCTN, we design the following ablation models shown in the right half of Fig-

ure 2.5: (e) MCTN trimodal which uses the proposed hierarchical translations between XS
, XT1

and XT2
, (f) simple trimodal based on a translation from XS

to XT1
without cyclic translations,

(g) double trimodal extended from (d) which does not use cyclic translations but rather performs

two independent translations betweenXS
andXT1

, (h) concat trimodal which does not perform

a first level of cyclic translation but directly translates the concatenated modality pair [XS,XT1 ]

intoXT2
, and finally, (i) paired trimodal which uses two separate decoders on top of the interme-

diate representation.

Q3: What is the impact of cyclic translations in MCTN?
The bimodal results are in Table 2.4. The models that employ cyclic translations (Figure 2.5(a))

outperform all other models. The trimodal results are in Table 2.5 and we make a similar obser-

vation: Figure 2.5(e) with cyclic translations outperforms the baselines (f), (g) and (h). The gap

for the trimodal case is especially large. This implies that using cyclic translations is crucial for

learning discriminative joint representations. Our intuition is that using cyclic translations: (1)
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(a) MCTN Bimodal without cyclic
translations

(b) MCTN Bimodal with cyclic

translations

(c) MCTN Trimodal with cyclic

translations

Figure 2.6: t-SNE visualization of the joint representations learned by MCTN. Legend: red: videos
with negative sentiment, blue: videoswith positive sentiment. Addingmodalities and using cyclic

translations improve discriminative performance and lead to increasingly separable representa-

tions.

encourages the model to enforce symmetry between the representations from source and target

modalities thus adding a source of regularization, and (2) ensures that the representation retains

maximal information from all modalities.

Q4: What is the effect of using two Seq2Seq models instead of one shared Seq2Seq model for cyclic
translations?

We compare Figure 2.5(c), which uses one Seq2Seq model for cyclic translations with Fig-

ure 2.5(d), which uses two separate Seq2Seq models: one for forward translation and one for

backward translation. We observe from Table 2.4 that (c) > (d), so using one model with shared

parameters is better. This is also true for hierarchical MCTN: (f) > (g) in Table 2.5. We hypoth-

esize that this is because training two deep Seq2Seq models requires more data and is prone to

overfitting. Also, it does not learn only a single joint representation but instead two separate

representations.

Q5: What is the impact of varying source and target modalities for cyclic translations?
From Tables 2.3, 2.4 and 2.5, we observe that language contributes most towards the joint

representations. For bimodal cases, combining language with visual is generally better than com-

bining the language and acoustic modalities. For hierarchical MCTN, presenting language as the

source modality leads to the best performance, and a first level of cyclic translations between

language and visual is better than between language and audio. On the other hand, only translat-

ing between visual and acoustic modalities dramatically decreases performance. Further adding

language as a target modality for hierarchical MCTN will not help much as well. Overall, for the

MCTN, language appears to be the most discriminative modality making it crucial to be used as

the source modality during translations.

Q6: What is the impact of using two levels of translations instead of one level when learning from
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three modalities?
Our hierarchical MCTN is shown in Figure 2.5(e). In Figure 2.5(h), we concatenate twomodal-

ities as input and use only one phase of translation. From Table 2.5, we observe that (e) > (h):

both levels of modality translations are important in the hierarchical MCTN. We believe that rep-

resentation learning is easier when the task is broken down recursively: using two translations

each between a single pair of modalities, rather than a single translation between all modalities.

2.1.6 Conclusion

This section investigated learning joint representations via cyclic translations from source to

target modalities. During testing, we only need the source modality for prediction which ensures

robustness to noisy or missing target modalities. We demonstrate that cyclic translations and

Seq2Seq models are useful for learning joint representations in multimodal environments. In

addition to achieving new state-of-the-art results on three datasets, our model learns increasingly

discriminative joint representations with more input modalities while maintaining robustness to

all target modalities.
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2.2 LearningRobustRepresentation forHandwritingRecog-

nition with Limited Data

Unlike the multimodal setting in the previous problem, we deal with yet another type of challeng-

ing data that is noisily scanned images of forms that are handwritten. Despite the advent of deep

learning, especially in computer vision, the general handwriting recognition problem is far from

solved. Previous works have achieved significant results using HiddenMarkovModel (HMM) and

Long Short TermMemory (LSTM). In this work, we design a novel approach to tackle the problem

of offline handwritten form recognition in constrained settings. By using a generated synthetic

dataset augmented with a Generative Adversarial Network-based image refinement technique

and breaking down the problem into two consecutive modules of word segmentation and word

classification, we show that our system outperforms other competitors in two modes: training

with and without using any subset of the target dataset, using IAM-DB and an in-house dataset.

Our approach can also be extended to the related problem of printed document recognition.

2.2.1 Introduction and Motivation

Another well-known yet unsolved problem that involves complex data is offline Handwriting

Recognition, (HWR) (Plamondon and Srihari, 2000), in which we simply have access to an image

of the final handwritten words and without any other cues such as in the online setting (Graves

et al., 2009), where themodel can adaptively learn and predict based on the progress of the writing

on-the-way. Likewise, related to the previous sentiment analysis task (Section 2.1), this task

requires the representation learning to map between 2 different modalities: given a scanned,

noisy image of handwriting text (i.e. an image), we train a model able to recognize the content

(i.e. text).

Despite the significant demand, there are few efficient methods able to tackle this problem

due to the difficulty of designing a holistic solution suitable across various forms of input. The

first challenge is to segment forms (i.e. images containing lines) properly to facilitate the recog-

nition process. The most common method is to use a heuristics line-level segmentation (Graves

et al., 2009; Liwicki et al., 2007). However, this is often impractical since words and characters

are not usually handwritten along straight lines. The second challenge is to build a model capa-

ble of recognizing and generalizing diverse handwriting styles. Furthermore, in some resource-

constrained settings where we have limited access to real data, it is infeasible to manually build

large-scale handwriting recognition datasets such as IAM-DB (Marti and Bunke, 2002), or SD19

(Grother and Hanaoka, 1995). It therefore becomes necessary to find a powerful solution that

does not require a large quantity of real data. This problem is ubiquitous in practice, in that we

only have access to limited data with inherent noise. Typically in such settings, people rely on

commercial systems which are prohibitively expensive, or open APIs such as Google Cloud Vi-
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Figure 2.7: Some samples from 3 different problems. Top: three lines of IAM (Marti and Bunke,

2002) dataset which has handwritten text on blank background; most solutions segment them

into lines without clarifying segmentation quality. Middle: ICDAR (Karatzas et al., 2015) dataset

for scene-text recognition which has printed text with a random background. Bottom: our BHD

dataset which combines the difficulties of the other two: multi-style, unaligned handwritten text

in the whole form (not lines) and noisy background.

sion
2
or Tesseract (Smith, 2007) which typically perform poorly as they are mainly designed for

printed text and for dealing with many languages with a single model.

Furthermore, our dataset is much more difficult than IAM-DB or SD19 as illustrated in Fig-

ure 2.7. First, it has limited and noisy data and annotation. Second, it combines the difficulties of

the classical HWR datasets and scene-text detection and recognition ones. As a result, we mod-

ularize the problem into two stages in order to make it more tractable to train two separate deep

models. In the first stage we employ a object detection model, such as R-FCN (Dai et al., 2016),

to detect words from the background with various types of noise. The resulting segments are

fed into a recognition model in the second stage which can be a word-based or a character-based

model.

2https://cloud.google.com/vision/
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2.2.2 Related Work

For offline HWR, there have been many achievements using the classical HMM-based models

(Bahlmann and Burkhardt, 2004; Bunke and Varga, 2007; Fischer et al., 2012; Hu et al., 2000).

Later, with the advent of deep learning, Recurrent Neural Network based approaches, such as us-

ing LSTM (Hochreiter and Schmidhuber, 1997), gained new successes in this setting (Kang et al.,

2018; Puigcerver, 2017; Voigtlaender et al., 2015). Following this line, there have been also some

other solutions that also employ convolutional neural network (CNN) such as in (Dutta et al.,

2018), and using CNN plus language-based features (Krishnan et al., 2016; Poznanski and Wolf,

2016). However, in comparison to their settings, our variable-sized forms are more challenging

for they include horizontal lines running across the document which contribute to noise since the

text doesn’t necessarily conform to these lines. Furthermore, the content is mixed with other ran-

dom noises such as signatures, stamps, or other unrecognized marks caused by scanners or inks.

Despite such difficult inputs, our model can directly process whole forms properly, in contrast to

these existing solutions that rely on heuristic methods for line-level segmentation.

A closely related problem to our method is segmentation for which there have been some

heuristic (Plamondon and Srihari, 2000) or HMM-based (Zimmermann and Bunke, 2002) meth-

ods. Our model instead relies on deep segmentation frameworks which are usually employed for

object detection tasks (Dai et al., 2016; He et al., 2017; Klambauer et al., 2017; Lin et al., 2017; Red-

mon and Farhadi, 2018). Unlike those methods that learn to predict a regression bounding box

and detect an object at the same time, in our segmentation phase, we reduce the task to a more

tractable problem of only predicting a bounding box covering a word and leave the recognition

job to a downstream task. We retain the order of the words while doing this so as to ensure that

sentence or document-level meaning is retained.

2.2.3 Effective Representation In the Face of Noisy and Limited Data

Our inputs are rectangular images of varying sizes containing handwritten sentences, often in

unaligned lines and with lots of noise and other irrelevant content such as stamps, signatures,

and other types of random noise. Our goal is to recognize those relevant sentences and output

the corresponding texts for further data analysis purposes.

2.2.3.1 Choice of Two-phase Model

As mentioned above, we design a two-phase approach (Figure 2.8) that segments the entire form

into words (in the presence of noisy content) while maintaining their original order and recog-

nizing each word individually. There are many reasons for this approach. First, we have very few

annotated samples, thus the generalizability of our model is benefited from the inductive bias

of the two-stage approach. Second, the difficulties of the forms are unusual. Due to unaligned

texts, it is impossible to segment forms into lines without affecting the content as in other HWR
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Figure 2.8: Our model uses data augmentation to train a segmentation module (locating words

amidst background noise) and word recognition (word or character-based) models.

methods. Furthermore, like scene-text recognition datasets, our forms have many types of noise

(Figure 2.7 and 2.9). Third, this approach is interpretable and easier to train and debug. Finally, it

becomes easier to perform parallel training of the two stages across limited resources, allowing

for better quality control and modularity in design.

2.2.3.2 Word Segmentation

Instead of trying to predict the correct bounding boxes and recognize the words inside simultane-

ously, the word segmentation phase only focuses on drawing correct bounding boxes at the word

level and leaves the recognition job as a downstream task. We choose this design for the following

reasons. First, word-level segmentation is used since separating spaces among words (as opposed

to characters) is much more feasible in practice (especially in cursive handwriting). Second, as

explained previously, line-level segmentation is not preferred since in our setting words are often

not aligned horizontally.

In terms of architecture, sinceHWR is different from object detectionwhere detection is only a

proxy, we exploremultiple options like R-FCN (Dai et al., 2016), Faster R-CNN (Girshick, 2015) and

YOLO-v3 (Redmon and Farhadi, 2018) to identify which kind of architecture is most suited for our

HWR pipeline. Although the core components of those detection methods remain unchanged, it

is worth noting two important changes in adapting suchmethods. First, givenword segmentation

is an intermediate step, we simplify this phase by limiting the number of classes to only 5 (Figure

2.9), with the main goal being extracting the text out of the forms without having to recognize

its content. Second, based on the nature of our dataset, we change the segmentation input to
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Figure 2.9: Illustration of an annotated example with 5 classes where class WORD is the main

focus. Our model can handle noisy forms by localizing unaligned texts, and filtering out other

types of noise to recognize the sentence(s) in the correct order of words. We hide stamps’ contents

for security reasons.

grayscale images with only 1 channel. As a result of these two adjustments, our segmentation

phase is much easier and faster to train compared with their original uses.

2.2.3.3 Word Recognition

For each form, this module takes the bounding boxes (as images) from the Word Segmentation

module as inputs, and outputs a word for each bounding box. Based on the coordinates given by

the Word Segmentation module, we are able to reconstruct the entire sentence from individual

words. And because of the complications of the input forms, we experiment with 3 different

models namely Word Model, Character Model, and CTCSeq2Seq Model, as detailed below.

a) Word Model

The word model is a CNN-based image classification network that uses an augmented Resnet-

18 (He et al., 2016) to predict words from a predefined word vocabulary. Furthermore, due to the

low resolution of our input images, we adjust Resnet-18 to only have a stride size of 1 instead of

2 in the residual blocks. This model is simple but is only capable of predicting words within the

predefined vocabulary of 998 words.

b) Character Model

This model shares its architecture with the Word Model, which enables the benefits of ini-

tializing weights from a pre-trained Word Model, except that it uses a CTC loss (Graves et al.,
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Figure 2.10: Our CTCSeq2Seq model contains 3 core modules: Feature Extraction which is CNN-

based, Encoder, and Decoder that combined form a Seq2Seq model. The encoder uses CTC loss
which helps with alignments of the frames to the outputs.

2009; Liwicki et al., 2007; Voigtlaender et al., 2016) instead of cross-entropy loss. For this reason,

it predicts a sequence of characters instead of a single word at a time. Furthermore, the last fully-

connected layer in Resnet-18 is replaced with a convolutional layer to reshape the output from

H ×W ×D to 1×W/2× C , where C is the cardinality of the character prediction space.

By using CTC, this model has two advantages over Word Model. First, CTC largely reduces

the prediction space from 998 words to 35 alpha-numeric characters (our dataset does not have

the letter “Z"), making it agnostic to word vocabulary size. Second, it enables the model to predict

unseen words.

c) CTCSeq2Seq Model

Our motivation for this model is to learn the embedded latent representation of images that

can be decoded into text. As shown in Figure 2.10, the model can be broken down into 3 main

blocks: Feature Extraction, Encoder, and Decoder. The model loss is the weighted sum of CTC

loss (Encoder) and softmax cross-entropy loss (Decoder). Except for those 3 main modules, there

is an edit-distance-based error module that corrects a predicted out-of-vocabulary word within a

maximum of 2 wrong characters compared to a known word.

c.1) Feature Extraction: This module accepts variable-sized input images, each of which

has a single word. It firstly resizes inputs to the same height but not necessarily to the same

width. Next, it slices each one into small patches of equal widths (as illustrated in Figure 2.12).

Finally, it extracts CNN-based features out of the patches using a custom VGG (Simonyan and
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Zisserman, 2014).

c.2) Encoder: For our encoder, we use a 4-layer bidirectional LSTM that takes inputs from

the Feature Extraction module. Since each input word is segmented into many sequential equal-

height patches, the LSTM can model their relations into a hidden representation. Another key

feature of this module is to have a CTC loss to enforce reconstruction of the original characters

so that the embedded representation is learned effectively.

c.3) Decoder: This module is a 4-layer unidirectional LSTM that consumes the hidden rep-

resentation from the Encoder and has an attention module (Luong et al., 2015) which calculates

the weighted average of each output with the entire input sequence. This mechanism helps the

model learn to focus on more important patches.

In addition, this module uses the softmax cross-entropy loss normalized by the length of

the input, since we have variable-length sequences of patches. Finally, it also predicts among

35 alpha-numeric characters, the same as Character Model (Section 2.2.3.3) which also ignores

punctuation in the datasets.

2.2.4 Experiments

Dataset Type Train Valid Test

Segmentation

Real 2,358 - 1,362

+DA 40,159 - -

Recognition

Real 6,639 3,400 1,249

+DA 660,000 - -

Pipeline Real - - 1,362

Table 2.6: Statistics of BHD dataset. We have 2 types of data (i) Real and (ii) +DA: real images

with data augmentation. For each model, we only have a single test set from real forms, and

the one used for Pipeline evaluation is shared with Segmentation. Data augmentation is a key

preprocessing step to get more samples and styles for training deep models.

2.2.4.1 Dataset

Our in-house BHDdataset, as shown in Table 2.6, comprisesmaintenance logbooks inwhich there

are many aerospace terms or abbreviations that do not appear in the normal English vocabulary.

Each image is grayscale and may contain from 3 to 50 bounding boxes. Moreover, in addition to

the presence of unusual aerospace terms, there are many arbitrary part numbers (e.g., “W308003-

12239-22”). As mentioned earlier, our forms contain multiple horizontal lines, with signatures,

stamps, dates, and other types of noise, making our task even more challenging. Finally, to create
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word vocabulary, we use tf-idf to retrieve the first 1000 words from digitized maintenance

logbooks, then remove 2 outliers to finally have 998 words.

Furthermore, our manual inspection of the BHD dataset reveals that in several cases the

strokes from adjacent words are connected to each other, while in other cases, the characters

in a word are quite far apart, which tempts any object detection model to confuse multiple words

with just one. This makes BHDmore challenging than ICDAR and other scene-text detection and

recognition datasets.

2.2.4.2 Training Data Augmentation

Because we have limited data, and our model contains deep neural networks that are typically

data-hungry, data augmentation is an important technique to increase the effective size of BHD

prior to training and to improve the generalization capability of our models. In particular, we use

two data augmentation techniques for both segmentation and recognition tasks. First, we use

several types of noise including pepper, stroke, and Gaussian noises. Second, we employ local

image transformations that are erosion, dilation, and flipping.

2.2.4.3 Evaluation Metrics

Segmentation: We use the canonical MaP metric (Everingham et al., 2010) to evaluate segmen-

tation performance against our annotation in the BHP real-form test dataset.

Recognition: We use word accuracy (WA) and Character Error Rate (CER) to evaluate our

recognition models. While WA simply calculates the average number of predicted words that ex-

actly match with ground truths, CER is calculated as CER = (D(wgt, wpredict)× 100) / |wgt| (%),

where D(wgt, wpredict) is the minimum Damerau-Levenshtein edit distance (Damerau, 1964) be-

tween the ground-truth word wgt and predicted word wpredict, and |wgt| is the number of charac-

ters in wgt.

Full Pipeline: Our pipeline takes the form of input and outputs a sequence of predicted

words. Therefore we use Word Error Rate (WER) and CER to evaluate performances. For WER,

we treat every word as a character. For CER, we concatenate the sequence of words by inserting

a space between every two words and treating the concatenated sequence as the predicted string.

2.2.4.4 Baselines

Since different models require different sets of annotations (e.g. many HWRmodels expect noise-

free input), we cannot fairly compare our full pipeline performances with many SoTA methods

for HWR. As a result, the only close HWR pipeline we compare our model with is Convolve-

Attend-Spell (Kang et al., 2018) (after it is fine-tuned on the full-pipeline dataset) which has the

capability of accepting the entire form as an input and to some extent is also robust to noise.
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However, we can compare each phase of our pipeline with segmentation and recognition

baselines developed for scene-text detection. For segmentation, we use EAST (Zhou et al., 2017),

PixelLink(Deng et al., 2018) and CRAFT (Baek et al., 2019). In order to have a fair comparison, we

fine-tune EAST and PixelLink
3
(trained on ICDAR 2015 (Karatzas et al., 2015)) and only compare

on the word class, which is the ultimate goal. For recognition, we use MORAN (Luo et al., 2019)

which is pre-trained on synthetic images (Gupta et al., 2016; Jaderberg et al., 2014) and subse-

quently fine-tuned on BHD recognition training data. And last, for the full pipeline, we combine

PixelLink and MORAN, for which the full training codes are available.

2.2.5 Results and Discussion

We compare the performances of our approach to the baselines for the full pipeline, segmentation,

and recognition. We also perform an ablation study on the impact of segmentation on the full

pipeline.

Segmentation Recognition WER(↓) CER(↓)
Convolve-Attend-Spell 38.9 24.1

PixelLink MORAN 80.7 47.4

R-FCN

Word (Ours) 31.5 22.9

CTCSeq2Seq (Ours) 30.1 18.5

Table 2.7: Full pipeline performance of our best model compared to the baselines with the fol-

lowing components: Convolve-Attend-Spell (Kang et al., 2018), PixelLink (Deng et al., 2018),

MORAN (Luo et al., 2019), R-FCN (Dai et al., 2016). Our model significantly outperforms all

the baselines in both WER and CER metrics.

2.2.5.1 Full Pipeline Results

The full pipeline results are shown in Table 2.7. We observe that R-FCN (Dai et al., 2016) in

conjunction with CTCSeq2Seq (both of which are trained on the +DA dataset) yields the best

performance, and significantly outperforms the baseline models.

Furthermore, Figure 2.11 illustrates some qualitative results. The R-FCN is able to filter out

several types of noise in each form and pick out the correct bounding boxes with almost 100%

confidence for all words. Furthermore, our CTCSeq2Seq is able to detect words and characters of

various styles, orientations, and intensities. However, the baseline one makes lots of mistakes in

word localization, which are compounded in the second phase of recognition.

3
The same cannot be done for CRAFT due to its code’s unavailability.
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EAST CRAFT PixelLink R-FCN Faster-RCNN YOLO-v3

AP (↑) 38.9 12.8 81.6 89.0 89.1 86.0

Table 2.8: AP score comparison on the word class (IoU=50%). Our three models significantly

outperform the baselines.

2.2.5.2 Segmentation Results

Figure 2.11: Full pipeline qualitative results of our model R-FCN (Dai et al., 2016) + CTCSeq2Seq

(top) and the baseline PixelLink (Deng et al., 2018) + MORAN (Luo et al., 2019) (bottom). Ours

performs much better in both locating words and recognizing them.

As shown in Table 2.8, our three segmentation models clearly outperform all baseline meth-

ods, especially on EAST and CRAFT. While EAST fails to split large bounding boxes, leading to a

low recall (18.4%), CRAFT’s pre-trained model mistakes printed words for handwritten text and

therefore has a low precision (21.4%). Finally, since PixelLink is trained on BHD, it can achieve a

decent score of 81.6% AP.

Additionally, considering only our models, Table 2.9 shows that data augmentation leads to

improvements on AP for R-FCN (especially for rare categories like Signature or Date). R-FCN
with position-based scores is particularly effective in tackling translation variance (Dai et al.,

2016) for handwriting recognition where the Region-of-Interest (RoI) is fairly small (as seen in

Figure 2.11).

2.2.5.3 Recognition Results

As demonstrated in Table 2.10, our Word Model achieves similar performances to the best per-

former MORAN in both WA and CER given ground-truth bounding boxes. Even being initialized

with Word Model’s pre-trained weights, the Character Model under-performs the other two by a

huge margin. We suspect the reason is that CTC is hard to train, and may require more training

data or more complex techniques.
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Class

R-FCN R-FCN Faster R-CNN YOLO-v3

(Real) (+DA) (+DA) (+DA)

Word 85.8 89.0 89.1 86.0

Signature 67.9 78.2 43.3 40.8

Stamp 86.6 89.9 10.7 84.2

Date 70.1 82.9 24.7 62.9

Noise 18.2 17.4 27.3 15.2

Average 65.7 71.3 39.0 57.8

Table 2.9: AP scores for Segmentation models R-FCN (Dai et al., 2016), Faster R-CNN (Klambauer

et al., 2017), and YOLO v3 (Redmon and Farhadi, 2018). R-FCN significantly outperforms others

in most classes with augmented training data (IoU=50%).

Model Dataset WA (↑) CER(↓)

MORAN

Real 91.7 3.4

+DA 96.4 1.5

Word (Ours)

Real 76.1 20.4

+DA 96.1 2.6

Character (Ours)

Real 5.0 62.8

+DA 76.3 9.7

CTCSeq2Seq (Ours)

Real 87.1 7.8

+DA 94.9 3.2

Table 2.10: Comparison on recognition models (on Recognition dataset) given ground-truth

bounding boxes. Our Word Model and MORAN (Luo et al., 2019) perform the best compared

to others.

2.2.5.4 Ablation Study

We study how different segmentation models affect pipeline performance on the same recogni-

tion model. As shown in Table 2.11, our models perform much better than the baselines, and

CTCSeq2Seq is the best recognition model. As shown in Figure 2.12, CTC loss combined with at-

tention module significantly helps with character recognition, making the CTCSeq2Seq the best

choice for our full pipeline.

And interestingly, CER increases much more than WER when replacing R-FCN with Faster

R-CNN. Our empirical analysis reveals that R-FCN tends to give predictions with higher confi-

dence scores and in difficult cases, it predicts more bounding boxes than Faster R-CNN in the

segmentation phase. Finally, given ground-truth bounding boxes, both WER and CER decrease

but only to a limited extent. This suggests that the segmentation module is not the bottleneck of
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Recognition Segmentation WER(↓) CER(↓)

MORAN

Ground Truth 49.2 25.7

PixelLink 80.7 47.4

Word (Ours)

Ground Truth 15.1 9.5

R-FCN 18.3 13.2

Faster R-CNN 19.1 21.0

CTCSeq2Seq (Ours)

Ground Truth 14.1 8.2

R-FCN 18.9 12.3

Faster R-CNN 19.8 19.5

Table 2.11: Impact of different Segmentation methods on the full pipeline (on Pipeline dataset).

Our models clearly outperform the baselines, and CER is much higher if we replace R-FCN by

Faster R-CNN.

Author, 3/22/19, Filename.ppt | 17

Figure 2.12: Attention map results of CTCSeq2seq model for 2 words: INSPECTED and

SERVICEABLE. The upper image is raw input the lower one is the corresponding attention

map. Brighter squares indicate higher weights (focusing more in decoding). After the first sev-

eral characters are recognized, the model can infer the rest of the characters without relying on

encoder information.
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whole pipeline system, and we should focus more on the recognition module to increase pipeline

performance.

2.2.6 Conclusion

In this part, we focused on HWR for noisy and challenging maintenance logs, a previously over-

looked domain in this field. We presented a two-stage approach that can process the entire forms

directly without the need of segmenting them into lines. Our experimental results show that our

approach significantly outperforms the HWR and scene-text detection and recognition baselines

on the full pipeline while achieving high accuracies on the individual phases of word segmenta-

tion and recognition.
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2.3 Learning Long-DocumentRepresentationwithPosition-

Aware Multimodal Attention

Despite several successes in document understanding, the practical task for long document un-

derstanding is largely under-explored due to several challenges in computation and how to ef-

ficiently absorb long multimodal input. Most current transformer-based approaches only deal

with short documents and employ solely textual information for attention due to its prohibitive

computation and memory limit. To address those issues in long document understanding, we ex-

plore different approaches in handling 1D and new 2D position-aware attention with essentially

shortened context. Experimental results show that our proposed models have the advantages for

this task based on various evaluation metrics. Furthermore, our model makes changes only to

the attention and thus can be easily adapted to any transformer-based architecture.

2.3.1 Introduction

The task of document understanding has recently gleaned many successes (Appalaraju et al.,

2021; Xu et al., 2020b, 2021). This task requires multimodal input that makes it heavier than the

text-only ones, resulting in most models only being capable of dealing with short documents,

i.e. having up to 512 tokens. However, there exist long documents almost everywhere, e.g. con-

tracts, scientific papers, newsletters, or Wikipedia articles, which are typically longer than 1,000

words. To automatically summarize and understand such long documents urges long document

understanding to become an important task in both natural language processing and artificial

intelligence.

Long document understanding faces several big challenges. 1) Recent document understand-

ing approaches heavily rely on transformer (Vaswani et al., 2017). However, the transformer suf-

fers from quadratic attention that usually limits the input to 512 words. Therefore, the correlation

across long paragraphs/pages is yet to be learned. 2) Understanding long documents requires the

power to model all long information available, not only just in text but also in other modalities

such as spatial information. For example, LayoutLM (Xu et al., 2020b) showed that short docu-

ment understanding is largely improved by additionally embedding spatial into text information.

How to efficiently make use of spatial information for long document understanding, however,

is still an open and challenging problem regarding computation cost and adaptability.

Given the fact that long documents frequently appear in practice as well as in many datasets

as shown in Figure 2.13, it is reasonable to assume that useful information is spanned across

their lengths. Especially current OCR technology, which is essential for data preprocessing, only

supports extracting spatial information on a single-page basis, without the knowledge of other

pages. This behavior poses yet another big challenge in dealing with long documents, which

requires a proper method to connect information across pages for all input modalities.
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Figure 2.13: Distribution of document length in RVL-CDIP (Harley et al., 2015), a subset of IIT-

CDIP used predominantly in the document understanding pretraining tasks. Most of them are

longer than 512 words, the limit most current document understanding models accept. We argue

that helpful content should span across entire documents and that only accepting 512 words

would degrade the performance.

In this work, we discover new approaches to dealing with long document understanding,

which addresses the aforementioned challenges. We carefully preprocess OCR data to establish

the proper linkages across pages. Then we explore approaches for directly reducing the heavy

attention cost while achieving high performance, flexibly using the typical 1D (textual) and/or

novel, 2D (spatial) reduced contextual information, without the need of adding more components

into the already-heavy transformer (Appalaraju et al., 2021; Nguyen et al., 2021), employing ad-

ditional pretraining tasks for better representation learning (Huang et al., 2022; Li et al., 2021)

or employing complicated new encoding techniques (Hong et al., 2022; Wang et al., 2022). De-

spite being simple, we show through experiments that both 1D and 2D information can enhance

the practicality of transformer-based models while achieving the needed power of handling long

documents without introducing any new pretraining tasks other than the popular one: masked

language modeling.

Our contributions In summary, we have three following contributions. 1) We newly moti-

vate the simplistic, flexible use of spatial input into self-attention, making it plug-able to transformer-

based and other architectures using attention. 2) We are able to tackle the document understand-

ing task with input data up to 4096 words with several attention configurations. 3) Experimental

results prove the advantages of our approaches on various long-document datasets in comparison

to short models for both 1D and 2D contextual information.
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2.3.2 Related Work

Transformer Attention For Long Documents There are several methods that address the

quadratic cost of the transformer attention and some of them narrow the focus on long docu-

ments for their practicality. Longformer (Beltagy et al., 2020) uses sliding windows to reduce

the context, only retrains some sparse global connections. Similarly, ETC (Ainslie et al., 2020)

embeds relative positions and adds contrastive predictive encoding. Bigbird (Zaheer et al., 2020)

adds a few random connections on top of the sliding windows and sparse global connections and

then arranges a long context into a few blocks to reduce the number of intermediate matrix re-

arrangement and calculation steps. Likewise, less global and more local attentions are learned for

higher dimensions to achieve good results (Parmar et al., 2018). Our model similarly uses sliding

windows to effectively handle long documents but differs in that it addresses the complication of

multimodal, instead of text-only, data and exploits layout input along with the typical text input

flexibly and directly into attention and thus enhancing the attention more power and flexibility

in dealing with different data types.

While being orthogonal to our work due to difference in approaches, it is worth highlighting

some other work contributing to efficient attention for transformer such as substituting softmax

with low-rank kernels (Katharopoulos et al., 2020), using Random Fourier features (Peng et al.,

2021; Wacker, 2022), extracting random, orthogonal features (Choromanski et al., 2020), or ap-

proximating using nested functions (Ma et al., 2021). Some other works try working around the

attention and approaching transformer in a different angle such as applying Recurrent Trans-

former (Dai et al., 2019) with segment reordering objective to pretraining models (Ding et al.,

2020), or discarding completely the use of the expensive attention (Bello, 2021) by encoding the

local contexts into fixed vectors, preserving the spatial relation while bringing down the compu-

tational cost.

Multimodal Document Pretraining Document understanding largely inherits from mul-

timodal pretraining (Chen et al., 2020; Li et al., 2020; Luo et al., 2020) with the successes from Lay-

outLM (Xu et al., 2020a,b). Docformer (Appalaraju et al., 2021) and StructuralLM (Li et al., 2021)

developed the task further by introducing a new two-pronged approach: having new pretrain-

ing tasks and suitable changes to the processing or embedding. Similarly, LayoutLMv3 (Huang

et al., 2022) introduces two new, additional pretraining tasks on top of masked language modeling

(MLM) to enrich the representation learned by the models. Yet another approach is to focus on

encoding the spatial information properly with either relative spatial encoding (Hong et al., 2022)

or having separate encoding flows for textual and spatial input, then flexibly fusing them (Wang

et al., 2022). Unlike all of those approaches, our solution has a different focused motivation that is

long documents, only employs MLM as the only pretraining objective, and tackles the attention

directly–by efficiently handling the shortened contexts based on textual/spatial information to

deal with long contexts–instead of resorting to further embedding and/or encoding all informa-

tion properly, resulting in a more simple and lightweight solution that can be adapted easily for
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any architecture using the attention mechanism.

Finally, Skim-Attention (Nguyen et al., 2021) probably has themost relatedmotivation for long

documents, although we have a more memory-efficient, and faster way of handling layout input

directly into attention and not from after the embedding like theirs, and consequently support

longer input (4096 vs. 2048).

2.3.3 Our Model
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Figure 2.14: Our pre-trained model architecture. Unlike other models for this task, we keep a

simple approach by only employing a single MLM pretraining objective and do not employ extra

overhead inmultimodal embedding or encodingmethods. Instead, we tackle the attentionmodule

directly and make necessary changes to deal with our focus on long documents, by flexibly using

1D and 2D input.

The structure of this section is as follows. We will first introduce our MLM pretraining model

with an emphasis on the novel attention that employs the direct flexible use of either textual

(1D) or spatial (2D) information. Next, we explain the post-processing of OCR and its crucial im-

portance in MLM for document intelligence. Then we explain different attention configurations

based on 1D and 2D inputs. Finally, we enumerate the models associated with those attention

modules.
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2.3.3.1 Pretrain Model Architecture

To keep our solution simplistic and easy for studying the effects of each approach being proposed,

we only employ Masked Language Model (MLM) architecture as in other document intelligence

work, e.g. Xu et al. (2020a,b). However, we discover new attention approaches in MLM to enable

its capability of handling long documents. In more detail, different from a typical MLM predom-

inantly used in natural language processing, we have multimodal–instead of text-only–input,

which inevitably makes the model heavier and hence cannot deal with long documents without

proper changes, as we propose below.

First, we use the sliding-window inspired from Beltagy et al. (2020), given its lightweight and

elegance in limiting the context window, making it significantly more memory friendly. Second,

we introduce new spatial-based attention masks, in which each context window to a bounding

box is determined by calculating its spatial neighbors, instead of the given neighboring words.

Likewise, our model not only uses spatial input in the embedding but also in attention directly

with preserved spatial correlation. The illustration of our MLM model is shown in Figure 2.14.

Additionally, Section 2.3.3.3 will elaborate on the establishment and usage of these new distance

masks in comparison with others.

2.3.3.2 Post-OCR Processing

The task of document intelligence relies heavily on the quality of the OCR pre-processing as the

first data processing. As a result, how to present the post-OCR data properly to the model is very

important, as any mistake in this phase will be compounded later in the model. Especially in

the case of long documents, this processing is more crucially important. While long documents

havemultiple pages, current OCR engines only generate single-page results, without any connec-

tions among pages. More current models are “short” models that support up to 512 tokens, and

thus typically make use of the very first page’s OCR results, discarding the rest of the valuable

information. As a result, the further need for post-processing is usually unnecessary in those

models.

Unlike those short models, to make our model capable of tackling long documents, we process

and normalize the post-OCR data to establish the connections for all input components among

the pages. For example, the bounding boxes on page n need adjusting the coordinates to include

the previous n− 1 pages.

2.3.3.3 Different Attention Masks

We are motivated by the fact that in rich documents with multimodal contents, the relationship

of words not only follows the consecutive, sequential nature of texts but also in the boxes or sec-

tions organized in many complicated forms, in which spatial input offers essential information in

addition to text. Furthermore, we argue that in dealing with long documents, we should not put
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(a) SW (b) SW+Rand (c) Distance (d) Distance+SW

Figure 2.15: Visualization of our models’ different types of attention mask for real samples from

RVL-CDIP dataset (Harley et al., 2015) with limit length of 2048 and context size 512 (for both tex-

tual and spatial cases). Fig 2.15a is slidingwindow (SW), Fig 2.15b is slidingwindow in blocks with

1-per-block random blocks (SW+Rand), Fig 2.15c is a spatial-based distance mask, and Fig 2.15d

is the combination of sliding window and distance modes. Legend: Attention mask may only

have values of 0 and 1, which are represented as the light-yellow background and dark-blue fore-

ground colors, respectively.

extra overhead on the already-heavy transformer-basedmodels in both computation andmemory

perspectives. As a result, we employ neither additional embedding techniques nor complicated

encoding or fusing methods as in many other approaches (see Section 2.3.2 for more informa-

tion), and instead focus on making the attention, the main cost of those models, lightweight and

effective by having a shortened yet flexible context information of textual and/or spatial input.

In the following, we begin to describe the original transformer attention mechanism and the

different approaches that we propose specifically for long multimodal documents, using 1D and

2D input data.

Original AttentionMasks For the original transformer-based architectures (Vaswani et al.,

2017), in each of their layers, the attention score is calculated by two main steps, as formulated

in Equations (2.27) and (2.28),

score(Q,K) = softmax

(
QKT

√
dk

)
(2.27)

attn_score(Q,K,V) = score(Q,K) ·V, (2.28)

where Q,K,V stand for the learnable Query, Key, and Value matrices respectively. Given the

lengths of these three matrices are all N , which is also the input length, the complexity of each

step is O(N2).

We usually refer to this attention mechanism as full attention because each single input token

attends to all N available tokens including itself, which makes it impractical in terms of both

computation and memory in the cases of long documents. As a result, proper changes have to be

made as described below in our proposed attention approaches.
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Sliding-Window Masks (Figure 2.15a) We use the sliding-window approach as inspired

from Beltagy et al. (2020), which limits the context for each token from N down to a smallerM ,

e.g. N = 4096,M = 512, and so the complexity is essentially reduced to O (NM).

Kw = get_window(K) (2.29)

score(Q,K) = softmax

(
QKT

w√
dk

)
(2.30)

Vw = get_window(V) (2.31)

attn_score(Q,K,V) = score(Q,K) ·Vw. (2.32)

Using that intuition, the calculations are now changed to Equations from 2.29 to 2.32, with the

addedget_window steps in Equations (2.29) and (2.31). This change is simplistic because while

significantly reducing the heavy blueprint of the full attention, it retains a consistent pattern of

token arrangement for fast implementation
4
.

Sliding-Window plus Random Token Masks (Figure 2.15b) On top of sliding windows,

we add a few random tokens to establish more connections to the attention, as done similarly by

Zaheer et al. (2020). This operation essentially makes changes only to Equations 2.29 and 2.31,

and replace them with Equations 2.33 and 2.34, respectively.

Kw = get_sliding_and_rand_window(K) (2.33)

Vw = get_sliding_and_rand_window(V). (2.34)

In more detail, the sliding-window contexts are enhanced by some random contexts added.

While certainly being an extra overhead, the number of those random connections is limited to

only a few, maintaining the practicality of the model in the face of long documents
5
.

Kw = get_2D_spatial_window(K) (2.35)

Vw = get_2D_spatial_window(V). (2.36)

Spatial Distance Masks (Figure 2.15c) Different from previous attention types, theM con-

textual neighbors of each token are decided by spatial (2D) information instead of textual (1D)

4
To enable fast calculations in Equations (2.30) and (2.32) with now-changed matrix shapes, one has to extract

and chunk the context for all tokens in a way that can exploit fast matrix multiplication (e.g. by using einsum).
5
Due to the introduction of those random tokens, the consistent pattern of sliding windows and hence their fast

implementation are largely affected. We divide the original sequence length into blocks (e.g. 512 to 8 equal blocks

of length 64), to facilitate grouping and chunking, as well as to lessen the computational steps (have much fewer

sliding windows) and only use 3 blocks, by default, for random connections
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information. In the final result, however, the spatial attention mask has the same shape as sliding

windows (if they both have the same number of contextual neighboring tokens). This process

comprises a couple of steps.

First, we calculate the centers of all bounding boxes. Second, we fit the kNN algorithm to the

sequence of those points based on L2 distance, resulting in a 2D distance matrix, in which each

token now spatially attends to M neighboring tokens. In summary, we replace Equations 2.29

and 2.31 with Equations 2.35 and 2.36. The resulting masks consequently have a non-consecutive

neighboring relationship, unlike in the traditional text-based contexts. More illustrations of those

distance-based masks for real examples are also shown in Figure 2.16. And because of its impor-

tance, in the following, we detail the implementation notes for those new attention masks.

Implementation of DistanceMasks In terms of efficient implementation, there are certain

considerations to enable the practical use of those newly proposed distance masks, which con-

sume more computation and memory cost compared to the normal sliding window mechanism.

First, identifying spatial neighbors for each token usually takes quadratic time, which is a

great deterrent to our solution. So we choose to use scikit-learn’s kNN library
6
for its

well-regarded efficiency and speed.

Second, "where to create distance masks: in dataset loader or in model computation" is a

key problem. We choose to create distance masks in the dataset loader for the following rea-

sons. On one hand, the main obstacle to applying long-document attention methods is that the

transformer-based models are inherently heavy. If placing the quadratic computation of those

distance masks in the main model phase, the model will be significantly slower (in proportion to

document lengths) and the risk of out-of-memory will be much higher (given the limitation of

GPU memory). On the other hand, by preemptively computing the distance mask in the dataset

loader, e.g. using Pytorch Dataloader
7
and exploiting its data buffering mechanism, the data

loading will not be slower by running multiple loader processes simultaneously.

Finally, for the sliding-window attention, we inherit the implementation from Huggingface
8
,

then implement our distance-based solution on top of it.

2.3.3.4 Pretrain Model Variants

We build out MLM pretraining architecture with various attention mechanisms for long doc-

uments as described in Section 2.3.3.3 and compare their performances in several tasks. Since

this change is only made directly to the attention, our method can be used off-the-shelf for

transformer-based architecture with multimodal input.

6https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

7https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.
html#DataLoader

8https://huggingface.co/transformers/model_doc/longformer.html
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Figure 2.16: More illustrations of distance masks from RVL-CDIP samples with the limit length

of 2048 and 512 neighbors each.

SWModel This model directly uses Sliding-Window (SW) masks for attention, which signif-

icantly reduces the computation and was shown to be effective for long documents in text-based

tasks (Figure 2.15a).

SW+Rand Model This model uses blocked Sliding-Window plus some random blocks on

top (Figure 2.15b).

DistanceModel This model uses Spatial Distance Masks, with all neighboring contexts be-

ing preemptively computed using kNN, and is implemented in the data loading instead of trans-

former encoding phase, not to slow down the main process (Figure 2.15c).

45



Distance+SW Model. In this model, we combine the spatial and textual attention masks

together in a single attention pass. In detail, it is done via two steps, as shown in Equations (2.29–

2.32), with Equation (2.29) now being replaced by Equation (2.35). This is a possible adjustment

since these two steps are separated and both preserve the logic and shapes of matrices in their

calculation. Our motivation and intuition are to combine the benefits of both textual and spatial

information in a single attention pass (Figure 2.15d).

2.3.4 Experiments

In this section, we describe our experimental methodology to evaluate our proposed approach of

flexible attention using different contextual input information.

2.3.4.1 Tasks and Datasets

Pretraining We use IIT-CDIP Test Collection 1.0
9
dataset for our MLM pretraining task.

This is a large-scale dataset with over 6M multi-page documents and around 11M pages in total

(each page is stored as a scanned image and is preprocessed by an OCR engine).

Document Classification This document classification task uses RVL-CDIP (Harley et al.,

2015) dataset, which is a subset of the pretraining dataset IIT-CDIP. It comprises 16 classes and

each class equally has 25K grayscale images. All of these 400K images in combination are split

into 320K images for training and 40K images each for validation and testing. For more statistics

on this dataset, the document length distribution is shown in Figure 2.13.

Sequence Labeling There are two datasets for this task, namely Kleister-NDA and FunSD.

1) FunSD (Guillaume Jaume, 2019)
10

This is a lightweight dataset that has 199 noisy scanned

forms, which contain around 31K words and 9.7K entities with 7 given token classes. Although it

is not a long-document dataset (all documents have < 512 words), it is a popular dataset used by

many document intelligence models and is also useful for ablation studies on how long document

models perform on a short document dataset, as we show in Section 2.3.4.6.

2) Kleister-NDA (Graliński et al., 2020; Stanisławek et al., 2021)
11

This dataset has 540 doc-

uments in total (254 train, 83 validation, and 203 test) with 2,160 entities annotated and an av-

erage of 2,540 words per document. Due to the difficulty in reproducibility with unclear results

post-processing, this task is cast similarly to FunSD with 4 classes. Consequently, we report the

evaluation results of our models along with all other methods’ reproduced outcomes using the

same preprocessing steps and metrics, in order to maintain fair comparisons.

9https://ir.nist.gov/cdip/
10https://guillaumejaume.github.io/FUNSD
11https://github.com/applicaai/kleister-nda
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Parameter Name Value

do_lower_case true

fp16 true

fp16_backend amp

gradient_accumulation_steps 4

max_seq_length 4096

max_2d_position_embeddings 1024

max_steps 1000000

model_name_or_path allenai/longformer-base-4096

dataloader_num_workers 64

tasks mask_lm

optimizer transformers_AdamW

learning_rate 5e-5

warmup_ratio 0.1

weight_decay 0.01

whole_word_masking false

add_prefix_space true

attention_window 512

Table 2.12: Main pretrain hyperpameters on the MLM pretraining task for the ITT-CDIP large-

scale dataset. There are 3 variants share this set of parameters that are Ours SW, Ours Dis-

tance and OursDistance+SWmodels. All of them use the pretrained weights from Longformer-

base (Beltagy et al., 2020) model.

2.3.4.2 Pretraining

Pretrain Data Preprocessing To pretrain the models, we retain the same OCR engine for gen-

erating and aligning layout and text information from LayoutLM (Xu et al., 2020b). The task is

also the same, which is Masked Language Modeling (MLM). To deal with long documents, we

have to implement the additional sliding-window, random-block and distance-based masks.

Pre-trained Model Implementation Our solution only makes changes to the attention

module, in which uses can choose to use any types of attention masks from the 4 variants illus-

trated in Figure 2.15.

For the SW and SW+Randmodels which are also our new pre-trained models, we implement

the layout-related part on top of the original BigBird
12
and Longformer

13
implementations from

Huggingface’s transformers, respectively. Otherwise the distance-based masks, which are em-

ployed in Distance and Distance+SW models, are newly implemented as a pluggable module.

12https://huggingface.co/transformers/model_doc/bigbird.html
13https://huggingface.co/transformers/model_doc/longformer.html
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Training MLM We pre-train the task on the IIT-CDIP datasets, using a single-node multi-

GPU mode. Each job was run on a server with 8 V100 Nvidia GPUs, each of which has 32GB

memory and fast processors. For text-only models, please refer to LayoutLM’s github
14
.

For SWmodel, we use the public pre-trained weights from Lomgformer (Beltagy et al., 2020).

Other of our models employ the same set of parameters, except for the pretrained weights, in

which SW+Rand model uses the weights from Bigbird (Zaheer et al., 2020) and the last two

models having distance masks (Distance and Distance+SW models) use the same pretrained

weights as SW model, as demonstrated in Table 2.12.

It is also worth noting that the pretrained weights from Longformer and Bigbird models are

useful even for the models using distance masks because those two model families support docu-

ments with length 4096, so the position embeddings are helpful. For speed and memory tradeoff,

we limit the context for distance masks to only 128 (vs. 512 in textual contexts), without sacrific-

ing much performances, as reported in Section 2.3.4.5.

2.3.4.3 Implementation Notes on Pretraining and Finetuning

Pretraining Notes Although not reported in the main content, we note some lessons learned

from the pretraining task. As we observe, the Ours SW model consistently achieves the best

results, while consuming the least GPUmemory. For the base model, it only consumes about 7 GB

GPU memory and Ours Distance+SW that uses sliding-window attention on its half processing

also consumes about 9 GB memory. Both models, as a result, can be deployed well on a broad

range of GPUs in the market.

Unlike those conveniences, Ours SW+Rand and OursDistance do not share the same advan-

tages. In fact, they consumes aboutmore than 30GBGPUmemory each, limiting their practicality.

We hypothesize the main reason for such drawbacks is that they have random, inconsistent pat-

terns, and hence there is no efficient way to take advantage of fast memory-efficient and fast

matrix operations.

Finally, although showing promising practical behaviors, all baselines and our models, and

almost any transformer-based ones are certainly not lightweight models. And although there are

advancements in compressing those heavy models (e.g. (Frankle and Carbin, 2018; Touvron et al.,

2021), there seems to be a considerable way to go for making these model run on mobile devices

in the near future.

Finetuning Notes As described in the main content, after pretraining, the saved models are the

backbone for the respective fine-tuning model types. For that reason, the parameters are mostly

shared with their pretraining counter-part models, e.g. Table 2.12 for Ours SWmodels. Generally,

we keep the same optimizer and batch size of 32 (combined across all used parallel GPUs).

ForRVL-CDIP in the document classification task, we use theSequenceClassification
model type. On top of the pretrain skeleton, we add a small classifier with 2 fully-connected layers

14https://github.com/microsoft/unilm
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and a drop-out layer in between. The final output is the single class for the whole sequence/doc-

ument.

For FunSD and Kleister-NDA datasets, we instead use the TokenClassification
model type, which is designed to classify all-document entities. The similar classifier is added to

the pretrained skeleton, now with a different usage in which each token/entity is to be classified

into 1 of the number of given classes.

What’s more, to preprocess these two datasets, we have to ingest all available document to-

kens. Likewise, with documents longer than the maximum lengths, we need to cut those docu-

ments, and recursively treat the overflowing parts in the same way. In terms of implementation,

unlike FunSD that is lightweight, we always want to avoid loading the whole dataset into the

memory but rather take advantage of the data buffering in feeding to the models. As a result, we

pre-process all data first, save them to disks and only load the respective parts when needed.

Additional Information for Kleister-NDA It is worth noting that the evaluation of it is tricky

if using the provided official GEval evaluation script (Graliński et al., 2020)
15
. In detail, given the

predited tokens, one has to retrieve the associated texts in a group. For example, the beginning

of an entity group usually starts with a class beginning with "B-", followed by a series of "I-"

tokens. However, there is no guarantee that the prediction will always return a group having

this meaningful pattern, let alone many other complicated cases that can happen. Such compli-

cations make the post-processing of the prediction– before feeding to GEval–very difficult and

importantly, not easily reproducible. In fact, amongst recent papers that report performance on

this dataset (e.g. in Appalaraju et al. (2021); Xu et al. (2020a)), there is reference code with which

for us to compare.

Consequently, we treat this dataset the same as FunSD, given their similarity in annotation. In

addition, because this dataset is larger and much more difficult (due to decoying texts) compared

to FunSD, we analyze the train dataset and employ the weighted loss based on the distribution

the given labels. As a result, our method is more transparent and reproducible.

2.3.4.4 Baselines

We pretrain our 4 model variants (Figure 2.15) with the MLM objective and then compare them

with the following baseline groups:

Text: This group consists of models that only accept text input including BERT (Devlin et al.,

2019), RoBERTa (Liu et al., 2019), and other long models including Bigbird (Zaheer et al., 2020)

and Longformer (Beltagy et al., 2020)
16
.

Text+Layout: This group contains models that accept both text and layout information, in-

cluding LayoutLM (Xu et al., 2020b) variants.

15https://github.com/applicaai/kleister-nda
16
Our SW and SW+Rand models share the similarity with those last two ones, with the difference of handling

multimodal input for document intelligence.
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Type Model SeqLen Acc (%) ↑

Text

BERT-base 512 89.81

RoBERTa-base 512 90.06

BERT-large 512 89.92

RoBERTa-large 512 90.11

Bigbird-base 4096 93.48

Longformer-base 4096 93.85

Bigbird-large 4096 93.34

Longformer-large 4096 93.73

Text+Layout

LayoutLM-base 512 91.88

LayoutLM-large 512 91.90

Ours SW 4096 94.50

Ours SW+Rand 4096 95.25

Ours Distance 4096 94.79

Ours Distance+SW 4096 94.69

Table 2.13: Classification accuracy for RVL-CDIP. For this long-document dataset, the models

capable of using 4096 words uniformly beat other models and layout information helps with the

task compared with using Text input. All our long models show their advantages on this long

dataset.

2.3.4.5 Results and Discussions

Document Classification As shown in Table 2.13, long models (SeqLen
17
4096) clearly outper-

form short ones in both baseline groups, with or without layout information added to the input.

Furthermore, all our 4 model variants outperform all the baselines.

This result concurs with our observation that long documents have valuable information

spanned across the length. And importantly, our models show advantages of handling long mul-

timodal input, and hence are more practical with real data that are usually longer than 512 tokens.

Sequence Labeling with Kleister-NDA
18

Comparing the “base” versions (separated from

their “large” counterparts), Table 2.14 shows that most of our models, which are also the “base”

ones, clearly have better scores. Particularly, our SW model is the best performer.

Furthermore, our Distance+SW is not performing equally well. Our hypothesis is that the

OCR engine cannot understand the decoying annotation in this dataset, and thus generates spatial

results that do not correlate well with the text. Consequently, the combination of textual and

spatial information does not result in the benefits of those two.

17
SeqLen is short for Sequence Length.

18
The results are from the validation split due to no annotation for the test split provided in the dataset.
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Type Model SeqLen F1 ↑

Text

BERT-base 512 47.06

BERT-large 512 52.66

Longformer-base 4096 61.78

Bigbird-base 4096 46.98

Text+Layout

LayoutLM-base 512 55.69

LayoutLM-large 512 61.95

Ours SW 4096 64.06

Ours SW+Rand 4096 58.92

Ours Distance 4096 57.01

Ours Distance+SW 4096 44.70

Table 2.14: Results on Kleister-NDA. Although this dataset is challenging, long models still show

advantages over short ones.

2.3.4.6 Ablation: Long Models on Short Dataset

The purpose of this study is to explore how long models perform on short documents, which also

appear in practice, to see whether they can generalize their performance to shorter data.

Table 2.15 shows that on FunSD, we see again that layout information generally helps in the

case of multimodal input. However, long models do not perform well compared to short ones,

although the gap between the best of ours and the baselines are not very far away (77.1 vs. 79.0).

Themain reason is that longmodels essentially havemuchmore parameters than short ones. And

not only is FunSD short, it is also very small. As a result, the limited phase of fine-tuning on only

199 samples can hardly tune parameters well for good results. Especially, since all documents

are short, most long input to the model is zero padding and thus not enough for contributing for

better scores.

Another reason is that long models have their embedding representations trained for the

length of 4096 tokens and hence are hard to adapt to 512-token input with just a few fine-tuning

steps. As a result, analyzing the data well to design suitable pretraining and fine-tuning models

is very important.

The next 2 studies will explore the implications of the newly-added spatial attention masks

in our models.

2.3.4.7 Ablation: Different-Length Documents

This study aims to explore how themodels work if we do not cut any information from documents

(the models take input up to their maximum length limit). Out of 40K test samples in RVL-CDIP,

there are 9268 samples with length ≥ 512, 2312 with length ≥ 1024, and only 106 with length

≥ 2048.
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Type Model SeqLen F1 ↑

Text

BERT-base 512 60.3

RoBERTa-base 512 66.5

BERT-large 512 65.6

RoBERTa-large 512 70.7

Bigbird-base 4096 45.8

Longformer-base 4096 71.4

Bigbird-large 4096 46.8

Longformer-large 4096 73.5

Text+Layout

LayoutLM-base 512 78.7

LayoutLM-large 512 79.0

Ours SW 4096 69.9

Ours SW+Rand 4096 77.1

Ours Distance 4096 64.0

Ours Distance+SW 4096 61.8

Table 2.15: Results on FunSD dataset. As usual, layout information is helpful in boosting perfor-

mance. However, long models do not perform well compared with short models on this small,

short-document dataset.

Figure 2.17: RVL-CDIP performance on different document types based on their original lengths

(i.e. without purging) with LayoutLM (with the best “large” version) and our spatial models

(Distance and Distance+SW). Our models are consistently better.

Figure 2.17 shows the consistent observation that our models are much better than LayoutLM,

and yet perform slightly worse as the original document length increases. There could be several

possible reasons for this behavior: the models are not well pre-trained and/or fine-tuned, many

long documents have lots of confusing parts, or there are many noises in OCR results.
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Figure 2.18: RVL-CDIP performance on different maximum lengths using our Distance and Dis-

tance+SW models. For each of lengths 512, 1024, 2048, and 4096, the test set contains the same

40K samples. A longer maximum length gives better results.

2.3.4.8 Ablation: Different Max Input Lengths

Given the pre-trained models that can accept input up to 4096 tokens, we finetune them with the

input of different maximum lengths, i.e. excess will be purged. As a result, we use all 40K test

samples in RVL-CDIP for this study.

As shown in Figure 2.18, our models are better and better as more tokens are absorbed, thus

once again confirming our intuition that valuable information is spanned across the length. As

a result, if the model capacity permits, we should not limit the capacity to 512 tokens as in most

current models in the literature.

2.3.4.9 Further Discussion on Spatial Masks

As seen in the above experimental results, direct usage of 2D layout context information in the

transformer attention has some advantages. However, its performance does not match the typical

usage of 1D textual information. This might be discouraging at first since introducing spatial

masks brings heavier computation compared to textual ones. We hypothesize the drawbacks are

due to some objective limitations. First, the kNN suffers some inaccuracy compared with normal

(and slow) calculations. Second, the performance of the whole pipeline heavily depends on OCR

quality, e.g. in Kleister-NDA with decoy design, OCR results are not well aligned with the text.

Consequently, we conjecture that with future development in OCR technologies, the use of spatial

masks would be more and more helpful in practice.
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2.3.5 Conclusion and Discussion

We propose a versatile solution for long document understanding, in which the shortened context

can be used in the form of textual and/or layout input for the attention mechanism in a flexibly

pluggable manner. We keep our approach simple by not putting extra overhead on complicated

embedding or encoding methods. Despite its simplicity, our solution has shown promising ex-

perimental results on document understanding tasks with long, multimodal input. In the future,

we will further reduce the memory consumption of models with given multimodal input and

speed up the pretraining. Similar to LayoutLM, pretraining usually takes 80 hrs/epoch with 8

V100 GPUs. Thus there are certainly lots of room for improvement to make these models more

efficient and practical.
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Chapter 3

Scalability of Representation Learning

As mentioned in the introduction (Chapter 1), in the era of big data, one has to take into account

the size of the data itself, which is certainly a big factor affecting not only the efficiency of rep-

resentation learning but importantly its scalability. Consequently, a practical solution is one that

can be applied on a large scale so that enterprises of any size can be beneficial from it. That is

the second target of this dissertation.

There are many schools for approaching this challenging problem. One is to design efficient

distributed, big data-oriented systems that bring a superpower to ingest and process huge data at

a high speed. This thesis, however, chooses another approach that is essentially system-agnostic.

In more detail, it instead tries to approach the big data problem by tackling directly the learn-

ing model itself, by approximating the heavy components of learning, typically in the form of

matrices or their related features.

The following sections will be the approximation techniques for Gaussian Processes, implicit

matrix trace estimation, and tasked-based Mixture-of-Experts for transformer-based models. It

is worth remarking, however, that the techniques that will be introduced in this chapter do not

only serve for scalability issues but also efficiency ones simultaneously. For instance, along with

helping with scalability, our task-based Mixture-of-Experts architecture concurrently helps the

model learn a better representation for multitask data, in which similar tasks’ representations

are routed to the same task adapters and vice versa. Furthermore, there is no restriction on using

the scalability techniques in this chapter for improving the tasks in the previous chapter. For

example, one could use our trace estimation work for studying Hessian information of neural

networks, in order to design better optimization techniques for training the models in Chapter 2.
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3.1 Sparse Spectrum Approximation of Gaussian Processes

This section introduces an approximation method for an important problem in machine learning,

Gaussian Processes (GP), which has a lot of applications in practice. Despite that fact, training GP

is hard especially given big datasets due to its overly expensive cost. In this work, we introduce

a new scalable approximation for GP with provable guarantees which hold simultaneously over

its entire parameter space. Our approximation is obtained from an improved sample complexity

analysis for sparse spectrum Gaussian processes. In particular, our analysis shows that under

a certain data disentangling condition, an SSGP’s prediction and model evidence (for training)

can well-approximate those of a full GP with low sample complexity. We also develop a new

auto-encoding algorithm that finds a latent space to disentangle latent input coordinates into

well-separated clusters, which is amenable to our sample complexity analysis. We validate our

proposed method on several benchmarks with promising results supporting our theoretical anal-

ysis.
1

3.1.1 Problem and Motivation

GP (Rasmussen and Williams, 2006) is a popular probabilistic kernel method for regression that

has found applications across many scientific disciplines. Examples of such applications include

meteorological forecastings, such as precipitation and sea-level pressure prediction (Ansell et

al., 2006); sensing and monitoring of ocean and freshwater phenomena such as temperature and

plankton bloom (Cao et al., 2013; Dolan et al., 2009); traffic flow and mobility demand predictions

over urban road networks (Chen et al., 2012, 2013b; Low et al., 2015); flight delay predictions

(Hensman et al., 2013; Hoang et al., 2015, 2016); and persistent robotics tasks such as localiza-

tion and filtering (Xu et al., 2014). The broad applicability of GPs is in part due to their expres-

sive Bayesian non-parametric nature which provides a closed-form prediction (Rasmussen and

Williams, 2006) in the form of a Gaussian distribution with formal measures of predictive uncer-

tainty, such as entropy andmutual information criteria (Krause and Guestrin, 2007; Srinivas et al.,

2010; Zhang et al., 2016). Such expressiveness makes GPs not only useful as predictive methods

but also a go-to representation for active learning applications (Hoang et al., 2014a,b; Krause and

Guestrin, 2007; Zhang et al., 2016) or Bayesian optimization (Hoang and Kingsford, 2020; Hoang

et al., 2018; Snoek et al., 2012; Zhang et al., 2017) that need to optimize for information gain while

collecting training data.

Unfortunately, the expressive power of a GP comes at a cost of poor scalability (i.e., cubic

time (Rasmussen and Williams, 2006)) in the size of the training data (see Section 3.1.2.1 below),

hence limiting its use to small datasets. This prevents GPs from being applied more broadly to

modern settings with increasingly growing volumes of data (Hensman et al., 2013; Hoang et al.,

2015, 2016). To sidestep this limitation, a prevalent research trend is to impose sparse structural

1
Our experimental code is released at https://github.com/hqminh/gp_sketch_nips.
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assumptions (Quiñonero-Candela and Rasmussen, 2005; Quiñonero-Candela et al., 2007) on the

GP’s kernel matrix to reduce its multiplication and inversion cost, which comprises the main

bulk of the training and inference complexity. This results in a broad family of sparse Gaussian

processes (Hensman et al., 2013; Hoang et al., 2017, 2015; Lázaro-Gredilla et al., 2010; Seeger

et al., 2003; Titsias, 2009) that are not only computationally efficient but also amenable to various

forms of parallelism (Chen et al., 2013a; Low et al., 2015) and distributed computation (Allamraju

and Chowdhary, 2017; Gal et al., 2014; Hoang et al., 2019a, 2016, 2019b), further increasing their

efficiency.

Despite such advantages, the sparsification components at the core of these methods are

heuristically designed and do not come with provable guarantees that explicitly characterize the

interplay between approximation quality and computational complexity. This motivates us to

develop a more robust, theoretically-grounded approximation scheme for GPs that is both prov-

able and amenable to the many fast computation schemes mentioned above. More specifically,

our contributions include:

1. An analysis of a new approximation scheme that generates a sparse spectrum approxima-

tion of a GP with provable bounds on its sample complexity, which practically becomes signifi-

cantly small when the input data exhibits a certain clustering structure. Furthermore, the impact

of the approximation on the resulting training and inference qualities is also formally analyzed

(Section 3.1.3.1).

2. A data partitioning algorithm inspired by the above analysis, which learns a cluster em-

bedding that reorients the input distribution while ensuring reconstructability of the original

distribution (Section 3.1.3.3). We show that using sparse spectrum Gaussian processes (SSGP)

(Hoang et al., 2017; Lázaro-Gredilla et al., 2010) on the embedded space requires fewer samples

to achieve the same level of the approximation quality. This also induces a linear feature map

which enables efficient training and inference of GPs.

3. An empirical study on benchmarks that demonstrates the efficiency of the proposedmethod

over existing works in terms of its approximation quality versus computational efficiency (Sec-

tion 3.1.4).

3.1.2 Related Work

3.1.2.1 Gaussian Processes (GPs)

A Gaussian process (Rasmussen and Williams, 2006) defines a probabilistic prior over a random

function g(x) defined by the mean function m(x) = 02 and kernel function k(x,x′). These

functions induce a marginal Gaussian prior over the evaluations g = [g(x1) . . . g(xn)]
⊤
on an

arbitrary finite subset of inputs {x1, . . . ,xn}. Let x∗ be an unseen input whose corresponding

output g∗ = g(x∗) we wish to predict. The Gaussian prior over [g(x1) . . . g(xn) g(x∗)]
⊤
implies

2
For simplicity, we assume a zero mean function since we can always re-center the training outputs around 0.
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the following conditional distribution:

g∗ ≜ g(x∗) | g ∼ N
(
k⊤
∗ K

−1g, k(x∗,x∗)− k⊤
∗ K

−1k∗

)
, (3.1)

where k∗ = [k(x∗,x1) . . . k(x∗,xn)]
⊤
and K denotes the Gram matrix induced by k(x,x′) on

{x1, . . . ,xn} for which Kij = k(xi,xj). For a noisy observation y perturbed by Gaussian noise

such that y ∼ N(g(x), σ2), Equation 3.1 above can be integrated withN(g, σ2I) to yield:

g∗ ≜ g(x∗) | y ∼ N
(
k⊤
∗ (K+ σ2I)−1y, k(x∗,x∗)− k⊤

∗ (K+ σ2I)−1k∗

)
, (3.2)

which explicitly forms the predictive distribution of a Gaussian process. The defining param-

eter Θ of k(x,x′) (see Section 3.1.2.2) is crucial to the predictive performance and needs to be

optimized via minimizing the negative log-likelihood of y:

ℓ(Θ) =
1

2
log
∣∣∣KΘ + σ2I

∣∣∣+ 1

2
y⊤
(
KΘ + σ2I

)−1

y , (3.3)

where we now use the subscriptΘ to indicate thatK is a function ofΘ. In practice, both training

Θ and prediction incur O(n3) processing cost, which prevents direct use of Gaussian processes

on large datasets that might contain more than tens of thousands of training inputs.

3.1.2.2 Sparse Spectrum Gaussian Processes

Sparse spectrum Gaussian processes (SSGPs) (Gal and Turner, 2015; Hoang et al., 2017; Lázaro-

Gredilla et al., 2010) exploit Theorem 3.1.1 below to re-express the Gaussian kernel k(x,x′) ≜
σ2 exp(−0.5 (x− x′)⊤Θ−1 (x− x′)) (where Θ ≜ diag[θ21 . . . θ

2
d]) as an integration over a spec-

trum of cosine functions such that the integrating distribution (over the frequencies that param-

eterize these functions) is a multivariate Gaussian.

Theorem 3.1.1 (Bochner Theorem). Let k(x,x′) denote a Gaussian kernel defined above and let
q(r) ∼ N(0, (4π2Θ)−1). It follows that:

k(x,x′) = Er∼q(r)

[
σ2 cos

(
2πr⊤(x− x′)

)]
, (3.4)

where r is a d-dimensional random variable that parameterizes cos(2πr⊤(x− x′)). In practice, r is
often referred to as the spectral frequency.

This allows us to approximate the original Gram matrix K with a low-rank matrix K′
con-

structed by a linear kernelK′(x,x′) = Φ(x)⊤Φ(x)with featuremapΦ(x) = [ϕ1(x) . . . ϕ2m(x)]
⊤

comprising 2m basis trigonometric functions (Hoang et al., 2017). Each pair of odd- and even-

index basis functions ϕ2i−1(x) = cos(2πr⊤i x) and ϕ2i(x) = sin(2πr⊤i x) is parameterized by the

same sample of spectral parameter ri ∼ q(r). For efficient computation,m is often selected to be
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significantly smaller than n (i.e., the number of training examples). However, to guarantee that

∥K − K′∥2 ≤ λ with probability at least 1 − δ, m needs to be as large as O(n2/λ2 log(n/δ))

(Mohri et al., 2018)
3
, which makes the total prediction complexity much worse than that of a full

GP.

Alternatively, one can use kernel sketching methods (Avron et al., 2017; Chamakh et al., 2020;

Musco and Musco, 2016; Rahimi and Recht, 2007; Sriperumbudur and Szabó, 2015) to generate

feature maps that scale more favorably with the effective dimension of the kernel matrix, which

empirically tends to be on the order of O(log n). However, the pitfall of these methods is that

without knowing the exact parameter configurationΘ that underlies the data, they cannot sam-

ple from the true probability q(r), which is necessary for their analyses. As such, existing ran-

dom maps (Avron et al., 2017; Rahimi and Recht, 2007) that were generated based on this spectral

construction often depend on a parameter initialization, and their approximation quality is only

guaranteed for that particular parameter setting instead of uniformly over the entire parameter

space. This motivates us to revisit the sample complexity of SSGP from a setting that specifically

searches for a reorientation of the input distribution such that the reoriented data exhibits a dis-

entangled cluster structure. Such disentanglement provides a more sample-efficient bound as we

show in our analysis in Section 3.1.3.1 below.

3.1.3 Provable Approximation of SSGPs with Improved Sample Com-

plexity

We first show how a sparse spectrum Gaussian process (SSGP) (Lázaro-Gredilla et al., 2010) can

be approximated well with a provably low sample complexity. This is achieved by revisiting its

sample complexity which, unlike prior work (Avron et al., 2017; Mohri et al., 2018; Rahimi and

Recht, 2007), explicitly characterizes and accounts for a certain set of data disentanglement con-

ditions. Importantly, our new analysis (Section 3.1.3.1) yields practical bounds on both an SSGP’s

prediction and model evidence (Section 3.1.3.2) that hold with high probability uniformly over

the entire parameter space
4
. Furthermore, our analysis also inspires an encoding algorithm that

finds a latent space to disentangle the encoded coordinates of data into well-separated clusters

on which a sparse spectrum GP can approximate a GP provably well (Section 3.1.3.3). Our exper-

iments show that such a latent space can be found for several real-world datasets (Section 3.1.4).

3
See Theorem 6.28 in Chapter 6 of (Mohri et al., 2018).

4
In contrast, existing literature often generates bounds on either an SSGP’s prediction or its model evidence (for

training) for a single parameter configuration, which makes such an analysis only heuristic.
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3.1.3.1 Practically Improved Sample Complexity for Sparse Spectrum Gaussian Pro-

cesses

This section derives a new data-oriented feature map to approximate a Gaussian process parame-

terized with a Gaussian kernel. Unlike existing work which assumes knowledge of the true kernel

parameters (Avron et al., 2017; Musco and Musco, 2016; Rahimi and Recht, 2007), our derivation

remains oblivious to such parameters and therefore holds universally over their entire candidate

space. We assume that the GP prior of interest is of the form g(x) ∼ GP(0, k(x,x′)) where

k(x,x′) represents its Gaussian kernel in Section 3.1.2.2.

We give our analysis in three parts: (1) the spectral sampling scheme and a notion of ap-

proximation loss; (2) a set of practical data conditions which can be either observed from a raw

data distribution or approximately imposed on the data via a certain embedding; (3) a theoretical

analysis that delivers our key result that establishes an improved sample complexity when our

data conditions are met.

Spectral Sampling Scheme and Spectral Loss

We show that g(x) can be approximated by g′(x) =
∑p

i=1 gi(x) with provable data-oriented

guaranteeswhere gi(x) ∼ GP(0, (1/
√
p)ki(x,x

′)). To achieve this, we first establish in Lemma 3.1.2

that the induced Gram matrixK of k(x,x′) on any dataset can be represented as an expectation

over a space of induced Gram matrices {Ki}pi=1 produced by a corresponding space of random

kernels {ki(x,x′)}pi=1.

Lemma 3.1.2. Let k(x,x′) and K denote a Gaussian kernel parameterized by Θ (Section 3.1.2.2)
and its induced Gram matrix on an arbitrary set of training inputs, respectively. There exists a space
K of random kernels κ(x,x′) and a Θ-independent distribution ρ over K for which K = Eκ[Kκ]

whereKκ denotes the induced Gram matrix of κ on the same set of training inputs.

This follows directly fromTheorem 3.1.1 abovewhich states that k(x,x′) = E[σ2 cos(2πr⊤(x−
x′))] where r ∼ N(0, (4π2Θ)−1). We can choose κ(x,x′; ϵ) = cos(ϵ⊤Θ−0.5(x− x′)) where ϵ ∼
N(0, I) which implies k(x,x′) = Eϵ[κ(x,x

′; ϵ)]. Thus, K = Eϵ[Kϵ] where the Θ-independent

parameter ϵ indexesκ andKϵ is the inducedGrammatrix ofκ. Leveraging the result of Lemma 3.1.2,

a naïve analysis (Mohri et al., 2018) using worst-case concentration bounds to derive a conserva-

tive estimate for a sufficient number of samples would require a prohibitively expensive sample

complexity of O(n2 log n).

Such analyses, however, often ignore the input distribution, which can be used to samplemore

selectively, thereby significantly reducing the sample complexity. This is demonstrated below in

Theorem 2 which shows that when the input distribution exhibits a certain degree of compact-

ness and separation (as defined in Conditions 1-3), we only require O((log2 n/λ2) log log(n/δ))

sampled kernels {κi}pi=1 indexed by {ϵi}
p
i=1 to produce an average GrammatrixK′ = 1

p

∑p
i=1Kϵi

that is sufficiently close toK in spectral norm (see Definition 3.1.3) with probability at least 1−δ.
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Definition 3.1.3 (Spectral Closeness). Given λ > 0, the symmetric matricesK andK′ are λ-close
if ∥K−K′∥2 ≤ λ where ∥K−K′∥2 = λmax(K−K′) denotes the largest eigenvalue ofK−K′.

Thus, parameterizing the GP prior withK′
instead ofK allows us to derive an upper bound on

the expected difference between their induced model evidence (for learning kernel parameters)

and prediction losses (for testing) with respect to the same parameter setup (Theorem 3). Theorem

3 importantly exploits the fact that the bound in Theorem 2 holds universally over the entire

space of parameters, which allows us to bound the prediction difference between the original

and approximated GPs with respect to their own optimized parameters (that are not necessarily

the same).

Practical Conditions on Data Distributions

We now outline key practical data conditions, which can be satisfied approximately via an

encoding algorithm that transforms the input data into a latent space where such conditions are

met. These conditions are necessary for deriving a practically improved sample complexity in

Section 3.1.3.1.

Condition 1. For each parameter configuration Θ = diag[θ21, . . . , θ
2
d], there exists a mix-

ture distribution M(x; γ = (γ1, . . . , γb), π = (π1, . . . , πb), c = (c1, . . . , cb)) with at most b =

O(log n) Gaussian components N(x; ci, γ
2
i Θ

−1) over the data space with the mixing weights

πi ∝ 2
i
2 and variances γi = O( 1√

d
) that generate the observed data in d-dimensional space.

Condition 2. The ith Gaussian component as defined in Condition 1 above was used to

generate 2
i
2 data points of the observed dataset. This can be substantiated easily with high prob-

ability given the above setup in Condition 1 that assigns selection probability πi ∝ 2
i
2 to the

ith-component.

Condition 3. For each parameter configuration Θ = diag[θ21, . . . , θ
2
d], the mixture distribu-

tion of data in Condition 1 has sufficiently separated cluster centers. That is, for all i ̸= j:

∥Θ−1/2 (ci − cj)∥22 >
3

2
log

(
2a

2a − 1

)
where a =

1

log 2
log

(
n4

n4 − λ4

)
. (3.5)

These conditions impose that the observed data can be separated into a number of clusters

with exponentially growing sizes and concentration (see the small variances defined in Condition

1 and the imposed sizes of Condition 2). Intuitively, this means data points that belong to clusters

with high concentration are responsible for kernel entries with high values whereas those in

clusters with low concentration generate entries with low values. This is easy to see since high

concentration reduces the distance between data points, thus increasing their kernel values and

vice versa.

Furthermore, as imposed by Condition 2, clusters with high concentration also have denser

populations and induce kernel entries with high values. In addition, Condition 3 requires that

clusters are well-separated, which implies that a large number of kernel entries are small and

therefore can be approximated cheaply. Together, these conditions form the foundations of our
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reduced complexity analysis for SSGP in Theorem 3.1.4. Interestingly, we show that such condi-

tions also inspire the development of a probabilistic algorithm that finds an encoding of the input

that (approximately) satisfies these conditions while preserving the statistical properties of the

input (Section 3.1.3.3). This results in an improved sample complexity for SSGPs in practice (see

Section 3.1.3.1).

Main Results

To understand the intuition of why an improved sample complexity can be obtained, we note

that when data is partitioned in clusters with different concentrations and sizes, the kernel entries

are also partitioned into multiple value bands with a narrow width (i.e., low variance). Exploiting

this, we can calibrate a significantly lower sample complexity for each band using concentration

inequalities that improve with lower variance (Chernoff, 1952; Hoeffding, 1963).

Then, to combine these in-band sample complexities efficiently, we further exploit the data

conditions in Section 3.1.3.1 to show that statistically, value bands with smaller widths also tend

to be populated more densely
5
. This allows us to aggregate these in-band sample costs into an

overall sample complexity with low cost. In practice, this also inspires an embedding algorithm

(Section 3.1.3.3) that transforms the data in such a way that the distribution of their induced

kernel entries will be denser in narrower bands, which is advantageous in our analysis.

Formally, let C be the set of all kernel entries indexed by (u, v) in the Gram matrix K such

that xu and xv belong to the same cluster and C ′
be its complement. Also, let C be partitioned

into b value-bands κi = {(u, v) ∈ C | 1 − O(21−i) ≤ K4
uv ≤ 1 − O(2−i)} for i ∈ [1 . . . b] and

let κ0 = {(u, v) ∈ C | K4
uv ≥ 1−O(2−b)} be a band that is only populated by very large kernel

entries. Theorem 3.1.4 below shows that we can construct a λ-spectral approximation ofK with

arbitrarily high probability and low sample complexity.

Theorem 3.1.4. For any 1 ≥ δ ≥ O(exp(b−
√
d)), if the training data has n data points and satis-

fies Conditions 1-3 above with respect to λ, then with probability at least 1− 2δ, the approximation
K′ = (1/p)

∑p
i=1Kϵi where ϵi ∼ N(0, I) is λ- spectral close toK.

Proof Sketch of Theorem 3.1.4

First, with a proper choice of a clustering partition, the cross-cluster entries in K are guar-

anteed to be sufficiently small so as to be well-approximated by zero. We can then show with

high probability that any kernel entry that corresponds to a pair of unique data points from the

same cluster can be well-approximated with a sample complexity that scales favorably with the

cluster’s variance. In particular, we show that kernel values induced by data points generated by

lower-variance clusters (see Condition 1) will have smaller approximation variances than those

generated by data from higher-variance clusters and therefore require fewer samples to produce

the same level of approximation.

5
The intuition here is that kernel entries in narrower bands are cheaper (in term of sample cost) to approximate.
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Second, for certain configurations of mixture weights, Condition 2 asserts that the number

of data points from each cluster is inversely proportional to the cluster variance, which implies

that a small sample complexity is enough to approximate the majority of kernel entries. More

specifically, Lemma 3.1.6 shows that when the input points are distributed into clusters with

certain choices of variances {γi}bi=1 and at an inversely proportional ratio O(γ−1
i ), then with

high probability, over all clusters, the kernel entries (excluding those on the diagonal) associated

with pairs in the i-th cluster belong to their corresponding band κi.

Lemma 3.1.9 shows that for p = O(log2 n/λ2 log(log n/δ)), with probability 1 − δ/b, the

total approximation error of all kernel entries in the Ci will be at most λ2/4b, which implies with

probability 1− δ, the total approximation cost for items in C is at most λ2/4. Next, Lemma 3.1.5

establishes that with the above data distribution, C accounts for n2/4 entries while C ′
accounts

for 3n2/4 entries, which needs to be approximated with error at most 3λ2/4.

Finally, Lemma 3.1.7 shows that when the clusters are sufficiently well-separated (see Con-

dition 3), any kernel value corresponding to an arbitrary data pair with points belonging to dif-

ferent clusters is guaranteed to be smaller than λ2/n2
, which then guarantees a total error of at

most 3λ2/4 when they are uniformly approximated with zero. Putting these together yields a

total error of λ2
with probability 1 − 2δ, which implies K and K′

are λ-spectrally close since

∥K−K′∥2 ≤ ∥K−K′∥F ≤ λ. The detailed proof is as follows.

Detailed Proof of Theorem 3.1.4

Let ∆(xu,xv) ≜ |K(xu,xv) −K′(xu,xv)| where K′(xu,xv) = (1/p)
∑p

i=1 Kϵi(xu,xv), and

where ϵi ∼ N(0, I) as defined in Lemma 3.1.2 above. Wewill first measure the approximation loss

across different value-bands of K(xu,xv), thereby deriving tight sample bounds for each band.

Combining these with the union bound allows us to establish a much cheaper overall sample

complexity as compared to the naïveO(n2 log n) bound.

Lemma 3.1.5. Suppose the data distribution follows Conditions 1-3 above. Let c(xu) denote the
cluster index of each data point xu. Let C ≜ {u, v | c(xu) = c(xv)} and C ′ ≜ {u, v | c(xu) ̸=
c(xv)} denote the sets of in-cluster and out-cluster kernel entries, respectively, where |C| ≃ n2

4
and

|C ′| ≃ 3n2

4
.

Proof. By Condition 2, since n data points are scattered across b clusters and each cluster i has

2i/2 points, it follows that:

n =
b∑

i=1

2
i
2 =

√
2b+1 −

√
2√

2− 1

⇒ |C| =
b∑

i=1

2i = 2b+1 − 1 =
(
n
(√

2− 1
)
+
√
2
)2

− 1 ≃ n2

4

⇒ |C ′| = n2 − |C| ≃ 3n2

4
. (3.6)
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This also implies that b = O(log n), which is consistent with Condition 1 above.

Lemma 3.1.6. Let Ci = {(u, v) ∈ C | c(xu) = c(xv) = i} for i ∈ [1 . . . b]. Then with probability
at least 1− δ, for δ ≥ O(exp(log n−

√
d)), the following holds for all i and (u, v) ∈ Ci for which

u ̸= v:(
1− 1

2a+i−1

) 1
4

≤ K(xu,xv) <

(
1− 1

2a+i

) 1
4

where a =
1

log 2
log

(
n4

n4 − λ4

)
(3.7)

Proof. If xu and xv are both generated from component i of the data distribution as defined in

Condition 1, it follows that Θ−1/2(xu − xv) ∼ N(ci, γ
2
i I). Therefore, by standard chi-squared

tail bounds, with probability at least 1− 2e−t
, we have:

∥Θ−1/2(xu − xv)∥22 = γ2
i d ± O

(
γ2
i

√
dt
)

, (3.8)

where d is the data dimension. Using this, we can then figure out a setting for γ2
i such that

K(xu,xv) follows the above condition in Equation 3.7. In particular, set

L(i) = log

(
2a+i

2a+i − 1

)
and U(i) = log

(
2a+i−1

2a+i−1 − 1

)
. (3.9)

We can then choose:

γ2
i =

1

4d

(
U(i) + L(i)

)
and t =

√
d

(
U(i)− L(i)
U(i) + L(i)

)
≃ O

(√
d
)

, (3.10)

so that by plugging these choices in Equation 3.8 above, we have with probability at least 1−2e−t
:

∥Θ−1/2(xu − xv)∥22 ∈
[
1

2
log

(
2a+i

2a+i − 1

)
,
1

2
log

(
2a+i−1

2a+i−1 − 1

)]
⇒ K(xu,xv) ∈

[(
1− 1

2a+i−1

) 1
4

,

(
1− 1

2a+i

) 1
4

]
. (3.11)

Now, note that for any δ for which δ ≥ O
(
4be−

√
d
)
≥ O

(
4ie−

√
d
)
∀i ≤ b, we have δ/4i ≥ 2e−t

since t ≃ O(
√
d). This also means δ ≥ O(exp(log n−

√
d)) since b = O(log n).

That is, Equation 3.11 and hence, Equation 3.7, holdwith probability at least 1−2e−t ≥ 1−δ/4i

for each entry in Ci. For each cluster i, even though there are up to 2i kernel entries, by the triangle
inequality it is easy to see that we only need to apply a union bound over at most 2i/2 (carefully

selected) entries (excluding the entries on the diagonal) to meet Equation 3.7 with probability at

least 1− 2i(δ/4i) = 1− δ/2i.

Subsequently, applying a union bound over all clusters gives us that with probability at least

1− δ
∑b

i=1 1/2
i ≥ 1− δ, all kernel entries within the i-th cluster satisfy Equation 3.7 simultane-

ously for 1 ≤ i ≤ b.
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Lemma 3.1.7. For all (u, v) ∈ C ′ ≜ {u, v | c(xu) ̸= c(xv)}, we have K(xu,xv) <

(
1− 1

2a

) 1
4

where a =
1

log 2
log

(
n4

n4 − λ4

)
as defined in Lemma 3.1.6 above.

Proof. For any (u, v) for which c(xu) = i and c(xv) = j and i ̸= j, we have:

∥Θ−1/2(xu − xv)∥22 ≥ ∥Θ−1/2 (ci − cj)∥22 − ∥Θ−1/2 (xu − ci)∥22 − ∥Θ−1/2 (xv − cj)∥22

≥ ∥Θ−1/2 (ci − cj)∥22 −
1

2
log

(
2a+i

2a+i − 1

)
− 1

2
log

(
2a+j

2a+j − 1

)
≥ ∥Θ−1/2(ci − cj)∥22 − log

(
2a

2a − 1

)
⇒ K (xu,xv) = exp

(
−1

2
∥Θ−1/2 (xu − xv)∥22

)
≤ exp

(
−1

2
· ∥Θ−1/2 (ci − cj)∥22 +

1

2
log

(
2a

2a − 1

))
<

(
1− 1

2a

) 1
4

since for all (i, j), by Condition 3:

∥Θ−1/2 (ci − cj)∥22 >
3

2
log

(
2a

2a − 1

)
. (3.12)

This completes our proof for the stated result of Lemma 3.1.7.

Corollary 3.1.8. With probability at least 1 − δ, there are exactly n entries that are greater than
1− 2−(a+b) where a = 1

log 2
log
(

n4

n4−λ4

)
. These are the diagonal entriesK(xu,xu) with 1 ≤ u ≤ n.

Proof. Lemma 3.1.6 asserts that with probability 1−δ, all kernel entriesK(xu,xv), where c(xu) =

c(xv) = i, belong to their respective band κi = {(u, v) | 1−1/2a+i−1 ≤ K4(xu,xv) ≤ 1−1/2a+i}.
When this happens, all in-cluster entries (except the diagonal entries) will have values between

1 − 1/2a and 1 − 1/2a+b
(since there are b bands) and as such, off-cluster entries will either be

smaller than 1−1/2a or larger than 1−1/2a+b
. But then Lemma 3.1.7 further guarantees that all

off-cluster entries are smaller than 1−1/2a, following Condition 3. Thus, it follows that the only

entries that are larger than 1−1/2a+b
are the diagonal items and there are exactly n of them.

Lemma 3.1.9. Let κi =
{
(u, v) | 1− 1/2a+i−1 ≤ K4(xu,xv) < 1− 1/2a+i

}
. It follows that

for each i ∈ [1 . . . b], with probability at least 1− δ/b:

∑
(u,v)∈Gi

∆2(xu,xv) ≤ λ2

b
, (3.13)
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if the kernel approximationK′(xu,xv) ≜ 1
p

∑p
t=1Kϵt(xu,xv) is formed using at least

p =
b|κi|

λ2 · 2a+i
log

(
b|κi|
δ

)
= O

(
log2 n

λ2
log

(
log n

δ

))
samples.

Proof. For all (u, v), we have Kϵt (xu,xv) = cos(ϵ⊤t Θ
−1/2 (xu − xv)) where ϵt ∼ N(0, I) and,

Kϵt(xu,xv) = cos

(
d∑

ℓ=1

ϵℓt ·
(
xℓ
u − xℓ

v

θℓ

))
≜ cos

(
ztuv
)
. (3.14)

Since ϵℓt ∼ N(0, 1), ztuv is then aweighted sumofGaussian randomvariables and ztuv ∼ N(0,Σt
uv),

where Σt
uv ≜ (xu − xv)

⊤Θ−1(xu − xv), which in turn implies:

E[cos(ztuv)] = exp
(
−0.5Σt

uv

)
= K(xu,xv) ,

V[cos(ztuv)] =
1

2

[
1− E[cos(ztuv)]2

]2
=

1

2

(
1−K2(xu,xv)

)2
≤ 2× 1

2a+i
, (3.15)

where the last inequality follows from the choice of (u, v) ∈ κi and the definition of the κi above.

Next, applying the Chernoff-Hoeffding inequality and union bounding over the κi, we have:

exp Pr

(
∀(u, v) ∈ κi : ∆(xu,xv) ≤ ϵ

p

)
≥ 1− 2|κi| exp

(
− ϵ2

4
∑p

t=1V [cos(ztuv)]

)

⇒ Pr

 ∑
(u,v)∈κi

∆2(xu,xv) ≤ |κi|ϵ2

p2

 ≥ 1− 2|κi| exp
(
−ϵ2 · 2a+i

8p

)
. (3.16)

Thus, setting ϵ2 =
λ2p2

4b|κi|
and p ≥ 32b|κi|

λ2 · 2a+i
log

(
2b|κi|
δ

)
yields:

Pr

 ∑
(u,v)∈Gi

∆2(xu,xv) ≤
λ2

4b

 ≥ 1− 2|κi| exp
(
−λ2p · 2a+i

32b|κi|

)
≥ 1− δ

b
. (3.17)

where the last inequality follows from the above choice of p. Since |κi| = 2i by Condition 2, we

further have p ≥ 32b

λ2 · 2a
log

(
b · 2b+1

δ

)
= O

(
log2 n

λ2
log

(
log n

δ

))
.

Lemma 3.1.9 thus establishes a very strong sample complexity of O(log2 n log log n) for ap-

proximating all kernel entries within a narrow band of values, which is significantly cheaper

than the sample complexity ofO(n2 log n) we would get if we were to ignore the distribution of

kernel values in different bands. This is made clear in Corollary 3.1.10 below, which combines

Lemmas 3.1.6, 3.1.7 and 3.1.9 to establish an overall sample complexity resulting in only a small

approximation loss accumulated over all bands.
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Corollary 3.1.10. If a kernel approximationK′ of K is formed such that

K′(xu,xv) ≜
1

p

p∑
t=1

Kϵt(xu,xv)

for all in-cluster entries (u, v) ∈ C using p = O
(
(log2 n/λ2) log (log n/δ)

)
samples andK′(xu′ ,xv′) ≜

0 for all off-cluster entries (u′, v′) ∈ C ′, then,

∥K−K′∥22 ≤ ∥K−K′∥2F ≤ λ2 ,

with probability at least 1− 2δ with δ ≥ O
(
exp(log n−

√
d)
)
. This immediately guarantees that

K′ is spectrally close toK using the notion of λ-closeness (see Definition 3.1.3).

Proof. By Lemma 3.1.6, with probability 1− δ, |κi| = |Ci| simultaneously for all i. Thus, applying

a union bound over this event and the results obtained in Lemma 3.1.9 for all clusters, we have

the following bound on the total approximation loss over in-cluster entries in C with probability

1− 2δ: ∑
(u,v)∈C

∆2(xu,xv) ≤ λ2

4
. (3.18)

Furthermore, by Lemma 3.1.7, we also have the following bound on the total approximation loss

over off-cluster entries in C ′
(which were approximated uniformly by zero):

∑
(u,v)∈C′

∆2(xu,xv) ≤ 3n2

4

(
K(xu,xv)− 0

)2
≤ 3n2

4

√
1− 1

2a
=

3λ2

4
, (3.19)

when the last inequality is due to the facts (established in Lemma 3.1.7) thatK4(xu,xv) ≤ 1−1/2a

and that a =
1

log 2
log

(
n4

n4 − λ4

)
. Finally, combining these yields:

∥K−K′∥22 ≤ ∥K−K′∥2
F
=
∑

(u,v)∈C

∆2(xu,xv) +
∑

(u,v)∈C′

∆2(xu,xv) ≤
1

4
λ2 +

3

4
λ2 = λ2

(3.20)

3.1.3.2 Approximation Loss for Prediction and Model Evidence

In terms of prediction and model evidence approximation, our result holds simultaneously for all

parameter configurations and is thus oblivious to the choice of parameters (see Theorem 3.1.11).

While existing kernel sketch methods (Avron et al., 2017; Musco and Musco, 2016) generically
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achieve near-linear complexity for the approximate feature map
6
, they often require knowledge

of the parameters to construct the kernel approximations. In contrast, our result in Theorem 3.1.4

can be leveraged to bound the same prediction discrepancy when the original and approximated

GPs use their own optimized parameter configurations, as shown in Theorem 3.1.19 below. To

establish Theorem 3.1.19, however, we first establish an intermediate result that bounds the pre-

diction and model evidence in the case when both the original and approximated GPs use the

same parameter configurations.

Theorem 3.1.11. Let δ < 1 be a user-specified confidence as defined previously in Theorem 3.1.4
and letK′ be an approximation toK for which ∥K−K′∥22 ≤ λ2 with probability 1− δ, uniformly
over the entire parameter space. Then, with probability 1− δ, the following hold:

E[g(x∗)] =

(
1± λ

σ2

)
E[g′(x∗)] and V[g(x∗)] =

(
1± λ

σ2

)
V[g′(x∗)] ±

λ

σ2
(3.21)

where σ2 is the noise of the variance (Equation 3.2), and g(x∗), g′(x∗) respectively denote the pre-
dictive distributions of the full GP and the approximated GP pertaining to an arbitrary test input
x∗.

Proof. This follows directly from Lemma 3.1.13 and Lemma 3.1.14 below.

Detailed Proof of Theorem 3.1.11

Lemma 3.1.12. LetK andK′ be positive semidefinite matrices inRn×n such that−λI ⪯ K−K′ ⪯
λI, Q ≜ K+ σ2I and Q′ ≜ K′ + σ2I for some λ, σ > 0, then:

∥Q′−1∥2 =
(
1± λ

σ2

)
∥Q−1∥2 . (3.22)

Proof. By definition of the spectral norm, we have ∀x ∈ Rn
:

K−K′ ⪯ λI , (3.23)

which implies

Q ⪯ K′ + (σ2 + λ)I

⪯
(
σ2 + λ

σ2

)
K′ + (σ2 + λ)I

=

(
1 +

λ

σ2

)
Q′ . (3.24)

6
(Avron et al., 2017; Musco andMusco, 2016) achieves a complexity ofO(nm2)wherem scales with the effective

dimension of the kernel matrix.
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where ⪯ and ⪰ denote the Loewner inequality operators. Likewise, by symmetry, we also have:

Q′ ⪯
(
1 +

λ

σ2

)
Q . (3.25)

Let A ≜ (1 + λ/σ2)Q′
and B ≜ Q. Since A and B are symmetric and positive semidefinite,

there existU,V with orthogonal rows and columns and diagonal matricesΣ,Σ′
for whichA =

UΣU⊤
and B = VΣ′V⊤

. We further letA−1/2 ≜ UΣ−1/2
and B−1/2 ≜ VΣ′−1/2

.

Then, we can rewrite Equation 3.24 as:

A−B ⪰ 0

⇒ B−1/2(A−B)B−1/2 ⪰ 0

⇒ B−1/2AB−1/2 − I ⪰ 0

⇒ A−1/2B1/2(B−1/2AB−1/2)B−1/2A1/2 ⪰ A−1/2B1/2B−1/2A1/2

⇒ A1/2B−1A1/2 ⪰ I

⇒ A−1/2(A1/2B−1A1/2)A−1/2 ⪰ A−1/2A−1/2

⇒ B−1 ⪰ A−1

⇒ Q−1 ⪰ σ2

σ2 + λ
Q′−1

⇒
(
1 +

λ

σ2

)
Q−1 ⪰ Q′−1 . (3.26)

Again, by symmetry, we can rewrite Equation 3.25 as:

Q′−1 ⪰ σ2

σ2 + λ
Q−1 ⪰

(
1− λ

σ2 + λ

)
Q−1

⪰
(
1− λ

σ2

)
Q−1 . (3.27)

Therefore, we have ∥Q′−1∥2 = (1± λ/σ2)∥Q−1∥2 .

Let g(x∗) and g′(x∗) respectively denote the predictive distributions of full GP and the ap-

proximated GP pertaining to an arbitrary test input x∗. We then state the following lemmas:

Lemma 3.1.13. LetK′ denote an approximation that is λ-close to the original kernelK. The induced
predictive mean of K′ is bounded by a factor of 1± λ/σ2 times the original predictive mean.

E[g(x∗)] =

(
1± λ

σ2

)
E[g′(x∗)] . (3.28)
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Proof. Let k∗ ≜ [k(x∗,xi)]
n
i=1 where xi denotes the i-th training data point. We have:

E[g(x∗)] =
1

2

(
(k∗ + y)⊤Q−1(k∗ + y)− k⊤

∗ Q
−1k∗ − y⊤Q−1y

)
=

1

2

(
1± λ

σ2

)(
(k∗ + y)⊤Q′−1

(k∗ + y)− k⊤
∗ Q

′−1
k∗ − y⊤Q′−1

y
)

=

(
1± λ

σ2

)
E[g′(x∗)] , (3.29)

where the first and third equations follow from adding and subtracting the same terms to the ex-

pression of g(x∗) – see Equation 3.2 –while the second equation follows from applying Lemma 3.1.12

above.

Lemma 3.1.14. LetK′ denote an approximation that is λ-close to the original kernelK. The induced
predictive variance of K′ is bounded by a factor of 1 ± λ/σ2 of the original predictive variance up
to a constant bias of λ/σ2,

V[g(x∗)] =

(
1± λ

σ2

)
V[g′(x∗)]±

λ

σ2
. (3.30)

Proof. Following the definition of the Gaussian kernel, we assume that the signal of the SE

(Squared Exponential) kernel is unitary
7
. As such,

V[g(x∗)] = 1− k⊤
∗ Q

−1k∗

= 1−
(
1± λ

σ2

)
k⊤
∗ Q

′−1
k∗

=

(
1± λ

σ2

)(
1− k⊤

∗ Q
′−1

k∗

)
± λ

σ2

=

(
1± λ

σ2

)
V[g′(x∗)] ±

λ

σ2
, (3.31)

where (again) the above equation follows straightforwardly from applying Lemma 3.1.12 and

standard algebraic manipulation. Lemma 3.1.13 and Lemma 3.1.14 thus provide an explicit bound

on the difference between the original and approximated predictive distributions. We will now

establish another bound on the difference between the original and approximated negative log-

likelihoods (i.e., the training objectives) in Lemma 3.1.15 and Lemma 3.1.16 below.

Lemma 3.1.15. Let K′ denote an approximation that is λ-close to the original kernel K. Let Q =

K+ σ2I and Q′ = K′ + σ2I. We have:

log |Q′| =
(
1± τλ,σ(K)

)
log |Q| . (3.32)

7
This simplifies the analysis and does not restrict the expressiveness of the kernel since we can either normalize

the output or absorb it into the length-scales (i.e., the θi).
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where the spectral constant τλ,σ(K) ofK is defined below:

τλ,σ(K) ≜
max

(∣∣∣ log (1 + λ
σ2

) ∣∣∣, ∣∣∣ log (1− λ
σ2

) ∣∣∣)
min
(∣∣∣ log(λmin(K) + σ2)

∣∣∣, ∣∣∣ log(λmax(K) + σ2)
∣∣∣) . (3.33)

Proof. Let λ1 ≤ λ2 · · · ≤ λn and λ′
1 ≤ λ′

2 · · · ≤ λ′
n be the eigenvalues of K and K′

respectively.

Applying the Courant-Fischer theorem on the result obtained in Lemma 3.1.12, we have:

λ′
i + σ2 =

(
1± λ

σ2

)(
λi + σ2

)
. (3.34)

This implies:

log |Q′| ≤
n∑

i=1

∣∣∣ log(λ′
i + σ2)

∣∣∣ =
n∑

i=1

∣∣∣∣log(λi + σ2) + log

(
1± λ

σ2

)∣∣∣∣
≤

n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣+ n∑

i=1

max

(∣∣∣∣log(1 + λ

σ2

)∣∣∣∣ , ∣∣∣∣log(1− λ

σ2

)∣∣∣∣)
≤

(
1 + τλ,σ(K)

) n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣ =

(
1 + τλ,σ(K)

)
log |Q| . (3.35)

Similarly, by symmetry, we have:

log |Q′| ≥
n∑

i=1

∣∣∣ log(λi + σ2)
∣∣∣− n∑

i=1

max

(∣∣∣∣log(1 + λ

σ2

)∣∣∣∣ , ∣∣∣∣log(1− λ

σ2

)∣∣∣∣)
≥

(
1− τλ,σ(K)

) n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣ =

(
1− τλ,σ(K)

)
log |Q| . (3.36)

Together, Equation 3.35 and Equation 3.36 imply log |Q′| =
(
1± τλ,σ(K)

)
log |Q|.

Lemma 3.1.16. Let K′ denote an approximation that is λ-close to the original kernel K. With
τλ,σ(K) previously defined in Lemma 3.1.15, we have:

ℓ′(Θ) =

(
1±max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ) . (3.37)

where ℓ(Θ) and ℓ′(Θ) respectively denote the negative log likelihood of the full GP and the approx-
imated GP evaluated at the hyper-parametersΘ = diag[θ21, θ

2
2 . . . θ

2
d] as defined previously.
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Proof. We have:

ℓ′(Θ) =
1

2
log |Q′|+ 1

2
y⊤Q′−1

y

=
1

2
(1± τλ,σ(K)) log |Q|+ 1

2

(
1± λ

σ2

)
y⊤Q−1y

=

(
1±max

(
τλ,σ(K),

λ

σ2

))
1

2

(
log |Q|+ y⊤Q−1y

)
=

(
1±max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ) . (3.38)

Using the result of Lemma 3.1.16 above, we can further analyze how the quality of the opti-

mized parameter Θ′
∗ = argmaxΘ ℓ′(Θ) of the approximated training objective compares to the

true optimizer of the original objective functionΘ∗ = argmaxΘ ℓ(Θ) in Lemma 3.1.17 below.

Lemma 3.1.17. LetΘ∗ andΘ′
∗ denote the optimal hyper-parameters obtained by respectively min-

imizing the negative log likelihood of the full GP and the approximated GP. We have:

ℓ′(Θ′
∗) =

(
1±max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ∗) . (3.39)

Proof. By Lemma 3.1.16, we have:

ℓ′(Θ′
∗) ≤ ℓ′(Θ∗)

≤
(
1 +max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ∗) (3.40)

and

ℓ′(Θ′
∗) ≥

(
1−max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ′

∗)

≥
(
1−max

(
τλ,σ(K),

λ

σ2

))
ℓ(Θ∗) . (3.41)

Together, these results imply ℓ′(Θ′
∗) =

(
1±max

(
τλ,σ(K), λ

σ2

))
ℓ(Θ∗).

Lemma 3.1.18. Let δ ∈ (0, 1) and letK′ denote an approximation ofK for which ∥K−K′∥22 ≤ λ2

with probability at least 1 − δ uniformly over the entire parameter space. Let Θ∗ and Θ′
∗ denote

the optimal hyper-parameters obtained by respectively minimizing the negative log-likelihood of the
full GP and the approximated GP. Then, with probability 1− δ, the following holds:

E[g′(x∗;Θ
′
∗)] = (1± ρ(λ, σ,Θ∗,Θ

′
∗)) · E[g(x∗;Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (3.42)

where ρ(λ, σ,Θ∗,Θ
′
∗) and ℘(λ, σ,Θ∗,Θ

′
∗) are constant with respect to λ, σ,Θ∗,Θ

′
∗

72



Proof. We have:

E[g(x∗;Θ∗)] = k⊤
∗ Q

−1y
∣∣∣
Θ∗

=
1

2

[
(k∗ + y)⊤Q−1(k∗ + y)− k∗Q

−1k∗ + log |Q|
]∣∣∣∣∣

Θ∗

− 1

2
ℓ(Θ∗)

≥ −1

2

[
ℓ(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(3.43)

On the other hand, we have:

E[g(x∗;Θ∗)] = k⊤
∗ Q

−1y

≤ 1

2

[
k⊤
∗ Q

−1k∗ + y⊤Q−1y
]∣∣∣∣∣

Θ∗

≤ 1

2

[
ℓ(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(3.44)

Thus, we have:

E[g(x∗;Θ∗)] = ±1

2

[
ℓ(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(3.45)

and by symmetry:

E[g′(x∗;Θ
′
∗)] = ±1

2

ℓ′(Θ′
∗) + 1−

n∑
i=1

log
(
λ′
i + σ2

)∣∣∣∣∣
Θ′

∗


= (1± ρ(λ, σ,Θ∗,Θ

′
∗)) · E[g(x∗;Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (3.46)

where ℘(Θ∗,Θ
′
∗) is a constant as defined below:

ρ(λ, σ,Θ∗,Θ
′
∗) ≜ max

(
τλ,σ(K), τλ,σ(K

′),
λ

σ2

)

℘(λ, σ,Θ∗,Θ
′
∗) ≜

 n∑
i=1

log
λi + σ2

∣∣∣
Θ∗

λ′
i + σ2

∣∣∣
Θ′

∗

± ρ(λ, σ,Θ∗,Θ
′
∗) ·

(
1−

n∑
i=1

log(λi + σ2)
∣∣∣
Θ∗

)

Finally, Theorem 3.1.19 analyzes how close the approximated predictive mean is to the full GP

predictive mean when both are evaluated at the optimizer of their respective training objective.
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Theorem 3.1.19. Let δ < 1 be user-specified confidence as defined in Theorem 3.1.4. LetK′ denote
an approximation toK for which ∥K−K′∥22 ≤ λ2 with probability at least 1−δ uniformly over the
entire parameter space. LetΘ∗ andΘ′

∗ denote the optimal hyperparameters obtained by respectively
minimizing the negative log-likelihood of a full GP and the approximated GP. With probability 1−δ,
the following holds:

E[g′(x∗;Θ
′
∗)] = (1± ρ(λ, σ,Θ∗,Θ

′
∗)) · E[g(x∗;Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (3.47)

where ρ(λ, σ,Θ∗,Θ
′
∗) and ℘(λ, σ,Θ∗,Θ

′
∗) are constants with respect to λ, σ,Θ∗,Θ

′
∗.

Proof. This follows immediately from Lemma 3.1.17 above, which was built on the result of The-

orem 3.1.11 above. This completes our loss analysis for SSGPs.

3.1.3.3 Optimizing Feature Map Complexity

We next present a practical probabilistic embedding algorithm that transforms the input data to

meet the requirements of Conditions 1-3. Our method is built on the rich literature of variational

auto-encoders, a.k.a VAE (Kingma and Welling, 2013), which is a broad class of deep generative

models that combine the rigor of Bayesian methods and rich parameterization of (deep) neural

networks to discover (non-linear) low-dimensional embeddings of data while preserving their

statistical properties. We first provide a short review on VAEs below, followed by an augmenta-

tion that aims to achieve the impositions in Conditions 1-3 above.

Variational Auto-Encoders (VAEs)

Let x be a random variable with density function p(x). We want to learn a latent variable

model pθ(x, z) = p(z)pθ(z|x) that captures this generative process. The latent variable model

comprises a fixed latent prior p(z) and a parametric likelihood pθ(z|x). To learn θ, we maximize

the variational evidence lower-bound (ELBO) L(x; θ, ϕ) of log pθ(x):

L(x; θ, ϕ) ≜ Ez∼qϕ

[
log pθ(x|z)

]
−KL

(
qϕ(z||x)||p(z)

)
(3.48)

with respect to an arbitrary posterior surrogate qϕ(z|x) ≃ pθ(z|x) over the latent variable z. The
ELBO is always a lower-bound on log pθ(x) regardless of our choice of qϕ(z|x). This is due to the
non-negativity of the KL divergence as seen in the first part of the above equation.

This can be viewed as a stochastic auto-encoder with pθ(x|z) and qϕ(z|x) acting as the en-

coder and decoder, respectively. Here, θ and ϕ characterize the neural network parameteriza-

tion of these models. Their learning is enabled via a re-parameterization of qϕ(z|x) that enables
stochastic gradient ascent.

Re-configuring Data via an Augmenting Variational Auto-Encoder
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To augment the above VAE framework (Kingma and Welling, 2013; Mathieu et al., 2019) to

account for the impositions in Conditions 1 and 2, we ideally want to configure the param-

eterization of the above generative process to guarantee that the marginal posterior q(z) =∫
x
q(z|x)p(x)dx will manifest itself in the form of a mixture of Gaussians with the desired con-

centration and population densities as stated in Condition 1.

However, it is often difficult to make such an imposition directly given that we typically have

no prior knowledge of p(x). We instead impose the desired structure on the latent prior p(z) and

then penalize the divergence between qϕ(z) and p(z) while optimizing for the above ELBO in

Equation 3.48. That is, we parameterize p(z) = π1 N(z; c1, γ
2
1Θ

−1) + . . . + πb N(z; cb, γ
2
bΘ

−1)

where πi ∝ 2i/2 (see Condition 2), which encodes the desired clustering structure. This is then

reflected on the marginal posterior q(z) via augmenting the above ELBO as,

Lα(x; θ, ϕ) ≜ Ez∼qϕ

[
log pθ(x|z)

]
−KL

(
qϕ(z||x)||p(z)

)
− αKL

(
q(z)||p(z)

)
, (3.49)

where the penalty term αKL(q(z)||p(z)) serves as an incentive to encourage q(z) to assume the

same clustering structure as p(z). The parameter α can be manually set to adjust the strength of

the incentive. To encourage separation among learned clusters (see Condition 3), we also add an

extra penalty term to the above augmented ELBO,

Lα,β(x; θ, ϕ) ≜ Lα(x; θ, ϕ) + β
∑
i ̸=j

KL
(
N
(
z; ci, γ

2
i Θ

−1I
)
||N

(
z; cj, γ

2
jΘ

−1I
) )

. (3.50)

Once these clusters are learned, we can use the resulting encoding network qϕ(z|x) to transform
each training input x into its latent projection and subsequently train an SSGP on the latent space

of z (instead of training it on the original data space). Our previous analysis can then be applied

to z to give the desired sample complexity. The empirical efficiency of the proposed method is

demonstrated in Section 3.1.4 below. Note that the cost of training the embedding is linear in the

number of data points and therefore does not noticeably affect our overall running time.

3.1.4 Experiments

Datasets. This section presents our empirical studies on two real datasets: (a) the ABALONE

dataset (Waugh) with 3000 data points which were used to train a model that predicts the age

of abalone (number of rings on its shell) from physical measurements such as length, diameter,

height, whole weight, shucked weight, viscera weight, and shell weight; and (b) the GAS SENSOR

dataset with 4 million data points (Burgués et al., 2018; Burgués and Marco, 2018) which was

used to train a model that predicts the CO concentration (ppm) from measurements of humidity,

temperature, flow rate, heater voltage and the resistant measures of 14 gas sensors.

In both settings, we compare our revised SSGP method with the traditional SSGP on both

datasets to demonstrate its sample efficiency. In particular, our SSGP method is applied on the
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embedded space of data which was generated and configured using the auto-encoding method

in Section 3.1.3.3 to approximately meet the aforementioned Conditions 1-3.

The traditional SSGP method on the other hand was applied directly to the data space. The

prediction root-mean-square-error (RMSE) achieved by each method is reported at different sam-

ple complexities in Figure 3.1 below. All reported performances were averaged over 5 indepen-

dent runs on a computing server with a Tesla K40 GPU with 12GB RAM.

Detailed Model Parameterization

Our embedding algorithm is based on a VAE implementation where the latent prior, poste-

rior, and the likelihood of the data generation process are represented via separate mixtures of

k Gaussian distributions over a 4-dimensional space. For the latent prior, we set (and fixed) the

means of each Gaussian component (i.e., the prior cluster means) at k equidistant points on a

4-dimensional sphere centered at zero with an optimizable radius. For the latent posterior and

likelihood, the mean and covariance entries of each component in the mixture are parameterized

as outputs of their respective neural networks, which we refer to as Gaussian nets.

In turn, the Gaussian nets are parameterized separately. Each starts with a linear layer com-

prising of 10 neurons whose outputs are fed simultaneously to two separate hidden (linear) layers

with 10 hidden neurons each. Their outputs are then used to form the mean and covariance en-

tries of the corresponding Gaussian component. All neurons are activated by a ReLU unit, and

in addition, the (batch) outputs of the first linear layer are also standardized via a learnable 1D

batch-norm layer to ensure the stability of batch optimization. The mixing weights that combine

such Gaussian nets in the mixtures are also parameterized as the outputs of a linear layer with

k = 8 neurons where k = 8 is also the number of components in our mixture.

The above parameterized latent prior, posterior, and likelihood are then connected in the

variational lower-bound (ELBO) as expressed in the first two terms of Equation 3.49. This ELBO

objective is then combined with two regularization terms weighted with (manually tuned) pa-

rameters α = 8.0 and β = 1.2 as detailed in Equation 3.50. The entire function is optimized

via gradient descent using the standard Adam optimizer with the default setting implemented in

PyTorch (Paszke et al., 2017).

Once learned, the outputs of the latent posterior were used as the encoded data which were

fed as input to our revisited SSGP. For practical implementation, we also found that additionally

passing the encoded data to the latent likelihood generates a reconfigured version of the original

data which helps to marginally improve the performance. All of our reported results below are

generated with respect to this version of reconfiguration. All of our implementations of GP,

SSGP and revisited SSGP that make use of the output of this reconfiguration process, are also in

PyTorch.

Results and Discussions

It can be observed from the results that at all levels of sample complexity, the revised SSGP

achieves substantially better performance than its vanilla SSGP counterpart (Figures 3.1 and 3.2).
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(a) (b) (c)

Figure 3.1: Performance comparison between our revised SSGP and the traditional SSGP on the

ABALONE dataset (Waugh) at varying sample complexities (see Theorem 3.1.5) p = 16, 32 and

64.

This is expected since our revised SSGP is guaranteed to require many fewer samples than the

vanilla SSGP when the data is reconfigured to exhibit a certain clustering structure (see Condi-

tions 1-3 and Theorem 3.1.4). As such, when both are set to operate at the same level of sample

complexity, one would expect the revised SSGP to achieve better performance since SSGP gen-

erally performs better when its sample complexity is set closer to the required threshold. On the

larger GAS SENSOR dataset (which contains approximately 4M data points), we also observe the

same phenomenon from the performance comparison graph as shown in Figure 3.2a below: A

vanilla SSGP needs to increase its number of samples to marginally improve its predictive per-

formance while our revisited SSGP is able to outperform the former with the least number of

samples (p = 16).

(a) (b) (c)

Figure 3.2: Graphs of (a) performance comparison between our revisited SSGP’s (with sample

complexity p = 16) and the vanilla SSGP’s (with sample complexity p = 16, 32, 64) on the GAS

SENSOR dataset (Burgues); and visualizations of (b) original and (c) reconfigured data distri-

butions of GAS SENSOR data on a 2-dimensional latent space generated by our auto-encoding

algorithm in Section 3.1.3.3. Additional results on this dataset are listed in Figures 3.3 and 3.4.
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Furthermore, a closer look into the data distribution (visualized in a 2D space in Figure 3.2b)

and the data reconfigured data distribution (visualized in a 2D space in Figure 3.2c) also corrobo-

rates our hypothesis earlier that awell-separated data partitionwith high in-cluster concentration

(in the form of a mixture of clusters – see Condition 1) can be found (by our embedding algorithm

in Section 3.1.3.3) to reconfigure our data distribution to (approximately) meet the necessary tech-

nical conditions that enable our sample-complexity enhancement analysis (see Section 3.1.3.1).

The following ablation studies will list additional results on data visualization and perfor-

mance comparison on GAS SENSOR data for supporting the discussed results.

Ablation: The Effect of Data Re-configuration

This section describes an ablation study to demonstrate the effectiveness of our data re-

configuration component (i.e., to approximately meet the practical Conditions 1-3 of our refined

analysis). Specifically, we demonstrate this by contrasting the scatter plots of data embeddings

(see Figure 3.3) before and after reconfiguration using our algorithm in Section 3.1.3.3 below. The

visualizations are shown for 3 different samples of data, each of which has 10K data points.

For each data sample, its embedding was clustered and re-clustered before and after its recon-

figuration. Both clustering processes were generated independently using K-Means to provide

an objective visual measurement of the reconfiguration effects of our algorithm.

Observing the above visual excerpts, it appears that after reconfiguration, the clusters across

different data samples all became significantlymore disentangledwith a visibly increased distance

between their cluster centers. This provides conclusive evidence of the data disentangling effect

of our embedding algorithm. More importantly, this demonstration further reveals a practical

aspect of data that has not been investigated before in the existing literature on GP.

Data (especially experimental data) is often themanifestation of how latent concepts that underlie
them were observed and depending on specific parameters of the observation process, these concepts
might manifest differently in either more or less useful forms for learning. This raises the question
of whether one can reorient the observation process to increase the utility of such data.

In this vein of thought, to address the above question, our data reconfiguration algorithm can

be considered to be one potential solution that uses a parameterized construction of a latent space

to provide a handle on how to reorient the latent concepts that underlie our data. For an intuitive

example, imagine how we would look at the outside world via a narrowed pigeonhole. With

different viewing angles, we would perceive the same scene outside differently and apparently,

some angles provide a much better perception of that scene (thus, allowing us to interpret the

scene more accurately).

In technical terms, such a reorientation is implemented in our algorithm via the regularization

of the mixture composition of the latent prior while constraining the entire embedding process

to have it reflected on the latent posterior – see Equation 3.50 – which was used to encode data

into a latent space that exhibits the desired separation effect. Such separation/disentanglement is

then shown (empirically) to be richer in information and can be leveraged to improve the sample
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(S1): Original Embedding (S2): Original Embedding (S3): Original Embedding

(S1): ReconFigure Embedding (S2): ReconFigure Embedding (S3): ReconFigure Embedding

Figure 3.3: Visualizations of original (top) and reconfigured (bottom) data embeddings for 3 dif-

ferent (randomly selected) data samples annotated with S1, S2 and S3, respectively. Each visual

excerpt is annotated with different colors corresponding to the different clusters that the data

belong to. All visualizations are generated using t-SNE (van der Maaten and Hinton, 2008).

complexity of SSGP (see the ablation study below).

Ablation: Performance Comparison with SSGP on Large Data

To demonstrate the effectiveness of the data disentanglement in reducing the sample com-

plexity of SSGP, we compare the performance of SSGP and our revisited SSGP (which was instead

applied on the reconfigured space of data) at different levels of sample complexity. All results were

generated for two different data samples extracted from GAS-SENSOR (Burgues). One of these

(containing 500K data points) is in fact on the same scale of the most extensive datasets used in

the GP literature. All performance plots were visualized in Figure 3.4. For each experiment, the

data sample is divided into a train/test partition with an 8-2 ratio. All results were averaged over

5 independent runs.

We see that our revised SSGP consistently achieves better performance than its SSGP coun-

terpart at all complexity levels. In particular, in all cases of the 10K setting, the performance of

our revised SSGP is also shown to approach closely that of the full GP, which serves as a gold-

standard lower-bound on the achievable prediction error. This concludes our empirical demon-

stration which (we believe) has shown that with a proper reconfiguration of data, the predictive
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Graphs of performance comparisons between the full GP, our revised SSGP and the

traditional SSGP on a 10K sample (a-c); 500K sample (d-f) and the entire GAS SENSOR dataset

(Burgues) totaling approximately 4M data points (g-i). In both settings, the performance differ-

ences were plotted at p = 16, 32 and 64. Note that for the 500K sized sample and the entire

dataset (which contains 4M data points), the full GP model is not applicable due to its inability

(memory- and computation-wise) to store and invert the corresponding large covariance matrix.

performance of a GP can be well-preserved at a much cheaper sample complexity as compared

to the previous conservative estimate yielded by SSGP. In fact, the performance trend of SSGP

as depicted in the above graphs shows that with more samples, it also slowly converges towards

the performance level of GP and our revised SSGP but at a much greater sample complexity – see

the shrinking performance gap between revisited SSGP and SSGP from Figure 3.4d to Figure 3.4e;

and similarly, from Figure 3.4g to Figure 3.4h.
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3.1.5 Conclusion

We present a new method and analysis for approximating Gaussian processes. We obtain prov-

able guarantees for both training and inference, which are the first to hold simultaneously over

the entire space of kernel parameters. Our results complement existing work in kernel approxi-

mation that often assumes knowledge of its defining parameters. Our results also reveal impor-

tant (practical) insights that allow us to develop an algorithmic handle on the tradeoff between

approximation quality and sample complexity, which is achieved via finding an embedding that

disentangles the latent coordinates of data. Our empirical results show for many datasets, such

a disentangled embedding space can be found, which leads to a significantly reduced sample

complexity of SSGP.
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3.2 Approximate Matrix Trace Estimation

Similar to Gausian Processes in the previous section, Matrix trace estimation is ubiquitous in

machine learning applications, especially when the data too large to realize the full matrix in the

memory. Matrix trace estimation has traditionally relied onHutchinson’s method, which requires

O(log(1/δ)/ϵ2)matrix-vector product queries to achieve a (1±ϵ)-multiplicative approximation to

tr(A)with failure probability δ on positive-semidefinite input matricesA. Recently, the Hutch++

algorithm was proposed, which reduces the number of matrix-vector queries from O(1/ϵ2) to

the optimal O(1/ϵ), and the algorithm succeeds with constant probability. However, in the high

probability setting, the non-adaptive Hutch++ algorithm suffers an extra O(
√
log(1/δ)) multi-

plicative factor in its query complexity. Non-adaptive methods are important, as they correspond

to sketching algorithms, which are mergeable, highly parallelizable, and provide low-memory

streaming algorithms as well as low-communication distributed protocols. In this work, we close

the gap between non-adaptive and adaptive algorithms, showing that even non-adaptive algo-

rithms can achieve O
(√

log(1/δ)/ϵ+ log(1/δ)
)
matrix-vector products. In addition, we prove

matching lower bounds demonstrating that, up to a log log(1/δ) factor, no further improvement

in the dependence on δ or ϵ is possible by any non-adaptive algorithm. Finally, our experiments

demonstrate the superior performance of our sketch over the adaptive Hutch++ algorithm, which

is less parallelizable, as well as over the non-adaptive Hutchinson’s method.

3.2.1 Problem and Motivation

The problem of implicit matrix trace estimation arises naturally in a wide range of applica-

tions (Ubaru and Saad, 2018). The popular applications of implicit trace estimation include count-

ing triangles and computing the Estrada Index in graphs (Avron, 2010; Estrada and Hatano, 2008),

approximating the generalized rank of a matrix (Zhang et al., 2015), and studying non-convex loss

landscapes from the Hessian matrix of large neural networks (NNs) (Ghorbani et al., 2019; Yao

et al., 2020), where it is almost always impossible to store the whole Hessian matrix or NNs that

have many million to billion parameters.

To define the problem, we consider thematrix-vector product model as formalized in (Fika and

Koukouvinos, 2017; Rashtchian et al., 2020; Sun et al., 2021), where there is a real symmetric input

matrix A ∈ Rn×n
that cannot be explicitly presented but one has oracle access to A via matrix-

vector queries, i.e., one can obtainAq for any desired query vector q ∈ Rn
. For example, due to

a tremendous amount of trainable parameters of large NNs, it is often prohibitive to compute or

store the entire Hessian matrixH with respect to some loss function from the parameters (Ghor-

bani et al., 2019), which is often used to study the non-convex loss landscape. However, with

Pearlmutter’s trick (Pearlmutter, 1994) one can computeHq for any chosen vector q. The goal is

to efficiently estimate the trace of A, denoted by tr(A), up to ϵ error, i.e., to compute a quantity

within (1± ϵ)tr(A). For efficiency, such algorithms are randomized and succeed with probability
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at least 1− δ. The minimum number of queries q required to solve the problem is referred to as

the query complexity.
Computing matrix-vector products Aq through oracle access, however, can be costly. For

example, computing Hessian-vector products Hq on large NNs takes approximately twice the

time of backpropagation. When estimating the eigendensity of H , one computes tr(f(H)) for

some density function f , and needs repeated access to the matrix-vector product oracle. As a

result, even with Pearlmutter’s trick and distributed computation on modern GPUs, it takes 20

hours to compute the eigendensity of a single HessianH with respect to the cross-entropy loss on

the CIFAR-10 dataset (Krizhevsky et al., 2009), from a set of fixed weights for ResNet-18 (He et al.,

2016) which has approximately 11million parameters (Ghorbani et al., 2019). Thus, it is important

to understand the fundamental limits of implicit trace estimation as the query complexity in terms

of the desired approximation error ϵ and the failure probability δ.

Hutchinson’s method (Hutchinson, 1989), a simple yet elegant randomized algorithm, is the

ubiquitous workforce for implicit trace estimation. LettingQ = [q1, . . . ,qq] ∈ Rn×q
be q vectors

with i.i.d. Gaussian or Rademacher (i.e., ±1 with equal probability) random variables, Hutchin-

son’s method returns an estimate of tr(A) as 1
q

∑q
i=1 q

⊤
i Aqi =

1
q
tr(Q⊤AQ). Although Hutchin-

son’s method dates back to 1990, it is surprisingly not well-understood on positive semi-definite

(PSD) matrices. It was originally shown that for PSD matricesAwith the qi being Gaussian ran-

dom variables, in order to obtain a multiplicative (1± ϵ) approximation to tr(A)with probability

at least 1− δ, O(log(1/δ)/ϵ2)matrix-vector queries suffice (Roosta-Khorasani and Ascher, 2015).

A recent work (Meyer et al., 2020) proposes a variance-reduced version of Hutchinson’s

method that shows onlyO(1/ϵ)matrix-vector queries are needed to achieve a (1±ϵ)-approximation

to any PSD matrix with constant success probability, in contrast to the O(1/ϵ2) matrix-vector

queries needed for Hutchinson’s original method. The key observation is that the variance of

the estimated trace in Hutchinson’s method is largest when there is a large gap between the top

few eigenvalues and the remaining ones. Thus, by splitting the number of matrix-vector queries

between approximating the top O(1/ϵ) eigenvalues, i.e., by computing a rank-O(1/ϵ) approxi-

mation toA, and performing trace estimation on the remaining part of the spectrum, one needs

only O(1/ϵ) queries in total to achieve a (1 ± ϵ) approximation to tr(A). Furthermore, Meyer

et al. (2020) shows Ω(1/ϵ) queries are in fact necessary for any trace estimation algorithm, up to

a logarithmic factor, for algorithms succeeding with constant success probability. While Meyer

et al. (2020) mainly focuses on the improvement on ϵ in the query complexity with constant failure

probability, we focus on the dependence on the failure probability δ.

Achieving a low failure probability δ is important in applications where failures are highly

undesirable, and the low failure probability regime is well-studied in related areas such as com-

pressed sensing (Gilbert et al., 2013), data stream algorithms (Jayram andWoodruff, 2011; Kamath

et al., 2021), distribution testing (Diakonikolas et al., 2020), and so on. While one can always

reduce the failure probability from a constant to δ by performing O(log(1/δ)) independent rep-

etitions and taking the median, this multiplicative overhead of O(log(1/δ)) can cause a huge
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slowdown in practice, e.g., in the examples above involving large Hessians.

Algorithm 1 Hutch++: Stochastic trace estimation with adaptive matrix-vector queries

Input: Matrix-vector multiplication oracle for PSD matrixA ∈ Rn×n
. Numberm of queries.

Output: Approximation to tr(A).

1: Sample S ∈ Rn×m
3 and G ∈ Rn×m

3 with i.i.d. N (0, 1) entries.

2: Compute an orthonormal basisQ ∈ Rn×m
3 for the span ofAS via QR decomposition.

3: Return t = tr(Q⊤AQ) + 3
m
tr(G⊤(I −QQ⊤)A(I −QQ⊤)G).

Algorithm 2 NA-Hutch++: Stochastic trace estimation with non-adaptive matrix-vector

queries

Input: Matrix-vector multiplication oracle for PSD matrixA ∈ Rn×n
. Numberm of queries.

Output: Approximation to tr(A).

1: Fix constants c1, c2, c3 such that c1 < c2 and c1 + c2 + c3 = 1.

2: Sample S ∈ Rn×c1m
, R ∈ Rn×c2m

, and G ∈ Rn×c3m
, with i.i.d. N (0, 1) entries.

3: Z = AR, W = AS

4: Return t = tr((S⊤Z)†(W⊤Z)) + 1
c3m

(tr(G⊤AG)− tr(G⊤Z(S⊤Z)†W⊤G)).

Two algorithms were proposed in (Meyer et al., 2020): Hutch++ (Algorithm 1), which re-

quires adaptively chosen matrix-vector queries and NA-Hutch++ (Algorithm 2)
8
that only

requires non-adaptively chosen queries. We call the matrix-vector queries adaptively chosen if

subsequent queries are dependent on previous queries q and observations Aq, whereas the al-

gorithm is non-adaptive if all queries can be chosen at once without any prior information about

A. Note that Hutchinson’s method uses only non-adaptive queries. Meyer et al. (2020) shows

that Hutch++ can use O(
√

log(1/δ)/ϵ + log(1/δ)) adaptive matrix-vector queries to achieve

(1±ϵ) approximation with probability at least 1−δ, while NA-Hutch++ can useO(log(1/δ)/ϵ)

non-adaptive queries. Thus, in many parameter regimes the non-adaptive algorithm suffers an

extra

√
log(1/δ) multiplicative factor over the adaptive algorithm.

It is important to understand the query complexity of non-adaptive algorithms for trace es-

timation because the advantages of non-adaptivity are plentiful: algorithms that require only

non-adaptive queries can be easily parallelized across multiple machines while algorithms with

adaptive queries are inherently sequential. Furthermore, non-adaptive algorithms correspond

to sketching algorithms which are the basis for many streaming algorithms with low memory

(Muthukrishnan, 2005) or distributed protocols with low-communication overhead (for an exam-

ple application to low rank approximation, see (Boutsidis et al., 2016)). We note that there are

numerous works on estimating matrix norms in a data stream (Braverman et al., 2018, 2020; Li

et al., 2014; Li and Woodruff, 2016), most of which use trace estimation as a subroutine.

8† denotes the Moore-Penrose pseudoinverse.
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3.2.2 Related Work

Matrix Trade Estimation A summary of prior work on the query complexity of trace estima-

tion of PSD matrices is given in Table 3.1. For the upper bounds, prior to the work of (Avron

and Toledo, 2011), the analysis of implicit trace estimation mainly focused on the variance of

estimation with different types of query vectors. Avron and Toledo (2011) gave the first upper

bound on the query complexity. The work of Roosta-Khorasani and Ascher (2015) improved the

bounds in (Avron and Toledo, 2011). On the lower bound side, although Roosta-Khorasani and

Ascher (2015) gives a necessary condition on the query complexity for Gaussian query vectors,

this condition does not directly translate to a bound on the minimum number of query vectors.

The work of Meyer et al. (2020) gives the first lower bound on the query complexity in terms of

ϵ but only works for constant failure probability.

Upper Bounds

Prior Work Query Complexity Query Vector Type Failure Probability Algorithm Type

Avron and Toledo (2011) O(log(1/δ)/ϵ2) Gaussian δ non-adaptive

Avron and Toledo (2011) O(log(rank(A)/δ)/ϵ2) Rademacher δ non-adaptive

Roosta-Khorasani and Ascher (2015) O(log(1/δ)/ϵ2) Gaussian, Rademacher δ non-adaptive

Meyer et al. (2020) O(
√
log(1/δ)/ϵ+ log(1/δ)) Gaussian, Rademacher δ adaptive

Meyer et al. (2020) O(log(1/δ)/ϵ) Gaussian, Rademacher δ non-adaptive

This Work O(
√
log(1/δ)/ϵ+ log(1/δ)) Gaussian δ non-adaptive

Lower Bounds

Meyer et al. (2020) Ω(1/(ϵ log(1/ϵ))) — constant adaptive

Meyer et al. (2020) Ω(1/ϵ) — constant non-adaptive

This Work Ω(
√
log(1/δ)/ϵ+ log(1/δ)

log log(1/δ)
) — δ non-adaptive

Table 3.1: Upper and lower bounds on the query complexity for trace estimation of PSD matrices.

Subspace Embedding A closely related topic is subspace embedding that has broad applica-

tions in graph algorithms, optimization, andmachine learning in general. One of themost seminal

results is from Johnson and Lindenstrauss (1984) where it is proven that a subspace mapping that

preserve pair-wise distances can be done in randomized polynomial time. Recently, Sobczyk and

Luisier (2022) further improves to even tighter bounds on a lower dimension of the embedded

space for any given matrix regardless of spectrum, also by relying on Algorithm 1).

3.2.3 Our Contributions

Improving the Non-adaptive Query Complexity. We give an improved analysis of the query

complexity of the non-adaptive trace estimation algorithm NA-Hutch++ (Algorithm 2), based

on a new low-rank approximation algorithm and analysis in the high probability regime, instead

of applying an off-the-shelf low-rank approximation algorithm as in (Meyer et al., 2020). In-

stead of O(log(1/δ)/ϵ) queries as shown in (Meyer et al., 2020), we show that O(
√

log(1/δ)/ϵ+

log(1/δ)) non-adaptive queries suffice to achieve a multiplicative (1 ± ϵ) approximation of the

85



trace with probability at least 1 − δ, which matches the query complexity of the adaptive trace

estimation algorithm Hutch++. Since our algorithm is non-adaptive, it can be used in subrou-

tines in streaming and distributed settings for estimating the trace, with lower memory than was

previously possible for the same failure probability.

Theorem 3.2.1 (Restatement of Theorem 3.2.5). Let A be any PSD matrix. If NA-Hutch++ is
implemented with

m = O

(√
log(1/δ)

ϵ
+ log(1/δ)

)
matrix-vector multiplication queries, then with probability 1 − δ, the output t of NA-Hutch++
satisfies (1− ϵ)tr(A) ≤ t ≤ (1 + ϵ)tr(A).

The improved dependence on δ is perhaps surprising in the non-adaptive setting, as simply

repeating a constant-probability algorithm would give an O(log(1/δ)/ϵ) dependence. Our non-

adaptive algorithm is as good as the best-known adaptive algorithm, and much better than previ-

ous non-adaptive algorithms (Hutchinson, 1989; Meyer et al., 2020). The key difference between

our analysis and the analysis in (Meyer et al., 2020) is in the number of non-adaptive matrix-

vector queries we need to obtain an O(1)-approximate rank-k approximation to A in Frobenius

norm.

Specifically, to reduce the total number of matrix-vector queries, our queries are split between

(1) computing Ã, a rank-k approximation to the matrix A, and (2) performing trace estimation

onA− Ã. LetAk = minrank-k A∥A−Ak∥F be the best rank-k approximation toA in Frobenius

norm. For our algorithm to work, we require ∥A−Ã∥ ≤ O(1)∥A−Ak∥F with probability 1−δ.

Previous results from Clarkson and Woodruff (2009) show the number of non-adaptive queries

required to compute Ã is O(k log(1/δ)), where each query is an i.i.d. Gaussian or Rademacher

vector. We prove O(k + log(1/δ)) non-adaptive Gaussian query vectors suffice to compute Ã.

Low rank approximation requires both a so-called subspace embedding and an approximate ma-

trix product guarantee (see, e.g., (Woodruff, 2014), for a survey on sketching for low-rank ap-

proximation), and we show both hold with the desired probability, with some case analysis, for

Gaussian queries. A technical overview can be found in Section 3.2.5.

The improvement in the number of non-adaptive queries to achieveO(1)-approximate rank-k

approximation has many other implications, which can be of independent interest. For example,

since low-rank approximation algorithms are extensively used in streaming algorithms suitable

for low-memory settings, this new result directly improves the space complexity of the state-of-

the-art streaming algorithm for Principle Component Analysis (PCA) (Boutsidis et al., 2016) from

O(d · (k log(1/δ))) to O(d · (k + log(1/δ))) for constant approximation error ϵ, where d is the

dimension of the input.

Lower Bound. Previously, no lower bounds were known on the query complexity in terms

of δ in a high probability setting. In this work, we give a novel matching lower bound for non-

adaptive (i.e., sketching) algorithms for trace estimation, with novel techniques based on a new
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family of hard input distributions, showing that our improvedO(
√

log(1/δ)/ϵ+log(1/δ)) upper

bound is optimal, up to a log log(1/δ) factor, for any ϵ ∈ (0, 1). The methods previously used

to prove an Ω(1/ϵ) lower bound with constant success probability (up to logarithmic factors) in

(Meyer et al., 2020) do not apply in the high probability setting. Indeed, Meyer et al. (2020) gives

two lower bound methods based on a reduction from two types of problems: (1) a communication

complexity problem, and (2) a distribution testing problem between clean and negatively spiked

random covariance matrices. Technique (1) does not apply since there is not a multi-round lower

bound for the Gap-Hamming communication problem used in (Meyer et al., 2020) that depends

on δ. One might think that since we are proving a non-adaptive lower bound, we could use a non-

adaptive lower bound for Gap-Hamming (which exists, see (Jayram andWoodruff, 2011)), but this

is wrong because even the non-adaptive lower bound in (Meyer et al., 2020) uses a 2-round lower

bound for Gap-Hamming, and there is no such lower bound known in terms of δ. Technique

(2) also does not apply, as it involves a 1/ϵ × 1/ϵ matrix, which can be recovered exactly with

1/ϵ queries; further, increasing the matrix dimensions would break the lower bound as their two

cases would no longer need to be distinguished. Thus, such a hard input distribution fails to show

the additive Ω(log(1/δ)) term in the lower bound.

Our starting point for a hard instance is a family of Wigner matrices (see Definition 3.2.3)

shifted by an identity matrix so that they are PSD. However, due to the strong concentration

properties of these matrices, they can only be used to provide a lower bound of Ω(
√

log(1/δ)/ϵ)

when ϵ < 1/
√

log(1/δ). Indeed, setting δ to be a constant, in this case, recovers the Ω(1/ϵ)

lower bound shown in (Meyer et al., 2020) but via a completely different technique. For larger

ϵ, we consider a new distribution testing problem between clean Wigner matrices and the same

distribution with a large rank-1 noisy PSD matrix and then argue with probability roughly δ,

all non-adaptive queries have unusually tiny correlation with this rank-1 matrix, thus making

it indistinguishable between the two distributions. This gives the desired additive Ω(log(1/δ))

lower bound, up to a log log(1/δ) factor.

Theorem 3.2.2 (Restatement of Theorem 3.2.11). Suppose A is a non-adaptive query-based algo-
rithm that returns a (1± ϵ)-multiplicative estimate to tr(A) for any PSD matrixA with probability
at least 1− δ. Then, the number of matrix-vector queries must be at least

m = Ω

(√
log(1/δ)

ϵ
+

log(1/δ)

log(log(1/δ))

)
.

3.2.4 Problem Setting

Notation. A matrixA ∈ Rn×n
is symmetric positive semi-definite (PSD) if it is real, symmetric,

and has non-negative eigenvalues. Hence, x⊤Ax ≥ 0 for all x ∈ Rn
. Let tr(A) =

∑n
i=1Aii

denote the trace ofA. Let ∥A∥F = (
∑n

i=1

∑n
j=1A

2
ij)

1/2
denote the Frobenius norm and ∥A∥op =
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sup∥v∥2=1 ∥Av∥2 denote the operator norm ofA. LetN (µ, σ2) denote the Gaussian distribution

with mean µ and variance σ2
. Our analysis extensively relies on the following facts:

Definition 3.2.3 (Gaussian and Wigner Random Matrices). We let G ∼ N (n) denote an n × n

random Gaussian matrix with i.i.d. N (0, 1) entries. We letW ∼ W(n) = G+G⊤ denote an n×n

Wigner matrix, whereG ∼ N (n).

Fact 3.2.1 (χ2
Tail Bound (Lemma 1 of (Laurent and Massart, 2000))). Let Z ∼ χ2(n). Then for

any x > 0,

Pr[Z ≥ n+ 2
√
nx+ 2x] ≤ e−x

Pr[Z ≤ n− 2
√
nx] ≤ e−x.

Fact 3.2.2 (Rotational Invariance of a standard Gaussian). LetR ∈ Rn×n be an orthogonal matrix.
Let g ∈ Rn be a random vector with i.i.d. N (0, 1) entries. ThenRg has the same distribution as g.

Fact 3.2.3 (Upper Gaussian Tail Bound). Let Z ∼ N (0, σ2) be a univariate Gaussian random
variable. Then for any t > 0,

Pr[Z ≥ t] ≤ exp(− t2

2σ2
).

Fact 3.2.4 (Lower Gaussian Tail Bound). Letting Z ∼ N (0, 1) be a univariate Gaussian random
variable, for any t > 0,

Pr[Z ≥ t] ≥ 1√
2π

· 1
t
exp(t2/2).

Lemma 3.2.4 (Concentration of Singular Values of a Gaussian RandomMatrix (Eq. 2.3 of (Rudel-

son and Vershynin, 2010))). Let G ∼ N (n), and smax(G) denote the maximum singular value of
G. Then ∀t ≥ 0,

Pr[smax(G) ≤ 2
√
n+ t] ≥ 1− 2 exp(−t2/2)

Fact 3.2.5 (KL Divergence Between Multivariate Gaussian Distributions (Eq. 8 of (Soch and

Allefeld, 2016), or Section 9 of (Duchi)). Let P ∼ N (µ1,Σ1) and Q ∼ N (µ2,Σ2) be two k-
dimensional multivariate normal distributions. The Kullback-Leibler divergence between P and Q
is

DKL(P ∥ Q) =
1

2

{
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)− ln
det(Σ1)

det(Σ2)
− k
}
.
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Fact 3.2.6 (Conditioning Increases KL Divergence ((Wu, 2020))). Let PY |X , QY |X be two condi-
tional probability distributions over spaces X ∈ X and Y ∈ Y , let PY = PY |XPX and QY =

QY |XPX . Then,

DKL(PY ∥ QY ) ≤ DKL(PY |X ∥ QY |X | PX) :=

∫
DKL(PY |X=x ∥ QY |X=x)dPX .

Fact 3.2.7 (KLDivergence Data Processing Inequality (Page 18 of (Duchi, 2021))). For any function
f and random variables X and Y on the same probability space, it holds that

DKL(f(X) ∥ f(Y )) ≤ DKL(X ∥ Y ).

3.2.5 An Improved Analysis of NA-Hutch++

Suppose we are trying to compute a sketch so as to estimate the trace of a matrix A up to a

(1 ± ϵ)-factor with success probability at least 1 − δ. Note that we focus on the case where we

makematrix-vector queries non-adaptively. For any algorithm that accomplishes this with a small

constant failure probability, one can simply repeat this procedure O(log(1/δ)) times to amplify

the success probability to 1 − δ. Since these queries are non-adaptive and must be presented

before any observations are made, it seems intuitive that the number of non-adaptive queries of

NA-Hutch++ (Algorithm 2) should be O(log(1/δ)/ϵ) as shown in (Meyer et al., 2020). In this

section, we give a proof sketch as to why this can be reduced to O(
√
log(1/δ)/ϵ + log(1/δ)) as

stated in our main Theorem 3.2.5.

Theorem 3.2.5. Let A be a PSD matrix. If NA-Hutch++ is implemented with

m = O
(√

log(1/δ)/ϵ+ log(1/δ)
)

matrix-vector multiplication queries, then with probability 1 − δ, the output of NA-Hutch++,
denoted by t, satisfies (1− ϵ)tr(A) ≤ t ≤ (1 + ϵ)tr(A).

3.2.5.1 Proof Sketch of Theorem 3.2.5

Recall thatNA-Hutch++ splits itsmatrix-vector queries between computing anO(1)-approximate

rank-k approximation Ã and performing Hutchinson’s estimate on the residual matrix A − Ã.

The key to an improved query complexity of NA-Hutch++ is on the analysis of the size of ran-

domGaussian sketchingmatricesS,R in Algorithm 2 that one needs to get anO(1)-approximate

rank-k approximation Ã in the Frobenius norm. To get the desired rank-k approximation, we

need S and R to satisfy two properties: 1) subspace embedding as in Lemma 3.2.6 and 2) ap-

proximate matrix product for orthogonal subspaces as in Lemma 3.2.7. Specifically, we show
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in Lemma 3.2.7 that choosing S and R to be of size O(k + log(1/δ)) suffices to get the second

property with probability 1− δ.

After that, we show in Lemma 3.2.8 that if a sketching matrix S satisfies the two proper-

ties mentioned above, with size O(k + log(1/δ)), one gets an O(1)-approximate low rank ap-

proximation with probability 1 − δ when solving a sketched version of the regression problem

minX ∥ST (AX −B)∥F for fixed matrices A,B with rank(A) = k. Lemma 3.2.8 serves as an

intermediate step to construct an O(1)-approximate rank-k approximation Ã with S,R having

a size of only O(k + log(1/δ)) in Theorem 3.2.9.

Finally, we combine Theorem 3.2.10 from (Meyer et al., 2020), which shows the trade-off be-

tween the rank k and the number l spent on estimating the small eigenvalues, andTheorem 3.2.9,

which shows the number of non-adaptive queries one needs to get a desired rank-k factor, to con-

clude in Theorem 3.2.5 that NA-Hutch++ needs onlyO

(√
log(1/δ)

ϵ
+ log(1/δ)

)
non-adaptive

queries, by setting k =

√
log(1/δ)

ϵ
.

3.2.5.2 Detailed Proof of Theorem 3.2.5

Lemma 3.2.6 (Subspace Embedding (Theorem 6 of (Woodruff, 2014))). Given δ ∈ (0, 1
2
) and

ϵ ∈ (0, 1), let S ∈ Rr×n be a random matrix with i.i.d. Gaussian random variables N (0, 1
r
). Then

for any fixed d-dimensional subspace A ∈ Rn×d, and for r = O((d + log(1
δ
))/ϵ2), the following

holds with probability 1− δ simultaneously for all x ∈ Rd,

∥SAx∥2 = (1± ϵ)∥Ax∥2.

Lemma 3.2.7 (Approximate Matrix Product for Orthogonal Subspaces). Given δ ∈ (0, 1
2
), let

U ∈ Rn×k,W ∈ Rn×p be two matrices with orthonormal columns such that UTW = 0, p ≥
max(k, log(1/δ)), rank(U) = k and rank(W ) = p. Let S ∈ Rr×n be a random matrix with i.i.d.
Gaussian random variables N (0, 1

r
). For r = O(k + log(1

δ
)), the following holds with probability

1− δ,

∥UTSTSW ∥F ≤ O(1)∥W ∥F .

Note that we will apply the above two lemmas with constant ϵ. The proof intuition is as fol-

lows: consider a sketch matrixS of size r with i.i.d. N (0, 1
r
) random variables as in Lemma 3.2.7.

The range of U ∈ Rn×k
corresponds to an orthonormal basis of a rank-k low-rank approxima-

tion to A, and the range of W ∈ Rn×p
is the orthogonal complement. Note that both SU and

SW are random matrices consisting of i.i.d. N (0, 1
r
) random variables, and thus the task is to

bound the size, in Frobenius norm, of the product of two random Gaussian matrices with high

probability. Intuitively, the size of the matrix product is proportional to the rank k and inversely
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proportional to our sketch size r. The overall failure probability δ, however, is inversely propor-

tional to k, since as k grows, the matrix product involves summing over more squared Gaussian

random variables, i.e., χ2
random variables and thus becomes even more concentrated. We show

that for k ≥ log(1/δ), a sketch size of O(k) suffices since the failure probability for each χ2

random variable is small enough to pay a union bound over k terms. On the other hand, when

k < log(1/δ), we show that r = O(log(1/δ)) suffices for the union bound. Combining the two

cases gives r = O(k + log(1/δ)). The detailed proof is as below.

Proof. Let G =
√
rUTST ∈ Rk×r

and H =
√
rSW ∈ Rr×p

. Since both U and W have

orthonormal columns, bothG andH are random matrices with i.i.d. Gaussian random variables

N (0, 1). Furthermore, let gi,∀i ∈ [k] denote the i-th row of G and hj,∀j ∈ [p] denote the j-th

column ofH .

∥UTSTSW ∥2F = ∥ 1√
r
G

1√
r
H∥2F

=
1

r2

k∑
i=1

p∑
j=1

⟨gi,hj⟩2

=
1

r2

k∑
i=1

p∑
j=1

∥gi∥22
〈

gi

∥gi∥2
,hj

〉2

=
1

r2

k∑
i=1

∥gi∥22

(
p∑

j=1

⟨ gi

∥gi∥2
,hj⟩2

)
.

Since ∥ gi

∥g∥2∥2 = 1,
〈

gi

∥gi∥2 ,hj

〉
∼ N (0, 1). Thus,

∥UTSTSW ∥2F =
1

r2

k∑
i=1

ci · di,

where ci ∼ χ2(r), di ∼ χ2(p), ∀i ∈ [k]. Note that since W has orthonormal columns, ∥W ∥2F =

p.

The number r of rows our random sketch matrix S needs in order to obtain an upper bound

on the product of random Gaussian matrices SU and SW , up to a constant factor of ∥W ∥F , de-
pends on the concentration ofSU andSW . Specifically, to apply the χ2

tail bound on some ran-

dom variable v ∼ χ2(d) from Fact 3.2.1 and to get that v concentrates around O(1)d with proba-

bility 1−δ, the degree d needs to be at least log(1/δ). Since we require p = rank(W ) ≥ log(1/δ),

SW is concentrated with high probability. The concentration of SU depends on rank(U) = k.

To upper bound ∥(SU)T (SW )∥F , we consider two cases for k:

Case I: Consider the case when k ≥ log(1
δ
):
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Since p ≥ k ≥ log(1
δ
), by Fact 3.2.1, ∀i ∈ [k],

Pr[di ≤ O(1)p] ≥ 1− e−O(k).

Since r = O(k + log(1/δ)), by Fact 3.2.1, ∀i ∈ [k],

Pr[ci ≤ O(1)k] ≥ 1− e−O(k).

By a union bound over 2k χ2
random variables,

Pr

[
k∑

i=1

ci · di ≤ O(1)k2p

]
≥ 1− 2k · e−O(k).

Thus with probability 1−O(δ),

∥UTSTSW ∥2F =
1

r2

k∑
i=1

ci · di

≤ 1

r2
O(1)k2p

=
1

r2
O(1)k2∥W ∥2F .

And so r = O(k + log(1/δ)) gives ∥USTSW ∥F ≤ O(1)∥W ∥F with probability 1− δ.

Case II: Consider the case when k < log(1
δ
).

Since p ≥ log(1
δ
), by Fact 3.2.1, ∀i ∈ [k],

Pr [di ≤ O(1)p] ≥ 1− e−O(log(1/δ)).

Since r = O(k + log(1/δ)), by Fact 3.2.1, ∀i ∈ [k],

Pr [ci ≤ O(1) log(1/δ)] ≥ 1− e−O(log(1/δ)).

By a union bound over 2k χ2
random variables, for k < log(1/δ)

Pr

[
k∑

i=1

ci · di ≤ O(1)k log(1/δ)p

]
≥ 1− 2k · e−O(log(1/δ)).

Thus with probability 1−O(δ),

∥UTSTSW ∥2F =
1

r2

k∑
i=1

ci · di

≤ 1

r2
O(1)k log(1/δ)p

=
1

r2
O(1)k log(1/δ)∥W ∥2F .
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Since k < log(1/δ), r = O(k + log(1/δ)) in this case gives the following with probability

1− δ:

∥UTSTSW ∥F ≤ O(1)∥W ∥F .

CombiningCase I andCase II allows us to conclude that for r = O(k+log(1/δ)), ∥UTSTSW ∥F ≤
O(1)∥W ∥F with probability 1− δ.

Next, the following Lemma 3.2.8 is needed to construct an O(1)-approximate rank-k approxi-

mation Ã with S,R having a size of only O(k + log(1/δ)) as used in Theorem 3.2.9.

Lemma 3.2.8 (Upper Bound on Regression Error). Given δ ∈ (0, 1
2
), let A,B be matrices that

both have n rows and rank(A) = k. Let S ∈ Rn×r be a randommatrix with i.i.d. N (0, 1
r
) Gaussian

random variables. Let X̃ = argminX∥ST (AX −B)∥F and X∗ = argminX ∥AX −B∥F . For
r = O(k + log(1/δ)), the following holds with probability 1− δ,

∥AX̃ −B∥F ≤ O(1)∥AX∗ −B∥F .

Proof. Consider an orthonormal basisU for the column span ofA. Let Ỹ = argminY ∥SUY −
SB∥2 and Y ∗ = argminY ∥UY −B∥2. By the normal equations, the solutions to the two least

squares problems are Ỹ = (SU)†SB9
and Y ∗ = UTB.

We first show that ∥UỸ −B∥F ≤ O(1)∥UY ∗ −B∥F .

∥UỸ −B∥2F = ∥UY ∗ −B∥2F + ∥UỸ −UY ∗∥2F
= ∥UY ∗ −B∥2F + ∥Ỹ − Y ∗∥2F (U has orthonormal columns)

= ∥UY ∗ −B∥2F + ∥(SU)†SB −UTB∥2F
= ∥UY ∗ −B∥2F + ∥(UTSTSU)−1UTSTSB −UTB∥2F .

Since S is a matrix with i.i.d. N (0, 1
r
) Gaussian random variables, by Fact 3.2.6, for any vector

v ∈ Rn
, with probability 1−δ and for some fixed constant ϵ1 ∈ (0, 1), ∥SUv∥2 = (1±ϵ1)∥Uv∥2.

This implies the singular values of SU are in the range [1− ϵ1, 1 + ϵ1]. Thus,

∥UỸ −B∥2F ≤ ∥UY ∗ −B∥2F +O(1)∥(UTSTSU)((UTSTSU)−1UTSTSB −UTB)∥2F
= ∥UY ∗ −B∥2F +O(1)∥UTSTSB −UTSTSUUTB∥2F
= ∥UY ∗ −B∥2F +O(1)∥UTSTS(B −UY ∗)∥2F .

9† denotes the Moore-Penrose pseudoinverse
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Consider p = rank(UY ∗ −B). If p = O(k), then rank(B) = O(k). For r = O(k), we can

use S to reconstructA andB. In this case, X̃ = X∗
and so ∥UỸ −B∥F ≤ O(1)∥UY ∗−B∥F .

If p = O(log(1/δ)), then rank(B) = O(k + log(1/δ)). For r = O(k + log(1/δ)), we can again

use S to reconstruct A andB and get ∥UỸ −B∥F ≤ O(1)∥UY ∗ −B∥F .
Now consider p ≥ max(k, log(1/δ)). First note that B − UY ∗ = B − UUTB = (I −

UUTB), where U has orthonormal columns and thus, UUT
is the projection matrix onto the

column span col(U) of U . We have (B − UY ∗) ⊥ col(U). Second, we can w.l.o.g. assume

that UY ∗ − B has orthonormal columns; indeed, otherwise let U ′R′ = B − UY ∗
be the

QR decomposition where U ′
is an orthonormal basis for col(B − UY ∗). Then ∥UTSTS(B −

UY ∗)∥2F = ∥UTSTSU ′R′∥2F = ∥UTSTSU ′∥2F .
Applying Lemma 3.2.7, with probability 1−O(δ),

∥UỸ −B∥2F ≤ ∥UY ∗ −B∥2F +O(1)∥UY ∗ −B∥2F
= O(1)∥UY ∗ −B∥2F .

This concludes that ∥UỸ −B∥F ≤ O(1)∥UY ∗−B∥F . Finally, consider the QR decomposition

of A = UR where U is an orthonormal basis for the column span of A and R is an arbitrary

matrix. Let X̃ = argminX ∥SAX − SB∥2 andX∗ = ∥AX −B∥2. Note that

min
X

∥SAX − SB∥F = min
Y

∥SURY − SB∥F = min
Y

∥SUY − SB∥F

min
X

∥AX −B∥F = min
Y

∥URY −B∥F = min
Y

∥UY −B∥F .

Thus,

∥AX̃ −B∥F = ∥UỸ −B∥F ≤ O(1)∥UY ∗ −B∥F = O(1)∥AX∗ −B∥F .

The following Theorem and its proof follows Theorem 4.7 of (Clarkson and Woodruff, 2009),

except that: 1) to get a rank k approximation to the matrix A, the number of columns in the

sketching matrices S and R was required to be m = O(k log(1
δ
)) in Theorem 4.7 of (Clarkson

and Woodruff, 2009); 2) S and R in Theorem 4.7 of (Clarkson and Woodruff, 2009) are random

sign matrices. By applying Lemma 3.2.8, we show that this numberm can be reduced to O(k +

log(1
δ
)), and consider a specific application to PSD matrices.

Theorem 3.2.9. LetA ∈ Rn×n be an arbitrary PSD matrix. LetAk = argminrank-kAk
∥A−Ak∥F

be the optimal rank-k approximation to A in Frobenius norm. If S ∈ Rn×m and R ∈ Rn×cm are
randommatrices with i.i.d. N (0, 1) entries for some fixed constant c > 0withm = O(k+log(1/δ)),
then with probability 1− δ, the matrix Ã = (AR)(STAR)†(AS)T satisfies

∥A− Ã∥F ≤ O(1)∥A−Ak∥F .
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Proof. First, we consider S to be a random matrix with i.i.d. N (0, 1
m
) entries and R to be a

random matrix with i.i.d. N (0, 1
cm

) entries.

Consider X̃ = argminX ∥STARX−STA∥F = (STAR)†STA andX∗ = argminX ∥ARX−
A∥F . By Lemma 3.2.8, with probability 1− δ,

∥ARX̃ −A∥F ≤ O(1)∥ARX∗ −A∥F .

Now letAk = argmin
rank k Ak

∥A−Ak∥F be the optimal rank-k approximation toA.

ConsiderXopt = argminX ∥XAk−A∥F andX ′ = argminX ∥XAkR−AR∥F = (AR)(AkR)†.

By Lemma 3.2.8 again, with probability 1− δ,

∥X ′Ak −A∥F = ∥(AR)(AkR)†Ak −A∥F
≤ O(1)∥XoptAk −A∥F = O(1)∥A−Ak∥F .

This implies a good rank-k approximation exists in the column span of AR. We now have with

probability 1− δ,

∥ARX∗ −A∥F ≤ ∥(AR)(AkR)†Ak −A∥F ≤ O(1)∥A−Ak∥F .

Thus by a union bound, with probability 1− 2δ,

∥AR(STAR)†STA−A∥F = ∥ARX̃ −A∥F
≤ O(1)∥ARX∗ −A∥F
≤ O(1)∥A−Ak∥F .

Since we consider PSDA, STA = (AS)T . Let Ã = (AR)(STAR)†(AS)T , it follows that with

probability 1− 2δ,

∥A− Ã∥F ≤ O(1)∥A−Ak∥F .

Let S′ =
√
mS and R′ =

√
cmR so that both S′

and R′
have i.i.d. N (0, 1) entries. Notice

that (AR′)(S′TAR′)†(AS′)T = (AR)(STAR)†(AS)T . Thus S, R can be chosen to both be

random matrices with i.i.d. N (0, 1) entries. The theorem follows after adjusting δ by a constant

factor.

Theorem 3.2.10 (Theorem 4 of (Meyer et al., 2020)). Let A ∈ Rd×d be PSD, δ ∈ (0, 1
2
), l ∈

N+, k ∈ N+. Let Ã and ∆ be any matrices with tr(A) = tr(Ã) + tr(∆) and ∥∆∥F ≤ O(1)∥A−
Ak∥F where Ak = argminrank k Ak

∥A − Ak∥F . Let Hl(M ) denote Hutchinson’s trace estimator
with l queries on matrix M . For fixed constants c, C , if l ≥ c log(1

δ
), then with probability 1 − δ,

Z = tr(Ã) +Hl(∆),

∥Z − tr(A)∥ ≤ C

√
log(1/δ)

kl
· tr(A).
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Proof. Set k = l = O

(√
log(1/δ)

ϵ

)
.

Consider Ã = (AR)(STAR)†(AS)T , where S ∈ Rn×s,R ∈ Rn×r
are both random

matrices with i.i.d. N (0, 1) entries, and ∆ = A − Ã. By Theorem 3.2.9, for s = r =

O (k + log(1/δ)) = O

(√
log(1/δ)

ϵ
+ log(1/δ)

)
, with probability 1− δ,

∥∆∥F ≤ O(1) · ∥A−Ak∥F .

Thus for the output of NA-Hutch++, t, byTheorem 3.2.10 and a union bound, with probability

1− 2δ,

|t− tr(A)| ≤ ϵ · tr(A).

The total number of non-adaptive queries NA-Hutch++ needs is

m = s+ r + l = O

(√
log(1/δ)

ϵ
+ log(1/δ)

)
.

3.2.6 Lower Bounds

In this section, we show that a query complexity ofO

(√
log(1/δ)

ϵ
+ log(1/δ)

)
is tight for any non-

adaptive trace estimation algorithm, up to a O(log log(1/δ)) factor, stated in Theorem 3.2.11.

The analysis considers two separate cases: for small ϵ, we show the term O

(√
log(1/δ)

ϵ

)
is tight

in Section 3.2.6.1, and for any ϵ, we show the term O(log(1/δ)) is tight up to a O(log log(1/δ))

factor in Section 3.2.6.2. When combined, these two lower bounds handle arbitrary ϵ, since the

latter lower bound dominates precisely when the former lower bound does not apply.

Our hard distribution consists of shifted Wigner matrices and exploits the symmetry and

concentration properties of the Gaussian ensemble.

Theorem 3.2.11 (Lower Bound for Non-Adaptive Queries). Let ϵ ∈ (0, 1). Any algorithm that
accesses a real PSD matrix A through matrix-vector multiplication queries Aq1,Aq2, . . . ,Aqm,
where q1, . . . ,qm are real-valued, non-adaptively chosen vectors, requires

m = Ω

(√
log(1/δ)

ϵ
+

log(1/δ)

log log(1/δ)

)

queries to output an estimate t such that with probability at least 1 − δ, (1 − ϵ)tr(A) ≤ t ≤
(1 + ϵ)tr(A).
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Proof of Theorem 3.2.11. For small ϵ = O(1/
√

log(1/δ)), note that the first term

√
log(1/δ)

ϵ
dom-

inates. Theorem 3.2.13 (see Section 3.2.6.1) shows any algorithm needs Ω

(√
log(1/δ)

ϵ

)
non-

adaptive queries in this case.

For ϵ > 1/
√

log(1/δ), note that the second term log(1/δ) dominates. Theorem 3.2.14 (see

Section 3.2.6.2) shows any algorithm needs Ω( log(1/δ)
log log(1/δ)

) non-adaptive queries for any ϵ ∈ (0, 1).

The two cases combined imply an Ω

(√
log(1/δ)

ϵ
+ log(1/δ)

log log(1/δ)

)
lower bound.

Our lower bounds crucially make use of rotational invariance of the Gaussian distribution

(see Fact 3.2.2) to argue that the first q queries are, w.l.o.g., the standard basis vectors e1, ..., eq.

Note that our queries can be assumed to be orthonormal. Both lower bounds use the family of

n× n Wigner matrices (see Definition 3.2.3) with shifted mean, i.e., W + C · I for some C > 0

depending on ∥W ∥op, as part of the hard input distribution. The mean shift ensures that our

ultimate instance is PSD with high probability.

3.2.6.1 Case 1: Lower Bound for Small ϵ

Suppose that we draw a matrixG ∈ Rn×n
from the Gaussian distribution and try to learn the en-

tries of the matrix via matrix-vector queries. After a few queries, it turns out that the conditional

distribution of the remaining matrix is also Gaussian-distributed, no matter how the queries are

chosen. This nice property allows concise reasoning for lower bounding the remaining uncer-

tainty of the matrix, even after seeing a few query results.

Lemma 3.2.12. (Conditional Distribution [Lemma 3.4 of (Simchowitz et al., 2018)]) LetG ∼ N (n)

be as in Definition 3.2.3 and suppose our matrix isW = (G+G⊤)/2. Suppose we have any sequence
of vector queries, v1, ...,vT , along with responseswi = Wvi. Then, conditioned on our observations,
there exists a rotation matrix V , independent of wi, such that

V WV ⊤ =

[
Y1 Y ⊤

2

Y2 W̃

]
,

where Y1, Y2 are deterministic and W̃ = (G̃+ G̃⊤)/2, where G̃ ∼ N (n− T ).

Theorem3.2.13 (Lower Bound for Small ϵ). For any PSDmatrixA and all ϵ = O
(
1/
√

log(1/δ)
)
,

any algorithm that succeeds with probability at least 1 − δ in outputting an estimate t such that
(1− ϵ)tr(A) ≤ t ≤ (1 + ϵ)tr(A), requires

m = Ω
(√

log(1/δ)/ϵ
)

matrix-vector queries.
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Proof. By standard minimax arguments, it suffices to construct a hard distribution for any deter-

ministic algorithm.

ConsiderG ∼ N (n) for n = Ω(log(1/δ)). From concentration of the singular values of large

Gaussian matrices (Lemma 3.2.4), with probability at least 1− δ/10 we have ∥G∥op ≤ C
√
n for

some absolute constant C .

Therefore, consider the family of matrices W = I + 1
2C

√
n
(G + G⊤). From our bound on

∥G∥op, with probability at least 1 − δ/10, W is positive semi-definite and symmetric. Further-

more, since tr(G) ∼ N(0, n), we see that tr(W ) ≤ 2n with probability at least 1− δ/10.

We set the multiplicative error to ϵ =

√
log(1/δ)

n
and it suffices to show that if we see only n/2

queries, we can compute tr(W ) up to additive error at best c
√

log(1/δ) with probability at least

1− δ, for some c = Ω(1). By Lemma 3.2.12, we see that conditioned on the queries, our matrix

W can be decomposed into a determined part and a Gaussian submatrix W̃ = 1
2C

√
n
(G̃+ G̃⊤),

where G̃ ∼ N (n/2).

Therefore, our conditional distribution of the trace of W is, up to a deterministic shift, the

same as the distribution of W̃ , which is simply a Gaussian with variance 1/C2
. Since we must

determine a Gaussian of constant variance up to an additive error of c
√
log(1/δ)with probability

at least 1− δ, we conclude that c = Ω(1).

3.2.6.2 Case 2: Lower Bound for Every ϵ

We give a general Ω( log(1/δ)
log log(1/δ)

) lower bound, that holds for every ϵ ∈ (0, 1), on the query com-

plexity for non-adaptive trace estimation algorithms stated in Theorem 3.2.14. The proof of

Theorem 3.2.14 is via a reduction to a distribution testing problem in Problem 3.2.15, whose

hardness (in terms of query complexity) is shown in Lemma 3.2.15.

Theorem 3.2.14 (Lower Bound on Non-adaptive Queries for PSD Matrices). Let ϵ ∈ (0, 1). Any
algorithm that accesses a real, PSD matrix A through matrix-vector queries Aq1,Aq2, . . . ,Aqm,
where q1, . . . ,qm are real-valued non-adaptively chosen vectors, requires

m = Ω

(
log(1/δ)

log log(1/δ)

)
to output an estimate t such that with probability at least 1− δ, (1− ϵ)tr(A) ≤ t ≤ (1 + ϵ)tr(A).

Proof. The proof is via reduction to a distribution testing problem stated inProblem 3.2.15. Given

a real, PSD input matrixA, letA be an algorithm that usesm non-adaptive matrix-vector queries

and outputs a trace estimation t ofA such that for some ϵ ∈ (0, 1), with probability at least 1−δ,

(1− ϵ)tr(A) ≤ t ≤ (1 + ϵ)tr(A).

Consider n = log(1/δ). Let Zi, ∀i ∈ [n] be the i-th diagonal entry ofW ∼ W(n) = G+GT

as in Definition 3.2.3. Note that G has i.i.d. N (0, 1) entries, and that the diagonal of G and GT

are the same. This implies Zi ∼ N (0, 4).
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Since the Zi are i.i.d.,

tr(W ) =
n∑

i=1

Zi ∼ N (0, 4n) = N (0, 4 log(1/δ)) .

By Fact 3.2.3,

Pr[tr(W ) ≥ 2
√
2 log(1/δ)] ≤ δ

Pr[tr(W ) ≤ −2
√
2 log(1/δ)] ≤ δ.

For a unit vector
g

∥g∥2 ∈ Rn
,

tr

(
g

∥g∥2
gT

∥g∥2

)
= ∥ g

∥g∥2
∥22 = 1.

LetB be the random matrix generated from distribution P orQ in Problem 3.2.15. First, we

claim that with probability at least 1− 4δ,B is a PSD matrix. Note that C log3/2(1
δ
) · 1

∥g∥22
ggT

is

PSD. Thus it suffices to showW + 6
√
log(1

δ
)I is PSD with high probability.

By Lemma 3.2.4, with probability 1− 2δ,

∥G∥op ≤ 3
√

log(1/δ).

By the triangle inequality and a union bound, with probability 1− 4δ,

∥W ∥op = ∥G+GT∥op ≤ 6
√

log(1/δ).

This implies W + 6
√

log(1
δ
)I is PSD with probability 1− 4δ.

If B ∼ P , with probability at least 1− δ,

tr(B) = C log3/2(1/δ) + tr(W ) + 6 log3/2(1/δ)

≥ (C + 6) log3/2(1/δ)− 2
√
2 log(1/δ).

If B ∼ Q, with probability at least 1− δ,

tr(B) = tr(W ) + 6 log3/2(log(1/δ)) ≤ 2
√
2 log(1/δ) + 6 log3/2(1/δ).

Consider the trace estimation algorithm A and let the output t = A(B). Consider the con-

stant C > 10(1+ϵ)
1−ϵ

− 6. IfB ∼ P , with probability at least 1− 2δ,

t ≥ (1− ϵ)tr(B)

≥ (1− ϵ)
(
(C + 6) log3/2(1/δ)− 2

√
2 log(1/δ)

)
> 6(1 + ϵ) log3/2(1/δ).
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If B ∼ Q, with probability at least 1− 2δ,

t ≤ (1 + ϵ)tr(B)

≤ (1 + ϵ)
(
6 log3/2(1/δ) + 2

√
2 log(1/δ)

)
< 6(1 + ϵ) log3/2(1/δ).

In the worst case, if any of the instances generated from P or Q is non-PSD, our algorithm A
fails. Thus A determines which distribution B comes from with probability at least 1 − 6δ. By

Lemma 3.2.15, this requires the number of matrix-vector queriesA uses to bem = Ω( log(1/δ)
log log(1/δ)

).

Problem 3.2.15 (Hard PSD Matrix Distribution Test). Given δ ∈ (0, 1
2
), set n = log(1/δ). Choose

g ∈ Rn to be an independent random vector with i.i.d. N (0, 1) entries. Consider two distributions:

• DistributionP onmatrices
{
C log3/2(1

δ
) · 1

∥g∥22
ggT +W + 6

√
log(1

δ
)I
}
, for some fixed con-

stant C > 1.
• Distribution Q on matrices

{
W + 6

√
log(1

δ
)I
}
.

whereW ∼ W(n) = G+GT as in Definition 3.2.3. LetA be a random matrix drawn from either
P or Q with equal probability. Consider any algorithm which, for a fixed query matrix Q ∈ Rn×q,
observesAQ, and guesses ifA ∼ P or A ∼ Q with success probability at least 1− δ.

Lemma 3.2.15 (Hardness of Problem 3.2.15). Given δ ∈ (0, 1
2
). Consider a non-adaptively chosen

query matrix Q ∈ Rn×q on input A ∈ Rn×n, as in Problem 3.2.15, where n = log(1/δ). If
q = o( log(1/δ)

log log(1/δ)
), no algorithm can solve Problem 3.2.15 with success probability 1− δ.

Proof. We claim that without loss of generality, we only need to consider Q to be the first q

standard basis vectors, i.e., Q = Eq = [e1, e2, . . . , eq]. First note that we only need to consider

query matrix Q with orthonormal columns, since for general Q, letting Q = UR be the QR

decomposition of Q, we can reconstruct AQ from (AU )R. Next, let Q̄ ∈ Rn×(n−q)
be the

orthonormal basis for null(Q). Define an orthornomalmatrixR = [Q, Q̄] ∈ Rn×n
. By Fact 3.2.2,

WEq has the same distribution as WREq = WQ. Similarly,

(
C log(1

δ
) · 1

∥g∥22
ggT +W

)
Eq

has the same distribution as (
C log(

1

δ
) · 1

∥g∥22
ggT +W

)
Q.

Therefore, we only need to consider the case when the queries are the first q standard basis

vectors.

Consider the two possible observed distributions from Problem 3.2.15: 1) distribution P ′
,

which has (
C log(

1

δ
) · 1

∥g∥22
ggT +W + 2

√
log(1/δ)I

)
Q
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for fixed constant C > 1, and 2) distribution Q′
which has(

W + 2
√
log(1/δ)I

)
Q.

We argue that if the number q of queries is too small, then the total variation distance between

P ′
and Q′

, conditioned on an event E with probability at least δ, is upper bounded by a small

constant. This will imply that no algorithm can succeed with probability at least 1− δ. We upper

bound the total variation distance between P ′
and Q′

via the Kullback–Leibler (KL) divergence

between P ′
and Q′

and then apply Pinsker’s inequality.

Consider the following event on over the randomness of g:

E =

{
g :

1

∥g∥2
∥gTQ∥2 ≤ 1

50C2n3

}
.

Note that gTQ = [⟨g, e1⟩, ⟨g, e2⟩, . . . , ⟨g, eq⟩] = [g1,g2, . . . ,gq], i.e., the first q coordinates of g.

First, we show that Pr[E ] = Ω(δ).

Since gi ∼ N (0, 1), by Fact 3.2.4, for the i-th entry of gTQ, ∀i ∈ [q],

Pr

[
|gi| ≤

1

10C · n√q

]
= Ω

(
1

n
√
q

)
,

which implies for a single entry,

Pr

[
g2
i ≤

1

100C2 · n2q

]
= Ω

(
1

n
√
q

)
.

Since all q queries are independent, for all entries i ∈ [q],

Pr

[
∥gTQ∥22 ≤

1

100C2 · n2

]
= Ω

((
1

n
√
q

)q)
= Ω

(
exp

(
−q

2
ln(n2q)

))
.

Consider the following conditional probability,

Pr

[
∥gTQ∥22 ≤

1

100C2 · n2
∧ ∥g∥22 ≥

n

2

]
=Pr

[
∥g∥22 ≥

n

2

∣∣∣∣ ∥gTQ∥22 ≤
1

100C2 · n2

]
· Pr

[
∥gTQ∥22 ≤

1

100C2 · n2

]
.

Assume q < n
2
and let g(q+1):n denote the q + 1-th to the n-th entry of g. Note that all entries

of g are independent and ∥g(q+1):n∥22 ∼ χ2(d) with degree d > n
2
. By Fact 3.2.1, since ∥g∥22 ≥

∥g(q+1):n∥22,

Pr

[
∥g∥22 ≥

n

2

∣∣∣∣ ∥gTQ∥22 ≤
1

100C2 · n2

]
= Ω(1).
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Thus,

Pr

[
1

∥g∥22
∥gTQ∥22 ≤

1

50C2n3

]
≥ Pr

[
∥gTQ∥22 ≤

1

100C2 · n2
∧ ∥g∥22 ≥

n

2

]
≥ Ω(1) · Ω

(
exp

(
−q

2
ln(n2q)

))
.

Assume we only have a small number q = o
(

log(1/δ)
log log(1/δ)

)
of queries. Then,

Pr[E ] = Pr

[
1

∥g∥22
∥gTQ∥22 ≤

1

50C2 · n3

]
≥ 10δ. (3.51)

Note that n = log(1/δ), and so

Pr[E ] = Pr

[
C2 log3(

1

δ
)
∥gTQ∥22
∥g∥22

≤ 1

50

]
≥ 10δ.

Next, note that it suffices to show that the probability of success conditioned on E is less than

1/3. This implies our result since E occurs with probability at least 10δ, implying that our prob-

ability of failure is indeed Ω(δ). Therefore, we focus on showing that the probability of success

conditioned on g ∈ E is small via standard information theoretic arguments with KL divergence

bounds.

Conditioning on event E , we now upper bound the KL divergence between P ′
andQ′

condi-

tioned on a fixed g ∈ E . Since both distributions come from symmetric matrices, we remove the

redundant random variables from observed random matrices from P ′,Q′
and consider only the

lower triangular portion, so that both have dimensions l = n+(n−1)+ · · ·+(n− (q−1)). Note

that these redundant random variables in the upper triangular portion can be removed without

increasing the KL divergence, since they are perfectly correlated with its counterpart variable in

the lower triangular region, which we show as follows:

Consider two lists LP ′ , LQ′ of l random variables, corresponding to a vectorization of the

observed lower triangular part of the random matrices from P ′
andQ′

. Consider also a function

f , which duplicates parts of the random variables in LP ′ and LQ′ , such that f(LP ′) and f(LQ′)

reconstruct the original observed matrix of size n× q from P ′
andQ′

, respectively. Then, by the

data processing inequality of KL divergence from Fact 3.2.7,

DKL(P ′ ∥ Q′) = DKL(f(LP ′) ∥ f(LQ′)) ≤ DKL(LP ′ ∥ LQ′).

From now on, we assume that P ′,Q′
are lower triangular. The KL divergence between P ′|g

andQ′|g considering the lower triangular part can be calculated since they are both multivariate

Gaussians with the same covariance matrix (of rank l). The KL divergence thus only depends on

the difference between the mean ∆µ of the two multivariate Gaussians (see Fact 3.2.5), which
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is the lower triangular part contained in C log3/2(1
δ
) ggT

∥g∥22
Q. Furthermore, since all redundant

variables are removed, the distribution on the remaining variables is dimension-independent,

with variance 2 from the randomness ofW .

LetM̃ = [m1, . . . ,mq] be the observed lower triangular parts of∆µ, wheremi ∈ Rn−i+1,∀i ∈
[q]. LetQ = [q1, . . . ,qq] where qi ∈ Rn,∀i ∈ [q] be the queries. By Fact 3.2.5, for any g ∈ E (an

event of probability at least 10δ),

DKL(P ′|g ∥ Q′|g) ≤ DKL(LP ′ |g ∥ LQ′|g) (3.52)

≤
q∑

i=1

∥∥∥∥ C log3/2
(
1

δ

)
mi

∥∥∥∥2
2

(3.53)

≤ C2 log3
(
1

δ

) q∑
i=1

∥∥∥∥ ggT

∥g∥22
qi

∥∥∥∥2
2

(3.54)

= C2 log3
(
1

δ

) q∑
i=1

〈
g

∥g∥2
,qi

〉2

(3.55)

= C2 log3
(
1

δ

)
∥gTQ∥22
∥g∥22

(3.56)

≤ 1

50
. (3.57)

By Fact 3.2.6, since conditioning (on g) increases KL divergence between P ′
andQ′

, let f(g)

be the conditional probability density of g on E . Then,

DKL(P ′ ∥ Q′) ≤
∫
g

DKL(P ′|g ∥ Q′|g)f(g)dg ≤ DKL(P ′|g ∥ Q′|g) = 1

50
.

By Pinsker’s inequality, given E happens,

DTV (P ′ ∥ Q′) ≤
√

1

2
DKL(P ′ ∥ Q′) =

√
1

100
<

1

3
.

If the total variation distance between any two distributions P ′
andQ′

is at most δ, then any

algorithm that distinguishes between P ′
and Q′

can succeed with probability at most
10 1

2
+ δ

2
.

Since DTV (P ′ ∥ Q′) ≤ 1
3
in our case, this implies that any algorithm for distinguishing P ′

and Q′
can succeed with probability at most

1
2
+ 1

2
· 1
3
= 2

3
, and so fails with probability > 1

3
.

10
For two arbitrary distributions P ′

and Q′
, let the total variation distance between them be DTV (P ′ ∥ Q′) =

supE |P ′(E)−Q′(E)| = δ, where E is an event. Consider an algorithmA that distinguishes samples from P ′
orQ′

,

and an arbitrary sample x. Let E = Pr[A(x) = P ′,x ∼ P ′]. If A succeeds with probability ≥ 1
2 + δ

2 , then this

implies Pr[A(x) = P ′,x ∼ P ′] ≥ 1
2 + δ

2 , and Pr[A(x) = P ′,x ∼ Q′] ≥ 1
2 + δ

2 − δ = 1
2 − δ

2 . This also implies

Pr[A(x) = Q′,x ∼ Q′] ≤ 1− ( 12 − δ
2 ) =

1
2 + δ

2 , which means the success probability A is at most
1
2 + δ

2 .

103



Since Pr[E ] ≥ 10δ, the overall failure probability of an algorithm for distinguishing P from Q is

thus 10δ · 1
3
> δ. This implies that to achieve success probability at least 1− δ,

q = Ω(
log(1/δ)

log log(1/δ)
).

3.2.7 Experiments

11
We give sequential and parallel implementations of the non-adaptive trace estimation algo-

rithm NA-Hutch++ (Algorithm 2), the adaptive algorithm Hutch++ (Algorithm 1) and

Hutchinson’s method (Hutchinson, 1989). We specifically explore the benefits of the non-

adaptive algorithm in a parallel setting, where all algorithms have parallel access to a matrix-

vector oracle. All the code is included in the supplementarymaterial and will be publicly released.

Metrics. We say an estimate failed if on input matrix A, the estimate t returned by an

algorithm falls into either case: t < (1−ϵ)tr(A) or t > (1+ϵ)tr(A). Wemeasure the performance

of each algorithm by: 1) the number of failed estimates across 100 random trials, 2) the total wall-

clock time to perform 100 trials with sequential execution, and 3) the total wall-clock time to

perform 100 trials with parallel execution.

Datasets and Applications. We consider different applications of trace estimation from

synthetic to real-world datasets. In many applications, trace estimation is used to estimate not

only tr(A), but also tr(f(A)) for some function f : R → R. Letting A = V ΣV ⊤
be the

eigendecomposition ofA, we have f(A) := V f(Σ)V ⊤
, where f(Σ) denotes applying f to each

of the eigenvalues. Due to the expensive computation of eigendecompositions of large matrices,

the matrix-vector multiplication f(A)v is often estimated by polynomials implicitly computed

via an oracle algorithm for a random vector v. The Lanczos algorithm is a very popular choice

due to its superior performance (e.g. (Dong et al., 2017; Ghorbani et al., 2019; Lin et al., 2013)).

We compare the performance of our trace estimation algorithms on the following applications

and datasets and use the Lanczos algorithm as the matrix-vector oracle on a random vector v in

some particular cases.

• Fast Decay Spectrum. We first consider a synthetic dataset of size 5000 with a fast

decaying spectrum, following (Meyer et al., 2020), which is a diagonal matrixAwith i-th di-

agonal entryAii = 1/i2. Matrices with fast decaying spectrum will cause high variance in

the estimated trace of Huthinson, but low variance for Hutch++ and NA-Hutch++.
The matrix-vector oracle is simplyAv.

• Graph Estrada Index. Given a binary adjacency matrix A ∈ {0, 1}n×n
of a graph, the

Graph Estrada Index is defined as tr(exp(A)), which measures the strength of connectivity

11
Our code is available at: https://github.com/11hifish/OptSketchTraceEst
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within the graph. Following (Meyer et al., 2020), we use roget’s Thesaurus semantic

graph
12
with 1022 nodes, which was originally studied in (Estrada and Hatano, 2008), and

use the Lanczos algorithm with 40 steps to approximate exp(A)v as the matrix-vector

oracle.

• Graph Triangle Counting. Given a binary adjacency matrix A ∈ {0, 1}n×n
of a graph,

the number of triangles in the graph is 1/6 · tr(A3). This is an important graph summary

with numerous applications in graph-mining and social network analysis (e.g. (Kolountza-

kis et al., 2010; Pavan et al., 2013)). We use arxiv_cm, the Condense Matter collaboration

network dataset from arXiv
13
. This is a common benchmark graph with 23, 133 nodes and

173, 361 triangles. The matrix-vector oracle is A3v. Note that A3
, in this case, is not nec-

essarily a PSD matrix.

• Log-likelihood Estimation for Gaussian Process. When performing maximum likeli-

hood estimation (MLE) to optimize the hyperparameters of a kernel matrix A for Gaus-

sian Processes, one needs to compute the gradient of the log-determinant of A, which

involves estimating tr(A−1) (Dong et al., 2017). Following (Dong et al., 2017), we use the

precipitation14
dataset, which consists of themeasured amount of precipitation dur-

ing a day collected from 5,500 weather stations in the US in 2010. We sample 1,000 data

points and construct a covariance matrixA using the RBF kernel with a length scale 1. We

use the Lanczos algorithm with 40 steps as in (Dong et al., 2017) to approximate A−1v as

the matrix-vector oracle.

Implementation. We use random vectors with i.i.d. N (0, 1) entries as the query vectors for

all algorithms. NA-Hutch++ requires additional hyperparameters to specify how the queries

are split between random matrices S,R,G (see Algorithm 2). We set c1 = c3 = 1
4
and c2 = 1

2

as Meyer et al. (2020) suggests. For each setting, we conduct 10 random runs and report the

mean number of failed estimates across 100 trials and the mean total wall-clock time (in seconds)

conducting 100 trials with one standard deviation. For all of our experiments, we fix the error pa-

rameter ϵ = 0.01 and measure the performance of each algorithm with {10, 30, 50, . . . , 130, 150}
queries on synthetic, roget and precipitation, and with {100, 200, . . . , 700, 800}
queries on arxiv_cm which has a significantly larger size. The parallel versions are imple-

mented using Python multiprocessing15
package. Due to the large size of arxiv_cm,

we use sparse_dot_mkl16
, a Python wrapper for Intel Math Kernel Library (MKL) which

supports fast sparse matrix-vector multiplications, to implement the matrix-vector oracle for this

dataset. During the experiments, we launch a pool of 40 worker processes in our parallel execu-

tion. All experiments are conducted on machines with 40 CPU cores.

12http://vlado.fmf.uni-lj.si/pub/networks/data/
13https://snap.stanford.edu/data/ca-CondMat.html
14https://catalog.data.gov/dataset/u-s-hourly-precipitation-data
15https://docs.python.org/3/library/multiprocessing.html
16https://github.com/flatironinstitute/sparse_dot
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Figure 3.5: Performance comparison of Hutch++, NA-Hutch++ and Huthinson over 4

datasets (mean ± 1 std. across 10 random runs). The approximation error for all settings is set

at ϵ = 0.01. Both Hutch++ and NA-Hutch++ outperform Hutchinson in terms of failed

estimates. The parallel version of the non-adaptive NA-Hutch++ is significantly faster than

the adaptive Hutch++, making it more practical in real-world applications. Legend: Hutch++
is —⋆—, NA-Hutch++ is —▲—, and Hutchinson is —•—.

Results and Discussion. The results of Hutch++, NA-Hutch++ and Hutchinson
over the 4 datasets are presented in Figure 3.5. The performance of all algorithms is consistent

across different datasets with different matrix-vector oracles, and even on a non-PSD instance

from arxiv_cm. Given the same number of queries, Hutch++ and NA-Hutch++ both give

significantly fewer failed estimates than Hutchinson, particularly on PSD instances. It is not

surprising to see that Hutchinson fails to achieve a (1 ± ϵ)-approximation to the trace most

of the time due to the high variance in its estimation, given a small number of queries and a high

accuracy requirement (ϵ = 0.01).

For computational costs, the difference in running time of all algorithms is insignificant in

our sequential execution. In our parallel execution, however, Hutch++ becomes significantly

slower than the other two, NA-Hutch++ and Hutchinson, which have very little difference

in their parallel running time. Hutch++ suffers from slow running time due to its adaptively
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chosen queries, despite the fact that Hutch++ consistently gives the least number of failed

estimates.

It is not hard to see that NA-Hutch++ gives the best trade-off between a high success prob-

ability in estimating an accurate trace with only a few numbers of queries, and a fast parallel

running time due to the use of non-adaptive queries, which makes NA-Hutch++ more prac-

tical on large, real-world datasets. We remark that although the Lanczos algorithm is adaptive

itself, even with a sequential matrix-vector oracle, our non-adaptive trace estimation can still

exploit much more parallelism than adaptive methods, as shown by our experiments.

3.2.8 Conclusion

We determine an optimalΘ(
√

log(1/δ)/ϵ+log(1/δ)) bound on the number of queries to achieve

(1 ± ϵ) approximation of the trace with probability 1 − δ for non-adaptive trace estimation al-

gorithms, up to a log log(1/δ) factor. This involves both designing a new algorithm, as well as

proving a new lower bound. We conduct experiments on synthetic and real-world datasets and

confirm that our non-adaptive algorithm has a higher success probability compared to Hutchin-

son’s method for the same sketch size, and has a significantly faster parallel running time com-

pared to adaptive algorithms.
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3.3 Task-based Mixture-of-Experts for Multitask Multilin-

gual Transformer-based Models

Mixture-of-Experts (MoE) architecture has been proven a powerful method for diverse tasks in

training deep models in many applications, especially when a large-scale deployment is required

to serve a huge number of users. However, current MoE implementations are task agnostic,

treating all tokens from different tasks in the same manner. In this work, we instead design a

novel method that incorporates task information into MoE models at different granular levels

with shared dynamic task-based adapters. Our experiments and analysis show the advantages

of our approaches over the dense and canonical MoE models on multi-task multilingual machine

translations. With task-specific adapters, our models can additionally generalize to new tasks

efficiently.

This is the section where the contribution of the work can be put in either efficiency (Chap-

ter 2) or scalability (Chapter 3) of representation learning. However, to conform with the original

motivation of MoE revival in the era of deep learning to scale up already-very-large models in

industry, this work is put in this chapter to underscore its main purpose of scaling up huge mod-

els in training, inference, as well as deployment. That emphasis, however, by no means discount

the contribution of the model in incorporating task into MoE architecture, as well as the essential

enablers at platform-level infrastructures such as Microsoft Deepspeed
17
.

3.3.1 Introduction

Mixture-of-Experts (MoE), while not being a novel machine learning algorithm (Yüksel et al.,

2012), has revived to combine with deep learning, particularly transformer (Vaswani et al., 2017)

and has recently pushed forward various tasks such as natural language processing, computer

vision, speech recognition, multimodal and multitask learning due to its advantage in scalability

in distributed environments (Fedus et al., 2022). The main advantages of MoE is stemmed from

its ensemble design while maintaining the sparsity in computation (Fedus et al., 2021). And with

proper design such as using GShard (Lepikhin et al., 2021), the possibility for enterprise-level

scalability is almost boundless. As a result, this method has been more and more widely adopted

in many applications that require distributed and intensive workloads.

However, most of the current methods are task-agnostic, only optimizing for performance

based on lower levels in the architecture such as at system or communication levels. In the

case of multitasks learning where a single model is required to learn from heterogeneous tasks,

however, the task-specific data could be inherently diverse and vary largely from one to another.

As a result, treating data from such different sources the same makes the learning not effective,

as also evidenced recently that the interference between different task data (Pfeiffer et al., 2022).

17https://www.microsoft.com/en-us/research/project/deepspeed/
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Figure 3.6: Extended from the typical MoE approaches that do not discriminate tokens from

different tasks, we create shared task-related adapters that are trained to route tokens from similar

tasks to the same shared adapters, and vice versa. Likewise, different task groups should be routed

to different adapters, avoiding interference amongst different task data.

As a result, in this work, we design a novel MoE approach where task information is used

during training and inference for assigning experts based on individual task information. The in-

tuition is to make the training more task-aware in those similar tasks would be routed to the same

group of experts and vice versa. From the architectural perspective, we incorporate high-level

application-specific information with the system-level information to make the model become

task-aware and hence have a better strategy in allocating experts based on the characteristics of

distinct tasks, as also illustrated in Figure 3.6.

Our proposed architecture allows for grouping experts based on the similarity of tasks, i.e.

similar tasks should use a similar group of experts and otherwise for different tasks, by using

shared-task adapters. Our design of putting those adapters on top of MoE layers allows for flex-

ibility in future extensions: if we want the model to acquire new tasks while still having similar

resources, we only finetune new adapters, and if we want to scale the hardware resources, e.g.

for more speed, we simply deal with MoE layers with such new resources.

Our experiments and analysis show the advantages of using task information in MoE archi-

tectures in multiple settings including multitask multilingual machine translations, as well as its

109



generalization in few-shot learning. In summary, our contributions are as follows.

• First, we design novel MoE architectures that dynamically allocate experts based on task

information in the context of multilingual multitask machine translation, with many vari-

ations.

• Second, we thoroughly study the pros and cons of our approaches in training from scratch,

finetuning as well as transfer learning.

• Third, we implement our models on top of well-proven infrastructures for practicality and

scalability including deepspeed (Rasley et al., 2020), fairseq (Ott et al., 2019) and

transformer (Vaswani et al., 2017), and will be releasing our code for public use.

3.3.2 Related Work

MoEBasic Transformer-basedMixture-of-Experts (MoE) architecture essentially sparsifies trans-

former architecture by replacing the heavy feed-forward network (FFN) with a sparse MoE layer

with top-2 gates (Shazeer et al., 2017). However, increasing the number of experts does not sim-

ply increase the performance (Clark et al., 2022; Fedus et al., 2021), many approaches have been

proposed together to tackle the large-scale MoE deployment, such as in (Kim et al., 2021). In

large-scale deployment, however, additional techniques should also be employed to battle with

memory issues such as “sharding” experts (Lepikhin et al., 2021) or stabilizing the training (Zoph

et al., 2022), since the models are often deployed on separate nodes that mainly used GPUs with

limited memory. The architecture in this work inherits all of those techniques, and in addition

incorporates task information into MoE routing, which in turn directs data into separate task

adapters. This kind of routing is, however, hardware-agnostic, unlike some other work such as

in (Chen et al., 2023; Xiong et al.; Zheng et al., 2022).

MoERouting Techniques Gating is critical toMoE layer, whichworks as a weighted sum of

the experts, and serving for the ultimate purpose of load balancing of all available experts during

both training and inference. Unlike the originally proposed top-k experts (Du et al., 2021; Shazeer

et al., 2017), it was studied in SwitchTransformer that a single expert can preserve the quality if

chosen properly, while significantly reducing the communication and computation cost (Fedus

et al., 2021). In more detail, SwitchTransformer first divides evenly amongst all experts with an

optional buffer for imbalanced cases, and then applies a auxiliary loss to enforce load balanc-

ing. Another alternative approach, which is more computationally efficient is to get rid of such

extra-heavy complicated loss and instead use hash function to route every token to its matched

expert, which tend to balance the output (Roller et al., 2021). Another interesting approach is

to permit each token to appear in the top-k list of multiple experts (Zhou et al., 2022), which

has been proven to help, although not applicable for auto-regressive applications. Yet because

of the inherent problem of load imbalance, another approach is to replace gating mechanism by

a stochastic selection method, which randomly activates an input during processing. The intu-
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ition is somewhat similar to the hash approach, since it relies on the “fair” randomness to solve

the balance problem while keeping the blueprint more lightweight than enforcing an auxiliary

loss. Unlike all of those routing techniques which are application agnostic, our proposed model

connects the application level (i.e. task information) with the lower-level MoE layers for better

dealing with interference of different tasks in the context of multilingual multitask applications.

Task-levelRouting Recently task information has been used for improvingMoE, e.g. in (Zhili

et al.). Our model is, however, is much simpler and can be trained end-to-end unlike their ap-

proach, which requires clustering to be made for off-the-shelf shared representation learning.

And probably the most related work to ours is Mod-Squad (Chen et al., 2022) that shares the mo-

tivation with us while having several differences. First, their approach which has multiple aids to

make the task-based MoE work with an additional loss for regularization, while we instead rely

mainly on the simple motivation of incorporating task information into MoE. Second, we still

stick to a single gate for routing, while they allocate multiple gates, each per task. Third, they
additionally have MoE attention blocks, which make their architecture more complicated. Fi-

nally, our focused application is text-based machine translation, unlike computer vision settings

in those both works mentioned.

3.3.3 Models

Transformer architecture (Vaswani et al., 2017) has been proven to be the core backbone of the

pervasive successes in natural language processing, computer vision, and other artificial intelli-

gent fields. The main bottleneck to this architecture is, however, its heavy blueprint leading to

intensive resources in training and inference, and is difficult to scale up. MoE is one powerful

method to alleviate those problems in transformer.

3.3.3.1 Sparse Mixture-of-Experts (MoE)

MoE, which was first introduced before the deep learning era (Jacobs et al., 1991), was recently

borrowed to address those drawbacks in transformer architecture (Shazeer et al., 2017). In a

nutshell, MoE creates an ensemble of experts in multi-layer transformer blocks in place of a

single expert, typically in the form of a feed-forward neural network (FFN) that is dense with

many parameters.

In terms of formality, given an original FFN layer called Ẽ, we clone it into another layer

containing a set of N experts with exactly the same architecture {Ei}Ni=1. Likewise, the number

of parameters for this particular layer is increased by a factor of N .

The typical granular level of applying those experts in the context of natural language pro-

cessing is the token level. Given a token x, its learned representation before MoE layer is a vector

x, its post-MoE output y is the weighted average of those experts’ output
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oi = Ei(x) (3.58)

y =
N∑
i=1

Wioi, (3.59)

where Wi is the weight (importance) of the corresponding expert Ei.

The key to MoE power and its well-proven successes in tandemwith transformer architecture

is its sparsity design: only one or few experts are activated (i.e. having non-zero weight) at any

point in time in spite of manymore parameters just introduced due to the ensemble. Typically the

component responsible for this sparsity is a gate that was co-trained with experts to route tokens

to their target expert(s), and eventually assigns only a single or few non-zero weights across all

experts per token to its output G(x) typically using softmax and top-k method

gout = softmax (Wgx) (3.60)

G(x) = Top_K (gout) (3.61)

With G(x) being a set of K chosen experts, equation 3.59 becomes

y =
∑

i∈G(x)

Wioi (3.62)

The main architectural problem with this design is its scalability: the memory will be quickly

used up as we increase experts, given the limitation of current compute resources allocated to

a single compute node in any distributed environment. GShard (Lepikhin et al., 2021) was born

to fix this issue by trading the memory for communication: allocating each expert to a single

node and only aggregating them when needed, e.g. gradient averaging in training or weight

averagingwhen saving amodel. This elegant design has unlockedMoE’s unlimited scalability and

practicality in enterprise-level deployments, especially with the following-up work in optimizing

for better architecture in computation and communication, as mentioned in Section 3.3.2.

3.3.3.2 Task-based Adapters

Yet another problem on which we are focusing is not at the system level but more at the higher

application level. As mentioned, in the multitask setting, the interference amongst tasks that are

inherently different from each other could lead to the ineffectiveness of training. As a result, we

employ task-based adapters to separate those different tasks to different adapters. Likewise, data

(or tokens) from similar tasks should be routed to a similar group of adapters. There are three

modes for those adapters.
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Figure 3.7: MoE models with variants. (a) Static means for each task, there is a separate

adapter associated with it. (b) In the Dynamic mode, there is less number of adapters than the

number of tasks, in order to learn the shared representation of similar tasks. (c) The last variant

is Shared-Dynamic where the gates for task adapters and MoE share the same embedding

for their routing decisions.

First and the simplest is to allocate each adapter for each individual task. Although this setting

is straightforward and requires no additional computation for data routing, it has the drawback

of acquiring new unseen tasks. The reason is the model has to allocate a new adapter for each

new task and fine-tune it with some amount of new data. Another potential problem is memory

limitation if we want to extend to many new tasks in the future. This mode is called static
adapters, as shown in Figure 3.7a.

To enforce efficient learning of representation of similar task data, as well as alleviating mem-

ory problems, we have dynamic adapters (Figure 3.7b) where the number of adapters is

less than the number of tasks. As a result, we intentionally guide the model to learn better cross-

task representation in terms of similarity and dissimilarity. In other words, data from similar

tasks should be routed to the same adapters and vice versa. In practice, we choose the number of

adapters to be log2(n) with n being the number of tasks.

3.3.3.3 Task-based Adapters with MoE

In this section, we formulate the task-based adapters mentioned in Section 3.3.3.2 in combination

with MoE, both of which are our core architecture components.

GivenM tasks, we allocate them intoL shared-task adapters (L < M ). For every single token

x, we have the associated task information t that makes up an input tuple (x, t) per token. As

before, x is the representation vector from input, and t is the task representation vector learned

by task embedding.

Similarly to MoE, we use a learnable task gate Gt that is responsible for this routing with

input being the concatenation of the input components
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Task Data

Split Unit de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en

Training M 4.6 10 10.3 0.7 4.8 0.9 0.3 1.4 0.5

Validation K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Testing K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Table 3.2: Training, Validation, and Testing sizes for all XE tasks (the data for EX are exactly the

same). Note that the unit for training is million (M) while that for both validation and testing are

thousand (K), and the sizes are the same for validation and testing.

Gt(x, t) = Top_K(x⊕ t) (3.63)

y =
∑

i∈Gt(x,t)

Wioi (3.64)

And since the number of adaptersL < M , the number of tasks, we call this settingdynamic
task adapters, as demonstrated in Figure 3.7b, as opposed tostatic task adapters
(Figure 3.7a), where each task will go to each individual adapter.

Our main model use the shared task embedding representation for the task gate as well as

MoE gate, which we call shared-dynamic task adapters, as shown in Figure 3.7c.

3.3.4 Experiment Setup

3.3.4.1 Data

We tackle the problem of multitask multilingual machine translation using the data consisting

of 10 different languages ranging from high-resources to low-resource ones including English

(En), French (Fr), German (De), Czech (Cs), Finnish (Fi), Latvian (Lv), Estonian (Et), Romanian

(Ro), Hindi (Hi), Turkish (Tr), and Gujarati (Gu). In more detail, the data for training, validation,

and testing are listed in Table 3.2 where we can see besides the high-resource ones, we have

low-resource languages such as Estonian, Hindi, or Gujarati.

Those data are in the form of Bitext in which there is always English. As a result, we denote

EX as the translation from English (E) to another language (X), and similarly for the other way

around, XE. Those data are populated from the popular WMT corpus
18
. For the given 1 English

and 9 other languages, there are consequently 9 EX and 9XE tasks.

18https://www.statmt.org/wmt20/index.html
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3.3.4.2 Task and Model Training

In this section, we describe the task information, evaluation metrics, and how we deal with data

and models for training.

Task Our task is multi-task multilingual machine translation (MMMT) which use the EX

and XE pairs. Our single model is trained with two main capacities. First, this single model can

translate all the training pairs with high accuracy. Second, the model is able to quickly acquire

new translation pairs with only zero or a few shots.

Evaluation While there are many evaluation metrics, we mainly use BLEU score due to

its popularity and credibility in evaluating machine translation tasks. This evaluation is imple-

mented by SacreBLEU.
19
. We note that unlike all available public implementations that we found,

our implementation evaluates all BLEU scores on-the-fly along with the training, so there is no

disruption for offline evaluation. That also helps in early stopping based on the BLEU scores on

the validation sets.

Pre-Processing and Post-Processing In terms of preprocessing, we first encode the data

using Byte-Pair encoding (BPE) method and generate shared dictionaries where all the language

pairs use the same vocabulary of size 64K, before feeding to the model. To get accurate scores, for

post-processing, we again use BPE decoding for reconstructing the whole translated sentences

before comparing themwith the original sentences before BPE pre-processing. Likewise, we treat

all the processing and model manipulation as a black box for calculating the scores.

Model Configuration and Implementation We use transformer architecture (Vaswani

et al., 2017) with 12 layers for both encoder and decoder phases, each of which uses a word em-

bedding layer of dimension 1024 and a non-linear layer of dimension 4096. There are 16 attention

heads and a dropout rate of 30%. For MoE, all jobs are trained on Azure cloud machines with 8

GPUs, each of which takes around 2 weeks for a model covering 18 aforementioned tasks to

reach decent scores. We apply early stopping based on the validation BLEU scores, in which

a non-increasing score after 2 epochs is the condition. For task-based information, we have a

task embedding dimension of 64 and a task adapter hidden dimension of 256 for every single

task adapter. Our implementation inherits the lower-level infrastructure code from Microsoft

Deepspeed and Fairseq.
20

As for the implementation, an important practical issue with MoE is load balancing among

experts for the best utilization of the infrastructure systems. For enforcing the training to have a

balanced load, as a result, we employ the auxiliary loss from Lepikhin et al. (2021).

3.3.4.3 Baselines

In order to show the performance of the task-based MoE models, the following baselines are

selected:

19https://github.com/mjpost/sacrebleu
20https://github.com/facebookresearch/fairseq
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XE Tasks

Model de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en Average

1. Dense 29.9 31.2 28 22.4 21.4 22.3 21.4 24.5 36.1 26.4

2. MoE Token 27.9 29.5 26.3 19.9 19.6 18.9 17.7 22.3 33.8 24.0

3. MoE Sentence 27.9 29.9 26.2 21.4 19.9 17.9 15.9 23.2 34.4 24.1

4. MoE Task-Static 32.1 33.3 30.7 24.3 23.4 20.6 22.5 27.2 38.8 28.1

5.MoE Task-Dynamic 31.4 32.0 29.1 23.4 22.1 18.9 20.5 25.5 37.2 26.7

EX Tasks

en-de en-fr en-cs en-et en-fi en-gu en-hi en-lv en-ro

1. Dense 25.4 28.3 22.4 23.3 20.9 28.4 29.0 26.5 31.5 26.2

2. MoE Token 22.9 25.1 19.5 20.1 17.9 26.2 26.3 24.0 29.0 23.4

3. MoE Sentence 23.2 25.7 20.4 22.4 18.7 26.4 27.1 24.2 29.7 24.2

4. MoE Task-Static 29.5 32.5 27.9 27.4 25.8 28.8 30.8 32.2 34.6 29.9

5.MoE Task-Dynamic 27.3 29.6 25.0 24.7 22.7 27.7 29.3 28.4 32.7 27.5

Table 3.3: Performance comparison of task-based MoE models (models 4 & 5) to task-agnostic

MoE models (models 2 & 3) and the non-MOE (Dense) model (model 1) in BLEU scores. With the

help of task information, task-based MoE models show their outperforming BLEU scores over all

other types across most of the tasks including both high-resource and low-resource ones.

Dense This is the traditional transformer model without any MoE layer, i.e., no change to

the fully connected (FFN) layer in each layer of encoders or decoders.

MoE - Token This is the MoEmodel that is usually considered the default option where each

FFN layer is replaced by an MoE layer. In our experiments, each MoE layer comprises 8 experts

(each has the same size as the original FFN being replaced) and a gate for routing purposes.

MoE - Sentence This is yet another MoE architecture with exactly the same architecture

configuration as the MoE - Token baseline. The difference is in the routing layer, which functions

at a different granularity: sentences instead of tokens. Inmore detail, while the gate decideswhich

expert for each token separately in MoE - Token model, it instead routes all tokens belonging to

a single sentence to the same chosen expert.

3.3.5 Results and Discussions

3.3.5.1 Multitask Multilingual Machine Translation

We first present the main results for models capable of translating 18 tasks (see Section 3.3.4.2)

concurrently. As shown in Table 3.3, our models that incorporate MoE layers and are enhanced

with task information show great advantages over all the baseline models on most tasks, in both

directions EX and XE, in accordance with our hypothesis that using task adapters in conjunction

116



Model

Design Routing Tasks

Average

MoE | Task MoE Task de-en fr-en et-en fi-en

MoE Y N Token - 32.4 33.7 24.2 23.6 28.5

Dense + Task Static

N Y

Task

Static 32.2 33.7 21.0 22.8 27.4

Dense + Task Dynamic Dynamic 31.9 33.0 22.0 22.5 27.4

MoE + Task Static

Y Y

Static 30.7 32.0 19.9 20.8 25.9

MoE + Task Dynamic Dynamic 32.6 33.9 24.0 23.9 28.6

MoE + Task Shared-Dynamic Shared-Dynamic 32.2 33.3 24.3 24.5 28.6

Table 3.4: Performance of different models with changes on whether MoE layers exist, whether

Task Adapters exist, and how routing for those components is undertaken. The scores better than

the baseline are highlighted. Task-based MoE shows advantages, especially with shared-dynamic

adapters between MoE and Task Adapters on the low-resource language pair.

with MoE is helpful in multilingual multitask translation.

An outstanding drawback with which the task-based MoE models are facing, however, is for

the low-resource translation pairs, e.g. Gu-En, Hi-En, or En-Gu. We hypothesize the problem is

due to the undersampling of the training data. Our training routine concatenates all the tasks’

data in a single big dataset before drawing batches. However, without adjusting the sampling pro-

cess, high-resource language pairs are being trained significantly more given their much larger

data in place. In particular, for the case of Gujarati where the Task-Dynamic MoE model under-

performs in comparison to the baselines, our hypothesis is that linguistically, this language is

the most different from all other languages, which makes the models very hard to learn effective

shared representation with any other pairs.

3.3.5.2 Ablation Study

In this study, we limit the number of tasks to four (De-En, Fr-En, Et-En, and Fi-En) to study the

performance implications of different model variants when there is a task layer and/or MoE layer.

As illustrated in Table 3.4, we again see that combining MoE and Task Adapters yields the

best models, the same trend as shown in Table 3.3, particularly when the dynamic adapters are

used to enforce similar tasks to share the same representations.

However, when task adapters are not used in conjunctionwithMoE, the performance is worse

than MoE alone. This also means MoE should be the foundational infrastructure, and on top of

that, task adapters should be used. It concurs with themotivation that the interference of different

tasks or languages makes the training of experts difficult. In other words, there is not so much

help when there is only one expert for all the tasks (i.e. Dense models).
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3.3.6 Conclusion

In the era of big data, large-scale models are more and more essential to big enterprises and in-

stitutions, where MoE in combination with transformer-based models have been proven its great

advantages very recently. It is, however, complicated to enable that implementation in practice

due to the difficulties of training a single model serving diverse tasks. The proposed task-based

MoE, which employs both task adapters in tandemwithMoE has shown its promising advantages

in the application of multitask multilingual machine translations. This novel design enforces

shared representation of similar tasks and separate different task data to counter the interference

effects. In addition, it also offers the flexibility of changing adapters based on new tasks or chang-

ing the MoE infrastructure without affecting the application level. In the future, enforcing the

shared representation learning explicitly using such additional techniques as contrastive learning

or mutual information is also worth exploring.
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Chapter 4

Conclusion and Future Work

Regardless of the type of problems in machine learning, one has to connect the given data with

the targeted objective with a model that is able to learn useful representation from such data.

Representation learning, consequently, is a broad topic that spans the whole field of machine

learning, and artificial intelligence in general. And because of its nature as a being an overly ex-

pansive topic, this thesis is not ambitious to cover all possible aspects of representation learning.

And in fact, it is probably impossible to do so, especially given the immensely fast-moving speed

of the field.

This thesis, however, has explored andmade contributions to the two prominent topics in rep-

resentation learning, which are task-oriented efficiency and practical scalability. The applications–

and the described works–that are used to study those two topics are unquestionably limited, yet

cover diverse problems and data. The following sections will summarize the elaborated works

in the main content of this thesis, with a highlight on their contributions and possible exploring

directions in the future.

4.1 Thesis Contributions

This thesis makes several contributions in each of the two focuses in representation learning,

namely efficiency and scalability, as the following sections will summarize.

4.1.1 Efficient Representation Learning

Throughout the thesis, it is shown that given knowledge about the task and the data itself, one

can design an efficient model to learn the representation from that data to solve the task with

high accuracy.

Chapter 2.1 introduces a novel approach to learning multimodal representation by borrowing

machine translation to apply to cross-domain data. While a normal translation happens between

texts of different languages, it can also be done efficiently between two different domains such

119



as between text and audio, or text and videos. This cross-domain type of translation is also

strengthened by cyclic consistency loss, to help the representation learning to learn the transla-

tion symmetrically in both ways.

Chapter 2.2 tackles real-world data and a problem where the data is tampered with noise

due to the scanning process, let alone it is very limited to be used in training deep models, thus

making it very different from any available public datasets (and their successful models that can

be borrowed). Given such challenges, the solution has to be also different. On one hand, new data

annotation is needed with a focus on the helpful content (to limit the number of classes, which

helps the model to learn faster), and so is various augmentation to enrich training data. On the

other hand, a novel approach is introduced that is modularized with amulti-stage approach that is

largely adapted from object detection and recognition in computer visionwith enhancement from

other fields such as CTC loss from speech recognition. Same as Chapter 2.1, this is yet another

exemplar where traditional techniques in a field can be adapted and make novel contributions in

a new field if applied properly.

Chapter 2.3 deals mainly with the expensive cost of attention in transformer-based architec-

tures in a non-standard type of input that has multimodal documents where the content is long

and the format is diverse. This thesis designs a novel technique where multimodal information

can be used directly into attention, with an option to combine different modalities in separate

phases. In addition, the reduced context with sparse global attention applied to all modalities

helps make the approach efficient and also scalable in achieving new input length limits with

state-of-the-art accuracy.

4.1.2 Scalable Representation Learning

Chapter 3.1 tackles a common problem in practice concerning Gaussian Processes (GP), where

the training cost is cubic, making it the main hindrance to its popularity in dealing with high-

dimensional data and practical problems in the real world. The novel contribution is to apply a

sparse spectrum approach for GP with provable guarantees on the sample complexity, enhanced

by a novel data clustering on the embedded representation of the data that facilitates the training

with much saving in training and inference cost.

Chapter 3.2 deals with another popular application in practice: estimating a matrix trace,

which is very challenging in high dimensional space such as neural networks. The thesis newly

improves the query sample complexity theoretically and empirically shows that the non-adaptive

estimation approach is more practical in the real world where the accuracy is high while having

parallelization capabilities.

Chapter 3.3 is similar to Chapter 2.3 since each work covers both of this thesis focuses: ef-

ficiency and scalability of representation learning, and both use the increasingly popular trans-

former models that are heavy and thus always demand novel techniques satisfying those two

focuses. Given the task of multitask learning for multilingual machine translation, this thesis
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proposes the use of Mixture-of-Experts with “sharded-expert” distribution, enhanced by a novel

use of task-embedded representation. This novel approach not only helps in facilitating the com-

plicated routing with application-level information being utilized at the infrastructure level that

is typically application-agnostic but also with separate task adapters the shared representation is

learned efficiently to solve current tasks. Those shared adapters also unlock new capabilities in

acquiring novel unseen tasks that have similar data to existing ones.

4.2 Future Directions

As shown in this thesis, there are several ways of designing efficient and scalable representation

learning techniques. Current works, in addition, can be extended in meaningful ways with bor-

rowing new techniques or mixing current methods in this thesis. For example, the multimodal

sentiment analysis model 2.1 can also be extended into transformer instead of the older Seq2Seq

models without affecting much of the main approach. Even more so, it can also be enhanced by

approximation techniques for transformer-based models such as in Chapter 2.3 or Chapter 3.3

for gaining more scalability. Also, our practical model for long document understanding (Chap-

ter 2.3) can be easily extended to vision input besides layout and text without affecting much

the architecture. With that additional input, we can optionally borrow the cross-domain transla-

tion for learning multimodal aligned representation before feeding it to the transformer and thus

can potentially reduce the computation significantly. In another example of Mixture-of-Experts

(Chapter 3.3), the task-aware model can be enhanced by additional techniques such as using

contrastive learning or mutual information approach for facilitating the similar and dissimilar

representation of the task data. The transformer attention in this work or in document under-

standing, which is the main cost of this type of architecture, can borrow the sketching techniques

such as from Chapter 3.1 or Chapter 3.2 to reduce this main cost while keeping hight accuracy.

Although it is not directly mentioned, domain knowledge and expertise are by no means less

important–quite the opposite. For example, without deep knowledge of the nature of data given in

Chapter 2.2, one can not easily design an effective approach for annotation and augmentation that

facilitate the training. Or in Chapter 3.3, domain knowledge of multilingual machine translation

greatly helps in debugging Mixture-of-Experts and Task Adapters with domain knowledge of

what tasks are similar and what are not. All in all, it is always recommended to acquire domain

knowledge given any problem, and such an essential phase could in turn save the cost immensely.

Finally, throughout the whole of this thesis, two central aspects of representation learning–

efficiency and scalability–are underscored to be the main factors in having a proper and practical

approach to a diverse set of data and problems. As we can also see, e.g. in Chapters 3.2 and 3.3,

those two focuses are not necessarily conflicting but realistically, they can complement by inher-

iting the other’s advantages in an integral solution. In fact, this thesis, by its diverse works, infers

that a real-world solution should possess both aspects in a single model. As a result, ones have
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to take both targets into account when designing a model in practice.
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