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Abstract
The prevalent machine learning paradigm involves training a separate model for

every new task given a static dataset. In contrast, humans accumulate knowledge over
time, and the lifelong learning paradigm seeks to emulate this process by enabling
systems to learn continuously from a stream of tasks, retaining past knowledge for
efficient future learning. This paradigm also offers advantages such as avoiding
periodic model training, potentially reducing computational and energy requirements,
and promoting environmentally friendly Green AI. In modern machine learning, deep
neural networks, while powerful, face challenges like catastrophic forgetting (losing
knowledge from previous tasks during new task learning) and negative interference
(previously learned knowledge hindering new task learning). These issues arise from
the stability-plasticity dilemma, which necessitates finding the right balance between
preserving past knowledge (stability) and acquiring new knowledge (plasticity).
Efficient lifelong learning systems must address this dilemma, along with other
considerations like supporting online data streams, utilizing small and fixed memory
buffer capacity (if any), and learning from unlabeled data streams.

In this thesis, we derive inspiration from the biological learning process and recent
progress in deep learning to enable efficient lifelong learning systems. We propose
injecting inductive biases into the three main components of data-driven machine
learning: model (architecture & initialization), training (objective & optimization),
and data. This thesis is structured into three parts, each corresponding to one of
these components. In the first part, we explore the role of pre-trained initializa-
tions, revealing their implicit alleviation of forgetting compared to random ones.
Next, we design a parameter-efficient expert architecture that dynamically expands
learning capacity to address the stability-plasticity dilemma. In the second part, we
demonstrate that explicit optimization for flat minima improves network stability
and introduce a meta-learning objective for stability-plasticity balance. The third
part delves into lifelong semi-supervised learning, addressing the stability-plasticity
dilemma by rehearsing pseudo-labeled data. We conclude by examining pre-training
from the perspective of lifelong learning, showcasing enhancements by applying the
above-developed strategies to the (continual) pre-training of models.



vi



Acknowledgments

Embarking on the challenging journey of a Ph.D. has been a valuable experience
for me, contributing to both my professional and personal growth. Through consistent
work on various research projects, I have learned the art of research, honing skills like
problem selection, scoping, scientific rigor, technical writing, and giving talks. While
I do not claim mastery, I recognize this continuous learning process. My perspective
on the Ph.D. journey is one of lifelong learning and meta learning, culminating in the
attainment of a Doctor of Philosophy in AI. My academic journey, unlike many others,
was not smooth sailing. It took an unconventional turn marked by the unexpected loss
of my advisor, an abrupt stop in funding, and the onset of the COVID-19 pandemic,
all in a single month. This led to a sudden halt in my Ph.D. progress without a clear
way forward. Reflecting on completing this thesis, I have undergone a transformative
journey, navigating from my lowest point to the finish line. This experience has
underscored the optimism that arises from overcoming adversity, finding brightness
in the aftermath of difficulties, and embracing hidden opportunities—echoing the
timeless wisdom that “every cloud has a silver lining.” I am profoundly grateful to
those who played a pivotal role in guiding me toward this finish line. I wish to express
sincere appreciation to my mentors, collaborators, mentees, friends, chingoos, and
family. Without their unwavering support and encouragement, this thesis would not
have come to fruition, and for that, I am deeply thankful.

First and foremost, I would like to thank my advisor, Emma Strubell, whose
mentorship has been instrumental in shaping me into a well-rounded researcher.
Emma is an excellent researcher, and her work in the field of Green AI has been
groundbreaking and a constant inspiration for me. Her dedication and diligence
as an advisor are commendable, and I consider myself fortunate to benefit from
her guidance, expertise, and unwavering support throughout this academic journey.
The knowledge I have gained from her extends beyond the confines of a single
paragraph. She has also been a kind and caring mentor. During the transitional period
following the loss of my previous advisor, she graciously accepted me as her first
student at CMU, providing support as I navigated through uncertainties. She actively
encouraged and guided me to mentor junior students to cultivate essential mentorship
skills while providing invaluable support to junior colleagues. She genuinely cares for
her students’ well-being, and her efforts to organize outdoor social activities inspired
my interest in both running and climbing. As an advisor-student duo, we participated
in the CMU Annual Random Distance Run 2022, covering 1.75 miles, and secured the
third position. The influence she has had on my academic and personal development
is immeasurable, and I am grateful for having such an exceptional advisor during my
doctoral studies.

I am very thankful to my committee members William W. Cohen, Dani Yogatama,
and Aditi Raghunathan for their valuable feedback and comments. Special thanks
to William for thoroughly reviewing this thesis, providing insightful suggestions for
additional analyses, and identifying writing issues that I may have overlooked. I am
excited about potential future collaborations with this stellar committee.



I express my deepest gratitude to my late advisor, Jaime Carbonell. I vividly
recall his words after the Ph.D. admission committee meeting: “Congratulations,
Sanket! I championed you! Good luck with your Ph.D., and never let me down!”
Throughout my master’s and early Ph.D., he patiently listened to my naive ideas as
I grasped machine learning basics and offered insightful feedback. Jaime’s sudden
passing in February 2020 during my first Ph.D. year was the toughest moment in my
graduate school journey. Everything came to a standstill with no clear direction ahead.
In those tough times, I recalled his dedication, joining our meetings from his hospital
bed — a symbol of responsibility. If he could endure pain without complaining, why
should I complain about my challenges? This experience taught me a profound life
lesson in resilience and gratitude. One of his final emails became my guiding light:
“The best way you can help is continuing your excellent work and striving to finish
your studies.” As I write this, the emotion is overwhelming. I wish he could be here
to witness my graduation moment, but the universe had different plans. Jaime, you
were an extraordinary person, a fantastic advisor, and a lifelong mentor. Thank you
for everything! You will never be forgotten, always missed. Your student forever!

I thank Barnabás Póczos for valuable advice during my master’s studies, empha-
sizing collaborative learning with peers. I have carried this lesson into my graduate
school and plan to keep it forever. I extend my thanks to Jamie Callan, Robert E.
Frederking, Yiming Yang, Jay Yoon Lee, Sarath Chandar, and Zachary Lipton for
their support and help after the loss of Jaime, leading up to my transition to Emma
as my advisor. Next, I would like to thank those who played a major role in getting
me to CMU. Special thanks to Ritwik Sinha, my undergraduate intern mentor at
Adobe Research, who equipped me with foundational research skills and supported
me throughout my academic applications. I appreciate the pivotal role of Shriram
Revankar, my manager at Adobe Research, for providing a full-time opportunity and
instilling a research philosophy. Thanks to Vishwa Vinay and Sunav Choudhary, peers
at Adobe Research, for their research insights and ongoing support. Dhaval Patel,
my undergraduate thesis advisor, deserves acknowledgment for imparting valuable
lessons on good science. Special thanks to Sateesh Kumar Peddoju for enabling me
to lead the ACM Student Chapter during my undergraduate years at IIT Roorkee, a
leadership experience that prepared me for team projects in graduate school.

During grad school, I worked on various projects and gained valuable knowledge
through collaboration with peers. I am grateful to Jay-Yoon Lee for guiding me in my
master’s and to CMU collaborators: Zirui Wang, Sang Keun Choe, Harsh Jhamtani,
Jonathan Francis, Rajshekhar Das, Saurabh Garg, Bhargavi Paranjape, Sumeet Singh,
and my mentees. Next, I am thankful to my collaborators from Mila and Meta: Sarath
Chandar, Darshan Patil, Shagun Sodhani, Mojtaba Faramarzi, Pranshu Malviya,
Mohamed Abdelsalam, Janarthanan Janarthanan. Special thanks to Yi Tay, Jai Gupta,
Jinfeng Rao, and Donald Metzler for hosting me at Google, and the rest of my Google
collaborators: Vinh Q. Tran, Tal Schuster, Mostafa Dehghani, Dara Bahri, Kai Hui,
Mihir Kale, Ankur Parikh, Vamsi Aribandi, and Marc Najork. Despite the ups and
downs in our relationship, I appreciate the anonymous reviewers for their actionable
feedback, especially recognizing the JMLR Action Editor and reviewers.

viii



I express gratitude to all the students at CMU whom I had the privilege of
mentoring. Witnessing their joy upon submitting their initial papers has been the
most rewarding aspect of being a mentor. Guiding several students and projects has
allowed me to delve into research fundamentals, discern successful approaches, and
understand the ingredients for initiating and completing projects. This has shaped my
Ph.D. journey with a meta-learning perspective. Beyond professional development,
mentoring has positively influenced my personal growth. In my first year of Ph.D.
at CMU, I mentored visiting students from South Korea for Jaime. Jimin Sun and
Hwijeen Ahn from this batch later joined the master’s program at LTI, shaping my
health and fitness habits. Jimin influenced my lifestyle positively, introducing me
to activities such as yoga, running, and occasional cheat days with dosa and mango
lassi. Hwijeen introduced me to biking by lending me his vintage 1986 Schwinn
Super Sport bike for a summer. Clara Na elevated my running experience by guiding
me in long-distance training and live-tracking my completion of the Pittsburgh half
marathon. Jared Fernandez initiated me into indoor climbing, while Sophia Roshal
guided the outdoor top roping sessions. Health enthusiasts Jimin Mun and Simran
Khanuja initially aimed for strength training but ultimately fostered my healthy
dietary habits, leading to a reduced intake of Chipotle rice bowls (NaCl) and Parle-G.
Saujas Vaduguru guided me in perfecting dosa with coconut chutney, and Akhila
Yerukola’s preference for milkless chai prompted experiments with water-to-milk
ratios. Even in my absence from Hagwon (GHC 5501), Amanda Bertsch and Sireesh
Gururaja upheld high working standards, reinforcing my belief in the positive impact
of collaborative learning among peers. As Lindia Tjuatja and Jared discovered the
magic of masala chai and Maggi with at-home Hagwon sessions, I mastered the art
of consuming cereal—and trust me, it is not about the milk or the cereal. Su Bin Jung
globally launched virtual hagwon sessions on Zoom, yet Yewon Byun’s extensive use
significantly improved my remote mentoring skills. Furthermore, Yewon’s playful
use of Korean motivated me to pick up the language at LTI. While I was running,
climbing, and biking, So Yeon Min introduced me to Gadi walking, which led me
to discover more about my personality. Mentees kept arriving one after another, but
what remained constant were the desks at GHC 5501. Gratitude goes to my office
mates, Yingshan Chang and Siddhant Arora, who generously allowed me to use their
desks whenever they were unoccupied. While mentoring students over the years,
Sang Keun Choe regularly visited Hagwon accompanied by his dog, Betty. I have
known Sang since the fall of 2018, and through our interactions, I gained insights
into the intricacies of startups. It seems that Hagwon has functioned as a startup
incubator all along, prioritizing research, academic pursuits, mentorship, and fostering
a collaborative work environment. Lastly, my heartfelt gratitude goes to Betty, whose
presence brought joy and solace to Hagwon. At my farewell, the heartfelt words from
my very first mentee, Kundan Krishna, are indelibly imprinted in my mind: “While
many pursue a Ph.D., only a few genuinely earn the love and respect of an entire
group of juniors. You deserve every bit of it.” Expressing gratitude for the countless,
lifelong memories! Farewell to Hagwon; you will be sincerely missed. As I pass the
GHC 5501 baton to Danny To Eun Kim, I wish him good luck.

ix



I thank all of the SLAB, YES, COMEDY, and Jaime’s lab members who made
my CMU journey so memorable and gave me so much to learn. With gratitude
to my labmates mentioned earlier, I extend my appreciation to others: Jeremiah
Milbauer, for his insightful conversations and broad knowledge, remaining a teammate
at CMU or Google; Nupoor Gandhi, for sharing valuable lessons about Indian
tourism; Zhisong Zhang, for meticulously reviewing my manuscripts; Hao Zhu, for
climbing lessons and introducing me to my first Jain hotpot; Vidhi Jain, for engaging
discussions on Jain philosophy and appealing to my Jain sensibilities; Xuhui Zhou,
for maintaining a friendly demeanor despite my occasional lack of honesty; Vijay
Viswanathan, for the tip that Patel Brothers offers the cheapest Parle-G, ensuring
an unlimited supply; Josh Zhanson, for engaging in CV discussions; Zhiruo Wang,
for the counter++; Rosa Vitiello, for being patient during my random CLAW lab
visits; Cathy Jiao, for Vancouver whereabouts; Jing Yu Koh, our local tourist guide
for EMNLP@Singapore; Ashique KhudaBukhsh, for passionate CSS discussions and
constant support following Jaime’s passing. A big shout-out to Yonatan Bisk, Maarten
Sap, Daniel Fried, and Sherry Tongshuang Wu, who, along with Emma, organized
our lab meetings and sponsored many social gatherings. Special mention to Emma
and Yonatan for semester-long soft-skills-focused lab meetings. Going forward I
am sad to miss Yonatan’s lessons on proper English usage during our lab meetings.
However, with our discussions on flat minima, the prospect of a Flat DOSA remains
alive. Next, special thanks to Stacey Young, Kate Schaich, and Tessa Samuelson
who facilitated navigating the academic aspects of LTI, SCS, and CMU. I would like
to thank Boeing and DSO Labs Singapore for funding my graduate school studies,
particularly recognizing Tom Vu, Luo Qi Chan, Jing Lim, and Chieu Hai Leong.

I am profoundly grateful for my friends, whose constant support has made my
Ph.D. journey happier and more enjoyable. Living with my roommate, the tech and
policy nerd Divyansh Kaushik, I gained some expertise in Punjabi cooking, from
patiently slow-cooking Dal Makhani for 6 hours to realizing that Ghee is all you
need. Beyond the culinary adventures, our conversations delved into the science of
machine learning, shaping my research taste—zeroing in on fundamental questions
often overlooked. With Kundan Krishna, from his Pittsburgh debut to my farewell,
we shared countless moments, my favorite being educational ‘Chai Pe Charcha’
sessions with Parle-G and Rusk on the side. With my earlier office mates, Sai Krishna
Rallabandi and Khyathi Raghavi Chandu, we engaged in numerous whiteboard
brainstorming sessions and philosophical discussions, along with weekly ‘pet pooja’
gatherings. Among many memories, there is the unforgettable moment of Khyathi
teaching me to dance at Sai-Suchi’s wedding, my presence at Khyathi-Abhishek’s
wedding, and the delightful surprise of Sai-Suchi’s daughter, Veda, visiting GHC
5501 and attending my thesis defense. A shout-out to my master’s years roommate,
Raghuram Mandyam Annasamy, for consistently having my back — that support
holds steady even now. Special gratitude to Sreeja and Raghuram for generously
hosting me during my Bay Area sojourn and providing an endless feast of delicious
homemade dosas. Another earlier roommate, the chai virtuoso Ankit Parag Shah,
whose influence on my chai skills is truly noteworthy.

x



Thanks, Jon, for leading my first camping and memorable hikes with Jimin,
Jared, Clara, Nupoor, Jeremiah, Zhisong, Xinyi Wang, Ziyu Xu, Bingqing Chen,
Adithya Pratapa and Torsten Wörtwein. Special thanks to Raj, Jon, Jimin, Hwijeen,
Jared, and Lindia for the Choolaah gatherings, Prakhar Gupta for the pizza lessons,
Aman Madaan for the Silicon Valley Vista point tour, and Lucio Dery and Shengyu
Feng, for their sociable and cheerful personalities. Thanks, Sophia, Hwijeen, Clara,
Jared, Kaixin Ma, Hao, and Xuhui for being my climbing squad, and Ritam Dutt
and Yiyuan Li for being chai explorers. Shuyan Zhou, thanks for the invite (tfti),
Sriram Narayanan, Shaily Bhatt, and Harshita Diddee for vibing on food, Patrick
Fernandes and Paul Pu Liang for parties, Taro Tsuchiya for Cylab stories, Daye
Nam and Minji Yoon for being Korean seon saeng nim, Jessica Huynh, Harvineet
Singh, and Aayush Sharma for the apartment sublease, Leena Mathur, Saujas, Simran,
Sriram and Hwijeen for the Frick Park Nine Mile Run trail, and Prateek Joshi, Dylan
Sam, and Alex Wilf for being Hagwon’s best partners.

A shoutout to Bhargavi and Sumeet for our first lifelong learning paper, Vid-
hisha Balachandran, Xiaochuang Han, and Jiateng Xie for co-TAing courses with
me, Sreecharan Sankaranarayanan, Shrimai Prabhumoye, Dheeraj Rajagopal, Varun
Gangal, Aakansha Naik and Abhilasha Ravinchandar as goto seniors for any queries,
Shruti Palaskar for being my student contact, Biswajit Paria, Hai Pham and Amrith
Setlur for being my labmates under Barnabás. Gratitude to Sumit Agarwal, Minkai
Deng, and David Bick for the mentoring opportunities, Juncheng Billy Li for ML
chats, Saurabh for our late-evening random walks and ML talks, Ananye Agarwal for
being my late-night shuttle buddy. Thanks, Tzu-Hsiang Lin, Alankar Jain, Vaibhav,
Aldrian Obaja, Gayatri Bhat, and Vasu Sharma for MLT days, Aditi Chaudhary, Nidhi
Vyas, Shirley A. Hayati, Harsh, and Divyansh for memorable Brussels moments,
Pratyush Maini, Adithya, Chan Young Park and Sachin Kumar for fun Singapore
moments, Sachin Goyal, Brandon Trabucco, Pratyush for Navratri Bhoj, Maneesh
Bilalpur, Kundan and Prakhar for Diwali celebrations, Rishabh Joshi, Sopan Khosla,
Tanmay Parekh, and Mukul Bhutani for bridging Pittsburgh to Bay Area. Special
thanks to my undergraduate friends for their ongoing support: Rahul Raj, Shagun
Sodhani, Surendra Kumar Gadwal, and Pranay Chaudhary.

Above all, I would like to express my deepest gratitude to my dad, Vaibhav Mehta,
my mom, Swati Mehta, my dear sister, Dr. Sujal Mehta, and my brother-in-law, Dr.
Sahil Shah, for their unwavering love and support throughout my career. No words
can truly capture the extent of their contributions. Having been away from home for
over a decade, the distance became even more significant in Pittsburgh, spanning
continents. Yet, they never failed to send boxes of ladoos and snacks for every Diwali,
Rakhi for Raksha Bandhan, and patiently responded to my countless calls during the
last 333 weeks from Pittsburgh. While others at CMU praised my positive energy
levels, today I acknowledge that it is my family that has been the wellspring of my
energy all these years — I was merely transferring it. Needless to say, this thesis
would not have been possible without their encouragement along the way. Thank
you SVM family! This thesis is dedicated to you! I trust I have done justice to this
acknowledgment, and I apologize sincerely if there are any names I may have missed.

xi



xii



Contents

Abstract v

Acknowledgments vii

List of Figures xxii

List of Tables xxv

1 Introduction 1
1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Lifelong Learning 11
2.1 Lifelong Learning Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Task-Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Domain-Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Class-Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Performance Metrics in Lifelong Learning . . . . . . . . . . . . . . . . . . . . . 14
2.3 Tasks and Benchmarks for Lifelong Learning . . . . . . . . . . . . . . . . . . . 14

2.3.1 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Prominent Baselines for Lifelong Learning . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Parameter-Based Regularization Approaches . . . . . . . . . . . . . . . 19
2.4.2 Episodic Memory-Based Approaches: Data-Based Regularization . . . . 20
2.4.3 Test-Time Adaptation-Based Approaches . . . . . . . . . . . . . . . . . 21
2.4.4 Optimization-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 23

I Model: Architecture & Initialization 25

3 Initialization: Role of Pre-training in Lifelong Learning 27
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xiii



3.2.2 Benchmarks and Task Sequences . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Does pre-training implicitly alleviate forgetting? . . . . . . . . . . . . . . . . . . 31
3.3.1 How much does pre-training help in alleviating forgetting? . . . . . . . . 32
3.3.2 Do pre-trained models undergo similar forgetting on diverse and homoge-

neous tasks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 How do different pre-trained initializations affect forgetting? . . . . . . . 34

3.4 Exploring the Loss Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Loss Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Linear Model Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Sharpness Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Architecture: Dynamic Parameter-Efficient Experts for Lifelong Learning 43
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Benchmark and Domain sequences . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Generate to Discriminate for Expert Routing (G2Df ER) . . . . . . . . . . . . . . 46
4.3.1 Generation of synthetic samples for domain discriminator . . . . . . . . 47
4.3.2 Expert models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 How much does G2Df ER help in alleviating forgetting? . . . . . . . . . 48
4.4.2 How to most effectively use synthetic data for continual learning? . . . . 49
4.4.3 Domain discrimination analysis . . . . . . . . . . . . . . . . . . . . . . 50
4.4.4 Parameter efficient fine-tuning analysis . . . . . . . . . . . . . . . . . . 50

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Training: Objective & Optimization 53

5 Optimization: Lifelong Learning with Sharpness Aware Minimization 55
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Background: Sharpness-Aware Minimization (SAM) . . . . . . . . . . . . . . . 56
5.3 Does SAM alleviate forgetting during lifelong learning? . . . . . . . . . . . . . 56

5.3.1 Loss Contours and Sharpness with SAM . . . . . . . . . . . . . . . . . 58
5.4 Analyzing the influence of pre-training task minima curvature on forgetting . . . 61

5.4.1 Nudged-SGD (NSGD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Analyzing the influence of task-agnostic favorable initializations on forgetting . . 65

5.5.1 MetaInit: Initializing learning by learning to initialize . . . . . . . . . . 66
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiv



6 Objective: Efficient Meta Lifelong Learning with Limited Memory 71
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Benchmarks and Task Sequences . . . . . . . . . . . . . . . . . . . . . 73
6.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Principles of Lifelong Language Learning . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 Generic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Experience Rehearsal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.3 Task-specific Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Synergistic Meta-Lifelong Framework (Meta-MbPA) . . . . . . . . . . . . . . . 75
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5.1 How much does Meta-MbPA help in alleviating forgetting? . . . . . . . 78
6.5.2 Analyzing the (episodic) memory efficiency of Meta-MbPA . . . . . . . 80
6.5.3 Memory selection rule: How is episodic memory populated? . . . . . . . 80
6.5.4 Trade-off: Catastrophic forgetting (stability) vs. Negative interference

(plasticity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.5 Ablation study: Investigating the effectiveness of CLS theory . . . . . . . 83
6.5.6 Analyzing the inference efficiency of Meta-MbPA . . . . . . . . . . . . 84

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

III Data: Limited Labeled & Unlabeled 85

7 Limited Labeled Data: Lifelong Semi-Supervised Learning for Updating Trans-
former Memory 87
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 DSI++: Continual learning challenge for DSI . . . . . . . . . . . . . . . . . . . 89

7.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Benchmark for DSI++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.4 Case study: Catastrophic Forgetting and Forward Transfer . . . . . . . . 90

7.3 Lifelong Semi-Supervised Learning with Generative Memory . . . . . . . . . . 91
7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.1 Does generative memory alleviate forgetting of old documents? . . . . . 93
7.4.2 Does generative memory enable forward transfer to new documents? . . 95
7.4.3 Does generative memory generalize to different datasets? . . . . . . . . . 96
7.4.4 Investigating the effectiveness of the generative memory with the scale of

a corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4.5 Investigating sparsity of experience replay (ER) on forgetting. . . . . . . 96
7.4.6 Analyzing index construction time for DSI++. . . . . . . . . . . . . . . . 97

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xv



8 Unlabeled Data: Role of Lifelong Learning in Pre-training 101
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 What should be the initialization scheme for pre-training? . . . . . . . . . . . . . 102

8.2.1 Forgetting Curves in Language Models . . . . . . . . . . . . . . . . . . 103
8.3 What should be the training dynamics for pre-training? . . . . . . . . . . . . . . 104

8.3.1 Implicit forgetting during memorization . . . . . . . . . . . . . . . . . . 105
8.3.2 SAM alleviates implicit forgetting . . . . . . . . . . . . . . . . . . . . . 106

8.4 What data should be used for pre-training? . . . . . . . . . . . . . . . . . . . . . 106
8.4.1 Neural Data Optimization using ScalAble Meta learning Algorithm (SAMA)107
8.4.2 Efficient Data Pruning for Pre-training of Large Vision Models . . . . . . 108
8.4.3 Continued Pre-training of Large Language Models . . . . . . . . . . . . 110

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 Conclusions and Future Work 113
9.1 Neural Data Optimization for Large Language Models . . . . . . . . . . . . . . 113
9.2 Unifying Sparse and Semi-Parametric Models for Lifelong Learning . . . . . . . 114
9.3 Lifelong Learning and Unlearning . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendices 119

A Additional experimental details and results for an empirical investigation of the role
of pre-training in lifelong learning 119
A.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Task-specific results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3 Loss Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B Additional experimental details and results for efficient meta lifelong-learning with
limited memory 127
B.1 Dataset Specific Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.2 Single Task and Multi-task Models Results . . . . . . . . . . . . . . . . . . . . 127
B.3 Catastrophic Forgetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C Additional experimental details and results for DSI++ 131
C.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 135

xvi



List of Figures

1.1 Thesis overview. We summarize our work when applied to different goals
(G) and desiderata (D) of lifelong learning systems, lifelong learning scenarios
(S), proposed methodology (M) to address them, and applications (A) used for
evaluations. We view the development of efficient lifelong learning systems
through the lens of machine learning basics—Which model architecture is well-
suited for designing such systems? What role does model initialization play in
alleviating forgetting? How do we address different desiderata of these systems
by modifying training objective and optimization/ training dynamics? . . . . . . 7

2.1 Overview of the three lifelong learning scenarios (adapted from Sodhani et al.,
2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Pre-trained and randomly initialized DistilBERT on Split YahooQA dataset. Per-
formance of the first task visualized over sequential learning of tasks (averaged
over 5 runs). Both models start with approximately equal average task accuracy,
but pre-trained initialization leads to significantly less forgetting. . . . . . . . . . 28

3.2 Comparing performance on homogeneous tasks (Split YahooQA/ CIFAR-50/
CIFAR-100) across initialization (R: random, PT: pre-trained) and methods (FT:
finetune, EWC: elastic weight consolidation, ER: episodic replay) after training
on the last task. ↑ indicates higher is better, ↓ indicates lower is better. All metrics
are averaged over 5 random task sequences (see Equation 2.6). We observe
that pre-trained models undergo significantly less forgetting in comparison to
randomly initialized models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Comparing performance on diverse tasks (5-dataset-NLP/ CV) across initial-
ization (R: random, PT: pre-trained) and methods (FT: finetune, EWC: elastic
weight consolidation, ER: episodic replay) after training on the last task. ↑ indi-
cates higher is better, ↓ indicates lower is better. All metrics are averaged over 5
random task sequences (see Equation 2.6). In comparison to homogeneous tasks
(see Figure 3.2b), we observe that pre-trained models are more susceptible to
forgetting when exposed to a diverse sequence of tasks. . . . . . . . . . . . . . . 33

xvii



3.4 Comparing performance on diverse tasks (5-dataset-NLP/ 15-dataset-NLP) across
different pre-trained Transformer models (D-BERT: DistilBERT, BERT-b:
BERT-base, RoBERTa: RoBERTa-base, BERT-L: BERT-Large) and methods (FT:
finetune, ER: episodic replay) after training on the last task. ↑ indicates higher is
better, ↓ indicates lower is better. All metrics are averaged over 5 random task
sequences (see Equation 2.6). Overall, we observe that models pre-trained on
diverse and larger corpora (RoBERTa-base) undergo less forgetting. . . . . . . . 34

3.5 Loss contours for task 1 where w1, w2, w3 are minima obtained after sequential
training on tasks 1, 2, and 3, respectively. The top row visualizes loss contours
for randomly initialized models (R), and the bottom row visualizes loss contours
for pre-trained models (PT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Linear model interpolation plots for different datasets. The plots for pre-training
initialized (PT) models are shown in hues of blue, and the randomly initialized
(No PT) models are shown in hues of red. We linearly interpolate between the task
1/ task 2 minimum (w1/w2) to the subsequent task mimimum (wi → wj , j > i),
tracking the loss in the process. The loss landscape is generally flatter along these
paths for pre-trained initialized models compared to randomly initialized models. 37

4.1 Generate to Discriminate for Expert Routing (G2Df ER); At train time, we i)
fine-tune the generator and expert model and ii) train a domain discriminator on
synthetic samples produced by our generator. At inference time, based on our
discriminator’s prediction, we route test samples to the corresponding expert. . . 46

4.2 Domain discrimination visualization. t-SNE visualizations of domain clusterings
for question-answering benchmark (4 domains in total). The left plot highlights
the implicit domain discriminative nature of pre-trained BERT-base language
model representations (Devlin et al., 2019). Notably, there is confusion between
the TrWeb (orange) and TrWiki (green) domains, both derived from the same
TriviaQA dataset. Similarly, the TrWiki (green) and SQuAD (red) domains,
originating from the same Wikipedia source, necessitate explicit discriminator
training. In the middle plot, we visualize the clustering of representations from
the discriminator trained using generated samples, achieving a domain discrimi-
nation accuracy of 94.5%. On the right plot, we present the clustering from the
discriminator trained using real samples, with an accuracy of 97.1%. Remarkably,
the discriminator trained with synthetic samples closely mirrors the performance
and clustering patterns of the discriminator trained using real data. . . . . . . . . 50

5.1 Loss contours for task 1 (T1) and task 2 (T2) of Split CIFAR-50. The top row
visualizes loss contours for task 1 where w1, w2, w3 are minima obtained after
sequential training on tasks 1, 2, and 3, respectively. Similarly, the bottom row
visualizes loss contours for task 2 after sequential training on tasks 2, 3, and 4.
All of the above models start with random weights. SAM (FT w/ SAM, ER w/
SAM) leads to wide task minima compared to finetune (FT) and ER methods. . . 60

xviii



5.2 Loss contours for SVHN (T1) and MNIST (T2) of 5-dataset-CV. The top row
visualizes loss contours for SVHN where w1, w2, w3 are minima obtained after
sequential training on SVHN, MNIST, and nonMNIST, respectively. Similarly,
the bottom row visualizes loss contours for MNIST where w2, w3, w4 are minima
obtained after sequential training on tasks MNIST, nonMNIST, and Fashion-
MNIST. All of the above models start with random weights. SAM (FT w/ SAM,
ER w/ SAM) leads to wide task minima compared to finetune (FT) and ER methods. 61

5.3 Comparing performance of the first task (MNIST in the top row, SVHN in the
bottom row) after sequential training on the second task across different supervised
pre-training initializations (Init:Sharp, Init:Flat) and optimization procedures
(Optim:SGD, Optim:SAM). ↑ indicates higher performance, ↓ indicates lower
performance. All metrics are averaged over five runs (see Equation 2.6). Pre-
trained models converged to flat minima with respect to the pre-training task
(Init:Flat, Optim:SGD) exhibit reduced forgetting with SGD in comparison to
sharp minima(Init:Sharp, Optim:SGD). Notably, explicitly promoting flatness
(Optim:SAM) for the fine-tuning task yields an even greater reduction in forgetting. 63

5.4 Loss contours are shown for MNIST, with winit, w1, and w2 representing the
minima obtained after supervised pre-training on SVHN, followed by sequential
training on MNIST and nonMNIST, respectively. The models are initialized
either with a sharp pre-trained model (Init:Sharp) or a flat pre-trained model
(Init:Flat). (a), (b) starting with a flat pre-trained model results in a flatter loss
basin for MNIST during sequential fine-tuning. (c), (d) explicitly optimizing for
flat MNIST minima using SAM (Optim:SAM) leads to even wider task minima
compared to vanilla SGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Comparing the performance of the first task (MNIST in the top row, SVHN in
the bottom row) after sequential training on the second task, we examine the
impact of random and task-agnostic MetaInit initialization strategy (Init:Random,
Init:Meta) and optimization procedures (Optim:SGD, Optim:SAM). ↑ indicates
higher performance, while ↓ symbolizes lower performance. All metrics are aver-
aged over 5 runs. The results show that task-agnostic MetaInit models (Init:Meta,
Optim:SGD) exhibit reduced forgetting with SGD compared to random initial-
ization (Init:Random, Optim:SGD). Similarly to Figure 5.3, explicitly promoting
flatness (Optim:SAM) for the sequential task leads to an even greater reduction in
forgetting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Loss contours are shown for MNIST, with winit, w1, and w2 representing either
random or task-agnostic initialization, followed by sequential training on MNIST
and nonMNIST, respectively. The models are initialized either with a random
strategy (Init:Random) or a MetaInit strategy (Init:Meta). (a), (b) starting with a
MetaInit initialization results in a flatter loss basin for MNIST during sequential
fine-tuning. (c), (d) explicitly optimizing for flat MNIST minima using SAM
(Optim:SAM) leads to even wider task minima compared to vanilla SGD. . . . . 68

xix



6.1 Proportions of a source of neighbors used in local adaptation for each task
when different memory selection rule is used, e.g., 10% of neighbors retrieved
for Yelp belong to Amazon. Numbers in each row sum to 1. The top two figures
are for text classification (5 tasks) while the bottom two are for question answering
(4 domains). For task/ domain ordering, check Seq1 in Section 6.2.2. Overall,
uncertainty-based methods result in more examples from other tasks being used
as nearest neighbors, compared to diversity-based methods. . . . . . . . . . . . . 81

6.2 Catastrophic forgetting of the first dataset as training progresses. "Enc-Dec"
refers to the FT baseline. Complete results in Appendix B.3 . . . . . . . . . . . . 82

7.1 Indexing accuracy of D0, D1, and D2 document corpora visualized as we continu-
ously index new documents (averaged over three runs). We observe that continual
indexing of new documents leads to severe forgetting of the previously memorized
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Systematic study about forgetting and forward transfer when incrementally index-
ing new corpus of documents across different model sizes (T5-Base, T5-Large,
T5-XL) and docid representations. We use atomic docids by default and denote
(N)/(S) for naively/ semantically structured docids. ↑ indicates higher is better,
↓ indicates lower is better. We observe that the average An and learning LAn

performance improves by increasing the model scale. However, forgetting Fn

is severe across all model scales. Moreover, we observe that naively structured
docids, T5-Base(N), underperform unstructured atomic docids, T5-Base, across
all metrics - indexing accuracy, Hits@1, (see Figure C.1 in Appendix C.2 for
Hits@10 results). Imbuing the docid space with a semantic (S) structure alleviates
the forgetting compared to an arbitrary/ naive (N) structure. . . . . . . . . . . . 90

7.3 Investigating the effectiveness of generative memory in mitigating forgetting
when continuously indexing new corpus Dn (T5-Base model and atomic docids
representation) for the NQ dataset. ↑ indicates higher is better, ↓ indicates lower
is better. We observe that continual indexing of old and new documents cl(Un)
helps to alleviate forgetting of older documents when evaluated on retrieval tasks.
However, average Hits@10 (An) still undergo 23 points drop after sequential
updates (D0 → D1 · · · → D5). Generative memory enables sparse replaying of
pseudo-queries for old documents and continual semi-supervised learning with
new documents. We observe that augmenting generative memory during continual
indexing not only reduces the forgetting (Fn) but also improves average Hits@10
(An) by +21.1% over considered baselines (see Figure C.2 for Hits@1 results
and Figure C.3 for MS MARCO results in the Appendix C.2). . . . . . . . . . . 95

xx



8.1 Exploring the impact of model initialization (RandomInit vs. MetaInit) on for-
getting curves during pre-training in the crammed BERT setting. We inject the
special batch into the training set at the 25th epoch and evaluate the proportion of
special batch memorized as we continue training. (a) Our observations indicate
that memorization, denoted as M(f), for the special batch deteriorates rapidly,
converging to a baseline value of 0.4 for both initializations. This suggests that
more investigation is needed to determine the role of MetaInit initialization on
forgetting dynamics during pre-training. (b) For both initializations, the MLM
loss for the special batch continues to rise. In contrast, the memorization of the
special batch levels off, suggesting that pre-trained models do not completely
forget, a trend not fully captured by the MLM loss. . . . . . . . . . . . . . . . . 104

8.2 Investigating the effectiveness of SAM for alleviating implicit forgetting in the
T5-Base model. (a) We observe serious fluctuations in the indexing accuracy in
the case of the Adafactor optimizer, thereby suggesting unstable memorization.
SAM leads to relatively stable memorization of documents. (b) A forgetting
event (Toneva et al., 2019) is defined when an individual document goes from
being classified correctly to incorrectly over the course of memorization. SAM
increases the percentage of examples experiencing zero forgetting events by an
absolute 12% over Adafactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3 Top Left: ImageNet-1k data pruning results with ResNet-50. Reported numbers
are relative accuracy compared to full training accuracy (i.e., pruned_acc/full_acc).
Accuracy for other baseline methods is obtained from DynaMS (Wang et al., 2023).
Top Right: CIFAR-10 data pruning results with ResNet-18. Accuracy for other
baseline methods is obtained from Deepcore (Guo et al., 2022). The pruning
ratio is defined as the fraction of total examples pruned using the pruning strategy.
BML-based data pruning with SAMA outperforms heuristics-based data pruning
across different dataset scales. Bottom: Relative time spent in finding data to
prune compared to full ImageNet-1k training time. . . . . . . . . . . . . . . . . 109

A.1 Evolution of task accuracy during sequential training on 5-dataset-NLP. We
compare the performance of pre-trained and randomly initialized models, for
first three tasks in a sequence, across five different random task orderings (Seq1,
Seq2, Seq3, Seq4, Seq5). We see that both models start with approximately equal
task accuracy, but pre-trained initialized models undergo lesser forgetting than
randomly initialized models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Evolution of task accuracy during sequential training on 5-dataset-CV. We
compare the performance of pre-trained and randomly initialized models, for first
three tasks in a sequence, across five different random task orderings (Seq1, Seq2,
Seq3, Seq4, Seq5). We see that both models start with approximately equal task
accuracy (except for CIFAR-10), but pre-trained initialized models undergo lesser
forgetting than randomly initialized models. . . . . . . . . . . . . . . . . . . . . 123

xxi



A.3 Loss contours for Task 1 on 5 task sequences of 5-dataset-NLP. Each contour
shows the location of the model parameters after training sequentially on Task 1
(w1), Task 2 (w2), Task 3 (w3). The top row shows contours for randomly ini-
tialized models (R) and the bottom row shows contours for pre-trained initialized
models (PT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 Loss contours for Task 2 on 5 task sequences of 5-dataset-NLP. . . . . . . . . 124
A.5 Loss contours for Task 1 on 5 task sequences of Split YahooQA. . . . . . . . . 125
A.6 Loss contours for Task 2 on 5 task sequences of Split YahooQA. . . . . . . . . 125
A.7 Loss contours for Task 1 on 5 task sequences of Split CIFAR-50. . . . . . . . . 125
A.8 Loss contours for Task 2 on 5 task sequences of Split CIFAR-50. . . . . . . . . 126
A.9 Loss contours for Task 1 on 5 task sequences of 5-dataset-CV. . . . . . . . . . . 126
A.10 Loss contours for Task 2 on 5 task sequences of 5-dataset-CV. . . . . . . . . . . 126

C.1 Systematic study about forgetting and forward transfer when incrementally index-
ing new corpus of documents across different model sizes (T5-Base, T5-Large,
T5-XL) and docid representations. We use atomic docids by default and denote
(N)/(S) for naively/semantically structured string docids. ↑ indicates higher is
better, ↓ indicates lower is better. We observe that by increasing the model scale,
the average An and learning LAn performance improves. However, forgetting Fn

is severe across all model scales. Moreover, we observe that naive string docids
(N) underperforms atomic docids across Hits@10 metric. Similar to Figure 7.2,
imbuing the docid space with semantic (S) structure alleviates the forgetting
compared to an arbitrary/ naive (N) structure. . . . . . . . . . . . . . . . . . . . 132

C.2 Investigating the effectiveness of generative memory in mitigating forgetting
when continuously indexing new corpus Dn (T5-Base model and atomic docids
representation) for the NQ dataset. ↑ indicates higher is better, ↓ indicates lower
is better. We observe that continual indexing of old and new documents cl(Un)
help to alleviate forgetting of older documents when evaluated on retrieval tasks.
However, average Hits@1 (An) still undergo 19 points drop after sequential
updates (D0 → D1 · · · → D5). We observe that by augmenting generative
memory during continual indexing not only reduces the forgetting (Fn) but also
improves average Hits@1 (An) by +17.3% over continual indexing. . . . . . . . 132

C.3 Investigating the effectiveness of generative memory in mitigating forgetting when
continuously indexing new corpus Dn (T5-Base model and atomic docids repre-
sentation) for the MS MARCO dataset. ↑ indicates higher is better, ↓ indicates
lower is better. We observe that continual indexing of old and new documents
cl(Un) helps to alleviate forgetting of older documents when evaluated on re-
trieval tasks. However, average Hits@10 (An) still undergo 25.0 points drop after
sequential updates (D0 → D1 · · · → D5). Generative memory enables sparse
replaying of pseudo-queries for old documents and continual semi-supervised
learning with new documents. We observe that augmenting generative memory
during continual indexing not only reduces the forgetting (Fn) but also improves
average Hits@10 (An) by +23.0% over considered baselines. . . . . . . . . . . . 133

xxii



List of Tables

2.1 15-dataset-NLP: Task/dataset description and statistics. All tasks are either
single sentence or sentence pair classification. |Train|, |Val|, and |Test| denote
the number of examples in the train, validation, and test splits respectively. |L|
denotes the number of classes for each task. . . . . . . . . . . . . . . . . . . . . 15

2.2 5-dataset-CV statistics. |Train|, |Val|, and |Test| denote the number of examples
in the train, validation, and test splits, respectively. |L| denotes the number of
classes for each task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Average sharpness value (lower value corresponds to flat loss basin) of task
minima. ResNet-18-PT/DistilBERT-PT has lower average sharpness than ResNet-
18-R/DistilBERT-R. Pre-training reduces the sharpness of minima for each task
in training by order of magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Results on Question Answering benchmark. Comparing performance in terms of
average F1 across methods after training on the last domain (averaged over four
random domain sequences). ↑ indicates higher is better, † denotes results obtained
from Mehta et al., 2020. ER, MbPA++ and Meta-MbPA use a buffer size of 1%
actual samples. PEFT denotes parameter-efficient fine-tuning and Full FT denotes
full fine-tuning. Our G2Df ER (Full FT) approach outperforms all baselines and
the G2Df ER (PEFT) approach demonstrates competitive performance, even in
the absence of retaining the actual samples, when compared to state-of-the-art
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Generated samples (context, question-answer pair) for the SQuAD domain. For
the incorrectly generated samples, we underline one possible correct answer. . . . 49

5.1 Comparing performance in terms of average accuracy(%), forgetting(%), and
learning accuracy(%) (see Equation 2.6) across methods after training on the last
task of CV benchmarks (all metrics are averaged over five random task sequences).
↑ indicates higher is better, ↓ indicates lower is better. Augmenting the FT baseline
with SAM results in performance competitive with state-of-the-art methods, and
augmenting the ER or MC-SGD method with SAM often outperforms state-of-
the-art methods demonstrating SAM as a valuable addition to current lifelong
learning methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xxiii



5.2 Comparing performance in terms of average accuracy(%), forgetting(%), and
learning accuracy(%) across methods after training on the last task of NLP bench-
marks (all metrics are averaged over five random task sequences). ↑ indicates
higher is better, ↓ indicates lower is better. Augmenting the ER method with SAM
often outperforms state-of-the-art methods demonstrating SAM as a valuable
addition to current lifelong learning methods. . . . . . . . . . . . . . . . . . . . 58

5.3 Comparing performance in terms of average accuracy (%), forgetting (%), and
learning accuracy (%) across pre-trained Transformers after continual learning the
last task. ↑ indicates higher is better, ↓ indicates lower is better. All metrics are
averaged over five random task sequences. Overall, we observe that larger models
and/ or pre-trained on diverse and larger corpora (RoBERTa-base) undergo less
forgetting on both 5 and 15 diverse tasks. Furthermore, augmenting the FT and
ER methods with SAM often outperforms state-of-the-art methods. . . . . . . . . 59

5.4 Average sharpness value (lower value corresponds to flat loss basin) of task
minima in a 100-dimensional random subspace. SAM significantly lowers the
sharpness metric in comparison to the Finetune (FT) method in the case of
randomly initialized models (ResNet-18-R). . . . . . . . . . . . . . . . . . . . . 60

5.5 caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Accuracy and F1 scores for text classification and question answering, re-
spectively. Methods that use the defined lifelong learning setup in Section 6.2.1
are listed on the left. Where applicable, all methods use rM = 100% memory
size unless denoted otherwise. The best result for lifelong learning methods is
made bold. † Results obtained from (d’Autume et al., 2019). ‡ LAMOL (Sun
et al., 2020) is not directly comparable due to their different problem setup where
task identifiers are available. Our framework, Meta-MbPA, outperforms MbPA++
and narrows the performance difference with MTL (100%) while employing just
1% episodic memory size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Performance of models using different memory sizes. We report accuracy
and F1 scores for text classification and question answering, respectively. MTL
(subsampled) is trained on subsampled training data, equivalent to only performing
local adaptation without training the generic representation. Notice that this
variant of MTL is not an upper-bound as it uses fewer training samples. In
summary, our framework Meta-MbPA demonstrates a more efficient utilization of
the episodic memory module compared to existing methods. . . . . . . . . . . . 79

6.3 Performance of models using different memory selection criteria. “Uncer-
tainty” utilizes model’s confidence level (Ramalho and Garnelo, 2019). “For-
gettable” picks examples according to forgetting events (Toneva et al., 2019).
We tune hyper-parameters that result in rM = 1% memory size for all methods.
Memory selection criteria significantly affect performance; the proposed diversity
method outperforms all other criteria. . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Performance of models using the uncertainty-based memory selection meth-
ods (correspond to Table 6.3). “LA” refers to local adaptation. . . . . . . . . . . 82

6.5 Average performance on the last task across all four task orderings. . . . . . 83

xxiv



6.6 Ablation Study on different memory size. “Meta” refers to the proposed meta
optimization in Eq.equation 6.1 and equation 6.2.“MS” denotes memory selection
based on Eq.equation 6.3. “LA” refers to local adaptation. . . . . . . . . . . . . . 83

7.1 Comparing performance on incremental indexing of D1 corpus across different
methods - cl(D1): continue fine-tuning with indexing task on D1, cl(U1): continue
fine-tuning on the updated corpus U1, cl(U1)+epsmem(D): continual indexing of
U1 along with ER of queries for D, cl(U1)+genmem(D): continual indexing of U1

along with ER of pseudo-queries for D. We notice that continually indexing the
updated corpus cl(U1) results in less forgetting of D0 compared to indexing only
the new corpus cl(D1), observed in both NQ and MS MARCO datasets. Next, ER
with either D0 or D1 hurts forward transfer or forgetting. Our proposed approach
of augmenting pseudo-queries for all documents along with continual indexing,
cl(U1)+genmem(U1), alleviates forgetting of D0 corpus and improves forward
transfer to D1 corpus. We also show that our proposed solution reduces forgetting
of D0(= 8M) passages while incremental indexing in a large corpus setting, MS
MARCO (full) containing 8.9M passages. . . . . . . . . . . . . . . . . . . . . 94

8.1 Experiment results for auxiliary learning with the continued pre-training task.
Following Gururangan et al. (2020), we report test micro-F1 for ChemProt and
macro-F1 for the other datasets. The number in parentheses indicates the standard
deviation for each experiment over 3 runs. SAMA-based data optimization leads
to improvements in downstream performance on most of the considered datasets. 111

B.1 Dataset specific accuracy for text classification tasks for different dataset
orders and models. † Results obtained from (d’Autume et al., 2019). Where
applicable, we use rM = 100% unless denoted otherwise. . . . . . . . . . . . . . 128

B.2 Dataset specific F1 scores for question answering tasks for different dataset
orders and models. † Results obtained from (d’Autume et al., 2019). Where
applicable, we use rM = 100% unless denoted otherwise. . . . . . . . . . . . . . 129

B.3 Single model and Multi-Task Learning (MTL) results for text classification
and question answering tasks. MTL (X%) denotes X% of the training examples
are used per dataset to train MTL models. . . . . . . . . . . . . . . . . . . . . . 129

B.4 Performance of the first dataset as training progresses for text classifica-
tion and question answering tasks over different dataset orders and models.
Where applicable, we use rM = 100% unless denoted otherwise. “0 (Initial)"
denotes model before training on any dataset. . . . . . . . . . . . . . . . . . . . 130

C.1 DSI++ dataset statistics for NQ and MS MARCO: memorization and retrieval tasks.131

xxv



xxvi



Chapter 1

Introduction

Over the past decade, advances in training hardware and the availability of large datasets have
enabled deep neural networks to make significant progress in the field of machine learning.
These networks have reached or exceeded the human-level performance in numerous natural
language processing and computer vision tasks, such as machine translation (Lepikhin et al., 2021),
question-answering (Du et al., 2022; Chowdhery et al., 2023), open-ended dialogue generation
(Ouyang et al., 2022), object detection, and image generation (Lu et al., 2023), when evaluated
on independent and identically distributed (i.i.d) holdout data. However, these networks tend to
perform worse when applied to realistic situations where the data distribution changes over time
(Lazaridou et al., 2021). The primary reason behind their failure is that the current approach to
machine learning concentrates on isolated learning (Chen and Liu, 2018), i.e., training a separate
network for each new task or set of related tasks using a stationary dataset. One way to keep these
networks up-to-date is by re-training them from scratch every time new information becomes
available. However, the data used for previous training may only be temporarily available due
to privacy or storage limitations (Farquhar and Gal, 2018). In addition, the re-training approach
can be computationally expensive, data inefficient, and time-consuming, especially for large
networks. For instance, GPT-3 (Brown et al., 2020), an auto-regressive language model with
175B parameters, trained with 499B tokens, used compute equivalent to 3.14e23 floating point
operations and would require 355 years and $4.6M to train on a single NVIDIA Tesla V100 GPU1.

Another approach is to update networks with new information as it arrives continuously.
However, deep neural networks, and generally parametric models, are prone to the phenomenon
of catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999). In this
phenomenon, networks forget or overwrite previously learned knowledge as new information
is incorporated into the system. Additionally, these networks may experience the phenomenon
of negative interference (Pan and Yang, 2009; Weiss et al., 2016), in which previously learned
knowledge may hinder the efficient learning of new things, resulting in increased data requirements.
These two phenomena stem from the stability-plasticity dilemma (Mermillod et al., 2013). Stability
relates to preserving past knowledge, and plasticity relates to learning new knowledge. A balance
is needed, as too much stability hinders new knowledge acquisition, and too much plasticity causes
previous knowledge to be forgotten. This dilemma makes it challenging for current networks to

1OpenAI’s GPT-3 Language Model: A Technical Overview

1
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update their knowledge and adapt efficiently to new tasks incrementally.
In contrast, we humans learn quite differently. We learn by acquiring and updating knowledge

throughout our lifetime, retaining previously learned knowledge, and using it to facilitate efficient
learning of new concepts and skills. Motivated by this human learning process, the lifelong
learning (Thrun and Mitchell, 1995; Thrun, 1995; Chen and Liu, 2018) or incremental learning
(Solomonoff et al., 1989; Syed et al., 1999; Ruping, 2001) or never-ending learning (Mitchell et al.,
2018) or continual learning (Parisi et al., 2019) paradigm aims to develop systems to learn from a
continuous stream of data, ideally preserving past knowledge, updating it with new information
and leveraging it for subsequent learning. Also, researchers have recognized the importance of
lifelong learning capability to progress toward achieving artificial general intelligence (Silver,
2011; Chen and Liu, 2018; Yogatama et al., 2019). Apart from the resemblance to biological
learning, the lifelong learning paradigm also has the potential to reduce energy waste by obviating
excessive model re-training and enabling environmentally friendly and sustainable Green AI
(Hazelwood et al., 2018; Strubell et al., 2019; Schwartz et al., 2020).

The lifelong learning paradigm is also related to other knowledge transfer-related paradigms
like transfer learning (Pan and Yang, 2009) and multi-task learning (Caruana, 1997). Unlike these
two paradigms, the lifelong learning paradigm is more general; assuming sequential access to
tasks, it aims to improve performance on both previous (ideally positive backward transfer or
negative forgetting) and new (positive forward transfer) tasks. The contemporary transfer learning
paradigm primarily focuses on uni-directional knowledge transfer from previous tasks to improve
performance on a new task, even if that hurts the performance on previously learned tasks. On the
other hand, multi-task learning assumes simultaneous access to data from all tasks and aims to
improve performance on all tasks by enabling knowledge sharing between them. Furthermore,
neural networks are shown to experience catastrophic forgetting even in single-task learning setup
(Toneva et al., 2019), highlighting that the lifelong learning paradigm is not just restricted to
multi-task scenarios. Even the notion of the task is very much open-ended in the lifelong learning
paradigm. For example, consider a lifelong COVID-19 Named Entity Recognition (NER) tagger.
There are three different manifestations of tasks – (i) classification tasks like entity chunking,
entity detection, entity linking, co-reference resolution, and relationship extraction, (ii) NER on
temporary varying domains of COVID-19 research articles for years 2020, 2021, 2022, 2023
(iii) NER for evolving classes of COVID-19 variants like COVID-Alpha, COVID-Beta, COVID-
Omicron. These manifestations correspond to three prominent scenarios in lifelong learning: task,
domain, and class incremental learning (Van de Ven and Tolias, 2019).

In addition to addressing catastrophic forgetting, there are several other goals for lifelong
learning systems (Biesialska et al., 2020). Humans quickly learn new information from an ongoing
conversation without clear topic boundaries (Chen and Liu, 2018). We selectively retain past
experiences in our limited memory capacity to prevent forgetting and sparsely replay them as
needed (Ratcliff, 1990; McGaugh, 2000). Additionally, we often learn in an unsupervised manner
from our environment rather than relying on explicit supervision (Aljundi, 2019). In contrast,
current lifelong learning systems (Biesialska et al., 2020) require explicit task boundaries, are
data inefficient as they rely on large memory capacity, and are computationally expensive as
they demand multiple passes over labeled data. To mimic human learning more effectively, it’s
necessary to develop lifelong learning systems that operate under more realistic assumptions and
are data, memory, and computationally efficient (Farquhar and Gal, 2018).
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1.1 Research Goals

In this thesis, we aim to design efficient lifelong learning systems that alleviate catastrophic
forgetting of previously learned knowledge and facilitate future learning by operating under
realistic assumptions. Inspired by the biological learning process and recent progress in deep
learning, we propose injecting appropriate inductive biases into the three main components of
data-driven machine learning: model, training, and data. By doing so, we also hope to increase
efficiency in data, memory, and computational requirements for lifelong learning systems.

Model (architecture & initialization). To construct a deep neural model, we start with an
architecture like ResNet (He et al., 2016) or Transformer (Vaswani et al., 2017), set the initial
value of the architecture’s parameters, and then use the available data to train the model and
determine the optimal parameter values. Recent works (Glorot and Bengio, 2010; LeCun et al.,
2015; Mishkin and Matas, 2015) have shown that the initial values of the parameters are critical for
the model’s learning dynamics and ultimate performance. Toward this end, various initialization
schemes have been introduced for fully-connected networks (Pennington et al., 2017), residual
networks (He et al., 2015), convolutional networks (Xiao et al., 2018), recurrent networks (Chen
et al., 2018), and attention-based networks (Huang et al., 2020). However, these schemes are
specific to a particular architecture and associated activation functions and do not transfer to
variations of existing architectures or completely novel architectures. To address this limitation, a
recent work (Dauphin and Schoenholz, 2019) introduces a recipe for automating the search for
good initializations using task-agnostic meta-learning.

At the same time, transfer learning has shown impressive results in both computer vision
(Zhuang et al., 2021) and natural language processing applications (Howard and Ruder, 2018;
Peters et al., 2018; Devlin et al., 2019). The modern transfer learning paradigm involves pre-
training a fixed architecture, like ResNet (He et al., 2016) or BERT (Devlin et al., 2019), using
copious amounts of data, and then fine-tuning the learned parameters on target tasks. The pre-
training stage can be viewed as a data-driven method of finding a good initialization scheme,
similar to how early experiences shape the development of brain structure in humans and provide
a foundation for lifelong learning (Ackerman, 1992; Black et al., 2017). Given the tremendous
success of pre-trained models, there has been increased interest in understanding their role in
improving generalization (Erhan et al., 2010; Neyshabur et al., 2020), speed of convergence
(Hao et al., 2019), successful transfer (He et al., 2019; Pruksachatkun et al., 2020), and out-of-
distribution robustness (Hendrycks et al., 2020; Tu et al., 2020). Despite these efforts, the role of
pre-trained initializations in lifelong learning settings has been under-explored2.

In recent years, the Transformer (Vaswani et al., 2017) architecture has become a popular
choice for neural network design due to its effectiveness across various modalities, including text
(Devlin et al., 2019; Raffel et al., 2020), vision (Dosovitskiy et al., 2021), audio (Gong et al.,
2021), and speech (Dong et al., 2018). The Transformer architecture and its variants consist of
multiple layers, each comprising multi-headed self-attention and feed-forward sub-layers. While
these networks are modular in terms of their layers and attention heads, they are still monolithic,

2In fact, one of the original motivations for transfer learning was as a way to enable lifelong learning, discussed in
a NIPS-95 workshop on “Learning to Learn” (Pan and Yang, 2009).
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with a fixed pre-defined network topology (e.g., the outputs of one layer feed into the next
layer). The monolithic nature of these architectures makes them prone to catastrophic forgetting.
Adapting them to new tasks may cause the parameters associated with previously learned tasks to
be overwritten, as there is no clear separation between them. In contrast, Simon (1962) posited
that most complex systems are modular and that their near-decomposability, or the presence of
“modules-within-modules” (Meunier et al., 2009), is crucial for their ability to adapt quickly to
changing environmental conditions while retaining previously learned knowledge. This suggests
that an architecture consisting of multiple modules or experts, each specializing in a particular
subset of tasks, can help mitigate the risk of catastrophic forgetting. When adapting to new
tasks, only a subset of the parameters related to those tasks will be affected, while the parameters
associated with previously learned tasks will be preserved. Recently, sparse expert models (Fedus
et al., 2022a) like Switch Transformers (Fedus et al., 2022b), Mixture-of-Experts (Artetxe et al.,
2022), ST-MoE (Zoph, 2022) have been proposed as a way to scale large language models to
trillion parameters while keeping computations efficient by selecting a subset of parameters (or
experts) for each example. Despite being well-suited to lifelong learning systems design, sparse
expert models have not been thoroughly studied for their ability to alleviate forgetting and
facilitate lifelong learning.

Training (optimization & objective). To train a deep neural network, we require training data,
an objective function that measures the model’s performance, and an optimization algorithm
that searches for the optimal parameters that minimize this function. Although the optimization
process focuses on minimizing the loss function on the training data, the ultimate goal is to
generalize to holdout i.i.d. data. The training loss landscapes of the deep neural networks are
complex, resulting in convergence to different global minima (or optimal parameters) based on the
training dynamics. Moreover, these minima are widely different in terms of their generalization
capabilities (Keskar et al., 2017). As a result, there has been a surge in research to alter the training
dynamics by employing techniques like dropout (Hinton et al., 2012b; Srivastava et al., 2014),
batch normalization (Ioffe and Szegedy, 2015) or optimizers like Stochastic Gradient Descent
(SGD; Bottou (1999)), RMSProp (Hinton et al., 2012a), Adam (Kingma and Ba, 2014), Adafactor
(Shazeer and Stern, 2018). Given the prevalence of these techniques and optimizers, it is vital to
understand their implications for the stability-plasticity dilemma. Towards this end, Goodfellow
et al. (2013) argues that dropout increases the optimal size of the network by regularizing and
constraining the network capacity to be barely sufficient to perform the first task, thereby reducing
forgetting of the previous task. Mirzadeh et al. (2020a) provides an alternative explanation that
dropout learns a gating mechanism such that different network paths are active for different
tasks, minimizing interference during sequential learning and retaining stability. Wei et al. (2020)
shows that dropout encourages flat minima by implicitly regularizing the activation norm, and
Mirzadeh et al. (2020b) argues that such flat minima reduce forgetting. Furthermore, by modifying
the hyper-parameters like learning rate and batch size, one can promote flat minima (Keskar
et al., 2017) and reduce forgetting (Mirzadeh et al., 2020b). With these studies establishing the
connection between flat minima and forgetting, it would be efficient to directly optimize for flat
minima instead of relying on an ad-hoc approach of varying learning rate decay, batch size,
and dropout regularization with the hope of converging to flat minima.
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After discussing the impact of the training procedure, we will now turn our attention to
designing objective functions for continual learning. A lifelong learning system must learn from a
sequence of tasks, and the objective is to minimize the average loss function of all tasks. However,
due to the sequential nature of the input task stream, one may not have access to previous data.
Due to this, the system only optimizes for the current task loss function (too much plasticity),
resulting in a loss of previously consolidated knowledge (stability). This kind of vanilla sequential
learning creates a stability-plasticity imbalance, and using previous task data in a multi-task
learning strategy could mitigate this imbalance. The challenge of balancing stability and plasticity
is also well-known in biological systems (Grossberg, 1987; Mermillod et al., 2013). To maintain
this balance and, in turn, retain previously acquired knowledge, humans rely on episodic memory
to store a subset of past experiences and conduct sparse experience rehearsal to reinforce older
tasks (Ratcliff, 1990; Robins, 1995; McGaugh, 2000). Straightforward application of episodic
memory for lifelong language learning requires large working memory to store past inputs and
frequent replaying of them, thereby increasing storage requirements (Biesialska et al., 2020). One
may understand how humans employ episodic memory and mimic it to reduce these requirements.
According to the complementary learning systems (CLS; McClelland et al., 1995; O’Reilly and
Norman, 2002), lifelong learning in humans necessitates two complementary learning phases: a
slow-learning phase for structured knowledge and a fast-learning phase for episodic information,
allowing for the gradual accumulation of knowledge and rapid adaptation to individual experiences
without interference. Inspired by this work, it would be interesting to study whether explicitly
optimizing for complementary learning behaviors during lifelong learning helps reduce the
size of episodic memory along with balancing stability-plasticity dilemma.

Data (limited labeled and unlabeled). Supervised learning involves training a model on a
dataset of labeled examples, each with an input and a corresponding label. Similarly, lifelong su-
pervised learning involves training a model on a sequence of labeled datasets, each corresponding
to a different task (Chen and Liu, 2018). However, continually assuming access to the labeled data
stream is unrealistic in some lifelong learning scenarios. For instance, consider a neural corpus
indexer that memorizes the document corpus to retrieve documents corresponding to the input
queries (Tay et al., 2022). This indexer constitutes a well-suited candidate for lifelong learning;
the indexing process is continuous and cumulative. In other words, as new documents arrive,
the neural indexer needs updating. However, one may not have access to ground-truth queries
corresponding to the incoming documents; nevertheless, the indexer should still be able to answer
input queries for already and newly indexed documents. This application scenario motivates
designing lifelong learning systems capable of continuously learning from an unlabeled data
stream, like humans, who continually learn in an unsupervised manner from our surroundings
rather than relying on direct supervision. Chen and Liu (2018) refers to this learning setup as
lifelong semi-supervised learning with never-ending language learner (NELL; Mitchell et al.,
2018) constituting the only known system for this setup. The NELL architecture does not utilize
deep neural models, which means it does not experience the forgetting phenomenon. Given the
increasing adoption of large neural models (Radford et al., 2018; Devlin et al., 2019; Raffel
et al., 2020; Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Touvron et al., 2023),
it is crucial to examine lifelong semi-supervised learning with these models.
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Like lifelong learning, transfer learning focuses on learning generic knowledge from (poten-
tially unlabeled) data to transfer it to subsequent tasks. Recently, large language models like
RoBERTa(Liu et al., 2019b), T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), and LLaMA
2 (Touvron et al., 2023) have become the de facto starting point for transfer learning on many
NLP tasks. The basic idea is to pre-train these models on self-supervised tasks and then fine-tune
them on the downstream tasks of interest. For pre-training, self-supervised tasks like masked
language modeling are constructed from massive text corpora containing billions of words to
learn general language patterns and features (Devlin et al., 2019). Despite sharing similarities
with how humans learn language by making inferences based on the context, pre-training is still
“data-hungry” (e.g., GPT-3 trained with 499B tokens) compared to humans learning a language
with relatively small amounts of data. To further understand the learning dynamics of language
models during pre-training, Liu et al. (2021) systematically analyses the kinds of knowledge these
models acquire and what time during pre-training. Using RoBERTa, Liu et al. (2021) report that
linguistic knowledge is acquired fast and stably, facts and commonsense are acquired slowly, and
reasoning abilities are not stably acquired. Now let us view the pre-training through the lens
of the lifelong learning paradigm. We receive an incoming stream of pre-training data, and we
continuously update the model with the pre-training objective. Moreover, given the large size
of the pre-training corpora, we rarely revisit any previously seen examples. With this view, the
findings from Liu et al. (2021) suggest that these models undergo the phenomenon of forgetting
during pre-training, thus, suffering from the stable acquisition of knowledge and ending up being
data-hungry. It is intriguing to examine the role of lifelong learning in pre-training, especially
in alleviating forgetting and improving sample complexity.

1.2 Thesis Overview and Contributions
In Figure 1.1, we summarize our work when applied to different scenarios:

• goals (G) of lifelong learning systems - reducing catastrophic forgetting (or backward
transfer or stability), enabling forward transfer (or plasticity), addressing backward vs.
forward transfer tradeoff (stability-plasticity dilemma), sample efficiency

• lifelong learning scenario (S) - task-incremental, domain-incremental, class-incremental,
single-task learning

• desiderate (D) of lifelong learning systems - online/ offline learning, no task boundaries, a
large number of tasks in sequence, limited memory, unlabeled data streams

• proposed methodology (M) - flat minima (pre-training and SAM), meta-learning, semi-
supervised learning, mixture-of-experts

• applications (A) used for evaluations - text and image classification, question-answering,
(continual) pre-training, memorization, document indexing and retrieval

Background. In Chapter 2, we provide an overview of the fundamental concepts related to
lifelong learning, including problem formulation, different lifelong learning scenarios, perfor-
mance measurement criteria, benchmarks for conducting experiments, and prominent baselines
for comparison. This chapter serves as a foundation for the subsequent chapters.
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Ch7. Lifelong Semi-Supervised Learning for Updating Transformer Memory (Mehta et al., 2023a; Mehta et al., 2022)
G: backward vs forward transfer, M: semi-supervised learning, S: class incremental, A: document indexing & retrieval

Ch4. Dynamic Parameter-Efficient Experts for Lifelong Learning (Byun et al., 2023)

G: backward vs forward transfer, M: mixture-of-experts, S: domain incremental, A: QA

Ch3. Role of  Pre-training in Lifelong Learning (Mehta et al., 2023b)
G: catastrophic forgetting, M: pre-training, S: task incremental, A: text/ image classification tasks

Ch6. Efficient Meta Lifelong Learning with Limited Memory (Mehta et al., 2020)
G: backward vs forward transfer, M: meta-learning, S: class/ domain incremental, A: text classification/ QA

Ch5. Lifelong Learning with Sharpness Aware Minimization (Mehta et al., 2023b)
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An Introduction to Lifelong Supervised Learning (Sodhani et al., 2022)
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Limited 
Labeled

Unlabeled

M
od

el
Tr

ai
ni

ng
D

at
a

Figure 1.1: Thesis overview. We summarize our work when applied to different goals (G) and
desiderata (D) of lifelong learning systems, lifelong learning scenarios (S), proposed methodology
(M) to address them, and applications (A) used for evaluations. We view the development of
efficient lifelong learning systems through the lens of machine learning basics—Which model
architecture is well-suited for designing such systems? What role does model initialization play
in alleviating forgetting? How do we address different desiderata of these systems by modifying
training objective and optimization/ training dynamics?
How to sample/ generate data for training such systems?

Part I: Model (Architecture & Initialization).
• Initialization. In Chapter 3, we investigate the role of pre-training in lifelong learning,

specifically focusing on the issue of catastrophic forgetting (or stability). We investigate
existing methods in the context of large, pre-trained models and evaluate their performance
on various text and image classification tasks, including a large-scale study using a novel
dataset of 15 diverse NLP tasks. Across all settings (task-incremental learning, offline
learning with task boundaries, and a large number of tasks in a sequence), we observe
that generic pre-training implicitly alleviates catastrophic forgetting when learning tasks
sequentially compared to randomly initialized models. Moreover, we report that "vanilla"
sequential fine-tuning with pre-trained initializations outperforms sophisticated methods for
reducing forgetting when applied to randomly initialized models, presenting a much simpler
and more efficient solution. We then delve deeper into why pre-training can help prevent
forgetting in this scenario. To understand this phenomenon, we analyze the loss landscape
and infer that pre-trained initialization seems to help reduce forgetting by converging to flat
minima (Mehta et al., 2023b).
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• Architecture. In Chapter 4, we propose Generate to Discriminate for Expert Routing
(G2Df ER), a continual learning method that leverages modern generative language models
to generate per-domain synthetic examples for purposes of domain discrimination (rather
than generative replay). We then leverage this discriminator to route each example to the
best expert at inference time. Concretely, for each new domain, we: (i) fine-tune a domain-
specific expert model; (ii) fine-tune a generative model and sample synthetic examples; and
(iii) train a domain discriminator to predict which domain a given sample is drawn from
using generated samples from all seen domains. At inference time, we pass samples through
our domain discriminator, which routes each sample to its corresponding expert. We show
that this expert-based approach is competitive with previous state-of-the-art in domain-
incremental learning and outperforms in scenarios characterized by stringent constraints
on data sharing (Byun et al., 2023).

Part II: Training (Objective & Optimization).
• Optimization. In Chapter 5, we build on our earlier findings (from Chapter 3) that pre-

trained initialization reduces forgetting by converging to flat minima. We propose jointly
optimizing for current task loss and loss basin sharpness to explicitly encourage wider
basins during sequential fine-tuning. Concretely, we use the Sharpness-Aware Minimization
(SAM) procedure to seek parameters in neighborhoods with uniformly low loss values
(or flat loss regions). We show that this optimization procedure leads to performance
comparable to the state-of-the-art in task-incremental learning across multiple settings
(offline training with task boundaries and a large number of tasks in a sequence) without
retaining an episodic memory that scales in size with the number of tasks (Mehta et al.,
2023b).

• Objective. In Chapter 6, we work on alleviating catastrophic forgetting (retaining stability)
while enabling positive forward transfer (supporting plasticity). Driven by the CLS theory,
we identify three components of an existing method—generic representations, experience
rehearsal, and local adaptation, each corresponding to one of the two learning phases, that
are independent rather than complementary. We introduce a “synergistic” framework that
makes two learning phases complementary. We propose a novel first-order meta-learning
objective that formulates the slow-learning phase as the meta-task (generic representation
and experience rehearsal) and the fast-learning phase as the base task (local adaptation).
Across different challenging settings (domain/class-incremental learning, online learning
with no task boundaries), we show that our framework prepares the slow-learning phase
for faster local adaptation and the fast-learning phase to support reduced memory buffer
size (Mehta et al., 2020).

Part III: Data (Limited Labeled & Unlabeled).
• Limited labeled data. In Chapter 7, we work on a lifelong semi-supervised learning

setup to learn continuously from an unlabeled data stream (in contrast to our work in the
above chapters). Concretely, we consider Differentiable Search Indices (DSIs) to encode
a corpus of documents in the parameters of a model and use the same model to map
queries directly to relevant document identifiers. We introduce DSI++, a continual learning
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challenge for DSI to continuously index new documents while being able to answer queries
related to both previously and newly indexed documents. Across different model scales and
document identifier representations, we show that continual indexing of new documents
leads to considerable forgetting of previously indexed documents. Next, we introduce a
parametric memory to generate pseudo-queries for the retrieval task. We supplement them
during incremental indexing to prevent forgetting older documents (stability) and enable
continuous semi-supervised learning with new documents (plasticity) (Mehta et al., 2023a,
2022).

• Unlabeled data. In Chapter 8, we propose viewing pre-training from a lifelong learning
perspective and design methods to reduce forgetting during pre-training and enhance sample
complexity. Building on the above works, in this chapter, we answer the following research
questions—(i) What should be the initialization scheme for pre-training? For instance, we
show that meta learning-based learned initialization does not influence forgetting behaviors
during the pre-training of language models; (ii) What should be the training dynamics for
pre-training? Based on our work in Chapter 5, we demonstrate that the SAM optimization
procedure helps with stable learning in a single-task learning setting (e.g., memorization
task from Chapter 7), thereby generalizing to situations where data does not undergo a clear
distribution shift (Mehta et al., 2023a); and (iii) What data should be used for pre-training?
Low-quality or noisy samples may hurt learning by amplifying negative interference (or
forgetting); therefore, by employing a scalable meta-learning algorithm, we reweigh (or
filter) them for sample-efficient (continual) pre-training and demonstrate convincing benefits
in terms of downstream performance (Choe et al., 2023).
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Chapter 2

Lifelong Learning

In this chapter, we provide an overview of the fundamental concepts related to lifelong learning,
including the problem formulation (Section 2.1), performance measurement criteria (Section 2.2),
benchmarks for conducting experiments(Section 2.3), and prominent baselines (Section 2.4). This
chapter serves as a foundation for the subsequent chapters.

2.1 Lifelong Learning Formulation

Supervised Learning. The objective of supervised learning is to learn a function, fw : X → Y
such as a neural network, parameterized by w ∈ RP , that can predict an outcome y ∈ Y for a
given input sample x ∈ X . To do so, we assume access to some training data corresponding to a
task t, Dt

train = {(xt
i, y

t
i)}nt

i=1, consisting of nt pairs of input samples xt
i and their labels yti , drawn

i.i.d from task-specific (unknown) fixed distribution Pt(X ,Y). We hope to learn fw such that
for a new pair, (x, y) ∼ Pt, ŷ ≈ y, where ŷ = fw(x). To learn fw, we also need a non-negative
real-valued loss function ℓ that measures how different the prediction ŷ of fw is from the ground
truth y on the training data. Then the risk R(fw) associated with fw is defined as the expectation
of the loss function ℓ

R(fw) = Ex,y∼Pt [ℓ(fw(x), y)] , (2.1)

with the goal to find the optimal function fw∗ (or the optimal parameters w∗) that minimize the
risk R(fw)

w∗ = argmin
w

R(fw). (2.2)

However, the risk R(fw) cannot be computed because the distribution Pt is unknown. Therefore,
the Empirical Risk Minimization principle (ERM; Vapnik, 1991) is employed, which suggests
minimizing the empirical risk R̂(fw) instead of the true risk R(fw)

R̂(fw;Dt
train) =

1

nt

∑
(xt

i,y
t
i)∈Dt

train

ℓ(fw(x
t
i), y

t
i), (2.3)

w∗ = argmin
w

R̂(fw;Dt
train). (2.4)
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Lifelong Learning. In the lifelong learning setting, the system receives an infinite stream of
training examples Dtrain. Unlike typical supervised learning, the training samples are not i.i.d
and are considered to be split into T disjoint subsets, Dtrain = {D1

train, · · · ,DT
train}, each of

which corresponds to a task t. Next, the data corresponding to each task, Dt
train := {(xt

i, y
t
i)}nt

i=1,
is assumed to be drawn from a different i.i.d distribution Pt(X ,Y). Lifelong learning aims to
learn a single model, fw : X → Y (e.g., a neural network parameterized by w ∈ RP ), capable
of effectively generalizing to examples from any task, despite being trained on multiple tasks in
sequential order. Moreover, in an ideal lifelong learning setting, the model should learn from a
stream of input examples without a task descriptor, i.e., the model is unaware of the task identifier
t for a sample during training and testing. This setting is ubiquitous in practice, as environments
consistently evolve without sending an explicit signal (Farquhar and Gal, 2018). Formally, the
objective function is to minimize the average expected risk of all tasks in a sequence. Applying
the ERM principle (Vapnik, 1991), we hope to minimize the average empirical risk of all T tasks

R̂T (fw;Dtrain) =
1

T

T∑
t=1

1

nt

∑
(xt

i,y
t
i)∈Dt

train

ℓ(fw(x
t
i), y

t
i), (2.5)

where ℓ is the task-specific loss function and nt = |Dt
train|. However, during lifelong learning,

data from older tasks (t < T ) is unavailable, and so it is infeasible to minimize the average
empirical risk in Equation 2.5. As a consequence, the system solely minimizes the empirical
risk of the currently available task, potentially leading to the forgetting of previous tasks. The
terms stability and plasticity are used to describe the preservation of past knowledge and the
acquisition of new knowledge, respectively. Present neural networks exhibit excessive plasticity
and insufficient stability. Maintaining a balance is crucial, as excessive stability impedes the
acquisition of new knowledge, while excessive plasticity results in the forgetting of previous
knowledge. This interplay between stability and plasticity constitutes the stability-plasticity
dilemma, and our thesis focuses primarily on addressing this dilemma.

As stated above, in the lifelong learning setting, it is assumed that there are clear and well-
defined boundaries between the tasks to be learned, and the system is unaware of the task identifier
during training and evaluation. However, depending on the use case scenarios for lifelong
learning systems, the task identifier may (or may not) be available during inference time, thereby
influencing the solutions for addressing the stability-plasticity dilemma. Due to this, Van de
Ven and Tolias (2019) defines three prominent scenarios in lifelong learning: task-incremental,
domain-incremental, and class-incremental learning. These scenarios differ on whether the task
identifier is available during inference time and, if it is not, whether the system should infer it.
In Figure 2.1, we visualize three different scenarios and discuss them in detail in the following
sections.

2.1.1 Task-Incremental Learning
Task-incremental learning is a scenario where a model is trained on a sequence of tasks with
known task identifiers, making it the simplest type of lifelong learning scenario. With the task
identifier always available, models can have task-specific components, such as a multi-headed
output layer in deep neural networks, where each task has its output units. For instance, in the case
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(a) Task-Incremental (b) Domain-Incremental (c) Class-Incremental

Figure 2.1: Overview of the three lifelong learning scenarios (adapted from Sodhani et al., 2022)

of a COVID-19 Named Entity Recognition (NER) tagger, under the task-incremental learning
scenario, different (related) classification tasks like entity chunking, entity detection, entity
linking, co-reference resolution, and relationship extraction would have different classification
heads but may share the rest of the network between them. In this scenario, different tasks have
different label spaces, i.e., Yi ̸= Yj ∀i, j ∈ {1, · · · , T }. After sequential training on tasks, the
model is evaluated on each task separately, meaning only the classes corresponding to that task
are considered. The overall model performance is average across all tasks after being trained
sequentially on all tasks (see Figure 2.1a). Although the overall performance is most commonly
evaluated after the model has seen all tasks, one can also evaluate a specific task at different stages
during continual learning to evaluate the model’s robustness against catastrophic forgetting and
negative interference.

2.1.2 Domain-Incremental Learning

In a domain-incremental learning scenario (see Figure 2.1b), a model learns from a sequence
of tasks without knowing task identifiers during training and inference time. This scenario is
when the underlying task structure remains consistent, but the input data distribution evolves,
referred to as the “domain” of the input. For instance, in the case of the COVID-19 NER tagger, a
domain-incremental learning scenario constitutes training a system sequentially on temporally
evolving articles from 2020, 2021, and 2022 with the articles from every year treated as a separate
task (or domain). Note that the underlying task of NER is the same across different domains;
hence the label space Y remains fixed across all domains. Consequently, the output layer in the
deep neural network is shared. However, the marginal or conditional distributions over X and Y
can change, i.e., Pi(X ) ̸= Pj(X ) and Pi(Y|X ) ̸= Pj(Y|X ), ∀i, j ∈ {1, · · · , T }. Similar to the
task-incremental learning scenario, the overall model performance is averaged across all domains
after being trained sequentially on evolving domains.

2.1.3 Class-Incremental Learning

In a class-incremental learning scenario, the task identifier is unavailable during inference time. So
a model must infer a task identifier to solve each task seen so far, making this the most challenging
lifelong learning scenario and bringing it closer to mimicking the human learning setting. As a
result, deep neural networks incorporate a single-headed output layer that is shared among all
tasks. For example, a COVID-19 NER tagger must learn new classes to support evolving virus
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variants (COVID-Alpha, COVID-Beta, and COVID-Omicron) as they appear, creating a class-
incremental lifelong learning scenario. In this scenario, the output label space keeps evolving, i.e.,
Y i ⊂ Yj, ∀i < j, i, j ∈ {1, · · · , T }. During the evaluation, the model’s predictions are assessed
against all the classes it has encountered thus far (see Figure 2.1c). The overall performance
is reported to be averaged for all tasks (each task corresponds to a subset of classes added in a
sequence).

2.2 Performance Metrics in Lifelong Learning
Let St,τ denote the accuracy on task τ after training on task t. After model finishes training on
the task t, we compute the average accuracy (At), forgetting (Ft) and learning accuracy (LAt)
metrics as proposed by Lopez-Paz et al. (2017); Riemer et al. (2019). Ft (also referred to as
backward transfer) measures the influence of learning task t on the performance of all previously
seen tasks τ, (1 ≤ τ < t). As the model learns multiple tasks in the sequence, we hope that
knowledge acquired during lifelong learning aids in learning new tasks (forward transfer). LAt

measures the learning capability when the model sees the new task t (indirectly measuring the
forward transfer). Say we learn the tth task, then At, Ft and LAt are defined as follows

At =
1

t

t∑
τ=1

St,τ , Ft =
1

t− 1

t−1∑
τ=1

max
τ ′∈{1,··· ,t−1}

(Sτ ′,τ − St,τ ), LAt =
1

t

t∑
τ=1

Sτ,τ . (2.6)

2.3 Tasks and Benchmarks for Lifelong Learning

2.3.1 Text Classification
We conduct experiments on Split YahooQA (homogeneous) and 5-dataset-NLP/15-dataset-NLP
(diverse). In the homogeneous scenario, tasks are generated from the same underlying distribution
or dataset. In contrast, the diverse setting involves tasks that originate from different underlying
distributions or datasets. We examine these two task categories to investigate potential variations
in forgetting trends within this context.

Split YahooQA consists of five homogeneous text classification tasks and is built from a 10-
way topic classification dataset (YahooQA; Zhang et al., 2015) by randomly splitting topics
into different tasks. Each task involves 2-way text classification and comprises approximately
279k/12k examples for the training and testing sets, respectively.

5-dataset-NLP consists of five diverse text classification tasks (Zhang et al., 2015) spanning
different text classification datasets: (1) news classification (AGNews), (2) sentiment analysis
(Yelp, Amazon), (3) Wikipedia article classification (DBPedia) and (4) questions and answers
categorization (Yahoo). To compare our framework with d’Autume et al. (2019), we follow the
same data processing procedure to produce balanced datasets. For the task-incremental learning
scenario, we have 115k/7.6k (train/test) examples per task. For the class-incremental learning
scenario, we have 33 classes, 575, 000 training examples, and 38, 000 test examples from all tasks.
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Task Dataset/ Domain(s)/ |Train| |Val| |Test| |L| Metrics
Corpus Text source(s)

Linguistic CoLA Journal articles 7,695 856 1,043 2 Matthews
Acceptability & books correlation

Boolean BoolQ Google queries, 8,483 944 3,270 2 Acc.
Question Wikipedia
Answering passages

Sentiment SST-2 Movie 9,971 873 872 2 Acc.
Analysis reviews

Paraphrase QQP Quora 10,794 4,044 4,043 2 Acc. & F1
Detection questions

Q & A YahooQA Yahoo! 13,950 4,998 4,998 10 Acc.
Categorization Answers

Review Rating Yelp Business 12,920 3,999 3,998 5 Acc.
Prediction reviews

Event Factuality Decomp FactBank 10,176 4,034 3,934 2 Acc.

Argument Aspect AAC Web 10,893 2,025 4,980 3 Acc. & F1
Detection documents

Explicit Discourse DISCONN8 Penn Discourse 9,647 1,020 868 8 Acc. & F1
Marker Prediction TreeBank

Question QNLI Wikipedia 9,927 5,464 5,463 2 Acc.
Answering NLI

Binary Sentence RocBSO Roc story, 10,000 2,400 2,400 2 Acc.
Order Prediction corpus

Natural Language MNLI speech, fiction, 11,636 4,816 4,815 3 Acc.
Inference govt. reports

Multi-choice SciTAIL Science exams 11,145 1,305 1,304 2 Acc.
Science QA

Implicit Discourse PDTB2L1 Penn Discourse 13,046 1,183 1,046 4 Acc. & F1
Relation TreeBank
Classification

Emotion Emotion Twitter 9,600 2,000 2,000 6 Acc. & F1
Detection

Table 2.1: 15-dataset-NLP: Task/dataset description and statistics. All tasks are either single
sentence or sentence pair classification. |Train|, |Val|, and |Test| denote the number of examples
in the train, validation, and test splits respectively. |L| denotes the number of classes for each task.
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15-dataset-NLP One of the objectives of our thesis is to study the role of different pre-trained
initializations in lifelong learning. To enable this study, we introduce 15-dataset-NLP, a novel
suite of diverse tasks for lifelong learning. It consists of fifteen text classification tasks covering a
broad range of domains and data sources. Although there exists a setup with 4 tasks spanning
5 datasets, 5-dataset-NLP (de Masson D’Autume et al., 2019), we show that our introduced
benchmark proves more challenging (see Table 5.3 and Section 3.3.3) than the previous setup for
the Transformer models (e.g., DistilBERT, BERT, RoBERTa) considered in our thesis.

This benchmark consists of single-sentence or sentence pair classification tasks. We design
our benchmark from existing tasks such that (1) the overall dataset includes various domains, (2)
different tasks are (dis)similar to each other, thereby, facilitating both transfer and interference
phenomena. All tasks under consideration differ in dataset size (from 8.5k-400k), so for our
experiments, we only use between 8.5k-14k training examples from each task. Lifelong learning
from highly imbalanced data is an interesting problem, and we feel that our introduced benchmark
can be used to investigate this problem as well. As our data is gathered from publicly available
sources, for some tasks we do not have access to hidden test examples. In such cases, we consider
dev examples as test split and sample examples from train split for validation We describe the
tasks below and Table 2.1 details the evaluation metrics and train/dev/test split sizes for each task.

1. Linguistic acceptability aims at identifying whether the given sequence of words is a
grammatical sentence. The Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019)
consists of English sentences annotated with their grammatical judgments. The data spans
multiple domains, specifically books, and journal articles.

2. Boolean QA is a reading comprehension task of answering yes/no questions for a given
passage. The Boolean Questions (BoolQ; Clark et al., 2019) data set consists of short pas-
sages with yes/no questions about the passage. The questions are sourced from anonymous
Google users and paired up with passages from Wikipedia articles.

3. Sentiment analysis is a binary classification task of identifying the polarity (positive/negative
sentiment) of a given text. The Stanford Sentiment Treebank (SST-2; Socher et al., 2013)
corpus consists of sentences from Rotten Tomatoes movie reviews annotated with their
sentiment.

4. Paraphrase detection aims at identifying whether two sentences are semantically equivalent.
The Quora Question Pairs (QQP) corpus consists of question pairs from Quora1 website
annotated for semantic equivalence of question pairs.

5. Q&A categorization is a topic classification task of categorizing question and answer text
pairs into existing topics. The Yahoo! Answers Comprehensive Questions and Answers (Ya-
hooQA; Zhang et al., 2015) corpus contains data corresponding to the ten largest categories
from Yahoo! Webscope program.

6. Review rating prediction is a five-way classification task of predicting the number of stars
the user has given in a review given the corresponding text. The Yelp (Zhang et al., 2015)
data set contains business reviews obtained from the Yelp Dataset Challenge (2015).

7. Event factuality prediction is the task of determining whether an event described in the

1https://www.quora.com/share/First-Quora-Dataset-Release-Question-Pairs

16



text occurred. The factuality annotations from the Decomp corpus are recast into an NLI
structure and we use the modified data set from Diverse NLI Collection (Poliak et al., 2018).

8. Argument aspect mining is concerned with the automatic recognition and interpretation of
arguments (assessing the stance, source, and supportability for a given topic). The Argument
Aspect Corpus (AAC; Stab et al., 2018) has over 25,000 arguments spanning eight topics
annotated with three labels (no argument, supporting argument, opposing argument). Stab
et al. (2018) collected the data from web documents representing a range of genres and text
types, including blogs, editorials, forums, and encyclopedia articles.

9. The explicit discourse marker prediction task aims at classifying the discourse markers
between sentences. Specifically, words like ‘and’, ‘but’, ‘because’, ‘if’, ‘when’, ‘also’,
‘while’, and ‘as’ mark the conceptual relationship between sentences (DISCONN8) and
are considered as labels for this task as discussed in (Prasad et al., 2019; Kim et al., 2020).
We use examples from the Penn Discourse Treebank 3.0 marked for explicit discourse
relationship for our experimentation.

10. Question-answering NLI (QNLI) is a task adapted from the SQuAD by converting it into
the sentence pair classification task (Wang et al., 2019). QNLI is a binary classification task
of detecting whether the context sentence contains the answer to the question.

11. Binary Sentence Ordering (BSO) is a binary classification task to determine the order of
two sentences. This task is similar to pre-training objectives considered in recent works.
We use Roc Stories (RocBSO; Mostafazadeh et al., 2016) corpus for constructing the data
set for this task.

12. Natural language inference (NLI) is a three-way classification task of predicting whether
the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction),
or neither (neutral). The Multi-Genre Natural Language Inference (MNLI; Williams et al.,
2018) corpus consists of sentence pairs from different sources (transcribed speech, fiction,
and government report) annotated for textual entailment.

13. Multi-choice QA is a reading comprehension task wherein given a passage and question,
models need to pick up the right option out of the provided ones. Khot et al. (2018) cast the
multiple-choice science exam questions into an NLI structure to convert them to a binary
classification task. We use the SciTAIL (Khot et al., 2018) data set released by them for our
experimentation.

14. Implicit discourse relation classification is a common task of identifying discourse relations
between two text spans or arguments. The Penn Discourse Treebank 3.0 (PDTB3L1;
Prasad et al., 2019; Kim et al., 2020) contains a hierarchical annotation scheme (top-level
senses, fine-grained level-2 senses) and we use top-level senses comprising of four labels
(expansion, comparison, contingency, temporal) for our experimentation.

15. Emotion detection is a classification task of detecting the emotions from a given text snippet.
We use Emotion data set (Saravia et al., 2018) which contains Twitter messages with six
emotions: anger, fear, joy, love, sadness, and surprise.
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2.3.2 Question Answering

We use three question answering datasets: SQuAD v1.1 (Rajpurkar et al., 2016), TriviaQA (Joshi
et al., 2017) and QuAC (Choi et al., 2018). TriviaQA has two sections, Web and Wikipedia, which
we consider as separate datasets. We process the datasets to follow the same setup as d’Autume
et al. (2019). Our processed dataset includes SQuAD with 90, 000 training and 10, 000 validation
examples, TriviaQA (Web) with 76, 000 training and 10, 000 validation examples, TriviaQA
(Wikipedia) with 60, 000 training and 8, 000 validation examples and QuAC with 80, 000 training
and 7, 000 validation examples.

2.3.3 Image Classification

We perform our experiments on 5-dataset-CV (diverse) and Split CIFAR-50/ Split CIFAR-100
(homogeneous).

5-dataset-CV consists of five diverse 10-way image classification tasks - CIFAR-10 (Krizhevsky
and Hinton, 2009), MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), and notMNIST (Bulatov, 2011). It is one of the largest datasets used for lifelong
learning experiments (Ebrahimi et al., 2020) with overall 180.9k train examples (see Table 2.2 for
task-specific statistics).

Split CIFAR-50 takes the first 50 classes of the CIFAR-100 image classification dataset
(Krizhevsky and Hinton, 2009) and randomly splits them into five homogeneous 10-way classi-
fication tasks. Each task contains 5, 000/1, 000 (train/test) examples. We built this dataset as a
homogeneous counterpart to 5-dataset-CV by mimicking its task structure (10 classes/task) and
the number of tasks. Further, we note that Split CIFAR-50 (10 classes/ task) is more challenging
than Split MNIST/ CIFAR-10 (2 classes/ task) because there are more classes per task. Therefore,
in this work, we prefer Split CIFAR-50 over MNIST/CIFAR-10 for our experimentation.

Split CIFAR-100 splits the CIFAR-100 dataset into 20 disjoint 5-way classification tasks, with
each task containing 2, 500/500 (train/test) examples. Due to the large number of tasks in this
dataset, it is regarded as one of the most challenging and realistic CV benchmarks for lifelong
learning (Chaudhry et al., 2018b).

2.4 Prominent Baselines for Lifelong Learning
Various approaches have been developed for lifelong learning, tailored to different scenarios
and system requirements (Sodhani et al., 2022). These approaches fall into several categories:
(i) parameter-based regularization, (ii) episodic memory-based, (iii) test-time adaptation using
episodic memory, and (iv) optimization-based approaches. In the subsequent sections, we will
delve into notable methods within each category, which we consider in this thesis for comparing
our approaches.
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Dataset |Train| |Val| |Test| |L|
MNIST 51,000 9,000 10,000 10
notMNIST 15,526 2,739 459 10
Fashion-MNIST 9,574 1,689 1,874 10
CIFAR10 42,500 7,500 10,000 10
SVHN 62,269 10,988 26,032 10

Table 2.2: 5-dataset-CV statistics. |Train|, |Val|, and |Test| denote the number of examples in the
train, validation, and test splits, respectively. |L| denotes the number of classes for each task.

2.4.1 Parameter-Based Regularization Approaches

Parameter-based regularization methods aim to prevent catastrophic forgetting in neural networks
by introducing a penalty term to the task-specific objective, without the need for retaining samples
from prior tasks. While a basic approach involves minimizing the drift between parameters w1

and w2 post task 2 training, this can significantly limit network capacity during sequential training.
To address this, advanced techniques selectively apply regularization, allowing flexibility for some
parameters while constraining others based on their relevance to past tasks. The crux of these
techniques lies in efficiently measuring the importance of each parameter.

Elastic Weight Consolidation (EWC; Kirkpatrick et al., 2017) is the canonical approach in
this category. It tackles forgetting by restricting updates to parameters important for previously
learned tasks, as determined by the Fisher information matrix F diagonal terms. Specifically,
when training on a current task t, EWC tries to minimize the distance from previous optimal
parameters that correspond to each task 1 ≤ τ < t, as follows

R̂t(fw;Dt
train, w

∗
1, · · · , w∗
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1
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∑
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t
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ℓ
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t
i), y
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i
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empirical risk of the current task t
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N∑
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2,︸ ︷︷ ︸

penalty term for prior tasks, 1≤τ<t

(2.7)

where N is the total number of parameters (|w|), α is the regularization strength, w∗
τ are the

optimal parameters after training on the prior task τ , and F τ is the Fisher information matrix
calculated as the point estimate at the end of training on task τ . Formally, the F τ

j is defined as:

F τ
j = E

[
∇wj

log fw(x)
2|w∗

τ,j

]
. (2.8)

EWC necessitates retaining all Fisher matrices from previous tasks, denoted as F τ , and the
optimal parameters w∗

τ for those tasks. This results in a memory complexity that scales linearly
with the number of tasks T , specifically O(NT ). EWC can be employed to mitigate forgetting
across all lifelong learning scenarios.
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Online EWC Schwarz et al. (2018) introduces a modified version of EWC, known as Online
EWC, designed for situations that require continuous learning from an online stream of data,
especially in scenarios where task identifiers are unknown. In this variation, an overall Fisher is
computed online instead of storing the Fisher information for all previous tasks. Let w∗

t−1 and
F̃ t−1 represent the optimal parameters and overall Fisher after learning task t− 1. After learning
task t, the overall Fisher is updated as follows

F̃ t = γF̃ t−1 + F t, (2.9)

where γ serves as a decay parameter, diminishing the importance of parameters associated with
previous tasks. This modification eliminates the need for the task identifier during training and,
due to γ, gracefully forgets older tasks by down-weighting their importance values. Graceful
forgetting is crucial in lifelong learning to create space for new tasks, preventing capacity issues
discussed in Kirkpatrick et al. (2017) when the model reaches its capacity limit.

2.4.2 Episodic Memory-Based Approaches: Data-Based Regularization
In the preceding section, we explored parameter-based regularization methods, which aim to
prevent significant deviations of model parameters from their initialization while optimizing the
current task loss. In contrast, this section delves into data-based regularization methods, aiming to
induce a similar effect as parameter-based approaches. We specifically concentrate on episodic
memory-based approaches in lifelong learning. Episodic memory (M = ∪τ<tMτ ) retains a
subset of observed examples from all prior tasks τ < t and is employed to mitigate forgetting of
previous tasks while learning the current task t. Different approaches within this category differ
in terms of how episodic memory is employed—either to derive implicit constraints on current
task gradients (Chaudhry et al., 2019) or explicit constraints on current task gradients (Lopez-Paz
et al., 2017; Chaudhry et al., 2018b).

Episodic Replay (ER; Chaudhry et al., 2019) The most basic strategy for utilizing episodic
memory involves replaying examples, denoted asMτ , from each previously learned task τ while
learning the current task t. Formally, the loss functions are defined as follows
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where LTASK represents the loss on samples from the current task t, LREP represents the replay
loss on samples corresponding to prior tasks, as sampled from the episodic memoryM, and
nre = |M|. For ER, the joint optimization problem covering both the current task loss and replay
loss is defined as

w∗
t = argmin

w
α1LTASK(w;Dt

train; ) + α2LREP(w;M). (2.12)
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Typically, in Equation 2.12, α1 and α2 are assigned the value of 1. Chaudhry et al. (2019)
demonstrates that this straightforward strategy outperforms other sophisticated algorithms in
lifelong learning performance.

Averaged Gradient Episodic Memory (A-GEM; Chaudhry et al., 2018b) imposes the con-
straint that the average replay loss, computed over the previous tasks using the episodic memory,
does not increase

min
w

LTASK(w;Dt
train) s.t. LREP(w;M) ≤ LREP(w

∗
t−1;M) whereM = ∪τ<tMτ . (2.13)

The optimization problem corresponding to Equation 2.13 is defined as

min
g̃

1

2
||g − g̃||22 s.t. g̃⊤gREP ≥ 0. (2.14)

Here, gREP denotes a gradient computed using a batch of replay examples, randomly sampled
from the episodic memory M across all previously encountered tasks. Rather than solving
Equation 2.13 using a quadratic program, it can be solved using only the inner product between
the gradients of LTASK (g) and LREP (gREP ). When the gradient of the current task g violates the
constraint, the projected gradient g̃ is computed as follows

g̃ = g − g⊤gREP

g⊤REPgREP

gREP . (2.15)

For the joint optimization problem in Equation 2.12, A-GEM algorithm reduces to setting the
importance weights α1 and α2 as follows

α1 = 1, α2 = I⟨g,gREP ⟩≤0

(
− g⊤gREP

g⊤REPgREP

)
, (2.16)

where IC is the indicator function which evaluates to 1 if C holds and otherwise to 0. Note that
both ER and A-GEM are applicable in all three lifelong learning scenarios, as well as in situations
where one needs to learn from an online or offline stream of data.

2.4.3 Test-Time Adaptation-Based Approaches
In the previous section, we focus on approaches that use episodic memory during training.
However, lifelong learning is continuous, and there might not be a clear boundary between
training and evaluation. Consequently, it is reasonable to consider access to episodic memory
even during evaluation, and we will explore approaches addressing this aspect in this section.

Memory-based Parameter Adaptation (MbPA; Sprechmann et al., 2018) employs two com-
ponents: a slow-learning parametric neural network and a fast-adapting non-parametric episodic
memory. The parametric network fw consists of an embedding network hemb and a task network
gθ, where p(y|x; emb, θ) = fw(x) = gθ(hemb(x)). Unlike previous memory-based methods,
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instances are stored as key-value pairs in the episodic memoryMt = (hi, vi) during training,
where hi = hemb(xi) and vi = yi. Also, the memory is not utilized for training beyond populating
it with observed examples.

During inference, the episodic memory facilitates instance-based (local) adaptation of the
parametric network, hence, the approach is called Memory-based Parameter Adaptation (MbPA).
Concretely, the encoding of the current input hemb(x) is used to retrieve k nearest neighbors from
the episodic memory,Mk = {(hi, vi, si)}ki=1, where the weight si gauges the proximity of the
i-th example to hemb(x) using the kernel function

kern(hi, hemb(x)) =
1

ϵ+ ||hi − hemb(x)||22
. (2.17)

The local adaptation involves adjusting the task network parameters θ for examples x to
minimize the weighted average negative likelihood over the retrieved k neighbors, with the update
rule defined as

θ̃xi = argmin
θ
−

k∑
i=1

si log p(yi|xi; emb, θ) . (2.18)

Improved Memory-based Parameter Adaptation (MbPA++; de Masson D’Autume et al.,
2019) notices that in MbPA the episodic memory contains keys from the embedding network
at different points during the training. They argue that this results in the embedding network
drifting over time, and the key of the test examples is closer to that of the recently seen examples.
To circumvent this issue, they suggest freezing the embedding network. Specifically, MbPA++
consists of three main components: (i) a predictor network fw, (ii) a key network gϕ, and (iii)
a memory moduleM. The goal is to train fw to generalize on examples across all tasks as in
Equation 2.5.

To learn a generic representation, MbPA++ utilizes any state-of-the-art text encoder, such as
BERT (Devlin et al., 2019), to initialize both predictor network fw and key network gϕ. At each
time step, the model receives a training example (xt
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optimizing the task loss
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To determine if the training example should be added to the memory moduleM, a Bernoulli
random variable is drawn with pre-set probability, which is used to control the memory size.

For experience rehearsal (or episodic replay), a subset S ofM is randomly selected, based on
a set ratio of replay examples to learning new examples (i.e. revisit nre examples for every ntr

training examples). To avoid catastrophic forgetting, the model then updates the following replay
loss to adapt w towards prior tasks (similar to Equation 2.11)

LREP(w;S) =
1

nre

∑
(x,y)∈S

ℓ(fw(x), y). (2.20)

At inference time, the key network gϕ, which is fixed during training, is used to encode
example inputs as keys to obtain the k nearest neighbor context Nxi

of the i-th testing example xi.
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nl local adaptation gradient updates are then performed to achieve task-specific finetuning using
the following objective

LLA(w̃
xi ;w,Nxi

) =
1

k

∑
(x,y)∈Nxi

ℓ(fw̃xi (x), y) + λl∥w̃xi − w∥22, (2.21)

where λl is a hyperparameter. The predictor network fw̃xi is then used to output the final prediction
for the i-th testing example xi.

2.4.4 Optimization-Based Approaches
Another avenue in lifelong learning research explores the optimization perspective of the problem.
Mirzadeh et al. (2020b) demonstrated that the geometric nature of the local minima reached by the
learning algorithm influences the extent of catastrophic forgetting. Let w∗

i denote the minimum
achieved after sequential training on the i-th task, and Lj(wi) represent the loss of the j-th task
with parameters wi. Forgetting F1 of the first task after training on the second task is defined as

F1 = L1(w
∗
2)− L1(w

∗
1). (2.22)

According to the second-order Taylor expansion of L1(w
∗
2) around w∗

1

L1(w
∗
2) ≈ L1(w

∗
1) +

1

2
(w∗

2 − w∗
1)

⊤∇2L1(w
∗
1)(w

∗
2 − w∗

1). (2.23)

By using the above approximation to L1(w
∗
2), Mirzadeh et al. (2020b) derived an upper bound for

F1 in terms of the maximum eigenvalue (λmax
1 ) of∇2L1(w

∗
1)

F1 ≈
1

2
(w∗

2 − w∗
1)

⊤∇2L1(w
∗
1)(w

∗
2 − w∗

1),

≤ 1

2
λmax
1 ||w∗

2 − w∗
1||22. (2.24)

.

Stable SGD (Mirzadeh et al., 2020b) As per the bound in Equation 2.24, a smaller λmax
1

corresponds to less forgetting. λmax
1 is utilized to characterize the width of local minima, where

small values indicate flat minima and large values indicate sharp or narrow minima (Hochreiter
and Schmidhuber, 1997). Building on this analysis, Mirzadeh et al. (2020b) proposes the Stable
SGD strategy, which modifies the training process by adjusting hyperparameters such as learning
rate, batch size, learning rate decay, and dropout regularization. The objective is to introduce
inherent noise in the stochastic gradients, promoting convergence to wide regions within the
loss landscape, thereby reducing forgetting during continual learning. This approach does not
necessitate access to examples from previous tasks. Nonetheless, conducting a hyperparameter
sweep in continual learning poses challenges as it is ill-defined, therefore, implementing this
method across different lifelong learning scenarios is challenging.
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Mode Connectivity SGD (MC-SGD; Mirzadeh et al., 2021) approach modifies the training
dynamics to constrain continual minima within a low-loss valley connected to all previous minima.
Let w∗

t−1 represent the optimal solution after sequential training on t− 1 previous tasks, and w̃t

denote the minimum achieved after sequential training on the t-th task. The following objective is
employed to find the optimal solution enforcing linear mode connectivity to both w∗

t−1 and w̃t:

w∗
t = argmin

w

∑
α

[
LREP(w

∗
t−1 + α(w − w∗

t−1);M) + LTASK(w̃t + α(w − w̃t);Dt
train)

]
, (2.25)

where LTASK represents the loss on samples from the current task t, LREP represents the replay
loss on samples corresponding to prior tasks, as sampled from the episodic memoryM, and
α parameterizes the line connecting w to w∗

t−1 and w̃t respectively in the first and second term.
MC-SGD can be seen as a fusion of both regularization and replay-based methods in continual
learning, using a small replay buffer to approximate a low-loss path for previous tasks. Thus, this
approach requires the presence of previous task data in the form of episodic memory.
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Model: Architecture & Initialization
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Chapter 3

Initialization: Role of Pre-training in
Lifelong Learning

3.1 Overview

As discussed in Section 1.1, the role of pre-trained initializations in lifelong learning settings
has been under-explored. In contemporary work, Hu et al. (2021) uses pre-trained models as
feature extractors (i.e., pre-trained weights are frozen) for task-incremental learning. The pre-
trained weights are frozen in this setting, so the model undergoes no forgetting. In contrast,
fine-tuning pre-trained weights update the pre-trained model parameters and are susceptible to
severe forgetting. Pre-training followed by fine-tuning is typically the most accurate and common
Transfer Learning (TL) paradigm (Peters et al., 2019) and the one we consider in this chapter. To
the best of our knowledge, there is no prior work systematically analyzing the role of pre-trained
initialization on catastrophic forgetting in lifelong learning scenarios.

Figure 3.1 shows that simply changing the network initialization to pre-trained initialization
significantly reduces forgetting on the first task during sequential training on five tasks. This
observation motivates us to ask—Does pre-training implicitly alleviate catastrophic forgetting,
and if so, why? To answer this question, we conduct a systematic study on existing CV and NLP
benchmarks and observe that pre-training indeed leads to less forgetting. We also investigate the
effect of the type of pre-trained initialization by analyzing the extent to which different pre-trained
Transformer language model variants (Sanh et al., 2019; Devlin et al., 2019; Liu et al., 2019b;
Raffel et al., 2020) undergo forgetting, observing that increasing the capacity of the model and
diversity of the pre-training corpus play an essential role in alleviating forgetting. To further
stress-test these models under realistic scenarios, we introduce a dataset with 15 diverse NLP
tasks (see Section 2.3.1 for more details) and observe considerable forgetting on this dataset.

We hypothesize that pre-trained weights already have a good inductive bias to alleviate
forgetting implicitly. To explain this behavior, we build upon two separate observations — Hao
et al. (2019); Neyshabur et al. (2020) show that in the context of TL, pre-trained weights lead to a
flat loss basin when fine-tuning on a single task. Mirzadeh et al. (2020b) argues that the geometric
properties of the local minima for each task play a vital role in forgetting and suggests modifying
the hyper-parameters (learning rate decay, batch size, dropout) to promote flat minima.

27



1 2 3 4 5
Tasks Learned

50

60

70

80

90

100

Ac
cu

ra
cy

Initialization
random pre-trained

Figure 3.1: Pre-trained and randomly initialized DistilBERT on Split YahooQA dataset. Perfor-
mance of the first task visualized over sequential learning of tasks (averaged over 5 runs). Both
models start with approximately equal average task accuracy, but pre-trained initialization leads
to significantly less forgetting.

To verify the above hypothesis, we analyze the loss landscape of the first task as the model
is trained sequentially on subsequent tasks. For pre-trained initializations, we see that minima
obtained after training on a sequence of tasks remain in the relatively low loss basin of the first task
compared to the random initialization. Furthermore, linearly interpolating loss across sequentially
trained task minima confirms that models initialized with pre-trained weights undergo a more
gradual change in loss than random initialization. These observations hint at the flatness of the
minima reached in the case of pre-trained initialized models. To measure the flatness of the loss
landscape, we compute a sharpness metric (Keskar et al., 2017) and verify that pre-trained weights
result in flatter basins compared to random weights during sequential training. These analyses
help us showcase that continual training from pre-trained weights induces wide task minima,
therefore, implicitly alleviating forgetting. Our main contributions can be summarized as follows

• We observe that initializing models with pre-trained weights results in less forgetting
than random weights despite achieving higher performance on each task. We bolster this
observation with a systematic study validating that this behavior persists across applications
(NLP, CV) and prominent approaches: elastic weight consolidation (EWC; Kirkpatrick
et al., 2017), average gradient episodic memory (A-GEM; Chaudhry et al., 2018b), and
episodic replay (ER; Chaudhry et al., 2019).

• To understand the role of varying pre-trained initializations, we analyze a suite of pre-
trained Transformer language models and showcase that model capacity and diversity of
the pre-training corpus play a role in alleviating forgetting. We also show that sequential
training on diverse tasks is still challenging for pre-trained initialized models by introducing
a new, more challenging benchmark for lifelong learning in NLP consisting of 15 diverse
NLP tasks.

• We hypothesize and verify empirically that pre-trained models alleviate forgetting as they
have an implicit bias towards wider task minima. The effect of these wider minima is that
changes in weights from learning subsequent tasks result in a smaller change to the current
task loss, which helps reduce forgetting.
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3.2 Experimental Setup

3.2.1 Problem Formulation

We consider a task-incremental learning scenario where we receive a continuum of data from
different tasks sequentially: (x1, y1, t1), · · · , (xi, yi, ti), · · · . Each triplet (xi, yi, ti) consists of a
task descriptor ti ∈ T , input data xi ∈ Dti , target labels yi ∈ Yti and satisfies (xi, yi)

iid∼ Pti(X, Y ).
We consider an explicit task descriptor ti because the same input xi can appear in multiple tasks
but with different labels. For example, given an article about a new technological breakthrough,
we could use it to train a model for extracting entities and another model for classifying the article
into different categories such as science, health, or technology. In this case, the input text xi is the
same article but the explicit task descriptor ti is different, one for entity extraction and another
for classification. Given the observed data, our goal is to learn a predictor fw : X × T → Y
where we want to evaluate test pairs (x, t) from previously observed tasks (backward transfer)
and the current task at any time during continual learning of our model. Additionally, we assume
an offline training setting, allowing for multiple training passes over a task before transitioning to
the next task in a sequence.

3.2.2 Benchmarks and Task Sequences

We perform extensive experiments on widely adopted task-incremental learning benchmarks
across both NLP and CV domains - Split YahooQA (Section 2.3.1) and Split CIFAR-50/ Split
CIFAR-100 (Section 2.3.3). These benchmarks help us evaluate our method to be consistent with
the literature (Chaudhry et al., 2019; Ebrahimi et al., 2020). Most existing works consider Split
MNIST, Split CIFAR-10, and Split CIFAR-100 benchmarks, which are homogeneous; different
tasks in these benchmarks share the same underlying domain. Given the generic nature of the
pre-trained initialization, we want to investigate forgetting when subjected to a sequence of diverse
tasks. Therefore, we also consider benchmarks spanning diverse NLP and CV tasks and evaluate
on 5-dataset-NLP/ 15-dataset-NLP (Section 2.3.1) and 5-dataset-CV (Section 2.3.3).

One of the desiderata of a lifelong learning method is to be robust to different task sequences
as task ordering is unknown beforehand. Hence, we run all our experiments with five random task
sequences and report average performance.

For Split CIFAR-50/ Split CIFAR-100, the task sequences were generated by randomly
sampling classes without replacement for each task. Thus, the sequences were different for every
random seed, and each method was trained and tested on the identical five sequences.

For Split YahooQA, we created five tasks by using disjoint groups of consecutive classes (e.g.
{0, 1}, {2, 3} . . . ). These tasks were then randomly ordered for each task sequence, and each
method was trained and tested using the identical five random sequences.

For 5-dataset-CV, we randomly select the following dataset orders
Seq1 SVHN→notMNIST→Fashion-MNIST→CIFAR-10→MNIST
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Seq2 SVHN→MNIST→notMNIST→Fashion-MNIST→CIFAR-10

Seq3 CIFAR-10→SVHN→notMNIST→Fashion-MNIST→MNIST

Seq4 notMNIST→Fashion-MNIST→CIFAR-10→SVHN→MNIST

Seq5 CIFAR-10→MNIST→notMNIST→SVHN→Fashion-MNIST

For 5-dataset-NLP, we randomly select the following dataset orders (the first four are consis-
tent with de Masson D’Autume et al., 2019):
Seq1 Yelp→AGNews→DBPedia→Amazon→YahooQA

Seq2 DBPedia→YahooQA→AGNews→Amazon→Yelp

Seq3 Yelp→YahooQA→Amazon→DBpedia→AGNews

Seq4 AGNews→Yelp→Amazon→YahooQA→DBpedia

Seq5 YahooQA→Yelp→DBPedia→AGNews→Amazon

For 15-dataset-NLP, we consider following five random task orderings:
Seq1 Decomp→BoolQ→AAC→Yelp→DISCONN8→SST-2→QQP→YahooQA→QNLI

→RocBSO→MNLI→SciTAIL→CoLA→PDTB2L1→Emotion

Seq2 CoLA→QQP→MNLI→QNLI→Emotion→SST-2→BoolQ→Decomp→AAC→SciTAIL
→RocBSO→Yelp→PDTB2L1→YahooQA→DISCONN8

Seq3 SciTAIL→BoolQ→SST-2→AAC→DISCONN8→YahooQA→QNLI→RocBSO→PDTB2L1
→Emotion→Decomp→MNLI→QQP→CoLA→Yelp

Seq4 DISCONN8→QNLI→CoLA→YahooQA→AAC→SciTAIL→PDTB2L1→Emotion
→Decomp→RocBSO→QQP→Yelp→MNLI→BoolQ→SST-2

Seq5 Emotion→SST-2→RocBSO→YahooQA→AAC→MNLI→CoLA→DISCONN8→QQP
→QNLI→Decomp→PDTB2L1→SciTAIL→Yelp→BoolQ

3.2.3 Baselines

We evaluate our approach against prominent methods in the task-incremental lifelong learning
scenario (Chaudhry et al., 2019; Mirzadeh et al., 2020b, 2021). Specifically, we compare with
EWC from the parameter-based regularization approaches (Section 2.4.1), ER and A-GEM from
the episodic memory-based approaches (Section 2.4.2), and Stable SGD and MC-SGD from
the optimization-based approaches (Section 2.4.4). Excluded from the comparison are test-time
adaptation-based approaches (Section 2.4.3), as a task identifier is available. Additionally, we
omit architecture-based approaches that dynamically expand the network based on new tasks
(Sodhani et al., 2022), as these approaches do not undergo forgetting, and this chapter primarily
focuses on the role of pre-training in forgetting. Brief descriptions of the relevant baselines are
provided below, with detailed information available in Section 2.4.

• Finetune (FT): The model is sequentially fine-tuned on each task without additional learning
constraints.

30



• Elastic Weight Consolidation (EWC; Kirkpatrick et al., 2017): A parameter-based reg-
ularization approach that tries to mitigate forgetting by restricting learning to parameters
important to previously learned tasks, as measured by the Fisher information matrix.

• Averaged Gradient Episodic Memory (A-GEM; Chaudhry et al., 2018b): A data-based
regularization approach that augments the base model with an episodic memory module
that retains examples from the previously seen tasks, and during training, uses these stored
examples to enforce a constraint on the gradients, ensuring that the model does not forget
previously learned tasks.

• Episodic replay (ER; Chaudhry et al., 2019): This approach involves the use of a replay
buffer to store and replay past experiences during training. This enables the model to revisit
and learn from previously seen examples, mitigating catastrophic forgetting and enhancing
its ability to retain knowledge across multiple tasks. Following Chaudhry et al. (2019), we
retain one example per task per class and randomly select examples for storage. Prabhu
et al. (2020); Hussain et al. (2021) show that the straightforward ER method outperforms
all of the previous methods under realistic task-incremental learning settings, and therefore,
we compare our approach mainly with ER.

• Stable SGD (Mirzadeh et al., 2020b): This method alters the training process by adjusting
hyperparameters such as learning rate, batch size, learning rate decay, and dropout regular-
ization (see Appendix A.1 for hyperparameter sweep). The goal is to introduce inherent
noise in the stochastic gradients, resulting in convergence to wide regions within the loss
landscape, which in turn leads to reduced forgetting during continual learning.

• Mode Connectivity SGD (MC-SGD; Mirzadeh et al., 2021): This approach restricts the
minima of continual learning within a region of low loss by all previous minima. MC-
SGD can be viewed as a combination of both regularization and replay-based methods
in continual learning as it uses a small replay buffer to approximate a low-loss path for
previous tasks.

3.3 Does pre-training implicitly alleviate forgetting?
Having defined the formal problem setup, evaluation metrics, and methods for alleviating the
forgetting phenomenon, in this section, we conduct experiments to tease apart the role of pre-
training for lifelong learning. We are interested in answering the following questions
(Q1) How much does pre-training help in alleviating forgetting?

(Q2) Do pre-trained models undergo similar forgetting on diverse and homogeneous tasks?

(Q3) How do different pre-trained initializations affect forgetting?

Experimental design. To answer these questions convincingly, we conduct experiments on
the above-discussed CV and NLP benchmarks. We utilize the DistilBERTbase (Sanh et al., 2019)
architecture for text classification and the ResNet-18 (He et al., 2016) architecture for image
classification. To isolate the effect of pre-training, we consider two variants for each of these
architectures: pre-trained models (DistilBERT-PT/ResNet-18-PT) and randomly initialized
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models (DistilBERT-R/ResNet-18-R). For our study, we need to ensure that there are as few
confounding factors as possible. Therefore, we keep all other hyperparameters the same and
vary only the initialization (for more details refer to Appendix A.1). To measure the severity
of forgetting, ideally, we want sufficient training samples so that both a pre-trained model or a
randomly initialized model (of the same capacity) achieves similar learning accuracy on each task.
To control for this behavior we either select a large training corpus whenever available (e.g., 279k
examples/task for Split YahooQA) or run our experiments for multiple epochs (5 epochs for CV
benchmarks).

ImageNet pre-training corpus. For a fair comparison between pre-trained and randomly
initialized models, we explicitly control for and remove the overlap between pre-training and
downstream tasks. Publicly available ResNet models are pre-trained on ImageNet that overlaps
with CIFAR-100 in terms of class labels. Therefore, we make sure that the subset of the ImageNet
corpus we use does not have any visually and semantically overlapping classes with the CIFAR-
100 dataset. We use the publicly available (Abdelsalam et al., 2021) two-level class hierarchies for
ImageNet, where semantically and visually similar labels are grouped under one super-category.
We iterate over all CIFAR-100 labels and drop the complete super-category from ImageNet
corresponding to each of these labels. For example, CIFAR-100 contains a castle class and we
have a building super-category in ImageNet that contains castle, palace, monastery, church, etc..
We remove all building-related labels from our pre-training dataset. In total, we remove 267
classes and pre-train the ResNet-18-PT model on the remaining subset of the ImageNet dataset.

3.3.1 How much does pre-training help in alleviating forgetting?

From Figures 3.2b and 3.3b, we see that pre-trained models (ResNet-18-PT, DistilBERT-PT)
undergo significantly less forgetting in comparison to models with random initialization (ResNet-
18-R, DistilBERT-R). This trend holds across all three methods — FT, EWC, and ER. For text
datasets (Split YahooQA, 5-dataset-NLP), we see that both models have comparable learning
accuracy (see Figures 3.2c and 3.3c) and significantly less forgetting for DistilBERT-PT. This
can be completely attributed to the pre-trained initialization. On 5-dataset-CV, ResNet-18-PT
undergoes less forgetting (38.28) compared to ResNet-18-R (51.51). Specifically, despite task
accuracy starting at a higher base for ResNet-18-PT, the forgetting value is still lower compared
to ResNet-18-R models. Additionally, this effect also holds when considering a sequentially
finetuned pre-trained model (with no additional regularization to alleviate forgetting) to a randomly
initialized model trained with LL methods. For example, on 5-dataset-NLP, sequentially finetuning
DistilBERT-PT undergoes less forgetting (16.73) compared to the competitive ER method (21.58)
when applied to DistillBERT-R. This raises an interesting research direction—explicitly focusing
on learning generic features apart from just concentrating on the forgetting aspect.
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Figure 3.2: Comparing performance on homogeneous tasks (Split YahooQA/ CIFAR-50/ CIFAR-
100) across initialization (R: random, PT: pre-trained) and methods (FT: finetune, EWC: elastic
weight consolidation, ER: episodic replay) after training on the last task. ↑ indicates higher
is better, ↓ indicates lower is better. All metrics are averaged over 5 random task sequences
(see Equation 2.6). We observe that pre-trained models undergo significantly less forgetting in
comparison to randomly initialized models.
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Figure 3.3: Comparing performance on diverse tasks (5-dataset-NLP/ CV) across initialization
(R: random, PT: pre-trained) and methods (FT: finetune, EWC: elastic weight consolidation, ER:
episodic replay) after training on the last task. ↑ indicates higher is better, ↓ indicates lower is
better. All metrics are averaged over 5 random task sequences (see Equation 2.6). In comparison
to homogeneous tasks (see Figure 3.2b), we observe that pre-trained models are more susceptible
to forgetting when exposed to a diverse sequence of tasks.

3.3.2 Do pre-trained models undergo similar forgetting on diverse and
homogeneous tasks?

From Figure 3.2b, we see that ResNet-18-PT does not undergo a significant amount of forgetting
when sequentially fine-tuned on Split CIFAR-50, and Split CIFAR-100 (homogeneous tasks). On
Split CIFAR-50, forgetting is around 7% absolute points. Surprisingly, the competitive ER method
also undergoes a similar amount of forgetting, thereby raising a question about the applicability
of these datasets when studying forgetting in the context of the pre-trained models. It may be
possible to manually cluster tasks based upon semantic closeness, rendering severe interference to
make these benchmarks more challenging (Ramasesh et al., 2021).
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Figure 3.4: Comparing performance on diverse tasks (5-dataset-NLP/ 15-dataset-NLP) across dif-
ferent pre-trained Transformer models (D-BERT: DistilBERT, BERT-b: BERT-base, RoBERTa:
RoBERTa-base, BERT-L: BERT-Large) and methods (FT: finetune, ER: episodic replay) after
training on the last task. ↑ indicates higher is better, ↓ indicates lower is better. All metrics are
averaged over 5 random task sequences (see Equation 2.6). Overall, we observe that models
pre-trained on diverse and larger corpora (RoBERTa-base) undergo less forgetting.

Given the generic nature of the pre-trained initialization, we ask—what happens when we
train the model sequentially on diverse tasks? To answer this question, we conduct experiments
on 5-dataset-CV and 5-dataset-NLP. From Figure 3.3b, we empirically observe that pre-trained
models are more susceptible to forgetting when exposed to diverse tasks in comparison
to homogeneous tasks. Particularly, DistilBERT-PT/ResNet-18-PT undergoes a 16.73/38.28%
absolute points drop in accuracy when trained on 5-dataset-NLP/5-dataset-CV. Figures 3.2a and
3.3a report average accuracy after training on the last task. We report task-specific results for
5-dataset-NLP/5-dataset-CV in Appendix A.2.

3.3.3 How do different pre-trained initializations affect forgetting?

To examine the impact of varying pre-trained initialization on forgetting, we evaluate different
pre-trained Transformer models, DistilBERT (Sanh et al., 2019), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), on text classification tasks. From the previous subsection, we
observe that pre-trained models are relatively more susceptible to forgetting on LL of diverse
tasks. In response, we conduct a thorough investigation on the 5-dataset-NLP. From Figure 3.4,
we observe that when keeping the pre-training corpora the same and increasing the capacity
of the model – DistilBERT (66M), BERT-base (110M), and BERT-large (336M) – we observe
that larger models undergo less forgetting on sequential finetuning of diverse tasks. Further, to
understand the impact of the diversity of the pre-training corpora, we compare the BERT-base
(110M) with the RoBERTa-base (125M). We observe that the RoBERTa-base model performs far
superior to the BERT-base, thus hinting at the essential role of size and diversity of pre-training
corpora in implicitly alleviating forgetting. We acknowledge other significant distinctions between
BERT-base and RoBERTa-base, including training objectives, dynamic masking strategy, and the
use of large mini-batches, Liu et al. (2019b) confirm the importance of data size and diversity in
pre-training. A more thorough examination of the role of these factors in forgetting is left for
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future investigations. To stress-test these models, we experiment with the 15-dataset-NLP. We
observe that by increasing the number of tasks in the sequence, pre-trained models undergo severe
forgetting. Surprisingly, the RoBERTa-base model outperforms BERT-Large despite having many
fewer parameters. Empirically, we infer that data size and diversity of pre-training corpora
plays a vital role in easing forgetting during lifelong learning of diverse tasks.

3.4 Exploring the Loss Landscape

To better understand how pre-training reduces forgetting, we perform experiments analyzing
where models are situated in the loss landscape after training on each task. We denote model
parameters after training on task k as wk. If we define forgetting as the increase in loss for a given
task during training (instead of a decrease in accuracy), Mirzadeh et al. (2020b) shows that the
forgetting can actually be bounded by:

L1(w2)− L1(w1) ≈
1

2
∆w⊤∇2L1(w1)∆w ≤ 1

2
λmax
1 ∥∆w∥2 (3.1)

where L1(w) represents the loss on task 1 with parameters w, ∆w = w2 − w1, and λmax
1 is the

largest eigenvalue of ∇2L1(w1). The magnitude of the eigenvalues of ∇2L1(w) can be used to
characterize the curvature of the loss function (Keskar et al., 2017), and thus λmax

1 can be thought
of as a proxy for the flatness of the loss function (lower is flatter). From Equation 3.1, we can see
that the flatter the minima, the less forgetting occurs in the model.

We hypothesize that the one explanation of improvements from pre-training shown in the pre-
vious section might be because pre-training leads to a more favorable loss landscape. Specifically,
pre-training results in wider/flatter minima for each task. The effect of these wider minima is that
the change in weights from learning on future tasks results in a gradual change of the current task
loss, thereby reducing forgetting. We verify this idea in two parts. First, we use loss contours
and then linearly interpolate between sequential minima to show that the flat loss basins lead to
smaller changes in the loss. Next, we compute a sharpness metric to show that pre-training indeed
leads to flat loss basins. All models analyzed in this section are sequentially trained using the
finetune method.

3.4.1 Loss Contour

To better understand the changes in task loss during continual training on a sequence of tasks,
we utilize loss contours, which involve linearly interpolating between the continual learning
minima. In order to construct a 2D loss contour, we require three points to define two basis
vectors. Specifically, we train on tasks 1, 2, and 3 sequentially, resulting in minima represented
by w1, w2, and w3, respectively. We designate w1 as our reference point (0, 0) and calculate
u⃗=w3−w1 as one basis vector (representing the x-axis in our plots). Additionally, we compute an
orthogonal projection v⃗ of w2−w1 onto u⃗, which serves as the second basis vector (representing
the y-axis in our plots). Consequently, for any coordinate (x, y) within the 2D loss contour, we
derive the corresponding model parameters as w(x, y) = w1 + x.u + y.v and compute the validation
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Figure 3.5: Loss contours for task 1 where w1, w2, w3 are minima obtained after sequential
training on tasks 1, 2, and 3, respectively. The top row visualizes loss contours for randomly
initialized models (R), and the bottom row visualizes loss contours for pre-trained models (PT).

loss for the task under consideration. In this setup, the distance between any two points on the
loss contour reflects the Euclidean distance between the corresponding model parameters.

In Figure 3.5, we visualize loss contours for the first task across different data set-specific task
sequences. For every contour, we plot minima (w1, w2, w3) of the model after continual training
on three tasks (T1, T2, T3). As the model is trained continuously on a sequence of tasks, the
pre-training initialized model remains largely at the same loss level (for task 1) as compared to the
randomly initialized model, despite drifting a comparable distance away from the original model
(w1). For example, in the loss contour for the pre-trained model on 5-dataset-CV (Figure 3.5e),
we observe that the model after training on task 2 (w2) remains at the same loss level as after
training on task 1 (w1) and slightly higher loss level after training on task 3 (w3). For the randomly
initialized model (Figure 3.5a), the Euclidean distance between the model parameter vectors is
approximately the same as for the pre-trained model, but the differences in task 1 loss levels are
significantly higher. We visualize more instances of loss contours over different task sequences in
Appendix A.3. In summary, we observe that pre-trained models consistently lead to wider
loss basins across different data sets (NLP and CV domains), model architectures (ResNet
and Transformer), and task sequences (5 random orderings).

3.4.2 Linear Model Interpolation

Ideally, to ease forgetting during sequential training of tasks, loss on previous tasks should undergo
minimal change. This desideratum would be satisfied if a previous task minimum lands in a flat
loss region and subsequent task minima also remain in that flat loss region. To probe this behavior,

36



0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

5

10

Lo
ss

Paths
w1 w2 No PT
w1 w3 No PT
w1 w4 No PT
w1 w5 No PT

w1 w2 PT
w1 w3 PT
w1 w4 PT
w1 w5 PT

(a) 5-dataset-CV (task 1)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

5

10

15

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(b) 5-dataset-CV (task 2)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.0

2.5

5.0

7.5

10.0

12.5

Lo
ss

Paths
w1 w2 No PT
w1 w3 No PT
w1 w4 No PT
w1 w5 No PT

w1 w2 PT
w1 w3 PT
w1 w4 PT
w1 w5 PT

(c) Split CIFAR-50 (task 1)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

2

4

6

8

10

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(d) Split CIFAR-50 (task 2)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.5

1.0

1.5

2.0

Lo
ss

Paths
w1 w2 No PT
w1 w3 No PT
w1 w4 No PT
w1 w5 No PT

w1 w2 PT
w1 w3 PT
w1 w4 PT
w1 w5 PT

(e) 5-dataset-NLP (task 1)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.5

1.0

1.5

2.0

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(f) 5-dataset-NLP (task 2)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.2

0.4

0.6

Lo
ss

Paths
w1 w2 No PT
w1 w3 No PT
w1 w4 No PT
w1 w5 No PT

w1 w2 PT
w1 w3 PT
w1 w4 PT
w1 w5 PT

(g) Split YahooQA (task 1)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.2

0.4

0.6

0.8

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(h) Split YahooQA (task 2)

Figure 3.6: Linear model interpolation plots for different datasets. The plots for pre-training
initialized (PT) models are shown in hues of blue, and the randomly initialized (No PT) models
are shown in hues of red. We linearly interpolate between the task 1/ task 2 minimum (w1/w2)
to the subsequent task mimimum (wi → wj , j > i), tracking the loss in the process. The loss
landscape is generally flatter along these paths for pre-trained initialized models compared to
randomly initialized models.
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ResNet-18-R ResNet-18-PT ResNet-18-R ResNet-18-PT

ϵ = 5× 10−4 ϵ = 10−3

5-dataset-CV 2.10.6 0.10.0 5.71.6 0.20.0
Split CIFAR-50 2.30.7 0.20.1 6.11.5 0.40.1
Split CIFAR-100 2.30.6 0.10.0 5.91.3 0.20.1

DistilBERT-R DistilBERT-PT DistilBERT-R DistilBERT-PT

ϵ = 5× 10−5 ϵ = 10−4

5-dataset-NLP 32.71.2 28.31.2 213.611.5 129.010.5
Split YahooQA 10.40.4 8.80.4 53.27.0 43.04.2

Table 3.1: Average sharpness value (lower value corresponds to flat loss basin) of task minima.
ResNet-18-PT/DistilBERT-PT has lower average sharpness than ResNet-18-R/DistilBERT-R.
Pre-training reduces the sharpness of minima for each task in training by order of magnitude.

we linearly interpolate between w1 (w2) and subsequent task minima, tracking the (validation)
loss on task 1 (task 2). This probe can be interpreted as viewing a slice of the loss contours in
Figure 3.5 along the linear trajectory connecting w1 (w2) to a subsequent minimum. In Figure 3.6,
we visualize the results from linear interpolation with the first row for task 1 and the second
row for task 2. The plots for pre-training initialized models are shown in hues of blue, and the
randomly initialized models are shown in hues of red. These plots illustrate that the pre-training
initialized models experience a much more gradual increase in loss compared to the randomly
initialized models, even when interpolating to minima after training on several tasks. Moreover,
these results hold for task 2 as well, thereby reinforcing that pre-training initialized models lead
to flat minima even for subsequent tasks in a sequence.

3.4.3 Sharpness Metric
As discussed earlier, the flatness of the minima can be estimated based upon the magnitude of
eigenvalues of ∇2L(w). However, computing these eigenvalues is computationally expensive.
Therefore, Keskar et al. (2017) introduces a sensitivity measure, termed sharpness metric, as a
computationally feasible alternative to computing eigenvalues. The sharpness metric estimates the
flatness by computing the maximum value of the loss function L in a constrained neighborhood
around the minima. Given that the maximization process can be inaccurate, Keskar et al. (2017)
suggests performing maximization in a random subspace Rp of the entire parameter space Rn,
specified by a projection matrix A ∈ Rn×p. For our experiments, we randomly sample our matrix
A and set p = 100 as in Keskar et al. (2017). The neighborhood maximization region (Cϵ) is
defined as

Cϵ = {z ∈ Rp : −ϵ(|(A+w)i|+ 1) ≤ zi ≤ ϵ(|(A+w)i|+ 1); ∀i ∈ {1 . . . p}}, (3.2)

where A+ is the pseudo inverse of A, w is the parameter vector and ϵ is a hyperparameter
controlling the size of the neighborhood. Formally, the sharpness metric is defined as follows

ϕw,L :=
(maxz∈Cϵ L(w + Az))− L(w)

1 + L(w)
× 100, (3.3)
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where L(w) denotes the loss function with parameters w. According to Keskar et al. (2017), the
sharpness metric is closely related to the spectrum∇2L(w), therefore acts as a proxy measure for
λmax
1 in Equation 3.1. After training on each task, we evaluate the minimum reached by the model

for its sharpness (alternatively flatness) using the test dataset. We average the sharpness values
across all tasks in a given task sequence and report the mean and standard deviation across five
random task orderings. In Appendix A.1, we provide implementation details about the sharpness
metric.

In Table 3.1, we report sharpness values for ResNet-18 on 5-dataset-CV, Split CIFAR-
50/CIFAR-100 for ϵ ∈ {5e−4, 1e−3} and DistilBERT on 5-dataset-NLP and Split YahooQA
datasets for ϵ ∈ {5e−5, 1e−4}. We see that for all datasets, the average sharpness value for the
pre-trained initialized models is significantly lower than for the randomly initialized models,
validating the relative flatness of the task minima in the case of pre-trained models.

3.5 Related Work
In this section, we establish the connections to significant related works in the field.

Transfer learning from generic pre-trained models has sparked significant advancements in
machine learning (Zhuang et al., 2021). Initially emerging in CV with the introduction of the
ImageNet data set (Deng et al., 2009), the practice of transfer learning has also undergone its
own “ImageNet revolution” in NLP. Notably, large models pre-trained on self-supervised tasks
have exhibited remarkable performance across various language-related tasks (Peters et al., 2018;
Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Liu et al., 2019b; Raffel et al.,
2020). The NIPS-95 workshop on “Learning to Learn” (Pan and Yang, 2009) initially motivated
transfer learning as a means to facilitate lifelong learning. Our work revisits it in light of recent
progress in transfer learning.

Lifelong learning approaches focus on the idea of mitigating the forgetting phenomenon and
can be grouped into four categories: (1) regularization-based approaches either augment the
loss function with extra penalty terms preventing important parameters learned on previous tasks
from significantly deviating while training on the new task (Kirkpatrick et al., 2017; Zenke et al.,
2017; Chaudhry et al., 2018a; Aljundi et al., 2018) and/ or enforce distillation-based penalty
(Li and Hoiem, 2017; Dhar et al., 2019); (2) memory-based approaches that augment the model
with episodic memory for sparse experience replay of previous task examples, either during
training (Lopez-Paz et al., 2017; Chaudhry et al., 2018b, 2019; Guo et al., 2020) and/ or during
inference (Rebuffi et al., 2017; de Masson D’Autume et al., 2019; Mehta et al., 2020); some
approaches learn generative model to simulate replay buffers (Shin et al., 2017; Sun et al., 2020);
(3) optimization-based approaches that either maintain a space of gradient directions for previous
tasks and projects the gradients of a new task in a direction orthogonal to that space, ensuring
less disruption of older tasks (Farajtabar et al., 2020) or modify training regimes by specific
hyperparameter configurations yielding wider minima and reducing the forgetting (Mirzadeh
et al., 2020b); and (4) architecture-based approaches that dynamically expand the network based
upon new tasks (Rusu et al., 2016; Aljundi et al., 2017; Yoon et al., 2018; Sodhani et al., 2020), or
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iteratively learn mask (Mallya et al., 2018; Serra et al., 2018) or prunes networks (Mallya and
Lazebnik, 2018) for new tasks. By formulation, these approaches do not undergo forgetting and
hence we consider regularization and episodic memory-based approaches for our analysis.

Meta-learning involves the development of models capable of learning over time and has been
employed in various studies focusing on lifelong learning (Riemer et al., 2019; Finn et al., 2019;
Javed and White, 2019; Mehta et al., 2020; Gupta et al., 2020). Notably, Caccia et al. (2020)
propose a two-phase continual learning scenario, where the initial phase entails pre-training
utilizing MAML (Finn et al., 2017), followed by continual deployment with task revisiting. They
emphasize that deploying agents without any pre-training in lifelong learning scenarios would
be impractical, a sentiment shared by other studies (Lomonaco et al., 2020). While some of
these works employ pre-trained initializations, the comprehensive examination of the impact of
pre-training in lifelong learning remains largely unexplored and is the focus of our work.

Optimization and loss landscape works have explored the relationship between pre-training
and wider optima in single-task generalization (Hao et al., 2019; Neyshabur et al., 2020), as well
as the effects of larger batch sizes on sharper minima and poorer generalization in single-task
learning (Keskar et al., 2017). Additionally, Mirzadeh et al. (2021) compare minima resulting
from multitask learning and continual learning, establishing that minima from continual learning
are linearly connected to optimal sequential multitask minima but not to each other, leading to
forgetting. While these studies examine the connection between pre-training and flat minima in
single-task scenarios or the relationship between flat minima and model generalization, we extend
this research by investigating whether the benefits of pre-training persist during sequential training
on multiple tasks. We explore the effects of pre-training on loss landscapes throughout lifelong
learning and validate a hypothesis that elucidates the role of pre-training in lifelong learning.

3.6 Discussion
In this chapter, we study the effect of pre-training on lifelong learning across various datasets and
modalities. We find that compared to models with random initialization, models with pre-trained
initialization undergo significantly less forgetting. Specifically, despite task accuracy starting at
a higher base for pre-trained models, the absolute forgetting value is still lower for pre-trained
models. This effect even holds when comparing a sequentially finetuned pre-trained model (with
no additional regularization to improve performance or reduce forgetting) to a randomly initialized
model trained with state-of-the-art lifelong learning methods. One takeaway from our study is
that lifelong learning methods should focus on learning generic initialization instead of simply
alleviating catastrophic forgetting, as generic initialization appears to undergo minimal forgetting.
We also explore the effect of different pre-trained models on performance in an NLP setting and
find that while increased model capacity helps up to a certain point when considering shorter task
sequences when considering longer and more diverse task sequences, the quality and the size of
the pre-trained corpora matter more than model capacity.

To explain this effect, we perform several analyses of the loss landscapes produced during
training for both random and pre-train initialized models. We find that the minima found by the
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pre-trained models at the end of training on each task are significantly flatter than those created by
the randomly initialized models. This means that even when pre-trained models drift away from
the original flat task minima, the task loss does not increase significantly, which results in less
forgetting.

Based on our findings and results, explicitly seeking flat loss basins may further reduce
forgetting compared to existing methods. Another potential line of work could explore where the
multitask minima are related to the pre-trained initialization, as Mirzadeh et al. (2021) shows that
the sequential multitask minima are linear mode connected to minima after each task in lifelong
learning. The flatness of the minima for every model starting from a pre-trained initialization
could suggest a way to regularize the sequential training process with the pre-trained initialization
such that the model ends up at the multitask minima.

In this chapter, we presented a novel set of 15 diverse text classification tasks (15-dataset-NLP)
to investigate lifelong learning with a larger number of tasks. The introduced suite proves to be
more challenging than the previous benchmark consisting of 5 datasets (see Figure 3.4). Future
research could explore using ExMix (Aribandi et al., 2021), a comprehensive collection of 107
supervised tasks across diverse domains, as a potentially more challenging and realistic benchmark
for lifelong language learning.
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Chapter 4

Architecture: Dynamic Parameter-Efficient
Experts for Lifelong Learning

4.1 Overview

We considered fixed-capacity models for instantiating lifelong learning systems in Chapter 3.
However, there is a tug-of-war dynamic (due to the stability-plasticity dilemma) between learning
new knowledge (plasticity) and preventing forgetting old knowledge (stability) given fixed capacity
(Sodhani et al., 2022). Motivated by this and compartmentalization of complex systems (Simon,
1962; Meunier et al., 2009), recent works in task-incremental learning scenario (Rusu et al.,
2016; Aljundi et al., 2017) learn a separate expert (Jacobs et al., 1991; Shazeer et al., 2017) for
each task and devise a gating mechanism to forward the data through a relevant expert. So for
every new task, a separate expert is added to the system, thereby growing the network’s capacity
while addressing the above dilemma. However, for these approaches, the number of experts (and
thereby the network’s capacity) grows linearly with tasks and hence cannot scale to a scenario
where we have many tasks. Moreover, this approach only applies to scenarios with explicit task
boundaries, as different experts correspond to different tasks. However, there are application
scenarios where we have many tasks without explicit task delimitation. For instance, consider a
question-answering system that answers the questions given candidate passages. This system is
a well-suited candidate for lifelong learning; the system may encounter passages from evolving
(or unseen) domains requiring continuous learning (Liska et al., 2022). Moreover, at inference
time the system can see examples from any domain, necessitating knowledge-sharing between the
underlying experts and learning them without any domain identifier.

Recent advances in parameter-efficient fine-tuning techniques (Mangrulkar et al., 2022) have
enabled the training of domain-specific experts, such as prompts (Wang et al., 2022a), without
significant additional storage requirements. However, these methods necessitate an inference-time
routing mechanism for expert selection and often rely on the implicit domain discriminative
capabilities of pre-trained models (Aharoni and Goldberg, 2020). However, this straightforward
method might not consistently excel in distinguishing domains across various datasets (see
Section 4.4.3). On the other hand, prior works have also explored generative methods to create
synthetic examples for experience replay (Shin et al., 2017; Sun et al., 2020; Qin and Joty, 2022).
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However, these methods have generally fallen short compared to their counterparts that retain
actual data for experience replay (refer to Sun et al. (2020) and results in Section 4.4.2), possibly
due in part to the inclusion of noise in the form of low-quality synthetic examples. An intriguing
question arises—Rather than employing noisy synthetic examples for generative replay, can they
serve a more effective purpose in domain discrimination? More specifically, can we leverage
synthetically generated samples to develop an inference-time routing mechanism?

In this chapter, we propose Generate to Discriminate for Expert Routing (G2Df ER; Byun et al.,
2023)1, a continual learning method that leverages modern generative language models (Raffel
et al., 2020) to generate per-domain synthetic examples for purposes of domain discrimination
(rather than generative replay). Concretely, for each new domain t, our approach involves: (i)
training a domain-specific expert model, (ii) training a domain-specific generative model to
generate synthetic examples, and (iii) training the domain discriminator using generated samples
from both the previous and current domains to enable domain prediction. At inference time,
we pass samples through our domain discriminator, which routes each sample to a determined
domain-specific expert. In summary, we contribute the following

• Generate to Discriminate for Expert Routing (G2Df ER), an expert routing method for
domain-incremental learning using generative models for domain discrimination.

• Analysis demonstrating that training a domain identifier substantially outperforms augment-
ing training data for downstream tasks with the same synthetic samples (i.e., the generative
replay approach).

• Experiments demonstrating that our approach is competitive with previous test-time adaptation-
based state-of-the-art approaches and outperforms by 6.2 F1 in scenarios characterized by
stringent constraints on data sharing.

4.2 Experimental Setup

4.2.1 Problem Formulation

We consider a domain-incremental learning from a sequence of T domains, D1 → · · · → DT ,
where Dt

train = {xt
i, y

t
i}nt

i=0 represents a dataset corresponding to domain t, sampled from an
underlying distribution Pt(X ,Y). xt

i ∈ X is the i-th text passage, yti ∈ Y is its label and nt is
the total number of training samples for domain t. As discussed in Section 2.1.2, in the domain-
incremental scenario, the marginal or conditional distributions over X and Y can change across
domains, i.e., Pi(X ) ̸= Pj(X ) and Pi(Y|X ) ̸= Pj(Y|X ), ∀i, j ∈ {1, · · · , T }, while the label
space Y remains fixed across all domains. Additionally, following de Masson D’Autume et al.
(2019), we assume that we are continuously learning from an online stream of data. During
training, the domain identifier is assumed to be available for each example but it is unknown
during inference time. The goal is to learn a predictor fw : X → Y , parameterized by w ∈ RP , to
minimize the average expected risk across all T domains (see Equation 2.5). To demonstrate the
model’s learning behavior over the sequence of domains and analyze catastrophic forgetting of

1In our paper (Byun et al., 2023), we term our approach Generate to Discriminate (G2D), while in the context of
this thesis, we specifically denote it as Generate to Discriminator for Expert Routing (G2Df ER).
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the previously seen domains, we evaluate the model after training on a specific domain t using the
test dataset of that domain, Dt

test ∼ Pt(X ,Y), and from past domains, Dτ
test ∼ Pτ (X ,Y),∀τ ∈

[1, . . . , t− 1]. For overall performance evaluation, we compute the average accuracy (At) metric
as defined in Section 2.2.

4.2.2 Benchmark and Domain sequences
We evaluate our method on the standard domain-incremental question-answering benchmark
consisting of four datasets: SQuAD v1.1, TriviaQA (Web), TriviaQA (Wikipedia), and QuAC
(refer to Section 2.3.2 for more details). We compute F1 score for question answering task and
evaluate the model at the end of all domains, i.e., we compute A4. Next, we run all our experiments
with four random domain sequences and report average performance. We consider the following
domain orderings for our experimentation (consistent with de Masson D’Autume et al., 2019)
Seq1 QuAC→TrWeb→TrWik→SQuAD

Seq2 SQuAD→TrWik→QuAC→TrWeb

Seq3 TrWeb→TrWik→SQuAD→QuAC

Seq4 TrWik→QuAC→TrWeb→SQuAD

4.2.3 Baselines
We compare our method with state-of-the-art continual learning methods that address the domain
incremental scenario. Specifically, we compare with Online EWC from the parameter-based
regularization approaches (Section 2.4.1), ER and A-GEM with their online variants from the
episodic memory-based approaches (Section 2.4.2), and MbPA++ from test-time adaptation-based
approaches (Section 2.4.3). Excluded from the comparison are optimization-based approaches
(Section 2.4.4), as these have been introduced for task-incremental learning scenarios. We provide
chapter-specific details of the aforementioned baselines below, with a detailed description available
in Section 2.4.

• Finetune (FT): The model is sequentially fine-tuned on each domain without additional
learning constraints.

• Online Elastic Weight Consolidation (EWC; Schwarz et al., 2018): An online parameter-
based regularization approach that tries to mitigate forgetting by restricting learning to
parameters important to previously learned domains.

• Episodic Replay (ER; Chaudhry et al., 2019): This approach involves the use of a replay
buffer to store and replay past experiences during training. This enables the model to revisit
and learn from previously seen examples, mitigating catastrophic forgetting and enhancing
its ability to retain knowledge across multiple domains. Following de Masson D’Autume
et al. (2019), we retain 1% of the total examples in the replay buffer and perform experience
replay by sampling 100 examples from the memory and performing a gradient update after
every 10,000 training steps, which gives us a 1% replay rate.

• Improved Memory-based Parameter Adaptation (MbPA++; de Masson D’Autume et al.,
2019): This approach uses a replay buffer to perform sparse experience replay during
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Figure 4.1: Generate to Discriminate for Expert Routing (G2Df ER); At train time, we i) fine-tune
the generator and expert model and ii) train a domain discriminator on synthetic samples produced
by our generator. At inference time, based on our discriminator’s prediction, we route test samples
to the corresponding expert.

training and domain-specific test-time adaptation during inference. Similar to ER, 1%
samples are retained in the buffer and the replay rate is set to 1%.

• Meta-MbPA (Mehta et al., 2020) On top of MbPA++, this approach trains the model
to attain a more suitable initialization for test-time adaptation and represents the prior
state-of-the-art performance on the considered question-answering benchmark. Note that
this approach is presented in this thesis and a detailed description of it can be found in
Chapter 6.

• Generative replay (GR): In this approach, a language model is used to generate synthetic
samples for the replay buffer (more details in the following section).

• Oracle Routing: In this theoretical method, we assume access to the domain identifier
during inference and direct the example to the corresponding domain-specific expert. We
include this approach for comparison with our learned routing against ground-truth routing.

• MTL: In this approach, access to real data from all domains is allowed at every domain step.
This is equivalent to training on the union of all existing data and can be viewed as an upper
bound on performance when there is no significant negative transfer between domains.

4.3 Generate to Discriminate for Expert Routing (G2DfER)
In this section, we discuss Generate to Discriminate for Expert Routing (G2Df ER), our proposed
continual learning method that leverages modern generative models (language models) — to
generate per-domain synthetic examples for purposes of domain discrimination (rather than
generative replay). We then leverage this discriminator at inference time to route examples to
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relevant experts. Figure 4.1 schematically depicts the workflow of our proposed approach.

4.3.1 Generation of synthetic samples for domain discriminator
At each new domain t, we fine-tune a generative language model G with training samples from
the current domain, Dt

train = {(xt
i, y

t
i)}nt

i=0. Then, we generate synthetic samplesMt from G.
Given synthetically generated data from all seen domains, i.e., 1 ≤ τ ≤ t, we train a domain
discriminator Dwt on the union of the synthetically generated samples M1 ∪ · · · ∪ Mt, for
domain identity prediction (i.e., t-way classification). More formally, we construct a dataset of⋃t

i=1{(x, i)|x ∈Mi}. In essence, our domain discriminator learns to predict domain membership,
or route samples to their corresponding or most similar domains.

Implementation details. For our generator, we use the prompt tuning (Lester et al., 2021) to
learn the parameter-efficient models. We use the pre-trained T5-Large v1.1 checkpoint adapted
for prompt tuning as the backbone (Raffel et al., 2020) and the prompt embeddings are initialized
randomly. We set the prompt length to 400 tokens which accounts for 819K trainable parameters,
i.e., around 0.1% in comparison to 784M frozen T5-Large parameters. We input a special token
into the model and conditionally generate a document content, question, and answer, all separated
by the special tokens. We employ the Adam optimizer (Kingma and Ba, 2014) with a learning rate
of 1.0, a warmup ratio of 0.01, and linearly decay the learning rate over 5 epochs, use a batch size
of 8 and set weight decay to 1e−5. Our maximum sequence length is set to 512, and we truncate
the document content after tokenizing the question-answer pair. During the generation process,
we provide multiple text prompts. We use the following text prompts to conditional generate
synthetic samples — “Generate article, question and answer.”, “Generate context, question and
answer.”, “Generate answers by copying from the generated article.”, “Generate factual questions
from the generated article.” During generation, we use ancestral sampling, which selects the next
token randomly based on the model’s probability distribution over the entire vocabulary, thereby
reducing the risk of repetition. We generate samples with a minimum length of 50 tokens and a
maximum of 1,000 tokens, retaining only those samples that contain exactly one question-answer
pair with the answer included in the generated document content.

For training our domain discriminator, we use low-rank adaptation (LoRA; Hu et al., 2022) and
freeze a pre-trained BERT-base (Devlin et al., 2019) backbone. BERT-base has 12 Transformer
layers, 12 self-attention heads, and 768 hidden dimensions (110M parameters). We train our
discriminator for 5 epochs using the Adam optimizer and the learning rate is set to 5e-4. For
LoRA, we set the dimension of the low-rank matrices (r) to 32 which gives us around 1.2M
trainable parameters (1.07% of full BERT-base 110M parameters).

4.3.2 Expert models
At each new domain t, given Dt

train, we sequentially fine-tune our model fwt as the expert on
domain t, and add fwt to our existing list of experts {fw1 , ...., fwt−1}. At inference time, we use
our domain discriminator to predict the most likely domain, and the test sample is routed to the
corresponding expert classifier for our class prediction.
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Method Average F1(↑)

ER 61.2 ± 1.8
MbPA++† 61.9 ± 0.2
Meta-MbPA† 64.9 ± 0.3

FT 56.6 ± 5.7
EWC 55.9 ± 3.7
Generative Replay 58.5 ± 3.7
G2DfER (PEFT) 64.7 ± 0.2
G2DfER (Full FT) 66.6 ± 0.7

Oracle Routing 67.6 ± 0.1
Upper Bound (MTL) 68.6 ± 0.0

Table 4.1: Results on Question Answering benchmark. Comparing performance in terms of
average F1 across methods after training on the last domain (averaged over four random domain
sequences). ↑ indicates higher is better, † denotes results obtained from Mehta et al., 2020. ER,
MbPA++ and Meta-MbPA use a buffer size of 1% actual samples. PEFT denotes parameter-
efficient fine-tuning and Full FT denotes full fine-tuning. Our G2Df ER (Full FT) approach
outperforms all baselines and the G2Df ER (PEFT) approach demonstrates competitive perfor-
mance, even in the absence of retaining the actual samples, when compared to state-of-the-art
methods.

Implementation details. We apply the same LoRA technique and hyperparameters as those
used for the domain discriminator to train our domain expert. We train our expert for 3 epochs
using Adam optimizer and the learning rate is set to 5e-4. In the case of a full fine-tuning scenario,
for training our expert, we mainly set hyper-parameters as mentioned in de Masson D’Autume
et al. (2019). We use Adam as our optimizer, set dropout to 0.1, and the base learning rate to 3e-5.
We use a training batch of size 8, set the maximum total input sequence length after tokenization to
384 and to deal with longer documents we set document stride to 128. We also set the maximum
question length to 64. The hyper-parameters for baseline methods are set as described in Mehta
et al. (2020). For ER (or Generative Replay) we retain (or sample) 1% examples which account
for around 6,000 examples across all four considered domains.

4.4 Experiments

4.4.1 How much does G2DfER help in alleviating forgetting?

In Table 4.1, we report our results on the question-answering benchmark. Our approach, with
full fine-tuning, G2Df ER Full FT (66.6), outperforms both ER (61.2) and test-time adaptation
techniques such as MbPA++ (61.9) and Meta-MbPA (64.9) and G2Df ER with parameter-efficient
LoRA (64.7) is competitive with Meta-MbPA. It is important to note that all of these baseline
methods retain actual samples in their buffers (1% of total samples). These findings underscore

48



Dataset Fields Generated sample

Correct
SQuAD Context: During the late 19th and early 20th centuries, the city’s trade sector

expanded greatly, and through the 20th century, more than half
of its residents worked toward higher status in the military. Other
industries included industry, commerce, public administration,
and medicine. Its largest sector was public services - police, fire
services, and healthcare and was the nation’s third largest.

Question: What is one of the industry sectors that were the biggest?
Answer: public services

Incorrect
Context: In the United Kingdom there is a general agreement between the

government and the private sector in principle that both private
and publicly funded institutions of higher education constitute
university colleges. Further, there is a mutual agreement between
the independent college and the university to promote higher educa-
tion. However, in both cases all the institutions of higher education
are either controlled by private individuals or by a national agency,
in such a way as to protect freedom of expression.

Question: What are some of the institutions of higher education that are
controlled by private individuals?

Answer: private individuals

Table 4.2: Generated samples (context, question-answer pair) for the SQuAD domain. For the
incorrectly generated samples, we underline one possible correct answer.

the ability of our G2DfER method to enhance performance even in scenarios characterized
by stringent constraints on data sharing, i.e., data from prior domains cannot be retained in the
episodic memory.

4.4.2 How to most effectively use synthetic data for continual learning?

We empirically evaluate how to more effectively use synthetic data for continual learning, by
comparing our method G2Df ER to a generative replay alternative. Our parameter-efficient method,
G2Df ER (PEFT), improves over generative replay by 6.2 F1 points. In Table 4.2, we visualize
generated samples for their quality. Intuitively, these gains can be attributed to the fact that
marginal distribution over a given domain p(x) can be modeled more easily than the conditional
p(y|x) using synthetic samples. Therefore, we observe that synthetic samples used for domain
discrimination bring greater performance improvement than those used for generative
replay.
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Figure 4.2: Domain discrimination visualization. t-SNE visualizations of domain clusterings for
question-answering benchmark (4 domains in total). The left plot highlights the implicit domain
discriminative nature of pre-trained BERT-base language model representations (Devlin et al.,
2019). Notably, there is confusion between the TrWeb (orange) and TrWiki (green) domains,
both derived from the same TriviaQA dataset. Similarly, the TrWiki (green) and SQuAD (red)
domains, originating from the same Wikipedia source, necessitate explicit discriminator training.
In the middle plot, we visualize the clustering of representations from the discriminator trained
using generated samples, achieving a domain discrimination accuracy of 94.5%. On the right
plot, we present the clustering from the discriminator trained using real samples, with an accuracy
of 97.1%. Remarkably, the discriminator trained with synthetic samples closely mirrors the
performance and clustering patterns of the discriminator trained using real data.

4.4.3 Domain discrimination analysis
Figure 4.2 displays t-SNE plots for the text domain, visualizing the domain discriminative
capability (Aharoni and Goldberg, 2020) of a pre-trained language model with a discriminator
trained on synthetic samples. Notably, there is confusion between the TrWeb (orange) and TrWiki
(green) domains, both derived from the same TriviaQA dataset (Joshi et al., 2017). Similarly,
the TrWiki (green) and SQuAD (red) domains, originating from the same Wikipedia source,
necessitate explicit discriminator training. It is evident that training an explicit discriminator
results in superior clustering. To assess domain identification performance using generated
samples (achieving 94.5% accuracy), we compare it with a theoretical upper bound, namely a
discriminator trained using real samples (achieving 97.1% accuracy). The results show very close
performance, with similar clustering patterns. In summary, it is evident that our G2DfER method
significantly improves domain identifiability.

4.4.4 Parameter efficient fine-tuning analysis
In our work, we employ parameter-efficient fine-tuning (PEFT; Mangrulkar et al., 2022) techniques
to address potential efficiency concerns in terms of storage. We use prompt tuning (Lester et al.,
2021) to learn parameter-efficient generative models. Despite the great reduction in trainable
parameters, we empirically observe that the performance of our domain discriminator trained on
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these generated samples is sufficient for domain identification and outperforms previous existing
methods. For our domain-specific experts, we fine-tune only 1.07% of trainable parameters, again,
resulting in a great reduction in both computational and storage efficiency. Despite this reduction
in parameters, we can reach state-of-the-art performance on the considered benchmark. We further
analyze a full fine-tuning variant of our method, i.e., G2Df ER (Full FT), to study the potential
performance drop we are experiencing from the sizeable reduction in trainable parameters.

4.5 Related Work
We focus on the domain-incremental setting of continual learning (Van de Ven and Tolias, 2019).
Most continual learning methods fall into the categories of (i) parameter-based regularization, (ii)
rehearsal-based, and (iii) rehearsal-free techniques (Sodhani et al., 2022).

Parameter-based regularization approaches — Two notable methods within this category
are Elastic Weight Consolidation (EWC; Kirkpatrick et al., 2017) and Synaptic Intelligence (SI;
Zenke et al., 2017). Both EWC and SI assess the importance of parameters related to previous
domains and utilize a penalty term to safeguard the knowledge stored in those parameters while
updating them for new domains.

Rehearsal-based approaches retain a subset of data from previous domains as an episodic
memory, which is sparsely replayed during the learning of new domains. Several replay-based
methods have been proposed, each differing in whether the episodic memory is utilized during
training, such as Gradient Episodic Memory (GEM; Lopez-Paz et al., 2017), Averaged Gradient
Episodic Memory (A-GEM; Chaudhry et al., 2018b), Episodic Replay (ER; Chaudhry et al., 2019),
Mixed Stochastic Gradient (MEGA; Guo et al., 2020), or during inference, like Memory-based
Parameter Adaptation (MbPA++; de Masson D’Autume et al., 2019, Meta-MbPTA; Mehta et al.,
2020). These methods assume that the true data can be retained for replay. However, in settings
where data sharing is restricted, one may not be able to retain actual samples from prior domains
in episodic memory. To address this limitation, generative replay-based methods have been
introduced (DGR; Shin et al., 2017, LAMOL; Sun et al., 2020, LFPT5; Qin and Joty, 2022). The
main idea behind these methods is to learn a generative model of the data and use it to generate
samples for experience replay. However, Sun et al. (2020) demonstrates that for a given sample
complexity, ER tends to be an upper bound in terms of the performance for generative replay.

Rehearsal-free approaches have emerged in the field of continual learning in response to the
increasing popularity of pre-trained models. Mehta et al. (2023b) demonstrate that pre-trained
initializations implicitly mitigate the issue of forgetting when sequentially fine-tuning models.
Another subcategory of approaches, known as prompt-based continual learning, exemplified by
L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b), S-Prompt (Wang et al., 2022a), and
CODA-Prompt (Smith et al., 2023), involves learning a small number of parameters per domain
in the form of continuous token embeddings or prompts while keeping the remaining pre-trained
model fixed. The appropriate prompt is then selected based on the input data. Although these
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methods allow for continual learning without rehearsal, they depend on access to pre-trained
models that provide a high-quality backbone across all domains, which may not be available in
sensitive environments in real-world deployment (e.g., healthcare). Another classical approach
involves incorporating task-specific experts for each new task in a sequence and subsequently
using an expert gate to direct examples to the appropriate expert (Aljundi et al., 2017). Like
prompt-based methods, this approach relies on the inherent domain discriminative abilities of
AlexNet (pre-trained with ImageNet) and is susceptible to the same limitations mentioned earlier
in the context of prompt-based methods.

4.6 Discussion
In this work, we propose Generate to Discriminate for Expert Routing (G2Df ER), an expert routing
method for domain-incremental learning using generative models for domain discrimination.
Experiments demonstrate that our approach is competitive with previous test-time adaptation-
based state-of-the-art approaches and outperforms by 6.2 F1 in scenarios characterized by stringent
constraints on data sharing. Further, we analyze how to most effectively leverage the capabilities
of generative models and synthetic data for continual learning, by comparing our method to a
generative replay alternative. Surprisingly, we find that training a domain identifier is significantly
more effective than using synthetic samples to augment training data for experience replay. We
further analyze our domain discriminator, by comparing it with previous domain discrimination
approaches (unsupervised clustering methods) and a discriminator trained using real samples,
where we find that our method significantly improves domain identifiability. Our method also
employs parameter-efficient fine-tuning methods in the generator, discriminator, and downstream
experts, to address potential efficiency concerns, enabling progress on dynamic parameter-efficient
experts for lifelong learning.
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Part II

Training: Objective & Optimization
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Chapter 5

Optimization: Lifelong Learning with
Sharpness Aware Minimization

5.1 Overview

In Chapter 3, we looked at the role of initialization in alleviating forgetting. Specifically, pre-
trained initializations favor flat loss basins and implicitly mitigate forgetting to some extent. On
the other hand, Mirzadeh et al. (2020b) suggests modifying the training regime by varying learning
rate decay, batch size, and dropout regularization such that inherent noise in the stochastic gradients
leads to flat basins in the loss landscape. However, the procedure for tuning these hyperparameters
is ill-defined for lifelong learning, rendering their strategy less helpful. Furthermore, the suggested
hyperparameter sweep is expensive (e.g., 48 separate runs just for one dataset) and does not transfer
across different architectures and datasets. Motivated by these shortcomings, we pose a question—
What if we modify the optimization dynamics by explicitly seeking flat loss basins during
lifelong learning of the model?

To answer the above question, we employ the Sharpness-Aware Minimization (SAM; Foret
et al., 2021) procedure that seeks parameters in neighborhoods with uniformly low loss regions
by jointly minimizing loss value and loss sharpness. We show that this optimization approach
outperforms several state-of-the-art task-sequential continual learning algorithms across multiple
settings, occasionally even without retaining a memory that scales in size with the number of
tasks. Our proposed approach is appealing in terms of not requiring explicit memory and it
is suitable for lifelong learning applications where it may not be possible to retain data from
previous tasks due to privacy constraints (Farquhar and Gal, 2018). Furthermore, our analysis of
different initializations, namely task-agnostic meta-learned and supervised pre-trained models
explicitly guided towards flat loss regions, highlights the synergistic benefits when combined with
the explicit optimization for flatness during sequential fine-tuning.
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5.2 Background: Sharpness-Aware Minimization (SAM)
SAM defines the sharpness of the loss function L at parameters w as

max
||ϵ||2≤ρ

L(w + ϵ)− L(w), (5.1)

where the maximization region is an ℓp ball with radius ρ for p = 2 in Equation 5.1. The SAM
problem can be defined in terms of the following minimax optimization

min
w

max
||ϵ||2≤ρ

L(w + ϵ) + λ||w||22. (5.2)

The gradient of the result of the maximization problem can be approximated as

∇w max
||ϵ||2≤ρ

L(w + ϵ) ≈ ∇wL(w)
∣∣∣
w+ϵ̂(w)

+
dϵ̂(w)

dw
∇wL(w)

∣∣∣
w+ϵ̂(w)

, (5.3)

where

ϵ̂(w) = ρ sign
(
∇wL(w)

)( ∣∣∇wL(w)
∣∣

∥∇wL(w)∥2

)
. (5.4)

To make the optimization simpler, the second-order term in the gradient is dropped, leaving us
with

∇w max
||ϵ||2≤ρ

L(w + ϵ) ≈ ∇wL(w)
∣∣∣
w+ϵ̂(w)

. (5.5)

For the complete derivation of this gradient, we defer readers to Foret et al. (2021).

5.3 Does SAM alleviate forgetting during lifelong learning?
To investigate the efficacy of the SAM optimization procedure, we consider the experimental
setup as discussed in Section 3.2. Specifically, we consider task-incremental learning scenarios
with offline training for various NLP and CV benchmarks. We report the results with the discussed
SAM procedure in Tables 5.1, 5.2 and 5.3. We see that SAM results in a consistent improvement
in performance over non-SAM counterparts. Simply augmenting SAM with the finetune method
(FT w/ SAM) results in a competitive baseline, sometimes outperforming state-of-the-art baselines
like ER (Chaudhry et al., 2019), Stable SGD (Mirzadeh et al., 2020b) and MC-SGD (Mirzadeh
et al., 2021) (see Table 5.1, Split CIFAR-50 w/PT ResNet-18-PT). Note SAM requires minimal
hyper-parameter tuning (we set ρ = 0.05 to the default value for all our CV experiments).
Since SAM is just a modification to the optimization procedure, we propose augmenting it with
existing state-of-the-art continual learning methods like ER (Chaudhry et al., 2019) and MC-SGD
(Mirzadeh et al., 2021).

Table 5.1 demonstrates that MC-SGD with SAM achieves superior performance in terms
of overall accuracy and forgetting compared to all existing baseline methods (FT, Stable SGD,
EWC, A-GEM, ER, MC-SGD, as described in Section 3.2.3) when evaluated across various CV
benchmarks, including Split CIFAR-50, Split CIFAR-100, and 5-dataset-CV, under both random
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w/o PT (ResNet-18-R) w/ PT (ResNet-18-PT)

Accuracy(↑) Forgetting(↓) LA(↑) Accuracy(↑) Forgetting(↓) LA(↑)

Split CIFAR-50
FT 42.83.1 23.71.1 66.42.1 86.31.2 7.10.9 93.40.5
FT w/ SAM 50.32.2 15.02.1 65.31.2 90.51.1 4.21.0 94.70.4
Stable SGD 46.02.3 12.10.4 58.12.5 84.11.9 5.21.6 89.20.7
EWC 45.32.5 20.71.5 65.91.3 86.20.9 7.40.9 93.50.7
A-GEM 47.32.7 21.12.0 68.40.7 87.31.0 6.20.6 93.40.4
ER 45.81.8 20.61.4 66.42.7 86.21.1 7.10.8 93.30.5
ER w/ SAM 50.80.5 16.90.9 67.60.7 88.41.3 6.01.1 94.40.3
MC-SGD 59.02.3 5.41.3 63.71.8 86.50.9 4.10.5 90.40.6
MC-SGD w/ SAM 59.12.9 5.21.7 63.92.1 87.90.7 3.80.2 91.70.7

5-dataset-CV
FT 33.72.5 51.52.6 85.22.0 57.25.1 38.35.0 95.50.2
FT w/ SAM 47.63.8 40.64.0 88.21.3 70.44.4 25.64.4 96.00.1
Stable SGD 50.27.0 40.37.8 90.51.0 71.32.7 20.52.5 91.90.8
EWC 35.04.9 50.16.5 85.11.9 56.73.8 38.83.8 95.40.2
A-GEM 46.16.8 39.57.1 85.22.5 72.02.3 23.02.3 95.00.2
ER 50.64.5 35.05.4 85.61.3 70.71.5 24.21.4 94.90.2
ER w/ SAM 60.33.9 27.34.1 87.61.3 77.43.9 18.23.9 95.60.2
MC-SGD 71.35.9 21.35.7 92.60.3 81.92.6 13.32.6 95.20.3
MC-SGD w/ SAM 72.77.8 19.97.6 92.60.4 87.11.6 8.51.7 95.50.2

Split CIFAR-100
FT 38.92.2 39.12.0 78.01.0 82.03.0 13.82.6 95.80.5
FT w/ SAM 48.94.8 28.55.0 77.50.9 88.31.7 8.61.3 96.90.6
Stable SGD 52.91.7 21.02.0 73.81.5 86.62.2 5.51.5 91.80.7
EWC 37.41.5 40.11.8 77.51.5 81.32.5 14.52.1 95.80.6
A-GEM 46.83.5 32.03.8 78.81.0 84.01.6 11.71.0 95.70.7
ER 48.61.9 29.81.3 78.10.7 84.42.2 11.41.7 95.80.5
ER w/ SAM 60.50.5 20.90.7 81.40.7 88.40.7 8.60.2 96.70.5
MC-SGD 62.22.4 13.31.8 75.20.7 84.72.4 8.51.8 93.00.7
MC-SGD w/ SAM 65.11.1 10.41.1 75.41.0 89.01.7 5.31.1 94.20.6

Table 5.1: Comparing performance in terms of average accuracy(%), forgetting(%), and learning
accuracy(%) (see Equation 2.6) across methods after training on the last task of CV benchmarks
(all metrics are averaged over five random task sequences). ↑ indicates higher is better, ↓ indicates
lower is better. Augmenting the FT baseline with SAM results in performance competitive
with state-of-the-art methods, and augmenting the ER or MC-SGD method with SAM often
outperforms state-of-the-art methods demonstrating SAM as a valuable addition to current lifelong
learning methods.
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w/o PT (DistilBERT-R) w/ PT (DistilBERT-PT)

Accuracy(↑) Forgetting(↓) LA(↑) Accuracy(↑) Forgetting(↓) LA(↑)

Split YahooQA
FT 73.14.7 26.45.9 94.20.0 87.73.7 9.54.7 95.20.0
FT w/ SAM 73.54.0 25.95.0 94.20.0 88.52.8 8.43.5 95.20.0
EWC 76.13.1 22.73.9 94.20.0 89.53.4 7.14.2 95.20.0
ER 77.23.3 21.34.2 94.20.0 89.40.7 7.30.9 95.20.0
ER w/ SAM 77.51.4 20.91.8 94.20.0 89.00.7 7.80.9 95.20.0

5-dataset-NLP
FT 44.35.0 36.76.3 73.60.1 64.34.5 16.75.7 77.70.1
FT w/ SAM 46.05.0 34.36.3 73.40.1 66.42.8 13.93.5 77.60.1
EWC 48.74.9 31.16.2 73.60.0 66.83.3 13.64.2 77.60.1
ER 56.33.1 21.63.9 73.60.1 70.21.6 9.42.0 77.70.1
ER w/ SAM 56.33.9 21.55.0 73.40.1 71.11.2 8.11.5 77.50.0

Table 5.2: Comparing performance in terms of average accuracy(%), forgetting(%), and learning
accuracy(%) across methods after training on the last task of NLP benchmarks (all metrics are
averaged over five random task sequences). ↑ indicates higher is better, ↓ indicates lower is better.
Augmenting the ER method with SAM often outperforms state-of-the-art methods demonstrating
SAM as a valuable addition to current lifelong learning methods.

and pre-trained initialized models (ResNet-18-R, ResNet-18-PT). Similarly, Tables 5.2 and 5.3
demonstrate ER with SAM results in a method that outperforms all existing baselines in terms of
overall accuracy and forgetting across considered NLP benchmarks. Furthermore, in Table 5.3,
we present the results obtained with T5-Small (v1.1) (Raffel et al., 2020) on the 5-dataset-NLP
and 15-dataset-NLP benchmarks. Consistent with encoder-only models such as DistilBERT,
BERT, and RoBERTa, we observe that FT w/ SAM and ER w/ SAM outperform their non-SAM
counterparts on the encoder-decoder architecture. This finding highlights the broad applicability
of SAM across different model architectures, including both encoder-only and encoder-decoder
setups. To summarize, SAM serves as a valuable addition to current continual learning
methods and can be seamlessly incorporated to enhance overall performance.

5.3.1 Loss Contours and Sharpness with SAM
To understand the effectiveness of the SAM, we visualize the loss contours (see Section 3.4.1 for
details about how we plot loss contours) and compute the sharpness metric (see Section 3.4.3 for
more details). We plot loss contours for task 1/ task 2 of Split CIFAR-50 (Figure 5.1) and 5-dataset-
CV (Figure 5.2), under continual training from randomly initialized weights, and compare them
across four different methods: FT, FT w/ SAM, ER, and ER w/ SAM. We show that SAM (FT w/
SAM and ER w/ SAM) leads to wide task minima (task 1/ task 2) across both datasets as compared
to FT and ER methods. Moreover, from Table 5.1 for ResNet-18-R (w/o PT) initialization, we see
that for Split CIFAR-50, FT w/ SAM (15.0), ER w/ SAM (16.9), and MC-SGD w/ SAM (5.2)
undergoes lesser forgetting than FT (23.7), ER (20.6), and MC-SGD (5.4) methods, respectively.
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5-dataset-NLP 15-dataset-NLP

Accuracy(↑) Forgetting(↓) LA(↑) Accuracy(↑) Forgetting(↓) LA(↑)

DistilBERT
FT 64.34.5 16.75.7 77.70.1 47.03.5 18.84.0 64.41.2
FT w/ SAM 66.42.8 13.93.5 77.60.1 47.53.1 16.53.8 62.50.8
ER 70.21.6 9.42.0 77.70.1 53.23.4 13.14.1 65.30.6
ER w/ SAM 71.11.2 8.11.5 77.50.0 53.52.0 11.03.1 63.11.0

T5-Small
FT 65.92.8 12.63.7 76.00.2 44.93.2 21.93.0 65.20.6
FT w/ SAM 66.42.3 11.93.0 75.90.3 46.63.0 19.33.0 64.40.7
ER 69.41.0 8.21.2 75.90.2 48.11.3 18.91.0 65.50.8
ER w/ SAM 69.90.2 7.50.1 75.90.2 48.61.6 17.41.2 64.50.7

BERT-base
FT 67.62.8 13.63.4 78.40.1 52.92.8 19.23.0 70.80.3
FT w/ SAM 70.82.1 9.52.5 78.40.1 55.12.6 16.43.2 70.40.7
ER 70.62.1 9.72.6 78.40.1 56.42.9 15.73.0 71.00.4
ER w/ SAM 73.01.5 6.91.9 78.50.1 57.81.9 13.71.9 70.50.5

RoBERTa-base
FT 71.41.7 9.52.0 79.00.1 55.53.1 21.03.0 75.10.5
FT w/ SAM 72.61.2 7.81.5 78.80.0 57.81.7 15.41.9 72.11.4
ER 73.70.8 6.70.9 79.10.1 60.91.4 15.31.6 75.20.1
ER w/ SAM 74.30.6 5.70.8 78.90.0 62.11.5 12.22.1 73.30.8

BERT-Large
FT 71.02.0 10.22.5 79.20.0 53.81.2 23.41.4 75.70.4
FT w/ SAM 73.71.3 6.91.6 79.20.0 58.73.4 17.14.3 74.62.2
ER 73.51.2 7.21.4 79.20.1 61.12.6 15.12.9 75.11.2
ER w/ SAM 74.60.6 5.70.8 79.20.1 61.71.3 13.72.8 74.51.5

Table 5.3: Comparing performance in terms of average accuracy (%), forgetting (%), and learning
accuracy (%) across pre-trained Transformers after continual learning the last task. ↑ indicates
higher is better, ↓ indicates lower is better. All metrics are averaged over five random task
sequences. Overall, we observe that larger models and/ or pre-trained on diverse and larger
corpora (RoBERTa-base) undergo less forgetting on both 5 and 15 diverse tasks. Furthermore,
augmenting the FT and ER methods with SAM often outperforms state-of-the-art methods.

These results convincingly demonstrate the effectiveness of SAM when used with vanilla FT,
ER, and/ or MC-SGD methods. Similarly, we see that for 5-dataset-CV, MC-SGD w/ SAM
(19.9) undergoes lesser forgetting than ER w/ SAM (27.3) and FT w/ SAM (40.6), which in turn
significantly improves over FT (51.5). Next, we compare the loss contours between FT and ER
methods and do not notice any stark difference in terms of flatness. However, in the presence
of SAM, qualitatively we see that ER w/ SAM (Figures 5.2d, 5.2h) leads to a flat loss basin in
comparison to FT w/ SAM (Figures 5.2b, 5.2f).
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Figure 5.1: Loss contours for task 1 (T1) and task 2 (T2) of Split CIFAR-50. The top row
visualizes loss contours for task 1 where w1, w2, w3 are minima obtained after sequential training
on tasks 1, 2, and 3, respectively. Similarly, the bottom row visualizes loss contours for task 2
after sequential training on tasks 2, 3, and 4. All of the above models start with random weights.
SAM (FT w/ SAM, ER w/ SAM) leads to wide task minima compared to finetune (FT) and ER
methods.

Dataset Method
ϵ = 5× 10−4 ϵ = 1× 10−3

ResNet-18-R ResNet-18-PT ResNet-18-R ResNet-18-PT

5-dataset-CV
FT 2.10.6 0.10.0 5.71.6 0.20.0
FT w/ SAM 0.70.2 0.10.0 1.80.4 0.30.0

Split CIFAR-50
FT 2.30.7 0.20.1 6.11.5 0.40.1
FT w/ SAM 0.70.1 0.20.0 2.00.3 0.60.0

Table 5.4: Average sharpness value (lower value corresponds to flat loss basin) of task minima in a
100-dimensional random subspace. SAM significantly lowers the sharpness metric in comparison
to the Finetune (FT) method in the case of randomly initialized models (ResNet-18-R).

We compute the sharpness metric for FT and FT w/ SAM methods. In Table 5.4 we report
sharpness metrics for 5-dataset-CV and Split CIFAR-50. We see that the SAM significantly
reduces the sharpness in the case of randomly initialized models. Concretely, on the 5-dataset-CV,
we see that the sharpness value (for ϵ = 5x10−4 ) decreases from 2.1 (FT) to 0.7 (FT w/ SAM).
Similarly, on the Split CIFAR-50, we see a drop from 2.3 (FT) to 0.7 (FT w/ SAM). These results
validate that SAM indeed leads to flat minima, therefore, explaining the superior performance
(in terms of average accuracy and forgetting) of the SAM optimization procedure over
baseline.
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Figure 5.2: Loss contours for SVHN (T1) and MNIST (T2) of 5-dataset-CV. The top row
visualizes loss contours for SVHN where w1, w2, w3 are minima obtained after sequential training
on SVHN, MNIST, and nonMNIST, respectively. Similarly, the bottom row visualizes loss
contours for MNIST where w2, w3, w4 are minima obtained after sequential training on tasks
MNIST, nonMNIST, and Fashion-MNIST. All of the above models start with random weights.
SAM (FT w/ SAM, ER w/ SAM) leads to wide task minima compared to finetune (FT) and ER
methods.

5.4 Analyzing the influence of pre-training task minima curva-
ture on forgetting

In Chapter 3, we demonstrate that pre-trained initializations alleviate forgetting in lifelong learning
scenarios by guiding optimization towards flat minima in the loss basin for sequentially trained
tasks. Furthermore, in Section 5.3, we show that explicitly optimizing for the flatness of the loss
basin using the SAM procedure leads to an additional reduction in forgetting. It is important
to note that our discussion so far has mainly focused on the flatness of the loss basin near the
fine-tuned task minima. However, we now inquire about the impact of the loss basin’s flatness (or
sharpness) near the pre-training task minima on forgetting during lifelong learning. Specifically,
we actively push a pre-trained model toward a region with low (or high) curvature. While such
a model would benefit from learning structure from pre-training data, it would reside in flat (or
sharp) regions of the loss basin with respect to the pre-training task. The question we pose is
— What role does the curvature of the pre-training task minima play in lifelong learning,
particularly concerning forgetting in the fine-tuned task?

Experimental design. To answer the above question, we conduct a controlled experiment with
SVHN as our pre-training task and analyze the forgetting in MNIST (and its subsets) when
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learning homogeneous as well as diverse tasks in a sequence. We pre-train two separate models
on SVHN, ensuring that one model converges to a flat minimum using the SAM procedure, while
the other model converges to a sharper minimum using the Nudged-SGD procedure (NSGD;
Jastrzębski et al., 2019) as discussed in the following section. It is important to ensure that both
models exhibit comparable generalization performance on SVHN. Subsequently, we initialize
these models and perform sequential training on four diverse task sequences, starting with MNIST
as our fine-tuning task. The task sequences are as follows: MNIST→SVHN, MNIST→notMNIST,
MNIST→Fashion-MNIST, and MNIST→CIFAR10.

To create homogeneous tasks in the Split MNIST data set, we randomly select two digits for
each task. Considering that MNIST comprises 10 digits, we then create a random sequence of five
tasks. By utilizing different random seeds, we generate different tasks and consequently obtain a
variety of task orderings. In total, we generated 25 distinct task sequences for the Split MNIST
data set. By examining the degree of forgetting observed in the case of (Split) MNIST, we can
gain insights into the influence of the flatness (or sharpness) of the pre-training task minimum
on the subsequent forgetting phenomenon. To ensure the broad applicability of our findings, we
further conduct experiments using MNIST as the pre-training task and SVHN as the initial task
for fine-tuning over four diverse task sequences. It is important to highlight that we utilize NSGD
exclusively for the experiments conducted in this section.

5.4.1 Nudged-SGD (NSGD)
Jastrzębski et al. (2019) investigate the SGD dynamics in relation to the sharpest directions of
the loss basin and demonstrate that although SGD updates align closely with these directions,
they generally fail to minimize the loss when solely constrained to these directions. To enhance
both the convergence speed and the generalization of the resulting model, Jastrzębski et al. (2019)
introduces a variant of SGD, called Nudged-SGD (NSGD). NSGD aims to reduce the alignment
between the SGD update direction and the sharpest directions. Specifically, NSGD is implemented
as follows: instead of the standard SGD update ∆w(t) = −ηg(t), NSGD employs a reduced
learning rate, η′ = γη, along the top K eigenvectors. Meanwhile, NSGD continues to follow the
standard SGD update in other directions. By setting γ < 1.0, NSGD diminishes the updates along
the top K eigenvectors. As a result, training speed improves while converging to sharper and
better generalizing minima in comparison to vanilla SGD. In our experimental setup, we utilize a
randomly initialized ResNet-18 model. Following Jastrzębski et al. (2019), we set the parameters
γ to 0.01 and K to 20. Additionally, we employ 100 training examples to compute the top K
eigenvectors using pytorch-hessian-eigenthings (Golmant et al., 2018) for every 100 training
updates. Lastly, we set tolerance (relative accuracy for eigenvalues) to 1e−5 for determining the
convergence of the Lanczos algorithm.

To begin, we conduct supervised pre-training of ResNet18 models using two different opti-
mization procedures: SAM and NSGD, with the SVHN data set. Utilizing SAM, we achieve a
validation accuracy of 92.0(±0.4) and a maximum eigenvalue λmax

1 of 338.5(±91.5) (averaged
over five runs). On the other hand, employing NSGD yields a validation accuracy of 92.4(±0.3)
and a maximum eigenvalue λmax

1 of 1416.8(±411.2) (also averaged over five runs). It is evident
from these results that the NSGD leads to convergence towards sharper minima (as indicated
by higher λmax

1 values) and better generalization (as reflected in higher accuracy) compared to
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Figure 5.3: Comparing performance of the first task (MNIST in the top row, SVHN in the
bottom row) after sequential training on the second task across different supervised pre-training
initializations (Init:Sharp, Init:Flat) and optimization procedures (Optim:SGD, Optim:SAM). ↑
indicates higher performance, ↓ indicates lower performance. All metrics are averaged over
five runs (see Equation 2.6). Pre-trained models converged to flat minima with respect to the
pre-training task (Init:Flat, Optim:SGD) exhibit reduced forgetting with SGD in comparison to
sharp minima(Init:Sharp, Optim:SGD). Notably, explicitly promoting flatness (Optim:SAM) for
the fine-tuning task yields an even greater reduction in forgetting.

SAM and vanilla SGD. With vanilla SGD, we obtain a validation accuracy of 91.5(±0.6) and
a maximum eigenvalue λmax

1 of 1241.3(±236.5). Consequently, we have successfully obtained
pre-trained models with varying levels of flatness or sharpness concerning the pre-training SVHN
task, achieved through the SAM (Init:Flat) and NSGD (Init:Sharp) procedures.

Discussion. To examine the influence of pre-training task minima curvature on forgetting
during fine-tuning, we proceed to sequentially fine-tune the aforementioned pre-trained models
(Init:Sharp or Init:Flat) on MNIST, followed by one of four tasks: SVHN, notMNIST, Fashion-
MNIST, and CIFAR10. Additionally, to investigate the interplay between pre-trained minima
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Figure 5.4: Loss contours are shown for MNIST, with winit, w1, and w2 representing the minima
obtained after supervised pre-training on SVHN, followed by sequential training on MNIST
and nonMNIST, respectively. The models are initialized either with a sharp pre-trained model
(Init:Sharp) or a flat pre-trained model (Init:Flat). (a), (b) starting with a flat pre-trained model
results in a flatter loss basin for MNIST during sequential fine-tuning. (c), (d) explicitly optimizing
for flat MNIST minima using SAM (Optim:SAM) leads to even wider task minima compared to
vanilla SGD.

curvature and optimization dynamics, we conduct sequential fine-tuning using either the vanilla
SGD optimizer (Optim:SGD) or the SAM procedure (Optim:SAM). Figures 5.3a and 5.3b illustrate
the accuracy and forgetting values for the MNIST task, respectively. From Figure 5.3b, it is
evident that when fine-tuning with vanilla SGD (Optim:SGD), pre-trained models with flat minima
(Init:Flat; shown in blue) consistently exhibit lower levels of forgetting compared to models with
sharp minima (Init:Sharp; shown in red) across various task sequences. However, the advantage
provided by the flat pre-trained models appears to diminish when employing the SAM optimization
procedure (see Init:Sharp, Optim:SAM and Init:Flat, Optim:SAM). This finding highlights that
the flatness of the MNIST task minima plays a more significant role in reducing forgetting for
MNIST compared to the initialization flatness with respect to the pre-training task (SVHN in this
case) minima. Similar observations are reported in Figures 5.3c and 5.3d when MNIST is used as
the pre-training task, and forgetting is analyzed for the SVHN task during continual learning.

In Figure 5.4, we provide a comparison of the loss contours for MNIST using sharp pre-
trained initialization (Figure 5.4a) and flat pre-trained initialization (Figure 5.4b). Upon visual
inspection, we observe that the flat pre-trained initialization results in a wider loss basin for the
MNIST minima (w1), thereby, explaining lesser forgetting of MNIST when continually training
on notMNIST in the case of pre-trained initialized models (see Figure 5.3b; Init:Flat, Optim:SGD).
Furthermore, when SAM is applied, Optim:SAM (Figures 5.4c, 5.4d) yields an even wider loss
basin compared to Optim:SGD (Figures 5.4a, 5.4b).

In Table 5.5, we present a comparison of average accuracy and forgetting on Split MNIST, fo-
cusing on sharp and flat supervised SVHN pre-trained initializations. Consistent with experiments
involving diverse tasks (refer to Figure 5.3b), we find that Init:Flat, Optim:SGD (4.3) exhibits
lower forgetting compared to Init:Sharp, Optim:SGD (7.6) in homogeneous tasks. This finding
reinforces the notion that actively promoting flatness during pre-training, in addition to learning
structure from abundant data, is beneficial for reducing forgetting in sequentially fine-tuned tasks.
Moreover, initializing with a sharp pre-trained model and explicitly optimizing for flatness using
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Optim:SGD Optim:SAM

Accuracy(↑) Forgetting(↓) LA(↑) Accuracy(↑) Forgetting(↓) LA(↑)

Task-agnostic
Init:Random 80.99.7 17.69.0 96.95.9 91.95.3 7.75.2 99.60.3
Init:Meta 89.59.1 9.88.0 98.83.2 92.36.4 7.56.3 99.60.3

Supervised pre-training (SVHN)
Init:Sharp 91.98.1 7.67.6 99.21.8 96.14.7 3.74.6 99.80.2
Init:Flat 95.24.8 4.34.7 99.12.1 97.82.2 2.02.1 99.70.4

Table 5.5: Comparing the performance of Split MNIST in terms of average accuracy(%), forget-
ting(%), and learning accuracy(%), we analyze the impact of different initializations: random
(Init:Random), task-agnostic meta-learned (Init:Meta), supervised pre-trained with explicit op-
timization for sharp minima (Init:Sharp), and supervised pre-trained with explicit optimization
for flat minima (Init:Flat). We also consider different optimization approaches: vanilla SGD
(Optim:SGD) and explicit optimization for flatness (Optim:SAM). ↑ indicates higher performance,
while ↓ symbolizes lower performance. All metrics are averaged over 25 random task sequences.
Our observations indicate that with Optim:SGD, MetaInit significantly reduces forgetting com-
pared to random initialization, suggesting the benefits of initializing in flatter regions with minimal
susceptibility to second-order effects. Also, pushing supervised pre-trained models towards flatter
regions contributes to reduced forgetting. However, these gains diminish across all initialization
schemes when explicitly optimizing for flatness (Optim:SAM) during lifelong learning. Neverthe-
less, we observe synergistic advantages when utilizing flat pre-trained or meta-initialized models
in conjunction with the SAM procedure, resulting in minimal forgetting.

SAM, as seen in Init:Sharp, Optim:SAM (3.7), yields an even greater reduction in forgetting
compared to flat pre-trained initialization with vanilla SGD, i.e., Init:Flat, Optim:SGD (4.3),
aligning with our previous observations (refer to Figure 5.3). However, we observe synergistic
advantages when utilizing flat pre-trained models in conjunction with the SAM optimization pro-
cedure, resulting in minimal forgetting. Specifically, the combination of Init:Flat and Optim:SAM
yields a forgetting value of 2.0, showcasing the complementary benefits of these approaches.

To summarize, initiating fine-tuning with pre-trained models that have converged to flat
minima with respect to the pre-training task helps mitigate forgetting. However, explicitly
promoting flatness with respect to the fine-tuning task leads to a more pronounced reduction
in forgetting.

5.5 Analyzing the influence of task-agnostic favorable initial-
izations on forgetting

Initialization is widely recognized as a crucial factor in a model’s learning dynamics and overall
performance (Glorot and Bengio, 2010; LeCun et al., 2015; Mishkin and Matas, 2015). Various
initialization schemes have been developed for specific network architectures, such as fully
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connected networks (Pennington et al., 2017), residual networks (He et al., 2015), convolutional
networks (Xiao et al., 2018), recurrent networks (Chen et al., 2018), and attention-based networks
(Huang et al., 2020). However, these schemes are often architecture-specific and do not readily
transfer to different or novel architectures. To overcome this limitation, Dauphin and Schoenholz
(2019) propose MetaInit, an automated initialization search approach using task-agnostic meta-
learning. On the other hand, pre-training has also been shown to yield favorable initializations
in terms of optimization (Erhan et al., 2009; Hao et al., 2019; Neyshabur et al., 2020), making
it a data-driven method for finding effective initialization schemes. In the previous sections, we
observed that pre-trained initializations reduce forgetting during sequential fine-tuning. As these
observations pertain to pre-trained initializations, this section aims to directly investigate the
contribution of favorable initializations by removing the pre-training aspect. Specifically, we pose
the question — Do good initializations from MetaInit, shown to facilitate gradient descent by
starting in locally linear (or wider) regions with minimal second-order effects, also mitigate
forgetting when compared to a random initialization in a sharper region?

Experimental design. To address the above question, we perform controlled experiments
to investigate the phenomenon of forgetting in the MNIST data set, both in the context of
homogeneous and diverse task sequences. For this purpose, we employ the MetaInit algorithm
(Dauphin and Schoenholz, 2019) to obtain a task-agnostic favorable initialization, which is
independent of the specific task at hand. By comparing models initialized with the MetaInit
approach to randomly initialized models, we aim to assess the impact of task-agnostic favorable
initialization on forgetting. We examine the degree of forgetting specifically in the MNIST data
set while sequentially learning four task sequences: MNIST→ SVHN, MNIST→ notMNIST,
MNIST→ Fashion-MNIST, and MNIST→ CIFAR10, where MNIST serves as the initial task.
Additionally, similar to the methodology described in Section 5.4, we conduct experiments
involving homogeneous tasks from the Split MNIST data set.

5.5.1 MetaInit: Initializing learning by learning to initialize
Dauphin and Schoenholz (2019) demonstrate that effective initializations exhibit characteristics
that aid gradient descent by beginning in regions with minimal susceptibility to second-order
effects. To quantify the impact of curvature (or second-order effects) around an initial choice of
parameters, they introduce a quantity known as the gradient quotient (GQ). GQ measures the
change in the gradient of a function following a single gradient descent step. Mathematically, the
GQ is defined as follows

GQ(L,w) =
1

N

∥∥∥∥g(w)−H(w)g(w)

g(w) + ϵ
− 1

∥∥∥∥
1

≈ 1

N

∥∥∥∥g(w − g(w))

g(w) + ϵ
− 1

∥∥∥∥
1

, (5.6)

where w ∈ RN are network parameters, L is an empirical loss computed over the batch of
the examples, g(w) = ∇L(w) is the gradient, H(w) = ∇2L(w) denotes Hessian matrix, ϵ =
ϵ0(2g(w)≥0 − 1) with ϵ0 as a small constant and ||.||1 is the L1 vector norm. Alternatively, the
GQ can be interpreted as the relative change in the gradient per parameter after a single step of
gradient descent. As a result, parameters that cause a rapid change in the gradient exhibit large
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Figure 5.5: Comparing the performance of the first task (MNIST in the top row, SVHN in the
bottom row) after sequential training on the second task, we examine the impact of random
and task-agnostic MetaInit initialization strategy (Init:Random, Init:Meta) and optimization
procedures (Optim:SGD, Optim:SAM). ↑ indicates higher performance, while ↓ symbolizes
lower performance. All metrics are averaged over 5 runs. The results show that task-agnostic
MetaInit models (Init:Meta, Optim:SGD) exhibit reduced forgetting with SGD compared to
random initialization (Init:Random, Optim:SGD). Similarly to Figure 5.3, explicitly promoting
flatness (Optim:SAM) for the sequential task leads to an even greater reduction in forgetting.

gradient quotients, while an optimal GQ of 0 is achieved when the loss function L(w) behaves
almost linearly, indicating a negligible Hessian matrix H(w) ≈ 0. Having established this metric
to assess initialization quality, Dauphin and Schoenholz (2019) present MetaInit, a task-agnostic
meta-learning algorithm aimed at obtaining a good initialization from suboptimal ones. The
meta-objective of MetaInit is defined as follows

MetaInit(L,w∗) = argmin
w

GQ(L,w). (5.7)

Following the methodology proposed by Dauphin and Schoenholz (2019), we optimize the
aforementioned meta-objective using random input data (x ∼ N (0, 1)). It can be argued that
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Figure 5.6: Loss contours are shown for MNIST, with winit, w1, and w2 representing either
random or task-agnostic initialization, followed by sequential training on MNIST and nonMNIST,
respectively. The models are initialized either with a random strategy (Init:Random) or a MetaInit
strategy (Init:Meta). (a), (b) starting with a MetaInit initialization results in a flatter loss basin for
MNIST during sequential fine-tuning. (c), (d) explicitly optimizing for flat MNIST minima using
SAM (Optim:SAM) leads to even wider task minima compared to vanilla SGD.

solving for the meta-objective resembles a form of pre-training; however, no task-specific data is
utilized in the learning process, thereby characterizing it as a task-agnostic initialization. Moreover,
consistent with previous studies (Glorot and Bengio, 2010; Dauphin and Schoenholz, 2019), we
solely adjust the norms of the initial weight matrices. We begin with five ResNet-18 models
that are randomly initialized (Init:Random), with a GQ averaging 5476.2(±2804.3). Through the
MetaInit procedure (Init:Meta), we attain a final GQ value of 0.9(±0.0).

Discussion. To investigate the impact of task-agnostic favorable initializations on forgetting, we
sequentially train starting from the aforementioned initialization (Init:Random or Init:Meta) on
MNIST, followed by one of four diverse tasks: SVHN, notMNIST, Fashion-MNIST, and CIFAR10.
Furthermore, to explore the relationship between meta-learned initializations and optimization
dynamics, we use either vanilla SGD (Optim:SGD) or the SAM procedure (Optim:SAM). The
accuracy and forgetting values for the MNIST task are visualized in Figures 5.5a and 5.5b,
respectively. Figure 5.5b demonstrates that when optimized with vanilla SGD (Optim:SGD), meta-
initialized models (Init:Meta; shown in blue) exhibit lower forgetting levels compared to randomly
initialized models with high gradient quotient (Init:Random; shown in red) across various task
sequences, except for CIFAR10, which differs significantly from MNIST. However, the advantage
of meta-initialized models appears to diminish when employing the SAM optimization procedure
(see Init:Random, Optim:SAM and Init:Meta, Optim:SAM), highlighting the more significant role
of MNIST task minima flatness in reducing forgetting compared to the curvature of task-agnostic
initialization. Similar observations are reported in Figures 5.5c, 5.5d when starting from SVHN
task followed by one of MNIST, notMNIST, Fashion-MNIST, and CIFAR10 task during lifelong
learning.

In Figure 5.6, we provide a comparison of the loss contours for MNIST using random
initialization (Figure 5.6a) and task-agnostic MetaInit initialization (Figure 5.6b). Upon visual
inspection, we observe that the MetaInit initialization results in a wider loss basin for the MNIST
minima (w1), thereby, explaining lesser forgetting of MNIST when continually training on

68



notMNIST in the case of MetaInit initialized models (see Figure 5.5b; Init:Meta, Optim:SGD).
Furthermore, when SAM is applied, Optim:SAM (Figures 5.6c, 5.6d) yields an even wider loss
basin compared to Optim:SGD (Figures 5.6a, 5.6b), explaining superior results with Optim:SAM
(refer to Figures 5.5a, 5.5b).

Table 5.5 presents a comparative analysis of average accuracy and forgetting on the Split
MNIST data set, focusing on random initialization and task-agnostic MetaInit initialization. Con-
sistent with our experiments involving diverse tasks (see Figure 5.5b), we observe that Init:Meta,
Optim:SGD (9.8) exhibits significantly lower levels of forgetting compared to Init:Random, Op-
tim:SGD (17.6) in the context of homogeneous tasks. This observation supports the claim that
initializing model parameters with regions that are locally linear (or wider) and are less susceptible
to second-order effects can be beneficial in mitigating forgetting in lifelong learning. Further-
more, we find that random initialization and explicit optimization for flatness using SAM, as
demonstrated by Init:Random, Optim:SAM (7.7), result in an even greater reduction in forgetting
compared to MetaInit initialization with vanilla SGD, i.e., Init:Meta, Optim:SGD (9.8), which
aligns with our previous observations (see Figure 5.5).

To summarize, initializing models with lower gradient quotients (achieved through task-
agnostic meta-learning) in regions that are less susceptible to second-order effects help
reduce forgetting during lifelong learning. However, the reduction in forgetting is more
significant when explicitly promoting flatness in relation to the specific sequential learning
task.

5.6 Discussion
In this chapter, we show that explicitly seeking flat loss basins using the SAM procedure yields
even lower forgetting than existing methods. Integrating SAM into the baselines surpasses state-of-
the-art techniques, underscoring its valuable contribution to advancing lifelong learning methods.
Our analysis of various initializations, including task-agnostic meta-learned and supervised pre-
trained models explicitly guided towards flat loss regions, showcases the synergistic behavior that
arises when combined with the SAM procedure during sequential fine-tuning.

Recent research (Na et al., 2022) indicates that optimizing for flatter minima results in greater
parameter compressibility compared to standard optimization, suggesting potential sparsity in the
learned network. In this chapter and Chapter 3, we explored the relationship between flatness and
reduced forgetting. If flatness indeed leads to sparsity, it could imply less interference between
sequential task solutions and, consequently, less forgetting. Further investigation into this potential
explanation could be a promising direction for future research.

69



70



Chapter 6

Objective: Efficient Meta Lifelong Learning
with Limited Memory

6.1 Overview
Previously (Chapters 3, 4, 5), we examined task-incremental learning (Section 2.1.1) or domain-
incremental learning (Section 2.1.2) scenarios in lifelong learning, where the task identifier is
available during training (Section 4.2.1) and/ or testing and multiple passes over the dataset are
allowed during training (Section 3.2.1). However, in real-world situations, the input distribution
may change without warning; therefore, the system must learn from an online stream with just
one pass over the training examples and without any task identifiers (both during training and
testing). To enable lifelong learning systems operating under such realistic assumptions (Section
2.1), in this chapter, we investigate domain-incremental (Section 2.1.2) and class-incremental
(the most challenging; Section 2.1.3) scenarios while allowing only one pass over the training
examples, and without any task identifiers during training as well as evaluation.

One approach to lifelong learning under realistic assumptions has been augmenting the
learning model with an episodic memory module (Sprechmann et al., 2018). The underlying
idea is to first store previously seen training examples in memory and later use them to perform
experience replay (Rolnick et al., 2019) or to derive optimization constraints (Lopez-Paz et al.,
2017; Chaudhry et al., 2018b) while training on new tasks. Recently, d’Autume et al. (2019)
proposed to use such a memory module for sparse experience replay and local adaptation in the
language domain, achieving then state-of-the-art results for lifelong learning on text classification
and question-answering tasks. Despite its success, the method has three critical downsides, which
we demonstrate later in our experiments

1. It requires an unrealistically large memory module, i.e., storing all training examples, to
achieve optimal performance.

2. While the model can mitigate catastrophic forgetting over previous tasks, its local adaptation
step is prone to negative transfer such that it performs worse on the current task than the
naive baseline without any lifelong learning regularization.

3. Its inference speed is extremely slow due to a non-trivial amount of local adaptation steps
required for each test example.
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This chapter addresses these limitations and tackles the problem of efficient lifelong language
learning. That is, we focus on storing limited training examples in memory. Driven by the
CLS theory (McClelland et al., 1995), we identify three components of an existing method
(de Masson D’Autume et al., 2019)—generic representations, experience rehearsal, and local
adaptation, each corresponding to one of the two learning phases, that are independent rather
than complementary. We introduce a “synergistic” framework that makes two learning phases
complementary. We propose a novel first-order meta-learning objective that formulates the
slow-learning phase as the meta-task (generic representation and experience rehearsal) and the
fast-learning phase as the base task (local adaptation). Across different challenging scenarios
(domain/class-incremental learning, online learning with no task boundaries), we show that our
framework prepares the slow-learning phase for faster local adaptation and the fast-learning phase
to support reduced memory buffer size. Our contributions are three-fold

• We identify three common principles underlying lifelong learning methods. We seek to
characterize them in language learning and glean insights into overlooked downsides of the
existing method.

• Stemming from the above analysis, we propose a meta-lifelong framework that unifies the
three identified principles. Our approach is a direct extension of d’Autume et al. (2019), but
explicitly meta-learns the model as a better initialization for local adaptation.

• We conduct extensive experiments to demonstrate that our proposed approach can use the
identified three principles to achieve efficient lifelong language learning. Our framework
outperforms prior methods while using 100 times less memory storage. Moreover, we
demonstrate that our method can effectively alleviate catastrophic forgetting and negative
transfer, closing the performance gap with the multi-task learning upper bound. It can also
potentially obtain 22 times faster inference speed.

6.2 Experimental Setup

6.2.1 Problem Formulation
We consider the lifelong learning setting where a model needs to learn multiple tasks in a
sequential order from an online stream of training examples without any task identifier, i.e., the
model does not know which task an example comes from during both training and testing. This
setup is ubiquitous in practice, as environments consistently evolve without sending an explicit
signal (Chaudhry et al., 2019; d’Autume et al., 2019). Formally, during training, the model makes
a single pass over the training example stream consisting of T tasks in an ordered sequence,
Dtrain = {D1

train, · · · ,DT
train}, where Dt

train = {(xt
i, y

t
i)}nt

i=1 is drawn from the task-specific
distribution Pt(X ,Y) of the t-th task. Also, in a class-incremental learning scenario, the output
label space may keep evolving, i.e., Y i ⊂ Yj, ∀i < j, i, j ∈ {1, · · · , T }. Overall, the goal is to
learn a predictor fw : X → Y such as a neural network, parameterized by w ∈ RP , to minimize
the average empirical risk of all T tasks as defined in Equation 2.5. Notice that while the average
empirical risk is most commonly evaluated after the model has seen all tasks, we can also evaluate
a specific task at different stages to demonstrate the model’s training behavior and evaluate its
robustness against catastrophic forgetting and negative transfer.
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6.2.2 Benchmarks and Task Sequences

To evaluate our proposed framework, we conduct experiments on text classification benchmark
(Section 2.3.1) for class-incremental learning scenario and question-answering benchmark (Sec-
tion 2.3.2) for domain-incremental learning scenario. The text classification benchmark consists
of five datasets: Yelp, AGNews, DBPedia, Amazon, and Yahoo and the question-answering
benchmark includes four datasets: SQuAD v1.1, TriviaQA (Web), TriviaQA (Wikipedia), and
QuAC. For additional details, see Section 2.3.1 and Section 2.3.2. Following prior work, we
consider each dataset a separate task, and the model needs to sequentially learn several tasks of
the same category (e.g. all text classification tasks). As pointed out in (McCann et al., 2018;
Raffel et al., 2020), many NLP tasks can be formulated as question-answering or text-to-text
format; thus, our setup is general. For task sequences, we examine the initial four sequences
outlined in Chapter 3 (see Section 3.2.2) for the text classification benchmark and in Chapter 4
(see Section 4.2.2) for the question-answering benchmark. These sequences align with previous
work (de Masson D’Autume et al., 2019) to ensure fair comparisons.

We use the following text classification dataset orders for our experimentation
Seq1 Yelp→AGNews→DBPedia→Amazon→Yahoo

Seq2 DBPedia→Yahoo→AGNews→Amazon→Yelp

Seq3 Yelp→Yahoo→Amazon→DBpedia→AGNews

Seq4 AGNews→Yelp→Amazon→Yahoo→DBpedia

We consider the following dataset orders for question-answering
Seq1 QuAC→TrWeb→TrWik→SQuAD

Seq2 SQuAD→TrWik→QuAC→TrWeb

Seq3 TrWeb→TrWik→SQuAD→QuAC

Seq4 TrWik→QuAC→TrWeb→SQuAD

6.2.3 Baselines

We compare our method against then state-of-the-art continual learning methods tailored for life-
long learning from an online stream of data without task identifiers during training and inference.
Specifically, we compare with Online EWC in the parameter-regularization approaches (Sec-
tion 2.4.1), ER and A-GEM with their online variants, from episodic memory-based approaches
(Section 2.4.2), and MbPA++ from test-time adaptation-based approaches (Section 2.4.3). We ex-
clude comparisons with optimization-based approaches, which are designed for task-incremental
learning scenarios. We exclude comparisons with our G2DfER approach from Chapter 4 and
other architecture-based methods (Sodhani et al., 2022). These approaches assume task identifiers
during training, a condition not assumed in this chapter. We provide chapter-specific details of the
baselines mentioned above below, with a detailed description available in Section 2.4.

• Finetune (FT): The model is sequentially fine-tuned on an online data stream and does not
utilize any lifelong learning regularization.
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• Online Elastic Weight Consolidation (Online EWC; Schwarz et al., 2018): An online
parameter-based regularization approach that tries to mitigate forgetting by restricting
learning to parameters important to previously learned domains.

• Averaged Gradient Episodic Memory (A-GEM; Chaudhry et al., 2018b): This approach
augments a base model with an episodic memory. This memory preserves examples from
previously encountered domains. During training, the stored examples are utilized to impose
a constraint on gradients, preventing the model from forgetting knowledge acquired in
earlier tasks.

• Episodic Replay (ER; Chaudhry et al., 2019): This approach employs an episodic memory
to store and replay past experiences during the training process, thereby, mitigating forget-
ting of knowledge acquired from an online data stream. Following de Masson D’Autume
et al. (2019), we retain 1% of the total examples in the replay buffer and perform experience
replay by sampling 100 examples from the memory and performing a gradient update after
every 10,000 training steps, which gives us a 1% replay rate.

• Improved Memory-based Parameter Adaptation (MbPA++; de Masson D’Autume et al.,
2019): This approach uses an episodic memory to perform sparse experience replay during
training and domain-specific test-time adaptation during inference. Similar to ER, 1%
samples are retained in the buffer and the replay rate is set to 1%.

6.3 Principles of Lifelong Language Learning
While different methods have been developed to optimize Equation 2.5, we abstract away from
their specific assumptions and instead focus on identifying common principles, among which we
stress the following three points that are most relevant to lifelong language learning

6.3.1 Generic Representation
Stemming from transfer learning (Weiss et al., 2016; Ganin and Lempitsky, 2015), a key idea of
transferring knowledge across diverse tasks is to learn a generic representation (such as a neural
network encoder) that can encode useful information for all tasks. For instance, parameter-based
regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Schwarz et al., 2018) add an
extra constraint to prevent the model parameter w from drastically deviating when training on new
tasks, thereby learning a generic model for old tasks as well. In the language domain, as language
models have proven successful in generating highly generic representations for many language
understanding tasks (Yogatama et al., 2019; Raffel et al., 2020), both d’Autume et al. (2019) and
Sun et al. (2020) propose utilizing a pre-trained language model (Devlin et al., 2019; Radford
et al., 2019) to initialize parameters, and further training the model on Dtrain.

6.3.2 Experience Rehearsal
Motivated by the complementary learning systems (CLS) theory (McClelland et al., 1995) that
humans rely on episodic memory to store past experiences and conduct experience rehearsal, we
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can also retrain lifelong learning models on previously seen tasks to reduce forgetting. While
prior methods use memory to define optimization constraints (Lopez-Paz et al., 2017; Chaudhry
et al., 2018b; Sodhani et al., 2020), recent works use either stored examples (Sprechmann et al.,
2018) or generated synthetic data (Shin et al., 2017; Sun et al., 2020) to perform experience replay.
Further, d’Autume et al. (2019) shows that a sparse 1% rate of replaying to learning new examples
is sufficient for lifelong language learning, similar to memory consolidation in human learning
(McGaugh, 2000).

6.3.3 Task-specific Fine-tuning

In multi-task learning, injecting task-specific parameters and finetuning on individual tasks have
proven effective for different language understanding tasks (Houlsby et al., 2019) or even diverse
languages (Bapna and Firat, 2019). Prior work (Rusu et al., 2016; Yoon et al., 2018) exploits this
idea to expand model parameters for new tasks in a lifelong learning setting. However, all these
methods require a task identifier to know when to add new parameters. When no such signal exists,
local adaptation (Sprechmann et al., 2018) uses k stored nearest neighbors of each test example to
perform extra finetuning at inference time. Recent work (d’Autume et al., 2019; Khandelwal et al.,
2020) demonstrates that the sentence embeddings produced by pre-trained models can effectively
measure query similarity and that local adaptation can improve performance on text classification,
question answering, and language modeling.

6.4 Synergistic Meta-Lifelong Framework (Meta-MbPA)

To motivate our proposed framework, we first review the then state-of-the-art method in Sec-
tion 2.4.3, MbPA++ (de Masson D’Autume et al., 2019), and show how the above principles
(Section 6.3) help us to identify the limitation. Despite its effectiveness, the performance gain
of MbPA++ comes at the cost of large memory storage and slow inference speed. The root of
this inefficiency is the non-synergistic nature of the method—the three principles are performed
independently without close interaction. In particular: (i) the generic representation learned is not
optimized for local adaptation, and thus more steps are required for robust performance, (ii) the
memory module is selected randomly and lacks a systematic selection method to reduce its size
effectively, (iii) local adaptation only utilizes a few neighbors for each testing example, so it is
prone to overfitting and negative transfer when memory size is small.

We highlight a discrepancy between training and testing in MbPA++. Specifically, the generic
representation is trained on the task loss in Equation 2.19 directly while it makes a prediction
after the local adaptation at test time. Therefore, the model always overfits the latest task it has
seen and never learns how to incorporate experience rehearsal efficiently. According to the CLS
theory McClelland et al. (1995), however, human learning systems are complementary—we learn
structured knowledge in a manner that allows us to adapt to episodic information quickly. Thus,
to resolve the training-testing discrepancy of MbPA++, we change the training goal of generic
representation from how to perform better on the current task to how to adapt to episodic memory
efficiently.
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Algorithm 1 Meta-MbPA
1: Procedure Train
2: Input: online training data stream Dtrain

3: Output: parameters w, episodic memoryM
4: Initialize w and ϕ with some pre-trained model
5: for (xi, yi) ∈ Dtrain do
6: [Generic Representation] Perform a gradient update on w to minimize Equation 6.1
7: if training step mod ntr = 0 then
8: Sample nre examples fromM
9: [Experience Rehearsal] Perform a gradient update on w to minimize Equation 6.2

10: end if
11: Compute p(xi) according to Equation 6.3
12: if Bernoulli(p(xi)) = 1 then
13: Update memoryM←M∪ (xi, yi)
14: end if
15: end for
16: Procedure Test
17: Input: test examples x
18: Output: predictions ŷ
19: for l = 1, ..., nl do
20: Sample k examples fromM
21: [Task-specific Finetuning] Perform a gradient update on w to minimize Equation 2.21
22: end for
23: Output prediction ŷ = fw̃x(x)

In particular, we propose an extension of MbPA++ that exploits a meta-learning paradigm to
interleave the three key principles: (i) to resolve the training-testing gap, our framework learns a
generic representation that is tailored for local adaptation, (ii) to enable robust local adaptation,
the memory module uses a diversity-based selection criterion to reduce memory size, (iii) to
accommodate small memory, the framework utilizes a coarse local adaptation to alleviate negative
transfer. The full framework is outlined in Algorithm 1 and below, we detail how each principle is
instantiated systematically.

1. Generic Representation. We incorporate local adaptation into training the generic repre-
sentation. In particular, we exploit meta-learning by formulating local adaptation as the base
task and representation learning as the meta-task. That is, the generic representation is trained to
perform well after the local adaptation (a.k.a learning to adapt). Thus, for each training example
(xi, yi) ∈ Dtrain, we formulate the task loss in Equation 2.19 into a meta-task loss as

Lmeta
TASK(w;xi, yi) = ℓ(fw̃xi

(xi), yi)

s.t. w̃xi
= w − α∇wLLA(w;Nxi

)
(6.1)

where α is the current learning rate. Notice that differentiation requires computing the gradient of
gradient, which modern automatic differentiation frameworks can implement. Intuitively, we first
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approximate local adaptation using gradient step(s) and then optimize the adapted network.

2. Experience Rehearsal. With a similar rationale to the meta-task loss, we reformulate the
memory replay loss in Equation 2.20 into a meta-replay loss to stimulate efficient local adaptation
for all tasks

Lmeta
REP (w;S) =

1

nre

∑
x,y∈S

ℓ(fw̃x(x), y)

s.t. w̃x = w − α∇wLLA(w;Nx)

(6.2)

We use the same replay ratio as in MbPA++ to keep the meta-replay sparse. In addition, we
propose a diversity-based selection criterion to determine if a training example (xi, yi) ∈ Dtrain

should be added to the memory module. Here, we exploit the key network gϕ to estimate diversity
via the minimum distance of xi to existing memory as:

log(p(xi)) ∝ −
min
x,y∈M

∥gϕ(xi)− gϕ(x)∥22
β

, (6.3)

where p(xi) is the probability of the example being selected and β is a scaling parameter. The
intuition is to select examples less similar to the existing memory, thereby covering diverse parts
of data distribution. As shown later, the proposed method outperforms the uncertainty-based
selection rule (Ramalho and Garnelo, 2019), which picks examples based on the certainty level of
the predictor network fw. This is because local adaptation is prone to negative transfer when the
memoryM misrepresents the true data distribution.

3. Task-specific Fine-tuning. With small memory, local adaptation for each testing example
is prone to negative transfer. This is because less related memory samples are more likely to
be included in Nxi

, and the model can easily overfit. Thus, we consider local adaptation with
more coarse granularity. For example, we can cluster testing examples and independently conduct
local adaptation for each cluster. In our experiments, we find it is sufficient to take this to the
extreme, considering all test examples as a single cluster. Note in this case, we may not require
gϕ to retrieve nearest neighbors. Consequently, we consider the whole memory as neighbors and
randomly sample from it to be comparable with the original local adaptation formulation (i.e.
same batch sizes and gradient steps). As shown in the next section, it has two benefits: (1) it is
more robust to negative transfer, and (2) it is faster when we evaluate testing examples as a group.

6.5 Experiments

Implementation Details. We utilize the pre-trained BERT-base (Wolf et al., 2019) for initial-
izing the encoder network. BERT-base has 12 Transformer layers, 12 self-attention heads, and
768 hidden dimensions (110M parameters). Similar to (d’Autume et al., 2019), we use a separate
pre-trained BERT-base for the key network and freeze it to prevent it from drifting while training
on a non-stationary data distribution. For text classification, we use the encoded representation
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of the special beginning-of-document symbol [CLS] as our key. For question answering, we use
the question part of the input to get the encoded representation. We store the input example as its
associated memory value for both tasks. Further, we use Faiss (Johnson et al., 2019) for efficient
nearest neighbor search in the memory, based upon the key network.

We mainly set hyper-parameters as mentioned in (d’Autume et al., 2019). We use Adam
(Kingma and Ba, 2014) as our optimizer, set dropout (Srivastava et al., 2014) to 0.1 and the
base learning rate to 3e−5. For text classification, we use a training batch of size 32 and set the
maximum total input sequence length after tokenization to 128. For question answering, we use
a training batch of size 8 and set the maximum total input sequence length after tokenization to
384. To deal with longer documents, we set the document stride to 128. We also set the maximum
question length to 64.

For Online EWC (Schwarz et al., 2018), we set the regularization strength λ = 5000 and
forgetting coefficient γ = 0.95. For all models with memory module (Replay, MbPA++, Meta-
MbPA), we replay 100 examples for every 10, 000 new examples, i.e., ntr = 10, 000 and nre =
100. As mentioned in (d’Autume et al., 2019), for MbPA++, we set the number of neighbors
k = 32, the number of local adaptation steps nl = 30, and λl = 0.001. We tune the local
adaptation learning rate α for MbPA++ in our re-implementation (MbPA++ Our Impl.) and report
the improved numbers as well as their reported numbers in Table 6.1, B.1, and B.2. For text
classification, we set α = 5e−5 and for question answering we set α = 1e−5.

For our framework, Meta-MbPA , unless stated otherwise, we set the number of neighbors
k = 32 and control the memory size through a write rate rM = 1% (the write rate is defined as the
fraction of examples retained in episodic memory relative to the total number of seen examples).
We use nl = 30 local adaptation steps and perform local adaptation for the whole testing set. We
randomly draw k = 32 examples from memory and perform a local adaptation step. Through
this, the computational cost is equivalent to MbPA++, but we only need to perform the whole
process once, while MbPA++ requires conducting local adaptation independently for each testing
example. We set α = 1e−5 (in Equation 6.1, 6.2), β = 10 (in Equation 6.3) and λl = 0.001 (in
Equation 2.21). All of the experiments are performed using PyTorch (Paszke et al., 2017), which
allows for automatic differentiation through the gradient update as required for optimizing the
meta-task loss Equation 6.1 and meta-replay loss Equation 6.2.

We use four different orderings of task sequences as in d’Autume et al. (2019) (see Section
6.2.2) and evaluate the model at the end of all tasks. Following prior work, we report the macro-
averaged accuracy for classification and F1 score for question answering. Table 6.1 provides our
main results. Notice that the results on the right are not comparable due to different setups. The
complete per-task results are available in Appendix B.1.

6.5.1 How much does Meta-MbPA help in alleviating forgetting?
We first compare our framework (Meta-MbPA) with all baselines. Even using only 1% of total
training examples as memory, the proposed framework outperforms existing baselines on text
classification and question answering. Specifically, while regularization-based methods (A-GEM
and Online EWC) perform better than the standard FT model, their performance varies depending
on the task ordering and, thus, is not robust. On the other hand, methods that involve local
adaptation (MbPA++ and ours) perform consistently better for all orderings. In particular, our
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Order FT Online A-GEM† Replay MbPA++† MbPA++ Meta-MbPA MTL MTL LAMOL0.2
TASK

‡

EWC (Our Impl.) (1%) (100%) (1%)

Text Classification

i. 35.5 43.8 70.7 63.4 70.8 75.3 77.9 - - 76.7
ii. 44.8 49.8 65.9 73.0 70.9 74.6 76.7 - - 77.2
iii. 42.4 59.5 67.5 65.8 70.2 75.6 77.3 - - 76.1
iv. 28.6 52.0 63.6 74.0 70.7 75.5 77.6 - - 76.1

Avg. 37.8 51.3 66.9 69.1 70.6 75.3 77.3 78.9 50.4 76.5

Question Answering

i. 60.9 58.0 56.1 62.3 62.0 63.3 64.8 - - -
ii. 57.3 57.2 58.4 61.3 62.4 63.5 65.3 - - -
iii. 47.0 49.5 52.4 58.3 61.4 61.6 64.4 - - -
iv. 61.0 58.7 57.9 62.9 62.4 62.4 65.0 - - -

Avg. 56.6 55.9 56.2 61.2 62.1 62.7 64.9 68.6 44.1 -

Table 6.1: Accuracy and F1 scores for text classification and question answering, respectively.
Methods that use the defined lifelong learning setup in Section 6.2.1 are listed on the left. Where
applicable, all methods use rM = 100% memory size unless denoted otherwise. The best result
for lifelong learning methods is made bold. † Results obtained from (d’Autume et al., 2019). ‡
LAMOL (Sun et al., 2020) is not directly comparable due to their different problem setup where
task identifiers are available. Our framework, Meta-MbPA, outperforms MbPA++ and narrows
the performance difference with MTL (100%) while employing just 1% episodic memory size.

rM = 1% rM = 10%

Model / Task Text Question Text Question
Classification Answering Classification Answering

MbPA++ 73.1 61.9 73.5 62.6
Meta-MbPA 77.3 64.9 78.0 65.5

MTL (subsampled) 50.4 44.1 70.5 56.2

Table 6.2: Performance of models using different memory sizes. We report accuracy and F1

scores for text classification and question answering, respectively. MTL (subsampled) is trained
on subsampled training data, equivalent to only performing local adaptation without training
the generic representation. Notice that this variant of MTL is not an upper-bound as it uses
fewer training samples. In summary, our framework Meta-MbPA demonstrates a more efficient
utilization of the episodic memory module compared to existing methods.

framework improves over MbPA++ while using 100 times less memory, demonstrating the
effectiveness of the proposed approach. We then compare lifelong learning methods to the
multitask model MTL, which can be viewed as an upper bound on performance when there is
no significant negative transfer between tasks. As shown in Table 6.1, there is still a non-trivial
gap between MbPA++ and MTL, albeit MbPA++ stores all training examples as memory. Our
framework narrows the gap while using smaller memory.
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Replay MbPA++ Meta-MbPA
Text Classification

Random 69.2 73.1 76.8
Diversity 69.1 73.0 77.3
Uncertainty 65.4 41.2 62.7
Forgettable 62.7 50.5 61.8

Question Answering

Random 61.2 61.9 63.8
Diversity 61.5 62.2 64.9
Uncertainty 56.1 50.4 54.2
Forgettable 59.7 52.1 57.5

Table 6.3: Performance of models using different memory selection criteria. “Uncertainty”
utilizes model’s confidence level (Ramalho and Garnelo, 2019). “Forgettable” picks examples
according to forgetting events (Toneva et al., 2019). We tune hyper-parameters that result in rM =
1% memory size for all methods. Memory selection criteria significantly affect performance; the
proposed diversity method outperforms all other criteria.

6.5.2 Analyzing the (episodic) memory efficiency of Meta-MbPA

In Table 6.1, MbPA++ uses 100% memory while our framework only uses 1% memory. To test
memory efficiency, we present results for models using equivalent memory resources in Table 6.2.
The results demonstrate that the performance of MbPA++ degrades significantly as the memory
size decreases. It is then natural to ask if memory alone is sufficient to obtain good performance.
We thus compare with MTL trained on sub-sampled training data, equivalent to only performing
local adaptation without training the generic representation. Notice that this variant of MTL is
not an upper bound as it uses fewer resources. Our method significantly outperforms it, showing
that the meta generic representation in our method is also crucial to achieving good performance.
These results validate that our framework can utilize the memory module more effectively
than existing methods.

6.5.3 Memory selection rule: How is episodic memory populated?

We then study the source of improvement of our method. In particular, we show that the prior
method is prone to negative transfer. We first conduct a case study of the memory selection rule to
see this. We consider two popular paradigms in active learning (Donmez et al., 2007), namely the
diversity-based method that picks the most representative examples and the uncertainty-based
method that picks the most unsure examples. In particular, we compare four selection criteria
belonging to these two categories: random selection, our proposed diversity-based method in
Equation 6.3, and two uncertainty-based methods (Ramalho and Garnelo, 2019; Toneva et al.,
2019). Random selection is a diversity-based method since it picks examples representing the
true data distribution. As shown in Table 6.3, we observe that the choice of memory selection
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Figure 6.1: Proportions of a source of neighbors used in local adaptation for each task when
different memory selection rule is used, e.g., 10% of neighbors retrieved for Yelp belong to
Amazon. Numbers in each row sum to 1. The top two figures are for text classification (5 tasks)
while the bottom two are for question answering (4 domains). For task/ domain ordering, check
Seq1 in Section 6.2.2. Overall, uncertainty-based methods result in more examples from other
tasks being used as nearest neighbors, compared to diversity-based methods.

criteria impacts performance. While the proposed diversity method outperforms random
selection, the two uncertainty-based methods perform worse than the random baseline,
consistent with similar findings reported in d’Autume et al. (2019).

We seek an explanation for this phenomenon and visualize the heat maps in Figure 6.1 to show
which tasks each testing example’s retrieved neighbors come from during the local adaptation
phase. Ideally, the model should always use neighbors from the same task, and the heat map should
be diagonal. Compared to diversity-based methods, we observe that more examples from
other tasks are used as nearest neighbors when models use uncertainty-based methods. This
is because the selected uncertain examples are usually less representative of the true distribution
and could be outliers. Thus, the resulting memory does not have good data distribution coverage,
and no similar examples exist for certain test examples. Consequently, fewer related examples
from other tasks are used for the local adaptation, which causes negative transfer. This is verified
in Table 6.4, where models without local adaptation outperform their locally adapted counterparts.
More importantly, Meta-MbPA obtains much smaller performance gaps, indicating that it is more
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Uncertainty Forgettable

Model / Task Text Question Text Question
Classification Answering Classification Answering

Meta-MbPA 62.7 54.2 61.8 57.5
w/o LA 65.8 55.8 67.9 59.2

MbPA++ 41.2 50.4 50.5 52.1
w/o LA 65.4 56.1 68.4 59.2

Table 6.4: Performance of models using the uncertainty-based memory selection methods
(correspond to Table 6.3). “LA” refers to local adaptation.
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Figure 6.2: Catastrophic forgetting of the first dataset as training progresses. "Enc-Dec"
refers to the FT baseline. Complete results in Appendix B.3

robust to negative transfer. We further verify this in the following section.

6.5.4 Trade-off: Catastrophic forgetting (stability) vs. Negative interference
(plasticity)

We first verify the models’ robustness to catastrophic forgetting. As shown in Table B.1 and B.2
(Appendix B.1), the standard FT(or Enc-Dec) model performs poorly on previously trained tasks,
indicating the occurrence of catastrophic forgetting. While all baselines can somewhat alleviate
the forgetting, our framework achieves the best performance on previously learned tasks. We also
evaluate the model’s performance on the first task as it continues to learn more tasks. Figure 6.2
illustrates how each model retains its previously acquired knowledge as it learns new knowledge.
Our framework is consistently better than the baselines at mitigating forgetting.

In addition, as prior works have shown, transferring from diversely related sources can hurt
performance in the target (Ge et al., 2014; Wang and Carbonell, 2018), we study if transferring
from multiple tasks learned in the past can induce negative transfer (or negative interference),
which is often overlooked in existing studies on lifelong learning. Table 6.5 shows the averaged
results on the last task in each task ordering (see Appendix B.1 for complete results). Surprisingly,
compared to the FT baseline, MbPA++ performs worse on the last task despite its improved
macro-averaged performance (Table 6.1). This suggests that while it is robust to catastrophic

82



FT Replay MbPA++ Meta-MbPA
class. 82.1 81.8 78.6 82.1
QA 72.6 72.7 70.7 72.1

Table 6.5: Average performance on the last task across all four task orderings.

rM = 1% rM = 50%

Model / Task Text Question Text Question
Classification Answering Classification Answering

Meta-MbPA 77.3 64.9 78.2 66.1
w/o Meta 73.1 58.5 74.0 59.6
w/o MS 76.8 63.8 78.1 66.1
w/o LA 75.9 62.0 75.8 62.1

Table 6.6: Ablation Study on different memory size. “Meta” refers to the proposed meta
optimization in Eq.equation 6.1 and equation 6.2.“MS” denotes memory selection based on
Eq.equation 6.3. “LA” refers to local adaptation.

forgetting, MbPA++ fails to utilize prior knowledge to benefit later tasks and thus is prone to
negative transfer. Apart from some practical bottlenecks such as limited model capacity, local
adaptation is a critical factor of negative transfer as Replay1 outperforms MbPA++ in Table 6.5.
Intuitively, this shows that since Replay already performs well on the last task, further using local
adaption can overfit and hurt the performance. On the other hand, the proposed method is trained
to learn a more robust initialization for adaptation and uses a coarse adaptation that is less prone to
negative transfer. Therefore, it outperforms MbPA++ and closes the gap with FT on the last task,
consistent with results in Table 6.4. These experiments illustrate a trade-off between catastrophic
forgetting and negative transfer, such that more adaptations are desired for earlier tasks while less
is better for later tasks. While prior studies focus on catastrophic forgetting only, we are the
first to show the importance of balancing the trade-off to avoid both negative effects.

6.5.5 Ablation study: Investigating the effectiveness of CLS theory

We report the results of the ablation study in Table 6.6 and analyze the effects of the three
components in our framework subject to different memory sizes. First, we observe that the
model without the meta-learning optimization performs the worst, which shows the importance
of learning a generic representation tailored for local adaptation. More importantly, Meta-
MbPA achieves worse performance without any local adaptation step. This demonstrates that
learning the generic representation alone is insufficient and that the meta-learning mechanism
and local adaptation are complementary, which mimics the complementary human learning
systems in the CLS theory. Finally, while the diversity-based memory selection rule contributes

1Replay is equivalent to MbPA++ without local adaptation.
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to the performance gain when we use a small memory module, it becomes less effective as the
memory size increases. This is expected since the memory distribution can represent the true
data distribution with a larger capacity. Thus it demonstrates that the proposed methods mostly
contribute to robustly reducing the memory sizes for better efficiency. Overall, these results
validate the effectiveness of each component and highlight the importance of complementary
lifelong learning systems. This is the first work to formulate the slow learning of structured
knowledge as a meta-task and the fast learning from episodic memory as a base task.

6.5.6 Analyzing the inference efficiency of Meta-MbPA
The ordinary local adaptation requires customized gradient updates for each testing example,
and thus it is notoriously slow. Using 1 Nvidia Tesla V100 GPU and 128 GB of RAM, it takes
66.6 hours and 89.3 hours to evaluate test classification and question answering, respectively.
On the other hand, we use coarse local adaptation in our method, which uses the same updates
for all testing examples. Consequently, it takes 2.9 hours and 4.2 hours for our method to finish
the evaluation process, achieving a maximum of 22 times speedup. Notice that our method will
obtain a similar inference speed in a purely online learning setup as MbPA++. In addition, we
hypothesize that using a different granularity (e.g., clustering testing examples) is beneficial for
more conflicting tasks, as it can balance the trade-off between overfitting to nearest neighbors of
small memory and performing more sample-specific adaptation for each test example. We leave
this exploration for future work.

6.6 Discussion
In this chapter, we identify three principles underlying different lifelong language learning methods
and show how to unify them in a meta-lifelong framework, Meta-MbPA. Our experiments
demonstrate the effectiveness of the proposed framework on text classification and question
answering tasks. We report new state-of-the-art results while using 100 times less memory space.
These results illustrate that it is possible to achieve efficient lifelong learning by establishing
complementary learning systems. Our analysis also shows that negative interference is an
overlooked factor that could cause sub-optimal performance, and we highlight the importance of
balancing the trade-off between catastrophic forgetting and negative interference for future work.
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Part III

Data: Limited Labeled & Unlabeled
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Chapter 7

Limited Labeled Data: Lifelong
Semi-Supervised Learning for Updating
Transformer Memory

7.1 Overview

In this chapter, we work on a lifelong (semi-supervised) learning setting that deals with continuous
learning from an unlabeled data stream (as opposed to a labeled data stream considered in the
previous chapters 3, 4, 5, 6). To motivate this setting, we consider Differentiable Search Indices
(DSIs; Tay et al. (2022)), a new modeling paradigm for information retrieval tasks using sequence-
to-sequence learning. Specifically, DSIs leverage Transformer memory (Vaswani et al., 2017)
to encode all of the information in a corpus of documents and then use that memory to answer
user queries directly, thereby simplifying the retrieval process. DSIs achieve this functionality by
jointly optimizing for indexing (or memorization) and retrieval tasks. The indexing task requires
learning a mapping from document content to its identifier, typically represented by integers
or short strings (document identifiers, abbreviated docids). Then, the retrieval task necessitates
mapping user queries to relevant docids.

DSI constitutes a well-suited candidate for lifelong learning; the indexing process is continuous
and cumulative. In other words, as new documents arrive, the neural indexer needs updation.
Index construction using a DSI involves training a Transformer model. Therefore, the model must
be re-trained from scratch every time the underlying corpus is updated, thus incurring prohibitively
high computational costs and necessitating continual learning capabilities. Furthermore, one may
not have access to ground-truth queries corresponding to the incoming documents; nevertheless,
the indexer should still be able to answer input queries for already and newly-indexed documents.
This application scenario motivates designing lifelong learning systems capable of continuously
learning from an unlabeled data stream, like humans, who continually learn in an unsupervised
manner from our surroundings rather than relying on direct supervision.

Toward this end, we propose DSI++ (DSI + new documents), a lifelong learning challenge for
DSI to incrementally index new documents while maintaining the ability to answer user queries
related to both previously and newly indexed documents. To enable DSI++, we introduce novel

87



D0 D1 D2 D3 D4 D5
Batch of documents for continual indexing

0

20

40

60

80

100

In
de

xi
ng

 a
cc

ur
ac

y

Eval batch
D0
D1
D2

Figure 7.1: Indexing accuracy of D0, D1, and D2 document corpora visualized as we continuously
index new documents (averaged over three runs). We observe that continual indexing of new
documents leads to severe forgetting of the previously memorized documents.

benchmarks constructed from the existing Natural Questions (Kwiatkowski et al., 2019) and MS
MARCO (Nguyen et al., 2016) datasets, simulating the continual addition of documents to the
system. To our knowledge, there is no prior work studying incremental learning for DSI.

A naive solution for DSI++ is to continuously fine-tune the model with an indexing objective
over new documents. However, Figure 7.1 shows that continual indexing of new documents leads
to catastrophic forgetting of the previously memorized documents (more details in §7.2.1), a
common phenomenon in connectionist networks wherein learning of the new concepts interferes
with the previously acquired knowledge (McCloskey and Cohen, 1989; French, 1999). Further-
more, with new documents, we do not get ground-truth queries. Therefore, forgetting from
continual indexing of new documents and continuous learning from unlabeled data are two key
challenges to overcome for successfully implementing a DSI++ system. Therefore, we introduce
a generative memory to sample pseudo-queries for already indexed documents and use them to
alleviate forgetting of the retrieval task during incremental indexing of the new documents. Also,
generative memory enables lifelong semi-supervised learning of the retrieval task by generating
pseudo-queries for an incoming batch of new documents. Our main contributions in this chapter
can be summarized as follows:

• We introduce DSI++, a continual learning challenge for the recently proposed Differentiable
Search Indices (DSI) paradigm. To enable DSI++ evaluations, we create two benchmarks
based on existing Natural Questions and MS MARCO datasets.

• To understand the severity of the forgetting phenomenon across multiple scenarios, we
analyze a suite of pre-trained models (T5-Base, T5-Large, T5-XL) and different docu-
ment identifier representations (unstructured atomic, naively structured, and semantically
structured).

• We propose a generative memory-based experience rehearsal approach to alleviate explicit
forgetting during continual indexing and improve the average Hits@1 by +25.0% and
Hits@10 by +21.1% over competitive baselines for MS MARCO and NQ, respectively.
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7.2 DSI++: Continual learning challenge for DSI

7.2.1 Problem Formulation

We focus on a setup where we receive an initial corpus of documents, D0 = {d1, · · · , dn}, and
user queries corresponding to a subset of them, R0 = {< qj, j >,∀j ∈ YD}, where D ⊂ D0.
DSI paradigm involves two tasks: (i) a memorization task where the goal is to learn an indexer
fw : X → Y , a text-to-text model like T5 (Raffel et al., 2020) parameterized by w ∈ RP , that
takes document tokens (x ∈ X ) as input and maps it to a document identifier (docid) j ∈ Y , and
(ii) a retrieval task where the goal is to use the same indexer fw to directly map a user query q to a
relevant docid j ∈ Y . Following Tay et al. (2022), two different prompts are used to differentiate
between these tasks.

Tay et al. (2022) discusses several variants for representing docids – unstructured atomic
and structured string docids, where each document is assigned a unique token and tokenized
string, respectively. Under the unified text-to-text format, both of the above tasks are cast as
generation tasks, i.e., decoding one unique token (unstructured atomic) or decoding a tokenized
string sequentially, one token at a time (naively/ semantically structured).

In the dynamic corpus scenario, we simulate the arrival of new documents by updating the
initial corpus D0 with a sequence of batches D1, D2, ..., with D1 arriving first, followed by D2,
and so on. In DSI++, we have access to the new batch of documents Di, but we do not have
any queries related to these documents. The goal is to learn a DSI++ system that incrementally
indexes D1, D2, · · · in fw while being able to answer queries related to previously as well as
additionally indexed documents.

7.2.2 Benchmark for DSI++

To enable research on DSI++, we introduce two benchmarks constructed from the Natural
Questions (NQ; Kwiatkowski et al. (2019)) and MS MARCO (Nguyen et al., 2016) datasets. The
NQ dataset consists of Wikipedia articles and corresponding natural language questions. Similar
to Tay et al. (2022), we consider Wikipedia articles for memorization and the retrieval task as
identifying the Wikipedia article that answers the given question. We use the original NQ train
split to construct train(80%)/ validation(20%) splits and use NQ validation as a test split for our
setup. We randomly sample 50K unique articles to constitute the initial D0 corpus. Next, we
construct five corpora (D1, · · · , D5), each containing 10K unique articles, to add them to the DSI
model sequentially. Corresponding to articles in each of these corpora, we filter queries from
original NQ train/ validation splits to construct Rtrain

i , Rval
i , Rtest

i (∀i ∈ {0, · · · , 5}) splits. We
use R0 to train the DSI model for the retrieval task and use Rtest

i to evaluate on previously and
newly indexed articles.

The full MS MARCO dataset has approx. 500K passage-query training pairs and 6, 980
validation pairs. Like the benchmark created from the NQ dataset, we randomly sample 50K
unique passages to constitute the initial D0 corpus and five more corpora, each with 10K passages.
See Table C.1 (in the Appendix C.1) for exact dataset statistics for NQ and MS MARCO.
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Figure 7.2: Systematic study about forgetting and forward transfer when incrementally indexing
new corpus of documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid
representations. We use atomic docids by default and denote (N)/(S) for naively/ semantically
structured docids. ↑ indicates higher is better, ↓ indicates lower is better. We observe that the
average An and learning LAn performance improves by increasing the model scale. However,
forgetting Fn is severe across all model scales. Moreover, we observe that naively structured
docids, T5-Base(N), underperform unstructured atomic docids, T5-Base, across all metrics -
indexing accuracy, Hits@1, (see Figure C.1 in Appendix C.2 for Hits@10 results). Imbuing the
docid space with a semantic (S) structure alleviates the forgetting compared to an arbitrary/ naive
(N) structure.

7.2.3 Evaluation Metrics

For DSI evaluation, we report indexing accuracy for the memorization task and Hits@k (k ∈
{1, 10}) metric for the retrieval task. Indexing accuracy and Hits@k are defined as the proportion
of documents correctly memorized, and the proportion of correct documents ranked in the top
k predictions, respectively. We formally define metrics to summarize the model performance
as we incrementally index new documents. Let Pn,o denote the performance (e.g., indexing
accuracy) on corpus Do after training on corpus Dn. Following prior works (Lopez-Paz et al.,
2017; Riemer et al., 2019), we compute the average performance (An), forgetting (Fn) and
learning performance (LAn) metrics after indexing the corpus Dn (see Section 2.2 for more
details).

7.2.4 Case study: Catastrophic Forgetting and Forward Transfer

After introducing the DSI++ problem setup, benchmark, and evaluation metrics, we study the
behavior of the DSI model as new documents are continuously added to the system. Concretely,
we are interested in investigating the following for continual training of the DSI model with an
indexing objective on new documents
(Q1) How severe is the forgetting of the originally indexed documents?

(Q2) How does continual updating of the DSI model over a sequence of corpora affect the
forgetting?
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(Q3) How does the updated DSI model perform on newly indexed documents, especially the
retrieval task?

(Q4) How do different docid representation strategies affect forgetting?

(Q5) How does the DSI model scale affect forgetting?
Figure 7.2 visualizes results (averaged over 3 runs) on the validation split of DSI++ and helps us
convincingly answer the above questions.

Forgetting (or negative backward transfer). From Figure 7.2, we see that the T5-Base
model with atomic docid representation (blue line plots) undergoes significant forgetting. This
trend holds across all DSI evaluation metrics - indexing accuracy, Hits@1, and Hits@10 (see
C.1 in Appendix C.2). For the originally indexed D0 corpus, indexing accuracy and Hits@1
drop by approx. 25 and 20 points, respectively. Further, as we continue indexing the sequence
of D1, · · · , D5 corpora, we see that forgetting becomes even more severe. For example, after
continually indexing the D5 corpus, F5 (forgetting) for indexing accuracy increases to 75. These
results provide evidence to answer (Q1) & (Q2) that the DSI model undergoes severe forgetting
under continual indexing of new documents.

Forward transfer. To answer (Q3), we visualize the learning performance (LAn) for all DSI
metrics for sequential indexing. From Figure 7.2, we see LAn increases in indexing accuracy,
suggesting that the DSI model is plastic enough to index new documents. However, from Figure
7.2, we see a declining trend for Hits@1. Due to the continuous indexing updates, the underlying
DSI model drifts and becomes less effective for the retrieval task. These findings hint at an
approach that replays indexing and retrieval tasks during continual learning (hence our proposed
method in §7.3).

Docid representations. For studying (Q4), we consider unstructured atomic, naively(N)
structured, and semantically(S) structured docid representations. From Figure 7.2, we see that
T5-Base(N) underperforms T5-Base. For example, the average performance A0 for the Hits@1
metric is approx. 30 and 39 for naive and atomic docids, respectively. Furthermore, as the naively
structured approach treats unstructured docids as tokenizable strings as opposed to dedicated
unique tokens in the case of atomic docids, they are relatively more prone to interference from
new docids (see Fn subplot for indexing accuracy). Imbuing semantic structure to the naive docid
space helps to reduce forgetting however still underperforms unstructured atomic docids.

Model scale. As atomic docids are superior to naive docids, we only consider atomic docids
for answering (Q5). From Figure 7.2, we observe that larger models outperform their smaller
counterparts in terms of the average performance An and the learning performance LAn (T5-XL
> T5-Large > T5-Base). However, empirically we report that forgetting Fn is severe across all
model scales, without any clear best performer, and therefore, we focus on T5-Base for the rest of
our experimentation.

7.3 Lifelong Semi-Supervised Learning with Generative Mem-
ory

DSI paradigm consists of two tasks – memorization and retrieval. In this section, we focus on the
forgetting phenomenon that arises from the continual indexing of new documents, specifically
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in the context of the retrieval task. Through our systematic study (in §7.2.4), we show that
irrespective of the model scale and docid representations, DSI models undergo severe forgetting.
Moreover, we observe that the learning performance LAn keeps declining for the retrieval task
(see Figures 7.2 and C.1 for Hits@1 and Hits@10, respectively). This observation suggests that as
we continuously update the DSI model with the indexing objective, the model forgets the retrieval
task. In DSI, both memorization and retrieval tasks return docid for input. By setup, we can
assume access to the contents of the previous documents and continue indexing both old and new
documents to reduce forgetting of the retrieval task. However, in Figure 7.3, we see that the model
still undergoes forgetting (more discussion in §7.4).

Episodic memory. Memory-based approaches (see Section 2.4.2) for continual learning
use a subset of previous task data to regularize future task learning while minimizing forgetting.
Experience Replay (ER; Chaudhry et al., 2019) is one such approach that samples previous task
data (from episodic memory) for multi-task learning with the current task. ER outperforms other
sophisticated memory-based approaches like Gradient Episodic Memory (GEM; Lopez-Paz et al.,
2017), Averaged GEM (Chaudhry et al., 2018b), even with a sparse replay. Based upon this line
of work, one approach for DSI++ is to retain ground-truth queries for the retrieval task in episodic
memory and use them for multi-task learning with the incremental indexing task. However, in
DSI++, we do not have access to ground-truth queries for an incoming batch of new documents.
Even if one retains queries for the initial D0 corpus, we show in Table 7.1 that such a method
suffers from forward transfer to newly indexed documents.

Generative memory. Recent years have seen significant progress in the capabilities of the
generative language models (Raffel et al., 2020; Brown et al., 2020). Motivated by the success
of these models and the in-applicability of the episodic memory for DSI++, we pose a question:
instead of retaining the ground-truth queries, can we learn a parametric model to generate such
queries given a document? Concretely, we propose to train a query generator model to sample
queries for previously seen documents and supplement them during incremental indexing. Since
we use the generator model to sample queries for sparse experience replay, hence our proposed
method – generative memory. Moreover, generative memory is also used to generate pseudo-
queries for the incoming batches of new documents, thus, enabling continual semi-supervised
learning of the retrieval task.

7.4 Experiments
In this section, we revisit some of the questions (Q1)-(Q3) raised in our case study (see Sec-
tion 7.2.4) to investigate the effectiveness of our proposed generative memory-based approach. To
answer these questions, in Table 7.1, we report the performance of the DSI model on D0 (to study
the forgetting phenomenon) and D1 corpora (to answer forward transfer question) after continual
indexing on D1 for both NQ and MS MARCO datasets. In Figures 7.3 and C.2 (NQ) and Figure
C.3 (MS MARCO), we report overall performance across DSI metrics as we continuously update
the model with the sequence of five corpora (D1, · · · , D5).

Implementation details. We utilize the pre-trained T5-Base (Raffel et al., 2020) model to
initialize all models and randomly initialize the additional parameters for atomic docid tokens.
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While indexing D0 corpus, we train all the models for a maximum of 1M steps with a warmup of
100K steps. During continual indexing of other corpora, we train for a maximum of 100K steps
with a warmup of 100 steps. For the rest of the hyper-parameters, we follow Tay et al. (2022)
– set a learning rate to 0.001, batch size to 128, and input sequence length to 32. We evaluate
models after every 5K steps and retain the checkpoint yielding the best performance. For the
initial training with D0 corpus, we co-train on indexing and retrieval tasks; therefore, we use the
average of all DSI metrics (indexing accuracy, Hits@1, and Hits@10) for model selection. For
the continual learning experiments, we have access to only indexing accuracy for all involved
corpora, so we use it for model selection. To train a parametric model for generative memory,
we utilize the retrieval dataset R0, which corresponds to the D0 corpus. We set the maximum
sequence length for document contents to 1024, the target length for generated queries to 32,
batch size to 128, train for a maximum of 100K steps, and use BLUE for model selection. We use
beam decoding to generate pseudo-queries. We tune the learning rate amongst {0.001, 0.0005}
and linear warmup amongst {1K, 10K}. For all our experiments, we use the T5X (Roberts et al.,
2022) framework along with 4-8 TPUv4 chips to train the models.

Methods. We compare our proposed generative memory-based approach with the following
methods:

• continual indexing, cl(Dn). The DSI model is sequentially fine-tuned with the indexing
objective on the incoming corpus of documents Dn.

• continual indexing with all seen documents, cl(Un). The DSI model is continuously
fine-tuned with the indexing objective on the updated corpus Un (=

⋃n
i=0Di). Also, we

sample documents from old (
⋃n−1

i=0 Di) and new (Dn) corpora in equal proportion.
• continual experience replay using generative memory, genmem(Dn). In this method,

the proposed generative memory model is used to sample pseudo-queries corresponding to
the corpus Dn. Next, these pseudo-queries are used for (sparse) experience replay of the
retrieval task samples.

• continual experience replay using episodic memory, epsmem(Dn). In this method,
ground-truth queries corresponding to the Dth

n corpus are used for experience replay of the
retrieval task.

• train from scratch, (no cl). In this method, the DSI model is trained from scratch every
time a new corpus, Dn, is added. This method corresponds to a non-continual learning
setup and is computationally expensive.

7.4.1 Does generative memory alleviate forgetting of old documents?

In Table 7.1, for the NQ dataset, we report Hits@1 to be 35.9 for the model after training on
D0. We see that continually indexing both D0 and D1 corpora (cl(U1) - 28.9), significantly
reduce forgetting the retrieval task (Hits@1) over just indexing the new corpora D1 (cl(D1)
- 19.2). Next, we look at the performance of the ER approaches when augmented with the
continual indexing of all documents. We see that both episodic memory (cl(U1)+epsmem(D0) -
22.9), and generative memory (cl(U1)+genmem(D0) - 26.0) reduce forgetting compared to cl(D1)
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Added Method Eval corpus = D0 Eval corpus = D1

corpus (Catastrophic forgetting) (Forward transfer)
Index acc. Hits@1 Hits@10 Index acc. Hits@1 Hits@10

Natural Questions (NQ) – |D0| = 50K, |D1| = 10K

D0 - 81.81.2 35.92.2 66.90.9 - - -

D1

cl(D1) 52.43.5 19.23.9 43.65.7 96.50.0 31.76.4 55.64.9
cl(U1 = D0 ∪D1) 78.20.5 28.98.9 59.07.9 91.80.4 34.02.4 60.21.9

cl(U1)+epsmem(D0) 77.80.5 22.91.5 51.40.5 93.10.0 13.12.1 39.63.1
cl(U1)+genmem(D0) 77.80.3 26.06.9 54.98.3 93.00.5 8.64.8 31.611.8
cl(U1)+epsmem(D1) 53.23.1 7.72.1 26.02.0 96.50.0 48.32.3 70.71.9
cl(U1)+genmem(D1) 50.10.8 7.01.2 23.12.2 96.50.0 57.71.5 76.70.9

cl(U1)+genmem(U1) 78.20.3 18.42.8 47.53.9 92.10.3 48.56.1 73.82.9

train from scratch 78.70.6 35.91.4 66.40.0 79.20.3 32.91.8 63.91.2

MS MARCO – |D0| = 50K, |D1| = 10K

D0 - 99.40.2 78.20.2 95.00.1 - - -

D1

cl(D1) 46.718.6 68.02.0 87.31.3 99.80.0 36.19.5 65.86.9
cl(U1) 99.40.0 76.50.7 94.20.3 99.80.0 35.34.1 64.43.3
cl(U1)+genmem(U1) 99.30.1 73.70.2 93.90.3 99.80.0 80.61.0 95.50.1

train from scratch 99.50.0 75.00.2 93.90.1 99.60.0 73.41.3 93.40.9

MS MARCO (full) – |D0| = 8M , |D1| = 842K

D0 - 99.4 16.3 46.8 - - -

D1
cl(D1) 0.0 0.1 0.6 97.9 18.2 40.5
cl(U1)+genmem(U1) 20.4 7.3 31.3 86.6 31.6 65.8

Table 7.1: Comparing performance on incremental indexing of D1 corpus across different methods
- cl(D1): continue fine-tuning with indexing task on D1, cl(U1): continue fine-tuning on the
updated corpus U1, cl(U1)+epsmem(D): continual indexing of U1 along with ER of queries for D,
cl(U1)+genmem(D): continual indexing of U1 along with ER of pseudo-queries for D. We notice
that continually indexing the updated corpus cl(U1) results in less forgetting of D0 compared to
indexing only the new corpus cl(D1), observed in both NQ and MS MARCO datasets. Next, ER
with either D0 or D1 hurts forward transfer or forgetting. Our proposed approach of augmenting
pseudo-queries for all documents along with continual indexing, cl(U1)+genmem(U1), alleviates
forgetting of D0 corpus and improves forward transfer to D1 corpus. We also show that our
proposed solution reduces forgetting of D0(= 8M) passages while incremental indexing in a
large corpus setting, MS MARCO (full) containing 8.9M passages.
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Figure 7.3: Investigating the effectiveness of generative memory in mitigating forgetting when
continuously indexing new corpus Dn (T5-Base model and atomic docids representation) for the
NQ dataset. ↑ indicates higher is better, ↓ indicates lower is better. We observe that continual
indexing of old and new documents cl(Un) helps to alleviate forgetting of older documents when
evaluated on retrieval tasks. However, average Hits@10 (An) still undergo 23 points drop after
sequential updates (D0 → D1 · · · → D5). Generative memory enables sparse replaying of
pseudo-queries for old documents and continual semi-supervised learning with new documents.
We observe that augmenting generative memory during continual indexing not only reduces the
forgetting (Fn) but also improves average Hits@10 (An) by +21.1% over considered baselines
(see Figure C.2 for Hits@1 results and Figure C.3 for MS MARCO results in the Appendix C.2).

when we replay (pseudo-)queries corresponding to D0 corpus. Moreover, generative memory
outperforms episodic memory, without retaining original queries. Although from Table 7.1, we
see generative memory, cl(U1)+genmem(U1), underperforms cl(U1), from Figures 7.3 and C.2, we
see that generative memory, cl(U5)+genmem(U5), outperforms cl(U5) both in terms of average
performance An and forgetting Fn over five sequential updates. These results convincingly show
that the ER with generative memory significantly alleviates forgetting the retrieval task
compared to considered baselines.

7.4.2 Does generative memory enable forward transfer to new documents?

One of the goals of DSI++ is to enable answering queries related to newly indexed documents.
Towards this goal, in Table 7.1, for the NQ dataset, we look at the retrieval task performance
(Hits@1) for D1 after incrementally indexing D1. To compare different methods, we consider a
baseline in the form of ER with ground-truth queries for D1 (cl(U1)+epsmem(D1) - 48.3). We
see that without any fine-tuning on the retrieval task for D1, incremental learning with indexing
objective shows impressive forward transfer (or zero-shot gains, cl(D1) - 31.7 and cl(U1) - 34.0).
Moreover, ER with generative memory outperforms supervised baseline (cl(U1)+genmem(D1) -
57.7). However, we notice that replaying queries corresponding to either D0 or D1 hurt forward
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transfer to D1 (cl(U1)+genmem(D0) - 8.6) or amplify forgetting of D0 (cl(U1)+genmem(D1) -
7.0), respectively. These results suggest that the memory module should include (pseudo-)queries
corresponding to old and new documents. From Figure 7.3, we see that continual indexing method
cl(Un) has a downward trend for LAn (Hits@10), therefore, eventually forgetting the retrieval
task. On the other hand, ER with generative memory is relatively constant, providing evidence
against forgetting. In summary, we show that ER with the generative memory improves
the overall performance for the retrieval task, reducing forgetting of previously indexed
documents and enabling forward transfer to newly indexed documents.

7.4.3 Does generative memory generalize to different datasets?

In Table 7.1, for the MS MARCO dataset, we report Hits@1 to be 78.2 after training on
D0 passages. We see that continually indexing both D0 and D1 corpora (cl(U1) - 76.5 and
cl(U1)+genmem(U1) - 73.7), significantly reduce forgetting the retrieval task (Hits@1) over just
indexing the new corpora D1 (cl(D1) - 68.0). Next, we look at the retrieval task performance
(Hits@1) for D1 after incrementally indexing D1. We see that without any fine-tuning on the
retrieval task for D1, incremental learning with indexing objective shows impressive forward trans-
fer (cl(D1) - 36.1 and cl(U1) - 35.3). Moreover, ER with generative memory, cl(U1)+genmem(U1)
- 80.6, is far superior to just the incremental indexing objective. Similar to the results with the NQ
dataset, we show that ER with generative memory, cl(Un)+genmem(Un), improves the overall
performance for the retrieval task, reducing forgetting of previously indexed documents and
enables forward transfer to new documents compared to continual indexing of all documents,
cl(Un). We show that our results hold across two datasets – Natural Questions and MS
MARCO, thus, showcasing the generalizability of our approach.

7.4.4 Investigating the effectiveness of the generative memory with the scale
of a corpus.

We conduct experiments with a full MS MARCO passage retrieval dataset containing approx.
8.9M passages. We construct two corpora – D0 = 8M and D1 = 841, 823 passages. We train
the DSI model (T5-Base with unstructured atomic docid representations) using D0 passages and
incremental add D1 passages. In Table 7.1, we report our results for MS MARCO (full). We see
that continual fine-tuning with the indexing task on D1, cl(D1), completely forgets the retrieval
task for D0 passages (Hits@1 goes to 0.1 from 16.3). However, the generative memory-based
approach significantly reduces forgetting (Hits@1 of 7.3). Moreover, generative memory enables
continual semi-supervised learning by augmenting pseudo-queries for D1 passages and thereby
improving forward transfer (Hits@1 of 31.6 as compared to 18.2 for cl(D1)). We convincingly
demonstrate that our proposed solution also reduces forgetting in a large corpus setting.

7.4.5 Investigating sparsity of experience replay (ER) on forgetting.

ER with generative memory co-trains the indexing and pseudo-labeled retrieval tasks. Tay et al.
(2022) introduces a mixing ratio r to define the ratio of indexing to retrieval samples. The mixing
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ratio is inversely related to the sparsity of ER, i.e., higher r (more indexing samples) corresponds
to sparse updates from pseudo-labeled retrieval samples. Following (Tay et al., 2022), we consider
r = {2, 32} for our analysis. From Figure 7.3, we see that r = 32 (sparse replay) slightly
outperforms r = 2 in terms of average performance, forgetting, and learning accuracy. These
results suggest that even sparse regularization updates from ER positively influence the
backward and forward transfer in DSI++.

7.4.6 Analyzing index construction time for DSI++.
Index construction using DSI involves training a Transformer model. DSI++ setup enables
incremental updating of the indexer. In Figures 7.3, C.2, and C.3, we show that our proposed
incremental indexer updating method outperforms the “train from scratch" baseline in terms of
the average performance (An). Furthermore, in the case of the NQ dataset, we require 350K
training steps to index D0 corpus of 50K documents. If we index an additional D1 to D5 corpora
(10K each) by re-training the DSI model every time, the total number of steps would be around
1.75M. On the other hand, our proposed approach requires just above 300K additional updates to
incrementally index all five corpora, almost 6 times fewer updates. We show that our approach
outperforms re-training the model from scratch in terms of overall performance and is
computationally efficient.

7.5 Related Work
We review relevant prior works along two dimensions – application setups related to DSI++ and
continual learning methods to alleviate forgetting and enable forward transfer.

Language models (LMs) as knowledge bases (KBs). Petroni et al. (2019) shows that pre-
trained BERT (Devlin et al., 2019) models capture relational knowledge comparable to that
of the KBs constructed using off-the-shelf techniques. Concretely, these models can be used
to extract factual knowledge about relations between entities by providing a prompt to predict
missing words in a cloze-style template (e.g., “New Delhi is the capital of ”). Similarly, Roberts
et al. (2020) demonstrates that pre-trained T5 (Raffel et al., 2020) models can be employed to
answer open-domain questions without access to any external knowledge or context. However,
unlike structured KBs, it is non-trivial to update knowledge stored implicitly in the weights of
these models. Therefore, Zhu et al. (2020) introduces an experimentation setup where the task
is to update facts stored within the pre-trained models and proposes a constrained optimization
method, similar to Elastic Weight Consolidation (Kirkpatrick et al., 2017), to alleviate catastrophic
forgetting. With similar motivation, (Dhingra et al., 2022) introduces a diagnostic dataset to
probe LMs for facts that change over time and suggests jointly modeling text with its timestamp
for improved memorization of seen facts. Recent works have been investigating efficient ways
to localize and edit facts stored with the LMs (AlKhamissi et al., 2022) using finetuning (Zhu
et al., 2020; Dhingra et al., 2022), hyper-networks (De Cao et al., 2021; Mitchell et al., 2022),
and direct editing (Meng et al., 2022). Although a crucial line of work around updating facts in
the pre-trained LMs, using prompting as our probing mechanism only provides a lower bound
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estimate of the knowledge contained in these models (Jiang et al., 2020). On the other hand, we
explicitly focus on the memorization task in DSI++. This task helps us to answer questions related
to catastrophic forgetting more convincingly rather than bounded by the mechanism of how we
probe these models.

Optimization-based approaches for continual learning encode the necessary inductive biases
required to enable continual learning by modifying the training dynamics. Flatter minima are
shown to alleviate forgetting (Mirzadeh et al., 2020b). Further, Mehta et al. (2023b) showed
that explicitly optimizing for flatter loss basins using Sharpness-Aware Minimization (SAM;
Foret et al. (2021)) reduces forgetting. Building on these works, we show that flatter minima
induced by SAM reduce implicit forgetting during memorization, thereby leading to more stable
memorization (see Section 8.3).

Memory-based (aka data-based regularization) approaches for continual learning constrain
the parameter updates based on the previous task examples sampled from memory. Sparse
experience replay using episodic memory (Chaudhry et al., 2019) is a prominent approach and in
Section 7.3, we discuss its limitations of it for DSI++. Next, Shin et al. (2017); Sun et al. (2020)
learns a parametric model to reconstruct the examples for seen tasks. However, in DSI++, we
do not see queries for the new documents. Therefore, we use a parametric memory to generate
pseudo-queries for already indexed (older) documents and an incoming batch of new documents,
thus, enabling us to leverage unlabeled data (in the form of new documents) for continual semi-
supervised learning. On the other hand, Sun et al. (2020) assumes that the incoming data are fully
labeled, which is not applicable in DSI++ (we do not get to see queries for the new documents).
Furthermore, Sun et al. (2020) shows that using a parametric model underperforms episodic
memory. In our work, we do not generate example pairs (x, y) but rather generate pseudo-queries
(y), similar to concurrent works (Zhuang et al., 2022; Bonifacio et al., 2022). We show that our
approach outperforms episodic memory. Lastly, in the context of pseudo-query generation, neural
models are prone to hallucinate additional content not supported by the input documents. Future
works can study methods to filter out noisy pseudo-queries (Mehta et al., 2022) during incremental
indexing.

Test time adaptation approaches for continual learning use episodic memory at the inference
time to alter the model weights before making predictions (Rebuffi et al., 2017; Sprechmann
et al., 2018; de Masson D’Autume et al., 2019; Mehta et al., 2020). Updating the DSI indexer for
every user query is computationally expensive, so we focus on continual learning methods during
training. Apart from continual learning-focused approaches, retrieval augmented generation
(Guu et al., 2020; Izacard and Grave, 2021; Borgeaud et al., 2022) family of approaches retrieve
auxiliary passages/documents to enhance pre-trained language models. These approaches alter
test-time predictions of the generative models by augmenting their input with relevant passages
retrieved from external retrievable memory. Moreover, one explicitly disables the updates to
the employed pre-trained (and retrieval) model using the external retrievable memory. Such
approaches do not faithfully assess the fundamental challenge of learning continually, specifically
catastrophic forgetting. On the other hand, our work focuses on the recently introduced DSI
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paradigm (Tay et al., 2022), where information in the document corpus is encoded into the model
parameters. Therefore, any updates to the underlying corpus necessitate updating the model
parameters hence, undergoing severe forgetting. Our work tackles a more challenging setup for
studying the forgetting phenomenon in detail. However, retrieval-augmented generation-based
methods do not analyze the forgetting phenomenon at all, only looking at overall performance
metrics. We agree that continual learning is broader than catastrophic forgetting; however, in this
work, we decide to study the forgetting phenomenon in detail on one of the challenging setups, if
not the most challenging.
Parameter isolation-based approaches for continual learning assign different dedicated subsets
of the model parameters to each task to prevent forgetting (De Lange et al., 2021). While learning
a new task, these methods either freeze a subset of the parameters corresponding to older tasks or
dynamically add new parameters per new task. At the prediction time, these methods typically
require a task identifier to activate the corresponding subset of parameters for inference. In the
DSI paradigm, we are given user queries at the inference time, and the goal is to predict relevant
document identifiers. Now during incremental indexing, if we consider every new document
corpus as a new task, then a typical parameter isolation-based approach would require a corpus
identifier for every user query at the test time, defeating the whole purpose of the DSI paradigm.
Due to this, the parameter isolation-based approaches in their current form are rendered less
useful for DSI++. Nevertheless, we believe that by masking the weights for the already indexed
corpus, one is explicitly disabling the updates to the underlying DSI model; therefore, parameter
isolation-based methods would be robust to forgetting and future works should explore them for
DSI++.

7.6 Discussion
DSI++ introduces a new approach to address a crucial requirement of DSI models for practical
use in production setups, where continuous addition of new documents to the corpus is neces-
sary. Through experiments, we demonstrate the effectiveness of our generative memory-based
approach to reduce catastrophic forgetting. This work establishes a foundation for further research,
benefiting both DSI models and the broader community of lifelong (semi-supervised) learning.

In this chapter, we leverage a generative language model to sample pseudo-queries and
enable lifelong semi-supervised learning for updating Transformer memory. However, generative
language models are prone to hallucinate additional content not supported by the inputs (Maynez
et al., 2020). Therefore, one should select quality pseudo-labels to alleviate the risk of reinforcing
the model’s mistake. In our recent work (Mehta et al., 2022), we focus on generating quality
pseudo-labels using limited labeled data to enable semi-supervised learning. Extending this work
to lifelong semi-supervised learning where the data stream continuously undergoes distribution
shift is an open problem. We leave such analysis to future work.
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Chapter 8

Unlabeled Data: Role of Lifelong Learning
in Pre-training

8.1 Overview

In previous chapters, we studied several lifelong learning scenarios – task-incremental learning
(Chapters 3, 5), domain-incremental learning (Chapters 4, 6), and class-incremental learning
(Chapters 6, 7). In each scenario, the lifelong learning system encounters (labeled or unlabeled)
data stream, and the goal is to learn new tasks while alleviating forgetting of previous tasks.
However, lifelong learning is not restricted to multi-task scenarios, as deep neural networks
undergo forgetting even when there is no clear data distribution shift; i.i.d setup for single-
task learning (Toneva et al., 2019). Studying single-task learning through the lens of lifelong
learning is open to investigation. In this chapter, we investigate the role of lifelong learning in
pre-training where data does not undergo a clear distributional shift, and provide justification for
our exploration.

Lifelong and transfer learning aim to utilize prior knowledge to improve performance on new
tasks. Recently, large language models like BERT (Devlin et al., 2019), RoBERTa(Liu et al.,
2019b), GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), Gopher
(Rae et al., 2021), OPT (Zhang et al., 2022), GLAM (Du et al., 2022), PaLM (Chowdhery et al.,
2023), LLaMA 2 (Touvron et al., 2023) have become popular for transfer learning in NLP. These
models are pre-trained on self-supervised tasks using large text corpora before being fine-tuned
on downstream tasks. Pre-training helps these models learn general language features, reducing
the labeled data requirements for new tasks (Devlin et al., 2019). However, pre-training is still
“data hungry”; for instance, GPT-3 is trained using 499B tokens (Brown et al., 2020), LLaMa 2
is trained using 2T tokens (Touvron et al., 2023), making it expensive to retrain new language
models continuously. Further, investigating the learning dynamics of these models reveals that
they acquire different types of knowledge differently over the course of pre-training (Liu et al.,
2021). Specifically, RoBERTa quickly and stably acquires linguistic knowledge, slowly acquires
facts and commonsense, and does not consistently acquire reasoning abilities. If we view pre-
training as continuous learning from a stream of “potentially redundant” data with a limited replay
of previously seen examples, the above results hint at forgetting different skills (or knowledge)
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over the course of pre-training. Recent findings that deep neural models are prone to forgetting
even when data streams are stationary (i.i.d) (Toneva et al., 2019) motivate us to investigate the
role of lifelong learning in pre-training, especially in alleviating forgetting and improving sample
complexity (or efficient pre-training).

To enable efficient lifelong learning systems, the earlier chapters in this thesis suggest modify-
ing different components of data-driven machine learning: model initialization (Chapters 3, 4),
training dynamics (Chapters 5, 6), and data (Chapter 7). Building on these works, in this chapter,
we investigate each component across different pre-training scenarios and answer the following
research questions:

1. What should be the initialization scheme for pre-training? For instance, can we learn the
Transformer architecture’s initialization to benefit stable learning of self-supervised tasks?

2. What should be the training dynamics for pre-training? For example, can we explicitly
optimize for the flatness of the loss landscape to alleviate forgetting throughout pre-training?

3. What data should be used for pre-training? Low-quality or noisy samples may hurt learning
by amplifying negative interference (or forgetting); therefore, can we filter them out before
pre-training for a sample-efficient pre-training?

8.2 What should be the initialization scheme for pre-training?
In Chapter 5 (Section 8.2), we show that initializing models with MetaInit (Dauphin and Schoen-
holz, 2019) helps reduce forgetting during lifelong learning. As we examine pre-training from
the perspective of lifelong learning, we pose a question—Can the advantageous initialization
provided by MetaInit, known to facilitate gradient descent by commencing in locally linear
(or wider) regions with minimal second-order effects, also play a role in alleviating forgetting
during pre-training?

Experimental design. To study the effectiveness of MetaInit during pre-training, we consider
the task of language model pre-training. Concretely, we focus on the BERT-style Transformer
encoder and train it with the masked language modeling (MLM) objective (Devlin et al., 2019).
We closely follow Geiping and Goldstein (2023) to pre-train large language models under resource-
constrained environments, i.e., training a language model on a single GPU in one day. Geiping
and Goldstein (2023) proposes three-way modifications to the original BERT pre-training recipe
— (i) architectural modifications like disabling of biases in Query, Key, and Value, as well as
the Feed Forward layer, resulting in enhanced computational efficiency; (ii) modified training to
include 25% masking rate, eliminating dropout, and implementing batch size schedules; and (iii)
use of The Pile (Gao et al., 2020) dataset instead of the English subset of the Wikipedia along with
the Toronto Book Corpus (Zhu et al., 2015), as it yields superior downstream MNLI performance.
This entire recipe is denoted as Crammed BERT (with 120M total parameters), and for a more
in-depth understanding, we direct readers to Geiping and Goldstein (2023).

To explore the forgetting dynamics during pre-training, we adopt a controlled setting for
training the language model. Specifically, we utilize the publicly available processed sample of the
Pile dataset (Geiping and Goldstein, 2023), featuring a sequence length of 128. Our training split
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comprises approximately 10 million tokens (78,336 sequences), with an additional 1.05 million
tokens (8,192 sequences) forming our validation split. The batch size is set to 512 sequences, and
the language model undergoes pre-training for 200 epochs (or 30,600 update steps), equivalent
to encountering a total of 2 billion tokens and takes around 6 hours on a single Nvidia A6000
GPU with 48GB memory. Consistent with Geiping and Goldstein (2023), we employ the AdamW
optimizer (Kingma and Ba, 2014) with a triangular learning rate schedule. The learning rate starts
at 2.5e−4 and linearly increases to 1.0e−3 over 75% of the update steps, followed by a decay to
zero over the remaining 25% steps. For the initialization using MetaInit, we opt for the SGD
optimizer with a learning rate of 0.01 and a momentum of 0.9, employing a batch size of 32 and
training for 750 updates.

8.2.1 Forgetting Curves in Language Models
To study the learning dynamics of language models, Liu et al. (2021) probes language models for
different types of knowledge throughout pre-training. They show RoBERTa quickly and stably
acquires linguistic knowledge, slowly acquires facts and commonsense, and does not consistently
acquire reasoning abilities; hinting at forgetting different skills (or knowledge) over the course of
pre-training. Although a crucial work on understanding the learning dynamics, using prompting
as our probing mechanism only provides a lower bound estimate of the knowledge contained
in these models (Jiang et al., 2020). Therefore, similar in spirit to our work in Chapter 7, we
explicitly focus on the memorization of the data. This helps us to answer questions related to
forgetting more convincingly rather than bounded by the mechanism of how we probe these
models. Concretely, we compute the memorization metric, introduced by Tirumala et al. (2022),
for self-supervised settings and discuss it below.

Let V represent the vocabulary size. Consider a set of contexts C, defined as a collection of
tuples (s, y) where s represents an input context (an incomplete block of text), and y denotes the
index of the ground truth token in the vocabulary that completes the block of text. Let S denote the
set of input contexts, and fw : S → RV represent a language model. A context c = (s, y) ∈ C is
considered memorized if the index that maximizes f(s) is equal to y. Formally, the memorization,
M(f), is defined as

M(f) =

∑
(s,y)∈C I{argmax(f(s)) = y}

|C|
. (8.1)

It is worth noting that the above-defined metric can be interpreted as accuracy, as it measures the
frequency with which the arg max of the language model aligns with the ground-truth token.

Motivated by the hypothesis of the forgetting curve (Loftus, 1985), which posits that human
memory declines over time without attempts to retain it, Tirumala et al. (2022) investigates
forgetting curves in language models. Their study reveals that larger models exhibit slower
degradation in memorization compared to smaller models. In our work, we leverage the same
methodology to explore whether MetaInit influences the forgetting curve. Following the approach
of Tirumala et al. (2022), we construct forgetting curves in language models. Initially, we select a
batch of data distinct from the training set, specifically from a validation set (termed a “special
batch”). Subsequently, we take a checkpoint during the ongoing model training and memorize
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(b) Masked language modeling loss

Figure 8.1: Exploring the impact of model initialization (RandomInit vs. MetaInit) on forgetting
curves during pre-training in the crammed BERT setting. We inject the special batch into the
training set at the 25th epoch and evaluate the proportion of special batch memorized as we
continue training. (a) Our observations indicate that memorization, denoted as M(f), for the
special batch deteriorates rapidly, converging to a baseline value of 0.4 for both initializations.
This suggests that more investigation is needed to determine the role of MetaInit initialization on
forgetting dynamics during pre-training. (b) For both initializations, the MLM loss for the special
batch continues to rise. In contrast, the memorization of the special batch levels off, suggesting
that pre-trained models do not completely forget, a trend not fully captured by the MLM loss.

this special batch by allowing the model to undergo training on this specific data. Afterward, we
resume standard training on the original training set. Our analysis focuses on the degradation in
memorization (Equation 8.1) on the special batch, examining whether the model initialization
factor (RndmInit vs. MetaInit) influences the forgetting curve. Throughout our experiments, we
consistently employ the entire validation set as the special batch. Additionally, we note that the
special batch is encountered only once upon its initial introduction.

Discussion. In Figure 8.1a, we examine the impact of model initialization (RandomInit vs.
MetaInit) on forgetting curves during pre-training. By introducing the special batch into the
training set at the 25th epoch, we track the proportion of the special batch memorized throughout
training. Our observations reveal a rapid degradation in memorization for the special batch, con-
verging to a baseline value of 0.4 for both initializations. This indicates that further investigation
is needed to determine the role of MetaInit initialization on forgetting dynamics during
pre-training. Conversely, in Figure 8.1b, we observe a continuous increase in the MLM loss
for the special batch. However, the memorization of the special batch levels off, indicating that
pre-trained models do not completely forget, a phenomenon not fully captured by the MLM loss.

8.3 What should be the training dynamics for pre-training?
In Chapter 7, we discuss memorization (or indexing) as a pre-training task in the DSI paradigm
(Tay et al., 2022) where the goal is to learn a neural corpus indexer that takes document content as
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Figure 8.2: Investigating the effectiveness of SAM for alleviating implicit forgetting in the
T5-Base model. (a) We observe serious fluctuations in the indexing accuracy in the case of
the Adafactor optimizer, thereby suggesting unstable memorization. SAM leads to relatively
stable memorization of documents. (b) A forgetting event (Toneva et al., 2019) is defined when
an individual document goes from being classified correctly to incorrectly over the course of
memorization. SAM increases the percentage of examples experiencing zero forgetting events by
an absolute 12% over Adafactor.

input and maps it to a document identifier (docid). The retrieval task constitutes a downstream
task and necessitates mapping user queries to relevant docids. Under the unstructured atomic
docid representation strategy, each docid is assigned a unique token/class label. Given the large
number of documents in the corpus (even more than a million), memorization constitutes an
instance of challenging extreme classification setting (Bengio et al., 2019). Furthermore, for
every class, we have only one labeled example (i.e., document and its identifier), making this task
setup rare. Motivated by this largely unexplored setup, we investigate the learning dynamics for
the memorization task over the course of pre-training. We consider the experimental setup as
discussed in Section 7.2.1.

8.3.1 Implicit forgetting during memorization
In Figure 8.2a, we visualize the indexing accuracy for the T5-Base model, optimized with Adafac-
tor (Shazeer and Stern, 2018). We note that the model performance fluctuates throughout training,
suggesting unstable memorization. We hypothesize that the model continuously undergoes the
forgetting phenomenon wherein subsequent mini-batch updates interfere with the previously
memorized documents. To differentiate this phenomenon from forgetting due to adding new
documents (or tasks), we refer to the earlier one as implicit forgetting during memorization in this
chapter. To quantify instability during memorization, we compute forgetting event (Toneva et al.,
2019) statistics. A forgetting event is defined as being when an individual document goes from
being classified correctly (mapped to correct docid) to incorrectly over the course of memorization.
In Figure 8.2b, we plot the cumulative histogram of forgetting events and see that almost 88%
of the documents undergo forgetting at least once, thus, validating our hypothesis about implicit
forgetting.
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8.3.2 SAM alleviates implicit forgetting

In Chapter 5 (Mehta et al., 2023b), we show that pre-trained initialization implicitly alleviates
forgetting as they prefer flatter minima and explicitly optimizing for the flatness using Sharpness-
Aware Minimization (SAM; Foret et al. (2021)) further lessens forgetting. Based on these
observations, we hypothesize that modifying the training dynamics of the memorization tasks
using SAM should alleviate implicit forgetting.

We investigate the applicability of SAM for alleviating the implicit forgetting phenomenon.
Concretely, we continually pre-trained the T5-Base model to memorize D0 corpus containing
50K unique documents. We compare the performance of the SAM optimizer with the vanilla
Adafactor optimizer. In Figure 8.2a, we see that SAM outperforms Adafactor in terms of the
overall indexing accuracy. Further, we note that SAM undergoes less severe fluctuations during
training, thus, hinting at lesser forgetting. To bolster this claim, in Figure 8.2b, we see that SAM
has a significantly more percentage of documents corresponding to a lower cumulative number
of forgetting events. For example, SAM stably (with zero forgetting events) memorizes +12%
more documents than Adafactor. We also note that SAM (35.9 ± 2.2) outperforms Adafactor
(32.5± 6.4) when evaluated on the downstream retrieval task (Hits@1) corresponding to D0.

Discussion. In Chapter 5, we show that explicitly optimizing for flatter loss basins using SAM
leads to less forgetting, especially in task-incremental learning settings where data undergoes
a clear distributional shift. We extend this work to the recent DSI paradigm (Tay et al., 2022)
and convincingly demonstrate that SAM helps with the stable memorization of documents. Our
results generalize even to the pre-training settings where data does not undergo a clear
distributional shift (i.e., memorization task). Although SAM helps stably memorize documents,
there is still room for improvement, and our work invites more future work in this direction. Also,
future research can explore the effectiveness of SAM on forgetting dynamics during language
model pre-training, similar to the analysis presented in Section 8.2.1.

8.4 What data should be used for pre-training?
Recently there has been a growing body of research in data-centric AI that empirically demon-
strates the significant impact of training data quality on the final performance of large models (Ab-
bas et al., 2023; Brown et al., 2020; Gadre et al., 2023; Radford et al., 2023; Schuhmann et al.,
2022; Xie et al., 2023). Simultaneously, data pruning (Toneva et al., 2019; Paul et al., 2021;
Sorscher et al., 2022; Wang et al., 2023) has gained attention in the community for enhancing
training efficiency and reducing (semantic) redundancy in training data. For instance, Toneva
et al. (2019) investigates the forgetting dynamics of neural networks during training on individual
classification tasks and demonstrates that a significant portion of “unforgettable” examples can be
excluded from the training dataset while preserving state-of-the-art generalization performance.
However, our work in Chapter 6 challenges the idea of retaining “forgettable” examples in the
episodic memory buffer, highlighting that such examples may be less representative of the true data
distribution and could lead to negative interference (see Section 6.5.3). In conclusion, the ideal
data pruning metric differs among diverse datasets, and the approaches suggested in the above
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studies often depend on manually crafted heuristics, typically leading to suboptimal performance
(Sorscher et al., 2022).

Meta learning aims to learn the inductive biases (e.g. training data) of a machine learning
program in such a way that a model trained with these inductive biases achieves optimal perfor-
mance on user-specified objectives (e.g. quick generalization). This concept of meta learning can
naturally be formulated as bilevel optimization, where the upper (meta) level problem encodes
inductive biases and objectives, and the lower (base) level optimization problem represents the
main machine learning program of interest, such as image classification or language modeling.
Depending on the design of inductive biases and objectives, meta learning has found many ap-
plications in machine learning, including hyperparameter optimization (Franceschi et al., 2018),
data optimization (Gudovskiy et al., 2021; Shu et al., 2019), neural architecture search (Liu et al.,
2019a; Zhang et al., 2021), learned optimizers (Metz et al., 2022, 2019), few-shot learning (Finn
et al., 2017; Rajeswaran et al., 2019), and lifelong learning (Mehta et al., 2020).

Hence, in this chapter, we focus on the application of (gradient-based) meta learning, specif-
ically in the domain of neural data optimization. Concretely, we modify pre-training data, by
reweighting or filtering, based on the specific objectives outlined in the meta optimization prob-
lem. Recognizing that the training data for large models inherently acts as highly dimensional
inductive biases in machine learning, we hypothesize that the application of meta learning in
data optimization will enable us to efficiently optimize these intricate high-dimensional inductive
biases. This shift in focus aims to address the variability in optimal data pruning metrics across
datasets and move beyond relying on manually designed heuristics for improved performance.

From a technical perspective, employing gradient-based meta learning for large-scale data
optimization comes with a significant computational and memory overhead, particularly when
dealing with models trained with adaptive optimizers (e.g., Transformers trained with Adam).
Consequently, we use the ScalAble Meta learning Algorithm (SAMA; Choe et al., 2023) in our
study. We review SAMA in Section 8.4.1, investigate data pruning for pre-training of vision
models in Section 8.4.2, and continued pre-training of large language models in Section 8.4.3.

8.4.1 Neural Data Optimization using ScalAble Meta learning Algorithm
(SAMA)

We begin by reviewing the fundamentals of gradient-based meta learning (GBML) and sub-
sequently explore how SAMA tackles the crucial factors that hinder the scalability of GBML.
Mathematically, meta learning is commonly formulated as bilevel optimization as follows

λ∗ = argmin
λ

Lmeta(Dmeta; θ
∗(λ))

s.t. θ∗(λ) = argmin
θ

Lbase(Dbase; θ, λ)

where λ (respectively, θ) are the parameters of meta (base) learners, Dmeta (Dbase) are meta
(base) datasets, and Lmeta (Lbase) are meta (base) loss functions. An important implication of
the above formulation is that meta learning changes the task of finding the optimal inductive
biases from designing heuristics to designing meta optimization problems. To illustrate, let us
consider the data pruning task, where the objective is to ascertain the importance weight of
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each training datum and subsequently prune samples based on a specified cutoff threshold. One
conventional “heuristics-based” approach involves utilizing a forgetting metric as an importance
weight and filtering training samples with lower forgetting values (Toneva et al., 2019). In contrast,
Meta-Weight-Net (MWN; Shu et al., 2019) automatically meta-learns the importance weight λ by
designing a meta optimization problem (basically by constructing a meta dataset Dmeta). In short,
unlike heuristic-based methods that explicitly specify “how to learn,” meta learning methods only
specify “what to learn” and let the meta learner automatically determine “how.”

GBML computes a meta gradient composed of two terms—the best-response Jacobian and
direct gradient—with the chain rule, as follows

∂Lmeta

∂λ
=

∂θ∗

∂λ︸︷︷︸
best-response Jacobian

· ∂Lmeta

∂θ∗︸ ︷︷ ︸
direct gradient

(8.2)

Since the direct gradient computation is straightforward with the underlying automatic differ-
entiation library, the major challenge in GBML lies in computing the best-response Jacobian.
SAMA employs an implicit differentiation (Rajeswaran et al., 2019) solution to GBML. Implicit
differentiation essentially computes the best-response Jacobian using Cauchy’s Implicit Func-
tion Theorem (IFT) and reframes the base optimization problem through the lens of fixed-point
iteration with an iterative solver u, as follows

∂θ∗

∂λ
= − ∂u

∂λ︸︷︷︸
meta Jacobian

·
(

∂u

∂θ∗︸︷︷︸
base Jacobian

)−1

where

 θ∗ = lim
t→∞

θt

θt = θt−1 − u(θt−1;λ)
(8.3)

While exact implicit differentiation necessitates solving the base optimization problem to con-
vergence (θ∗) by repeatedly applying an iterative solver u (e.g., SGD or Adam) to compute base
and meta Jacobians, this is often computationally infeasible, particularly in large-scale learning
scenarios. Consequently, in practical applications, we approximate θ∗ by employing a small
number of unrolled update steps of u. This approximation involves alternating gradient descent
between base and meta optimization problems, where the base gradient is computed using standard
backpropagation, and the approximate meta gradient is determined using Equations 8.2 and 8.3.

The computation of the meta gradient in GBML encounters notable challenges, including
high computational and memory costs, algorithmic instability, and lack of support for efficient
distributed training. To overcome these limitations and enhance scalability, we employ SAMA.
SAMA addresses these challenges through three key strategies: (i) approximating the inversion of
the base Jacobian with an identity matrix, (ii) algorithmic adaptation for adaptive optimizers to
enhance stability, and (iii) implementing a distributed approach for the computation of the meta
gradient. For more details, we defer readers to Choe et al. (2023).

8.4.2 Efficient Data Pruning for Pre-training of Large Vision Models
In this section, we investigate the applicability of SAMA for data pruning during pre-training. Our
approach involves deviating from manually crafted data pruning metrics and, instead, adopting
an automated meta-learning process for determining the importance weight of each training
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example, inspired by Meta-Weight-Net (MWN; Shu et al., 2019). We introduce four significant
modifications to MWN. First, we replace their iterative differentiation meta gradient algorithm
with SAMA to achieve improved memory and compute efficiencies. Second, we speed up meta
learning by enabling distributed training using SAMA’s efficient communication strategy. Third,
we use the uncertainty of the prediction in addition to the loss value as an input to MWN to
better estimate the importance weight for each training example. Last, we use training data both
in the base and the meta levels, assuming no additional validation data. A bilevel optimization
formulation of our method is as follows

λ∗ = argmin
λ

L(Dtrain; θ
∗(λ))

s.t. θ∗(λ) = argmin
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

w(L, U ;λ) · L(x, y; θ)

where w(·;λ) is MWN that takes the loss value L and the uncertainty U of the training sample
(x, y) as an input and outputs the importance weight. Under this setup, we run meta learning
with SAMA for 30 / 50 epochs respectively for ImageNet-1k / CIFAR-10 and obtain the pruning
metrics by averaging the importance weights of the last 5 epochs. We compare our method to
several popular static—EL2N1/EL2N10/GradND (Paul et al., 2021), forgetting (Toneva et al.,
2019) and dynamic—DynaMS (Wang et al., 2023) data pruning baselines, and present the results
in Figure 8.3.
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Figure 8.3: Top Left: ImageNet-1k data pruning results with ResNet-50. Reported numbers are
relative accuracy compared to full training accuracy (i.e., pruned_acc/full_acc). Accuracy for
other baseline methods is obtained from DynaMS (Wang et al., 2023). Top Right: CIFAR-10
data pruning results with ResNet-18. Accuracy for other baseline methods is obtained from
Deepcore (Guo et al., 2022). The pruning ratio is defined as the fraction of total examples pruned
using the pruning strategy. BML-based data pruning with SAMA outperforms heuristics-based
data pruning across different dataset scales. Bottom: Relative time spent in finding data to prune
compared to full ImageNet-1k training time.
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We show that GBML-based data pruning with SAMA not only outperforms heuristics-
based data pruning but also works well across different dataset scales. Surprisingly, we
observe that GBML-based data pruning even leads to improvements in test accuracy at the pruning
ratio of 0.1 and 0.2 on ImageNet-1k. The potential implication is that ImageNet-1k may have
noisy labels or semantic redundancy and that GBML can automatically figure and filter out these
samples. Further in-depth investigation of filtered data remains an interesting research direction.
Considering that compute/memory inefficiency has traditionally been the major bottleneck in
GBML applications, we also compare the relative search time for data pruning. Our result shows
that SAMA demonstrates comparable or even shorter search time than heuristics-based methods.
We also note that, while the original MWN (Shu et al., 2019) encounters the OOM error under
our setup of batch size of 256, the throughput analysis with the reduced batch size reveals that
efficient distributed training with SAMA on 4 GPUs achieves 15-20× speed up compared to the
original MWN that lacks distributed training support.

8.4.3 Continued Pre-training of Large Language Models
Domain Adaptive Pre-Training (DAPT) or Task Adaptive Pre-Training (TAPT) (Gururangan et al.,
2020) empirically demonstrate that additional pre-training (i.e., continued pre-training) of the
generic language model on the domain or task-specific data can further improve downstream
performance on diverse benchmarks. However, the inclusion of low-quality samples for continued
pre-training tasks can potentially hinder pre-training by amplifying negative interference, which
could lead to suboptimal downstream performance. Here, we attempt to minimize such negative
interference by re-weighting samples from the continued pre-training task with SAMA. To this
end, we adopt the auxiliary learning technique from TARTAN (Dery et al., 2022) and simplify the
two-stage pre-training and finetuning pipeline into a one-stage multitask learning pipeline with
the re-weighting scheme applied to the pre-training loss. The bilevel optimization formulation is
as follows

λ∗ = argmin
λ

Lft(Dft; θ
∗(λ))

s.t. θ∗(λ) = argmin
θ

Lft(Dft; θ) +
1

|Dpt|
∑

x∈Dpt

w(x;λ) · Lpt(x; θ)

where Lft/Lft are fine-tuning/pre-training loss functions, Dft/Dpt are fine-tuning/pre-training
datasets, and w(·;λ) is the data re-weighting network. For more details, we defer readers to Dery
et al. (2022). Following the experiment setup in TARTAN (Dery et al., 2022), we use task-specific
data and a masked language modeling loss in our auxiliary task and perform experiments with
RoBERTa-base on 4 datasets from the Gururangan et al. (2020). We compare our SAMA-based
neural data optimization against DAPT and TARTAN-MT. We exclude TAPT and TARTAN-Meta
respectively because (1) TAPT consistently underperforms TARTAN-MT (Deleu et al., 2019)
and (2) TARTAN-Meta uses additional validation data in the meta level of the downstream tasks,
making the comparison unfair. We report our experiment results in Table 8.1.

We show that SAMA-based data optimization leads to improvements in downstream
performance on most of the considered datasets. This indirectly demonstrates that SAMA-
based data reweighting can identify more/less relevant data in the auxiliary task and accordingly
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ChemProt HyperPartisan ACL-ARC SciERC Average

Baseline 82.70 (0.45) 89.03 (2.25) 68.17 (2.52) 79.83 (0.89) 79.93
DAPT 84.17 (0.50) 87.23 (3.65) 71.84 (4.78) 80.42 (1.57) 80.92
TARTAN-MT 84.18 (0.30) 94.64 (0.91) 72.41 (1.94) 80.83 (0.71) 83.02
SAMA (ours) 84.49 (0.13) 95.18 (0.03) 71.63 (1.68) 81.84 (0.08) 83.29

Table 8.1: Experiment results for auxiliary learning with the continued pre-training task. Following
Gururangan et al. (2020), we report test micro-F1 for ChemProt and macro-F1 for the other
datasets. The number in parentheses indicates the standard deviation for each experiment over 3
runs. SAMA-based data optimization leads to improvements in downstream performance on most
of the considered datasets.

up-/down-weight them, unlike TARTAN-MT which allocates equal importance weights on all
auxiliary data. Therefore, we expect that our method would likely benefit from additional auxiliary
data by automatically figuring out and exploiting only relevant data, whereas TARTAN-MT is
much more susceptible to negative transfer. While we only used task-specific data in our auxiliary
task for the fair comparison with TARTAN-MT, extending auxiliary data to domain-specific
or even general text data and comparing SAMA against DAPT or TARTAN-MT would be an
intriguing future research direction.

8.5 Discussion
In this chapter, we approach pre-training through the lens of lifelong learning, reviewing three
fundamental components—model initialization, optimization dynamics, and data. We apply
methodologies derived from lifelong learning to assess the potential enhancement of pre-training.
Our analysis of forgetting curves during pre-training suggests that certain learning initializations,
such as MetaInit (Dauphin and Schoenholz, 2019), may not exert a significant influence on
forgetting behavior. Future research could explore Transformer-specific learned initializations
in a similar context (Zhu et al., 2021). Shifting focus to the DSI paradigm (Tay et al., 2022),
where memorization is pivotal, we demonstrate that optimizing for flat minima markedly improves
memorization. This reinforces our findings from Chapter 5, extending them to scenarios where
data undergoes less distinct distribution shifts. Lastly, we investigate a meta-learning-based data
selection strategy, revealing its superiority over a strategy that selects forgettable examples for
pre-training vision models (Toneva et al., 2019). We conclude by showcasing the benefits of our
meta-learning algorithm in re-weighting data during continual pre-training of language models,
suggesting potential extensions to conventional language model pre-training in future endeavors.
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Chapter 9

Conclusions and Future Work

In sum, this thesis is motivated by the overarching goal of enabling efficient lifelong learning
systems, addressing the stability-plasticity dilemma while continuously learning from online
and unlabeled data streams. This objective is realized through the incorporation of inductive
biases into the key components of data-driven machine learning—modeling, training, and data.
Specifically, in Chapter 3, our investigation into the role of pre-trained initializations in lifelong
learning reveals that pre-training implicitly mitigates forgetting compared to random initialization
(Mehta et al., 2023b). Utilizing loss landscape analysis, we ascertain that pre-trained initialization
prevents forgetting by converging to flat minima. Additionally, in Chapter 4, we introduce a
parameter-efficient expert architecture to dynamically expand the system’s capacity and address
the stability-plasticity dilemma (Byun et al., 2023). Building on these works, in Chapter 5, we
demonstrate that explicit optimization for flat minima enhances stability in the learned networks
(Mehta et al., 2023b). The introduction of a meta-learning objective in Chapter 6, incorporating
a slow-learning phase for stability and a fast-learning phase for plasticity, further promotes a
balance in stability-plasticity (Mehta et al., 2020). Furthermore, in Chapter 7, our exploration
of lifelong semi-supervised learning supports continuous learning from unlabeled data streams,
mitigating the stability-plasticity dilemma through the rehearsal of pseudo-labeled data (Mehta
et al., 2023a). This thesis highlights the applicability of lifelong learning, even in scenarios
without a clear distribution shift (Mehta et al., 2023a), and in Chapter 8 demonstrates substantial
improvements through the application of developed techniques to continual pre-training of models
(Choe et al., 2023). In the following sections, we outline promising directions for future research
emerging from the work presented in this thesis.

9.1 Neural Data Optimization for Large Language Models

Reinforcement Learning from Human Feedback (RLHF) applies reinforcement learning tech-
niques to align language models trained on general text corpora with complex human values
(Lambert et al., 2022). Recently, there has been a notable increase in research leveraging RLHF for
various applications, such as text summarization (Stiennon et al., 2020; Wu et al., 2021), training
agents for web navigation (Nakano et al., 2021), developing open-book QA models to generate
answers with specific citations (Menick et al., 2022), fine-tuning dialogue agents (Glaese et al.,
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2022), and refining general large language models (Ouyang et al., 2022). However, during the
fine-tuning stage with RLHF, there exists a risk of the model deviating from its initial pre-trained
state, resulting in the generation of nonsensical text—essentially an instance of the forgetting
phenomenon. In this scenario, gradient updates from RLHF may overwrite previously acquired
knowledge. To mitigate this issue, a KL divergence term is introduced. This term penalizes the
model for deviating significantly from its initial pre-trained state with each training batch. This
approach proves beneficial in ensuring that the model produces reasonably coherent text. This
concept aligns with regularization-based approaches to lifelong learning (Sodhani et al., 2022).

While RLHF fine-tuning has demonstrated remarkable improvements, particularly in the
context of InstructGPT, it has been observed to exhibit lower performance compared to its non-
RLHF counterpart (GPT-3) on specific public NLP datasets (Ouyang et al., 2022). One strategy to
address this performance gap involves the continuous updating of the model with pre-training
updates concurrently with RLHF fine-tuning. Ouyang et al. (2022) present evidence that this
approach outperforms the simpler solution of merely increasing the KL-based regularization
coefficient. Consequently, in the training process of InstructGPT, 10% of pre-training data is
integrated during fine-tuning to enhance RLHF performance. This strategy, aimed at mitigating
the forgetting of generic knowledge by incorporating pre-training data into RLHF fine-tuning,
aligns with memory-based approaches to lifelong learning, as discussed in Section 2.4.2. Despite
this approach effectively narrowing the performance drop, it does not eliminate performance drop
and may potentially amplify undesirable behaviors if they exist in the pre-training data. This
raises the question of how to filter the pre-training data, either for training the initial pre-trained
model or incorporating it into RLHF fine-tuning.

Large language models, exemplified by GPT-3 trained on 499B tokens (Brown et al., 2020),
LLaMa 2 trained on 2T tokens (Touvron et al., 2023), face challenges in continuous retraining
due to the tremendous size of training data. Recently, data pruning (Sorscher et al., 2022; Wang
et al., 2023) and data filtering (Ngo et al., 2021) have garnered attention in the community for
their potential to enhance training efficiency, diminish semantic redundancy in training data,
and filtering for toxic content. In particular, Sorscher et al. (2022) showed both theoretically
and experimentally that neural scaling laws can be beaten by data pruning. In Chapter 8, we
study scalable meta learning algorithms (SAMA) for data pruning (or sample reweighting) and
successfully apply them to continual pre-training of language models (Choe et al., 2023). A
concrete future direction involves investigating SAMA for neural data optimization, particularly
in the context of pre-training large models and fine-tuning with RLHF.

9.2 Unifying Sparse and Semi-Parametric Models for Lifelong
Learning

In Chapter 7, we explored continual learning within the Differentiable Search Indices (DSIs)
paradigm (Tay et al., 2022), uncovering the susceptibility of the DSI model to catastrophic forget-
ting during incremental indexing (Mehta et al., 2023a). A plausible explanation is that document
corpora are encoded into monolithic model parameters, leading to uncontrolled parameter drift
during incremental indexing. In Chapter 4, we introduced parameter-efficient sparse expert
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models for continual learning (Byun et al., 2023). Various data views (or domains) are encoded
into distinct parameters, and during inference, inputs are routed to the relevant expert. This
approach has the potential to facilitate controlled and selective updates to subsets of experts,
mitigating forgetting. Recently, Li et al. (2022) proposed Branch-Train-Merge (BTM) for large
language models. In BTM, independent expert language models are trained for different domains,
allowing dynamic addition or removal of experts. This enables generalization to unseen domains
and efficient inference through expert averaging. Further, Fernandez et al. (2023) introduced
Continually and Stochastically Averaging Weights (CSAW), which achieves gradual temporal
generalization through the exponential moving average of expert weights trained over discrete
timesteps. While the aforementioned sparse expert architectures provide beneficial inductive
biases for continual learning, the central question lingers—Is it necessary to encode everything
into model parameters?

Language models relying solely on parametric models for knowledge encoding face challenges
in generalization and adaptation to new knowledge over time (Lazaridou et al., 2021). To address
these limitations, recent architectures have introduced non-parametric memory modules alongside
parametric components. This non-exhaustive list of architectures includes the k-Nearest Neighbors
Language Model (kNN-LM; Khandelwal et al., 2020), Retrieval-Augmented Generation (RAG;
Lewis et al., 2020), REtrieval-Augmented Language Model (REALM; Guu et al., 2020), Semi-
PArametric Language Model (SPALM; Yogatama et al., 2021), Retrieval-Enhanced Transformer
(RETRO; Borgeaud et al., 2022), Non-Parametric Masked language model (NPM; Min et al.,
2022), and others. These architectures differ primarily in their utilization during training or
inference and the granularity of data stored in the non-parametric memory module. However,
these aforementioned architectures necessitate extremely large memory modules and end up
retaining all information within them. Hence, the question arises—Is it necessary to store
everything in a memory module?

In Chapter 6, we presented a test-time adaptation system inspired by human learning, featuring
an episodic memory module (non-parametric) alongside a parametric model (Mehta et al., 2020).
This semi-parametric system selectively retains a subset of evolving data using a diversity-based
data selection rule, complementing the parametric model by retrieving it during inference. One
can further develop our work to explore methods for reducing the size of the memory module.
However, our approach necessitates computationally prohibitive gradient updates at inference
time, particularly in large language models. Recent advancements in continual learning have
seen the emergence of prompt-based approaches that leverage in-context learning for efficient
test-time adaptation. Prominent methods include Learning to Prompt (L2P; (Wang et al., 2022c)),
Dualprompt (Wang et al., 2022b), S-Prompts (Wang et al., 2022a), and Progressive Prompts
(Razdaibiedina et al., 2023). These approaches entail learning a small number of parameters
per domain or task in the form of continuous token embeddings or prompts while keeping the
remaining pre-trained model fixed. The appropriate prompt is then selected based on the input
data. Although these methods facilitate continual learning without a memory module, they can be
synergistically combined with our work in Chapter 6. This integration allows for the retention of
a subset of samples in the memory module, utilizing them as prompts, similar to an in-context
retrieval augmented language model (In-Context RALM; Ram et al., 2023).

In conclusion, sparse expert architectures enable targeted updates to the parametric model,
while semi-parametric models allow the utilization of memory modules for in-context learning.
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Each architectural element possesses unique advantages, and their integration can be mutually
advantageous. Given the scale of recent large models, supporting incremental updates is vital.
Simultaneously, it is crucial to maintain a reasonable size for a memory module when dealing
with extensive data corpora. Combining sparse and semi-parametric models enables selective
updates to sparse models and the use of non-parametric components for frequently evolving data.
However, the absence of a unified framework unifying both aspects marks an essential future
research direction.

9.3 Lifelong Learning and Unlearning
In this thesis, our primary focus has been on mitigating the issue of forgetting previously acquired
knowledge during lifelong learning. However, there are scenarios where intentional forgetting
becomes relevant. A notable example is observed in large language models, which tend to inherit
biases from their pre-training corpora (Schramowski et al., 2022). Given the computational
challenges associated with retraining these models every time biases are uncovered, there is a need
to actively edit or update the model to unlearn the uncovered biases. Nevertheless, the insights
from Chapters 3, 5, and 8 indicate that pre-trained models exhibit robust retention of information
(Mehta et al., 2023b), posing challenges to the straightforward process of intentional forgetting.

Recent studies have explored efficient methods for localizing and modifying facts stored within
language models (AlKhamissi et al., 2022). These approaches include fine-tuning techniques
(Zhu et al., 2020; Dhingra et al., 2022), implementations with hyper-networks (De Cao et al.,
2021; Mitchell et al., 2022), and direct editing methods (Meng et al., 2022). While these efforts
are crucial for updating information in pre-trained language models, relying on prompting as
our probing mechanism only offers a lower bound estimate of the knowledge embedded in these
models (Jiang et al., 2020). Additionally, the question arises—how can we facilitate unlearning in
pre-trained models while preserving their broader, generic capabilities? The emerging field of
machine unlearning has recently gained attention within the research community (Xu et al., 2023).
However, its development is still in its early stages, and numerous questions persist, especially
concerning pre-trained models.
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Appendix A

Additional experimental details and results
for an empirical investigation of the role of
pre-training in lifelong learning

A.1 Implementation Details

Vision Experiments For all vision experiments, we use the full ResNet-18 He et al. (2016)
architecture, with the final linear layer replaced (the number of outputs corresponds to the total
number of classes in all given tasks). During inference, only the subset of outputs corresponding
to the given task is considered. All images are resized to 224 × 224, and normalized with
µ = (0.485, 0.456, 0.406) and σ = (0.229, 0.224, 0.225). We used a SGD optimizer with the
learning rate set to .01 for all methods (we did a hyperparameter search for both pre-trained and
randomly initialized models and found the learning rate 0.01 resulted in a good learning accuracy
for both pre-trained and randomly initialized models). The batch size was set to 10 for the Split
CIFAR-50 and Split CIFAR-100 experiments and 64 for the 5-dataset-CV experiments. The
memory per class for ER was set to 1, and the λ parameter for EWC was also set to 1.

For Stable SGD, we performed a hyperparameter sweep over the parameters specified in the
original paper, namely:

• initial learning rate: [.25 (Split CIFAR-100-R, Split CIFAR-50-R, 5-dataset-CV-R), .1, .01
(Split CIFAR-100-PT, Split CIFAR-50-PT), .001 (5-dataset-CV-PT)]

• learning rate decay: [0.9 (Split CIFAR-50-R, 5-dataset-CV-R, Split CIFAR-100-PT), 0.85
(Split CIFAR-100-R, Split CIFAR-50-PT), 0.8 (5-dataset-CV-PT)]

• batch size: [10 (all), 64]
• dropout: [0.5 (5-dataset-R), 0.25 (Split CIFAR-100-R, Split CIFAR-50-R, Split CIFAR-

100-PT, Split CIFAR-50-PT, 5-dataset-CV-PT)]

NLP Experiments For most of the text classification experiments, we use the Transformer
architecture-based text encoder, DistilBERT-base (Sanh et al., 2019) to encode our input. In a
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single-sentence text classification task, xt is an input sentence to be classified. In a sentence-pair
classification task, the concatenation of x1

t and x2
t sentences separated by a [SEP ] symbol is

considered as an input xt. DistilBERT produces a contextual representation of each token in xt in-
cluding a special beginning of the sentence token symbol [CLS]. We use the representation of the
[CLS] symbol from the model as features for a linear task classifier. We have a separate classifier
for each task. We mainly set hyper-parameters to default implementation from HuggingFace.1

We use Adam as our optimizer, set dropout 0.1, the base learning rate to 2e−5, batch size to 32
and the maximum total input sequence length after tokenization to 128. For EWC, we set the
regularization strength λ to 100 (as this ended up with comparable LA across other methods), and
for ER, following (Chaudhry et al., 2019), the memory per class per task is set to 1. For SAM, we
set ρ = 0.02 for all models (random as well as pre-trained) on 5-dataset-NLP and 15-dataset-NLP.
For SplitYahooQA we set ρ = 0.001.

Sharpness metric. The matrix A ∈ Rn×p used for projecting the parameters onto a subspace is
randomly sampled and then normalized row-wise. Since this matrix is very large, the computation
of the pseudo-inverse A+ (required for calculating the bounds in Equation 3.2) is very memory
intensive and unstable. Instead, we directly calculate A+x by finding the least squares solution to
Ab = x. To find the maximum referenced in Equation 3.3, we use the L-BFGS-B algorithm.2 We
set the maximum number of iterations for the algorithm to 10, and to speed up computation, we
directly provide the gradients along with the loss to the algorithm, instead of using the default
2-point finite difference gradient estimation.

For ResNet-18 (n = 11M ), we set p = 100. However, for DistilBERT (n = 66M ) when we
set p = 100, we notice extremely small values for the sharpness metric. With the increase in
the number of parameters, n, we should ideally increase random subspace projection dimension
p. Setting larger p(> 100) values for DistilBERT, however, leads to memory issues relating to
allocating space for A and computing the bounds (even with the more efficient method discussed
above). So instead of evaluating the sharpness metric in a random manifold, we perform the
maximization in the entire space Rn (basically setting A = In). According to Keskar et al. (2017),
when ϵ is small enough and A = In, the sharpness metric in Equation 3.3 relates to the largest
eigenvalue of∇2L(x).

A.2 Task-specific results
In order to understand the evolution of task-specific performance during continuous training,
we visualize the task-specific results in Figures A.1 and A.2. Specifically, we compare the
performance of pre-trained and randomly initialized ResNet-18/ DistilBERT, for the first three
tasks in a sequence, across five random task ordering, when evaluated on 5-dataset-CV/5-dataset-
NLP (diverse tasks). In general, we see that both models start with approximately equal task
accuracy (except for CIFAR-10), but pre-trained initialization leads to lesser forgetting than
randomly initialized models (consistent with our observation in Figure 3.1 for Split YahooQA).

1https://github.com/huggingface/transformers
2We used the implementation provided by scipy at https://docs.scipy.org/doc/scipy/referen

ce/optimize.minimize-lbfgsb.html
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Moreover, given the heterogeneous nature of the downstream tasks, we see that performance gains
(in terms of forgetting) from pre-trained initialization vary across different tasks.

5-dataset-NLP For example, in the case of DBPedia (Figures A.1c, A.1d, A.1o) and AGNews
(Figures A.1b, A.1f, A.1j) datasets, we see pre-trained DistilBERT undergoes little to almost
no forgetting. One plausible explanation for these results is that both datasets are for the article
classification tasks, DBPedia is Wikipedia article classification (14 classes) and AGNews is
news article classification (4 classes), and share similar domains with the pre-training corpora
(Wikipedia and Books). On the other hand, we see a significant forgetting in the case of Yelp
(Figures A.1a, A.1g, A.1k) and Amazon datasets (Figure A.1l). Both of these datasets are
review sentiment classification tasks (5 classes). We know that the reviews domain (noisy text
from Yelp.com and Amazon.com) is less similar with the pre-training corpora (clean text from
Wikipedia and Books), and might be one of the reasons behind the drop in performance. Further,
note that as we train on the sequence of tasks, we expect to see positive/ negative transfer from
related/ unrelated tasks. For example, we see that the performance on Yelp improves significantly
after training on Amazon (Figures A.1a, A.1g, A.1n), demonstrating an example of positive
transfer from the related task.

5-dataset-CV Here, we report that the forgetting is more severe for SVHN (Figures A.2a,
A.2d, A.2h) and CIFAR-10 (Figures A.2g, A.2l, A.2m) as compared to MNIST (Figures A.2e,
A.2n), notMNIST (Figures A.2b, A.2f, A.2i, A.2o). Although SVHN and MNIST both are
digit recognition tasks, we believe that the realistic nature (house numbers in Google Street
View images) of SVHN images makes them more susceptible to forgetting, even in the case of
pre-trained ResNet-18 models.

A.3 Loss Contours

In this section we present loss contours for task 1/ task 2 for all task sequences (refer to Section 3.2
for task sequences) for 5-dataset-NLP, Split YahooQA, Split CIFAR-50, and 5-dataset-CV. In
line with our observation from the sharpness and linear model interpolation analyses, pre-trained
initialized models lead to flatter task minima for subsequent tasks as well.
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Figure A.1: Evolution of task accuracy during sequential training on 5-dataset-NLP. We compare
the performance of pre-trained and randomly initialized models, for first three tasks in a sequence,
across five different random task orderings (Seq1, Seq2, Seq3, Seq4, Seq5). We see that both
models start with approximately equal task accuracy, but pre-trained initialized models undergo
lesser forgetting than randomly initialized models.
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Figure A.2: Evolution of task accuracy during sequential training on 5-dataset-CV. We compare
the performance of pre-trained and randomly initialized models, for first three tasks in a sequence,
across five different random task orderings (Seq1, Seq2, Seq3, Seq4, Seq5). We see that both
models start with approximately equal task accuracy (except for CIFAR-10), but pre-trained
initialized models undergo lesser forgetting than randomly initialized models.
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Figure A.3: Loss contours for Task 1 on 5 task sequences of 5-dataset-NLP. Each contour shows
the location of the model parameters after training sequentially on Task 1 (w1), Task 2 (w2), Task
3 (w3). The top row shows contours for randomly initialized models (R) and the bottom row
shows contours for pre-trained initialized models (PT).
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Figure A.4: Loss contours for Task 2 on 5 task sequences of 5-dataset-NLP.
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Figure A.5: Loss contours for Task 1 on 5 task sequences of Split YahooQA.
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Figure A.6: Loss contours for Task 2 on 5 task sequences of Split YahooQA.
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Figure A.7: Loss contours for Task 1 on 5 task sequences of Split CIFAR-50.
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Figure A.8: Loss contours for Task 2 on 5 task sequences of Split CIFAR-50.
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Figure A.9: Loss contours for Task 1 on 5 task sequences of 5-dataset-CV.
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Figure A.10: Loss contours for Task 2 on 5 task sequences of 5-dataset-CV.
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Appendix B

Additional experimental details and results
for efficient meta lifelong-learning with
limited memory

B.1 Dataset Specific Results
We report per-dataset specific results for text classification in Table B.1 and for question answering
in Table B.2. For A-GEM and MbPA++ baselines, we obtain results from (d’Autume et al., 2019).
A-GEM, Replay, MbPA++ and MbPA++ (Our Impl.) methods use rM = 100% memory size
while our proposed framework, Meta-MbPA, and MbPA++(1%) use rM = 1% memory size.

B.2 Single Task and Multi-task Models Results
We report results for single-task models that uses only single-task data and multi-task learning
models using different amounts of training data in Table B.3. For text classification, we report
accuracy scores and for question answering, we report F1 scores.

B.3 Catastrophic Forgetting
To understand the severity of the catastrophic forgetting of different models, in Figure 6.2 and Table
B.4, we report the performance on the first dataset as training progresses. For example, we show re-
sults for AGNews as we train different models on AGNews→Yelp→Amazon→Yahoo→DBpedia
dataset order in lifelong learning setup. We also show the results prior to training on any dataset
(denoted by “Initial").
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Order Dataset FT Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA
EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 2.0 29.7 42.5 49.2 45.7 59.2 54.2 62.1
2 4.3 0.1 89.8 50.1 91.6 94.0 91.0 93.7
3 95.8 97.5 96.0 98.7 96.3 98.5 98.5 99.1
4 1.3 18.5 56.8 45.2 54.6 57.7 56.7 60.7
5 74.2 73.2 68.2 74.0 65.6 67.2 66.7 73.8

Average 35.5 43.8 70.7 63.4 70.8 75.3 73.4 77.9

ii

1 62.2 89.9 80.1 98.7 95.8 98.5 98.0 99.0
2 0.0 0.1 50.3 54.6 63.1 69.7 61.7 70.2
3 39.4 40.3 91.3 89.3 92.2 95.0 93.0 92.5
4 61.3 60.0 57.3 61.5 55.7 55.2 55.2 60.1
5 61.2 58.5 50.6 61.1 47.7 54.7 52.7 61.5

Average 44.8 49.8 65.9 73.0 70.9 74.6 72.1 76.7

iii

1 11.4 52.5 41.1 54.8 44.3 59.2 53.7 59.6
2 2.1 14.9 55.0 31.9 62.7 67.7 60.2 70.2
3 12.8 40.3 54.6 52.0 54.4 58.2 60.7 63.8
4 92.5 98.0 93.3 97.4 96.2 98.5 98.0 98.9
5 93.3 91.8 93.6 93.1 93.4 94.5 92.5 94.1

Average 42.4 59.5 67.5 65.8 70.2 75.6 73.0 77.3

iv

1 0.0 31.9 90.8 80.3 91.8 94.0 91.0 93.1
2 8.3 33.3 44.9 59.3 44.9 57.2 54.2 60.8
3 3.6 22.2 60.2 59.6 55.7 59.7 61.2 61.6
4 31.8 73.5 65.4 71.9 65.3 68.7 63.7 73.6
5 99.1 98.9 56.9 99.1 95.8 98.0 98.5 99.1

Average 28.6 52.0 63.6 74.0 70.7 75.5 73.7 77.6

Table B.1: Dataset specific accuracy for text classification tasks for different dataset orders
and models. † Results obtained from (d’Autume et al., 2019). Where applicable, we use
rM = 100% unless denoted otherwise.
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Order Dataset FT Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA
EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 40.5 42.9 36.7 44.1 47.2 44.3 42.6 49.9
2 60.1 57.4 51.8 60.7 57.7 62.9 60.0 63.1
3 58.2 53.8 53.4 58.7 58.9 61.2 58.8 61.5
4 85.0 77.7 82.5 85.5 84.3 84.7 86.8 84.7

Average 60.9 58.0 56.1 62.3 62.0 63.3 62.0 64.8

ii

1 66.8 78.8 64.2 73.1 72.6 80.4 81.8 80.4
2 64.2 59.5 62.5 64.2 63.4 65.3 60.7 61.5
3 31.4 28.6 43.4 41.0 50.5 42.0 41.6 52.1
4 66.7 61.9 63.5 66.8 63.0 66.1 64.3 67.0

Average 57.3 57.2 58.4 61.3 62.4 63.5 62.1 65.3

iii

1 41.6 57.2 47.6 58.7 56.0 62.0 59.4 65.7
2 38.8 51.9 47.0 54.2 56.8 53.4 57.3 59.2
3 54.4 63.1 57.4 67.7 78.0 81.8 83.9 80.7
4 53.1 25.5 57.4 52.7 54.9 49.0 46.9 52.1

Average 47.0 49.5 52.4 58.3 61.4 61.6 61.8 64.4

iv

1 58.1 60.5 54.8 59.4 59.0 58.9 60.8 61.3
2 39.8 36.3 38.8 45.0 48.7 43.5 39.2 50.4
3 60.5 60.4 53.4 61.6 58.1 64.2 61.3 63.7
4 85.6 77.3 84.7 85.6 83.6 82.8 85.3 84.5

Average 61.0 58.7 57.9 62.9 62.4 62.4 61.6 65.0

Table B.2: Dataset specific F1 scores for question answering tasks for different dataset
orders and models. † Results obtained from (d’Autume et al., 2019). Where applicable, we use
rM = 100% unless denoted otherwise.

Dataset Single Model MTL (1%) MTL (10%) MTL (100 %)
Text Classification

AGNews 93.6 83.1 88.7 94.0
Amazon 61.8 38.6 54.2 63.5
DBPedia 99.2 78.1 91.4 99.3

Yahoo 74.9 15.8 65.6 75.3
Yelp 61.9 36.4 52.8 62.6

Average 78.28 50.4 70.5 78.9
Question Answering

QuAC 54.0 20.9 30.9 53.5
SQuAD 87.8 60.5 75.2 88.1

Trivia Web 65.8 49.2 62.2 67.7
Trivia Wikipedia 62.9 45.9 56.5 64.9

Average 67.6 44.1 56.2 68.6

Table B.3: Single model and Multi-Task Learning (MTL) results for text classification and
question answering tasks. MTL (X%) denotes X% of the training examples are used per dataset
to train MTL models.
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First Dataset FT Online Replay MbPA++ Meta-MbPA
Dataset EWC (Our Impl.) (rM = 1%)

Text Classification

AGNews

0 (Initial) 0.2 0.2 0.2 0.2 0.2
1 (AGNews) 94.2 94.1 94.0 93.5 94.3
2 (Yelp) 45.9 78.2 92.4 94.5 94.1
3 (Amazon) 30.2 62.5 87.9 93.0 93.5
4 (Yahoo) 0.0 9.2 74.4 92.0 93.1
5 (DBPedia) 0.0 31.9 80.3 93.0 93.1

Yelp

0 (Initial) 0.2 0.2 0.2 0.2 0.2
1 (Yelp) 62.5 62.0 62.5 57.7 62.5
2 (Yahoo) 4.3 32.3 58.1 56.7 61.0
3 (Amazon) 60.4 61.7 60.1 55.7 61.2
4 (DBPedia) 48.6 61.4 60.3 58.2 61.4
5 (AGNews) 11.4 52.4 54.8 57.7 59.6

Question Answering

QuAC

0 (Initial) 14.1 14.1 14.1 14.1 14.1
1 (QuAC) 51.8 51.8 51.3 50.8 51.8
2 (TrWeb) 28.7 37.8 40.4 41.3 51.6
3 (TrWik) 27.0 35.3 38.8 39.8 50.9
4 (SQuAD) 40.5 42.9 43.7 44.0 49.9

SQuAD

0 (Initial) 7.5 7.5 7.5 7.5 7.5
1 (SQuAD) 87.2 87.2 86.6 88.6 86.8
2 (TrWik) 65.1 79.8 69.6 78.4 85.5
3 (QuAC) 48.5 70.0 54.4 76.2 79.0
4 (TrWeb) 66.8 78.8 69.4 81.5 80.4

Table B.4: Performance of the first dataset as training progresses for text classification and
question answering tasks over different dataset orders and models. Where applicable, we use
rM = 100% unless denoted otherwise. “0 (Initial)" denotes model before training on any dataset.
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Appendix C

Additional experimental details and results
for DSI++

C.1 Dataset

Dataset #D Natural Questions (NQ) MS MARCO
#Train #Validation #Test #Train #Validation #Test

R0 50K 53.8K 13.5K 3.9K 2M 25.0K 3.6K
R1 10K 10.7K 2.7K 809 400K 5.1K 762
R2 10K 10.6K 2.7K 787 400K 5.1K 770
R3 10K 10.7K 2.7K 727 400K 4.9K 734
R4 10K 10.9K 2.7K 772 400K 4.9K 730
R5 10K 10.7K 2.7K 847 400K 4.9K 660

Table C.1: DSI++ dataset statistics for NQ and MS MARCO: memorization and retrieval tasks.

C.2 Additional Results
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Figure C.1: Systematic study about forgetting and forward transfer when incrementally indexing
new corpus of documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid
representations. We use atomic docids by default and denote (N)/(S) for naively/semantically
structured string docids. ↑ indicates higher is better, ↓ indicates lower is better. We observe that
by increasing the model scale, the average An and learning LAn performance improves. However,
forgetting Fn is severe across all model scales. Moreover, we observe that naive string docids (N)
underperforms atomic docids across Hits@10 metric. Similar to Figure 7.2, imbuing the docid
space with semantic (S) structure alleviates the forgetting compared to an arbitrary/ naive (N)
structure.
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Figure C.2: Investigating the effectiveness of generative memory in mitigating forgetting when
continuously indexing new corpus Dn (T5-Base model and atomic docids representation) for the
NQ dataset. ↑ indicates higher is better, ↓ indicates lower is better. We observe that continual
indexing of old and new documents cl(Un) help to alleviate forgetting of older documents when
evaluated on retrieval tasks. However, average Hits@1 (An) still undergo 19 points drop after
sequential updates (D0 → D1 · · · → D5). We observe that by augmenting generative memory
during continual indexing not only reduces the forgetting (Fn) but also improves average Hits@1
(An) by +17.3% over continual indexing.
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Figure C.3: Investigating the effectiveness of generative memory in mitigating forgetting when
continuously indexing new corpus Dn (T5-Base model and atomic docids representation) for
the MS MARCO dataset. ↑ indicates higher is better, ↓ indicates lower is better. We observe
that continual indexing of old and new documents cl(Un) helps to alleviate forgetting of older
documents when evaluated on retrieval tasks. However, average Hits@10 (An) still undergo 25.0
points drop after sequential updates (D0 → D1 · · · → D5). Generative memory enables sparse
replaying of pseudo-queries for old documents and continual semi-supervised learning with new
documents. We observe that augmenting generative memory during continual indexing not only
reduces the forgetting (Fn) but also improves average Hits@10 (An) by +23.0% over considered
baselines.
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