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ABSTRACT

Speech-to-face animation aims to create a realistic visual representation of a person’s face based on their voice. Developing
realistic facial animations of a person from a speech signal pertains to the main challenges of accurately capturing
and reproducing the face’s complex motions, including the tongue’s motion. In this work, we use a combination of
speech-pathology study techniques and machine learning to analyze a person’s speech patterns and map them onto a
digital avatar. The ultimate objective of our research is to animate realistic avatars in real time. To achieve this goal,
we introduce a large-scale dataset that comprises 2.55 hours of corresponding speech and motion data captured from
the tongue, lips, and jaw using electromagnetic articulography, while the facial motion was captured through stereo
video. As an initial step, we make an exploratory analysis of different deep-learning-based methods for accurate and
generalizable speech-to-tongue animation. We evaluate several encoder-decoder network architectures and audio features
ranging from traditional to self-supervised audio representations. The best model achieves a temporal mean error of
1.77 𝑚𝑚 when predicting the tongue, lips, and jaw motion and delivers realistic animations on singing audio regardless
of training the model only using neutral speech from a single actor. Although adept at tongue movement predictions,
this approach was limited in facial animations, prompting the evolution towards the IMFT’23 dataset that captures
intricate facial motion pairing 2.28 hours of audio, video, and facial, lips, jaw, and tongue 3D landmarks. Our proposed
Phonetically Informed Speech-Animation Network (PhISANet), results in animations with a sub-millimeter mean vertex
error. It does this by incorporating WavLM feature encodings and by pioneering the use of a Connectionist Temporal
Classifier (CTC) through Multi-task Learning in the speech-to-animation field of study. PhISANet generalizes across
voices from different ages, genders, and languages. Perception user studies confirm that a CTC offers superior animation
accuracy and realism and perceptible improvements in tongue and lip animations. Furthermore, to ensure animation
quality, we advocate using visual speech recognition networks, specifically the AV-HuBERT model, as a benchmark.
This research pushes the boundaries of realistic speech-to-animation, emphasizing the promise of real-time applications
and setting a precedent in the speech-to-animation field of study.
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OVERVIEW

Chapter 1: Speech Animation
In the first chapter, we introduce the problem of speech animation, discussing its relevance and providing a brief history
of the field. We also look closely at the current approaches to animating a face from speech only, highlighting their pros
and cons.

Chapter 2: Tongue Mocap Speech Animation Dataset
As we focus on animating the tongue from an input speech signal. In the second chapter, we present a novel tongue
and face motion dataset that was captured to enable the training of data-driven models. This dataset was captured from
a single actor uttering phonetically balanced sentences. We provide quantitative and qualitative analysis to verify its
relevance and demonstrate how it differs from previous datasets.

This work was accepted at Interspeech’21 [105] and presented in a talk where we highlighted the importance of
parasagittal sensor placement for capturing rich tongue motion.

Chapter 3: Speech-to-Tongue Animation
The third chapter delves into our first approach to solving the problem of animating the lips, tongue, and jaw with the new
dataset. We propose a two-stage pipeline that consists of an Encoder-Decoder model and a quasi-Newtonian optimizer.
The first stage of the pipeline converts the raw audio signal into an intermediate audio feature representation, which is
then decoded into 3D EMA landmark positions. The second stage takes these predicted landmark positions as input and
uses them as constraints in a 3D optimization step to find the best animation parameters for a 3D model.

This work was accepted at CVPR’22 [106] and won the Best Demo Award of the conference, where attendants could
experience the results of our proposed method by animating 3D models using their voices.
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Chapter 4: End-to-End Model
The chapter begins by discussing the two-stage pipeline solution for speech animation, which is explored in the previous
chapter. However, this approach is found to be slow due to the computation of the Hessian for optimal rig parameter
determination in the animation sequence.

To address this limitation, the chapter introduces a new dataset called IMFT’23, which extends the previous IMT’22
dataset by incorporating 3D facial information and animation parameters. This expanded dataset enables training neural
networks specifically designed for the speech-to-animation task.

Furthermore, the chapter explores two robust and generalizable neural audio feature representations, WavLM and Whisper,
and evaluates their effectiveness. Based on the findings, a novel architecture called PhISANet (Phonetically Informed
Speech Animation Network) is proposed. PhISANet leverages a CTC layer to phonetically inform the network, resulting
in realistic tongue, lip, and lower face motion in the generated animations. We also demonstrate the generalizability of
PhISANet by effectively predicting animation parameters from various speech signals, including singing audio.

Chapter 5: Streaming Model
In this chapter, we focus on developing a real-time animation system for MetaHumans using the Wav2Vec model
for audio encoding due to its efficient inference time. Through experiments, we examine the effects of lookahead
and receptive field size on latency and performance, using the CNN and TCN as our primary testbed architectures.
Our results highlight the importance of keeping the receptive field within the training sample durations for optimal
performance. Building on insights from PhiSANet, we enhance our three-layer CNN model by adding a CTC auxiliary
task to align phone sequences, leading to moderate performance improvements. Our efforts indicate the potential of a
real-time speech-animation model that can produce facial and tongue animations at 30 FPS with minimal delay. Further
refinements and optimizations of these models are essential for their practical application.

Chapter 6: Conclusions
We present an extensive summary and highlight the findings and contributions described in the previous Chapters.

Chapter 7: Where Do We Go from Here?
Our pioneering PhiSANet model, the first to utilize a Connectionist Temporal Classifier (CTC) through Multi-task
Learning, marked a significant improvement in animation accuracy and realism. Despite these strides, potential
enhancements remain. In this chapter, we discuss the immediate and long-term future work, including expanding data
through voice cloning, capturing more intricate facial and oral movements, and adopting more complex and novel models
like RWKV for fluid animation generation. Future prospects also encompass model compression for faster real-time
applications and leveraging next-generation audio feature representations for richer animations. Moreover, integrating
our findings with Large Language Models promises transformative applications for interactive agents, impacting sectors
like customer service, healthcare, education, and retail, streamlining processes and elevating user experiences.
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CHAPTER 1

SPEECH ANIMATION

The field of speech-to-animation has gained significant momentum in recent years, promising to revolutionize the
landscape of digital communication. This innovative technology aims to construct dynamic and accurate virtual avatars
that can reproduce visual speech patterns in real-time. The complexity of this endeavor is encapsulated in the accurate
capture and recreation of intricate facial movements. In this work we present an investigation with a particular emphasis
on the motion of the tongue. To achieve this, our approach employs a synergy of computer vision, machine learning, and
speech pathology study techniques, providing a robust framework to extract salient speech features and map them onto a
virtual avatar.

Achieving a significant degree of realism necessitates a comprehensive approach to speech-driven animation. This
entails not only modeling the visible movements of the lips and face but also the more concealed, yet crucial, motions of
the tongue. Despite its limited visibility during speech production, the tongue is indispensable during coarticulation and
sound production, which constitutes an essential element for comprehensive and realistic animations.

The potential applications of this technology are widespread, spanning various sectors such as telecommunications,
entertainment, and healthcare. Each of these domains benefits from enhanced interactions with AI agents and other
users through lifelike avatars to foster a more natural and intuitive digital communication experience.

These considerations underpin the motivation driving this research, setting the stage for the subsequent discussion of the
challenges and potential solutions within this sphere. Our guiding vision is to promote more authentic, engaging, and
accessible digital experiences through advancements in speech-to-animation technology.

1.1 Motivation
The primary goal of this project is to pioneer a generative model that produces real-time realistic facial animations solely
from speech. Such a system could facilitate engaging interactions with virtual characters and digital avatars with an
ease never before experienced. Our aim is to transcend the current state-of-the-art in speech-to-animation by creating
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natural coarticulation motions by focusing on the integration of realistic animation of the lower face and tongue into
high-quality 3D characters.

Our focus on driving 3D characters, as opposed to employing a video synthesis approach, is strategic. This approach
is particularly potent in the context of virtual and augmented reality scenarios—environments where 2D generative
methodologies typically fail to produce adequate results.

By harnessing a 3D approach, we can generate content from new angles and perspectives, even those not originally
captured from its source. This flexibility makes our approach a powerful tool for creating novel content, thereby opening
up a myriad of opportunities for enhanced interactive experiences.

While facial tracking technologies indeed have made strides in creating realistic digital avatars from monocular video,
as showcased in previous research [13, 43, 173], they often falter under less-than-ideal conditions. Practical scenarios,
where the camera is not ideally positioned in front of the person controlling the virtual character, or where the lighting
conditions are inadequate, pose significant challenges.

Furthermore, facial occlusions, such as accessories, clothing, or face masks; also significantly impact the accuracy of
facial tracking. This impact extends to individuals with dense facial hair, where motion transfer to a character without
similar features becomes particularly challenging to facial capture approaches.

To address these limitations and to enhance the overall immersion in virtual environments, we believe in the necessity of
a real-time speech-to-animation solution. This approach would not only circumvent the constraints posed by traditional
facial tracking and motion transfer methods, but it would also amplify the perceived realism of virtual avatars, thereby
enriching the overall user experience in these environments.

A speech-animation solution can account for these scenarios where full face visibility is compromised as long as the voice
remains constant. Leveraging this consistency, our speech-driven solution can ensure a seamless interactive experience
in virtually any scenario, thus broadening the viability of avatar-based digital interactions.

Our focus is specifically on enhancing the animation of lips, jaw, and tongue; a vital detail often overlooked due to
its assumed invisibility. However, we posit that these elements significantly contribute to animation realism and user
immersion. By accurately generating jaw movements and inner mouth motions, we can render animations that mirror
real-life speech articulation more precisely.

We found that such improvements in animating coarticulation substantially amplify viewer engagement and perception
of virtual or human-driven animated characters in a wide range of interactive systems. This enhancement holds true
irrespective of whether a human or an automated system drives the character. Integrating this level of realism is expected
to unlock new potential in the immersive experience that digital characters bring.

Envisioning the practical implications of our speech-to-animation solution for realistic avatars, we identify a vast array
of potential applications in sectors such as telecommunications, entertainment, and healthcare. One particularly salient
application is within the realm of online gaming; a modern-day virtual playground where children commonly interact
with strangers.
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Today, real-time communication between players has been made possible by advancements in video conferencing
technology. However, this reveals potential issues concerning privacy protection, particularly for younger users. This
is where our innovative solution can prove applicable. By representing players through lifelike virtual characters
that animate in sync with their speech, we can ensure a rich and immersive gaming experience while simultaneously
safeguarding their visual identity.

In this way, our system provides a dual advantage. Not only does it significantly enhance the realism and interactivity of
the gaming experience, but it also upholds a critical element of online safety. By refining the nuances of facial animation,
particularly in the lower face and tongue, we believe our solution sets a new standard for digital interactions, one where
engagement and privacy coexist seamlessly.

In the healthcare sector, natural and realistic facial animation development holds immense potential, particularly for
senior patients. Enhanced interaction with a lifelike, conversational avatar could significantly improve their overall
well-being. A critical factor contributing to the health deterioration in seniors is the lack of social interaction, often
leading to depression. This emotional state not only weakens the immune system but may also trigger conditions like
senile dementia.

This aspect is particularly significant to me due to personal experience. My father suffered from Alzheimer’s disease, and
interaction with patients suffering from this condition can be emotionally draining for caregivers, including healthcare
workers and family members. Conversations often become repetitive and lack logical coherence, which can be mentally
exhausting over time. Looking ahead, I envision interactive systems capable of conversing with patients, potentially
slowing the disease’s progress and providing respite for caregivers. If these systems could drive a realistic avatar bearing
the likeness and voice of a familiar person to the patient, it could help them feel calmer and safer. This approach could
significantly enhance the quality of life for patients and those caring for them.

In conclusion, this research’s motivation is rooted in the belief that the future of digital interaction lies in the realm
of speech-driven animation. By incorporating realistic lower facial movements into 3D characters, we can redefine
digital interactions across various sectors. Whether it is enhancing the gaming experience in virtual spaces, safeguarding
players’ privacy, or providing comfort to patients and relief to caregivers in healthcare environments, the applications of
this technology have significant ramifications across many sectors. My pursuit to innovate the current state-of-the-art in
speech-to-animation is not just a technical endeavor, but a deeply personal one. Guided by the experiences of those
closest to us, we are determined to unlock the potential of speech-driven animation, making digital interactions more
realistic, engaging, and empathetic than ever before.

1.2 Speech Driven Facial Animation
Within the field of speech-to-animation, we distinguish two main groups where the methods fall in: a) speech-to-face
video synthesis, and b) speech-to-3D animation.

Speech to face video synthesis. Recent GAN-based work [143, 155, 169] take an image-audio pair as input and generate
videos of the person articulating the audio file. [73] learn a joint embedding of the target face and speech to generate an
image in sync with the speech segment. The model combines audio and identity encoders to feed an image generator

21



and is trained on unlabeled videos in a self-supervised fashion. [170] propose a two-step approach that combines a
facial landmark prediction network with a translation network to generate photo-realistic or cartoon images. [158] use a
parametric 3D face model representation driven by audio features. The synthesized sequence is fed into a neural face
renderer to generate a photorealistic video portrait akin to [81, 82]. This approach shows good generalization capability
for different audio inputs, including synthesized speech. [129] build upon the work by [110, 151] and learn a direct
mapping from input to target modalities that require no style or domain transfer.

Text to face video synthesis. Text-based editing approaches typically align phoneme labels (extracted from text) to audio
data, either recorded [51], or synthesized [7]. The work presented in [51] builds on Deep Video Portraits [82] to craft
synthetic videos from input text only. Only the mouth region is synthesized and composited with the rest of the face. [7]
propose a multimodal approach that allows the inclusion of emotional content to generate expressive face animations.
The emotions and visemes are parameterized by a face appearance model, which in turn synthesizes the animation from
the input text.

None of the video-based methods target tongue animation but rather focus on generating images of speaking faces, i.e.,
they indirectly learn to synthesize tongue motion using the underlying distribution of the training data. Our approach
predicts 3D landmarks, which allows for retargeting and rendering animation on different target asset types with no
further modifications or model training, which is a major advantage in practical and 3D workflows.

Speech to 3D animation. A common approach is to map sound units, e.g., phonemes, onto shape parameters to drive a
parametric model capable of animating [39, 89, 103, 140, 152]. Another example is JALI [42], which is a procedural
method to generate viseme units of mouth motions from corresponding phonemes. Viseme sequences are blended into
co-articulated action units to animate a FACS-based face rig [34], which can be used across different 3D characters.

Several Deep Learning approaches [78, 149, 150] map audio embeddings into an animated face. However, their
output may not integrate well into a standard animation workflow. The work in [171] addresses this by generating
animator-centric speech animations. Specifically, a Long Short-Term Memory (LSTM) architecture learns to predict
phoneme groups and geometric locations from JALI parameters to animate a face. The work by [90] generates realistic
animations using a registered 3D mesh sequence with accompanying phoneme-labeled audio data and a face model
with a mapping procedure. It builds upon [85] for 3D performance capture, using a regression model e.g. random
forests [96], to synthesize face model parameters from a sequence of speech features. Previous work has introduced
the first multilingual / mixed-lingual speech animation model [67]. Their work uses a bidirectional LSTM model
trained on phonetic posteriorgrams (PPG) as input, where the speaker differences were equalized while preserving
phoneme distribution and duration information. The model is trained on an expressive speech-to-face dataset to enhance
animations outputting a sequence of animation parameters. Other work uses a neural network that acts as a sliding
window regressor [150]. The network estimates animation parameters from a phonetic speech representation. The
proposed overlapping estimations models the localized context and co-articulation resulting in more fluid animation at
the price of dampening the coarticulation. The work from [153] evaluates different audio representations, i.e. MFCCs
and LPCs, to estimate 3D face model controllers through a bidirectional LSTM.
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1.3 Speech Articulator Modeling and Animation
Speech articulator models are a representation of human speech physiology, including the tongue, the jaw, the hyoid
bone, and the vocal tract wall. Capturing a model for the complete apparatus (or just parts of it) requires sophisticated
imagery, such as volumetric MRI data [37, 61, 166] or x-rays [14, 15]. Most approaches focus on modeling the tongue
(and sometimes the jaw) for speech synthesis applications.

Many approaches in the literature focus on lips and facial deformations. Animating the mouth interior has often been
neglected as this particular task is challenging due to the lack of data and generalized subject-independent models. Recent
vision based generative animation approaches have shown compelling results using generative adversarial networks
(GANs) [143, 155, 169], image-to-image translations [170], or neural rendering [81, 82, 149]. However, none of these
methods output 3D animation directly but implicitly generate 2D image frames of speaking faces. Our application is to
learn to synthesize 3D speech and tongue motion that can be used in existing 3D computer animation pipelines.

Tongue modeling dates back to [120] which modeled a two-dimensional surface projection of the tongue in the sagittal
plane that ignores the intrinsic structure of the tongue and only accounts for geometric surface deformations. The
bio-mechanical model by [159] models soft tissue deformations and non-linear geometric effects. The 2D physiological
model proposed in [61] unifies the tongue, jaw, and laryngeal structures using a 2D finite-element simulation from MRI
data of a single subject. The parameterized model in [86] describes the tongue’s surface through B-splines by forming a
grid of bi-cubic patches over 60 control points found on the top and under the tongue to produce realistic tongue shapes
as described in [148]. The phone shapes were matched by manually setting the parameters of the tongue model and
achieving a tongue animation by blending the shapes between phonemes.

Since then, representing the audio through symbolic sound units such as phonemes onto shape parameters is a general
approach for speech animation [39, 89, 102, 103, 140, 152]. For instance, JALI [42] is a procedural method to generate
viseme units of mouth shapes from phonemes. The viseme sequences are blended into co-articulated motions to animate
a FACS-based face rig model [114]. The generated animation from these approaches can be transferred to different
characters if they share a common rigging system.

Different approaches have also explored tongue animation from different input modalities. In [147], a tongue 3D model is
animated directly from electromagnetic articulography (EMA) data. This approach does not include any audio processing
as the animation is synchronized with the recorded audio from the EMA capture session through their open-sourced
framework [146].

Tongue animation has also been achieved from ultrasound images. In [48], the authors explore animating the tongue
from low-resolution imagery represented by EigenTongue [68] features and mapped into control parameters through a
Gaussian mixture model. Later in [25], more realistic animations are obtained from ultrasound images using a snake
contour extraction algorithm and driving a finite element model of the tongue, achieving animations at 21 FPS.

A multimodal end-to-end hidden Markov model (HMM) proposed by [145] is capable of synthesizing audio and
generating tongue motion. Unlike previous work, their method replaces the midsagittal EMA data with tongue model
parameters as the target articulatory representation. A follow-up multimodal approach [167] replaces the HMM with a
bottleneck long-term recurrent convolutional network (BTRCNN). The network is trained on text and audio to predict
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EMA positions as a proxy for tongue movement while considering embedded articulatory features while training the
model.

Similar to our approach, other work also considers only speech audio as input. In [98], the input speech is represented
as a sequence of phonemes which is mapped into EMA sensor positions through an HMM. The predicted articulatory
movements control the deformations of a 3D tongue model. Similarly, in [100], a stacked restricted Boltzmann machine
predicts EMA sensor positions from audio represented as mel frequency cepstral coefficients (MFCC). The predicted
positions are fit to a volume-preserving model through a finite element method to generate animations. Zhu et. al. [172]
also use MFCC as input features to solve articulatory inversion on EMA positions using a 2-layered bidirectional LSTM
preceded by a linear projection of the audio features into the RNN. This model achieves state-of-the-art results on the
MNGU0 dataset [130]. However, in [12], they demonstrate that gated recurrent unit (GRU) networks have a slight
performance improvement over LSTM architectures since the GRU layers have fewer parameters making them less
prone to over-fitting.

In this dissertation, we significantly advance the domain of animation generation from speech. Our main focus is to
move beyond the traditional linguistically driven features, such as phonemes or Mel-Frequency Cepstral Coefficients
(MFCCs). Instead, we embrace neural audio feature representations derived from models trained on thousands of hours
of audio. The robustness and continuity of these representations make them ideal for speech-to-animation research,
enabling model generalization across various speakers and exceptional performance on out-of-domain utterances when
training data is limited or sourced from a single speaker. We also explore deep-learning architectures, following the
examples set by previous studies [78, 150, 171], to convert these audio feature representations into animation format
through an end-to-end approach, leveraging on innovations from the Automatic Speech Recognition (ASR) community.

We also significantly contribute by developing a realistic tongue animation for 3D characters, an innovation derived
from data obtained from a medical setup typically used in speech pathology studies. This novel approach departs from
the traditional reliance on procedurally generated animations, which heavily rely on the viseme concept limiting the
animations to artificial estimations of coarticulation. This innovative leap lays a solid foundation for future research
focused on creating models capable of accurately replicating human natural coarticulation, a possibility enabled by
recent breakthroughs in speech pathology studies, computer vision, and machine learning.

With these advancements, we invite you to delve into the next chapter, where we elaborate on these innovations and their
implications for the future of animation generation from speech.
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CHAPTER 2

TONGUE MOCAP SPEECH ANIMATION DATASET

Capturing the motion of the tongue is an important aspect of speech research and has traditionally been achieved through
X-ray imaging [58, 70]. However, this method poses health risks to actors due to prolonged exposure to radiation, making
it impractical for large-scale data collection. Additionally, the jaw, teeth, and skull can obscure the view of the tongue,
making it challenging to capture the full range of tongue motion. This is why in recent years, radiation-free alternative
methods for capturing tongue motion have been practiced, such as magnetic resonance imaging (MRI), 3D ultrasound,
and electromagnetic articulography (EMA).

Real-time MRI [26, 83, 160] and 3D ultrasound [20] are safer options, but the resulting imagery is unregistered, making
it challenging to track specific points on the tongue over time. Additionally, these methods suffer from slow sampling
rates. EMA [128] is a more invasive method, but it has several advantages over other methods. EMA can measure sensor
position and orientation at fixed locations on the tongue with high spatial and temporal resolution and low error.

Articulatory data has been captured in different modalities from EPG, Laryngography, and EMA in a midsagittal
configuration. The MOCHA-TIMIT [161] corpus is a phonetically balanced dataset of 460 sentences read by two
British English speakers. EMA was also used for capturing tongue motion in [135] for 320 utterances of Austrian
German speech, to construct the mngu0 dataset [131] which contains 1354 utterances. In [141], Dutch and English
speakers recited a short phrase and isolated words, while in [18], 3 Italian speaker were captured reading 500 Italian
sentences providing approximately 2 hours of speech. EMA sensors are generally placed midsagittally along the tongue
for capturing 2D deformation of the tongue tip, body and dorsum [128]. Although the parasagittal motions of the tongue
contribute to speech production, they are largely overlooked during data collection.

There has been some prior work that considered lateral tongue motion [164] to study the production of /l/ in Australian
English with the aid of two parasagittal sensors acquired at a rate of 100 Hz. The work presented by [79] included one
parasagittal sensor to examine the contribution of lateral motion on the production of alveolar consonants in vowel-
consonant-vowel syllables. Their findings indicate that lateral motion is fundamental for articulating the sound /z/. Two
parasagittal sensors were included in the capture by [64] and [107], who respectively studied the articulation of Czech
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liquids in isolated nonsense words and English liquids in carrier sentences by Japanese speakers.

The work in [70] analyzed patterns of deformations of the midsagittal edge of the tongue in transitions between lingual
segments from X-Ray images. An analysis of tongue motion during emotive speech revealed that the vertical motion of
the tongue dorsum is dampened during sad speech [83]. A study of vowel-consonant-vowel syllables in [46] revealed
that tongue width is largest for palatal plosives and fricatives as the tongue widens pressed against the hard palate and
smallest for velar plosives and fricatives since the tongue body volume is largely retracted towards the velum. The work
in [164] investigated tongue lateralization in the Australian production of /l/ and discovered that the lateral tongue is
actively controlled rather than moving as a bi-product of tongue stretching. In [53], video recordings of the tongue
during the articulation of an English passage revealed that bilateral movements are asymmetric, and one side of the
tongue typically moves ahead of the other depending on the speaker.

Most previous work analyzes isolated or nonsensical words, and there has been very little research into the 3-D tongue
motion during continuous speech production. An exception is the work in [72], which presented a statistical technique
for identifying critical, dependent, and redundant roles played by the articulators during the production of the English
phonemes in the MOCHA-TIMIT corpus. They found that fricatives and affricates required the most number of critical
articulators, and none were identified for the alveolar /l/. They additionally observed that the articulatory system
comprises three largely-independent components: the lip and jaw group, the tongue, and the velum.

We found Electromagnetic Articulography (EMA) to be a suitable method for capturing data for speech-to-tongue
animation purposes due to its accuracy and high sample rates. EMA provides high-resolution data that allows for accurate
tracking of the tongue’s movement during speech, which is crucial for creating realistic animations. This made it an
ideal choice for our research.

2.1 Data Capture
We collected a new tongue motion capture dataset for the speech animation task with additional parasagittal sensors is a
valuable addition to the field of speech-to-face animation. The linguistic analysis in [105] demonstrates the importance
of adding lateral sensors to describe richer tongue motion dynamics. The data was collected using a Carstens AG501
Electromagnetic Articulography (EMA) device [19], an invasive process but with ethical and health guidelines approved
by the Institutional Review Board (IRB). The EMA device uses a configuration of ten sensors to acquire the motion of
the tongue, jaw, and lips. These sensors are attached to the surface using medical-grade cyanoacrylate glue.

The actor sits below nine RF transmitters creating an electromagnetic field that energizes coils in the sensors. The
resulting currents are processed to recover five degrees of freedom for each sensor: three for the 3D position (x, y, z) and
two for rotation (azimuth and elevation). The EMA sensors were sampled at 250 Hz, and mono audio was synchronously
recorded at a sampling rate of 48 kHz. This high-resolution data allows for a more accurate analysis of the tongue, jaw,
and lip movements, which can be used to train and improve models for speech-to-face animation.

Five sensors were positioned on the tongue: the midsagittal dorsum, blade, tip, and left and right parasagittal sensors on
the blade. The tongue tip sensor was positioned 5 mm behind the apex to avoid any damage to the actor’s teeth. Two
sensors are located on the lower jaw: one on the gingival margin at the medial incisors and one in a parasagittal location
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Figure 2.1: Sensor configuration for capturing the tongue, lips, and jaw mocap dataset.

between the canine and first premolar. Two more are placed midsagittally on the upper and lower lips at the vermilion
border. The final sensor was placed at the right lip corner apex. To stabilize the speech articulator landmarks with respect
to rigid head position, three additional sensors are positioned: one on the upper medial incisor and one each on the left
and right mastoid process. The stabilization sensors capture rigid skull position and rotation over six degrees of freedom.
A visualization of the sensor placements is shown in Figure 2.1 with the naming convention summarized in Table 2.1.

The data was recorded in a single 8-hour session by the actor reading a total of 2160 sentences. A subset of 720 sentences
from the Harvard set [132] was repeated at both a regular and a fast pace. The remaining 1440 sentences come from the
TIMIT dataset [52], which were uttered only at a regular pace due to time constraints for the capture session. The capture
session resulted in a dataset formed by 2160 pairs of articulator mocap sequences and audio samples, being the first of
its kind at this scale. Due to the long duration of the data capture session, utterance errors such as misreading and wrong
correspondence were unavoidable. After manually inspecting each sample, we defined a subset of 1902 clean samples,
which exclude reading errors and non-verbal gestures, giving a total of 2.55 hours of articulator mocap sequences paired
with audio samples.

A synchronous HD reference video was captured from two cameras during the EMA capture session. The single actor was
prepared with visual markers for visual analysis and to enable the reenactment of the face while solving for speech-to-face
animation.

2.2 Diphonic Analysis
As a first approach to analyzing the data, we made a diphonic analysis to have insights into the motion captured in
the data. A diphonic analysis is preferred over a phonemic analysis, as the former allows us to have a better insight
of the coarticulation of the utterances emitted during the capture session. As a first step, we use the Montreal Forced
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Table 2.1: EMA sensors positions on the tongue, lips, and jaw. The placement is either Midsagittal (M) or Parasagittal (P).

EMA Sensor Position Placement
TD Tongue Dorsum M
TB Tongue Blade M
BR Tongue Blade Right P
BL Tongue Blade Left P
TT Tongue Tip M
UL Upper Lip M
LC Center Lip, Right Corner P
LL Lower Lip M
LI Jaw, Medial Incisors M
LJ Jaw, Canine & First Premolar P

Aligner [104] to extract the diphone segments from the audio. For our analysis, we ignore the speech border diphones
which include silence or non-speech segments. This first filtering of the data results in 1,158 diphones, from which 424 are
consonant clusters. The remaining 734 diphones are distributed as follows: 305 vowel-consonant, 315 consonant-vowel,
and 114 vowel-vowel. We filter out the consonant clusters and diphones with fewer than 86 examples resulting in 142
unique diphones, which cover 60.4% of the non-consonant cluster data.

2.2.1 Relationship between mid and parasagittal sensors
We first investigate the extent to which the parasagittal sensors deform with respect to the midsagittal sensors to identify
the sounds where the parasagittal deformations are largely independent of the midsagittal motion. We select the
Pearson correlation coefficient (𝑟) for each midsagittal tongue sensor (TD, TB, TT) to each parasagittal sensor (BL, BR)
independently for each of the x (anterior/posterior), y (left/right) and z (superior/inferior) to verify the correlation of the
motion between the parasagittal sensors and the canonically used midsagittal sensors. The complete set of correlations
for BL and BR are shown in Figures 2.2a and 2.2b.

We observe a high correlation of the parasagittal sensors with all the midsagittal sensors on the x-axis, demonstrating
that during a regular speech diphone, the tongue’s surface moves back and forth consistently. Moreover, we observe that
the parasagittal sensors correlate most with the tongue tip, confirming the discoveries in [79], and are least correlated
to the tongue blade and dorsum sensors in the coronal plane with a prominent difference on the y-axis for particular
diphones. Specifically, we observe very low and slightly negative correlations with TD and TB in the coronal plane for
the diphones that end with the alveolars /z/, /s/, /d/, or /n/. We find this effect to be less prominent for alveolar /t/. The
same effect can be seen in diphones ending with the front unrounded vowels /i/ and /I/.

The results suggest that the lateral tongue is actively controlled and does not move merely as a byproduct of midsagittal
activity. Parasagittal sensors move independently of the mid-tongue sensors to the greatest extent in the coronal plane.
This could indicate a) lateral curvature or b) a widening or narrowing of the superior surface to preserve tongue volume
as it deforms.
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(a) BL correlation
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Figure 2.2: (a) and (b) Correlation of midsagittal tongue sensors to left and right parasagittal sensors shown for each diphone and
axis. (c) Distance between the parasagittal sensors in [mm] and proxy curvature (BL-TB-BR) in the coronal plane for each diphone.
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2.2.2 Tongue width and curvature
To analyze the width and curvature of the tongue we compute the 3-D Euclidean distance between the left and right
parasagittal sensors as a proxy of the tongue width. On the other hand, the tongue curvature is computed as the Menger
curvature [93] in the coronal plane for each diphone using three 2-D points corresponding to the y and z axes of BL, TB,
and BR to determine the extent of the tongue roll and its relationship to the underlying speech. In this particular setup, a
negative value represents a curled upward tongue surface, a positive value indicates a curled downward pose, and a zero
value indicates a flat tongue. In Figure 2.3b, we visualize a diphone with slightly negative curvature showing a close to
flat tongue, while in Figure 2.3d, we see an example with high positive curvature.

The means and standard deviations of tongue width and curvature for each diphone can be found in Figure 2.2c shown in
ascending order of curvature. We generally observe that tongue width negatively correlates with curvature (𝑟 = −0.384).
This is intuitive since the sensors become closer as the edges of the tongue curl up. At the top of the graph, we observe a
cluster of diphones containing the velar consonants /k/, /g/, and /N/ paired with vowels /i/, /I/ and /2/. These are associated
with a relatively narrow tongue and large downward curvature of the lateral tongue. They are followed by a cluster of
diphones containing the vowel /i/ with a range of consonant contexts that have diverse places of articulation. However,
outliers appear when /i/ is spoken in the context of the alveolar fricatives /S/ and /Z/, where we observe that the tongue
curvature is approximately halved. The diphones that contain /S/ and /Z/ appear towards the bottom of the graph, although
/Z/ is distributed more uniformly throughout the lower half. The outliers are, therefore, the result of co-articulation that
stems from transitioning between a flat or upwards-curled tongue to a downwards curvature and vice versa. This result
indicates that parasagittal tongue motion is essential for producing these sounds.

2.2.3 Dynamics of Parasagittal Sensors
Our geometric analysis of the parasagittal sensors indicates the shape of the tongue, but tongue dynamics are lost. Figure
2.3 shows the frontal and sagittal view of diphones /sO/ and /ik/. The colored spheres represent all the EMA sensors. The
images show the palate surface reconstruction. The lips and teeth are not a reconstruction from the data but serve as a
reference for a better spatial understanding. The tongue’s pose shown in the figures is the mean of the mid-poses from the
diphone. The color-coded quivers represent the sensors’ motion from all the data samples for the given set of diphones.
The motion sequence is represented by colors of the rainbow, from violet to red, representing the motion from beginning
to end, respectively. For example, we can observe how diphone/sO/ starts with the tongue tip close to the alveolar ridge
(violet) followed by a rapid gesture that moves the tongue downwards (cyan) and back to a stationary position (red) in
Figure 2.3a. Figure 2.3c, we can appreciate how the curved transition of /ik/ begins with a quick constriction on the
palate and ends with a low frontal tongue pose. All the diphones images and videos can be found through this link 1 for
better understanding and insights into the tongue sensor motion.

To gain insight into the tongue’s motion statistics, we compute the peak velocities of the five tongue sensors for all
diphone samples and calculate the mean of the velocities for each diphone class. In our analysis, we found that the
diphones with alveolar and post-alveolar fricatives /z/, /s/, and /S/ show low mean peak velocity below 40 mm/s due to
the long periods in which the tongue remains stationary. Alternatively, the diphones with the highest velocities above
180 mm/s require an open or close movement of the jaw such as /2r/, /kO/, /At/, and /Ak/.

1https://salmedina.github.io/ContinuousTongueMotionAnalysis/
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(a) /sO/ sagittal view (b) /sO/ frontal view

(c) /ik/ sagittal view (d) /ik/ front view

Figure 2.3: Data visualization of diphones /sO/ and /ik/. Sensors are color spheres. Sensor motion is represented by colored quivers
(rainbow). The tongue pose is the mean of the mid-position of the second phone.

2.3 Jaw Motion Analysis
In Figure 2.4, we visualized all the samples of both jaw sensors LI (midsagittal) and LJ (parasagittal) in a 3D scatter plot
from three different views. As in can be seen, our captured data follows Posselt’s Envelope of Motion (PEM) [123].
The PEM describes the range under which the jaw can move due to the physiological constraints based on the bones,
muscles, and tendons that form the jaw. For context, we can see in Figure 2.4a that the reference frame of our captured
data is the following: the X-axis describes the anteroposterior direction, the Y-axis the mediolateral direction, and the
Z-axis the vertical direction. As carefully described in [174], the jaw motion from a frontal view usually follows a
shield appearance as seen in Figure 2.4b. From a sagittal or lateral view, it follows a prolonged fang shape as shown in
Figure 2.4c. While from a top view, the jaw motion follows a diamond shape as the one displayed in Figure 2.4d. Our
visualization shows that our data follows such shapes with undefined edges. The main reason is that the actor did not
do any extreme articulation during the capture session, as he only uttered regular sentences at a regular pace and fast
pace with neutral emotion. This visualization supports that it would be appropriate to increase the variability of the
gesticulations during a capture session in future work.
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Figure 2.4: Different views for Posselt’s Envelope of Motion for both jaw sensors LI and LJ: midsagittal (purple) and parasagittal
(blue) respectively. (a) Front view, (b) Sagittal view, (c) Top view, (d) Head-axis reference: X-axis describes the anteroposterior
direction (back to front), Y-axis describes the mediolateral direction (right to left), and Z-axis describes the vertical direction (bottom
to top).
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CHAPTER 3

SPEECH-TO-TONGUE ANIMATION: A FIRST APPROACH

The first idea that came into our mind once we had cleaned the EMA data and verified its correctness was to predict
the sequence of the tongue, lips, and jaw landmark positions from a speech signal by training a Sequence-to-Sequence
model.

Sequence-to-sequence models have been widely used in natural language processing tasks, such as machine translation
[109] and text summarization [139], and have also demonstrated their practicality for speech-related tasks like automatic
speech recognition [11, 29, 69]. Using this approach, we aim to develop a model to input a speech signal and output a
sequence of 3D landmark positions corresponding to the speaker’s tongue, lips, and jaw movements. The EMA data
provides accurate information on the position of the tongue and jaw, which can be used as a ground truth to train the
model.

The main emphasis of this project is to develop a solution that generalizes well to out-of-domain input sources and that
could be widely deployed without specialization or fine-tuning on a user-per-user basis. The flexibility of a pipeline

Rig

Optimizer

Render

Engine

Rig
Parameters

Animation
Predicted

Landmark Locations
Encoder-Decoder

Model
Speech
Signal

First Stage Second Stage

Figure 3.1: The proposed method consists of a two-stage pipeline. The first stage predicts the EMA landmark positions from the
audio signal. In the second stage, the rig parameters are computed by minimizing the distance between the predicted landmark
positions and their counterparts on the mesh through a Quasi-Newtonian optimizer. Finally, the rig parameters are used by a rendering
engine to show the animation results.
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Figure 3.2: The diagram depicts the explored configuration space of an encoder-decoder architecture comprising encoders (𝐸), latent
representations (𝑍), and decoders (𝐷). The encoder determines the definition of the latent space (𝑍), while the architecture of the
decoder can be selected independently from the encoder.

solution would allow us to easily evaluate models that predict the landmark positions with different speech feature
representations and select the one that best fits our needs. Additionally, we are interested in solutions that run in real-time
with low latency for interactive applications.

3.1 Proposed Method: A Two-Stage Pipeline
Our proposed learning-based prediction pipeline consists of an encoder-decoder model followed by an optional rig-solving
animation step as depicted in Figure 3.1. First, the input audio is encoded into a compressed latent feature representation
by an audio encoder. Then a sequence of sparse landmark positions is predicted by an articulation decoder. Finally,
these sparse points become the constraints of a rig optimizer module that identifies the optimal animation parameters to
match corresponding mesh locations of the tongue, lips, and jaw on a rigged 3D model.

Formally, our dataset  = (X,Y) is defined as the set of pairs where X = {x1, x2, ..., x𝑛}, x𝑖 ∈  denotes the set of audio
input samples and Y = {y1, y2, ..., y𝑛}, y𝑖 ∈  is the corresponding sequence of EMA landmark positions. Each input
audio x𝑖 ∈ ℝ𝑇 represents a one-dimension waveform consisting of 𝑇𝑖 samples according to the duration of the audio and
the sampling rate under which it was captured, while y𝑖 ∈ ℝ𝑆𝑖×𝐿×3 contains a series of 𝑆𝑖 continuous frames of 𝐿 = 10
3D landmark positions.

As a first approach, we focus on finding the best model 𝐸 ∶  →  that encodes the input audio signal into a latent
audio feature space  ∈ ℝ𝑎, where 𝑎 is the dimensionality of the audio feature representation. The audio embeddings
z𝑖 ∈ ℝ𝑆𝑖×𝑎 are later decoded by the articulation decoder 𝐷 ∶  →  to predict a sequence of landmark positions
y𝑖 ∈ ℝ𝑆𝑖×𝐿×3, expressed in the EMA stabilized pose space. Finally, the predicted landmark positions ŷ𝑖 = 𝐷(𝐸(x𝑖)) are
mapped into the face mesh pose space  by applying a similarity transformation  ∶  →  resulting in the sequence
of mesh constraints 𝑚𝑖 ∈ ℝ𝑆𝑖×𝐿×3. A summary of the combinations of different encoders and decoders considered is
shown in Figure 3.2.
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3.2 Stage One: Landmark Motion Prediction from Audio
For the encoding stage, we explore different audio feature representations, ranging from traditional methods based on
phonetic and frequency analysis representations, and explore more modern neural network-based features which were
trained for ASR and for general purposes by means of SSL. Specifically, we explored the following audio features: phone
representations, MFCC, DeepSpeech2, and Wav2Vec.

3.2.1 Audio Encoding

Phones: We perform a phonetic segmentation of the speech signal as used in [42, 90, 171]. We use phone representations
that include the 39 phone representations from ARPAbet with the lexical stress variants of the actor’s diction found in
the dataset, yielding 79 phone representations.

MFCC: We also employ the widely used MFCC for speech processing tasks and convert the audio frequencies into a
perceptually based logarithmic mel scale which is useful for characterizing human speech.

DeepSpeech2: We extract intermediate representations from the neural ASR model DeepSpeech2 (DS2) [6]. Specifically,
we selected the output embedding from the Bi-LSTM layers as the latent audio feature representation to obtain embeddings
with a higher generalization and avoid a bias towards the English character distribution learned at the pre-FC layer.
In this way, we benefit from more generalized audio features that encode hundreds of hours of multi-speaker speech
from the LibriSpeech dataset [113]. In this model, MFCCs are computed from the raw signal and serve as an input to a
5-layered bidirectional LSTM. The output passes through a fully connected layer, which classifies a character in the
target language according to a Connectionist Temporal Classification (CTC) loss [55]. Then, the weighted vector from
the CTC is passed to a beam search module, which assigns the most suitable transcription of the given speech signal.
For speech-to-animation, we extract the features computed before the grapheme classification layers. This way, we use a
generalized audio representation trained across speakers on hundreds of hours of speech from the LibriSpeech dataset
[113].

Wav2Vec-Z and -C: Wav2Vec [136] takes the raw audio waveform as input which is directly processed by two causal
convolutional networks (CCNN). This SSL model was trained with the goal of obtaining a general representation of
speech audio for any downstream application rather than a specific task, e.g., ASR. The input audio is fed into a CCNN
that predicts a latent representation of the audio in the z-features (W2V-Z). A sequence of z-features in a larger window
is then fed to the second CCNN to compute the contextual c-features (W2V-C).

The explored audio representations were visualized in Figure 3.3 as normalized heatmaps to obtain insights into their
differences. An audio sample from the dataset, with the utterance ”The sky in the west is tinged with orange-red”, was
used to extract the audio features. The figure highlights the higher dimensionality and more complex patterns of the
neural representations compared to the traditional methods. The changing patterns of all representations during the
speech can be seen, as well as the almost constant pattern during the silent periods at the beginning and end of the audio.
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(a) Phones (b) MFCC

(c) DeepSpeech2 (d) Wav2Vec-Z

(e) Wav2Vec-C

Figure 3.3: Visualization of the audio features for audio sample 0734 with caption ”The sky in the west is tinged with orange-red.”.
The heatmap colors are normalized for a proper comparison. The audio features explored on these experiments are: (a) Phones, (b)
MFCC, (c) DeepSpeech2, (d) Wav2Vec-Z, and (e) Wav2Vec-C.
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3.2.1.1 Articulation Decoding

Once the audio has been encoded into a latent space, the articulation decoder maps the sequence of encoded audio into a
sequence of 3D speech articulator landmark positions. Different neural network architectures were evaluated for this
task, from simple methods such as an Overlapping Multilayer Perceptron (MLP) [150] to models with higher complexity
like Recurrent Neural Networks (RNNs) [62] and a Transformer architecture [154].

MLP: We implemented a simple sliding overlapping input and output window MLP as proposed by [150] with a slight
modification. We enforce causal prediction by outputting the most recent value rather than predicting the middle frame.
This avoids looking at information in the future and reduces the prediction latency of the model.

RNNs: The variations of LSTM and GRU tested in our experiments are: a) unidirectional, b) bidirectional, and c) their
corresponding multi-staged variants with one, two and five layers.

Transformer: Our Transformer model [154] follows the work from [41] and [168] by neglecting the decoder layers and
using only stacked encoder layers with Multi-head Self-Attention (MSA).

In our approach, the Transformer first encodes the position of the audio features in the sequence through learnable
projection encodings. The positionally encoded audio embeddings serve as input to the Transformer Encoder layers.
These layers are formed by a Multi-headed Self Attention (MSA) and an MLP, both starting with a Linear Normalization
layer and ending with a residual connection. The MSA consists of multiple heads that compute in parallel a scaled
dot-product attention, also known as the Query-Key-Value self-attention (QKV-SA), for the input sequence as described
in Eq. 3.1. In a QKV-SA module, the score weights are based on pairwise similarities between the projected elements
of the sequence of their query and key representations. The attention 𝐴 requires a scaling factor to avoid vanishing
gradients when the transformer embedding dimensionality 𝑑 is large. The scaling factor is usually the size of the hidden
dimension. The output of each head 𝐻 in the MSA is the weighted sum of self-attention scores applied to the projected
values of the sequence.

𝑄 = z𝑊𝑄, 𝐾 = z𝑊𝐾 , 𝑉 = z𝑊𝑉

𝐴 = softmax
(

𝑄𝐾𝑇
√

𝑑

)

𝐻 = 𝐴𝑉

(3.1)

3.2.2 Experiments
We perform an extensive evaluation of the audio feature encoding and articulation decoding architectures by training all
combinations of encoding and decoding architectures.

Audio Encoding: In all of our experiments we down-sampled the audio to 16 kHz since DeepSpeech2 and Wav2Vec are
trained for that specific sampling rate. DeepSpeech2 outputs an audio feature representation for every 20 ms in the audio.
Therefore, we consider 20 ms as the common audio frame duration for the encoding of the input signal for all audio
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encoding methods. This frame duration is also preserved in the articulation decoder networks and results in animation
predictions generated at 50 frames per second.

We use the Montreal Forced Aligner [104] to obtain phone labels by aligning the transcripts from the recording session
with the recorded audio. The resulting 72 class phone labels are sampled every 20 ms to make them comparable on
a fairground with DeepSpeech2 and Wav2Vec features. Then, the sequence of phones extracted from the audio was
one-hot encoded, to generate the sequence of phone representations.

Following [5] we compute MFCC features by separating the mel frequency spectrum into 27 bins with a Fast Fourier
Transform on a 2080 Hz window, resulting in a sequence of 27-D feature vectors.

From DeepSpeech2, we extracted the 1024-D output from the 5-layered Bidirectional-LSTM (Bi-LSTM) and discarded
the final English character classification layer.

In contrast, Wav2Vec’s z- and c-features represent 10 ms of audio in a 512-D feature vector. To match the common
frame duration, we concatenated two sequential feature vectors to represent 20 ms of audio in a 1024-D feature.

Articulation Decoding: All network architectures in this work were implemented using PyTorch [117]. The models
were trained and tested by splitting the dataset of 1900 utterances into two groups: train and testing, in an 80/20 ratio.

We fine-tune the hyper-parameters of the models using the Hyperband algorithm [94] with Optuna [4]. In our experiments,
we search for the optimal hidden layer size, learning rate, dropout rate, and the number of hidden layers. The search
space for the different parameters is the following: hidden layer size [128…2048], learning rate [10−10…10−1], and
dropout rate [0.01…0.99]. For the MLP network, we search the number of hidden layers in the range [1…4].

The best set of hyper-parameters was selected by analyzing the results throughout all the architectures and selecting a
set of reasonable values for all architectures to allow an equal comparison between the different audio encoders and
articulation decoders. We utilize the mean squared error (MSE) over the predicted 3D landmark positions as the loss
function for training. This decision was based on the fact that we are predicting ten 3D positions in the EMA reference
space.

Model weights were optimized using the Adam optimizer [87] using 𝛽1 = 0.9 and 𝛽2 = 0.99. The initial learning rate
was 10−5, with a dropout rate equal to 0.25, and a batch size of 32. As the rest of the hyper-parameters, the best values
were selected from the Optuna search results.

The MLP articulatory decoder consists of two 512-D hidden layers with a ReLU [3] activation function followed by a
dropout layer [144] set to 0.25. A final linear layer predicts a linearized sequence of 3D positions of size 𝑆 × 𝐿 × 3.
Where 𝑆 is the output sequence length, 𝐿 is the number of landmarks, and 3 for the 𝑥, 𝑦, and 𝑧 axis in the EMA 3D
space.

For the RNN models, both LSTM and GRU architectures were evaluated in unidirectional (forward in time) and
bidirectional configurations. In all cases, we tested models with 1, 2, and 5 layers, and each RNN model outputs a
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prediction for each 20 ms input feature.

We explored different configurations of Transformer depth and width, finding the best setup to be 4 encoder layers with
8 heads. The Transformer model is trained using Adam at an initial learning rate of 5 × 10−8. A warm-up procedure
using an 𝐿1 loss was found to improve stability in the initial training stage. We then switched to an 𝐿2 loss conditioned
by an empirically determined threshold 𝛿 = 3 to reach convergence.

The RNN and MLP models were trained for 40 epochs, while the Transformer models were trained for up to 100 epochs
with an early stop criteria of 10.

All training samples were formed as windows of 15 audio feature representations in length (300 ms duration) sampled
randomly from the training data. Audio input features were aligned with their corresponding EMA output landmark
locations which were nearest-neighbor downsampled from 250Hz to 50Hz.

3.2.3 Quantitative Evaluation
In this section, we evaluate all the different configurations of audio feature encoders and articulation decoders. We define
the sample error 𝑒(𝑖)𝑠𝑎𝑚𝑝𝑙𝑒 as the L2-Norm of the estimated landmark positions with respect to the ground truth over the
full sequence 𝑆𝑖, as shown in Eq. 3.2.

𝑒(𝑖)𝑠𝑎𝑚𝑝𝑙𝑒 =
1
𝑆𝑖

𝑆𝑖
∑

𝑠=1

1
𝐿

𝐿
∑

𝑙=1
||�̂�(𝑖)𝑠,𝑙 − 𝑦(𝑖)𝑠,𝑙||2,∀𝑖. (3.2)

Where 𝑦(𝑖)𝑠,𝑙 denotes the position of the 𝑙𝑡ℎ landmark at time 𝑠 for the 𝑖𝑡ℎ audio sample with duration of 𝑆𝑖 audio frames,
and �̂�(𝑖)𝑠,𝑙 is the 𝑙𝑡ℎ landmark’s position predicted by the articulation decoder at time 𝑠.

We present the results of our experiments in Table 3.1. This table provides a comprehensive overview of how well
each model performed on the entire test set. We use the temporal mean sample error in mm as our primary metric to
evaluate the overall performance of each model as described on 3.2. This metric captures the average distance between
the predicted and ground truth through all the timesteps in the sequences of landmark positions, providing a clear and
concise summary of each model’s performance. Additionally, Table 3.1 breaks down the results by articulation decoder
(rows) and audio feature encoder (columns), allowing us to compare the performance of different models and feature
representations. This allows us to gain a deeper understanding of how the different components of our pipeline are
impacting the overall performance of our models.

Analyzing the results, we see an improvement in the performance of the MLP architecture by widening the context of
the input window and the output window. This architecture version is comparable to a single-layer GRU and LSTM
network. However, the number of network parameters required for the MLP is greater when compared to RNN-based
counterparts. The GRU architecture shows a slight improvement over the LSTM architecture, as seen in [12], due in part
to the smaller amount of parameters in each layer, making it less susceptible to over-fitting.

Based on these results, we can appreciate how all the articulation decoders we presented can learn how to predict the pose
to a reasonably low error. Notably, the LSTM and GRU models’ performance improves as we increase their complexity
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Table 3.1: Model architecture evaluation using different audio feature representations: Phonemes (Phone), MFCC, DeepSpeech2
(DS2), Wav2Vec c- (W2V-C) and z- (W2V-Z) features. Models were trained with 300 ms input windows of audio. The error is
the temporal mean L2-norm in mm calculated through the test split. The number of parameters reported is the number of trainable
parameters per architecture design. The inference time is the mean time over the test split measured as ms per one second of audio
input.

Decoder∖Feature Phone MFCC DS2 W2V-C W2V-Z Num. Params Inference [ms] Latency [ms]
MLP 15:5 2.445 2.075 2.393 1.959 1.937 6.62 ×107 0.232 300
LSTM-1L 4.207 2.344 2.269 2.047 2.140 3.17 ×106 1.150 20
LSTM-2L 4.209 2.178 4.206 1.990 4.212 5.27 ×106 2.238 20
LSTM-5L 2.656 2.037 2.264 1.999 1.960 1.16 ×107 5.432 20
Bi-LSTM-1L 3.664 2.346 2.375 2.373 3.481 6.33 ×106 2.229 300
Bi-LSTM-2L 4.577 2.109 2.844 2.188 3.874 1.26 ×107 4.512 300
Bi-LSTM-5L 4.365 1.912 2.218 1.927 2.929 3.15 ×107 11.000 300
GRU-1L 4.150 2.290 2.250 1.949 2.071 2.38 ×106 1.144 20
GRU-2L 2.623 2.117 2.179 1.897 1.980 3.95 ×106 2.193 20
GRU-5L 2.661 2.006 2.184 1.916 1.954 8.68 ×106 5.339 20
Bi-GRU-1L 4.405 2.368 2.529 2.055 2.613 4.76 ×106 2.290 300
Bi-GRU-2L 3.143 1.953 2.947 1.932 2.513 9.48 ×106 4.439 300
Bi-GRU-5L 2.341 1.973 2.058 1.757 1.784 2.37 ×107 10.955 300
Transformer 2.368 2.283 2.168 1.935 1.942 5.045 ×107 3.515 300

by increasing the number of layers. Furthermore, our results show that bidirectional GRU and LSTM models’ learning
capability improves as they can look ahead in the sequence.

Audio Encoding: The results of our experiments show that deep-learning based audio features and MFCCs perform
better than phone-based features, regardless of the choice of neural network architecture. While MFCC audio features
exhibit better quantitative evaluation results compared to DS2, DS2 and W2V features demonstrate superior qualitative
performance when generalizing to input speech from out-of-domain speakers. The video provided on the following link
visually demonstrates these results, where we can observe that the DS2 and W2V features outperform the other audio
features when dealing with out-of-domain speakers.

Both Wav2Vec feature variants show similar behavior, although the layered RNN architectures take more advantage
of the c-features. Furthermore, there is a substantial improvement when moving from a 2-layer to a 5-layer version of
the architecture in both the unidirectional and bidirectional versions of the RNNs. The best architecture from a test-set
perspective consists of encoding the audio with Wav2Vec c-features and estimating the landmark positions using a
bidirectional 5-layered GRU.

The same set of experiments was replicated with a training input window of 1000 ms as summarized in Table 3.2. The
results are consistent with the results from training models using only a 300 ms input window. The overall performance
slightly improved across all the models at the cost of a longer inference time, latency, and the number of parameters.
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Table 3.2: Model architecture evaluation using different audio feature representations. Models were trained with 1 s input windows
of audio. The error is the temporal MSE in mm calculated through the validation split. The number of parameters reported is the
number of trainable parameters per architecture design. The inference time is the mean time over the validation split measured as ms
per second of audio input.

Decoder ∖ Feature Phone MFCC DeepSpeech2 W2V-C W2V-Z Num. Parameters Inference [ms]
MLP 50:15 2.315 2.157 2.619 1.957 1.928 3.29 ×108 0.309
LSTM-1L 2.657 2.299 2.350 2.048 4.219 3.17 ×106 1.150
LSTM-2L 4.216 2.219 2.342 2.016 2.026 5.27 ×106 2.238
LSTM-5L 2.609 2.133 2.331 2.014 1.994 1.16 ×107 5.432
Bi-LSTM-1L 3.355 2.074 2.204 1.977 2.272 6.33 ×106 2.229
Bi-LSTM-2L 2.268 1.874 2.096 1.825 1.781 1.26 ×107 4.512
Bi-LSTM-5L 2.247 1.732 1.987 1.754 1.708 3.15 ×107 11.000
GRU-1L 4.195 2.213 2.283 1.943 2.001 2.38 ×106 1.144
GRU-2L 2.559 2.098 2.248 1.905 1.945 3.95 ×106 2.193
GRU-5L 2.570 2.003 2.235 1.908 1.943 8.68 ×106 5.339
Bi-GRU-1L 4.304 1.964 2.094 1.828 1.910 4.76 ×106 2.290
Bi-GRU-2L 2.206 1.784 2.091 1.744 1.714 9.48 ×106 4.439
Bi-GRU-5L 2.179 1.660 1.935 1.684 1.648 2.37 ×107 10.955
Transformer 2.349 2.393 2.139 1.926 2.044 5.049 ×107 3.552

Overall, the model trained with phonetic representation shows the highest error, followed by the model trained with
DeepSpeech2 audio features. The models trained using MFCC and both Wav2Vec features follow a similar pattern
across all the landmark predictions.

Landmark Error Analysis: To understand the performance of our model in predicting speech articulator landmarks,
we analyzed the error of the predictions across all audio representations and summarized the results in Figure 3.4. The
results show that the model performed best when predicting the position of the upper lip (UL), with an average error of
1.16 mm across all the audio encodings. This can be attributed to the fact that the upper lip’s motion is not as wide as the
tongue tip (TT), which had the least accurate predictions with an average error of 2.26 mm through all the audio feature
representations.

In general, most of the error comes from predicting tongue positions (TD, TB, BR, BL & TT) and lower lip (LL)
landmarks. These points experience the most significant motion during an utterance, making them challenging to predict
accurately. Surprisingly, the jaw landmarks (LI, LJ) showed lower error, likely due to the jaw having a more rigid motion
that occurs at a slower pace when compared to the elastic motion that the tongue and lower lip present in most utterances.

3.2.4 Qualitative Evaluation
To verify the results described in Table 3.1, we invite the reader to watch the supplementary video provided through this
link for a visual comparison of the landmark sequence predictions are visible from a lateral view for the Overlapping MLP
15:5, 5-layered Bi-LSTM, 5-layered Bi-GRU, and Transformer Encoder models trained with the proposed audio encoders.

41

https://drive.google.com/file/d/1KCPv4qY1eJ7DobKLAaHQQw9mrKlA4bP2/view?usp=share_link


TD TB BR BL TT UL LC LL LI LJ
Landmark

Phone

MFCC

DS2

W2V-C

W2V-Z

Au
di

o 
En

co
di

ng

2.3 2.6 2.2 2.2 2.7 1.3 1.8 2.6 2.1 2

1.8 2 1.7 1.8 2.1 1.1 1.5 1.8 1.5 1.4

2 2.3 2 2 2.3 1.2 1.7 2.1 1.9 1.8

1.9 2.1 1.8 1.8 2.1 1.1 1.5 1.8 1.5 1.4

1.8 2 1.7 1.8 2.1 1.1 1.4 1.8 1.4 1.4

Landmark Prediction Error on Test Data

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Figure 3.4: Landmark Prediction Error on the test set of the bidirectional 5-layered GRU across all audio encodings. The error values
shown are the temporal mean sample error in 𝑚𝑚 for each landmark.

We found that all models have convincing performance while predicting in-domain audio from our dataset for both
training and test samples. However, phone-based features did not perform as well as the other models with out-of-domain
data, such as audio from other actors while they were speaking or even singing, as they require an ASR step and forced
alignment, which is dependent on the language and prosody. In general, the DeepSpeech2 and Wav2Vec-based models
performed similarly when the decoder was a multi-staged RNN or a Transformer model. In our analysis, we observe the
architecture where the audio is encoded with Wav2Vec z-features and decoded into landmark positions through an MLP
15:5 shows compelling tongue motion results but exhibits temporal jitter on the predicted jaw motion. In general, the
models with an MLP decoder present a certain level of jitter, which is not present in the models with an LSTM or GRU
decoder.

We have provided a video demonstration to supplement the evaluation results presented in Figure 3.4. Analysis of the
traces of the predicted motion of the landmarks, as shown in Figure 3.5a, reveals that the model is capable of capturing
the coarse motion patterns of the articulator landmarks. However, in Figure 3.5b, we can see that the model learned to
take shortcuts on fast and complex motions that take place within a small space. This occurs due to the model being
trained only on a Mean Square Error loss, which leads the predicted sensor position to a local minimum. These findings
highlight the need for future work to address these issues by adding more constraints to the learning loss. In general,
the predicted motion shows an overall shift towards the front of the mouth. This shift can be attributed to the model’s
reliance on the initial position of the tongue at the beginning of the sequence.

3.3 Stage Two: Parametric Face Model Optimization

3.3.1 Optimizing the Rig Parameters
To demonstrate re-targeting to a final animation output rig, we use a high-quality artist-designed FACS-based [34, 45]
3D face model. The model and animation rig conforms to the MetaHuman standard [47] and closely resemble the actor.
The output is represented as a triangle mesh 𝑀 = (𝑉 , 𝐹 ) defined by a set of vertices 𝑉 that build the mesh faces 𝐹 . The
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(a) Long Motion (b) Prediction Shortcut

Figure 3.5: Visualization of 300 𝑚𝑠 of predicted motion on a test sample vs. ground truth. Ground truth is in gray, and the predicted
motion is in color according to the sensor. (a) Shows an example of a predicted long motion. (b) Shows an example of motion
shortcuts on prediction visible on Blade Left and Tongue Tip sensors. We suggest watching the video to obtain a more comprehensive
evaluation.

face model is controlled through a P-dimensional control parameter vector 𝜃 that deforms the mesh in a differentiable
manner for any given frame in the animation. In our model, 𝑃 = 173 for the whole face, of which nine parameters
control the tongue and 12 move the jaw. We define 𝑀(𝜃𝑡) as the mesh posed by these control parameters for frame 𝑡. To
estimate the pose of the mesh based on the predicted landmarks of the tongue, jaw, and lips, we first manually pre-define
a correspondence between the transformed predicted landmark positions on the mesh coordinate system v(𝑖)ŷ to a set of
points on mesh 𝑀 as 𝐶𝑡 = {𝑓𝑙, 𝑏𝑙}𝐿𝑙=1, where 𝑓𝑙 ∈ 𝐹 is a triangle index and 𝑏𝑙 a barycentric coordinate defining a point
on the triangle for the 𝑙𝑡ℎ landmark. In our case, 𝐿 = 10 since we have five sensors on the tongue, two on the jaw, and
three on the lips. These locations are shown in Figure 3.6.

We perform an initial alignment of the data from the EMA sensors to the mesh in a neutral pose by calculating the
best similarity transform 𝐴 that maps the points v(𝑁)

ŷ into correspondences 𝐶(𝜃𝑁 ) for the neutral pose 𝑁 described by
parameters 𝜃𝑁 . While the geometry of our 3D face model is based on a 3D scan of the actor, the face geometry is not a
perfect reconstruction. The teeth and tongue are adapted by an artist from a generic model and do not precisely align.
To account for these minor differences, we calculate relative offsets 𝛿𝑙 = 𝐴(v(𝑙)ŷ − v(𝑙)𝑁 ) between each landmark and the
surface of the neutral 3D model.

The energy between the predicted landmarks at frame 𝑡 and its corresponding point on the mesh is defined as:

𝑒𝑝𝑜𝑠𝑒(𝜃𝑡) =
𝐿
∑

𝑙=1
||𝐶(𝜃𝑡)𝑙 − (𝐶(𝜃𝑁 )𝑙 + 𝛿𝑙)||2. (3.3)

Our input data is sparse and asymmetric. There are three markers for the lips that capture the right side of the face and
two for the jaw that cover the left side. For this reason, we enforce symmetry on both sides of the face on our parameter
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Figure 3.6: FACS-based face model landmark correspondence visualization before optimization. Green: mesh surface landmarks
𝐶(𝜃𝑡)𝑙; Pink: target constraints 𝐶(N)𝑙 + 𝛿𝑙 generated by the articulation decoder.

vector. In addition, we add an L1 regularization to our solver to ensure sparse activation for the model parameters:

𝑒𝑝𝑟𝑖𝑜𝑟(𝜃𝑡) =
𝐿
∑

𝑙=1
|𝜃(𝑡)𝑙 |. (3.4)

Resulting in the following combined energy function:

𝑒(𝜽) = 𝑒𝑝𝑜𝑠𝑒(𝜽) + 𝛼 𝑒𝑝𝑟𝑖𝑜𝑟(𝜽). (3.5)

We minimize 𝑒(𝜽) using an L-BFGS optimizer and initialize the parameters 𝜃𝑡 for frame 𝑡 using the parameters from the
previous frame 𝜃𝑡−1 for all 𝑇 frames in the animation. The prior weight is 𝛼 = 0.01 for all results shown in this paper.
Finally, no additional temporal smoothness priors were included in the optimization.

3.3.2 Results
We found that in the final animations on the mesh, the lips open and close correctly, which is remarkable considering
that only three landmarks drive the mesh. No significant anomalies were observed in the motion of the jaw and tongue.
We also compared the ground truth 3D landmark visualization against predicted landmark positions and ground-truth
video. Frames from the generated animation are shown in Figure 3.8.

To comprehensively evaluate the effectiveness of our proposed pipeline, we tested the model with out-of-domain
voices that were not included in the training phase. The test involved using markedly distinct out-of-domain sentences
with different tempos, pitches, and tones to challenge the system further. We were pleased to observe that the model
successfully generated animation results that closely corresponded to the audio input. We invite the reader to watch the
supplementary video found on this link, and a sample frame from this video can be seen on Figure 3.7.

44

https://drive.google.com/file/d/17KDigNqyhMH6MdzJbN_J2UA51WCkDYDc/view?usp=share_link


Figure 3.7: Sample frame from the final results video of our approach. It shows how we can animate an Epic Games’ MetaHuman
character using in- and out-of-domain audio samples.

Figure 3.8: Visualization of two frames from test samples. On the first row, we see the ground truth landmark locations. The second
row displays the predicted landmark locations. The third row shows the corresponding frame from the video reference and the solved
animation frame.

We went further to test our model with singing audio samples, which the decoders were not trained on and were pleasantly
surprised to see that the model could still generate plausible animation results. This robustness indicates that the proposed
pipeline is capable of effectively capturing subtle nuances in voice inputs and translating them into accurate facial
animations. These results demonstrate the potential of our approach to accurately animate a range of speaking styles
beyond those seen during training.

3.3.3 User Study
We conducted a pairwise perceptual user study in which participants evaluated the quality of the generated animations
using ten test sentences that ranged from visible to partially visible tongue motions. For each sentence, we created four
animations using ground truth (GT), our best model’s prediction (pred), a mismatch between lip and tongue animation
(mismatch), and a nullified tongue motion from ground truth samples (null). We presented six pairwise comparison
videos per sample, resulting in a total of 60 videos evaluated by 15 users. The participants were asked to choose the
most realistic animation from each pair, as shown in Figure 3.9a. The study’s results indicated that most users preferred
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(a) Survey Inteface
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Figure 3.9: Pairwise preference perception user-study. Left: The user interface of the survey shown to the user for a given sample.
Right: User study summarized results where GT: Ground-truth animation; pred: predicted animation; mismatch: tongue mismatched
animation; null: nullified tongue animation. GT was preferred overall, but the predictions from our model were preferred over
mismatched animations and nullified tongue motion animations.

ground truth animations over others. Interestingly, users preferred an animated tongue over nullified tongue motion, even
if the tongue’s motion did not match the spoken sentence. The study also showed the consistency of our estimations, as
users preferred our model’s predictions over the mismatch animations. The study results are presented in Figure 3.9.

3.4 Limitations
The generated results prove that the dataset is limited in speech variability and expressiveness. Loud sounds, such as
angry shouting in an angry manner, do not show a full extension of the jaw as one would expect from a preconception of
the sound. A possible solution to this limitation is to diversify the data by further expanding our data and capturing
speech and non-speech utterances with a wide range of emotions from more than one speaker by including actors of
different genders and ages.

Finding the initial correspondence of the EMA landmarks in the 3D model is a one-time manual and a rather tedious
process. Automating the alignment is a problem yet to be solved. This would help save hours of manpower when done
with multiple characters as more data is captured from more actors.

While we can animate the lips and mouth using the ten landmarks captured to create our dataset, the expressiveness
of these regions is limited by the 3D spatial sparsity of our data. As we only count with three landmarks for the lips,
two are glued to the jaw, and five to the upper surface of the tongue. Unfortunately, adding many more sensors into the
mouth is impossible as the passive electromagnetic sensors might interfere between them, and it has the potential to
impede the actor’s ability to speak clearly. Further research is required to be able to capture the full deformation of the
tongue’s surface at a better resolution with a high sample rate.

The current optimization stage of our model could be a slow process due to the estimation of the inverse Hessian matrix
while optimizing for the best rig animation parameters per frame using L-BFGS. To address this limitation, a possible
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solution is to train an end-to-end model that can predict the rig parameters directly from the raw audio signal. This
would reduce the time needed for optimization.
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CHAPTER 4

END-TO-END SPEECH ANIMATION

Render
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Figure 4.1: End-to-End model estimates the sequence of animation parameters directly from raw input speech.
In Chapter 3, we proposed a two-stage pipeline approach that successfully produced realistic animations. However, its
processing speed is insufficient for real-time animation from an audio stream, which limits its practicality. To overcome
this limitation, our next objective is to design a model that generates more accurate and realistic animations and does
so more swiftly. We propose an end-to-end solution based on a Recurrent Neural Network architecture to achieve our
task at hand. This model will be trained in an autoregressive scheme where the audio signal is mapped directly into the
corresponding sequence of rig parameters required for generating the animations, as shown in Figure 4.1.

Adopting an end-to-end approach to the problem offers a key advantage: it mitigates the error propagation observed in the
two-stage pipeline, as noted by [31]. This pipeline is illustrated in Figure 4.2a. Initially, the first stage, 𝑃 , processes the
speech signal 𝑋 to predict the lips, tongue, and jaw landmark locations, 𝑙. This prediction incurs an error, 𝜖𝑃 , inherent
to 𝑃 (eq. 4.1). The predicted landmarks, 𝑙, are subsequently input into the rig optimizer, 𝑅, which computes the optimal
set of rig parameters, 𝑟. This computation introduces an additional error, 𝜖𝑅, native to the L-BFGS optimizer. However,
the preceding error, 𝜖𝑃 , from the landmark predictor is further amplified by a constant, 𝛾 , as detailed in eq. 4.2. This
augmentation raises the upper bound of the two-stage pipeline by a factor of 𝛾 relative to the error from the landmark
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Figure 4.2: Comparison between first approach and end-to-end model

predictor, as outlined in eq. 4.3.

(𝑥) = 𝑙 + 𝜖𝑃 (4.1)
((𝑥)) = 𝑟 + 𝛾 ⋅ 𝜖𝑃 + 𝜖𝑅 (4.2)
Ω(((𝑥))) = 𝛾 ⋅ 𝜖𝑃 + 𝜖𝑅 (4.3)

In contrast, the training of an end-to-end model 𝑀 , as portrayed in Figure 4.2b, utilizes a dataset 𝐷𝑀 comprising pairs
of corresponding audio samples 𝑥 and sequences of rig parameters 𝑦 (eq. 4.4). The rig parameters are computed through
the rig optimizer 𝑅 from captured ground truth landmarks. Consequently, the upper bound of uncertainty is limited to
the error from the optimizer 𝜖𝑅 (eq. 4.6). This illustrates the end-to-end approach’s potential to curtail the pipeline’s
overall error.

𝑀 =
{

(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)),…
} (4.4)

𝑦(𝑖) = (𝑙(𝑖)𝑔𝑡 ) + 𝜖𝑅 (4.5)
Ω() = 𝜖𝑅 (4.6)

Moreover, given the recent advancements and optimizations in deep learning frameworks such as PyTorch [117] and
ONNX [111], the resulting network is expected to provide faster inference times than the quasi-Newtonian optimizer
previously employed.

This chapter comprehensively explores an end-to-end model to generate animation parameters from speech. We begin
with a discussion of the IMT’22 dataset augmentation, where we incorporated visual information into the Electromagnetic
Articulography (EMA) data, introducing the new IMFT’23 dataset. This enriched dataset provides the basis for training
an end-to-end model capable of realistically animating facial and tongue movements.

We next focus on the model’s design, specifically examining the effect of informing the model about the error of the
velocity and acceleration of the rig parameter. We also consider new audio feature representations to see if Transformer-
based models trained on thousands of hours of diverse audio can enhance our model’s performance beyond Wav2Vec.
As these models are built with a series of Transformer Encoder blocks, we look into the impact each of these internal
layers has on generating better speech animations. We also test whether informing the network with phonetic information
via multi-task learning can improve the creation of realistic speech animations. All concepts are thoroughly tested to
find the most effective model configuration through a diverse set of metrics and evaluated by humans through a series of
user studies.
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Finally, as we generate more realistic animation, we propose a new way to evaluate speech animation models through
visual speech recognition (VSR) or lip-reading models. For our evaluation purposes, we employ a state-of-the-art VSR
model to measure the performance of our end-to-end from an automatic perception focus.

4.1 New Data Generation
In our initial approach, detailed in Chapter 3, the facial animation driven solely by the EMA-predicted landmarks resulted
in pronounced tongue motion but lacked natural facial expressions, diminishing the effectiveness of the continuous
tongue animation. To address this limitation, we leveraged the visual landmarks placed on the actor and the stereo vision
recording obtained during the EMA capture session. These visual landmarks, as well as the lip contours, were tracked
using an industrial-grade tracking service provided by Cubic Motion [108]. The tracking results for the frontal and
lateral views are presented in Figure 4.3a and Figure 4.3b, respectively.

During the tracking process, we observed that a few landmarks exhibited noise due to occlusion issues. The articulograph
device occasionally occluded the upper left facial landmarks, and the cables of the mouth interior sensors occluded some
landmarks near the left lip corner. To ensure a more accurate mapping from the 2D image space to the 3D space, these
noisy landmarks were disregarded during the subsequent 3D reconstruction process.

4.1.1 Stereo Reconstruction
Once the 2D landmarks were fully tracked in each video frame, we performed stereo reconstruction of the face and lips
using the Direct Linear Transformation (DLT) method [1]. The DLT approach has been well-established and proven to
capture human-related motion accurately [137]. To ensure the precision of the reconstruction, the video frames were
fully synchronized, as indicated by the timestamps displayed atop Figures 4.3a and 4.3b at the frame level. The video
was captured at a frame rate of 60 FPS.

Triangulation through DLT consists of estimating the 3D coordinates of points in a scene, given their 2D projections in
two or more images captured from different viewpoints. The following equation can describe the relation between the
3D world points and their 2D image projections:

𝐩 = 𝐏𝐗 (4.7)

Where 𝐩 is the homogeneous coordinate of the 2D image point, 𝐗 is the homogenous coordinate of the 3D world point,
and 𝐏 is the 3 × 4 camera projection matrix.

DLT provides a way to determine the camera projection matrix 𝐏 from a set of known 3D world points and their
corresponding 2D image projections. Given a sufficient number of point correspondences of at least 6 points, one can
set up a system of linear equations to solve for the 12 unknowns in 𝐏.

Once the camera projection matrices for both cameras have been obtained, it is possible to triangulate the 3D position of
a point given its 2D projections in each camera frame. The core concept of triangulating is to find the intersection of the
rays passing through the camera centers and the 2D image points.
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This process is reiterated for every set of corresponding face and lips 2D landmarks. As a result, a 3D point cloud is
created, representing the reconstructed face. Examples of these stereo-reconstructed landmarks can be viewed in the
figures provided. Figure 4.3c showcases the right view of the 3D face and lips landmarks. Similarly, Figure 4.3d presents
a frontal view, and Figure 4.3e displays the left view of the same landmarks.

(a) Front Tracking (b) Lateral Tracking (c) Right View (d) Front View (e) Left View

Figure 4.3: Facial Landmark Tracking and Reconstruction. Throughout the session, the facial landmarks and lips were meticulously
tracked on both cameras using a state-of-the-art industrial-grade tracker. The obtained 2D landmarks were then accurately reconstructed
in three-dimensional space utilizing the Direct Linear Transformation (DLT) triangulation.

4.1.2 Visual landmarks and EMA alignment
Following the reconstruction of facial landmarks, we manually identified corresponding barycentric points on the mesh.
This process mirrored the methodology outlined for the tongue in the rig optimization (Section 3.3.1). Initially, we
computed the optimal similarity transform, denoted as 𝐴𝐹 , for the facial landmarks, utilizing the same neutral pose (𝑁)
considered for the EMA sensors. Subsequently, we mapped the 3D facial landmarks, including those associated with the
lips, represented as v𝑁𝐹 in the stereo reconstruction space, to their respective correspondences, denoted as 𝐶(𝜃𝑁 ), on the
neutral pose (𝑁) of the mesh (𝑀). These correspondences were determined by the set of rig parameters (𝜃𝑁 ). Once the
facial landmarks had been successfully mapped into the mesh space, we optimized the mesh using L-BFGS using the
information obtained from the face, lips, and tongue correspondences.

Unlike our previous approach, the number of landmarks varied between the face and the lip contour. Specifically, we
considered 51 landmarks for the face and 17 landmarks for the lip contour. This augmentation resulted in a total of
79 points (𝐿 = 79), including the 11 EMA landmarks. At this time, we considered the sensor placed on the incisor as
an alignment constraint. While the L1 regularization term remained unaltered with the same (𝛼) weight across all the
landmarks, the lip contours served as 2D constraints as the error in their 3D reconstruction arises from the absence
of distinguishable features along the contour, leading to discrepancies in the identification of landmarks between both
camera views.

4.1.3 IMFT’23 dataset
After processing the visual features by tracking, stereo reconstructing, mapping, and matching the facial landmarks on
mesh space and optimizing the mesh, we were able to create a new dataset named IMFT’23 formed by corresponding
groups of audio samples, video samples, 2D landmarks on video frame space, 3D landmarks of the face, lips, and tongue
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Figure 4.4: The mean and standard deviation of the 67 rig parameters. The parameters are grouped and color-coded according to
their function: tongue, lips , nose, jaw, and the rest of the mouth. No abnormal values are observed across the parameter set.

on mesh space, and sequences of rig parameters 𝜃𝑘𝑖 of the mesh 𝑀 for each frame 𝑖 of each sample 𝑘. Different from the
IMT’22 dataset, the number of clean samples was reduced from 1902 to 1700 since the EMA session was not recorded
with video in its entirety, resulting in a total duration of 2.28 hours of matching audio at 16 kHz with sequences of 2D
and 3D features at 50 FPS.

The head mesh used in this study was derived from a high-quality 3D capture of the actor, comprising a total of 30,881
vertices. These vertices are manipulated by 173 rig parameters defined for the Epic Games MetaHuman model [47].
Each parameter is associated with a specific semantic meaning, such as chin position (up and down), left lid opening and
closing, mouth opening and closing, etc. In this work, we decided to focus on designing an end-to-end model capable of
generating animations as a sequence of rig parameters from the audio due to the fact that complex motions such as the
ones present while coarticulating are compressed into a few floating values. By working with a parametrized model also
enables makes the model capable of transferring the motion from our actor’s model to other 3D characters that follow
the same rigging design. Moreover, given the focus of our research on generating realistic articulations based on the
speech signal, our research primarily targets the lower portion of the face and the inner mouth. As such, we opted to
predict only a subset of 67 parameters that modify the position of 19,847 vertices, even though optimization could be
performed for all 173 parameters.

In Figure 4.4, the mean values and standard deviations of these selected parameters are presented, where the parameters
are grouped by their associated facial features and color-coded for clarity. As we can see, the parameters are found
mainly in the [−1, 1] range as this is the design of the parameters for a MetaHuman character rig. Interestingly, the
tongue parameters exhibit higher mean values and greater variability when compared to the other groups. The tongue
parameters group is followed, in descending order of value and deviation, by parameters for the lips, the nose, the jaw,
and the remainder of the mouth. This detailed visual representation aids in our understanding of the behavior and
distribution of these important parameters in face rigging.

In this work, we decided to focus on estimating the parameters that control the lower part of the face and the inner-mouth
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elements such as the jaw and tongue. This subset encompasses approximately 64% of the total amount of vertices
illustrated in Figure 4.5. One of the main goals of generating animations is to communicate regardless of the realism
infused into it, as described by Parke and Waters [115]. Therefore, by only controlling the parameters that modify the
regions of the face that present the coarticulatiion, empowers artists to exert control over the upper section of the face to
convey emotions effectively, and we leave out from our target controls that allow the user to add more expresiveness to
the motion of the mouth and cheeks. Moreover, we leave the control of upper face features such as gaze, eyebrows, and
head motion out of scope from this work since their study requires a more comprehensive understanding of contextual
information than the speech signal by itself.

(a) Front view (b) 3/4 view

Figure 4.5: Region of the actor’s mesh influenced by the 67 rig parameters utilized for articulation animation, constituting this
research’s focal point.

For our final goal, we will train the end-to-end model  to take as input the audio signal x and predict the corresponding
sequence of rig parameters 𝜽 that pose the mesh described as 𝜽 = (x).

4.2 Baseline Model
Our proposed framework is grounded on the encoder-decoder architecture, which has shown its effectiveness in the
domain of speech animation. The distinctive aspect of our methodology is the transition from predicting EMA landmark
locations to predicting a sequence of rig parameters, which drives the generation of animations.

Formally, our model processes an input audio signal 𝐱, comprising 𝑁 samples. The audio encoder model, denoted
ENC, transforms this input into a latent space  of dimensionality 𝐹 , resulting in a sequence of latent representations
𝐳 = [𝑧1, 𝑧2, ..., 𝑧𝑆 ], where 𝐳 ∈ ℝ𝑆×𝐹 .

Post the encoding process, a decoder model, denoted DEC, maps these latent representations of the audio features 𝐳 into
a sequence rig parameters 𝐫 = [𝑟1, 𝑟2, ..., 𝑟𝑆 ], where 𝐫 ∈ ℝ𝑆×67, representing the 67 parameters that animate the lower
face of our target model.
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These encoding and decoding processes can be formally described as:

𝐳 = ENC(𝐱),
𝐫 = DEC(𝐳).

The baseline model in our research employs Wav2Vec as the encoder ENC and a Gated Recurrent Unit (GRU) [30] as
the decoder DEC. This model uses the encoder-decoder framework for rig parameter prediction, following recent trends
in speech animation research [106, 119], which result in generalizable, reliable, and fluid animations.

4.3 New Audio Feature Representations
In the preceding chapter, our findings substantiated the superior performance of neural representations like Wav2Vec
[136], particularly when compared to traditional forms of speech signal representation, such as MFCC and phone
representations as the ones extracted from tools such as the Montreal Forced Aligner [104]. This outcome emphasizes
the advantages of using advanced neural network models in speech processing. It confirms the potential for further
enhancements in speech-to-animation by enabling the model to generalize through its strong representation power, which
results from training on a vast amount of speech data from a highly diverse group of speakers.

In the next stage of our end-to-end model investigation, we expanded our exploration to include other neural network-
based audio feature representations. We specifically analyzed models like WavLM [24] and Whisper [126], which, akin
to Wav2Vec, are rooted in deep learning paradigms. As with Wav2Vec, we expect the representation of these models
to improve the animation synthesis from any given audio. The core purpose of this exploratory study was to identify
novel and more efficient techniques for modeling and interpreting speech data, thereby advancing one more step the
state-of-the-art in speech-to-animation.

4.3.1 WavLM
WavLM, a model constructed based on the principles of HuBERT [65] and Wav2Vec 2.0 [10], is an innovation in the
field of audio processing. The concept of masked speech prediction [40] inspires its design and incorporates an element
of denoising, all while utilizing a Transformer-based model.

The architecture of the WavLM model comprises a convolutional encoder that processes 25 ms segments of audio at a
sampling rate of 50 frames per second (FPS) with a stride of a 20 ms window. Following the conversion of the audio
into convolutional embeddings, these are masked and fed into a series of Transformer Encoder layers. A key feature of
this model is the inclusion of a gated relative position bias [28]. This mechanism allows the relative position bias to
adapt, conditioning it based on the current speech content.

The strength of WavLM arises from its pre-training methodology, which capitalizes on a vast reservoir of unlabeled
speech data that extends beyond traditional audiobook data found in resources like LibriSpeech [113]. The pre-training
dataset encompasses 94k hours of public audio collected from various sources, such as audiobooks from the Libri-Light
dataset [76], including podcasts and YouTube videos from the GigaSpeech dataset [21], and recordings from the European
Parliament [156]. The pre-trained model can then be fine-tuned for specific downstream tasks.
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Table 4.1: Overview of the pre-trained WavLM audio encoder models available. The table outlines each model’s number of
Transformer Encoder layers, feature encoding dimension, number of parameters (expressed in millions as ’M’), and the quantity of
data (expressed in hours) used for pre-training each model variant: Base, Base+, and Large.

Model Num. Enc. Layers Feature Dim. Num. Parameters Num. hours Data
Base 12 768 94 M 960
Base+ 12 768 94 M 94k
Large 24 1024 320 M 94k

The effectiveness of WavLM is evidenced by its performance on the SUPERB benchmark [163], where it outperformed
other models on a total of 14 different tasks. These tasks span a broad spectrum of applications, including speaker
identification, speaker diarization, out-of-domain automatic speech recognition, speech translation, emotion recognition,
among many others. The impressive performance of WavLM across such a diverse range of tasks underscores the
model’s versatility and its potential use in the speech animation field.

The authors have made available a collection of pre-trained models for the public to utilize in downstream tasks. A
summary of these models can be found in Table 4.1, where we describe the number of Transformer Encoder layers per
model, what is the dimensionality of the audio feature representations, the number of parameters and on how many
hours the model was trained on. In our study, we focus on investigating the applicability of the Large model within the
domain of speech animation as it performed the best on the SUPERB benchmark [24] and was trained on 94,000 hours
of audio. We provide a visualization of how this model encodes a sample from the IMFT’23 dataset in Figure 4.6a. This
sample features silence at both the beginning and the end, with speech occurring in the middle. The visualization reveals
a stable pattern during the silent sections, contrasting with the irregular patterns that appear during speech.

4.3.2 Whisper
Whisper, an automatic speech recognition (ASR) system developed by OpenAI, harnesses an extensive dataset comprising
680,000 hours of undisclosed multilingual audio obtained from diverse sources on the web. This substantial corpus
empowers Whisper with the ability to recognize diverse accents in spoken English and effectively mitigate the impact of
significant background noise, such as loud music or mechanical sounds. Moreover, Whisper possesses the remarkable
capability of performing simultaneous automatic speech recognition and translation into English.

The architecture of Whisper is based on an end-to-end vanilla encoder-decoder Transformer framework. The primary
objective behind this design is to showcase the potential for substantial data volumes to significantly enhance the
performance of simple models without necessitating complex design alterations. During audio processing, the input
signal is segmented into 30-second intervals, which are subsequently transformed into log-Mel spectrograms. These
spectrograms are then fed into the encoder, incorporating a convolutional feature subsampler analogous to WavLM.
The intermediate features extracted by the encoder are subsequently fed into a Transformer encoder. The decoder is
responsible for predicting the corresponding text captions and is equipped with a meticulously designed set of tokens
enabling diverse tasks, including language identification, multilingual transcription, and speech-to-English translation.

Despite not being specifically fine-tuned for any particular dataset, Whisper exhibits remarkable robustness in zero-shot
scenarios across a diverse range of datasets. Particularly noteworthy is Whisper’s capacity to transcribe speech in the
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(a) WavLM Large (b) Whisper Medium

Figure 4.6: Visualization of the selected WavLM and Whisper audio features for audio sample 0734 with transcript ”The sky in the
west is tinged with orange-red.”. Note the difference in the range of values between both encodings. The WavLM feature shows
stable patterns during the silence at the end of the sequence, while the Whisper model shows some noisy patterns during the silence
segments.

original language, even in low-resource language scenarios, as well as its proficiency in translating speech into English.
In fact, Whisper’s performance surpasses that of state-of-the-art supervised models in English translation tasks.

Just like in contemporary research practices, the authors have contributed a range of pre-trained models for public use.
These models are summarized in Table 4.2, echoing the format presented for WavLM. The authors have developed this
diverse collection of models with the intention of catering to various applications and significantly enhancing speed in
comparison to the largest model. In our experiments, we aim to explore the Medium model’s application to our task,
considering its resemblance to the largest WavLM model.

We present a visualization of feature encodings in Figure 4.6b. Unlike the encodings for Wav2Vec and WavLM, which
are displayed in Figures 3.3e and 4.6a respectively, the silence segments in this model reveal some irregular patterns
absent in the other encodings. Also notice the range of values of the encodings is an order of magnitude larger than the
WavLM encodings.
Table 4.2: Overview of the pre-trained Whisper speech recognition models available. The table outlines each model’s number of
Transformer Encoder layers, feature dimensionality, number of parameters (expressed in millions as ’M’), and the quantity of data
(expressed in hours) used for pre-training each model variant: Tiny, Base, Small, Medium, and Large.

Model Num. Enc. Layers Feature Dim. Num. Parameters Num. hours Data
Tiny 5 384 39 M 680k
Base 7 512 74 M 680k
Small 12 768 244 M 680k
Medium 25 1024 769 M 680k
Large 33 1280 1550 M 680k
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4.4 Exploring Rig Parameter Velocity and Acceleration Loss
The pursuit of obtaining a performance improvement in our end-to-end model led us to consider an approach similar to
the Physics-Informed Networks (PINN) [36], which emerged as a significant trend in 2018. This paradigm integrates
physical laws into the training of machine learning models, as demonstrated by Raissi et al. [127], Smith et al. [142], and
Cai et al. [17]. The strategy involves incorporating a physical term—such as the residual of a differential equation, for
solving the Eikonal equation in 3D velocity structures without retraining the network for each velocity, or by governing
the heat equation, momentum equation, and continuity equation through the loss to obtain the temperature and velocity
fields in the domain. All of these approaches ensure the model predictions align with physical plausibility.

Research on neural networks to synthesize body and face animations, utilize various techniques such as direct vertex
position prediction [9, 78], landmark prediction [106, 170, 171], estimating the motion vectors [23, 49], or directly the
model parameters [22, 66, 121, 150] that modify the mesh. Our goal in developing an end-to-end model aligns with these
approaches. These models commonly employ a reconstruction loss, typically minimizing the mean squared error (MSE),
to train and reconstruct the target data. However, relying solely on frame-by-frame pose reconstruction may result in
animations with noticeable jitter, as neighboring frame results are not fully considered during optimization. We have
employed an RNN-based approach that leverages hidden states to carry information across frames, even incorporating
future timesteps in bidirectional configurations to address this problem [106]. Nevertheless, we aim to investigate
whether incorporating additional dynamic information of the parameters into the loss function can further enhance the
network’s performance and even further if all audio encodings perform the same with similar weightings for the velocity
and acceleration loss.

In the literature, we often find claims that adding the velocity at which the target output changes improves the animation
[16, 78] or through the error of an acceleration proxy of the predicted vertices with respect to the ground truth [22].
However, no support or justification has been given, nor the specifics of the weight values under which these loss terms
are incorporated into the training of the network. Inspired by PINNs, we decided to explore the impact of adding the first
and second derivatives of the rig parameters into our model and determine its value towards our task. Therefore, as a first
approach, we set our loss as described in eq. 4.8, where besides a reconstruction loss, we added the velocity loss 𝑣𝑒𝑙 and
acceleration loss 𝑎𝑐𝑐𝑒𝑙 terms, which are independently weighted with their own coefficients 𝜆𝑣𝑒𝑙 and 𝜆𝑎𝑐𝑐𝑒𝑙 respectively.

 = 𝑟 + 𝜆𝑣𝑒𝑙 ⋅ 𝑣𝑒𝑙 + 𝜆𝑎𝑐𝑐𝑒𝑙 ⋅ 𝑎𝑐𝑐𝑒𝑙 (4.8)

Through the reconstruction loss, we seek to minimize the MSE of the sequence 𝑆 of the estimated rig parameters ŷ and
the ground truth parameters y where ŷ, y ∈ ℝ67 as described in eq. 4.9 .

𝑟 =
1
|𝑆|

𝑆
∑

𝑡=1
(ŷ𝑡 − y𝑡)2 (4.9)

The first derivative, also referred to as the velocity, characterizes how the rig parameters change over time from one
timestep to the next. This concept can be mathematically represented as shown in eq. 4.10, where the velocity at time 𝑡,
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denoted by v𝑡, is defined as the difference in rig parameter values between successive timesteps, 𝑡 + 1 and 𝑡.

v𝑡 = y𝑡+1 − y𝑡 (4.10)

To ensure consistent motion over time, we introduce a velocity loss term, 𝑣, defined in eq. 4.11. This term is calculated
as the mean squared error (MSE) between the predicted sequence velocities (v̂𝑡) and the ground truth velocities (v𝑡)
across all timesteps in the sequence 𝑆.

𝑣 =
1
|𝑆|

𝑆−1
∑

𝑡=1
(v̂𝑡 − v𝑡)2 (4.11)

By incorporating the velocity loss term into our model, we aim to minimize the discrepancy between predicted and
actual velocities, attempting to improve the motion consistency of the resulting animation by avoiding falling into any
local minima in the rig parameter space.

Expanding upon the concept of velocity, we further incorporate the idea of acceleration, a measure that encapsulates the
second-order dynamics of the rig parameters by quantifying instant changes in velocity between contiguous timesteps.
As delineated in eq. 4.12, acceleration at time 𝑡, a𝑡, is computed as the difference in velocity values between sequential
timesteps, 𝑡 + 1 and 𝑡.

a𝑡 = v𝑡+1 − v𝑡 (4.12)

We introduce an acceleration loss term, 𝑎, analogous to the velocity loss term. Defined in eq. 4.13, this term is the
mean squared error (MSE) between the predicted sequence accelerations (â𝑡) and the ground truth accelerations (a𝑡)
over all timesteps in the sequence 𝑆.

𝑎 =
1
|𝑆|

𝑆−1
∑

𝑡=1
(â𝑡 − a𝑡)2 (4.13)

By incorporating both velocity and acceleration loss terms, we aim to reduce discrepancies between predicted and actual
motion parameters. However, it’s important to approach the use of acceleration with care. As a second-order measure,
acceleration can amplify the noise if the training data is inherently noisy. This amplified noise could introduce additional
complexity to the network training process. Consequently, while acceleration provides valuable insights into motion
dynamics, its potential to increase noise must be carefully managed during model training. In our experiments, we seek
to determine if this measure is useful or not for improving a speech-to-animation model’s performance.

4.5 Inner Layers of Neural Audio Feature Representations
Current models employed for large-scale audio feature representation exhibit a common architectural paradigm. Typically,
these models either process raw audio input, as exemplified by WavLM [24], or preprocess the audio using a Short-Time
Fourier Transform (STFT) as is the case with Whisper [126]. This audio data is subsequently transformed into a more
manageable, compact, intermediate feature space utilizing a Convolutional Neural Network (CNN).

After the initial convolutional feature subsampling of the input signal, the resulting sequence of features undergoes
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masked speech modeling, as proposed for the HuBERT model [65]. These features then enter a stack of Transformer-
based encoders producing representational features suitable to solve various downstream tasks, a process rooted in
strategic training methods that constitute the primary focus of current research in this field.

These features are further processed through a Transformer decoder during the training phase, a methodology observed in
both Whisper and WavLM. Alternatively, a self-supervised approach is adopted, as in W2V-Bert [33]. By adopting this
shared architectural framework, these models have made significant strides in the realm of audio feature representation.

In our pursuit to further explore these models for audio feature representation, we contemplated whether the information
derived from the final layer ENC𝑁 of a Transformer Encoder model with 𝑁 layers suffices for speech animation models.
For this reason, we posed ourselves the question of whether including some intermediate representations from the
encoder could enhance the model’s performance, leading to superior animations? Prompted by this hypothesis, we
sought to ascertain the significance of the encoding layers’ embeddings 𝐳 = [𝑧1, 𝑧2, ..., 𝑧𝑁 ] where 𝑧𝑖 = ENC𝑖(𝑧𝑖−1) by
learning a weighted combination (eq. 4.15) of the 𝑁 encodings through weights 𝜔 = [𝜔1, 𝜔2, ..., 𝜔𝑁 ] via a softmax
operation (eq. 4.14). By doing this, we aim to make an analysis of the importance of the layers through the normalized
linear weights, and we also seek to enhance the model’s convergence. This approach is illustrated in Figure 4.7 for the
WavLM and Whisper models.

𝜔𝑖 =
𝑒𝑧𝑖

∑𝑁
𝑗=1 𝑒

𝑧𝑗
(4.14)

𝑧′ =
𝑁
∑

𝑖=1
𝜔𝑖𝑧𝑖 (4.15)

To ensure thoroughness, we mirrored this approach with Wav2Vec, which serves as our baseline audio representation
despite being a fully convolutional model. The fusion of the 𝑧− and 𝑐− features via a softmax layer is depicted in Figure
4.8.

As suggested by [24], we anticipate that the initial layers encoding coarse sub-phoneme representations from the speech
signal will exhibit high-importance values. In contrast, the final layers, which capture the subtleties of the audio, are
expected to enhance performance on key tasks.

The exact significance of these layers, however, warrants further investigation. The results of this in-depth analysis will
be presented further in the Experimentation section of this chapter. This will provide a comprehensive understanding of
the role and impact of each layer in the audio feature representation models that we are studying.

4.6 Phonetically Informed Speech Animation Network via Multi-task Learn-
ing (PhISANet)

As we seek to keep on improving the model’s performance, we conjectured whether phonetic information could
similarly be utilized to augment network performance in generating animations from speech. A review of the Automatic
Speech Recognition (ASR) field indicated that multi-task learning had been a successful approach in improving speech
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Figure 4.7: Fusion of all transformer encoder layers of WavLM and Whisper models for the end-to-end model.

recognition models.

For instance, Parveen and Green [116] leveraged multi-task learning to develop a robust ASR model based on Recurrent
Neural Networks (RNNs), complemented by a noisy speech enhancement auxiliary task. Hinton et al. [60] adopted
multi-task learning for acoustic modeling in ASR, simultaneously predicting phonemes and senones (context-dependent
phonemes) via distinct branches of a Deep Belief Network (DBN). Kim et al. [84] introduced a joint Connectionist
Temporal Classifier (CTC) attention-based end-to-end ASR system that utilized multi-task learning for sequence labeling
and output sequence prediction, thereby significantly enhancing system performance. Heba et al. [59] addressed
character-level speech recognition through multi-task learning, employing Consonant-Vowel (CV) recognition as an
auxiliary task via Connectionist Temporal Classification (CTC). Finally, Chen et al. [27] improved multilingual ASR
by incorporating hierarchical CTC objectives into an encoder-decoder model, postulating that language identification
assists model convergence.

Informed by this work, our exploration comprises two paths to augment our model via multi-task learning. Firstly, we
propose incorporating an auxiliary task to regularize the decoder—a classifier predicting the phone representation of the
utterance at any given audio frame. The second approach seeks to regularize the audio feature decoder by predicting the
phone sequence corresponding to the utterance via a CTC, paralleling the method proposed by Kim et al. [84].
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Figure 4.9: Multi-task learning speech animation model with a phone classifier auxiliary task.

Deploying a multilabel cross-entropy classifier is a robust mechanism to regularize the training process of the decoder.
The primary objective of this strategy is to enhance the quality of regression towards the rig parameter space, as illustrated
in Figure 4.9. The sequence of decoded features, denoted as 𝐪 = [𝑞1, 𝑞2, ..., 𝑞𝑆 ], is an 𝑆-length sequence where each 𝑞𝑖
is an 𝐹 -dimensional vector (𝑞𝑖 ∈ ℝ𝐹 ). Additionally, 𝐚 = [𝑎1, 𝑎2, ..., 𝑎𝑇 ] is a 𝑇 -length sequence of tokens where 𝑎𝑖 ∈ 𝑉 .
Specifically, 𝑉 is the set of all the phones present in the dataset, as determined by the Montreal Forced Aligner [104],
with a total count of 87 phones including silence for our particular case. In Table 4.3, we can find a list of all the
phonemes and their allophones captured in the dataset.

The multi-label cross-entropy classifier is used to optimize our speech-to-rig parameters model, aiming to detect the
presence of phones at the frame level. This approach significantly deviates from simply incorporating a phone classifier
into a separate branch of the decoder. Instead of modeling the conditional probability, it directly classifies the decoded
features 𝐪 into phone labels.

The classifier CLF takes the decoded features 𝐪 as inputs and outputs the phone labels 𝐚 that best align with the input
speech signal based on the trained model.
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Table 4.3: List of appearing phonemes and their allophones in the IMFT’23 dataset obtained by a forced alignment using the audio
and their corresponding transcripts through the Montreal Forced Aligner.

Phoneme Allophones
/a/ a, a:, 5, A, A:

/aI/ aI

/aU/ aU

/b/ b, bj

/c/ c, ch, cw

/d/ d, dj, d”

/dZ/ dZ

/e/ e, eI

/f/ f, fj

/h/ h

/i/ i, i:, I

/j/ j

/k/ k, kh, kw

/l/ l, ë

/m/ m, mj, m
"

/n/ n, N, ñ, n
"

/o/ o, oU

/p/ p, ph, pj

/s/ s

/t/ t, tS, th, tj, tw, t”

/u/ u, u:, 0, 0:, U

/v/ v, vj

Phoneme Allophones
/w/ w

/z/ z

/æ/ æ

/ç/ ç

/D/ D

/6/ 6, 6:

/O/ O, OI

/@/ @, @U, Ä

/E/ E, E:

/3/ 3, 3:, Ç

/é/ é, éw

/g/ g

/ë
"
/ ë

"
/ô/ ô

/R/ R, Rj, R̃

/S/ S

/L/ L

/Z/ Z

/P/ P

/T/ T

/∅/ ∅

𝐳 = ENC(𝐱) (4.16)
𝐪 = DEC(𝐳) (4.17)
𝐫 = R(𝐪) (4.18)
𝐚 = CLF(𝐪) (4.19)

The loss of the classifier is the multi-label cross-entropy as expressed in eq. 4.20. During network training, this loss is
incorporated into the loss for reconstruction, which computes the rig parameters dynamics described in eq. 4.8 weighted
by 𝜆CLF.

𝐶𝐿𝐹 = −
𝑇
∑

𝑖=1
𝐚𝑖 ⋅ log(�̂�𝑖) (4.20)

Here, 𝐚𝑖 and �̂�𝑖 denote the true and predicted labels, respectively, for each frame in the sequence. The sum runs over all
frames, and the dot product calculates the cross-entropy for each frame, which is then summed to give the total multilabel
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cross-entropy loss.

4.6.2 Connectionist Temporal Classifier
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Figure 4.10: Multi-task learning speech animation model with a Connectionist Temporal Classification layer to predict the corre-
sponding phone sequence.

Building on the same idea of multi-task learning as with the phone classifier branch, an alternative is to employ a
Connectionist Temporal Classification (CTC) to regularize the decoder during training to improve the rig parameter
sequence estimation. The model is depicted in Figure 4.10.

Our CTC-based model can be described as follows. First, an encoder ENC transforms the input speech signal 𝐱 into a
latent representation 𝐳 as in eq. 4.21. Then, a decoder DEC takes this latent representation 𝐳 and transforms it into a
series of features 𝐪 as in eq. 4.22. A regressor R solves for the main task by mapping the features 𝐪 to rig parameters 𝐫
as depicted in eq. 4.23. Additionally, on the auxiliary task branch, the phone sequence regressor L transforms 𝐪 into a
form suitable for the CTC network which maps to a feature space that considers a blank space as shown in eq. 4.24 and
we will describe its use later in this section. Finally, a Connectionist Temporal Classification (CTC) is used to align the
features 𝐥 with the sequence of phones 𝐚.

𝐳 = ENC(𝐱) (4.21)
𝐪 = DEC(𝐳) (4.22)
𝐫 = R(𝐪) (4.23)
𝐚 = CTC(L(𝐪)) (4.24)

To further understand how a CTC works, let us first define the decoded audio features 𝐪 = [𝑞1, 𝑞2, ..., 𝑞𝑇 ] where (𝑞𝑖 ∈ ℝ𝐹 )
as they are 𝐹 -dimensional vectors according to the dimensionality of the decoder. Also, let us define our vocabulary 𝑉
as the set of phones found in our dataset through the Montreal Forced Aligner [104], and the sequence of phone tokens
𝐚 = [𝑎1, 𝑎2, ..., 𝑎𝑆 ] where (𝑎𝑖 ∈ 𝑉 ) and the length 𝑆 of the sequence of corresponding phones is shorter or equal to
length 𝑇 of the sequence of latent representations (𝑆 ≤ 𝑇 ). As one second of audio could be represented by 𝑇 = 50
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latent representations while only encompassing a sequence of 𝑆 = 5 phones, for example.

The application of CTC [55] to our model enables the alignment between decoded features 𝐪 and phone sequence 𝐚.
Distinct from the phone classifier, through the CTC, we seek to model the conditional probability 𝑃 (𝐚|𝐪) as latent
sequences per frame.

To achieve this, we use an intermediate label representation 𝐚′ = [𝑎′1, 𝑎
′
2, ..., 𝑎

′
𝑇 ] with repeated phone labels plus the

addition of a blank symbol (−) where 𝐚′𝑖 ∈ 𝑉 ′ given that new intermediate label set is 𝑉 ′ = 𝑉 ∪ {−}. Note that the
new label representations will match the sequence length of the intermediate representations 𝐪. Through the CTC, we
seek to maximize the probability distribution 𝑃 (𝐚|𝐪) over all possible intermediate label sequences generated by Φ(𝐚),
as follows:

𝑃 (𝐚′|𝐪) =
𝑇
∏

𝑡
𝑃 (𝑎′𝑡|𝐪), 𝑎

′
𝑡 ∈ 𝑉

′ (4.25)

𝑃 (𝐚|𝐪) =
∑

𝐚′∈Φ(𝐚)
𝑃 (𝐚′|𝐪) (4.26)

The function Φ plays a crucial role in estimating the posterior probability of a CTC, as it is designed to map the observed
phone sequence 𝐚 to all possible latent sequences 𝐚′ that could be derived from 𝐚.

The augmented label sequence 𝐚′ is built by inserting blank symbols at the beginning and the end of the sequence and
between the phones. For example, for the word null, its grapheme sequence is 𝐚 = [𝑛, 𝑢, 𝑙, 𝑙], while the augmented
sequence is 𝐚′ = [−, 𝑛,−, 𝑢,−, 𝑙,−, 𝑙,−]. It is important to note how adding blank symbols − into the sequence of
phones allows us to distinguish different instances of the phone 𝑙 even if they are contiguous.

In our case, since we are using an RNN as decoder 𝐷EC, the output 𝐪 is linearly mapped through the CTC Sequence
Regressor to a feature space of dimensionality |𝑉 ′

| where each output after a softmax operation can be interpreted as the
probability of observing the modified label at each timestep 𝑡. Hence:

𝑃 (𝐚′|𝐪) =
𝑇
∏

𝑡
𝑃 (𝑎′𝑡|𝐪) ≈

𝑇
∏

𝑡
Softmax(𝑙𝑡) (4.27)

Where 𝑙𝑡 is the output of the CTC Sequence Regressor 𝐿. The CTC works under the assumption that the latent variables
𝐪 are sufficient to determine the latent space 𝐚′ at any frame, and the probability of the label sequence can be modeled as
conditionally independent by the product of the network outputs.

In Figure 4.11 we show an example, inspired in a tutorial by Hannun, A. [57], of how we go from a sequence of decoder
embeddings 𝐪 into a distribution of over the outputs {n, u, l, -} for each timestep as the result of the softmax operation
of the mapping of embeddings through 𝐿(q). Then, through Φ(𝐚) we compute all the possible sequences along with
their probabilities, which in turn are marginalized over the alignments to get the most probable sequence.

The alignment computation can be quite expensive if not programmed correctly; for the CTC this is solved through a
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Figure 4.11: CTC distribution and marginalization example over the word null.

dynamic programming algorithm that merges two alignments if they have reached the same output at the same timestep
based on the CTC probability from 𝐿(q). The subsequence score is computed based on the previous timestep and only
considers a probable merge for the previous token in the sequence or the second previous token in the sequence. This
allows a fast merge and tractable score which can be employed for training the network.

Once the most probable sequence has been found, the CTC loss is calculated as the negative log-likelihood as described
in eq. 4.28, and is added to the total loss (eq. 4.8) during the training of the network and controlled by a weight 𝜆𝐶𝑇𝐶 .

𝐶𝑇𝐶 = − log𝑃 (𝐚|𝐪) (4.28)

The original publication by Graves et al. [55] provides a better understanding of the CTC, but the subsequent tutorial [56]
provides an in-depth exploration of the CTC concept, including detailed derivations of the forward-backward algorithm
and the CTC loss function.

4.7 Experimentation
In Figure 4.12, we delineate the series of experiments and evaluations conducted to obtain the most effective model for
animation generation. The initial investigation stage involves a comprehensive grid search to probe the influence of
incorporating the first and second derivatives of the rate of change of the rig parameters over time into the training loss.
After this assessment, we scrutinize the significance of the audio encoder layers towards our task, thereby determining
their relative importance. The next phase of our research introduces a novel approach of phonetically informing the
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network via a multi-task learning framework, and we assess the extent to which this enhances the speech-animation
end-to-end model’s performance. After the model exploration, a series of user studies are conducted to gauge the
human perception of the generated animations. Lastly, we propose using a state-of-the-art lip-reading network as a novel
evaluative tool, examining the optimal models from each experiment to determine if user studies can be avoided. This
stage aims to assess whether this alternative approach alone suffices to evaluate speech animation models.
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Figure 4.12: This diagram presents the layout of the experiments conducted to obtain the best end-to-end model. We performed four
different experiments: (1) Velocity and Acceleration Analysis, (2) Audio Encoder Inner Layer Aggregation, (3) Phonetically Informed
CTC, and (4) Phonetically Informed Phone Classifier. The best resulting model from each experiment was evaluated through a series
of (5) User Studies, and a novel approach to evaluate the speech animation model through (6) Visual Speech Recognition. Each
experiment was carried out for each of the audio feature representations explored in this study.

The audio encoder models used throughout all the experiments were the model originally released by the authors for
Wav2Vec1, WavLM2, and Whisper3. We followed the same procedure during our experimentation with the first two-stage
pipeline. We subsampled the Wav2Vec features from 100 FPs to 50 FPS, by concatenating the embeddings from two
contiguous audio frames. We repeated this procedure as the WavLM and Whisper models deliver encodings every 20
ms.

All models in this study were developed using the PyTorch framework [117]. For the baseline model, the initial hyper-
parameters were determined through the Hyper-band algorithm [94] provided by the Optuna framework [4]. The training
and evaluation of the models were conducted on NVIDIA’s Quadro RTX 8000 and A40 GPUs, each equipped with 48
GB of memory. It is noteworthy that the full memory capacity was never utilized in any of the training processes, and all
models were trained using a single GPU.

1https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
2https://github.com/microsoft/unilm/tree/master/wavlm
3https://github.com/openai/whisper
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The decoder used in all the models was a bidirectional GRU [30], consisting of 5 layers, each containing 1,024 hidden
units. In the baseline models, which include a pre-trained audio encoder and a decoder, the output from the GRU is
projected into the rig parameter space using a linear layer. This mapping transforms the 1,024 units to 67 rig parameters.
In all experiments conducted, the batch size was set to 32, and the maximum number of epochs was limited to 200.
Interestingly, most models reached convergence within 100 epochs. Therefore, an early stop strategy was applied after
10 epochs, using the L2 error criterion. This approach was chosen because the models tended to overfit more quickly on
the L1 error, even though the L1 error continued to decrease. The RAdam optimizer [97] was employed during training
to find the optimal model, minimizing according to our proposed objective functions.

For this series of experiments, we employed the IMFT’23 dataset formed by a total of 1700 samples, which cover 2.28
hours of audio and animation parameters. The data was split into 80/20 for the training and test sets. The training
samples were structured in an overlapping window fashion with input windows comprising 45 audio frames, equivalent
to 900 ms, and a stride of 1 frame, or 20 ms. The output was subjected to min-max normalization, as the MetaHuman
rig parameters varied within the range of either [0, 1] or [−1, 1], depending on the cases. For the linear layers and MLPs
within the architecture, a consistent dropout rate of 0.1 was applied.

4.7.1 Velocity and Acceleration of the Rig Parameters
Our initial experiments aimed to investigate the effects of incorporating the first and second derivative of the rig
parameters through a coarticulation sequence. In simpler terms, we integrated the error of the instantaneous velocity and
acceleration of the predictions relative to the ground truth to empirically assess if this enhancement improves the quality
of the generated animations. We incorporated these terms into the training loss as expressed in eq. 4.8 and conducted a
grid search across the three audio encodings under investigation. The grid search varied the values of coefficients 𝜆vel
and 𝜆accel within the range [0, 1], at intervals of 0.1. In total, we trained 11 x 11 = 121 networks for each encoding, with
the expectation of observing a reduction in the L1 and L2 errors on the predicted sequence of rig parameters.

The results of this study are presented in Figure 4.13. Each of the 3D surfaces was constructed by selecting the network
with the lowest normalized error for each combination of the (𝜆vel, 𝜆accel) values. The images in the first column illustrate
that increasing both coefficients generally reduces the L1 error, except for the Whisper audio encoding. In the Whisper
L1 error results, shown in Figure 4.13g, we observe distinct minima with lower values than those found at (1.0, 1.0),
setting it apart from the Wav2Vec and WavLM counterparts.

The second column visualizes the behavior of the models based on the L2 Error. Generally, the optimization surfaces
are irregular but display a concave form, suggesting that the error is reduced regardless of the chosen values for the
velocity and acceleration loss coefficients. This trend can be more clearly seen in the third column of Figure 4.13, where
we represent the normalized error by computing the mean of the min-max normalized L1 and L2 errors. While the
Wav2Vec and WavLM models exhibit a similar downward slope from using only MSE error at (0.0, 0.0) as we increase
both coefficients, the Whisper model exhibits distinct minima around coordinates (0.5, 0.2), (0.6, 0.6), and (0.8, 0.2) for
𝜆vel and 𝜆accel, respectively.

The optimal set of coefficient values is detailed in Table 4.4. The lowest L1 and L2 errors were achieved with the WavLM
audio feature representation, specifically at 𝜆vel = 0.4 and 𝜆accel = 0.3, with values of 4.036 and 0.903, respectively.
The model with the highest error utilized the Whisper features, with coefficient values of 𝜆vel = 0.5 and 𝜆accel = 0.2,
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resulting in L1 and L2 errors of 4.119 and 0.968, respectively. While for the Wav2Vec-based model, the errors were
4.086 (L1) and 0.936 (L2) with 𝜆vel = 0.1 and 𝜆accel = 0.8. All models improved over their respective baseline, which
were trained using only 𝑀𝑆𝐸 loss. The L1 error had a major impact by adding the instant velocity and acceleration
terms, but the L2 error also showed an improvement. These error values are arguably quite close to each other, indicating
a relative consistency across the models.

(a) Wav2Vec-C L1 Error (b) Wav2Vec-C L2 Error (c) Wav2Vec-C Normalized Error

(d) WavLM L1 Error (e) WavLM L2 Error (f) WavLM Normalized Error

(g) Whisper L1 Error (h) Whisper L2 Error (i) Whisper Normalized Error

Figure 4.13: Figure demonstrating the impact of weighted velocity and acceleration on prediction errors in rig parameter sequences
from audio data. Results are based on three audio feature extraction methods: Wav2Vec, WavLM, and Whisper. Errors are evaluated
using L1, L2, and a Normalized error (mean of min-max normalized L1 and L2 errors). This figure shows different audio feature
representations require different weightings in the loss function.

4.7.2 Inner Layers of Transformer Encodings Results
In this section, we investigated the significance of various layers within our audio encoder models. To achieve this, we
designed a model that aggregates the encoder embeddings through a fusion layer described by eq. 4.14 and eq. 4.15. This
layer, utilizing a softmax operation, calculates weights in the range of [0, 1], facilitating both interpretability and effective
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Table 4.4: Best velocity and acceleration weighting results for each audio encoding.

Audio Feature 𝜆𝑣𝑒𝑙 𝜆𝑎𝑐𝑐𝑒𝑙 L1 error L2 Error Normalized Error
Wav2Vec 0.0 0.0 4.512 0.955 −

0.1 0.8 4.086 0.936 0.020
WavLM 0.0 0.0 4.481 0.921 −

0.4 0.3 4.036 0.903 0.039
Whisper 0.0 0.0 4.715 0.992 −

0.5 0.2 4.119 0.968 0.000

model convergence. The results pertaining to the WavLM encoder model are illustrated in Figure 4.14. For the Base
model, we found that layers 1, 6, and 11 were most influential, collectively accounting for about 53% of the total layer
importance. While early layers were anticipated to be impactful due to their processing of broad speech characteristics,
the prominence of the sixth layer was unexpected. Testing the Large model yielded similar patterns, where the sum of
the weights from layers 1, 2, 13, and 20 covers 73.64% of the total relevance score. An original analysis provided by
Chen et al. [24] indicates that intermediate layers are highly relevant when solving speaker identification tasks.

(a) Base model (b) Large model

Figure 4.14: Inner layer relevance visualization of the WavLM model. Layers, 1, 6, and 11 are the most relevant for the Base model
(a), while the Large model (b) shows a similar pattern but with higher relevance on the initial layers of the Transformer encoder.

When conducting analogous experiments on the Whisper models, which bear resemblance in architecture to WavLM,
we observed consistent patterns, as showcased in Figure 4.15.

To evaluate model performance in these experiments, we utilized L1, L2, and temporal mean vertex error (TMVE)
metrics. The L1 error provides insights into parameter accuracy, the L2 error evaluates the smoothness of animations,
and TMVE gives a perspective on the impact of the predicted parameters on the 3D mesh.

As depicted in Table 4.7, our Encoder-Decoder models, which were trained with the aggregated audio features, are labeled
as All-Enc. These models generally outperformed models that were dependent solely on the encoding from the final
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(a) Small model (b) Medium model

Figure 4.15: Inner layer relevance visualization of the Whisper model. Layers, 1, 6, and 11 are the most relevant for the Small model
(a), while the Medium model (b) shows a similar pattern but with higher relevance on the initial layers of the Transformer encoder.

layer, which are denoted as Enc. However, with Wav2Vec, the results were mixed, suggesting that merging Wav2Vec’s
CCNN layers might not always be advantageous due to specifics in their self-supervised training methodology [136].

4.7.3 Phonetically Informed Speech Animation Network (PhISANet)
In our study, we strive to inform the animation parameter regressor by leveraging phonetic information. This integration
is facilitated using multi-task learning (MTL) via two distinct methods: a phone classifier and a CTC. To determine the
most effective approach for our objective, we embarked on a preliminary experiment. During this process, we briefly
examined the coefficients that balance the MTL branch, particularly focusing on 𝜆𝐶𝐿𝐹 and 𝜆𝐶𝑇𝐶 . By adjusting the values
of these MTL coefficients from the set [0.1, 0.0, 0.001], we trained a series of multi-task learning models, evaluating
all of them on our test set for every single epoch. This approach provided insights into their convergence behavior and
allowed a comparative performance assessment. Based on our previous experiments, we decided to experiment with
WavLM as it provided the best-performing model up to this point.

Referencing Figure 4.16, the results indicate that the CTC MTL outperforms the phone classifier in both L1 and L2
errors int rig parameter space, as seen in Figure 4.16a and Figure 4.16b, respectively. Importantly, it’s evident that
regardless of the auxiliary task chosen, both methods improve performance with a lower test error than the baseline—a
standard encoder-decoder model. However, this prior gave us the insight to seek performance improvement from an
MTL CTC perspective and make a thorough analysis of its impact in the speech animation realm.

In our continued exploration of encoder-decoder models using a MTL CTC approach, we varied the coefficient 𝜆𝐶𝑇𝐶 that
modulates the CTC auxiliary branch. This variation was done on an approximation to a logarithmic scale, ranging from
0.001 to 0.5. Table 4.5 summarizes the results, pinpointing 𝜆𝐶𝑇𝐶 = 0.008 as the optimal coefficient for the majority of
the audio encodings under study. This trend is further visualized in Figure 4.17. While specific encodings like Wav2Vec
and WavLM show marginal performance improvements at 𝜆𝐶𝑇𝐶 values of 0.016 and 0.004, respectively, the differences
are minor in the scale of 0.001 and 0.002. Given the consistency of results at 𝜆𝐶𝑇𝐶 = 0.008, we have adopted this
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Figure 4.16: Multi-task learning comparative of the phone classifier (Clf ) and CTC auxiliary tasks using WavLM audio encoding.
The MTL models were evaluated on every single epoch on the test set. Both improve over the baseline, and the CTC errors are lower
than the Clf regardless of the weight.

coefficient for subsequent experiments in this and the following chapters.
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Figure 4.17: The figures present the L1 (a) and L2 (b) errors for the All-Enc CTC models trained on different audio encodings-
Wav2Vec, WavLM, and Whisper-, tested across varying 𝜆𝐶𝑇𝐶 weights. Each bar group corresponds to a specific 𝜆𝐶𝑇𝐶 weight. On
both metrics, the minimum values are obtained when 𝜆𝐶𝑇𝐶 is 0.008 across all the models.

Based on our findings thus far, we are motivated to investigate further the optimal model configuration for producing
enhanced animations. We intend to assess three distinct audio feature representations across various model configurations:
an encoder-decoder that employs audio encoding from the final layer (denoted as Enc), another encoder-decoder leveraging
a weighted mean of all encoder layers (termed All-Enc), and their respective variants when trained with an auxiliary
CTC (labeled Enc CTC and All-Enc CTC). A concise summary of these configurations is provided in Table 4.6 for future
reference.

71



Table 4.5: Performance metrics (L1 and L2 Errors) for different audio encodings (Wav2Vec, WavLM, and Whisper) at various 𝜆𝐶𝑇𝐶coefficients. The results suggest an optimal 𝜆𝐶𝑇𝐶 value of 0.008 for most encodings, with minor deviations for specific metrics.

Wav2Vec WavLM Whisper
𝜆𝐶𝑇𝐶 L1 Error L2 Error L1 Error L2 Error L1 Error L2 Error
0.5 4.223 ± 0.716 0.964 ± 0.173 3.989 ± 0.678 0.904 ± 0.163 4.120 ± 0.731 0.949 ± 0.177

0.25 4.182 ± 0.696 0.946 ± 0.170 3.945 ± 0.655 0.888 ± 0.157 4.111 ± 0.709 0.937 ± 0.172
0.125 4.186 ± 0.670 0.932 ± 0.162 3.909 ± 0.648 0.878 ± 0.156 4.074 ± 0.714 0.918 ± 0.172
0.064 4.119 ± 0.677 0.920 ± 0.165 3.891 ± 0.663 0.876 ± 0.158 3.999 ± 0.695 0.900 ± 0.165
0.032 4.066 ± 0.688 0.914 ± 0.165 3.856 ± 0.689 0.870 ± 0.164 3.923 ± 0.699 0.887 ± 0.166
0.016 4.064 ± 0.664 0.914 ± 0.159 3.858 ± 0.670 0.876 ± 0.161 3.884 ± 0.687 0.883 ± 0.162
0.008 4.041 ± 0.716 0.916 ± 0.171 3.848 ± 0.678 0.873 ± 0.164 3.868 ± 0.674 0.879 ± 0.161
0.004 4.068 ± 0.712 0.920 ± 0.170 3.847 ± 0.685 0.876 ± 0.165 3.881 ± 0.661 0.881 ± 0.159
0.002 4.098 ± 0.701 0.926 ± 0.168 3.868 ± 0.684 0.877 ± 0.165 3.910 ± 0.676 0.888 ± 0.161
0.001 4.128 ± 0.683 0.925 ± 0.163 3.889 ± 0.685 0.877 ± 0.164 3.908 ± 0.689 0.886 ± 0.164

Table 4.6: Summary of various architecture designs explored in our experiments. Each design is distinguished by its method of
encoding, whether it utilizes the last Transformer layer only (denoted as ’Enc’) or combines all Transformer layers (denoted as
’All-Enc’), and its multi-task learning (MTL) strategy, which may involve a phone classifier (’Clf’) or a Connectionist Temporal
Classification (CTC) for aligning the phone sequence.

Acronym Description
Enc Encoding from last Transformer Layer and decodes directly into rig parameters
All-Enc Encoding by combining all Transformer Layers and decodes directly into rig parameters
Enc CTC Encoding from the last Transformer layer, MTL with CTC aligning phone sequence
All-Enc CTC Encoding by combining all Transformer layers, MTL with CTC aligning phone sequence

4.7.4 Rig Parameter Evaluation
Before we delve into the results found in our experiments, here is a brief disclaimer. For all the experiments reported in
this and the following section, we conducted a pairwise t-test to determine the significant differences between the means
of metrics reported. The confidence in the results is reported by their p-values, which, if 𝑝 < 0.05, indicates a high level
of statistical significance. Such low p-values provide strong evidence against the null hypothesis, suggesting that the
differences in means between our groups are not due to random chance. Allowing us to have a high degree of confidence
in our results. The full results are shown in Appendix A.

An additional evaluation of the models was conducted to investigate their behavior regarding L1 and L2 test errors. As
illustrated in Figure 4.18, the Wav2Vec-based model does not gain any advantage from aggregating the embeddings
from the Feature Encoding and Feature Aggregator CCNNs (denoted as All-Enc). In fact, the L1 error experiences an
increase, while the mean L2 error and its standard deviation exhibit a marginal decrease.

Motivated by these findings, we explored a new series of experiments for the models utilizing the Wav2Vec feature. We
trained models employing the Wav2Vec-Z features, derived from the first CCNN and incorporated a CTC branch into the
model that utilizes Wav2Vec-C features (Enc) since these features are the output from the final layer. A summary of our
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Table 4.7: Comparison of different model configurations using Wav2Vec, WavLM, and Whisper audio encodings. The evaluation of
model configurations focused on the rig parameter space, considering metrics such as mean temporal L1 and L2 error, as well as
mean temporal vertex error in 𝑚𝑚. Specifically, the evaluation examined the performance of the models in the lower face, lips, and
tongue regions of the mesh.

Audio Feature Model Rig L1 Rig L2 Lower Face Vtx Lips Vtx Tongue Vtx
Wav2Vec z-feat 4.237±0.683 0.935±0.163 0.073±0.014 0.170±0.036 0.179±0.033

Enc (c-feat) 4.151±0.652 0.938±0.163 0.072±0.014 0.164±0.036 0.180±0.036
All-Enc 4.248±0.610 0.934±0.152 0.079±0.014 0.186±0.035 0.185±0.034
Enc (c-feat) CTC 4.101±0.690 0.926±0.166 0.070±0.014 0.160±0.037 0.173±0.033
All-Enc CTC 4.049±0.603 0.911±0.149 0.069±0.014 0.158±0.035 0.173±0.032

WavLM Enc 4.033±0.655 0.906±0.168 0.076±0.013 0.175±0.035 0.166±0.034
All-Enc 3.938±0.609 0.883±0.150 0.066±0.013 0.150±0.033 0.156±0.031
All-Enc CTC 3.831±0.596 0.869±0.150 0.065±0.013 0.149±0.033 0.157±0.029

Whisper Enc 4.120±0.731 0.969±0.178 0.077±0.015 0.172±0.034 0.190±0.034
All-Enc 3.918±0.611 0.882±0.150 0.069±0.014 0.158±0.034 0.168±0.033
All-Enc CTC 3.851±0.601 0.876±0.149 0.066±0.014 0.149±0.035 0.163±0.029

discoveries is presented in Table 4.7. Notably, the poorest performance across all metrics and audio representations was
observed in the model trained on the 𝑧−features. Intriguingly, adding the CTC to the model trained on the C-features
enhanced the model’s performance. However, combining Wav2Vec features plus adding a CTC yielded the most
favorable results. For the mean L1 error, a reduction from 4.151 ± 0.652 to 4.049 ± 0.603 was noted, corresponding to
a decrease of 1.025. The mean L2 error declined by 0.027, from 0.938 to 0.911. All the comparisons on the results
regarding the different configurations for the models with Wav2Vec have a 𝑝-value < 10−6 except when comparing the
L2 error of the Enc vs. the All-Enc models, which has a 𝑝-value of 0.319 indicating that they have a similar performance
from that perspective.

For the WavLM-based models, improvements were consistently observed across both metrics as we combined the
Transformer Encoder layers (All-Enc) and subsequently regularized the training through a CTC (All-Enc CTC). The
L1 mean error was reduced from 4.033 to 3.831, a margin of 0.202, and the L2 error decreased from 0.906 to 0.869,
a reduction of 0.037. An interesting finding was the WavLM Enc model demonstrated better performance than the
Wav2Vec All-Enc CTC model. We can confidently assert these findings as their 𝑝-value is < 0.03 as shown in Table A.1
for the L1 error, and Table A.2 for the L2 error.

With respect to the models trained on the Whisper audio features, the principal enhancement was achieved by merging
the embeddings from the Transformer layers, transitioning from Enc to All-Enc. This reduced the mean error by 0.202
and 0.087 for the L1 and L2 metrics, respectively. A further slight improvement was observed when training the model
with a CTC, resulting in mean errors of 3.851 ± 0.601 and 0.876 ± 0.149 for the L1 and L2 errors, respectively. As with
the WavLM results, from a statistical analysis, we can assert the trustworthiness of these findings as their 𝑝-value is
< 0.03 in all cases. As with the WavLM-based models, we can find specific details on the statistical analysis in Table A.1
and Table A.2.

Analyzing the mean errors for L1 and L2, the All-Enc CTC model consistently outperformed across various audio
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encodings. While the WavLM feature encoding marginally surpassed the performance of the Whisper-based model, the
observed differences aren’t statistically significant. A direct comparison between the All-Enc models using Whisper and
WavLM yielded 𝑝-values of 0.444 and 0.591 for L1 and L2 errors, respectively. Incorporating the CTC auxiliary task,
both errors reported identical 𝑝-values of 0.163. This suggests a comparable performance between the two features;
however, the addition of the CTC branch distinctly enhances model performance at a confidence level of 𝑝 < 0.03. It’s
also noteworthy that the Transformer-based feature encodings, namely WavLM and Whisper, significantly outpaced the
Wav2Vec model, evidenced by a confidence value of 𝑝 < 10−5. All p-value results can be seen in Table A.4 for the L1
error and Table A.5 for the L2 metric.
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Figure 4.18: Rig parameter L1 ((a), (b), and (c)) and L2 ((d), (e), and (f)) errors distribution from models to predict animation
parameters across three audio features: Wav2Vec, WavLM, and Whisper. Training methodologies include the use of final layer
embedding (enc), a weighted mean of all phase embeddings (all-enc), and a multi-task approach that employs Connectionist Temporal
Classification (CTC) on the All-Enc model to predict the phone sequences (all-enc ctc).

4.7.5 Mesh Vertex Evaluation
Evaluating models based solely on rig parameter error provides a limited perspective, as it may overlook the impact
of small errors on the overall animation. Such errors in rig parameters can lead to significant discrepancies in vertex
placement, and conversely, minor vertex errors may not reflect underlying rig parameter inaccuracies. To address this,
we assessed the models from a vertex error standpoint, identifying regions of improvement during animation generation
from predicted rig parameters. Consequently, we adopted the temporal mean vertex error (TMVE) as our evaluation
metric, as detailed in Eq. 4.29, to provide a more comprehensive assessment of the models.

TMVE = 1
𝑁 ⋅ 𝑆 ⋅𝐾

𝑁
∑

𝑖=1

𝑆𝑖
∑

𝑗=1

𝐾
∑

𝑘=1

(v𝑖𝑗𝑘 − v̂𝑖𝑗𝑘
)2 (4.29)
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Where v𝑖𝑗𝑘 represents the ground truth 3D vertex at the 𝑘-th position of the 𝑗-th timestep in the 𝑖-th sample, while v̂𝑖𝑗𝑘
denotes the corresponding predicted vertex by the model to be evaluated. Furthermore, 𝑁 indicates the total number of
samples present in the test set. The variable 𝑆𝑖 represents the number of frames in sample 𝐼 , and 𝐾 corresponds to the
number of vertices to be evaluated.

The vertex error was computed across all the affected vertices of the lower face, including those in the inner mouth, and
also over isolated sub-regions, such as the lips and tongue, to gain a deeper understanding of the model’s behavior. The
distribution of the errors is summarized on the plots shown in the first, second, and third columns, which correspond to
the models trained on Wav2Vec, WavLM, and Whisper features, respectively, while the first, second, and third rows
display the results for the lower face, tongue, and lips regions in Figure 4.19.

For the Wav2Vec results, the pattern aligns with the L1 and L2 mean errors, where the All-Enc configuration deteriorates
the model’s performance in all three vertex regions. This is vividly visualized in the mesh heatmap depicted in Figure 4.20,
where the main error is localized to the lower lip and the front of the tongue, extending from the dorsum to the tip.

In the case of WavLM, the most significant improvement occurs when the encoding layers are combined (All-Enc),
with a slight overall enhancement observed upon adding the CTC. This trend is also visible in the heatmap shown in
Figure 4.21, and the details in Table 4.7 confirm a minor increase in TMVE on the tongue tip. In this video we show a
randomly selected sample from the test set, it is noticeable how the model improves by combining the encoder layers
and further on improves on the tongue error as we add a CTC.

For the Whisper-based models, the improvement appears to be incremental as the transformer embeddings are combined
(All-Enc) and further regularized with a CTC (All-Enc CTC). As evidenced in Figures 4.22a and 4.22b, the lower face
consistently improves with the proposed method’s aggregation with a particular focus on the chin and lower lip, which
is more noticeable from the three quarter view perspective. However, the most substantial benefit is observed on the
tongue tip region, where the TMVE on the tongue diminishes from being the worst-performing at 0.190 ± 0.034 to
0.163 ± 0.029. This represents a superiority over its Wav2Vec counterpart by a margin of 0.01. Though still trailing the
WavLM All-Enc CTC in tongue placement, the error is comparable for the overall lower-face region and lips, with a
difference in TMVE of just 0.001. In the following video, we can visualize the impact of such improvements in motion.

Examining vertex errors provides clear insights into the behavior of the models across different configurations and regions.
Wav2Vec results emphasize the importance of careful feature selection, as some configurations can harm performance.
The WavLM models consistently perform better, especially in the tongue region, showcasing their adaptability. In
contrast, the Whisper-based models offer a balanced performance across all regions, focusing on minimizing errors in
the tongue area. Furthermore, Wav2Vec indicates that combining the 𝑧− and 𝑐− features doesn’t improve performance;
it actually decreases it. However, when regularizing with a CTC, the model’s performance improves compared to the
baseline (Enc) configuration.

In our assessments on the TMVE, the results exhibit a high degree of statistical significance. For the majority of
comparisons, the pairwise t-test yielded 𝑝-values below 10−4, indicating robust confidence in the findings as shown
in Tables A.3 when comparing the model configurations, and Table A.6 when comparing the different audio features.
Nonetheless, as seen in more detail, when contrasting the Enc and All-Enc CTC configurations with distinct audio
features, namely WavLM and Whisper, the 𝑝-values were recorded at 0.016 and 0.013, respectively. Despite being larger,
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(a) Wav2Vec lower-face
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(b) WavLM lower-face
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(c) Whisper lower-face
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(d) Wav2Vec tongue
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(e) WavLM tongue
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(f) Whisper tongue
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(g) Wav2Vec lips
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(h) WavLM lips
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(i) Whisper lips

Figure 4.19: Lower face ((a), (b), and (c)), tongue ((d), (e), and (f)), and lips ((g), (h), and (i)) regions temporal mean vertex error
(mm) distribution over the test set. Different model configurations were evaluated to predict animation parameters across three audio
features: Wav2Vec, WavLM, and Whisper. Training methodologies include the use of final layer embedding (enc), a weighted mean
of all phase embeddings (all-enc), and a multi-task approach that employs Connectionist Temporal Classification (CTC) on the AllEnc
model to predict the phone sequences (all-enc ctc).
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Figure 4.20: This figure presents a side-by-side comparison of the temporal mean vertex error for the Enc, All-Enc, and All-Enc
CTC models, all trained on Wav2Vec features. Subfigure (a) displays the mean vertex error for the lower face, visualized from two
perspectives: a front view and a 3/4 view. Subfigure (b) specifically highlights the temporal mean vertex error of the tongue mesh
from these same two viewpoints. It is evident that the All-Enc model tends to increase the error around the lip area and the tongue’s
tip. In contrast, the All-Enc CTC model reduces the overall error. This comparison allows for an in-depth model performance analysis
across distinct facial regions.
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Figure 4.21: This figure offers a comparative visualization of the temporal mean vertex error across the Enc, All-Enc, and All-Enc
CTC models, each trained on WavLM features. Subfigure (a) illustrates the mean vertex error for the lower face, captured from
both front and 3/4 viewpoints. Subfigure (b) specifically emphasizes the mean vertex error within the tongue mesh, displayed from
identical viewpoints. The graphics highlight the improvements achieved by aggregating all Transformer Encoder layers from WavLM
(All-Enc), evidenced by the reduction in overall error across the lower face and tongue regions. While the gains realized from adding
a CTC (All-Enc CTC) are minimal, they contribute to a discernible, albeit subtle, enhancement in performance.
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Figure 4.22: This figure provides a detailed comparison of the temporal mean vertex error in the Enc, All-Enc, and All-Enc CTC
models, all trained on Whisper audio features. Subfigure (a) portrays the mean vertex error for the lower face, as observed from
front and 3/4 views. Subfigure (b) focuses on the mean vertex error for the tongue mesh, visualized from the same two perspectives.
Interestingly, the error in the lower face region demonstrates a progressive reduction as we aggregate the Transformer Encoder layers
(All-Enc) and subsequently apply regularization through a CTC (All-Enc CTC). However, the tongue region exhibits a distinct pattern,
with the All-Enc model resulting in a higher error at the tongue tip, which is marginally reduced in the All-Enc CTC model.

79



Table 4.8: Rating scale provided to participants during the perception user study. Each rating corresponds to the degree of alignment
between the animation and audio in the selected video from a pairwise comparison.

Rating Description
1 Does not match the audio
2 Barely matches the audio
3 Somewhat matches the audio
4 Matches the audio
5 Perfectly matches the audio

these 𝑝-values remain below the 5% threshold, further underscoring the reliability of the results discussed in this section.

4.8 User Studies
Generating animations from speech is a complex process that can be assessed both quantitatively and qualitatively.
Our previous evaluations have effectively quantified the performance through error measurements in the rig parameter
space and mesh vertex space. These metrics provide a detailed understanding of the models’ behavior and accuracy.
However, since the ultimate goal of our work is to create animations that are perceived as realistic by human viewers,
implementing a human perception study becomes an essential next step. Quantitative evaluations, while indispensable,
may not fully capture the nuanced aspects of realism that human observers can discern. Through human perception
studies, we aim to identify the key factors and metrics that most significantly influence the acceptance and perceived
quality of the generated animations. Such insights will not only validate our quantitative findings but also provide a
more holistic perspective on the success of the models in creating authentic and engaging animations. By bridging the
gap between quantitative measurements and human perception, we hope to enrich our understanding of what makes an
animation truly convincing and lifelike.

We devised three user studies to evaluate our proposed models’ effectiveness. Firstly, we compared the highest-performing
models for each audio feature against animations derived from ground truth rig parameter sequences. Secondly, we
evaluated the top models from each audio feature against each other. Lastly, we identified the highest-performing audio
feature and compared various model designs within that category to ascertain which was more favorably received by
users. We did not conduct any user study focused on the perception of the absence of tongue motion, as its significance
has been established in our previous work [106].

The methodology for these user studies was centered around pairwise preference tests, where participants were presented
with two videos from a sample from all possible combinations for each comparison required by the study. The user
interface from one of the questions in the survey is shown in Figure 3.9a. Participants were instructed to choose the
video from left, right, or none. From their selection, they were asked to rate the congruence of the selected animation
with the audio on a 5-star scale shown in Table 4.8.

The user studies were conducted via the Prolific platform [125]. In an effort to ensure the most accurate assessment
of the generated animations, we applied specific filtering criteria when selecting our participants. Given that our
dataset exclusively encompasses English phrases, we limited the participation to native English speakers residing in
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Figure 4.23: Interface for the user studies. Participants were prompted to discern which animation—left or right—was better aligned
with the audio they heard. Their task involved evaluating the correspondence of the animation with respect to the audio, with particular
attention to the motion of the lips and tongue. Subsequently, they evaluated in a 5-star rating matching level between their preferred
animation and the audio.

English-speaking countries such as the United States of America, the United Kingdom, and Australia, among others.
This strategic selection of participants ensured a more informed and precise evaluation of our animations.

The design of our user studies drew inspiration from the user studies conducted for the GENEA challenge [165], with
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Table 4.9: Transcripts of selected test samples highlighting coarticulation motions with emphasis on diphones featuring open and
rounded vowels.

Sample ID Transcript
0922 Medieval society was based on hierarchies.
1016 Destroy every file related to my audits.
1141 The proof that you are seeking is not available in books.
1192 Dolphins are intelligent marine mammals.
1224 George is paranoid about a future gas shortage.
1466 They were shown how to advance against an enemy outpost atop a cleared ridge.
1625 For roasts, insert meat thermometer diagonally so it does not rest on bone.
1729 Several firms are merchandising enzyme preparation through feed manufacturers.
1837 Differences were related to social, economic, and educational backgrounds.
1846 Asked why, he replied primly: because that’s no activity for a gentleman.

the specific aim of obtaining results that are statistically robust enough to enable a comprehensive evaluation of our
findings. To facilitate this, videos were synthesized from each selected model for assessment, and they were meticulously
rendered to allow for a side-by-side comparative analysis with corresponding counterparts. The first three videos shown
to participants were random samples unrelated to the main test, designed to acclimate participants to the evaluation
process. The data collected from these initial samples were not included in the study results. To avoid potential bias,
the sequence and left-right positioning of the videos were randomized. Furthermore, three control videos featuring
non-matching audio were added to the set. These videos, where the audio and animation durations were noticeably
incongruent, ensured that participants were attentive throughout the duration of each video. They were asked to evaluate
such videos by selecting the ”None” option and rest the rating to one star. This methodology safeguarded against
participant inattention and minimized bias in the study’s results.

Final results were procured by collecting a total of 30 unblemished responses per user study, where all of the aforemen-
tioned criteria were successfully met. This accounted for 67% of the total surveys initiated through Prolific. The median
time span for survey completion was recorded to be 18 minutes. This approach of carefully curating the responses
ensured a meaningful and statistically significant conclusion. As with the video evaluations, this methodology was
designed to uphold the integrity of the data collection process and maintain the consistency of the study’s outcomes.

4.8.1 Ground Truth Study
Our initial study sought to determine whether users could differentiate between the predicted animations and the ground
truth. We produced nine animations from the IMFT’23 dataset test split using both ground truth parameters and
predictions from the All-Enc CTC model trained on each of the feature encodings: Wav2Vec, WavLM, and Whisper.

The selection of test samples considered an extensive array of coarticulation motions that users can easily observe and
distinguish. Particular attention was given to diphones featuring open and rounded vowels in conjunction with dental
consonants, plosives, and sibilants. Detailed transcripts of these samples are provided in Table 4.9.

Table 4.10 shows the user study results. Users consistently favored ground truth animations over predictions, regardless
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Table 4.10: Results from a user study employing pairwise selection tests as a sanity check to verify the quality of the models against
the ground truth. A set of All-Enc CTC models trained using the Wav2Vec, WavLM, and Whisper audio feature representations were
compared versus the ground truth animations generated from the IMFT’23 test set. The evaluation of the selected animations was
conducted on a 5-point star rating scale, where users were asked to assess whether the selected animation corresponded with the
audio. The scale ranged from 1, indicating Does not match the audio, to 5, indicating Perfectly matches the audio. A rating of 4 was
assigned to animations that Matches the audio.

Combination Model Preference (%) Mean Rating
1 Ground Truth 62.3 4.035±0.799

Wav2Vec 37.7 3.942±0.770
2 Ground Truth 62.8 4.012±0.814

WavLM 37.2 3.922±0.681
3 Ground Truth 57.2 4.025±0.886

Whisper 42.8 3.831±0.784

of the audio encoding employed. Predictions based on Wav2Vec and WavLM features were identifiable, where 62.3%
and 62.8% of the users preferred the ground truth animations, respectively. However, users had more difficulty discerning
results produced by the Whisper model, with only 57.2% of users favoring the ground truth animation. Notably, while
the mean rating for the ground truth stood approximately at 4.0, the predicted animations’ mean ratings were not far
behind, with the lowest mean rating of 3.831 attributed to the Whisper-based model.

4.8.2 Audio Feature Study
In our second user study, we aimed to determine user preference for different audio encoding models, namely Wav2Vec,
WavLM, and Whisper, all used in training an All-Enc CTC model. This model architecture linearly combines the
embeddings from all the Transformer Encoder layers through a softmax, while using a CTC to regularize the decoder by
aligning the phones to the input speech.

In contrast to the ground truth user study, this study presented participants with a mix of five samples within our test
data and five OOD samples, all delivered through the voice of a male actor different from our data capture actor. This
approach was taken to mitigate any negative bias arising from using our actor’s mesh for the audio presentation.

The results summarized in Table 4.11 revealed several key insights. The WavLM and the Whisper models were generally
preferred over the Wav2Vec-based model, by 69.6% and 60.7% of the participants, respectively. However, when it came
to in-domain samples, Wav2Vec edged out a slight lead over the architectures encoding the audio through WavLM
and Whisper with a preference of 51.7% and 55% preference which could be considered to deploy similar animations
from a statistical point-of-view. However, for out-of-domain samples, the animations generated by encoding the audio
with WavLM and Whisper were preferred over Wav2Vec by a large margin. Finally, when comparing the WavLM
and Whisper models, users showed a slight preference for the WavLM model, with 55.6% favoring it over its Whisper
counterpart. Most of the preference came from the OOD samples as 62.7% of users favored it over the Whisper model
(37.3%), as the Whisper model was slightly more popular for in-domain samples, with 53.3% of participants favoring it.

The insights gathered from this study indicate that the models based on WavLM and Whisper exhibit a superior ability to
generalize across varied contexts. Specifically, it was observed that WavLM’s audio features were particularly effective
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Table 4.11: Results from a user study employing pairwise selection tests across the Wav2Vec, WavLM, and Whisper audio feature
encodings using an All-Enc CTC architecture consisting of an encoder-decoder model has multi-task training configuration with a
CTC branch. The evaluation was conducted on a 5-point star rating scale, where users were asked to assess the extent to which the
selected animation corresponded with the audio. The scale ranged from 1, indicating Does not match the audio, to 5, indicating
Perfectly matches the audio. A rating of 4 was assigned to animations that Matches the audio.

All In Domain Out of Domain
Combination Model Preference (%) Mean Rating Preference (%) Mean Rating Preference (%) Mean Rating

1 Wav2Vec 30.4 3.756±1.007 51.7 4.097±0.777 13.3 2.700±0.900
WavLM 69.6 3.734±0.788 48.3 3.793±0.886 86.7 3.708±0.738

2 Wav2Vec 39.3 3.698±0.815 55 3.879±0.807 26.7 3.400±0.735
Whisper 60.7 3.780±0.765 45 4.000±0.816 73.3 3.673±0.715

3 WavLM 55.6 3.880±0.923 46.7 3.964±0.944 62.7 3.830±0.907
Whisper 44.4 3.833±0.778 53.3 3.938±0.704 37.3 3.714±0.839

in creating higher-quality animations when confronted with voices diverging from that of our original actor. This
emphasizes the versatility and adaptability of the WavLM model in diverse scenarios.

4.8.3 WavLM Study
In a further analysis, we utilized results from a user study that compared different model designs. The study centered
on the WavLM audio feature where the All-Enc CTC model was favored over the Wav2Vec and Whisper alternatives.
Based on these findings, we expanded our comparison to include different architectures trained on WavLM.

In this third user study, we asked users to express their preferences among animations generated by the Enc, All-Enc, and
All-Enc CTC models. Each participant was provided with five in-domain and five out-of-domain samples for assessment.
As in our previous studies, we ensured the quality of our data by collecting 30 clean responses, which passed our
safeguard protocols. The summarized results can be viewed in Table 4.12.

Unexpectedly, we observed that users preferred the animation from the Enc model over that of the All-Enc model, with
55% of users favoring the former. This outcome contradicts our prior analyses, where we examined the models from rig
parameter and vertex error perspectives, which suggested the All-Enc model should be superior, as seen in Table 4.7.

Moreover, we found a consistent preference for the model regularized by a CTC that incorporates all the encoder layers
from WavLM. Approximately 60% of users favored this model over non-regularized alternatives, with this preference
persisting across both in-domain and out-of-domain samples. This finding suggests that adding a CTC through MTL can
enhance the quality of the outcomes.

Overall, the study results yielded favorable mean ratings, particularly favoring out-of-domain (OOD) samples over
in-domain ones. The average rating approximated to 4, signifying that users found the animations to be in good agreement
with the corresponding audio. Notably, this is the same rating that was assigned to the ground truth in our initial user
study. This suggests a high level of accuracy in the alignment of animations with their source audio across the model
configurations examined bringing one more piece of evidence on the generalization of the model.
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Table 4.12: Results from a user study employing pairwise comparison tests across various model configurations using WavLM
encoding. The configurations under consideration include: (1) Enc, wherein solely the last layer’s embedding was utilized, (2) All-Enc,
which linearly combined the embeddings from all layers of the transformer encoder, and (3) All-Enc CTC, where the model underwent
multi-task training with a CTC branch. The evaluation was conducted on a 5-point star rating scale, where users were asked to assess
the extent to which the selected animation corresponded with the audio. The scale ranged from 1, indicating Does not match the
audio, to 5, indicating Perfectly matches the audio. A rating of 4 was assigned to animations that Matches the audio.

All In Domain OOD
Combination Model Preference (%) Mean Rating Preference (%) Mean Rating Preference (%) Mean Rating

1 Enc 55.2 3.951 56.0 3.831 54.5 4.051
All-Enc 44.8 3.906 44.0 4.02 45.5 3.818

2 Enc 41.0 3.916 38.8 3.933 42.8 3.903
All-Enc CTC 59.0 3.981 61.2 3.873 57.2 4.072

3 All-Enc 39.5 4.0 40.5 3.957 38.6 4.036
All-Enc CTC 60.5 3.949 59.5 3.899 61.4 3.989
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Figure 4.24: Visual Speech Recognition (VSR) WER and CER metrics for different model configurations and audio features. The
models evaluated are Enc, All-Enc, Enc CTC, and All-Enc CTC. The audio features evaluated are Wav2Vec, WavLM, and Whisper.
Lower values for WER and CER indicate better performance. Based on the results, the Enc configuration performs best with the
Wav2Vec feature, while the Enc CTC configuration performs best with the WavLM and Whisper features.
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4.9 Visual Speech Recognition Evaluation
User studies, although invaluable for assessing human perception, present challenges regarding time and financial
investment. They demand meticulous design, deployment, and analysis, and it is common practice to compensate
participants, with rates varying by country. These factors contribute to a process that does not easily scale in terms of
response time or budget, limiting its efficiency.

Given these challenges, we explored the innovative idea of evaluating the model through a lip-reading or visual speech
recognition (VSR) model. This approach aims to establish a perception metric in an automated manner, avoiding the
need for extensive human-driven perception studies. Under the hypothesis that this method would function as anticipated,
we could significantly reduce both time and budget costs.

While we recognize that this first approach may not fully replace traditional user studies, it holds promise as a proxy. By
employing VSR-based evaluation, we could sift through and identify the models most likely to resonate with human
evaluators. This hybrid approach combines the rigor of quantitative analysis with insights into human perception,
providing a more agile and cost-effective way to advance our understanding of realistic speech-driven animation.

For this evaluation we relied on the state-of-the-art Audio-Visual Hidden Unit BERT (AV-HuBERT) model [138].
AV-HuBERT is a self-supervised model trained on unlabeled audio-visual speech data. The model consists of a video
feature extractor, an audio feature extractor, and a Transformer backbone. Both extractors generate the representations of
their corresponding modalitites at a frame level, which are concatenated and fused into audio-visual features. These
features are taken by the Transformer module trained to perform masked predictions of the cluster assignment for each
frame. Intially, the clusters are assigned based on the MFCC from the audio, but through the iterations, both modalities
are considered. For the purpose of lip-reading the audio-visual features are decoded using a 4-gram language model
trained on the LRS3 [2] dataset’s training text.

The Lip-Reading Sentences 3 (LRS3) dataset is a large-scale publicly available dataset that collected video clips from
TED talks as it ranged a diverse set of speaking individuals with accurate transcriptions, as provided by the organization,
rather than transcriptions obtained automatically from ASR systems. Oxford’s VGG group created the dataset to research
visual speech recognition in mind. The dataset is formed by video clips with audio that contain a single speaking
short sentences. The authors provide the precomputed mouth region-of-interest (ROI) crops and their corresponding
transcriptions.

Our proposed method to evaluate the speech-animation models through AV-HuBERT is as follows. First, we predict the
animation parameters directly from speech. Then, we rendered the videos in a front view to minimize the error from the
transformation that AV-HuBERT does to analyze the mouth from a front view. Then, we extract the regions of interest
(ROIs) and evaluate each sample through the AV-HuBERT. The pre-trained model used in this study is denominated
AV-HuBERT Large, which was pre-trained with the LRS3 [2] and VoxCeleb2 [32] dataset and fine-tuned under the 433
hours from LRS3.

The metrics used to evaluate the models are the word error rate (WER) and character error rate (CER). Before computing
these values by comparing the predictions from AV-HuBERT for our generated animations against the ground truth
transcripts, we normalized the text by removing extra white spaces, converting all characters to lowercase, replacing
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digits with words, removing punctuation, avoiding stemming, and keeping the stopwords as those are constantly present
in the evaluation data.

As a first approach, we attempted to evaluate the 341 samples from our test set since we counted with the transcriptions
from each of our audio samples. The results were unfavorable as the resulting test WER was 0.9577 with a maximum
value of 2.66. After further investigation, we found that our data had a large out-of-vocabulary (OOV) ratio with respect
to the byte-pair encoding (BPE) tokenizer that the pre-trained model used for predicting the transcriptions has a unigram
granularity and a vocabulary size of 973 tokens. When analyzing our test split transcripts, we found an OOV of 0.6326.
This is the reason why our mean WER was so high.

This discovery made us rethink the objective of evaluating through a VSR model. An automatic perception metric
would allow us to measure the generated videos from the models if the model can read the lips properly. However,
a secondary objective was to set up a benchmark under which the community could compare the results from their
Speech-to-Animation models, as the field lacks a common ground to evaluate models and always recur to perception user
studies. For this reason, we decided to evaluate the model using samples from the LRS3 dataset, and the objective would
be two-fold: first, we would be able to overcome the OOV issue, and second, set up a benchmark for the community as
these samples would be OOD of the rest of the researchers in this area of research.

To establish a benchmark, we opted to select test samples from the LRS3 dataset that have their stems present in the
pre-trained BPE tokenizer. This decision was taken to avoid any potential OOV issues. From this selection, a total of
402 samples were identified, complete with both video and audio. We refined the beam search to achieve an equilibrium
between insertions and deletions, which led to a maximum length of 100 and a beam width of 40. Every model included in
our research was assessed by producing animations from the supplied audio and processing them through AV-HuBERT.

To measure the reliability of VSR metrics, particularly WER, we realized a comparative analysis against L1 and L2 errors
over the course of a set of training epochs for the All-Enc CTC model for both WavLM and Whisper audio encodings. As
illustrated in Figure 4.25, the WER trajectory closely mirrors the patterns observed in the L1 and L2 errors. Notably, as
the training approaches convergence, the WER exhibits increased volatility with pronounced fluctuations. Furthermore,
in the WavLM model, a distinct observation can be made: as L1 and L2 errors begin to diverge in later epochs, the VSR
metric reaches its minimum value, registering a WER of 83.47

Once we have evaluated the WER metric with our best model, we decided to make a full study over all the configurations
that have been studied up to this point, the results are summarized in Table 4.13. Upon initial observation, a consistent
pattern emerged across all audio features for the model configurations. Specifically, the All-Enc configuration consistently
ranked lowest in the VSR metrics. Contrary to our preceding evaluations on the L1, L2, and vertex error metrics, as well
as the perception user studies, the Enc model exhibited superior performance. Motivated by this unexpected outcome,
we introduced regularization to the Enc models using a CTC to determine its impact, positive or negative, on the model
from a VSR perspective. Remarkably, the Enc CTC models consistently recorded the lowest WER and CER across all
audio features.

Such inconsistencies invited us to a deeper investigation. We rendered samples from the WavLM Enc CTC and found
several notable observations. Broadly speaking, predictions from the Enc CTC, exemplified here, accurately capture
the tongue’s movements. However, there exists a noticeable discrepancy in lip motion, which exhibits a somewhat
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Figure 4.25: WER comparison vs. L1 and L2 rig parameter errors across epochs for All-Enc CTC models utilizing WavLM and
Whisper Audio Encodings. Notably, the WER trajectory mirrors the L1 and L2 error trends in both models, with some intermittent
broad fluctuations upon convergence.
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Table 4.13: Performance comparison of four different model configurations (Enc, All-Enc, Enc CTC, and All-Enc CTC) with three
different audio feature representations (Wav2Vec, WavLM, and Whisper). The models were evaluated using two metrics: Word
Error Rate (WER) and Character Error Rate (CER), computed by the AvHuBERT visual speech recognition model. The results are
presented as mean ± standard deviation. The best results for each audio feature representation are highlighted in bold.

Audio Feature Model Configuration WER CER
Wav2Vec Enc 0.698 ± 0.225 0.533 ± 0.161

All-Enc 0.714 ± 0.247 0.539 ± 0.171
Enc CTC 0.698 ± 0.243 0.533 ± 0.176
All-Enc CTC 0.712 ± 0.240 0.546 ± 0.167

WavLM Enc 0.622 ± 0.261 0.464 ± 0.191
All-Enc 0.836 ± 0.214 0.624 ± 0.152
Enc CTC 0.598 ± 0.283 0.446 ± 0.201
All-Enc CTC 0.626 ± 0.252 0.494 ± 0.186

Whisper Enc 0.647 ± 0.239 0.492 ± 0.175
All-Enc 0.845 ± 0.220 0.628 ± 0.155
Enc CTC 0.630 ± 0.249 0.467 ± 0.186
All-Enc CTC 0.643 ± 0.247 0.504 ± 0.179

erratic movement in contrast to the results from All-Enc CTC, as demonstrated in this video. Shortly, a discernible
low-frequency noise resulting in lower VSR metrics. An essential factor to acknowledge is that our original animations
are generated at 50 FPS, while AV-HuBERT requires videos at 25 FPS. This difference raises the possibility that the
motions during subsampling, visible in this video, may be accentuated, potentially misleading the lip-reading network.

4.10 Qualitative Analysis
Our comprehensive solution achieves lifelike tongue movements. An illustrative analysis can be seen in Figure 4.26,
where we present a series of frames chosen based on the set of phones identified by the Montreal Forced Aligner. For a
detailed inspection, the tongue is displayed from a side angle, while the face is shown from a three-quarter perspective.
The sequence doesn’t present any irregularities from the viewpoints of the tongue or the lower face. In fact, the tongue
behaves as anticipated: resting on the mouth’s floor during open vowels and situating itself between the teeth for dental
consonants. It’s noteworthy that for sibilants like /s/ and /z/, the tongue’s tip doesn’t elevate. A plausible explanation
might be the limited resolution of the EMA sensors, hindering the capture of such specific positions.

To assess the best results from each audio encoding, we compared them side by side. We found that, in general, all the
audio encodings generate plausible animations. However, the WavLM All-Enc CTC delivers the best results. When
looking at a silence sample, the other two models do not keep the mouth close and generate short motions which are not
expected during silence, as seen in this video. For in domain samples. No noticeable difference can be perceived, which
correlates with the results from our user studies. The video of one of our test samples can be seen here.

The following out-of-domain sample demonstrates that the method works despite the age of the speaker. Once again,
the WavLM All-Enc CTC delivers the best results, and it is quite remarkable how you can notice the change in motion
between the kid’s voice and the adult’s voice. The Wav2Vec version of the model suffers from noisy predictions.

89

https://drive.google.com/file/d/1Zwnz4TYahQU4nQvTDK0sIKXb40DiIppw/view?usp=drive_link
https://drive.google.com/file/d/1tC59zdXdEICJXYpuTr7qJtdi7MZnVpov/view?usp=drive_link
https://drive.google.com/file/d/18EBP_48uqfuo0SgBGWAgy6mUDGjYB4QS/view?usp=drive_link
https://drive.google.com/file/d/1jeS8AJHA1X_L5qEThAt5aijmHfVygqfS/view?usp=drive_link
https://drive.google.com/file/d/1tj4fMZhiAhoEJiHofe1xu7lVIYmrXJSA/view?usp=drive_link


Another out-of-domain sample with a woman’s voice can be found here. Notice how the motion is transferred regardless
of gender, but there seems to be a small motion transfer problem that might be related to the female avatar’s rig. This
requires further investigation, as the tongue shows a constrained motion.

Our method generalizes enough that is capable of delivering singing animations despite having never seen a singing
sample during training. A sample can be found here. This demonstrates how well our proposed method can be employed
in practical applications such as video games and entertainment.

Finally, our model is capable of generating plausible animations across other languages such as German, Spanish,
Japanese, and Mandarin. Demonstrating its versatility and potential use by a broad audience.

4.11 Discussion
In this chapter, we present the IMFT’23 dataset, a refined version of the IMT’22 dataset, augmented with face recon-
struction derived from stereo video. This 3D reconstruction facilitates mesh fitting, subsequently yielding ground truth
animation parameters. This enriched data set enabled the training of end-to-end models, predicting animation sequences
directly from audio.

Empirically, we showcased that integrating predicted velocity and acceleration errors into the loss during the training of
a speech-to-animation network significantly reduces errors in the rig parameter space. This approach yields superior
outcomes compared to relying solely on an MSE loss.

Additionally, we investigated two innovative neural audio representations: WavLM and Whisper. Central to both is a
Transformer backbone designed for estimating audio representations. Through a comprehensive analysis of their layers,
we discerned that combining layer embeddings diminishes errors in both rig parameters and vertex space. Notably,
certain layer activation patterns, especially in the mid-layers, were intriguing and called for further exploration. One
potential implication of our findings is facilitating network distillation by highlighting the most relevant layers for the
speech-animation task.

We then introduce PhISANet, a Phonetically Informed Speech Animation Network, an encoder-decoder model trained
within a multi-task learning framework. Two auxiliary tasks were proposed. The first involves an phone classifier, aiming
to categorize each audio frame into one of the 88 phones encompassing the phonemes and their corresponding allophones
found through the Montreal Forced Aligner. The second task focuses on aligning audio frames with a sequence of
phones for a specific window using a CTC. Preliminary investigations revealed the superiority of the CTC over the
phone classifier. Comprehensive evaluations across rig parameter space, vertex space, and perception studies affirmed
PhISANet’s optimal performance when combining all transformer encoder layers from WavLM and training with a
multi-task CTC. Result visualizations confirm PhISANet’s robust generalization across diverse parameters such as age,
gender, language, and even varied audio types like singing.

Furthermore, we proposed the novel concept of employing visual speech recognition systems for evaluating speech-to-
animation models. Our exploration centered on AV-HuBERT, an audio-visual speech recognizer capable of processing
solely visual input, effectively serving as a lip-reading network. Preliminary findings suggested a correlation between
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model performance metrics in the rig parameter space. However, subsequent results deviated from our initial evaluations.
Our observations indicated that while the top-performing models, as per AV-HuBERT, did not fully concur with our
findings, the integration of a CTC did enhance model performance. This novel approach holds promise, potentially
diminishing the need for extensive user studies by automatically computing perception scores from a lip-reading network.
These results underscore the potential for continued research in this domain.

Lastly, user studies revealed an area for enhancement. The average rating hovered around ”Matches the audio,” falling
short of the aspirational ”Perfectly matches the audio.” Further exploration determined that lip rotation accuracy remains
an issue. This is attributed to lip deformations being primarily driven by lip contour tracking and the inherent motion
presented by the MetaHuman rig upon mesh fitting to the reconstructed landmarks. This observation highlights the
necessity for in-depth research, specifically targeting the precise capture of lip deformation.
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Figure 4.26: Predicted sequence by our top-performing model, WavLM All-Enc CTC, for the sample sentence “So he hides the
mayonnaise.”. The corresponding phone is presented on top of the tongue rendered from a lateral view, while the face is presented in
a three-quarter view. The symbol ‘Ø’ stands for silence. The displayed frames are carefully chosen within the boundaries predicted for
each phone by the Montreal Forced Aligner. Observe the synchronized movements of the lips, jaw, and tongue, which follow the
expected pattern for each phone.
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CHAPTER 5

TOWARDS REAL-TIME STREAMING
SPEECH-ANIMATION

In the fields of entertainment, telecommunications, healthcare, and education, the prospect of a real-time speech-
animation model holds transformative potential. The ability to animate a digital character in tandem with speech is a
desired innovation. Although real-time speech animations using neural networks are not entirely novel as — Hong et
al. [63] pioneered an MLP-based model that converted 7 audio frames into motion units for an iFACE solution with
a mere 100 ms delay. Similarly, Axelsson [8] in his thesis detailed a model that generates lip motion from phonemes,
subsequently classified into visemes. Malcangi et al. [101] presented an endeavor to predict lip motion, crafting a lip
driver system that leverages both fuzzy logic and neural networks, demonstrating generalization across speakers and
languages.

The quest for real-time, expressive speech animation has also seen developments via hybrid methodologies. Some have
combined rule-based systems with predictive systems that categorize facial gestures over audio frames, ensuring a delay
not exceeding 300 ms. An intriguing alternative to neural networks has been the deployment of Gaussian Mixture Models
(GMM). Luo et al. [99], for instance, innovatively adapted GMMs to map audio to visual features. They ingeniously
integrated prior visual features to avoid discontinuities in the following animation. In a study by Websdale et al. [157],
the efficacy of lookahead information introduced during model prediction was explored. Their findings highlighted that
their Bi-LSTM-based model maintained consistent performance for lookaheads of 70 ms or 170 ms. Moreover, they
highlighted the ITU G.114 recommendation [71], which states that users don’t perceive disruptions in telecommunication
when delays remain below 200 ms. Taking a new approach, Pham et al. [122] introduced an end-to-end model. This
model processes spectrograms using a CNN and subsequently, through an RNN, translates these intermediate outputs
into micro facial action units, driving a 3D blendshape facial model. Impressively, their reported inference time from
spectrograms to action units stands at approximately 5 ms, largely attributable to the efficiency of the convolutional
layers.
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Our objective differs from the preceding research as we aim to design a real-time solution based on our dataset. Notably,
none of the prior works have attempted to animate the tongue in a real-time solution. Furthermore, the prevalent
methodology leans towards generating animations based on visemes or action units, inevitably pushing these animations
towards a synthetic spectrum. In contrast, our dataset facilitates the learning of natural lip motion by encompassing not
just the lips but also the adjacent regions like the cheeks and the chin. As an initial exploration, we will harness the
capabilities of convolutional layers, ensuring we remain within a 200 ms budget. Nevertheless, laying down a robust
streaming model framework seems indispensable as groundwork for our ensuing research.

5.1 Streaming Model Design Framework
The discussion of real-time streaming models requires an understanding of the concepts of cold start, latency, and
receptive field. These elements significantly influence the model design and weigh the advantages and disadvantages of
each design decision in relation to these concepts.

Cold Start & Warm-up
A cold start in a streaming model refers to the initial phase when the model has not received any data from a live stream,
such as an audio signal. The system enters into a warm-up period when the data starts filling up a data buffer but has not
yet accumulated sufficient information for the model to start making meaningful predictions. As a matter of fact, the
predictions during a warm-up period might be noisy and affect the system’s performance. Common practice dictates
that the output should be omitted during the warm-up period, making the system’s response time equal to the warm-up
period. Since a streaming model typically operates over a fixed window size of data or buffer, it requires a certain amount
of data to fill this initial window before it can commence processing and generate accurate predictions based on the
conditions under which the model was trained. The cold start phase presents challenges such as increased initial latency,
proper model parameter initialization, initial data stream connection, and setting up an initial alignment of the incoming
data within the processing window.

Latency
Latency in a streaming model refers to the time delay between the arrival of new data from the live stream and the
expected output by the system or model. Several factors can influence this delay. For instance, the model’s required
lookahead, which indicates how much future data the model needs to make a prediction, is part of the total latency of the
system. Another factor that adds to the total latency is the model’s inference time for processing the incoming streaming
data. Additional latency can also result from post-processing performed over the model’s predictions, e.g., rendering the
rig parameters predicted by a speech-to-animation streaming model.

Receptive Field
The receptive field in a streaming model refers to the range of input data that influences a particular output prediction.
In other words, it represents the number of previous, current, and lookahead data points that the model takes into
account when making a prediction for a given timestep 𝑡. The size and direction of the receptive field are critical design
parameters. Determining the extent of past and future information can determine the accuracy of the model’s prediction.
A larger receptive field typically allows the model to capture more complex and long-term dependencies in the data,
while a smaller receptive field focuses on more immediate and short-term patterns.
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The interplay of cold start, latency, and receptive field is crucial in designing a streaming model or system, with the
balance among these elements influencing the object of design’s overall performance and responsiveness. For instance,
the duration of the cold start period is affected by the receptive field of the model, as a larger receptive field requires
more initial data for an accurate first prediction. Latency, or the delay in producing predictions from an incoming data
stream, is influenced by factors such as the lookahead in the receptive field design. More lookahead data can improve
model performance but may also increase the delay in delivering a prediction. Conversely, reducing these parameters
may decrease both the cold start period and latency, but potentially at the expense of predictive accuracy. Therefore,
designing a streaming model requires a comprehensive understanding of these concepts and carefully considering the
trade-offs to meet the application’s specific requirements, such as real-time responsiveness or the capability to model
complex dynamics in the data stream.
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Figure 5.1: This figure illustrates the various stages and components of a streaming model.

To provide a clear understanding of the concepts, let’s examine an example depicted in Figure 5.1. At the beginning
our system has no data to process, hence no output can be delivered, at this point the system is in the Cold Start stage.
As incoming data is streamed into our buffer, a specific amount of data must fill the buffer before processing by the
designed streaming model. The period when the buffer is being filled is named as the Warm Up stage. During this stage,
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the model’s predictions may be erratic as the model might not be designed to overcome the issue of missing data. In
system’s design this is an important period where the model can be left mute and not output any response until the buffer
is filled, or make it predict under some considerations. Once the buffer is filled with the appropriate amount of data, the
system is said to be in the Live stage, and the prediction model can start processing the input stream to output predictions
related to 𝑡0.

In an ideal scenario, the model does not require a lookahead to make the right predictions at time 𝑡0 or even forecast the
output for time 𝑡0 + 1. This type of model is commonly referred to as a causal model. A causal model would predict
the output of the leading frame as new data enters into the buffer. However, practical experience often indicates that
adding lookahead information enhances the system’s performance, depending on the task. If the models were to operate
causally, the latency would consist solely of the duration needed to obtain a single data frame for processing, thereby
reducing the latency to one frame.

In our specific example, the model requires lookahead, introducing an inherent latency 𝑙rf to the receptive field. It’s
important to recognize that the total latency of the system must account for not only 𝑙rf, but also the inference latency
𝑙infer and the post-processing latency 𝑙pp if an additional step is needed to achieve our final task. The sum of all latencies
results in the response time 𝑡𝑟𝑒𝑠 of our system, which is the total time the system delivers a response related to the data
from 𝑡0.

5.2 Audio Encoding Selection
For the offline model, we explore different configurations based on three different audio encoding models: Wav2Vec,
WavLM, and Whisper. Through a meticulous evaluation, we determined that the CTC-MTL model with WavLM
encodings delivers the best animations from a quantitative and qualitative perspective. At the beginning of this research,
these models were chosen based on their performance metrics and capability for audio encoding. However, transitioning
to a real-time streaming application brings challenges, notably in processing speed and system latency.

Given our prior work with these models, the next step involves assessing their performance in a real-time setting. Key
considerations guide this analysis:

• Real-time Responsiveness: Our offline model was effective, but real-time platforms emphasize processing speed.
Profiling helps gauge the models’ suitability for real-time requirements.

• Hardware Synergy: The offline model was developed for a specific hardware configuration. Real-time consumer
platforms, however, have varying hardware needs. Evaluating performance on CPU and GPU platforms helps
refine our model choice.

• Scalability: This study includes configurations not previously explored, specifically smaller versions of the
WavLM and Whisper models. This provides insight into each configuration’s performance, guiding our model
selection for real-time applications.

For this analysis, we profiled each model using the PyTorch internal profiling tools, considering smaller versions of the
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Table 5.1: Profiling results of various audio encoder models on CPU and GPU for encoding 1 second of audio. The table contrasts
the performance of three prominent models—Wav2Vec, WavLM, and Whisper—in various configurations. The measured times are
presented in milliseconds (ms) to highlight the relative computational efficiency of each model.

Model CPU [ms] GPU [ms]
Wav2Vec large 209.019 7.427
WavLM base 184.070 13.082

large 169.044 19.743
Whisper small 846.706 45.948

medium 2104.000 128.550

WavLM and Whisper models than the ones evaluated for the offline model. The profiling was performed in a machine
with an Intel(R) Xeon(R) Gold 6146 CPU @ 3.20GHz CPU and an NVIDIA Quadro RTX 8000 with 48GB of memory.
The results, presented in Table 5.1, display the computational times required by each audio encoder model to process
one second of audio on both CPU and GPU platforms.

The profiling results show that Wav2Vec (large) model has the fastest GPU processing time at 7.427 ms, while the
Whisper (small) model has the quickest CPU processing time at 846.706 ms. It’s worth noting that the Whisper (medium)
model has the longest CPU time at 2.1 s but remains efficient on the GPU at 128.55 ms. Overall, GPU processing times
are faster across all models. The Wav2Vec and WavLM models, in particular, have reduced encoding times, suggesting
their suitability for real-time applications. Given these findings, we chose the Wav2Vec model for its speed and capability
of processing directly the audio signal since the first layer without any pre-processing step as done by Whisper. The
following sections will discuss the application and outcomes of using Wav2Vec in our real-time setting.

5.3 Streaming Audio Encoding
Using Wav2Vec features for real-time audio processing brings its own set of challenges. Primarily, the design of
Wav2Vec introduces a temporal bias, mainly due to the group normalization (GroupNorm) [162] incorporated in each
convolutional block. GroupNorm operates by normalizing specific groups of channels, as represented by the equation
𝑦 = 𝑥−𝜇𝑔

𝜎𝑔+𝜖
, where 𝜇𝑔 and 𝜎𝑔 are the mean and standard deviation of the group, respectively, and 𝜖 is a small constant.

In Wav2Vec, the normalization considers the temporal progression of the audio, which means both the features and
their occurrence in time influence the model’s output. This inherent bias can complicate real-time audio processing. To
counteract these effects, we’ve introduced a specialized feature selection and processing method depicted in Figure 5.2.

The receptive field of Wav2Vec spans approximately 890 milliseconds, dictating the minimum chunk of audio data
needed to produce a relevant output. Given this, we designed a simulation where an audio stream of the same duration
as our audio frames are captured and processed. Features are extracted from overlapping windows, each advanced by a
stride equivalent to our audio frame duration, which is 20 ms. This method is pivotal for achieving our goal of minimal
latency audio processing.

For training our streaming models, we extract a 3D tensor, 𝑇 , from overlapping context windows. This tensor is defined
as 𝑇 ∈ ℝ𝐹×𝐶×𝑊 , where 𝐹 is the feature size, 𝐶 is the context window size, and 𝑊 represents the number of such
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windows. The count of these context windows, 𝑊 , is computed from the original sequence length 𝑆 at 50 FPS, window
size 𝑤, and stride 𝑠, using the formula 𝑊 =

⌈

𝑆−𝑤
𝑠

⌉

+ 1. In our particular case, we set a window size 𝑤 = 45 and a
stride 𝑠 = 1.

After obtaining the tensor 𝑇 , a design choice was made to downsample the audio by skipping alternate frames, thus
reducing the frame rate from 100 FPS to 50 FPS. This decision ensures the key features from Wav2Vec are preserved
while facilitating real-time processing. Moreover, this approach maintains the original 512-D dimensionality, allowing
for a more compact decoder model.

In the final step, we select all features from the initial context window and the last frame features from all subsequent
context windows. This results in an audio feature 𝑧𝑟𝑡 ∈ 𝑆×𝐹 , which is then used for training the streaming decoder
models.

Timestep

Feature

Context Window

Compute Wav2Vec
Audio Features Skip Frames Select Target

Frames Streaming Features

Sequence Length

Feature

Figure 5.2: Procedure for Real-time Streaming Audio Feature Extraction and Selection. Initially, Wav2Vec features are inferred
from the pre-trained model using overlapping context windows. One frame is omitted to downsample from 100 FPS to 50 FPS. The
final feature from each window is then chosen to construct the streaming features, factoring in the bias from context computation.
Subsequently, a streaming model is trained using the pre-computed streaming features.

5.4 Model
Since we are seeking a real-time solution that processes incoming audio streams as close as we can to the leading
frame, we investigated CNN-based models due to their memory efficiency, speed, and overall robust performance
when compared against a GRU. The goal of our first experiment was to evaluate the relationship between the required
lookahead and the size of the receptive field to achieve smooth and consistent speech animations. For this reason, we
trained two distinct CNN types: a conventional configuration with lookahead and a causal model, specifically, the
Temporal Convolutional Network (TCN) [92]. The standard CNN is formed by blocks of one-dimensional convolutional
layers, followed by a ReLU [3] activation and a GroupNorm [162] layer to enhance convergence and stability. The TCN,
while sharing a similar configuration of building blocks, it differs from a regular CNN by having a constant kernel size
and a dilation factor, enabling the model to widen its receptive field in a causal form as we add layers.

The receptive field size for the CNN, 𝑤𝐶𝑁𝑁 , is usually calculated as:

𝑤𝐶𝑁𝑁 = 1 +
𝑙

∑

𝑖=1
(𝑘𝑖 − 1) ×

𝑖−1
∏

𝑗=1
𝑠𝑗 (5.1)
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Table 5.2: A summary of the TCN model’s performance metrics across varying numbers of layers. The table illustrates the relationship
between the number of layers, receptive field (RF) in frames and milliseconds, RF latency, and the respective L1, L2, and temporal
mean vertex errors (TMVE). Notably, the receptive field expands with additional layers, influencing the model’s error metrics.

Num. Layers Hidden Size per Layer RF [frames] RF [ms] RF Latency [frames] RF Latency [ms] L1 Error L2 Error TMVE
1 [256] 3 60 1 20 4.815 ± 0.681 1.079 ± 0.155 0.0857 ± 0.0774
2 [512, 256] 7 140 1 20 4.545 ± 0.674 1.052 ± 0.156 0.0810 ± 0.0729
3 [512, 256, 128] 15 300 1 20 4.534 ± 0.673 1.051 ± 0.157 0.0802 ± 0.0721
4 [512, 256, 256, 128] 31 620 1 20 4.533 ± 0.677 1.055 ± 0.160 0.0804 ± 0.0723
5 [512, 512, 256, 256, 128] 63 1260 1 20 4.460 ± 0.705 1.039 ± 0.164 0.0804 ± 0.0724

While the TCN’s receptive field is given by:

𝑤𝑇𝐶𝑁 = 1 + 2 ×
𝑙−1
∑

𝑖=0
𝑑𝑖 × (𝑘 − 1) (5.2)

Where, 𝑙 represents the number of layers, 𝑑 is the dilation factor, 𝑘𝑖 denotes the kernel size of the 𝑖𝑡ℎ layer, and 𝑠𝑗 the
stride of the 𝑗𝑡ℎ layer. In our experiments, for the TCN we held the dilation factor constant at 𝑑 = 2 and the kernel size at
𝑘 = 2 through all the layers. For both architectures, the stride was 𝑠𝑖 = 1 through all the layers. We trained a variety of
models with different numbers of layers to measure the impact of the receptive field and how the lookahead information
influences the models’ performance. Additionally, we aimed to discern the optimal receptive field size, ensuring that the
time window effectively captures articulatory elements, aiding in generating accurate speech animations.

It is important to notice that the calculations described in eq. 5.1 and eq. 5.2 correspond to the receptive field while
training the network. However, at inference time, since we want to deliver a prediction as close as possible to the leading
frame, we only consider the last pass over the incoming sequence according to the kernel size of the first layer as the
receptive field latency which is ⌈𝑘∕2⌉. This only applies to the conventional CNN model as the TCN’s receptive field’s
latency remains the same regardless of the number of layers since is a causal model.

As the TCN model’s receptive field doubles with each layer, we try to mimic a similar pattern by doubling the kernel
size on the CNN model. This strategy has also proven to develop in good results as it is the main core idea of work like
SGConv [95] and FFTNet [75].

Table 5.2 offers a comprehensive summary of the TCN model’s performance when varying the number of layers. As
anticipated, increasing layers in the causal model augments the receptive field. For instance, a single-layered TCN has a
receptive field of 60 𝑚𝑠, which escalates to 300 𝑚𝑠 and 620 𝑚𝑠 for three-layer and four-layer networks, respectively. A
notable observation is a similarity in performance between the three-layer and four-layer networks, especially given that
their L1 and L2 errors are very close (4.534 ± 0.673 and 1.051 ± 0.157 for the three-layer network compared to 4.533
± 0.677 and 1.055 ± 0.160 for the four-layer one). Introducing a fifth layer pushes the receptive field to 1.26 seconds,
resulting in the lowest mean L1 and L2 errors of 4.460 ± 0.705 and 1.039 ± 0.164, respectively. However, the vertex
error remains relatively unchanged across the models. Notably, the optimal temporal mean vertex error (TMVE) is
achieved with the three-layer TCN at 0.0802 ± 0.0721. The model seems to achieve the best balance of performance and
complexity when designed with three layers.

Table 5.3 shows the impact of layer variation of the CNN model, which increases the receptive field of the model,
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Table 5.3: Performance evaluation of the CNN model across different numbers of layers and kernel sizes. The table presents the
model’s receptive field, RF latency, and associated error metrics. It’s highlighted that increasing the layers influences the receptive
field and the subsequent need for input padding, affecting the overall performance.

Num. Layers Kernel Size per Layer RF [frames] RF [ms] RF Latency [frames] RF Latency [ms] L1 Error L2 Error TMVE
1 [3] 3 60 2 40 4.660 ± 0.708 1.067 ± 0.163 0.0842 ± 0.0757
2 [7, 3] 9 180 4 80 4.402 ± 0.712 1.018 ± 0.164 0.0789 ± 0.0702
3 [15, 7, 3] 23 460 8 160 4.275 ± 0.703 0.991 ± 0.163 0.0758 ± 0.0676
4 [31, 15, 7, 3] 53 1060 16 320 4.297 ± 0.708 0.996 ± 0.165 0.0758 ± 0.0678

resulting in an increase in latency to deliver a prediction. The tendencies observed in the TCN as depicted in Table 5.2 are
parallel for the CNN model. As the number of layers increases, so does the receptive field, consequently introducing more
latency as denoted in the RF Latency column. Notably, the four-layer model, with a receptive field of 1060 𝑚𝑠, exceeds
the 1 𝑠 subsampling window set for training. This necessitates the first layer to apply padding to the inputs, introducing
artificial information to the network and adversely affecting performance metrics. The three-layer configuration stands
out with an L1 error of 4.275 ± 0.703, L2 error of 0.991 ± 0.163, and TMVE of 0.0758 ± 0.0676. However, these values
still lag behind the offline encoder-decoder model, which employs Wav2Vec 𝑐−features and a bidirectional GRU, as
detailed in Table 4.7 from the previous chapter.

5.4.1 Reincorporating the idea of Multi-task Learning CTC
In Chapter 4, we highlighted the efficacy of regularizing the rig parameter sequence decoder in PhISANet using a
CTC to align the phone sequences corresponding to the audio while training the speech-to-animation network. This
regularization enhanced the model’s performance, leading to better animations, as supported by a series of user studies.
Building on this concept and the insights from the previous section, we explored whether a streaming model, like the
one under examination, could similarly benefit from CTC regularization. Integrating the CTC into the training process is
straightforward, given that the streaming model is trained on pre-computed streaming features. These features, detailed
in Section 5.3, align seamlessly with the offline data.

For consistency in our approach, we conducted a parameter sweep over the weighting coefficient of the auxiliary task
using identical value sets. These experiments yielded results similar to those observed for the offline model, as presented
in Table 4.5). A notable observation was a saddle point occurring at 𝜆𝐶𝑇𝐶 = 0.004, resulting in a slight improvement
over the original results.

Upon determining the optimal CTC coefficient, we revisited the CNN model experiment by setting them as a multi-task
learning model with a CTC. While there was a modest enhancement across the board, it wasn’t as significant as the
improvements observed in the offline model, as detailed in Table 5.5. Notably, including the CTC helped mitigate the
challenges previously encountered with the four-layer model. This adjustment led to the lowest L1 error of 4.238 ± 0.722,
L2 error of 0.983 ± 0.170, and TMVE of 0.0755 ± 0.0676, making it the top performer in this set. However, despite
these improvements, the four-layer model’s latency of 320 𝑚𝑠 renders it unsuitable for consumer-based applications
due to noticeable delays of almost 1/3 of a second. On the other hand, the three-layer model, with its more manageable
latency of 160 𝑚𝑠, an L1 error of 4.270 ± 0.704, L2 error of 0.990 ± 0.164, and TVME of 0.0767 ± 0.0684, offers a
more practical solution for real-world applications.
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Table 5.4: Performance metrics of the streaming model under varying 𝜆𝐶𝑇𝐶 regularization coefficients. The table showcases the
relationship between the weighting coefficient of the auxiliary task and the resulting L1 and L2 error on the rig parameter space, as
well as the temporal mean vertex error (TMVE). A saddle point in performance is observed at 𝜆𝐶𝑇𝐶 = 0.004.

𝜆𝐶𝑇𝐶 L1 Error L2 Error TMVE
0.5 4.403 ± 0.702 1.018 ± 0.164 0.0798 ± 0.0714

0.25 4.366 ± 0.691 1.009 ± 0.160 0.0787 ± 0.0703
0.125 4.333 ± 0.723 1.002 ± 0.169 0.0783 ± 0.0698
0.064 4.311 ± 0.691 0.995 ± 0.161 0.0771 ± 0.0687
0.032 4.296 ± 0.699 0.992 ± 0.163 0.0767 ± 0.0684
0.016 4.276 ± 0.709 0.990 ± 0.167 0.0769 ± 0.0685
0.008 4.273 ± 0.703 0.990 ± 0.165 0.0768 ± 0.0684
0.004 4.270 ± 0.704 0.990 ± 0.164 0.0767 ± 0.0684
0.002 4.270 ± 0.702 0.990 ± 0.165 0.0768 ± 0.0685
0.001 4.272 ± 0.701 0.990 ± 0.163 0.0789 ± 0.0702

Table 5.5: Performance evaluation of the CNN trained with a CTC via MTL across different numbers of layers and kernel sizes.
The table presents the model’s receptive field, RF latency, and associated error metrics. It’s highlighted that increasing the layers
influences the receptive field and corrects when the receptive field surpasses the training window. There is an overall improvement
when compared versus the non-CTC version of the models.

Num. Layers Kernel Size per Layer RF [frames] RF [ms] RF Latency [frames] RF Latency [ms] L1 Error L2 Error TMVE
1 [3] 3 60 2 40 4.608 ± 0.700 1.058 ± 0.162 0.0842 ± 0.0756
2 [7, 3] 9 180 4 80 4.392 ± 0.705 1.016 ± 0.163 0.0794 ± 0.0708
3 [15, 7, 3] 23 460 8 160 4.270 ± 0.704 0.990 ± 0.164 0.0767 ± 0.0684
4 [31, 15, 7, 3] 53 1060 16 320 4.238 ± 0.722 0.983 ± 0.170 0.0755 ± 0.0676
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5.5 Qualitative Results
For a comprehensive evaluation of our models, it’s crucial not only to rely on metric analyses but also to inspect the
generated outputs visually. Initially, we analyzed how a 4-layered TCN, a 3-layered CNN, and its CTC counterpart
responded to white noise, which is analogous to silence for human perception. The visual outcomes are accessible via
this link. Notably, the TCN model exhibits a consistent mouth motion, while the CNN models display lesser movement,
resulting in a mildly open mouth and lower lip motion during silent intervals across all models. This behavior could
present challenges while generating seamless animations.

Another visual examination was conducted using an in-domain sample from our test set. The video available here
highlights the correct motion patterns across the three models. Although the TCN model displays undesired motions, the
CNN-CTC model showcases more pronounced lip and tongue movements, especially during open vowels or diphones
requiring lip protrusion. This phenomenon becomes particularly evident in an out-of-domain sample featuring an infant’s
voice.

Comparative analysis of animations from the three streaming models with a singing sample reveals that while jitter
seems to be reduced, it is still present. Notably, the coarse movements of the lips, jaw, and tongue are as anticipated,
though they are accompanied by constant unintended motions, breaking the illusion of the animation. This discrepancy
becomes more evident when compared against our best-performing offline model, which integrates the combination of
the encoder layers from WavLM Transformer and is regularized with a CTC, as seen in the same singing sample. The
offline model’s articulation is more refined, with a broader range of jaw and tongue movements, which are less evident
in the streaming model.

5.6 Discussion
In this chapter, we focused on developing a real-time streaming solution for animating speech with lifelike characters,
exemplified by MetaHumans [47]. Our choice to utilize the Wav2Vec model for audio encoding was influenced by its
efficiency: it processes one-second context windows in just 7.427 𝑚𝑠 on an NVIDIA Quadro RTX 8000 GPU. Notably,
this speed is double that of the WavLM model.

Our experimental approach aimed to understand two key factors: the influence of lookahead and the impact of a model’s
receptive field size. To gain comprehensive insights, we compared the performance metrics of two well-established
architectures: the CNN and the TCN. Our findings indicated that both lookahead and causal models, when augmented
with additional layers, exhibited increased receptive fields and improved performance. However, it’s imperative that
the receptive field remains within the duration bounds of training samples. Exceeding this limit adversely affects
performance, as evidenced by elevated L1 and L2 mean errors and the TMVE with the CNN.

Building on experience from PhiSANet, we further investigated whether multi-task learning—using a CTC auxiliary
task to align allophonic sequences—could enhance the performance of the top-performing three-layer CNN with a 160
𝑚𝑠 lookahead. This exploration yielded marginal improvements across all metrics.

Based on our visual assessments, it becomes evident that the animations generated by the TCN model exhibits significant
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noise, rendering them unsuitable for practical applications. Incorporating a CTC with the CNN model improves the
representation of specific phonetic motions, particularly while articulating rounded and open vowels, and a slightly
improved tongue positioning. Nonetheless, the resultant animations, while improved, still contain a degree of noise that
makes them challenging to deploy in industry-standard scenarios.

Based on the data presented in this chapter, we’re optimistic about the potential of a real-time streaming speech-animation
model capable of delivering fluid and natural facial and tongue motions at a rate of 30 FPS. The model’s inference
time is notably under 20 𝑚𝑠. Moreover, when considering the receptive field latency of 160 𝑚𝑠 inherent to the design
of our best-performing model in relation to the incoming audio signal and assuming frame rendering stays below ten
milliseconds, it becomes evident that a model rendering speech animations at 30 FPS is within reach with a cumulative
delay of 190 𝑚𝑠 with respect to the incoming audio signal. However, further research and meticulous engineering are
important to compress and optimize these models to be pushed into production.
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CHAPTER 6

CONCLUSIONS

In this thesis, we proudly present and release the IMT’22 and IMFT’23 datasets [106]. The IMT’22 is a novel speech-to-
tongue mocap dataset, which includes 2.55 hours of speech data and corresponding inner-mouth motion captured through
an EMA device. This dataset is unique because it employs parasagittal sensors and the canonical midsagittal setup used
in speech pathology studies. Our diphonic analysis [105] has confirmed the significance of these sensors in obtaining
accurate 3D deformations of the tongue by analyzing its curvature and width. This dataset facilitates the continuous
animation of the tongue in 3D models and, to some extent, drives the 3D model’s face. Furthermore, it provides reliable
data for training models that precisely estimate jaw motion - a critical component in speech-to-animation for realistic
animations.

As a first approach, we developed a two-stage speech-to-animation pipeline, which served as a preliminary approach.
The first stage involved training an encoder-decoder model to predict EMA landmarks from raw speech signals, which
were subsequently transformed into the space of the 3D model of the actor who provided the data. In the second
stage, we employed a second-order optimizer that minimized the distance between the transformed predicted landmarks
and their corresponding landmarks on the 3D model. Our experiments showed that neural audio representations
outperformed traditional audio feature representations like phone representations and MFCC for speech-to-animation
purposes. Moreover, through an ablation study of different audio representations, we found that a Wav2Vec model for
audio encoding and a five-layered bidirectional GRU for landmark prediction achieved the best results with a temporal
MSE of less than 1.77 on our test set and proved to generalize across different voices across gender, age, and language
mainly due to our transfer learning approach by using audio feature representations from self-supervised models trained
on hundreds of hours of speech from a diverse set of speakers. To our knowledge, this is the first work to introduce
neural audio representations into the speech-to-animation field.

We discovered a compelling insight while evaluating our two-stage pipeline using a pairwise preference user study.
Participants preferred to observe an animated tongue during speech animations, even when the animation did not
correspond precisely to the actual speech. Importantly, our predictions were still preferred over the mismatched
animations and sometimes confused with animations generated from ground-truth data.
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Our initial approach demonstrated the feasibility of generating animations using the IMT’22 dataset. However, due to
significant computational demands during the second stage and the limited realism of solely using EMA sensors to
drive facial animation, we sought to approach the problem from an end-to-end perspective to generate more realistic
animations in less time. We created the IMFT’23 dataset to facilitate this approach, which builds on the IMT’22 by
including visual data captured during EMA sessions. This dataset contains audio samples and 3D landmarks of the
tongue, face, and lips. We generated a sequence of rig parameters per audio sample using the L-BFGS optimizer as
we did with the EMA data. This allowed us to train end-to-end models capable of predicting the animation parameters
directly from speech audio, which could then be fed into a rendering engine.

We comprehensively analyzed robust and recent neural audio representations trained on large-scale audio datasets
comprising thousands of hours for various tasks to achieve the most optimal end-to-end model. In addition to our initial
investigation on the applicability of Wav2Vec to Speech Animation, we explored other models, such as Microsoft’s
WavLM and OpenAI’s Whisper. The results presented in this study demonstrate that any of the neural representations we
explored can effectively map audio inputs to smooth and continuous animations for the lower face, including the tongue.

Traditionally, speech-to-animation models have often utilized Mean Squared Error (MSE) loss to train the models,
incorporating either the instant velocity and/or acceleration of the mesh vertices or even a proxy of the acceleration
without any analysis or justification for adding such terms. In this work, we conducted a comprehensive study that
empirically validates the superiority of incorporating two weighted loss terms for the velocity and acceleration of the
animation parameters instead of relying solely on MSE loss. Our experiments showed, for example, that the temporal
mean L1 error on the rig parameters space with a relative improvement of approximately 10%, while the L2 approximately
improves by 2% across all the audio features of this study, by just enforcing a weighted error of the predicted velocity
and acceleration with respect to the ground truth to the training loss. We conclude that for any of the neural-based audio
feature representations presented in this work, adding these terms delivers better results than just optimizing through the
MSE loss.

Additionally, we introduced a novel model called PhISANet (Phonetically Informed Speech-to-Animation Network).
PhISANet harnesses the richness of features from all the transformer encoder layers in modern audio feature represen-
tations and incorporates phonetic information through a Connectionist Temporal Classifier (CTC) to align the phone
sequence extracted from audio using a forced aligner from our IMFT’23 dataset. Our experiments prove that the
regularization of the decoder in PhISANet produces realistic and continuous speech animations for the lower face,
exhibiting natural and plausible tongue motion with a sub-millimeter temporal mean vertex error on the mesh space.
The addition of phonetic information into the network improves the motion on the lower lip and the region between the
lower lip and the chin for all the models, regardless of the audio feature representation used to encode the speech signal,
while also reducing the overall error of the tongue with a high emphasis on the tongue tip.

Through meticulously crafted user studies, we identified potential areas for enhancing the realism of generated data. On
average, users felt that while animations created using ground truth aligned with the audio, they weren’t flawless. Another
study highlighted that animations produced by PhISANet, especially when augmented with WavLM audio features,
were more compelling for out-of-domain samples with a preference greater than 60% over the models trained with
Wav2Vec and Whisper. This indicates their potential for broader acceptance in real-world applications. Furthermore,
this highlights the idea that animations derived from a model trained with a CTC auxiliary task are generally more
favorably received than those without it, as the preference rate increased from 45.5% to 57.2% of the users.
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As speech-only animations reach new levels of realism, there is a growing need for metrics that can effectively assess
the plausibility and realism of these generated animations. To address this, we propose incorporating visual speech
recognition networks, particularly lip-reading networks, to quantify the animations’ authenticity and fidelity. This
approach ensures that the generated animations closely align with the input utterances provided to the model. To establish
a standardized benchmark for speech-to-animation models and facilitate meaningful comparisons between different
methods, we advocate for adopting the state-of-the-art AvHuBERT model. Although our experiments were limited with
a lower WER of 59.8% and CER at 44.6%, the results are compelling and open the door to keep on exploring and settling
a benchmark that will provide a common ground for the community to evaluate and compare the different approaches to
solve the problem of speech animation. Such a benchmark becomes increasingly essential as the field progresses toward
more realistic animations.

In our concluding experiments, we showcased the potential of a real-time model that animates the lower facial region,
including the lips, jaw, and tongue, from a continuous audio stream signal. We favored the Wav2Vec encoder for audio
processing due to its speed advantage over both the WavLM and Whisper encoders. Through our tests, the CNN emerged
as an adept model for generating speech animations, outpacing the GRU in terms of speed. While quantitative metrics
suggest that this model doesn’t quite match the performance of our top offline variant, a qualitative assessment of
out-of-domain samples reveals the animations to be convincingly realistic during regular speech. Nonetheless, to improve
the animation quality, further exploration is required. Potential improvements could stem from integrating attention
mechanisms [154] into the CNN or delving into other causal architectures suitable for our final task of generating
realistic-looking speech animations.
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CHAPTER 7

WHERE DO WE GO FROM HERE?

In this study, we’ve adopted several strategies from the field of Automatic Speech Recognition (ASR), such as the
utilization of large-scale pre-trained models, regularization of the model through a Connectionist Temporal Classification
(CTC), and the application of Visual Speech Recognition (VSR) models to assess our model’s performance using a
quantifiable perception metric. However, this represents only a fraction of the full scope of possibilities in this research
area. Given the constraints of a Ph.D. program, we are unable to explore all potential avenues.

In this final chapter, we will delve into potential pathways to advance the creation of realistic facial animations from
speech. While we’ve made considerable progress in the preceding chapters, there remain aspects that demand further
exploration and development. In the subsequent sections, we will discuss ideas that were not fully realized during this
study and suggest directions for future research.

7.1 End-to-End Model
Data availability poses a significant constraint when training an end-to-end model that directly maps audio-to-face
animation without relying on pre-trained audio feature representations. Our study achieved realistic and continuous
results by leveraging robust audio feature representations and the IMFT’23 dataset, which comprises 2 hours and 17
minutes of paired audio and corresponding face/tongue motion data. However, this data is not enough to train an
end-to-end model that generalizes as well as our current encoder-decoder approach since the data only has one speaker.
To overcome this problem, we could train an end-to-end speech-to-face-animation model by bootstrapping a synthetic
dataset generated by our current best model, taking as input the audio from a large corpus with a diverse set of voices
and generating the corresponding sequence of rig parameters. Then, we would have enough data to train a generalizable
end-to-end model. LibriSpeech [113] is a large-scale and commonly used dataset for speech-related tasks due to its
clean alignment between speech and text and variability of the voices due to the speakers’ performance while reading
a book. Another potential dataset that could be used to bootstrap our model is VoxPopuli [156] formed by over 400
thousand hours of unlabeled speech from 23 languages taken from the European Parliament event recording. Including
different languages could enrich our model and make it more robust to multilingual inputs. Nonetheless, it is worth
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noting that this approach is limited by the upper bound of the best model and will transfer the inherited errors learned
into the new end-to-end model.

7.2 Data Augmentation
Another interesting avenue to augment the IMFT’23 dataset is through voice cloning. Voice cloning is the process of
synthesizing or replicating an individual’s voice over a given input, such as text or speech. This field of research is
filled with exciting results [74], [91], [133] where the synthetic voice sounds the same as the target voice to an untrained
human ear. For our task, we could do voice cloning from speech to speech, keeping the pace and prosody to augment the
data by generating new audio samples with a different voice from our original actor and assigning the corresponding
face and inner mouth animation parameters.

7.3 Future Data Capture
The IMFT’23 dataset, discussed in Chapter 4, has demonstrated its value in creating authentic animations of the lower
face and tongue. However, there is potential for further enhancement in future capture sessions. The limitations of the
existing model could be overcome by collecting data from a more diverse group of actors—varying in gender, age, and
spoken language. Future sessions could also focus on capturing facial and oral movements across a broad spectrum of
emotions and extreme motion situations. This would provide the model with richer data to extrapolate from in extreme
scenarios such as a Viking’s fierce battle cry or an exuberant shout of victory in a video game.

Up to this point, we have achieved realistic lip surface deformations by tracking the vermillion border and integrating
rotation data from the EMA sensors. Nonetheless, certain areas need enhancement, especially in ensuring the mouth
closes fully and in the movement dynamics of the lower lip. As observed in this video, the lower lip in our dataset
consistently protrudes more than that of the original actor, causing the lower teeth to be more visible than in natural
scenarios. This deviation could result from our prevailing optimization approach or the solution of the MetaHuman rig
parameters. Further investigation and refinement are essential to address these issues.

Moreover, we need to improve the mouth motion for non-speech audio, e.g., coughing, as seen on this video sample.
Note how the lips follow a natural motion when they are about to open and close the mouth (00:12), as well as the
jaw motion through the whole sequence. However, the motion of the cheeks and the tongue placement leave room for
improvement since the animation does not reflect the constriction that occurs during an expectorating cough. Moreover,
more complex lip motion, such as the one occurring during lips moistening with the tongue or pursing of the lips during
a deep thought process, has yet to be captured and learned to be generated from their corresponding audio. A potential
solution might be integrating markers similar to those used on the face into the 3D reconstruction process. However, this
method, while an advancement, may not be ideal due to the sparsity of the points, necessitating further research from a
computer vision perspective.

Furthermore, the inclusion of non-speech gestures into the audio-to-face animation dataset would add further richness.
Nonverbal communication plays a pivotal role in human interaction [44], and accurately reproducing it based on non-
speech audio cues can significantly augment the authenticity of animations. Initial steps in this direction could involve
guiding eye gaze and synchronizing suitable head movements with the sound. For example, an exuberant shout might
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be associated with a certain degree of eye closure and neck muscle tension. Likewise, an affirmative sound such as
mmm-hmm or uh-huh, especially in Western English-speaking contexts, would typically be accompanied by a nod of the
head. However, as highlighted by Fares et al. [50], it is crucial to acknowledge that effectively capturing the motion of
the upper face and head necessitates both contextual information and low-level audio features. In the framework of a
neural network paradigm, these can be extracted from a sentence embedding produced by a Language Model trained on
vast amounts of data and a convolutional-based network instead of using the F0 formants.

7.4 More Complex Models
Collecting richer and more diverse data will require models of greater complexity. As we broaden the variance in
voice and emotional speech, having more control over the type of animation being generated would be beneficial. An
initial approach to consider is the use of a Conditional Variational AutoEncoder (cVAE), as suggested by Aylagas et
al. [9]. In this context, the conditional state could encode a limited and predefined set of emotions. A progressive
move in this direction would be to regulate the generated articulation—from subtle animation through regular motion to
extreme gestures—based on the end user’s requirements or application. Another approach to this problem is through
a well-designed multi-task learning approach, different from what we have achieved through PhISANet; all tasks are
considered as main tasks requiring vast experimentation and fine-tuning.

Recurrent Neural Networks (RNNs) have shown promise in generating fluid and continuous animations, although they
are not without limitations. Overfitting can lead to the problem of generated animations from speech collapsing towards
a mean face. Additionally, their design inherently benefits from a bidirectional pass, rendering them less suitable for
streaming applications.

An innovative category of RNNs known as RWKV was recently introduced [118]. This model was designed to be trained
similarly to a Transformer, but it uniquely operates without the need for any Attention, thus reducing the amount of
memory required during training. At inference time, it behaves like an RNN and can implicitly handle an ”infinite”
context length due to the ingenious design of its time and channel mixing layers. Although its initial design targets the
creation of Large Language Models, there is potential for RWKV to be employed in speech-to-animation tasks. This
presents an exciting opportunity for future exploration.

7.5 Model Compression and Computational Reduction
The current real-time model suits solutions where the video is shown at 25 frames per second (FPS). However, modern
games, video conferencing, and streaming applications usually run at 60 FPS or beyond.

Recent work on talking faces [80] has shown how to compress and speed up the Wav2Lip model [124] by reducing
the number of parameters by a factor of 10 and achieving a 28-fold computational reduction. The main ideas are to
remove residual connections, reduce the number of parameters by training a smaller model through multi-granular online
knowledge distillation, and post-training quantization of the layers of the face decoder.

The authors of [80] found that quantizing all the layers in the decoder to INT8 or FP16 from FP32 deteriorates the
model’s performance. However, they found that layers closer to the final output with a larger precision, such as FP16 or
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FP32, bring the best results. They found that a mixed model with the initial layers in the decoder with an INT8 precision
and layers with an FP16 precision on the output block results in a model with a performance close to the original model,
which was trained with a precision of FP32.

Quantizing the layers of the real-time model proposed in this work is an attractive avenue for future work. This would
reduce the model’s memory footprint on the machine and transmission costs whenever it is updated online in any
application. It would also potentially result in a faster model, closing the gap for a solution closer to 60 FPS.

One thing to consider is that the streaming model presented in this work is formed by mainly three convolutional neural
networks (CNNs), where the first two correspond to the Wav2Vec audio feature representation computation and the third
CNN is the animation decoder formed by three convolutional and one self-attention layer, as described in Chapter 5.
Based on the results presented by [80], it seems worth exploring the quantization or distillation of the Wav2Vec model
since the animation decoder layers are closer to the output.

7.6 Audio Feature Representations
The training of neural networks with a large corpus to improve the performance of the models is well-known in the
Computer Vision community. ImageNet [38] introduced this practice when a huge improvement occurred in image
classification when they provided a large labeled corpus with a hierarchical structure that contains over 1.2 million
images, and AlexNet [88] proved that CNNs could be trained with a corpus of that magnitude. Despite the years,
this phenomenon continues to occur in more challenging tasks such as text-to-image generation with corpus such as
LAION-5B with 5.8 billion samples open to the public and work like GigaGAN [77] have benefited from. A similar
pattern is being replicated within the audio processing community, advancing from the popular LibriSpeech dataset
formed by approximately 960 hours of book reading speech to models like Whisper, which was trained on over 680
thousand hours of audio of speech from several languages and non-speech audio from quiet to noisy environments. These
audio feature representations have proven useful for the Speech-to-Animation field of study, as presented in this work.
Without a doubt, newer feature representations yet to come in the following months on models trained on hundreds
of thousands, or even millions of hours, and will be even more robust to noise, able to detect non-speech signals, and
suitable to encode the prosody and emotion than what we currently have. This new feature representation will help
us achieve a richer animation of the full. I believe the next generation of audio features will capture some sense of
semantics if trained as done for AudioPaLM [133].

7.7 Interactive Agents
With the advent of Large Language Models (LLMs) like Bloom [134], Chat-GPT4 [112], and PaLM2 [54], the creation
of imaginative, responsive, interactive agents that behave naturally is becoming more attainable. A common method
for creating speech-based interactive agents would adopt a pipeline approach, as proposed by [35], but with the added
element of an LLM. This process would entail four key stages:

1. An Automatic Speech Recognition (ASR) module to transcribe incoming speech.

2. An LLM to interpret the user’s input and formulate a response.
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3. A Text-To-Speech (TTS) module to generate a speech signal of the response.

4. A speech-to-animation module to visualize the interactive agent.

A pipeline as the one described is feasible with great quality results. However, a recently proposed model named
AudioPaLM by Rubenstein et al. [133] shows that speech embeddings can be integrated with pre-trained language
models to achieve end-to-end speech-to-speech tasks like simultaneous spoken language translation. One intriguing idea
worth exploring is modifying this model class to simultaneously generate animation as the speech is being produced
instead of making it a subsequent step after the speech signal has been created, as described above.

The advent of interactive agents promises to bring transforming changes across many sectors. For instance, these agents
could revolutionize the restaurant booking system within customer service. By naturally understanding and responding
to spoken language, they could optimize the reservation process and elevate the user experience.

In healthcare, interactive agents could serve as the first point of contact for patients seeking new services. By understanding
and addressing patients’ needs compassionately and responsively, these agents have the potential to bridge the divide
between technology and personalized care.

The realm of education could also see a significant impact, particularly in the field of speech therapy. As an interactive
and adaptive tool, these agents could assist children with speech impairments, facilitating their efforts to speak more
effectively.

In the retail industry, in-store and online shopping experiences could be greatly enhanced. The agents could respond to
customer queries and provide personalized recommendations, taking the shopping experience to unprecedented levels of
convenience and personalization.

Furthermore, these agents could serve as effective mitigators of mood swings and repetitive tasks in call centers. By
efficiently addressing customer inquiries and complaints, they would not only increase productivity but also enhance the
quality of service.

7.8 Final Words
As we conclude this thesis, it is fitting to reflect on the direction and implications of this research. The primary goal of
this work has been to advance the field of speech animation, focusing on animating realistic 3D characters that reflect
natural human speech. By doing so, we aim to enable our digital selves in virtual worlds to transcend their applications,
achieving a novel form of expression and interaction.

Our principal findings remark that speech-to-animation models can leverage pre-trained audio representation models
enriched with immense amounts of data and adapt them to the specific task of animating 3D characters. This adaptation
was made possible through the capture and processing of relevant data, such as the face, tongue, and jaw motions from
different modalities.
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At the time of writing this thesis, Large Language Models (LLMs) are witnessing a significant renaissance, revolutionizing
how we interact with systems through natural language. This success is largely attributable to the sophisticated design of
models capable of capturing language nuances and the availability of vast data resources. Initially limited to text only,
but projects like DeepMind’s Gemini continue to explore and incorporate various modalities, fostering an any-to-any
modality paradigm. Concurrently, the research community is actively investigating ways to run these models locally
without needing clusters of servers to benefit from these models. There is little doubt that global researchers will achieve
this feat in due course.

Our research has demonstrated that it is possible to streamline the speech-animation pipeline. We have transitioned from
a traditional approach—relying on the computation of phonemic representations from speech signals, aligning visemes
to these phonemic representations, and interpolating between visemes to determine animation parameters—to a more
direct and efficient method. This new approach animates a 3D head, including intricate inner mouth elements such as
the tongue and jaw, solely from the speech signal.

A foundational premise of driving a 3D model, rather than rendering a 2D image directly, was the aspiration to generate
novel and realistic views across various scenarios. Estimating the sequence of rig parameters and rendering in an engine
such as Unreal Engine is one more step in our speech-to-animation pipeline, which could be reduced. For instance,
recent progress in Neural Radiance Fields (NeRF) has shown that these models can capture the personal appearance of a
head and generate novel views through input parameters. There’s little doubt that diverse modalities like text or audio
could drive these models in the near future.

The success of universal models, such as Gemini, prompts the expectation that we may achieve a comprehensive model
capable of rendering realistic talking faces from any modality. This could encompass interpreting a person’s spoken input,
generating synchronized speech and visual rendering, or even replicating our tone and mannerisms when answering
to the input either through text, voice, or video from known individuals. The possibilities are endless, profound, and
promising, extending our understanding of human communication and opening new horizons for virtual interactions
either driven by people or simulating agents.

It is clear we are only at the outset of a substantial journey into the future. The initial results from exploring this
field have been promising, and the potential for further advancements is considerable. This early stage of end-to-end
speech-to-animation development has the potential for further research.

With each stride, we broaden our knowledge and challenge the existing boundaries. We can expect this field to evolve
and mature in both the near and distant future as we aim to develop increasingly sophisticated and realistically looking
interactive agents. This path forward invites us to continue probing, discovering, and refining the ideas proposed in this
work and the research community.

While the journey ahead may be extensive, each step brings us closer to a future where technology augments and
enhances human interaction, reshaping how we communicate, learn, work, and live. As we look forward, let us do so
with cautious optimism, prepared for the challenges and opportunities that undoubtedly lie ahead.
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[81] Hyeongwoo Kim, Mohamed Elgharib, Hans-Peter Zollöfer, Michael Seidel, Thabo Beeler, Christian Richardt, and
Christian Theobalt. Neural style-preserving visual dubbing. ACM Transactions on Graphics (TOG), 38(6):178:1–
13, 2019.

[82] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias Niessner, Patrick Pérez,
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[145] Ingmar Steiner, Sébastien Le Maguer, and Alexander Hewer. Synthesis of tongue motion and acoustics from text
using a multimodal articulatory database. IEEE ACM Trans. Audio Speech Lang. Process., 25(12):2351–2361,
2017.

[146] Ingmar Steiner and Slim Ouni. Artimate: an articulatory animation framework for audiovisual speech synthesis.
ArXiv, abs/1203.3574:1–4, 2012.

[147] Ingmar Steiner and Slim Ouni. Progress in animation of an ema-controlled tongue model for acoustic-visual
speech synthesis. ArXiv, abs/1201.4080:1–8, 2012.

[148] Maureen Stone and Andrew Lundberg. Three-dimensional tongue surface shapes of english consonants and
vowels. The Journal of the Acoustical Society of America, 99(6):3728–3737, 1996.

[149] Supasorn Suwajanakorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman. Synthesizing obama: learning lip
sync from audio. ACM Transactions on Graphics (TOG), 36(4):1–13, 2017.

[150] Sarah L. Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anastasio Garcia Rodriguez, Jessica
Hodgins, and Iain Matthews. A deep learning approach for generalized speech animation. ACM Transactions on
Graphics (TOG), 36(4):1–11, 2017.

[151] Sarah L. Taylor, Moshe Mahler, Barry-John Theobald, and Iain Matthews. Dynamic units of visual speech. In

123



Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on Computer Animation, pages 275–284,
Postfach 2926,Goslar,Germany, 2012. Eurographics Association.

[152] Sarah L. Taylor, Moshe Mahler, Barry-John Theobald, and Iain Matthews. Dynamic units of visual speech.
In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’12, pages
275–284, Postfach 2926, Goslar, Germany, 2012. Eurographics Association.

[153] Guanzhong Tian, Yi Yuan, and Yong Liu. Audio2face: Generating speech/face animation from single audio
with attention-based bidirectional lstm networks. In 2019 IEEE International Conference on Multimedia Expo
Workshops (ICMEW), pages 366–371, Shanghai, China, 2019. IEEE.

[154] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762:1–12, 2017.

[155] Konstantinos Vougioukas, S. Petridis, and M. Pantic. End-to-end speech-driven facial animation with temporal
gans. In BMVC, pages 1–12, Newcastle, UK, 2018. Springer.

[156] Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson,
Juan Pino, and Emmanuel Dupoux. VoxPopuli: A large-scale multilingual speech corpus for representation
learning, semi-supervised learning and interpretation. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 993–1003, Online, Aug. 2021. Association for Computational Linguistics.

[157] Danny Websdale, Sarah L. Taylor, and Ben P. Milner. The effect of real-time constraints on automatic speech
animation. In Interspeech, 2018.

[158] Xin Wen, Miao Wang, Christian Richardt, Ze-Yin Chen, and Shi-Min Hu. Photorealistic audio-driven video
portraits. IEEE Transactions on Visualization and Computer Graphics, 26(12):3457–3466, 2020.

[159] Reiner Wilhelms-Tricarico. Physiological modeling of speech production: Methods for modeling soft-tissue
articulators. The Journal of the Acoustical Society of America, 97(5):3085–3098, 1995.

[160] Jonghye Woo, Fangxu Xing, Maureen Stone, Jordan Green, Timothy G Reese, Thomas J Brady, Van J Wedeen,
Jerry L Prince, and Georges El Fakhri. Speech map: A statistical multimodal atlas of 4D tongue motion during
speech from tagged and cine MR images. Computer Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization, 7(4):361–373, 2019.

[161] Alan Wrench. The mocha-timit articulatory database, 1999.
[162] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer vision

(ECCV), pages 3–19, 2018.
[163] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu,

Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing universal performance benchmark.
arXiv preprint arXiv:2105.01051, 2021.

[164] Jia Ying, Jason A. Shaw, Christopher Carignan, Michael Proctor, Donald Derrick, and Catherine T. Best. Evidence
for active control of tongue lateralization in australian english /l/. Journal of Phonetics, 86:101039, 2021.

124



[165] Youngwoo Yoon, Pieter Wolfert, Taras Kucherenko, Carla Viegas, Teodor Nikolov, Mihail Tsakov, and Gustav Eje
Henter. The genea challenge 2022: A large evaluation of data-driven co-speech gesture generation. In Proceedings
of the 2022 International Conference on Multimodal Interaction, ICMI ’22, page 736–747, New York, NY, USA,
2022. Association for Computing Machinery.

[166] Jun Yu, Chen Jiang, and Zengfu Wang. A fast and precise speech-triggered tongue animation system by combining
parameterized model and anatomical model. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 1624–1627, Shenzhen, China, 2016. IEEE, IEEE.

[167] Lingyun Yu, Jun Yu, and Qiang Ling. Bltrcnn-based 3-d articulatory movement prediction: Learning articulatory
synchronicity from both text and audio inputs. IEEE Transactions on Multimedia, 21:1621–1632, 2019.

[168] Ce Zheng, Sijie Zhu, Mat’ias Mendieta, Taojiannan Yang, Chen Chen, and Zhengming Ding. 3D human pose
estimation with spatial and temporal transformers. ArXiv, abs/2103.10455:1–10, 2021.

[169] Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. Talking face generation by adversarially
disentangled audio-visual representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9299–9306, Honolulu, Hawaii, USA, 2019. AAI.

[170] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, Evangelos Kalogerakis, and Dingzeyu Li. Makelttalk:
speaker-aware talking-head animation. ACM Transactions on Graphics (TOG), 39(6):1–15, 2020.

[171] Yang Zhou, Zhan Xu, Chris Landreth, Evangelos Kalogerakis, Subhransu Maji, and Karan Singh. Visemenet:
Audio-driven animator-centric speech animation. ACM Transactions on Graphics (TOG), 37(4):1–10, 2018.

[172] Pengcheng Zhu, Lei Xie, and Yunlin Chen. Articulatory movement prediction using deep bidirectional long
short-term memory based recurrent neural networks and word/phone embeddings. In INTERSPEECH, 2015.
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APPENDIX A

RESULTS STATISTICAL ANALYSIS

A.1 Model Configuration Comparison
In our study, we assessed models trained using embeddings from the last audio encoder layer (termed *Enc*), an
aggregation of all audio features (*All-Enc*), and a multi-task learning model with a CTC auxiliary task focusing on
the allophones of the input audio (*All-Enc CTC*). Our analysis spanned various audio features, including Wav2Vec,
WavLM, and Whisper.

Our statistical analysis, presented in Table A.1 for the L1 metric, Table A.2 for the L2 metric, and in Table A.3 for the
TMVE metric, show statistical significance for most of our results, with a confidence threshold of 𝑝 < 0.03. However,
one exception to note is the comparison between the Enc and All-Enc models when processing audio using Wav2Vec.

From this perspective, our claim regarding the performance of the WavLM All-Enc CTC remains valid and robust.
Table A.1: Comparison of p-values for the L1 error on the rig parameter space across three audio features: Wav2Vec, WavLM, and
Whisper. The p-values represent the statistical significance when comparing between the Enc, All-Enc, and All-Enc CTC models.
Values 𝑝 < 0.05 are considered statistically significant. All comparisons in the table are statistically significant.

Comparison Wav2Vec WavLM Whisper
Enc vs. All-Enc 2.133 × 10−7 1.833 × 10−5 1.705 × 10−58

Enc vs. All-Enc CTC 4.257 × 10−8 6.31 × 10−25 4.345 × 10−71

All-Enc vs. All-Enc CTC 7.305 × 10−46 6.824 × 10−11 8.859 × 10−9
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Table A.2: Comparison of p-values for the L2 error on the rig parameter space across three audio features: Wav2Vec, WavLM, and
Whisper. The p-values represent the statistical significance when comparing between the Enc, All-Enc, and All-Enc CTC models.
Values 𝑝 < 0.05 are considered statistically significant. Comparisons in red are not statistically significant.

Comparison Wav2Vec WavLM Whisper
Enc vs. All-Enc 0.319 6.189 × 10−5 1.888 × 10−46

Enc vs. All-Enc CTC 1.037 × 10−8 4.375 × 10−13 3.596 × 10−51

All-Enc vs. All-Enc CTC 6.493 × 10−16 0.029 0.024

Table A.3: Comparison of p-values for the lower face temporal mean vertex error (TMVE) across three audio features: Wav2Vec,
WavLM, and Whisper. The p-values represent the statistical significance when comparing between the Enc, All-Enc, and All-Enc
CTC models. Values 𝑝 < 0.05 are considered statistically significant. All comparisons in the table are statistically significant.

Comparison Wav2Vec WavLM Whisper
Enc vs. All-Enc 2.747 × 10−40 1.692 × 10−68 4.032 × 10−33
Enc vs. All-Enc CTC 3.612 × 10−7 1.782 × 10−78 1.420 × 10−50
All-Enc vs. All-Enc CTC 1.107 × 10−52 5.275 × 10−5 1.953 × 10−13
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A.2 Audio Feature Comparison
We delved deeper into understanding the impact of the different audio features, specifically Wav2Vec, Whisper, and
WavLM, across various model configurations (Enc, All-Enc, and All-Enc CTC). Our analysis revealed inconclusive
results when contrasting the All-Enc and All-Enc CTC configurations trained using the WavLM and Whisper features,
especially from the L1 and L2 error perspectives as shown in Table A.4 and Table A.5, respectively. This is attributed to
p-values exceeding the 0.05 threshold shown in red in the tables.

User studies mirror these findings, showing comparable performance of these configurations on in-domain data. Both
configurations rendered low errors during animation reconstruction. However, both the TMVE metric and user feedback
indicate a slight edge for the WavLM All-Enc CTC model over models trained with Whisper audio features.
Table A.4: Comparison of p-values for the L1 error over rig parameters, evaluating the impact on the performance of different
audio features (Wav2Vec, WavLM, and Whisper) across model configurations (Enc, All-Enc, and All-Enc CTC). Values 𝑝 < 0.05 are
considered statistically significant. Comparisons in red are not statistically significant.

Comparison Enc All-Enc All-Enc CTC
Wav2Vec vs. WavLM 5.467 × 10−7 1.256 × 10−37 2.157 × 10−26

Wav2Vec vs. Whisper 4.264 × 10−14 1.541 × 10−47 7.221 × 1−−30

WavLM vs. Whisper 5.227 × 10−36 0.444 0.163

Table A.5: Comparison of p-values for the L2 error over rig parameters, evaluating the impact on the performance of different
audio features (Wav2Vec, WavLM, and Whisper) across model configurations (Enc, All-Enc, and All-Enc CTC). Values 𝑝 < 0.05 are
considered statistically significant. Comparisons in red are not statistically significant.

Comparison Enc All-Enc All-Enc CTC
Wav2Vec vs. WavLM 1.843 × 10−7 2.712 × 10−18 2.712 × 10−15

Wav2Vec vs. Whisper 3.956 × 10−8 2.400 × 10−23 7.366 × 10−15

WavLM vs. Whisper 7.363 × 10−26 0.591 0.163

Table A.6: Comparison of p-values for the lower face temporal mean vertex error (TMVE), evaluating the impact on the performance
of different audio features (Wav2Vec, WavLM, and Whisper) across model configurations (Enc, All-Enc, and All-Enc CTC). Values
𝑝 < 0.05 are considered statistically significant. All comparisons in the table are statistically significant.

Comparison Enc All-Enc All-Enc CTC
Wav2Vec vs. WavLM 1.368 × 10−11 2.115 × 10−74 5.247 × 10−23

Wav2Vec vs. Whisper 2.698 × 10−16 2.373 × 10−5 8.277 × 10−18

WavLM vs. Whisper 0.016 5.357 × 10−12 0.013
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