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Abstract
Affective computing has emerged as a core research topic in artificial intelligence

(AI) with broad applications in healthcare. For example, affective technologies can
be used as a decision-support tool that quantifies behaviors related to emotions and
affective states, which helps clinicians in their assessment of mood disorders such
as depression. For these AI applications to be used and trusted, we need to focus
on improving their transparency. Transparency is the degree to which users have
information about a model’s internal mechanics and the reliability of its output. We
expand this definition to include information about the data used to train a model, as
data influences what a model learns. These three components of transparency (data,
reliability, and internal mechanics) are studied in this thesis in two main research
thrusts geared towards improving transparency for machine learning practitioners.

In our first thrust on general transparency, we explore three challenges related
to data and reliability transparency, where two focus on data transparency and one
on reliability transparency. The first challenge, referred to as population-level data
transparency, is analyzing data patterns across people to understand which patterns
a model will likely learn. For this, we used statistical approaches to analyze pat-
terns between how people speak and the symptom severity of psychosis. The second
challenge, referred to as reliability transparency, estimates how accurate a model’s
output is to enable better risk management, as the output might not always be cor-
rect. We created approaches to efficiently estimate the reliability of a primary model
using a secondary model that learns when the primary model makes mistakes. The
third challenge, referred to as personalized data transparency, is separating person-
specific patterns from patterns shared across people and analyzing them. We effi-
ciently integrated neural networks with mixed effect models, a statistical modeling
approach that can separate these two types of patterns.

In our second research thrust, we focus on the third component of transparency,
internal mechanics. More specifically, we focus on the mechanics of multimodal
models as affect is expressed through multiple modalities, such as visually smiling
and audibly laughing. The first challenge, referred to as modality importance trans-
parency, quantifies how much a model focuses on modalities to derive its output,
which is a proxy for how important each modality is. We created a model that not
only quantifies the modality importance but also reflects how informative humans
perceive each modality. The second challenge, referred to as multimodal interac-
tion transparency, quantifies interactions between three modalities, including both
bimodal and trimodal interactions. Our approach separated unimodal, bimodal, and
trimodal interactions by prioritizing simpler interactions over more complicated in-
teractions, e.g., unimodal prioritized over bimodal. The third challenge, referred to
as modality contribution transparency, factorizes a modality’s unique contributions,
what can be explained by only one modality, from what can redundantly be con-
tributed by multiple modalities. Our approach used correlational measures to define
these contributions and the learned factorization correlated with human judgments.
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Chapter 1

Introduction

Affective computing is an interdisciplinary field at the intersection of computer science, psychol-

ogy, and cognitive science. It aims to create computational models that perceive, understand, and

express affective states such as emotions [37, 130, 162]. Perceiving affective states will make to-

day’s artificial intelligence (AI) applications more emotionally and socially aware. It can enable

future AI applications assisting in healthcare [24, 39, 168], for example, providing information

about perceived mood disorder symptoms based on what a person says [46], their visual appear-

ance [27, 200], or even their smartphone usage [112]. People trusting affective AI applications

is integral in making these future AI applications a reality as people tend to trust them less and

might, therefore, not use them [56, 60]. To increase trust in affective AI applications in the fu-

ture, we focus on a core dimension of it, transparency [58]. Transparency is the degree to which

users have information about a model’s internal mechanics and its reliability [72]. We extend

this definition to include information about the data used to train a model, as data influences

what a model learns. As visualized in Figure 1.1, we focus on two main research thrusts for

transparency in affect perception. In the first thrust, we focus on challenges covering data and re-

liability, while model mechanics are studied later in the second thrust with a focus on multimodal

models for affect perception. Both thrusts focus on improving transparency of affect perception

applications to hopefully make them, in the future, more trustworthy. In this thesis, we focus on

1



improving transparency for machine learning practitioners who have a technical understanding

of how computational models function.

The first thrust on general transparency covers data and reliability, split into three challenges:

uncovering patterns in the data at the population-level (population-level data transparency), de-

termining how reliable the model’s output is (reliability transparency), and uncovering person-

specific patterns in the data (personalized data transparency). The first challenge is gaining in-

sights into patterns in the data to better understand the data before training affect perception

models (population-level data transparency). We start by focusing on population-level pat-

terns, e.g., patterns shared by people, as we typically want a model to perform well across many

people. Analyzing these patterns can provide insights into what a model is likely to learn [113].

The second challenge is being transparent about how reliable the model’s output is (reliability

transparency). While we like the model’s output always to be correct, it might be incorrect in

some cases. Knowing how reliable a model’s output is, enables better risk management, which

can especially be important in critical areas such as healthcare [5, 213]. A model’s unreliable out-

put can be disregarded or might still be used if it is within an acceptable margin of error. The third

challenge extends population-level data transparency by separating population-level and person-

specific patterns (personalized data transparency). Many patterns, for example, behaviors and

regular events, are consistently expressed across people (population-level behaviors), such as

people being less stressed on weekends, but some patterns are specific to individual people, such

as a person’s weekly events [97, 160]. To better understand these two types of patterns, we need

to account for individual differences in an interpretable manner to improve transparency. Person-

alized models that have both population-level and person-specific parameters have the potential

to learn both types of patterns in an interpretable manner [41].

Since affective states are expressed through behaviors in multiple modalities [25, 152], such

as through smiling in the visual modality, laughing in the acoustic modality, and saying ”like

it” in the language modality, our second thrust on multimodal transparency focuses on model
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Figure 1.1: The general transparency thrust focuses on data and reliability, while the multimodal

transparency thrust focuses on multimodal model mechanics.
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mechanics in the multimodal setting when a model uses multiple modalities. We focus on quan-

tifying the importance of modalities (modality importance transparency), analyzing which inter-

actions a model learns between modalities (multimodal interaction transparency), and analyzing

what a modality uniquely contributes to the model’s output and what is redundantly contributed

by multiple modalities (modality contribution transparency).

First, knowing how much a model focuses on a modality can inform machine learning prac-

titioners how important the modalities of the current input are for the model’s output (modality

importance transparency). For example, the vision modality might be more important when

a person smiles. Beyond quantifying modality importance, if a model’s modality importance is

similar to how humans perceive the importance of modalities, the model might perform better

and be perceived as more trustworthy in the future [58]. Second, information from one modality

can interact with information from another modality (multimodal interaction transparency).

If someone says ”this is so ridiculous”, they might be perceived as very negative when also

frowning or as very positive when smiling. In this example, the language modality amplifies the

directionality expressed in the vision modality. The challenge we address is defining types of

multimodal interactions and quantifying how much they contribute to the model’s output. Fi-

nally, a modality might contribute information that is provided by no other modality (unique

contribution) or information that is also provided by another modality (redundant contribution;

modality contribution transparency). For example, smiling and laughing provide similar in-

formation indicating a positive state. Our goal is to inform machine learning practitioners in an

interpretable manner about the unique and redundant modality contributions.

1.1 General Transparency Thrust

In the thrust on general transparency, we concentrate on three challenges focused primarily on

data and reliability transparency. We analyze population-level data patterns to understand pat-

terns consistent across people (population-level data transparency), measure a model’s reliability
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to indicate how accurate a model’s output is (reliability transparency), and quantify personalized

data patterns by analyzing which adjustments models learn for different people (personalized

data transparency).

1.1.1 Population-Level Data Transparency

The goal of data transparency is to gain insights into the relationship and structure of the data.

Analyzing these relationships also gives insights into what a model will likely learn [113]. We

propose to start by reviewing statistical approaches on population-level data transparency to ana-

lyze general trends across an entire dataset, e.g., trends consistent across people. This challenge

has been studied in statistics, especially in the linear context. We propose to take advantage of

these approaches and empirically apply them to a specific case where transparency is important,

namely to decision-support technologies in healthcare. Decision-support technologies aim to

quantify symptom-relevant behavior to assist clinicians in their assessment.

Population-level data transparency is especially important for small datasets, which is often

the case for clinical datasets, as an input might, by coincidence, have a strong relation to the

ground truth. In Chapter 2, we explore the relation between acoustic features and the severity of

symptoms of psychosis, such as schizophrenia. The long-term goal is to create decision-support

systems that help clinicians assess symptoms while conducting semi-structured interviews with

their clients. RQ 1.1: Which acoustic behaviors have a relationship to severities of psychosis

symptoms that are consistent across people?

1.1.2 Reliability Transparency

In critical applications, such as healthcare, it is important to know not only the model’s out-

put but also how close the output is to the ground truth. This is often referred to as reliability

transparency. While we would like for the model’s output to always be correct, the output will

sometimes be wrong. Having an estimate of how reliable the model output is can enable better
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risk management. For example, the model output might be relied upon only when it is within an

acceptable margin of error.

An example of a reliability estimate for regression models are intervals around the model’s

output where their width indicates how reliable the output is. When the interval is small, the

output is more reliable, whereas when the interval is larger, the model’s output is less reliable. In

Chapter 3, our goal is to create a reliability estimate for the regression task of estimating facial

action units. Facial action units describe the contraction and relaxation of facial muscles and play

a crucial role in inferring someone’s emotions which is important for assessing mood-related

symptoms [47]. The first challenge of creating a reliability estimate for facial action units is

defining the properties of the reliability estimate, for example, as small as possible intervals that

still contain the ground truth at a targeted rate. The second challenge is learning this reliability

estimate. RQ 1.2: How can we derive small prediction intervals containing the ground truth at

a target rate?

1.1.3 Personalized Data Transparency

We go beyond our initial study of population-level data patterns by separating behavioral pat-

terns into a) patterns that are consistent across people (population-level patterns) and b) patterns

that are specific to some individuals. This can be achieved computationally by having person-

generic parameters (for the population-level patterns) and person-specific parameters to represent

person-specific patterns. Our secondary goal is to learn those parameters while keeping some in-

terpretability to analyze similarities and differences between people. For example, does an affect

recognition model learn different person-specific parameters for people who experience symp-

toms of mood disorders compared to people who do not and what do those differences represent?

Such person-specific models are important when person-specific differences are prominent, for

example, while self-assessment ratings might be consistent within a person, they might not be

consistent across people [145], or the input features might be very similar within a person but

6



very different across people [160], for example, people use their phones very differently.

One popular statistical framework with both person-generic and person-specific parameters

is the framework of mixed effect models [41]. In Chapter 4, we present our work combining

mixed effect models with neural networks. This allows us to efficiently train personalized models

that perform well while separating complex person-generic and person-specific parameters. We

demonstrate that it is possible to analyze the learned person-specific parameters of our proposed

model to identify differences in temporal transition patterns between consecutive affective states

for people experiencing mood disorder symptoms and for people who do not. RQ 1.3: How can

we learn a model quantifying person-generic and person-specific patterns?

1.2 Multimodal Transparency Thrust

The second thrust focuses on challenges providing more information about internal model me-

chanics. In particular, we focus on three model mechanics challenges of multimodal models.

We focus on quantifying the importance of modalities in a human-compatible manner (modal-

ity importance transparency), analyzing which multimodal interactions a model learns between

modalities (multimodal interaction transparency), and factorizing the contributions from each

modality in unique and redundant contributions (modality contribution transparency).

1.2.1 Modality Importance Transparency

The first challenge of multimodal transparency is quantifying how important each modality is

for the model’s output. For example, does the model focus mostly on language or how a person

speaks? Going beyond quantifying modality importance, we are interested in models whose

modality importance aligns with how important humans perceive the modalities. Quantifying

modality importance not only improves transparency but human-like modality importance might

even, in the future, elicit more trust.
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A first step of modality importance transparency is to study how humans judge the informa-

tiveness of modalities for a specific task, in our case, for affect perception. The second step is

guiding the model’s modality importance using the human modality judgments while not degrad-

ing the model’s performance. The resulting model brings us closer to modality transparency by

learning human-like modality importance. This research is presented in Chapter 5 at the example

of four affective states that have shown a relation to a future onset of depression [167]. RQ 2.1:

How can we learn a model that quantifies its focus on modalities in a human-inspired manner?

1.2.2 Multimodal Interaction Transparency

When simultaneously observing multiple modalities, affective states are often inferred through

interactions between these modalities. For example, when a person says ”this is ridiculous” the

person might be in a very negative or very positive state. If we simultaneously also observe that

the person is smiling, the person might be in a very positive state. We want to quantify which

interactions a model learns between modalities and how much they influence the model’s output.

To study multimodal interaction transparency, the primary challenge is to mathematically

characterize and separate the different types of interactions between modalities, e.g., bimodal

and trimodal interactions. In Chapter 6, we explore and evaluate this challenge on six datasets

covering multiple affective phenomena. The secondary challenge is conducting human studies

to test whether the learned interactions are similar to the interactions humans use. RQ 2.2: How

can we factorize a model output to quantify which unimodal, bimodal, and trimodal interactions

are necessary for the output?

1.2.3 Modality Contribution Transparency

Modalities often contribute unique information that no other modality contains. In other cases,

modalities can have redundant information that is also conveyed through other modalities. An

example of redundant information might be visually smiling while also audibly laughing. The
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goal of this technical challenge is learning a model that factorizes its output to separate contri-

butions that are unique to a modality and that are redundant between modalities. Our proposed

approach can help machine learning practitioners inspect what a modality uniquely contributes

and what overlaps between modalities.

The first sub-challenge when factorizing unique and redundant contributions is defining them

mathematically so that we can also test whether we achieve the desired factorization. The sec-

ond sub-challenge is that we might need to incentivize a model to derive redundant contributions

from multiple modalities, as intuitively, a model might not need to derive the same information

twice. In Chapter 7, we propose a model that defines unique and redundant contributions using

correlational measures and that is incentivized to learn redundant contributions. Our proposed

model explicitly factorizes these contributions, making it easier for machine learning practition-

ers to inspect how these two types of contributions influence the model’s output. Finally, we

compare the outcome of human judgments with the learned factorization of our model. RQ 2.3:

How can we factorize what is uniquely contributed by a modality despite modalities providing

redundant information for a task?

1.3 Contributions

1. Population-Level Data Transparency (Chapter 2) [207]

(a) We analyzed how acoustic features, such as voice quality consistency, variation of

speech rate and volume, vowel space, and a parameter of glottal flow, relate to the

severity of symptoms of psychosis as measured by the Brief Psychiatric Rating Scale

(BPRS) [136]. We used a nonparametric rank correlation measure between features

and the rating scale to interpret their relationship. Further, we showed that specific

acoustic descriptors could track a patient’s state from admission to discharge.

(b) The machine learning experiments using Support Vector Machines demonstrated that
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a significant amount of variance in the BPRS items could be predicted.

(c) Towards a fully automatic system, we evaluated our model’s performance when re-

placing the manual speaker segmentation with an automatic speaker segmentation.

2. Reliability Transparency (Chapter 3) [206]

(a) We operationalized reliability in regression as the absolute error between a model’s

prediction and the ground truth. Our two proposed approaches used a secondary

model to predict the reliability of a primary predictive model. Our first approach

leveraged the assumption that similar observations are likely to have similar reliabil-

ity and predicts reliability with a non-parametric method. Our second approach is a

secondary model directly predicting the primary predictive model’s reliability.

(b) We observed that approaches that directly predict the reliability generally perform

better than approaches that indirectly estimate reliability.

(c) Using our reliability estimate, we derived intervals using the framework of inductive

conformal prediction. The intervals based on our proposed reliability methods are

smaller than other reliability methods.

3. Personalized Data Transparency (Chapter 4) [210]

(a) We efficiently integrated mixed effect models in neural networks to learn person-

generic and person-specific parameters.

(b) Our approach demonstrated performance increases across six datasets in a within-

person testing setup. Our model performed well, even in the extreme case of very

little data per person.

(c) We showcased that the learned person-specific parameters can be interpreted and an-

alyzed. We learned person-specific transition patterns between affective states and

observed significant differences in those patterns between people affected by depres-

sion and people not affected by depression.
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4. Modality Importance Transparency (Chapter 5) [208]

(a) We performed a human study to understand better which subset of modalities peo-

ple find informative when confirming four affective states. Our studies showed that

humans can reliably annotate which modalities are informative.

(b) We observed that models guided by the human annotations significantly improved

interpretability on unseen data, i.e., the models attend to modalities similarly to how

humans rate the modality informativeness, while at the same time showing a slight

increase in predictive performance.

(c) Replacing the learned modality influence with the human annotations yields a sig-

nificant performance improvement in guided models demonstrating that users could

potentially improve the predictive performance by correcting the model.

5. Multimodal Interaction Transparency (Chapter 6) [209]

(a) We proposed Multimodal Residual Optimization (MRO) to separate unimodal, bi-

modal, and trimodal interactions in a multimodal model. Empirically, we observed

that MRO successfully separates unimodal, bimodal, and trimodal interactions while

not degrading predictive performance.

(b) Since MRO-optimized models prioritize simpler interactions over more complex in-

teractions, they can be used to debug whether more complex interactions are required

for a task on a specific dataset.

(c) We complemented our empirical results with a human perception study and observed

that MRO’s learned multimodal interactions align with human judgments.

6. Modality Contribution Transparency (Chapter 7)

(a) We proposed a covariance-based optimization method to learn factorized models that

express their predictions as the sum of unique and pairwise redundant contributions.

The unique contributions represent what is specific to a modality, and the pairwise
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redundant contributions represent the commonalities between the two modalities.

(b) On eight affective datasets, we observed that our approach maintained performance

while also achieving its factorization. We further, observed that our approach is

more robust to missing modalities as it derives redundant contributions from mul-

tiple modalities.

(c) We demonstrated that the learned factorization has relationships to human judgments

on three datasets, indicating that our approach has the potential to improve inter-

pretability.
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Chapter 2

Population-Level Data Transparency

Before training a model, we want to understand general patterns of the data in an interpretable

way (population-level data transparency). This analysis is especially important for clinical

datasets for two reasons. First, transparency is more important in critical domains such as

healthcare. Second, many clinical datasets’ major goal is to better understand a condition. In

this chapter, we explore the relationship between acoustic features and the severity of symptoms

of psychosis to make the patterns likely learned by a model more transparent. The work in this

chapter was published at the Interspeech conference [207]1.

Psychosis disorders, such as bipolar and schizophrenia, severely impact social functions [86,

129]. Psychosis affects how we speak [59] and how we express ourselves with facial expres-

sions [184, 193]. Thus, medical assessments have included speech-related descriptors for a long

time [119, 185]. Such differences in speech might be difficult for humans to assess objectively

but can be captured by computational acoustic descriptors. This brings the opportunity to support

clinicians in assessing symptoms and allows for better decision-making.

Work on this topic is limited, and many computational acoustic descriptors have not been

studied with clinical patients suffering from psychosis, including articulation rate, vowel space [164],

1The published paper is titled ”Computational Analysis of Acoustic Descriptors in Psychotic Patients” and is

available at https://doi.org/10.21437/Interspeech.2017-466.
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speech volume, and glottal flow parameters. While an early measure of voice tenseness was as-

sociated with schizophrenia [181], more recent robust measures of voice quality such as peak

slope [79] have not been investigated. Psychosis is characterized by positive symptoms, exag-

gerations of normal functions (e.g., grandiosity and hallucination), and negative symptoms, de-

clines of normal functions (e.g., emotional withdrawal and motor retardation) [83, 133]. While

speech-related behaviors of negative symptoms have been studied through work on depression

and PTSD, positive symptoms have not been paid much attention in computational studies.

In this chapter, we perform a computational study of acoustic descriptors to better understand

psychosis and its positive symptoms. This study is performed on a dataset of semi-structured

interviews between clinicians and clinical patients experiencing symptoms of psychosis. We

investigate the following questions.

Q1: What are the acoustic descriptors related to overall psychosis severity? What are the acous-

tic descriptors related to specific positive symptoms?

Q2: Can we estimate positive symptoms and overall severity of psychosis with acoustic de-

scriptors?

2.1 Related Work

While the research community has studied how individuals suffering from psychosis perceive,

e.g., speech [103] and emotions [92], there is less research on whether they express themselves

differently through speech and language.

In a within-patient study of patients diagnosed with schizophrenia, a decrease of the fun-

damental frequency (pitch) and a better pronunciation of vowels, i.e., the first and second for-

mants were closer to a reference pronunciation, were observed at discharge compared to admis-

sion [181]. In the same study, a tendency toward a more tense voice was observed for patients

with schizophrenia, while the opposite has been seen in depressed patients at discharge [181].
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Compared to this within-patient study, this chapter investigates more acoustic descriptors, includ-

ing a more robust estimator of voice tenseness, between patients. An exhibition of inadequate

speech behaviors, e.g., in volume, rate, and pitch variation, was found in children diagnosed with

schizophrenia compared to a control group of the same size and demographic [59]. The same

study observed that children with schizophrenia were not identifiable by a single speech behav-

ior but often deviated more from the norm on many speech-related behaviors, e.g., speaking too

loudly or quietly. In contrast to this chapter, all speech- and language-related behaviors were

manually assessed.

More recently, second formant variation was linked to the severity of negative symptoms [83],

e.g., blunted affect and emotional withdrawal, among patients with schizophrenia [30]. Besides

the second formant, the first formant showed a similar but not statistically significant trend. In

other disorders, more severe negative symptoms have been linked to a smaller vowel space for

self-reported PTSD compared to a control group [164], i.e., similar first and second formants for

different vowels, and to a more tense voice in self-reported depression [163]. Even though these

two studies are based on many individuals, the individuals are not clinically diagnosed and are

not hospitalized, i.e., we expect milder symptoms.

We contrast with previous research by investigating robust computational measures of acous-

tic descriptors, which have not been studied previously in psychosis. Besides establishing rela-

tionships between acoustic descriptors and symptoms, we also investigate the automatic estima-

tion of psychosis severity, focusing on positive symptoms.

2.2 Methods

Our dataset consists of audio and video recordings of 29 semi-structured interviews between

clinicians and 20 unique individuals who are experiencing symptoms of psychosis and are hos-

pitalized in an inpatient service at a psychiatric hospital. The semi-structured interview protocol

was designed to reflect the daily clinical encounters between patients and their clinicians. This
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dataset is a significant expansion of a previously-published dataset used to study facial expres-

sions of patients suffering from psychosis [193]. Our new dataset includes multiple interviews

with the same patient from admission to discharge to analyze temporal changes. While most pa-

tients are diagnosed with schizophrenia, some are diagnosed with bipolar or mania. The average

duration of these interviews is 8.33 minutes (SD=4.22). Of the 29 interviews, 17 interviews are

with male and 12 interviews are with female patients. They are recorded using head-mounted

microphones and two webcams facing the patient’s and clinician’s upper body.

After each interview, the patients are assessed using the 24-item version of the Brief Psy-

chiatric Rating Scale (BPRS) [119]. It was designed to measure the severity of relatively inde-

pendent symptoms often found in psychiatric disorders [136]. The BPRS total score (M=42.4,

SD=13.6) is the sum of all BPRS items, which are scored on an ordinal scale from 1 (not present)

to 7 (extremely severe). Therefore, BPRS total ranges theoretically from 24 to 168. In our anal-

ysis, we focus on the total score as well as on positive items [133]. Further, we omit BPRS

items that do not vary in our patient population (SD<1). This leaves the following six positive

BPRS items: grandiosity, elevated mood, hallucination, unusual thoughts, excitement, and motor

hyperactivity.

2.2.1 Speaker Diarization

A first step when computing acoustic descriptors is speaker diarization. Our experimental setup

includes head-mounted microphones designed to reduce cross-over speech. Even in these good

recording setups, we hear the other person talking. This chapter explores manual annotations

and an automatic diarization for speaker diarization. The experiments with manual diarization

allow studying computational acoustic indicators in the ideal case. Experiments using automatic

diarization allow us to get closer to our goal of building decision-support tools.

Our automatic speaker diarization is based on the time delay of arrival (TDOA). Since we

have only two speakers, each wearing a head-mounted microphone, we can distinguish speakers
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by TDOA between the two audio signals as estimated by the generalized cross-correlation with

phase transform [90]. The patient and clinician, who are spatially separated by the recording

setup, are approximately 3 meters apart. Therefore, we expect a delay of 8ms between the audio

signals. TDOA might not be reliably estimated when the other microphone does not pick up

an audio signal. Therefore, we rely on TDOA only if a voice is detected [43] in both audio

signals. If TDOA is less than 5ms, and if a voice is detected in both signals, we assume that both

patient and clinician are speaking. If speech is detected in one signal only, we assume that the

corresponding person is speaking. A recording problem during six interviews made it impossible

to recover the audio signal from the clinician’s microphone. For this reason, experiments with

automatic diarization are performed on 23 interviews.

We calculate the automatic approach’s diarization error rate (DER) over all interviews based

on the manual annotations. It is suggested to use a 250ms no-score collar around the annotated

segment boundaries [134]. However, this would remove a significant amount of our annotations.

Without this collar, we reach a DER of 20.10%, which is still comparable to DERs in similar

settings [64] with the collar.

2.2.2 Computational Acoustic Descriptors

As mentioned in Section 2.1, limited prior work has investigated computational acoustic de-

scriptors in interviews with patients suffering from psychosis. We use descriptors inspired by

work on depression and PTSD behavior analyses [163, 164]. Our descriptors include the first

Mel-frequency cepstral coefficient (MFCC0) as a measure of volume, vowel space [164], for-

mants (F1 and F2), fundamental frequency, voice quality descriptors from COVAREP [35], and

articulation rate from Praat [33].

Since many descriptors can only be estimated for voicing, we remove parts of the audio

signals where the patient is not voicing [42]. On average, we have 3.14 minutes (SD=2.08) of

voicing for the patients. Then, we compute descriptive statistics of our descriptors, i.e., me-
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dian and interquartile range (IQR). These two statistics are used because they are robust against

outliers, which might occur due to the diarization.

Articulation rate is the ratio of the number of syllables and the phonation time over all speech

segments according to the diarization. The variation of articulation rate is the IQR of the artic-

ulation rates per speech segment. We do not calculate the median for fundamental frequency

or formants because they have only been shown to be indicative in within-patient studies [181].

Speech volume (median of MFCC0) is not used because it has been shown to be sensitive to the

recording environment. This leads to 12 acoustic descriptors for computational analysis. All

descriptors are mean-centered and normalized by their standard deviation.

2.2.3 Automatic Estimation of BPRS Items

In Q2 we want to estimate BPRS items. Since we have not too many interviews, we choose

linear support vector regression (SVR) to estimate BPRS items. Experiments are performed in

a speaker-independent fashion using the leave-one-patient-out method. Hyperparameters of the

linear SVR, including descriptor selection, are determined automatically using a nested leave-

one-patient-out validation on the training set.

For each training partition, we find a suitable subset of descriptors by conducting a greedy

forward selection on the minimizing criteria −corr(Y, Ŷ ) (Pearson’s linear correlation), where

Ŷ are the estimated scores and Y the corresponding ground truth scores. The maximum num-

ber of descriptors is restricted to five descriptors to prevent over-fitting. During the descriptor

selection, we validate the SVR’s penalty parameter C (between 0.001 and 100) with Bayesian

optimization [172], which uses a Gaussian process to model −corr(Y, Ŷ ) of the nested leave-

one-patient-out validation.

We use two evaluation metrics in our experiments: Pearson’s correlation coefficient (r) and

the mean absolute error (MAE). Before these two metrics are calculated, estimations are clipped

to valid BPRS scores. For comparison, we calculate the MAE of a naive mean estimation
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(MAEnaive) as a baseline, where the mean is calculated on each training fold.

2.3 Results and Discussion

In this section, we present our experiments to study the previously introduced research questions:

(Q1) correlation analysis of acoustic descriptor with positive BPRS items and BPRS total score,

and (Q2) models to estimate BPRS items based on computational descriptors.

2.3.1 Acoustic Descriptors of Psychosis Symptoms (Q1)

We investigate acoustic descriptors related to the BPRS total score and positive BPRS items.

Since the relationship between acoustic descriptors and BPRS might be non-linear, we use Spear-

man’s rank correlation coefficient ρ. All descriptors are based on manual diarization to use all

29 interviews. Our significant correlation results (p < 0.05) are summarized in Figure 2.1 and

Table 2.1. In the next paragraphs, we discuss these results.

Speech volume: IQR of MFCC0, a measure related to the variation of speech volume, corre-

lates positively with BPRS total score. In line with our result, it has been observed that patients

diagnosed with schizophrenia deviate more from the norm for speech volume and other descrip-

tors [59]. Individual positive items show no correlation with a variation in speech volume.

Articulation rate: We do not observe any correlations between articulation rate and BPRS.

However, IQR of articulation rate correlates negatively with the BPRS total score and many

positive items. For children with schizophrenia, it was observed that they have a more excessive

variation in speech rate [59]. We found the opposite to be the case for our dataset.

Glottal flow: Quasi-open-quotient (QOQ) [63] measures the ratio of the opening time of the

vocal folds. The Median and IQR of QOQ correlate negatively with the BPRS total score. Larger

BPRS total scores tend to be related to a smaller QOQ range and a shorter opening time of the vo-

cal folds. The range of QOQ is often reduced for people with functional dysphonias [63], in com-

19



Table 2.1: Significant correlations of acoustic descriptors for all positive BPRS items (p < 0.05).

Positive symptom Acoustic descriptor ρ

Hallucinations Median PS 0.43

IQR F1 -0.40

IQR F2 -0.37

Unusual thoughts IQR PS 0.56

Median PS 0.52

Vowel space 0.41

IQR F2 -0.45

IQR F1 -0.55

Elevated mood Median PS 0.40

IQR F2 -0.38

IQR F1 -0.47

IQR articulation rate -0.62

Grandiosity IQR articulation rate -0.40

IQR F1 -0.44

IQR F2 -0.44

Excitement Vowel space 0.40

IQR articulation rate -0.52

Motor hyperactivity Vowel space 0.45

Median QOQ -0.39

IQR articulation rate -0.46
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Figure 2.1: Correlations between acoustic descriptors and BPRS total score on our dataset. De-

scriptors colored in blue have also been studied in previous work. Median PS is marked differ-

ently because an early descriptor of tenseness [100] has been investigated, but the opposite result

was observed [181].

bination with a low QOQ speaking loudly requires more effort and sounds more “stalled” [63].

Voice quality: Peak slope (PS) [79], a voice quality descriptor related to the breathy-modal-

tense spectrum, correlates positively with many BPRS items. This indicates a more tense voice

for more severe symptoms. A more tense voice was associated with clinical [181] and self-

reported [163] depression, but the opposite was reported for patients with schizophrenia [181].

While the contradicting study observed less tense voice based on an early tenseness measure [100],
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this change was not statistically significant. IQR of PS also correlates positively with many

BPRS items. A variation in breathy-modal-tense voice seems to be as indicative as the actual

voice quality. A positive correlation of IQR of PS indicates that more severe symptoms tend

to be associated with less consistent voice quality. The consistency of voice quality has to our

knowledge never been studied computationally in any clinical study.

Vowel space: It was found that vowel space correlates negatively with self-reported depres-

sion [164]. Depression is mainly characterized by negative symptoms. For positive items, e.g.,

excitement and motor hyperactivity, we observe a positive correlation with vowel space. This

indicates that it is important to analyze positive and negative symptoms separately since effects

could average out, i.e., we do not observe a correlation with overall symptoms.

Formants: IQR of the first two formants correlates negatively with almost all BPRS items,

i.e., a smaller range correlates with more severe symptoms. This has previously been observed

for the variation of the second formant and indicated for the first formant for negative symp-

toms [30]. The first and second formant are mainly influenced by the tongue’s position and

the jaw’s extension. It could be argued that patients suffering from psychosis with more severe

symptoms do not move their tongue [30] and mouth as much.

We further investigate within-patient differences from admission to discharge for one patient.

While some acoustic descriptors, such as pitch in in-between studies, might seem indicative due

to, e.g., a gender bias in a dataset, they might not be indicative in within-studies. Therefore,

we would like to see previously unstudied descriptors behave similarly over time as BPRS total

within a patient from admission to discharge. We plot the two peak slope statistics because they

have the strongest correlations with BPRS total. As shown in Figure 2.2, peak slope’s statistics

behave similarly to BPRS total for this patient.
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Figure 2.2: BPRS total (solid line) and acoustic descriptors (dashed lines) from admission to

discharge for one patient.

2.3.2 Automatic Estimation of BPRS Items (Q2)

Table 2.2 summarizes the estimation results for all positive BPRS items as well as the BPRS

total score. Except for hallucinations and unusual thoughts, we can estimate the BPRS items

well (high correlation and lower MAE than baseline). BPRS specifies to assess these two items

based on only what individuals say, not how they speak. While we observe correlations with

these two items, see Table 2.1, a linear SVR is, in our case, unable to estimate these two items

well. All well-estimable BPRS items have some relation to acoustic descriptors. While motor

hyperactivity might not appear at first glance to be related to acoustic descriptors, the BPRS

manual specifically advises taking rapid speech into account.

The performance comparison between descriptors based on the two diarization systems is

summarized in Table 2.3. Even though all models are trained on descriptors based on manual di-
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Table 2.2: Estimated generalization error of BPRS items on 29 interviews. ∗ and ∗∗ mark signifi-

cantly smaller absolute errors (p < 0.05 and p < 0.01, Wilcoxon signed-rank test).

BPRS item rour MAEour MAEnaive

Hallucinations 0.27 1.00∗ 1.34

Unusual thoughts 0.00 1.12 1.01

Elevated mood 0.73 0.64∗ 1.12

Grandiosity 0.81 0.36∗∗ 0.67

Excitement 0.71 0.60 0.91

Motor hyperactivity 0.74 0.55∗∗ 0.94

Total 0.57 9.73 12.47

arization, we see a very similar performance with descriptors derived from automatic diarization.

This indicates that even though our automatic diarization is imperfect, we can robustly estimate

our descriptors.

2.4 Conclusion

We discovered several acoustic descriptors related to symptoms of psychosis while studying our

first research question (Q1). Among them are a less consistent voice quality (larger variation in

tenseness), a larger variation in speech volume, less variation in the opening time of vocal folds,

a larger vowel space, and a smaller variation in speech rate. We also observe a smaller variation

in formants for the overall severity and positive symptoms, which has been found in prior work

for negative symptoms [30]. For tenseness of voice, our observations are in line with studies of

depression and PTSD [163, 164]: a more tense voice is associated with more severe symptoms.

We see small differences between positive symptoms and the overall severity. Namely, no vari-

ation in speech volume, not as prominent tense voice, and not as prominent reduced variation
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Table 2.3: Performance comparison between descriptors based on manual (m) and automatic (a)

diarization of 23 interviews. ∗ and ∗∗ mark significantly smaller absolute errors (p < 0.05 and

p < 0.01, Wilcoxon signed-rank test).

BPRS item rour MAEour MAEnaive

m a m a

Hallucinations 0.23 0.29 1.15 1.84 1.44

Unusual thoughts 0.12 0.19 1.09 1.17 1.10

Elevated mood 0.78 0.68 0.62∗ 0.80∗ 1.21

Grandiosity 0.82 0.80 0.41∗∗ 0.46∗∗ 0.77

Excitement 0.76 0.72 0.53∗ 0.69 0.94

Motor hyperact. 0.73 0.67 0.51∗∗ 0.84 0.92

Total 0.47 0.49 11.02 10.35 12.56

25



in formants for positive symptoms. Compared to previous work on depression [164], which ob-

served a smaller vowel space for more severe negative symptoms, we observe the opposite for

the severity of positive symptoms. This emphasizes that positive and negative symptoms should

be studied separately.

Based on these computational acoustic descriptors, we trained models to estimate BPRS

(Q2). As we observed a strong relationship between the acoustic features and the BPRS items,

it is very likely that the trained models also learned those relationships. Since we achieved

good performance even with automatic diarization, we can estimate BPRS items without needing

manual diarization.

After understanding general data patterns in this chapter, Chapter 3 focuses on how reliable

the model output is to enable better risk management as the output might not always be correct.

The current chapter is also extended in Chapter 4 to cover more complex patterns at the person-

level.
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Chapter 3

Reliability Transparency

After exploring population-level patterns that a model might learn in Chapter 2, this chapter fo-

cuses on how reliable the model output is for each observation (reliability transparency). Unless

a model can perfectly solve a task, knowing to which degree we should rely on a model’s output

is important, especially in critical such as health care. The work in this chapter was published at

the Automatic Face and Gesture Recognition conference [206]1.

Facial action unit (AU) intensity estimation is central to many critical technologies, including

assistive technologies in health care, driver fitness evaluations in automotive applications, and

screenings in hiring agencies. For many of these applications, transparency is also important.

We need models that predict not only a primary output but also a secondary quantity describing

the reliability of its prediction. This is important for regression tasks as typically only the primary

output, a model’s best guess, is provided without quantifying its reliability.

Reliability in machine learning models primarily originates from two sources: 1) aleatoric

uncertainty, in which observations can be noisy, and 2) epistemic uncertainty, in which the model

might not be well-estimated or might have an improper structure [84]. For real-world applica-

tions, we need a reliability measure that combines both types of uncertainty. We can operational-

1The published paper is titled ”Simple and Effective Approaches for Uncertainty Prediction in Facial Action

Unit Intensity Regression” and is available at https://doi.org/10.1109/FG47880.2020.00045.

27

https://doi.org/10.1109/FG47880.2020.00045


ize this reliability for regression tasks as the absolute error between a model’s prediction and the

ground truth. While prediction reliability has been studied in different fields [81], reliability in

facial AU intensity prediction has not been studied.

Most existing approaches for reliability prediction rely on only epistemic uncertainty. This

chapter studies approaches that capture epistemic and aleatoric uncertainties by predicting the

absolute error. We describe two such approaches and compare them to a variety of established

approaches2. Both approaches have a secondary model that predicts the absolute error of the

primary model. Our first approach assumes that reliability is a weighted combination of known

absolute errors from similar reference observations. This assumption has been previously demon-

strated to work well [15, 78] when using a k-nearest neighbor approach. Our second approach

uses a multi-layer perceptron (MLP) to predict the reliability. Such an approach has proven to

work well in the past where a single perceptron predicts the reliability [139, 140]. With these

two approaches, we can capture the prediction reliability, whether it is caused by epistemic un-

certainty, aleatoric uncertainty, or by a combination of both. Finally, we demonstrate that our

estimated reliabilities enable smaller prediction intervals than those derived from our baseline

approaches. The prediction intervals are derived from the estimated reliablities using the frame-

work of inductive conformal prediction and contain the ground truth at a targeted rate [141].

3.1 Problem Statement

The goal is to have a primary model that estimates the facial action unit intensity ŷ given an

input feature vector X and a secondary model that estimates the primary model’s reliability ϵ̂.

The reliability estimate ϵ̂ should correlate with the absolute error |y − ŷ|. To provide a confident

reliability estimate for a machine learning practitioner, it should be possible to use ϵ̂ to derive

prediction intervals around ŷ that contain the ground truth y at a targeted rate, for example, 95%

of the times.
2The code is available at https://github.com/twoertwein/UncertaintyRegression
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3.2 Simple and Effective Reliability Prediction

We propose two approaches to estimate the reliability of a primary’s model prediction ŷ by

training a secondary model to predict |y − ŷ|. For better comparison, the primary model is

the same between the two proposed approaches and, when possible, also the same as for the

baseline approaches. The primary model is a Multi-Layer Perceptron (MLP) that predicts the

facial action unit intensity MLP(X) = ŷ. Our two proposed approaches use an embedding

learned by this primary model, namely the representation of the second last layer concatenated

with the model’s output. We refer to this embedding as e. We use this embedding e instead of

the high-dimensional input features X to reduce the secondary model’s complexity and because

it led to better performance in preliminary experiments.

3.2.1 DWAR: Similarity-based Error Prediction

The intuition of our first approach is that similar observations have a similar reliability. Our

first approach adopts the non-parametric deep weighted averaging classifier [21] for regression

(DWAR) as our secondary model. The DWAR model consists of an MLP to transform e in

a low-dimensional embedding (h) in which it usees an RBF kernel to define the similarity w

between a new observation and the reference data (training data) where reference observation i

is represented by its embedding hi.

h = MLP(e) (3.1)

w(h,hi) = exp
(
−∥h− hi∥2

)
(3.2)

The predicted reliability ϵ̂ of a new observation is the similarity-weighted average over the refer-

ence absolute errors3.

ϵ̂ =

∑N
i=1 |yi − ŷi| w(h,hi)∑N

i=1w(h,hi)
(3.3)

3Using the validation data should result in less biased errors, but we use the validation set for the prediction

interval evaluation, and therefore cannot use the validation set to estimate the reliability.
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The parameters of the transformation MLP are learned by minimizing ||y − ŷ| − ϵ̂|. During

training, only the current batch is used as reference data, leading to a time complexity of O(n2)

per batch of size n. At test time, the entire training dataset (size N ) is used, resulting in O(N)

time complexity for a single prediction.

3.2.2 U-MLP: Direct Error Prediction

Our second approach predicts reliability using an MLP (Uncertainty MLP, abbreviated as U-

MLP). Meaning U-MLP is defined as MLP(e) = ϵ̂ and we minimize ||y − ŷ| − ϵ̂|.

3.3 Baselines

We compare DWAR and U-MLP to epistemic and aleatoric baselines. As aleatoric uncertainty

is difficult to measure without the influence of epistemic uncertainty, we name approaches that

directly predict reliability “supervised approaches”.

3.3.1 Epistemic Baselines

Ensemble: The variance of ensembles is an established approach to quantify the prediction

reliability [68]. Ensembles often consist of k models of the same type trained on bootstrapped

data. While this approach does not make assumptions about the type of error distribution and

can be used with any model, it can be computationally expensive to train k models instead of one

model. We use an ensemble consisting of k = 10 MLP models to represent this baseline.

Dropout: By using dropout at inference time in a neural network, Bayesian inference can

be approximated without the high computational costs associated with training Bayesian mod-

els [55]. To estimate reliability, we keep dropout at the second-to-last layer of the primary model

activated and consider the variance over 1,000 inference runs for each observation to approximate

Bayesian inference [55] (requiring 999 additional matrix multiplications). Since no additional
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computations are required during training, this approach is more practical than the ensemble

approach.

Gaussian Process (GP): Gaussian processes estimate a best guess (the mean) and a reliabil-

ity (variance). While Gaussian processes typically use an RBF kernel on the input features to

define the similarity between observations, a GP can use a neural network to learn an embedding

for its kernel. For example, an MLP can learn a low-dimensional embedding and then use this

embedding as the input to the RBF kernel. The neural network can jointly be learned together

with the GP by minimizing the GP’s marginal likelihood. GPs typically require a time complex-

ity of N2, which is prohibitive for large facial action unit datasets of size N . Sparse Gaussian

processes [180] overcome this issue by representing the N data points by a smaller set of M

so-called inducting points. The time complexity during training of the sparse GP is O(NM2),

where M is the number of inducing points (M = 2, 000 in all our experiments). We use an MLP

to learn the embedding for the RBF kernel. All parameters of this model—MLP parameters,

scale parameter of the RBF kernel, inducing points of the GP, and the GP’s observation noise

parameter, which is shared between all inducing points—are trained end-to-end, optimizing the

sparse GP’s marginal likelihood.

3.3.2 Supervised Baselines

Multi-task MLP: Training a multi-task MLP for two tasks, one for the AU intensity estimation

(ŷ) and one for the estimated absolute error (ϵ̂), could improve prediction of the absolute error at

the cost of worsened AU intensity prediction. We optimize the following combined loss for the

two tasks.

(y − ŷ)2 + 0.5(|y − ŷ| − ϵ̂)2 (3.4)

Attenuation: A loss-function-agnostic approach deriving reliability is attenuating the origi-

nal loss function by allowing the model to estimate its prediction variance (σ2) for a prediction
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(ŷ) [84].
loss(y, ŷ)

σ2
+ log σ2 (3.5)

The smaller the reliability estimation of a model (larger σ2), the less confidence it has in its

prediction. We use −σ2 as the estimate for ϵ̂.

3.4 Experimental Setup

3.4.1 Datasets

We focus on two facial action unit (AU) datasets, and for comparison, we run the same experi-

ments on a (subset of) MNIST to evaluate whether the approaches simply exploit skewed labels4.

BP4D+: This dataset [228] (version 0.2) consists of videos of 140 subjects that have been

annotated for facial AU intensities during emotion-eliciting tasks (AU 6, 10, 12, 14, and 17). We

use subject-stratified hold-out sets for training (containing 60% of subjects), validation (20% of

subjects), and testing (20% of subjects). Stratification is used to ensure a similar average AU

intensity for each set.

DISFA: This dataset contains AU-annotated videos of 27 subjects viewing an emotion-

eliciting video [123] (AU 1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25, and 26). We use the same method

as for BP4D+ to determine the dataset split. The input representation of each image for these

two datasets is the same as for OpenFace 2.0’s AU intensity estimation [7]: face-aligned HOG

features and the rigid and non-rigid shape parameters.

MNIST: We use MNIST [102] to validate the reliability approaches on a different domain.

To make MNIST similar to BP4D+ and DISFA, we reframe MNIST as a regression task instead

of a classification task and only consider numbers between 0 and 5 (the same range as facial AU

intensities). To study the impact of skewed datasets on reliability, we use the 0-5 MNIST and

4Facial AU datasets are known to be highly skewed towards little activation. A reliability estimation approach

might simply learn to associate a high activation estimation with a low reliability estimation.
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also generate a skewed 0-5 MNIST that reflects the same skew as AU 6 (cheek raiser) has on the

BP4D+ dataset.

To evaluate whether the reliability estimation generalizes to different datasets, we train a

model on BP4D+ and evaluate its performance on the DISFA test set (without any adaptation,

denoted as BP4D+ → DISFA+).

3.4.2 Implementation Details

All MLP models have the following hyper-parameters validated using the concordance correla-

tion coefficient (CCC) on the validation set: the number of layers, the learning rate of Adam (the

learning rate optimizer we use), and the dropout rate. Early stopping is based on the CCC on the

validation set for the last 50 epochs. The maximum number of epochs is 500. Aside from the

GP, all models are optimized for the mean squared error.

DWAR, U-MLP, and Dropout share the same primary model.

3.4.3 Metrics

We report the performance of the AU intensity predictions using the subject-averaged intra-class

coefficient (ICC). For the predicted reliability, we use the following two metrics.

Spearman Correlation coefficient (ρ): We use the Spearman correlation coefficient to mea-

sure the monotonic relationship between the estimated reliability and the absolute error. This

metric has the advantage that it does not penalize approaches that do not predict the intensities

well but can estimate their own error well.

Prediction Interval Width (|PI|): We construct prediction intervals using the normalized

inductive conformal prediction [141], where the normalization coefficient (σ̂) is the predicted

reliability.

α = σ̂Perc95

({
|yi − ŷi|

σ̂i

∣∣i ∈ calibration set
})

(3.6)

P (y ∈ [ŷ − α, ŷ + α]) ≥ 0.95 , (3.7)
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DISFA BP4D+ BP4D+ → DISFA1 DISFA1

DWAR/U-MLP/Dropout 0.502 0.653 0.520 0.545

Ensemble 0.341 0.664 0.495 0.535

GP 0.460 0.662 0.491 0.467

Multi-Task 0.477 0.643 0.450 0.549

Attenuation 0.477 0.646 0.479 0.556

Table 3.1: ICC (higher is better) of the primary models averaged over all AUs. 1 averaged over

the common AUs between DISFA and BP4D+ (AU 6, 12, and 17).

where Perc95 is the 95th-percentile. The constructed intervals have an asymptotic coverage rate

(the probability of containing the true intensity) of 95%, assuming that the calibration set (vali-

dation set) and the test set are both independent and identically distributed. We report the median

interval width as a measure of the efficiency of the prediction intervals [142]. Smaller intervals

at the same coverage rate are potentially more useful. This metric is affected by the accuracy of

the AU intensity prediction.

Theoretically, a higher correlation (ρ) should result in a smaller interval width and vice-versa

when the same primary model is used. In practice, this is not always the case as many outliers,

i.e., more than 5% in the reliability prediction can negatively impact the intervals.

We test for statistical differences between our two described approaches at the subject level

and against all baseline approaches. These tests are conducted with subject-clustered percentile

bootstrapping5. We do not conduct these tests for DISFA because we have only five subjects in

the test set. We use bootstrapping without clustering for 0-5 (Skewed) MNIST.

5We calculate the metric of interest for each cluster (each subject), and then bootstrap the difference between the

approaches (5000 re-samplings and a 95%-confidence interval).
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0-5 MNIST 0-5 Skewed MNIST DISFA BP4D+ BP4D+ → DISFA

ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓

DWAR 0.923U 0.085U 0.900U 0.001U 0.646 0.303 0.681 1.819 0.754 1.486

U-MLP 0.932 0.042 0.970 0.001 0.835 0.502 0.690 1.211 0.754 0.902

Ensemble 0.710UD0.360UD0.891U 0.001UD 0.506 0.907 0.591 1.839 0.572 1.621

Dropout 0.537UD0.119UD0.887U 0.001UD 0.795 0.351 0.576 1.923 0.614 1.543

GP 0.023UD0.365UD0.766UD 0.235UD 0.369 0.739 0.213 2.132 0.365 1.580

Multi-Task 0.851UD0.121UD0.785UD 0.303UD 0.654 0.881 0.620 2.065 0.689 1.800

Attenuation 0.617UD0.301UD0.834UD 0.411UD 0.576 1.162 0.632 2.091 0.735 1.672

Table 3.2: Averaged reliability metrics over AUs. MNIST reliability metrics are not averaged.

For MNIST, marked results indicate a significantly worse performance compared to U-MLP (U)

/ DWAR (D).

3.5 Results and Discussion

Our initial experiment evaluates whether estimating reliability degrades the performance of AU

intensity estimation, which would influence the prediction interval width (|PI|). Table 3.1 shows

that almost all models (with the exception of the ensemble) predict AUs with comparable perfor-

mance. The main experimental results are shown in Table 3.2. Table 3.4 provides AU-specific

results for BP4D+, including the statistical test outcomes, and Table 3.5 demonstrates that the

constructed prediction intervals reach their targeted coverage rate.

Reliability under Skew: To study the effects of label skew, we report results on 0-5 MNIST

and 0-5 Skewed MNIST in Table 3.2. Since reliability predictions are better on 0-5 Skewed

MNIST for almost all approaches, these approaches at least partly exploit the label skew. The

skew may also explain the different prediction interval widths between DISFA and BP4D+:

DISFA is much more skewed and has much smaller prediction interval widths.

Cross-dataset evaluation: Testing the BP4D+ models on DISFA provides two particularly
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0-5 MNIST 0-5 Skewed MNIST DISFA BP4D+ BP4D+ → DISFA

ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓

DWAR 0.923 0.085 0.900 0.001 0.646 0.303 0.681 1.819 0.754 1.486

U-MLP 0.932 0.042 0.970 0.001 0.835 0.502 0.690 1.211 0.754 0.902

Ensemble 0.710 0.360 0.891 0.001 0.506 0.907 0.591 1.839 0.572 1.621

Dropout [1] 0.537 0.119 0.887 0.001 0.795 0.351 0.576 1.923 0.614 1.543

GP-VFE [2] 0.023 0.365 0.766 0.235 0.369 0.739 0.213 2.132 0.365 1.580

Multi-Task 0.851 0.121 0.785 0.303 0.654 0.881 0.620 2.065 0.689 1.800

Attenuation [3] 0.617 0.301 0.834 0.411 0.576 1.162 0.632 2.091 0.735 1.672

Table 3.3: Averaged reliability metrics over AUs. MNIST reliability metrics are not averaged.

For MNIST, marked results indicate a significantly worse performance compared to U-MLP (U)

/ DWAR (D).

interesting results. The first result is a high correlation between the absolute error and the esti-

mated reliability for the BP4D+ → DISFA evaluation (shown in Table 3.2). The second result

is that the coverage rates for the prediction intervals, as reported in Table 3.5, are closely cen-

tered around the targeted 95%, even though the BP4D+ validation set is used for the calibration

set. This could indicate that the evaluated reliability approaches generalize to data from slightly

different conditions.

Epistemic vs. Supervised Approaches: The best performing approaches for each dataset

and metric are supervised approaches. We hypothesize that supervised approaches perform better

because they can use both the aleatoric and epistemic uncertainty to estimate the prediction

reliability. In contrast, epistemic approaches can only capture epistemic uncertainty.

DWAR: This non-parametric approach achieves high correlations for almost all evaluations

but tends to perform less well for the prediction interval width: it performs significantly worse on

it than other approaches for severely-skewed AUs, e.g., AU 14 and AU 17. Like the weighted av-
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AU 6 AU 10 AU 12 AU 14 AU 17

ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓

DWAR 0.723 2.693U 0.543 2.551U 0.653 2.569U 0.749U 1.202 0.738U 0.080U

U-MLP 0.653D 1.541 0.520 1.596 0.631D 1.485 0.783 1.423 0.862 0.012

Ensemble 0.635D 2.750U 0.391D 2.571U 0.509UD 2.607U 0.761 1.189D 0.657UD 0.077U
D

Dropout 0.507UD 2.505U
D 0.418UD 3.356UD 0.389UD 2.617UD 0.702UD 1.107U

D 0.862D 0.029U
D

GP 0.339UD 2.524U −0.035UD 3.130UD−0.132UD 3.231UD 0.297UD 1.366U 0.598UD 0.407UD

Multi-Task 0.557UD 2.930U 0.392UD 2.888UD 0.576D 2.698UD 0.799D 1.285 0.774U
D 0.523UD

Attenuation 0.632D 2.479U 0.464D 3.039UD 0.602D 2.701UD 0.771 1.258 0.692UD 0.976UD

Table 3.4: Statistical tests on BP4D+. Results marked in superscript/subscript indicate a signifi-

cantly worse/better performance compared to U-MLP (U) / DWAR (D).

erage, DWAR is confined to the previously-observed range of errors in the training set. This may

artificially truncate its correlation and result in large prediction intervals. This approach seems to

work very well, even across datasets. Compared to the U-MLP, it requires more computational

efforts but also provides transparency. A user can inspect the nearest neighbors, which influence

the prediction the most.

U-MLP: U-MLP works very well across all datasets and metrics and never performs signifi-

cantly worse than any other approach (see Table 3.4). It produces remarkably efficient prediction

intervals across all datasets, e.g., +/- 0.6 on average for AU intensities on BP4D+, whereas other

approaches need around +/- 0.9. In a few cases, it is outperformed by DWAR and dropout but is

otherwise always the best-performing approach across both families.

Epistemic Baselines: The MLP ensemble and dropout are the best-performing epistemic

baselines. The sparse GP poorly estimates the variance of some AUs (and the 0-5 MNIST). We

hypothesize that this occurs because the marginal likelihood of this specific sparse GP is known

to have many local minima [11]. Despite this drawback, this specific sparse GP has been shown
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Mean Coverage Rate

DISFA BP4D+ BP4D+ → DISFA

DWAR 0.953 0.934 0.964

U-MLP 0.961 0.935 0.955

Ensemble 0.962 0.938 0.937

Dropout 0.956 0.935 0.960

GP 0.944 0.941 0.953

Multi-Task 0.951 0.944 0.951

Attenuation 0.957 0.934 0.953

Table 3.5: Observed coverage rate (ratio of the true value being in the interval) for the prediction

intervals averaged over AUs.

to estimate the variance better than other sparse GPs [11].

Unlike the MLP ensemble, dropout variance has no overhead during training and is still

computationally feasible at test time: there are only n − 1 additional matrix multiplications for

the last layer. It is also already used in many situations, making it a convenient approach that can

be implemented easily without re-training or training an additional model to derive reliability.

Supervised Baselines: The motivation behind a multi-task MLP model and the loss atten-

uation was to attain good error estimation despite a decrease in AU intensity prediction per-

formance. The results suggest that estimating the error separately (as done in DWAR and U-

MLP) outperforms these two baselines. However, it is important to note that both baselines

have less computational overhead during training and testing than the U-MLP, only requiring

back-propagation for an additional variable and one additional dot product at test time.
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3.6 Conclusion

We evaluated the performance of two supervised approaches to estimating reliability and com-

pared them to several established approaches. Some of these approaches require the use of

slightly different architectures (GP, multi-task MLP, and loss attenuation), some require sec-

ondary models (U-MLP, DWAR, and ensemble), and some generally do not require any changes

for existing users (dropout). The results suggest that epistemic approaches achieve a worse per-

formance than supervised approaches, perhaps because they do not capture aleatoric uncertainty.

The best-performing and simplest approach is the prediction of absolute error with a secondary

MLP model (U-MLP). However, a notable result is that dropout provides decent reliability esti-

mation while requiring the fewest changes during training.

This chapter laid the foundation to enable users of AI applications to know when to rely on

a model’s output and to which degree. Chapter 4 on personalized data transparency extends the

Chapter 2 on population-level data transparency by focusing on how similar people are and what

differentiates them.
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Chapter 4

Personalized Data Transparency

In this chapter, we extend the initial study of population-level patterns from Chapter 2 to models

that separate population-level patterns and individual differences by having person-generic and

person-specific parameters. This not only allows us to quantify the differences a model learns

for each person but also allows us to test whether those differences relate to additional informa-

tion about that person. For example, does an affective model learn different temporal transition

patterns between affective states for people who experience symptoms of depression? The work

in this chapter was published at the International Conference on Multimodal Interaction [210]1.

Personalized prediction is a machine learning approach that predicts a person’s future ob-

servations based on their past labeled observations. This type of model is typically used for

sequential tasks that would be difficult without knowledge of the person, such as predicting

daily mood from only smartphone data or predicting affective state sequences where transitions

between states might be influenced by depression [146, 151]. As illustrated in Figure 4.1, a

personalized model benefits by combining two types of trends (a) person-generic trends shared

across people, such as being happier on weekends, and (b) unique person-specific trends, such

as stressful weekly meetings or weekly socializing with friends. Person-specific trends can be

1The published paper is titled ”Neural Mixed Effects for Nonlinear Personalized Predictions” and is available at

https://doi.org/10.1145/3577190.3614115.
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Figure 4.1: Illustration of why combining both person-generic and person-specific trends is im-

portant when learning personalized prediction models. The illustrated example is for daily mood

prediction. (a) Most people are happier on weekends when they do not have to work. (b) Specific

individuals, in our case P1 and P3, may have weekly events impacting their mood, e.g., socializ-

ing with friends can be positive, while a stressful meeting can be negative. (c) It is important to

further know the baseline mood level of each person, as it varies between people, as shown for

P1, P2, and P3.
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Figure 4.2: Visual comparison of our approach, Neural mixed Effects (NME), and previous

approaches. NME enables person-specific parameters at any layer to represent nonlinear person-

specific trends. Person-generic (θ̄) and person-specific (θi) parameters are combined by sum-

ming, i.e., θ̄ + θi.
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challenging for machine learning models, even when trained on data from these people, as they

might average out across people: as exemplified in Figure 4.1 when the more positive mood

from a person’s socializing coincides with the more negative mood of another person’s stressful

meeting.

Mixed effect models2 are popular in statistics to study person-generic and person-specific

trends by combining person-generic and person-specific parameters [99]. Linear mixed effect

(LME) models have recently been gaining popularity in machine learning for personalizing mod-

els [85, 104, 105, 122, 132, 169, 170, 177, 183, 212]. Integrating LME with neural networks is

currently limited to linear person-specific trends: person-specific parameters can only be in the

last linear layer of a neural network as illustrated in Figure 4.2c. This rules out person-specific

parameters in the remaining layers, i.e., nonlinear person-specific parameters. Separately from

work with neural networks, nonlinear mixed effect approaches were proposed, but their opti-

mization does not scale to large neural networks with many layers and parameters [29].

In this paper, we propose Neural Mixed Effect (NME) models to learn nonlinear person-

specific parameters in a scalable manner. Our NME models combine the efficient optimization

of neural networks with the person-specific parameters of nonlinear mixed effect models. NME

learns nonlinear person-specific parameters by enabling them anywhere in a nonlinear neural

network, as shown in Figure 4.2d. We demonstrate integrating our NME approach into two

model architectures. We evaluate performance primarily on Multi-Layer Perceptrons (MLPs)

for better comparison with previous MLP-LME work. To demonstrate NME for more complex

models that yet have some interpretable parameters, we integrate NME with neural Conditional

Random Fields (CRFs) to classify states in a temporal sequence [45]. CRFs explicitly model a

sequence’s temporal dynamics and allow us to interpret the person-specific temporal transitions

between states.

We evaluate NME on six unimodal and multimodal datasets, including a smartphone dataset

2In statistics, the person-generic trends are often referred to as fixed effects and the person-specific trends as

random effects. The name mixed effects comes from mixing both fixed and random effects.
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Linear Mixed Effects Nonlinear Mixed Effects Neural Networks with Neural Mixed Effects

(LME) (NLME) Linear Mixed Effects (NN-LME) (NME)

Nonlinear Model ✗ ✓ ✓* ✓

Dataset Scalability ✗ ✓ ✗ ✓

Model Scalability ✓ ✗ ✓ ✓

Table 4.1: Comparison of NME with previous approaches. LME models do not scale well with

too many observations per person. The sampling-based optimization of NLME does not scale

well with too many parameters. NN-LME has nonlinear person-generic parameters, but it re-use

the optimization of LME, which (*) limits NN-LME to linear person-specific parameters and it

does not scale as well for large datasets. Our proposed NME combines the efficient optimization

of neural networks with the nonlinear persons-specific parameters of mixed effect models.

to predict daily mood and a mother-adolescent dataset to predict affective state sequences where

half the mothers experience symptoms of depression. We analyze the interpretable person-

specific transition parameters in the CRF and hypothesize that they differ between families where

mothers experience symptoms of depression.

4.1 Technical and Related Background

Mixed effect models were proposed in statistics for data that is not independent and identically

distributed, e.g., longitudinal data from multiple people [99]. In statistics, the goal of mixed

effect models is often to study research questions about person-generic trends, referred to as fixed

effects, and person-specific trends, referred to as random effects. Mixed effect models include a

penalty term to regularize the person-specific parameters (denoted as θi) so that they learn only

what the person-generic parameters (denoted as θ̄) cannot learn. The technical challenge when

optimizing mixed effect models is to separate fixed and random effects since they affect each

other, e.g., a random bias term can affect the fixed slope of linear mixed effect models [171].
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We briefly highlight the optimization of linear and nonlinear mixed effect models, review

related work that explored combinations of neural networks and mixed effect models, and then

contrast mixed models with multitask learning.

Linear Mixed Effects (LME): For an observation from the i-th person represented by a

feature vector X , a linear mixed effects model infers the prediction as ŷ = (θ̄ + θi)TX , see

Figure 4.2a. For efficient optimization, it is often assumed that the random effects θi follow a

multivariate normal distribution with zero mean and covariance Σ. A popular method to optimize

LME models is an Expectation-Maximization (EM) algorithm that minimizes the mean squared

error [114]. The challenging part of this EM algorithm is that a matrix needs to be inverted for

each person i, where the matrix size is the number of observations for person i. This makes it

challenging to optimize LME models when a person has many observations, i.e., LME models

do not easily scale to large datasets.

Nonlinear Mixed Effects (NLME): Nonlinear mixed effect models are used to model non-

linear person-specific trends, for example, in pharmacometrics [137]. As shown in Figure 4.2b,

random effects can be anywhere in a nonlinear model ŷ = f(X; θ̄ + θi) making their opti-

mization more challenging. While multiple optimization approaches exist for nonlinear mixed

effects [10, 29, 115, 149], most modern nonlinear mixed effect approaches find an approximate

solution using random walk Metropolis sampling [29, 80]. One downside of this sampling ap-

proach is that it converges slowly for large models with many parameters [80]. One upside,

compared to LME, is that this sampling approach scales well with many observations as it does

not require matrix inversions that depend on the number of people or observations.

Neural Networks with Linear Mixed Effects (NN-LME): LME models have been com-

bined with neural networks to improve performance for tasks involving longitudinal data from

multiple people, such as for mood and mental health-related tasks [85, 122, 169, 170, 177,

183, 212]. All of these combinations follow the same mathematical formulation of ŷ = (θ̄ +

θi)Tf(X;θneural), see Figure 4.2c, where θneural are the person-generic parameters of the neural
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network. These combinations can be seen as simply placing an LME model on top of a neural

network. Most NN-LME approaches use the same EM algorithm as LME models [114]. The

only difference is that the neural network parameters θneural become part of the fixed effects,

meaning the neural network needs to be trained until convergence within every E-step, which

can be slow for large neural networks. By re-using the same EM algorithm from LME models,

its limitations apply: the random effects will minimize the mean squared error and NN-LME

will not easily scale to large datasets. While two approaches extend beyond the means squared

error by finding an approximate solution for binary classification[169, 170], their work does not

generalize to multiclass classification.

Our proposed Neural Mixed Effects (NME) approach is a significant generalization of pre-

vious work by allowing person-specific parameters, i.e., random effects, anywhere in neural

networks where even the last layer can be nonlinear. Our proposed NME model is also scalable

to large datasets and large models by efficiently optimizing the NLME objective with stochastic

gradient descent. We summarize this comparison in Figure 4.2 and Table 4.1

Multitask Models: Assuming not all model parameters have a person-specific component,

mixed models are similar to multitask models where each task corresponds to a person [22, 174].

The two main differences are 1) mixed models have a person-generic (”shared”) component even

for parameters that have a person-specific component and 2) while multitask models can have an

additional explicit regularization between the task-specific parameters [49, 179], mixed models

do not require a hyper-parameter to determine the strength of this regularization as Σ is learned.

4.2 Problem Statement

Our main goal is personalized prediction: predicting a person’s future observations by training

on their past observations. The problem of personalized prediction using mixed effects can be

formalized as follows. Given a training dataset with n people and ni observations for the i-th

person {(X i
j, y

i
j) | i ∈ [1, n], j ∈ [1, ni]} and a test dataset with unseen observations from the
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same people, the goal is to learn a function f(X i
j;θ) predicting yij where the parameters θ are

expressed as the sum of a person-generic θ̄ and a person-specific component θi.

4.3 Neural Mixed Effect Models

Mixed effect models are gaining popularity in machine learning for personalized predictions as

they combine person-generic and person-specific parameters. In this section, we present our

generalization named Neural Mixed Effects (NME) model to better integrate mixed effect mod-

els in neural networks through a more scalable optimization and by allowing person-specific

parameters anywhere. The advantage of our proposed NME approach is that it enables any neu-

ral network architecture to have person-specific parameters θi as long as its original parameters

(which we will refer to as person-generic parameters θ̄) can be optimized with gradient descent.

The only difference is that the person-specific components θi also need to be stored and opti-

mized. When making predictions for person i, the neural network parameters become the sum

of these two components θ̄+ θi. Similar to multitask learning, not all parameters need a person-

specific component. If parameters have no person-specific components, the parameters are equal

to the person-generic components θ̄.

We first focus on the optimization process in Subsection 4.3.1, then show that NME is a

nonlinear mixed effects model in Subsection 4.3.2, and finally, we describe in Subsection 4.3.3

how to predict sequences using a neural Conditional Random Field (CRF) and how we combine

it with NME.

4.3.1 Optimization

The goal is to learn person-specific parameters θi representing person-specific trends, i.e., that

cannot be learned by the person-generic parameters θ̄. In addition to minimizing a downstream

loss function l, mixed effect models separate person-generic and person-specific trends by regu-
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larizing the person-specific parameters. This regularizing encourages the person-specific param-

eters θi to only focus on what cannot be learned by the unregularized person-generic parameters

θ̄. Following previous NN-LME work, we regularized the person-specific parameters by assum-

ing that they follow a multivariate normal distribution with zero mean and covariance matrix

Σ ∈ Rdim(θi)×dim(θi), where dim(θi) is the number of person-specific parameters. Σ is the same

for all people. To make the regularization invariant to the scale of different downstream loss

functions, mixed effect models have, next to Σ, a second weighting factor σ2 that represents the

average downstream loss. The resulting loss function of NME is

n∑
i=1

[
1

σ2

ni∑
j=1

l(yij, f(X
i
j; θ̄ + θi))

]
+ θiTΣ−1θi . (4.1)

The left term of Equation 4.1 optimizes θ̄ + θi for best downstream performance while the

right term regularizes the person-specific parameters θi. As we have separate persons-specific

parameters θi for each person i but apply the same regularization, we are likely to learn larger

person-specific parameters when a person has many observations: as the left term, the sum over

the number of observations for a person is more likely to outweigh the regularization term on

the right when a person has many observations. Intuitively, this improves performance the most

when we have many observations for a person and helps prevent overfitting for a person with

only a few observations.

Optimization of Equation 4.1 is performed with stochastic gradient descent in batches, where

the regularization term on the right is scaled by how many observations a person has in the

current batch B. The right part of Equation 4.1 becomes

∑
Xk

j ∈B
1(k = i)

ni

θiTΣ−1θi (4.2)

where the indicator function 1(k = i) is 1 when the observation Xk
j is from the i-th person,

i.e., k = i.
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Table 4.2: Dataset characteristics. With the calendar modality we refer to metadata including

the year and the weekday.

Dataset Tasks Group #Groups #Observations Modalities

Imdb [203] Movie rating (regression) Genre 383 83 143 text

News [128] Number of shares on Facebook (regression) Outlet 598 60 080 calendar, text

Spotify [126] Danceability rating (regression) Genre 58 26 844 acoustic, calendar, text

IEMOCAP [18] Arousal and valence ratings (regression) Person 10 4784 acoustic, text, vision

MAPS [4] Daily self-assessed mood ratings (regression) Person 38 2122 calendar, GPS, text, typing

TPOT [208] Four affective states (multiclass classification) Person 195 15 228 acoustic, text, vision

After each epoch of minimizing Equation 4.1, we update σ2 to the new average downstream

loss l of the training set and Σ to the sample covariance matrix of the person-specific parameters

θi.

Fortunately, it is common in mixed effect modeling to assume that the person-specific pa-

rameters are independent of each other [29, 202], which reduces Σ to an easy-to-invert diagonal

matrix. This allows us to efficiently optimize Equation 4.1 even for large models with many

person-specific parameters. NMEs with this assumption are as fast as multitask models when

having the same person/task-specific parameters. As seen from Equation 4.1, the NME objective

scales linearly with the number of people and their observations enabling NME to scale to even

large datasets.

To summarize, 1) NME allows person-specific parameters anywhere in a neural network, 2)

NME uses stochastic gradient descent to optimize even large models with many person-specific

parameters efficiently, and 3) NME scales linearly with the dataset size.

4.3.2 NME as a Nonlinear Mixed Effects Model

NME learns a nonlinear mixed effects model because its optimization procedure follows that of

the nonlinear mixed effects solver saemix [29]. saemix is designed to optimize nonlinear mixed
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Figure 4.3: Illustration of the NME-CRF with person-specific parameters everywhere. An MLP

predicts the initial output predictions which are refined by the CRF using the transition matrix

T .
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effect models in statistics using random walk Metropolis sampling. However, sampling many

parameters for neural networks is typically computationally challenging, converges slowly, and

might lead to sub-optimal solutions [31, 80, 143]. NME replaces sampling with gradient descent

to scale to large neural networks with many person-specific parameters.

saemix is an approximation EM algorithm [38], which means the expectation step (E-step)

is not required to have converged before continuing with the maximization step (M-step). When

assuming that the person-specific parameters θi follow a multivariate normal distribution with

zero mean and covariance matrix Σ, saemix incrementally minimizes Equation 4.1 during the

E-step. During the M-step, saemix updates σ2 and Σ. Under general assumptions3, saemix will

converge to a mixed effects model. NME reduces Equation 4.1 during each epoch, corresponding

to the E-step. Updating σ2 and Σ between epochs corresponds to the M-steps. As NME follows

the optimization procedure of saemix, NME will also converge to a nonlinear mixed effects

model.

4.3.3 NME Conditional Random Fields

When predicting states that have a temporal order, such as the sequence of affective states on the

mother-adolescent dataset, it can be beneficial to account for temporal dynamics, e.g., how likely

it is to transition from one state to the next. Accounting for temporal dynamics may not only

improve performance, but it may also be possible to interpret which transition the model infers

as more or less likely. If we can further learn person-specific transitions, we can interpret whether

they differ, for example, between families where mothers experience symptoms of depression.

Conditional Random Fields (CRFs) are graphical models that can learn state transitions in an

interpretable manner [98]. When the transitions are assumed to be time-invariant, i.e., they are

constant across time, we can represent all possible transitions from one to the next state through

3Assuming l(yij , f(X
i
j ; θ̄+ θi) are conditionally independent given the person i and follow a distribution in the

exponential family.
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one matrix T ∈ R|states|×|states| where |states| is the number of states. CRFs learn such a transition

matrix T . While CRFs have been combined with neural networks [45], they have not been

explored with person-specific parameters, as done in the NME approach. With our NME-CRF,

we can learn person-specific transition matrices T = T̄ + T i, which allows us to analyze them.

Besides a transition matrix T , a CRF needs to know how likely each state is at time t, which

we infer using an MLP. Figure 4.3 provides an illustration of NME-CRF. The CRF model can be

optimized using gradient descent by minimizing the following loss function

−
exp

(∑L
t f(X

i
t ; θ̄ + θi) + (T̄ + T i)yt−1,yt

)
Z([X i

1, . . . ,X
i
L])

(4.3)

where Z is a normalization function. We use the forward-backward algorithm to efficiently cal-

culate Equation 4.3 [13]. To combine the CRF with NME, Equation 4.3 becomes the downstream

loss l in Equation 4.1. At inference time, we use the viterbi algorithm to efficiently determine

the most likely state sequence [13].

4.4 Experimental Setup

We evaluate our NME approach on six unimodal and multimodal datasets, including both re-

gression and multiclass classification tasks. For better comparison with previous approaches,

we primarily integrate NME with MLPs. The mother-adolescent dataset has temporal state se-

quences allowing us to evaluate the NME-CRF. We perform a more detailed analysis of the

learned parameters of the NME-CRF since it learns interpretable state transitions.

4.4.1 Datasets

We conduct experiments on six datasets, summarized in Table 4.2.

Imdb [203], News [128], Spotify [126]: These are three public datasets used by previous

NN-LME work [170]. We follow their experimental protocol and use the same features and
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Table 4.3: Performance on six datasets with person-specific parameters in the last and all layers of

the MLP. Best overall performance is underlined while best performance for the last/all layers is

in bold. When a baseline is significantly worse than NME-MLP with person-specific parameters

in the last or all layers, L or A are in superscript.

Imdb News Spotify IEMOCAP-A IEMOCAP-V MAPS TPOT

NRMSE ↓ NRMSE ↓ NRMSE ↓ CCC ↑ CCC ↑ Pearon’s r ↑ Krippendorff α ↑

Generic-MLP 0.927LA 0.841LA 0.711L 0.510A 0.518A 0.119 0.355

L
as

t

MLP-LME [212] 0.881L 0.630 0.685 0.455L 0.466L 0.143 —

Specific-MLP 0.891L 0.646L 0.794L 0.431L 0.354L 0.074 0.347

NME-MLP (ours) 0.846 0.627 0.679 0.510 0.555 0.209 0.367

A
ll Specific-MLP 0.886A 0.654A 0.770A 0.452A 0.443A 0.124 0.288A

NME-MLP (ours) 0.856 0.629 0.690 0.558 0.559 0.138 0.367

labels. Instead of people being the grouping variable on these datasets, we have genres on Imdb

and Spotify and outlets on the News datasets as a grouping variable, i.e., we learn genre-specific

and outlet-specific parameters. Following previous work, we report the root mean squared error

(RMSE) for these three datasets. For easier comparison across the three datasets, we normalize

the RMSE by the standard deviation of the ground truth labels on the test set (NRMSE).

IEMOCAP [18]: The IEMOCAP dataset [18] consists of dyadic interactions of five pairs of

people, a total of ten people. Each pair is asked to improvise a set of emotionally charged interac-

tions spontaneously. We separately predict arousal and valence ratings for each person on short

utterances using features extracted by previous work [209], which includes statistics aggregated

at the utterance-level of OpenFace 2.0 [7], openSMILE’s eGeMaPs [53], and RoBERTa [117].

As is common for IEMOCAP, we use the concordance correlation coefficient (CCC) [101] as the

evaluation metrics.

MAPS [4]: Mobile Assessment for the Prediction of Suicide (MAPS) is a longitudinal dataset

of smartphone data of adolescents with daily mood self-assessments [4]. We predict the daily
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mood self-assessments using their phone activity from the past 24h. Inspired by previous phone-

based mood prediction work [3, 76, 107, 151], we extracted the following features: LIWC di-

mensions [147] and sentiment from Vader [74] of the typed text, the number of words, total time

typing, the mean and variance of the typing speed, the weekday, the number of visited places

based on GPS data as well as distance traveled and the average walking speed. The evaluation

metric is Pearson’s correlation coefficient r, which is well suited for evaluating how much of the

mood variation we can predict.

TPOT [131]: The Transitions in Parenting of Teens (TPOT) dataset contains video record-

ings of dyadic interactions between mothers and their adolescents [131]. By design, mothers of

half the dyads exhibit at least moderate depression symptoms at recruitment time and further had

a treatment history for depression (referred to as the depressed group). The other half of mothers

exhibits at most low symptoms, do not have a treatment history of depression, and had further

no mental health treatment a month before recruitment (referred to as the non-depressed group).

The interactions are typically 15 minutes long and focus on resolving areas of disagreement,

such as participation in household chores. These interactions are annotated for each person for

a sequence of four affective states (other, aggressive, dysphoric, and positive). These affective

states are closely related to Living in Familial Environments codes [73, 167]. The affective state

annotations are onset annotations, i.e., a state is annotated when enough evidence is available to

determine the affective state and last until enough evidence is available for the next onset. This

annotation approach means that two consecutive segments will not have the same label, e.g.,

positive will not follow positive. For additional details of TPOT, please see Chapter 54. When

using the NME-MLP, we predict these segments independently of each other. As the NME-CRF

allows us to model temporal dynamics, we jointly predict each person’s sequence of segments. In

both cases, we use the same features from previous work [208], which are similar to the features

on IEMOCAP but uses LIWC [147] instead of RoBERTa. Following previous work, we report

4When we use TPOT in Chapter 5 we use data from 268 people. As explained in the implementation details of

this chapter, we removed people with fewer than ten annotations, resulting in a total of 195 people.
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Krippendorff’s α between the ground truth and the predicted labels.

4.4.2 NME Models and Baselines

Similar to previous work, we evaluate NME primarily in the context of MLPs (referred to as

NME-MLP). Additionally, we evaluate NME using neural CRFs for the sequence prediction

task on TPOT (referred to as NME-CRF). Since our NME approach allows person-specific pa-

rameters anywhere in the model, we explore three approaches: 1) having person-specific param-

eters in only the last layer (denoted as last), 2) for the CRF to additionally have person-specific

parameters in its transition matrix T (denoted as last+T ), and 3) having them everywhere in

the model (denoted as all). Figure 4.3 depicts the NME-CRF with person-specific parameters

everywhere, including the transition matrix T .

We compare NME-MLP and NME-CRF to three baselines.

Generic-MLP: Generic-MLP is either an MLP or a CRF (Generic-CRF) with only person-

generic parameters, i.e., θ = θ̄. Generic-MLP corresponds to a conventional MLP that is directly

optimized with the downstream loss function l.

Specific-MLP: Specific-MLP is either an MLP or a CRF (Specific-CRF) with only person-

specific parameters, i.e., θ = θi. The person-specific parameters are optimized with the down-

stream loss function l, i.e., they do not follow the NME approach. When evaluating person-

specific parameters in only the last layer, we use person-generic parameters in all the previous

layers of the MLP, i.e., θ = θ̄ (the same as multitask learning with a task-specific last layer).

MLP-LME [212]: Almost all previous MLP-LME work [122, 177, 183, 212] is based on

the same EM algorithm [114]. We implement MLP-LME as described in previous work [212],

which makes MLP-LME a baseline for regression tasks with person-generic and person-specific

parameters in the last layer, i.e., θ = θ̄+θi. MLP-LME has so far not been extended to multiclass

classification, so we cannot evaluate MLP-LME on TPOT.
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4.4.3 Experimental Details

For all datasets we have a within-person split of 60% training, 20% validation, and 20% testing.

For IEMOCAP, MAPS, and TPOT, the first 60% of the observations per person are used for

training, the following observations for validation, and the last observations for testing. This is

done to avoid temporally correlated observations that would invalidate the validation or test set.

All models are implemented in PyTorch [144] and optimized with Adam [88]. Their hyper-

parameter are determined using a gridsearch which includes the learning rate, the number of

layers in the MLP and their width, and L2 weight decay. Model validation is based on the

validation set performance. All models are trained on consumer-level graphic cards, such as, the

NVidia RTX 3080 Ti.

All input features are z-normalized on the training set. For regression tasks, the ground truth

is also z-normalized based on the training set. The mean squared error is the loss function l

for all regression tasks. For the MLP on TPOT, we minimize the cross entropy loss, while the

forward-backward algorithm is used for the CRF on TPOT to minimize Equation 4.3. Features

from different modalities are combined through early fusion.

When reporting performance metrics, we first calculate them within each person and then re-

port the average. This allows us to focus on the within-person performance and avoids Simpson’s

paradox [171]. Significance tests are conducted with paired person-clustered bootstrapping [155]

using p = 0.05 and 10,000 resamplings at the person-level5. To determine the performance met-

rics reliably, we need a large enough test set per person: we remove people from all experiments

if we have less than ten observations from them.
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Figure 4.4: Correlation between the baseline level (ground truth on the training set) and the last

bias term θibias of NME-MLP.

4.5 Results and Discussion

We first present the NME-MLP experiments across all six datasets and then focus on analyzing

the NME-CRF multiclass classification experiments on the TPOT dataset.

4.5.1 NME-MLP Experiments

Last layer with person-specific parameters: We first evaluate NME-MLP with person-specific

parameters in only the last layer for a direct comparison with MLP-LME [212]. NME-MLP

performs numerically equal or better than all three baselines (Generic-MLP, Specific-MLP, and

MLP-LME) on the six datasets, see the top half of Table 4.3. While Specific-MLP incurs a

performance drop for the two smaller datasets, i.e., IEMOCAP and MAPS, NME-MLP maintains

or improves performance indicating that it is important to have both person-generic and person-

5For each person, calculate the performance metric and take their difference between two models. Then bootstrap

the differences by resampling 10,000 times with replacement to derive 95% confidence intervals using percentiles.
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Table 4.4: Performance of the CRF on TPOT. Best overall performance is underlined while best

performance for the last/all layers is in bold.

Krippendorff α ↑

Generic-CRF 0.467
L

as
t

+ T

Specific-CRF 0.485

NME-CRF (ours) 0.494
A

ll Specific-CRF 0.317A

NME-CRF (ours) 0.470

specific parameters. Unlike current MLP-LME implementations, NME-MLP can also be applied

to multiclass classification on the TPOT dataset. NME-MLP again performs numerically better

than its baselines. As indicated by the superscripts in Table 4.3, NME performs in many cases

statistically significantly better compared to its baselines.

All layers with person-specific parameters: As illustrated in Figure 4.2d, NME enables

person-specific parameters anywhere in a neural network. The bottom half of Table 4.3 sum-

marizes the performance with person-specific parameters everywhere. NME-MLP numerically

outperforms Specific-MLP and Generic-MLP. Having person-specific parameters everywhere

also leads to the best performance across all IEMOCAP experiments suggesting that people in

IEMOCAP may have nonlinear person-specific trends.

Interpretation of baseline levels: NME-MLPs for regression infer their prediction as ŷ =

(θ̄ + θi)TZi
j + θ̄bias + θibias where Zi

j is the representation learned by previous layers. It is

possible that θ̄bias+θibias will correspond to a person’s baseline level on the training set. As can be

observed in Figure 4.4, θibias is highly correlated with the baseline level on all datasets, including

IEMOCAP (r = 0.669 for arousal and r = 0.543 for valence). A potential explanation for why

the magnitude of θibias is very small on IEMOCAP could be that the improvised dyads might be
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Figure 4.5: Visualization of the person-specific transition matrices. Half of the matrices belong

to families where the mother is in the depressed group.

easier to predict, making it unnecessary for the model to encode the baseline levels.

4.5.2 NME-CRF Experiments

NME-CRF improves performance: We study the temporal structure of affective states on

TPOT with the NME-CRF. While previous MLP-LME [212] work does not generalize to tem-

poral structures, such as modeled by a CRF, our NME easily extends CRFs. Table 4.4 shows

that NME-CRF numerically improves over its baselines, demonstrating that even more complex

models benefit from having person-specific parameters and that the transition patterns on TPOT

depend on the person.

Interpretation of temporal transitions: The NME-CRF model allows analyzing the learned
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person-specific transition parameters. We focus on whether they differ between families (both

adolescents and mothers) in the depressed and non-depressed group. We focus on this balanced

group for two reasons 1) transition patterns have previously been linked to depression [167], and

2) already the ground truth base rate of the four affective states is different between them as in-

dicated by the Chi-squared test χ2(3, 8946) = 61.0, p < 0.001. As visualized in Figure 4.5, we

group the person-specific transition matrices and then compare their differences. The multivari-

ate Hilbert-Schmidt Independence Criterion (HSIC) [148]6 indicates that the two groups have

significantly different transition matrices HSIC = 0.71, p = 0.006.

The 95% confidence intervals of the differences in the transition probabilities between fami-

lies in the depressed and non-depressed group shown in Table 4.5 indicate six significant differ-

ences between them. While families in the non-depressed group are more likely to transition from

positive to the majority class other, families in the depressed group are more likely to transition

to aggressive and dysphoric. Similar trends are observed for transitions from other: families in

the non-depressed group are more likely to transition to positive while families in the depressed

group are more likely to transition into aggressive. These observations seem plausible as more

aggressive and less positive behaviors have been associated with depression [91, 166, 167]. As

illustrated with the above analyses, it is possible to interpret the learned person-specific parame-

ters learned by NME.

Regularization term needed for many person-specific parameters and small datasets:

To test in which situations the regularization term of NME, i.e., the right part of Equation 4.1,

is needed for good performance, we train an unregularized NME (uNME) that does not have the

regularization term. We evaluate (u)NME with 1) person-specific parameters in different model

parts of the CRF, and 2) with less and less training data per person. Figure 4.6 indicates that the

regularization term is needed for many person-specific parameters and on smaller datasets. Even

with little data, NME-CRF always performs better than the Generic-CRF despite having more

6We use the implementation from the R package dHSIC.
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Table 4.5: 95% confidence intervals of the learned transition probability differences between

families in the depressed and non-depressed group. Positive values indicate a higher transition

probability for families in the depressed group. Intervals in bold are significantly different.

Model-implied Into

Transitions Other Aggressive Dysphoric Positive

Fr
om

Other [ 0.0, 1.8] [0.7 , 4.9] [−2.0, 3.2] [-7.4 , −1.3]

Aggressive [−1.2, 2.8] [−1.7, 0.2] [−0.4, 3.4] [-2.1 , −0.4]

Dysphoric [−5.5, 1.1] [−0.1, 4.4] [−0.9, 0.5] [−1.4, 2.0]

Positive [-8.3 , −1.6] [0.3 , 2.2] [0.1 , 5.5] [ 0.0, 1.8]

parameters. As described in Subsection 4.3.1, mixed effect models tend to learn smaller person-

specific parameters for a person with little data which helps avoid overfitting. In the extreme case

of having very little data per person, the NME-CRF should converge to the Generic-CRF as the

person-specific parameters will barely be used [150]. This trend can be observed in Figure 4.6

as the performance gap between NME-CRF and Generic-CRF narrows with fewer observations

per person.
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Figure 4.6: Performance on TPOT: (left) with person-specific parameters in different model parts

and (right) when trained on smaller subset of data per person.
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4.6 Conclusion

We demonstrated that personalized models benefit by combining two types of trends: (a) person-

generic trends shared across people and (b) unique person-specific trends. Linear mixed effect

models are gaining popularity in machine learning for personalization as they combine these

two trends. We proposed Neural Mixed Effect (NME) models to generalize previous work inte-

grating linear mixed effect models in neural networks. NME allows person-specific parameters

anywhere in a neural network to learn nonlinear person-specific trends. NME’s optimization is

further scalable to large datasets and large neural networks. NME achieved this by combining

the efficient neural network optimization with the person-specific parameters of nonlinear mixed

effect models. We evaluated NME on six unimodal and multimodal datasets covering regression

and classification tasks and observed numerical improvements on all six datasets. Further, we

showed that NME can be combined with neural conditional random fields to learn interpretable

person-specific temporal transitions. Finally, we demonstrated that person-specific parameters

can be interpreted, for example, we observed that the person-specific transition matrices of the

NME-CRF are different for families in the depressed group.
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Chapter 5

Modality Importance Transparency

This is the first chapter of the multimodal transparency thrust, concentrating on multimodal

model mechanics. This chapter quantifies how important modalities are for a model but also

guides the model’s modality importance by how informative modalities are for humans. Similar

to the previous chapters, we explore transparency for healthcare-related affective states. In this

chapter, we focus on four affective states that have shown a relation to a future onset of depres-

sion. The work in this chapter was published at the International Conference on Multimodal

Interaction [208]1.

Depression is a prevalent mood disorder affecting more than 264 million people [77]. De-

tecting depression early is crucial, as depression can affect the development of adolescents [20].

Therefore, we are interested in depression-related affective states during mother-adolescent in-

teractions. To this end, we focus in this chapter on three affective states, i.e., positive, aggressive,

and dysphoric, that have shown a relation to a future onset of depression [167] and study how

these states are expressed through different modalities.

Combining information from multiple modalities to predict affective states is challenging

and does not always improve the predictive performance of machine learning models [196].

1The published paper is titled ”Human-Guided Modality Informativeness for Affective States” and is available

at https://doi.org/10.1145/3462244.3481004.
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However, humans express themselves through multiple modalities, making it essential to study

how humans integrate information from multiple modalities when recognizing affective states.

We are also interested in leveraging this knowledge to effectively combine information from

multiple modalities in machine learning models. We focus our study on how humans use three

important modalities for face-to-face conversations [125], i.e., vision, language, and acoustic

modalities. While all three modalities may always be available, we hypothesize that a subset of

modalities will be sufficient to predict expressions of affective states. In particular, we expect

that these subsets are not the same for each instance of affect expression.

In this chapter, we study the hypothesis of using a subset of modalities to predict affective

states from two angels: (1) a human study to understand better which modalities people are pay-

ing attention to when recognizing affective states; and (2) the impact of integrating these human

ratings to guide machine learning models to attend to a subset of modalities. An interesting

aspect of this chapter is that we are holistically studying the relation between modalities and

affective states by showing annotators all available modalities simultaneously and asking them

to judge the informativeness of each modality. For these judgments, we discretize modality in-

formativeness in three levels: (a) sufficient, when a modality is, by itself, enough to recognize

the expressed affective state; (b) relevant, when a modality includes useful information about

the expressed affective state but is not sufficient to recognize the affective state; and (c) none,

when the modality does not seem to be used to express the affective state. We study whether

human annotators can reliably accomplish this task and analyze the distribution of these modal-

ity informativeness annotations. Finally, we explore the impact of integrating these annotations

in predictive models. Our study and experiments are performed on a recent dataset of mother-

adolescence interactions recorded in the context of studying affective states related to the onset

of depression [131].
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5.1 Related Work

We group the related work into four topics. First, we cover computational approaches for pre-

dicting multimodal affective states. Then, we focus on how multimodal machine learning models

estimate modality informativeness. Third, we mention multimodal perception experiments high-

lighting that affective states are differently perceived across modalities. Finally, we highlight

some unimodal attempts at integrating human guidance to improve predictions of machine learn-

ing models, such as using eye gaze to attend to salient words in NLP tasks.

Multimodal affective recognition: A modality-centric view of affective states is to divide

them into how they are expressed, i.e., non-verbally and verbally. Non-verbal affective states in-

clude, for example, the basic six emotions, while verbal affective states include more language-

driven aspects of affect such as sentiment, complaining or (dis-)agreeing. Challenges such as

AVEC [157], ComParE [165], and FERA [190] have focused extensively on predicting non-

verbal expressions of affect. Similarly, language-driven aspects of affective states have been pre-

dicted as part of sentiment analysis [173, 221] and to some degree as part of dialogue acts [26]. In

this chapter, we focus on three multimodal affective states, i.e., they are expressed non-verbally

and verbally, that have shown to be statistically related to a future onset of depression [167].

Modality informativeness: Many models that focus on multimodal fusion implicitly or ex-

plicitly estimate the informativeness of modalities [135, 186, 187]. Two motivations for model-

ing modality informativeness are often a better predictive performance [135, 186] and making

the model more interpretable as the impact of each modality is estimated [187]. One way to

model modality informativeness is to use modality attention with decision-fusion models [135].

As attention is not guaranteed to reflect how important a modality is [153], we guide the modal-

ity attention to be similar to human perceived modality informativeness and also evaluate how

similar the predicted modality attention is to the perceived modality informativeness.

Modality perception: Multimodal perception studies have been conducted to rate how af-

fective states are perceived in different modality combinations [19, 118, 127, 152]. For example,
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some researchers studied whether emotions are perceived differently across modalities [19]. Fo-

cusing on individual modalities has the advantage that other modalities cannot hinder the percep-

tion of the current modality, but being exposed to only a subset of modalities, i.e., not having all

the available information, can lead to different judgments about affective states, as demonstrated

by these studies. To avoid this limitation and to focus instead on modality informativeness, we

ask human annotators to judge modality informativeness while being exposed to all available

modalities.

Human-guidance: Human attention, operationalized as eye gaze fixations, has helped in uni-

modal tasks to learn more robust attention mechanisms in NLP as a way to attend to words [8].

In computer vision, eye gaze information was also used to attend to salient objects [182, 211].

While eye gaze is an effective way to derive visual attention, it is not well-suited to infer the

informativeness of other modalities, such as the acoustic modality. As an alternative, we ask

human annotators to rate how informative each modality is.

5.2 Dataset

Our study takes advantage of the recent Transitions in Parenting of Teens (TPOT) [131] dataset,

which consists of 134 audio- and video-recorded mother-adolescent interactions (a total of 268

participants). These natural interactions are 20 minutes long and focus on problem-solving tasks.

Conversations typically focus on discussing the amount of screen time, the participation in house-

hold chores, and the behavior toward other family members. All participating families are con-

sidered to have low social economic status in the US. The adolescents are between 11 and 14

years old, and half of the mothers have a history of an unipolar disorder. We are going to use this

dataset again in Chapter 4, Chapter 6, and Chapter 7.

Each interaction is annotated for four multimodal affective states: positive, aggressive, dys-

phoric, and other (mostly neutral). These affective states are closely related to the Living in

Familial Environments (LIFE) codes [73] and can directly be derived from them [167]. The
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Krippendorff α of the annotated states is 0.66. The four affective states are expressed non-

verbally and verbally. For example, being sad is coded as dysphoric, but self-focused complaints

are also coded as dysphoric.

The affective state coding focuses on the onsets of events, i.e., when enough evidence is

available to determine an affective state. We assume that an annotated state is valid until the

next onset. Through preliminary machine learning experiments2, we determined that the annota-

tions are most likely delayed by one second. We, therefore, shift all annotations by one second.

The dataset has a total of 4,117 positive segments, 1,683 aggressive segments, 5,313 dysphoric

segments, and 6,221 other segments. The average segment duration is 6.1 seconds.

5.3 Human Judgment of Modality Informativeness

We are interested in how much information each modality contributes when recognizing affective

states. Additionally, we want to explore whether interactions between modalities are crucial

when predicting affective states or whether modalities can be used independently.

For our study, we recruited and trained two annotators from our local institution3. As the

TPOT dataset contains sensitive data, all annotators were part of our IRB protocol. The annota-

tion software ELAN [201] is used to display side-by-side videos of the mother and the adolescent.

For each family member, we randomly select a balanced subset of twelve segments. We exclude

segments of the ”other” state from this annotation, as they are primarily characterized by neutral

or no expressions. Each family member’s video is randomly assigned to one of the two annota-

tors. 10% of the videos (26 videos) are annotated by both annotators to calculate the inter-rater

agreement (see section 5.3.1 for details about the Krippendorff α).

2By evaluating the performance when predicting the events shifted in 0.25-second increments.
3The two female annotators were already familiar with the annotation software. We followed the established

approach for annotator training, where annotators are trained on a separate subset of the data (not used in our main

study) until reaching a high enough agreement. In our case, we used the threshold of 0.7 Krippendorff α on the

training subset.
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Modality informativeness is the amount of information a modality contains to recognize an

affective state. For each modality (vision, language, and acoustics), the annotators are asked

”How much information does the modality contribute to the affective state?” and given the fol-

lowing response options: ”sufficient information”, ”relevant information”, ”no information”, and

”not clear / I do not know”. A modality is sufficient when the annotators can recognize the af-

fective state using only this modality. In contrast, a modality is relevant if it is not sufficient

to recognize the affective state by itself but provides information about the affective state. An

example of relevant information is speaking loudly: it can signal a high arousal state, but typi-

cally we cannot differentiate between positive and aggressive states with just this cue. We should

note that multiple modalities can be sufficient for the same segment. Furthermore, none of the

modalities may be sufficient by itself, meaning that the interaction between modalities is crucial.

As a sanity check, we ask the annotators ”Do you agree with the affective state?”. This allows

us to flag segments where the affective state might be too ambiguous. The annotators have the

following response options: ”agree”, ”somewhat agree (it could be interpreted as <affective

state>)”, ”disagree”, and again ”not clear / I do not know”. Our two annotators ”agree” in 86%

of the cases with the originally coded affective states. Our study excludes annotations where the

annotators do not ”agree” with the affective state.

Annotation Interface: Figure 5.1 shows a screenshot of the annotation interface. The side-

by-side videos are located above the tiers (not shown in the screenshot). Knowing that another

onset happens immediately before or after an onset that is going to be annotated was pointed out

to be important by our two annotators during pilot studies. To contextualize the sampled onsets,

nearby onsets are included in the ELAN files if they occur within five seconds.

5.3.1 Annotation Analysis

Annotator agreement: We report the agreement of our modality informativeness annotations

using Krippendorff α: 0.50 for the visual modality, 0.66 for the language modality, and 0.65

68



Figure 5.1: The annotation interface. On the left is an annotated onset and on the right is a

nearby onset for context. The length of the segments has no meaning. The onset is the start of

the segment.

for the acoustic modality. These Krippendorff α are computed using the ordinal weighting

scheme [95] since our annotation label scheme is ordinal. If one or both annotators choose

”not clear / I do not know” for a modality, we treat the annotation as missing. Only 6% of the

modality annotations are flagged as missing, leaving 2,724 segments for vision, 2,694 for lan-

guage, and 2,703 for acoustics (15.6% of all TPOT segments). While we sampled the affective

states in a balanced manner, not all videos have three aggressive segments, leading to an imbal-

ance between the affective states. Out of the segments with at least one modality annotated (a

rating different from ”not clear / I do not know”), 35.55% are positive, 24.02% are aggressive,

and 40.38% are dysphoric.

Modality Informativeness: We analyze the informativeness of each modality. As seen in

Table 5.1, the vision modality provides the most frequently sufficient information, followed by

the language modality. Interestingly, the acoustic modality does not seem to provide as much

information for this dataset. A potential explanation might be that it is cognitively difficult

to focus on acoustic characteristics when listening to speech [111]. It is further surprising to

observe that the annotators did not often choose ”relevant information”. This suggests that, in

most cases, individual modalities could be sufficient to predict an affective state.

While we did not annotate which exact behaviors are causing relevant/sufficient information,
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Table 5.1: Distribution of the modality informativeness.

Modality Information

No Relevant Sufficient

Vision 16% 11% 67%

Language 49% 3% 41%

Acoustic 78% 3% 13%

Table 5.2: Common behaviors related to the three affective states as reported by the annotators.

State Behaviors

Positive head node, yes / agree statements, smile, eyebrows raised, laughter

Aggressive head shake, no / disagreement statements, scowl / glare, eyebrows

raised, sigh

Dysphoric gaze aversion, head facing downwards / away from partner, self-

touches (face and head), fiddling, shoulder shrugs, lip suck/bite, sigh

we asked our annotators for the most common behaviors for each of the three affective states

and tabulated them in Table 5.2. Behaviors shared among affective states seem to be related to

arousal (raised eyebrows) and valence (sigh). This is somewhat expected since both positive and

aggressive states tend to be high arousal states, while aggressive and dysphoric states both tend

to be low valence.

Informativeness and Missingness: The language and acoustic modalities are not always

available since a person does not speak all the time. To validate if this greatly impacts informa-

tiveness annotations, we look at how often words are spoken during segments that are annotated

as containing ”no information”. If words are spoken during an uninformative (”no information”)

70



Table 5.3: Percentage of available information for each affective state. 100% means all segments

of the affective state.

Modality Positive Aggressive Dysphoric

No Rel Suf No Rel Suf No Rel Suf

Vision 19% 6% 74% 24% 16% 55% 9% 12% 69%

Language 47% 2% 49% 25% 6% 63% 64% 3% 22%

Acoustic 70% 2% 26% 79% 9% 6% 83% 2% 4%

segment, we know that language and acoustics are available4 and are not caused because speech

is missing. During 51.15% of the uninformative language segments, words were spoken. Simi-

larly for acoustics, 66.18% of the uninformative acoustic segments contain spoken words.

Modalities per affective state: Table 5.3 shows the distribution of informativeness for each

affective state. Similar to Table 5.1, vision provides a lot of information across all affective states,

but language provides more often information than vision for aggressive. In addition, language

is more often informative for positive and aggressive than for dysphoric. A potential reason

for this observation is that agreement and disagreement are coded as positive and aggressive,

respectively. Another observation is that when the acoustic modality is informative, it tends to

be informative for the positive state.

Cross-modal interactions: It is also interesting to study which modalities co-occur. Ta-

ble 5.4 shows that more than half of the time, when language is informative, vision also provides

information. When the acoustic modality is informative, it is often accompanied by visual infor-

mation. While a single modality is frequently sufficient, affective states are often still expressed

in multiple modalities. A predictive model could benefit from this extra information in terms

of robustness by integrating uni-modal predictions dynamically based on a predicted modality

4This is a simplification for acoustics as people can also express themselves non-verbally, e.g., laughing, crying,

and sighing.
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Table 5.4: Co-occurrence of available information (relevant or sufficient). Co-occurrence proba-

bilities are relative to how often the row modality is informative, e.g., in 38% of the cases when

vision is informative, language is also informative.

Modality Co-occurs with

(base rate) Vision Language Acoustic

Vision (83%) 100% 38% 18%

Language (48%) 67% 100% 9%

Acoustic (17%) 89% 26% 100%

informativeness.

5.4 Modality Attention

To guide how much attention a model pays to each modality, we explore two decision-fusion

architectures that differ only in how modalities are aggregated. The first architecture averages

unnormalized predictions (logits), while the second architecture averages normalized predic-

tions (probabilities). While unnormalized logits contain more information than the normalized

probabilities, the weighting of the unimodal predictions (attention) might be misleading as the

unimodal models can learn to encode modality informativeness through the magnitude of their

unnormalized logits instead of relying on the attention mechanism [153].

We use superscript in the following equations to denote a modality m ∈ M with M =

{v, l, a}. The prediction ŷi of the unnormalized model for segment i is expressed as

pi = softmax

([∑
m∈M

lmi,Posa
m
i , . . . ,

∑
m∈M

lmi,Otha
m
i

])
(5.1)

ŷi = arg maxs∈{Pos, Agg, Neg, Oth}pi,s (5.2)

where [·] is the concatenation operator. The unnormalized logits lmi ∈ R4 for each modality m
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are defined as

lmi = Wmfm(Xm
i ) + bm (5.3)

and the attention vector ai ∈ R|M | is

ai = softmax (g([ f v(Xv
i ), f

l(X l
i), f

a(Xa
i ) ])) . (5.4)

W is the projection matrix to the four affective states and b is the bias term. f and g are op-

erationalized using Multi-Layer Perceptrons (MLP). This first model is part of the family of

cooperative gating models [75] and is a special case of the multimodal gating unit [135] when

used on the predicted output.

The second model averages normalized probabilities. The changes to the first model are

lmi = softmax(Wmfm(Xm
i ) + bm) (5.5)

pi =

[∑
m∈M

lmi,Posa
m
i , . . . ,

∑
m∈M

lmi,Otha
m
i

]
. (5.6)

5.4.1 Human-Guided Attention

Our goal is to study how models can be guided to prioritize modalities similarly to how humans

judge the modality informativeness. Maximizing this similarity has the potential advantage of

better interpretability and could also help the model during training to focus on the subset of

informative modalities, as it might prevent the model from learning some spurious correlations.

We propose a new auxiliary loss to improve the similarity between model attention and hu-

man judgments. To formalize this loss, we define two matrices A,H ∈ Rn×|M | where n is the

number of segments. These matrices correspond to the predicted attentions (A) and the human

informativeness judgments (H). Row i in these matrices corresponds to the importance of the

three modalities for segment i. To define a similarity between the human judgments and the al-

gorithmic attentions, we convert the ordinal human judgments to numeric values: no information

(0.0), relevant information (0.5), and sufficient information (1.0).
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Am, Hm ∈ Rn are the columns of A and H , respectively. They correspond to attention values

of modality m across all n segments. We minimize the following auxiliary loss

−λ
1

|M |
∑
m∈M

pearson (Am, Hm) . (5.7)

This loss maximizes the modality-averaged correlation between A and H . λ ∈ {0.1, 0.5, 1.0} is

a hyper-parameter to find a good scale for the auxiliary loss.

5.5 Experimental Methodology

To evaluate our human-guided prediction approach5, i.e., the unnormalized model with the aux-

iliary loss from Equation 5.7 (referred to as guided), we define two baseline models: the nor-

malized and unnormalized model, each without the auxiliary loss (referred to as normalized and

unnormalized respectively).

We define an interaction-independent five-fold split for testing with a nested holdout split

for validation (60% for training, 20% for validation, and 20% for testing). Reported metrics are

averaged over the five test sets. The following hyper-parameters are validated for all models:

learning rate for Adam [87], number of layers of the individual MLPs, strength of the L2-norm

for the learnable parameters, and λ to balance the auxiliary loss. The primary loss function is

the categorical cross-entropy, rectified linear units are used as non-linear activation functions,

and early stopping is used. All parameters are jointly optimized. Features are z-normalized

using the respective training sets and feature selection is performed with a linear support vector

classifier [54] on the training sets. The best model is determined by the weighted accuracy

averaged over the validation sets.

We report the affective state prediction performance using accuracy (Acc) and Krippendorff

α6. Krippendorff α is chosen since we can easily compare the model’s performance with the
5The code is available at github.com/twoertwein/HumanGuidedAttention.
6Krippendorff α is typically computed between the ratings of annotators. Here, we treat the model and the

ground truth as two raters.
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inter-rater agreement.

Further, we use two metrics to evaluate how interpretable the learned attention is. For each

modality m, we report

ρm = spearman(Am, Hm) . (5.8)

Compared to section 5.4.1, we replace the differentiable Pearson’s correlation with the non-

differentiable Spearman’s correlation since the human informativeness scale is ordinal. Addi-

tionally, the human informativeness and the predicted attention should, for each segment, have a

similar/the same ordering. We report the segment-averaged Spearman’s rank correlation coeffi-

cient

ρ̄local =
1

n

n∑
i=1

spearman(Ai, Hi) (5.9)

to evaluate whether segments have, on average, a similar attention ordering as the human infor-

mativeness. Ai, Hi ∈ R3 are the rows of A and H .

Significance tests are conducted with paired person-clustered bootstrapping [155] using p =

0.05 and 10,000 resamplings at the person-level.

5.5.1 Extracted Features

Vision: We use OpenFace [7] and AFAR [48] to extract facial action unit intensities and occur-

rences, head rotation, and eye gaze angles. When aggregating frame-level features to the labeled

segments, we ignore features of video frames that were not correctly tracked according to Open-

Face/AFAR. All features are aggregated to the labeled segments using the mean and standard

deviation. Additionally, the maximum is used when aggregating facial action unit intensities. As

an additional proxy for gaze aversion, we calculate the angular distance from looking straight

into the camera [57] as the camera is located approximately on face-level behind the conversa-

tion partner. We combine the features from OpenFace and AFAR by concatenating their features,

meaning we have action unit statistics from both OpenFace and AFAR.
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Table 5.5: Performance on the entire test set and the gating metrics on the annotated test subset.

Model α Acc ρ̄local ρv ρl ρa

Chance 0.000 0.307

Normalized 0.336 0.528 0.284 0.273 0.356 -0.148

Unnormalized 0.350 0.537 0.372 0.140 0.288 -0.090

Guided 0.351 0.541 0.636 0.288 0.423 0.283

Language: All interactions are manually transcribed. Words are automatically aligned to the

audio using the Montreal Forced Aligner [124]. We use the dimensions from LIWC 2015 [178]

to represent all words that occur during a labeled segment.

Acoustic: The audio files are first processed with StereoTool’s declipper7 in an attempt to

recover clipped amplitudes caused by a too high microphone gain and then volume-normalized

with FFmpeg according to the EBU R128 standard. Next to features from COVAREP [36],

we extract the feature sets corresponding to the following openSMILE [50] configurations:

eGeMAPS v01a [52], prosodyAcf (pitch and voicing probability), and vad opensource [51]

(speech activation detection). Most acoustic features are meaningful only while a person is

speaking. When aggregating the audio features to the labeled segments, we consider audio

features that happen only while speaking according to the aligned transcripts and when CO-

VAREP/openSMILE detect speech. All low-level features are aggregated to the labeled segments

using the mean and standard deviation. The high-level features from eGeMAPS are aggregated

using only their mean.
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Table 5.6: Performance on the annotated test subset. Oracle refers to using the annotated modal-

ity informativeness instead of the learned attention.

Model Krippendorff α Accuracy

Unnormalized 0.318 0.518

- Oracle 0.324 0.535

Guided 0.328 0.525

- Oracle 0.379 0.561

5.6 Results and Discussion

Human-guided attention: Results are summarized in Table 5.5. Our human-guided model

shows small improvements over the baseline models, but most importantly, the learned attention

weights are much closer to human judgment. The correlation between the attention and the

human judgment significantly increased from ρ̄local = 0.372 to ρ̄local = 0.636, meaning that

our guided model prioritizes modalities similar to how humans prioritize them. The modality-

specific correlations (ρv, ρl, and ρa) increased as well, making it easier to interpret the attention

across segments.

Oracle experiment: Table 5.6 shows the hypothetical case when our guided model predicts

perfectly the human informativeness. Its performance would significantly improve from α =

0.328 to α = 0.379. The other models do not improve significantly when using the human

informativeness.

Attention per modality and affective state: Finally, Table 5.7 shows the averaged attention

of our guided model for the three annotated affective states on the test sets. It is very intriguing

to compare Table 5.7 and Table 5.3. This comparison shows similar trends between the human

judgment and the model’s attention: vision is essential and language is more important for pos-

7www.stereotool.com
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Table 5.7: Average of the predicted attention for the three annotated affective states on the entire

test sets.

Modality Positive Aggressive Dysphoric

Vision 0.607 0.542 0.689

Language 0.329 0.422 0.276

Acoustic 0.064 0.036 0.035

itive and aggressive than for dysphoric. The only obvious difference is that the model amplifies

the existing bias [229] of acoustics not being too predictive.

5.7 Conclusion

This chapter studied the hypothesis that a subset of modalities is sufficient to recognize affective

states from two perspectives. First, we demonstrated that humans can reliably judge the informa-

tiveness of modalities and observe that, in most cases, a single modality is sufficient to recognize

affective states while, at the same time, the affective states are still expressed through multiple

modalities. Second, we proposed a human-guided auxiliary loss to improve the learned attention

to be significantly more similar to human informativeness judgments while not degrading the

predictive performance. Finally, the predictions can further be improved by directly using the

human informativeness judgments during test time, demonstrating empirically that the human

ratings are reliable. This paves the way for more intuitive and easier-to-interpret multimodal

models.

Achieving a significant improvement when overwriting the learned attention with the human

judgment indicates that our model can be corrected by a trained human, which makes our model

more controllable and potentially also more acceptable by users [159]. This significant improve-

ment also highlights the need for more research on how to learn better and more robust attention
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mechanisms.

This chapter focused on the first of three multimodal phenomena we will investigate. The

next multimodal phenomena are interactions between modalities which we discuss in Chapter 6.

While this chapter processed modalities almost independently and combined them in a weighted

sum, the next chapter processes modalities simultaneously to learn modality interactions that can

only be present when modalities contextualize each other.
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Chapter 6

Multimodal Interaction Transparency

After concentrating on the importance of modalities in Chapter 5, we now focus on the second

multimodal phenomenon, namely multimodal interactions. Many of today’s machine learning

models learn multimodal interactions that empirically help their performance, but it is often un-

clear what interactions are learned and how they influence the model’s output. This chapter tries

to answer these questions. The work in this chapter was published at Findings of the Association

for Computational Linguistics EMNLP [209]1.

Multimodal fusion integrates information from what we say, how we speak, and how we vi-

sually express ourselves. While multimodal models have led to performance improvements [186,

219, 222], they often have the downside of being difficult to interpret: it is unclear whether inter-

actions between two modalities (bimodal) or three modalities (trimodal) are learned or whether

these models focus on only one modality [204]. Quantifying multimodal interactions is an es-

sential building block for future research: in model debugging as a step to better understand

models and improve their performance [44] as well as in AI applications as a step to be more

interpretable [61].

Seminal work [69] observed that many multimodal models function like the sum of uni-

1The published paper is titled ”Beyond Additive Fusion: Learning Non-Additive Multimodal Interactions” and

is available at https://doi.org/10.18653/v1/2022.findings-emnlp.344.
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modal models, so-called additive models. In other words, these models might not be learning

as many non-additive (bimodal and trimodal) interactions as expected. The non-additive interac-

tion example in Figure 6.1 exemplifies how humans perceive the whole multimodal example as

more than the sum of the two modalities. While the current approach of separating additive and

non-additive interactions highlighted the problem of models primarily learning additive contri-

butions, it did not provide solutions to learn non-additive interactions explicitly [69]. However,

many multimodal language tasks require explicitly learning unimodal, bimodal, and trimodal

interactions, such as, emotion recognition during spoken language [70].

In this paper, we introduce Multimodal Residual Optimization (MRO) to explicitly learn and

decompose predictions into the sum of unimodal, bimodal, and trimodal interactions. Inspired by

Occam’s razor, to prefer simpler solutions, the main intuition of MRO is that (simpler) unimodal

contributions should be learned before learning (more complex) bimodal and trimodal interac-

tions. For example, the bimodal predictions should learn to correct the mistakes (residuals) of

the unimodal predictions, thereby letting the bimodal predictions focus on the remaining bimodal

Negative

“Oh, my God. That's
so dramatic.”

Positive

Very Positive

L, V
(Unimodal)

L + V
(Additive)

f(L, V)
(Bimodal)

Neutral
+

Vision (V)Language (L)

Non-Additive Interactions
need to be modeled

Figure 6.1: The joint assessment of language and vision (denoted as f(L, V )) is different from

the sum of unimodal assessments (additive). This is an example for valence from the IEMOCAP

dataset [18].
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interactions. Similarly, trimodal predictions should learn what is not modeled by unimodal and

bimodal predictions.

We evaluate MRO on six multimodal language datasets, including tasks for intent, sentiment,

and emotion recognition. MRO aims to separate multimodal interactions (unimodal, bimodal,

and trimodal) without degrading predictive performance. As part of evaluating MRO, we propose

a new evaluation metric that extends prior work to three modalities [69]. We complement our

empirical results with a human perceptions study to evaluate whether MRO learns non-additive

interactions that align with human judgment.

6.1 Related Work

We review previous research on four aspects related to multimodal interactions: the prevalence of

additive interactions, model-specific and model-agnostic quantification of modality interactions,

and taxonomies of multimodal interactions.

Prevalence of Additive: Growing empirical evidence [69] and annotation studies [96, 152,

208] highlight that additive interactions are prevalent especially on datasets that are not care-

fully balanced, e.g., not having the same image contextualized with different captions [69]. An

empirical approach highlights that multimodal models can be factorized into additive models

without significant loss in performance [69], indicating that the examined models primarily re-

lied on additive interactions. Similarly, multimodal perception studies indicate the importance of

additive interactions: unimodal ratings of emotions are predictive of multimodal ratings [152].

Further, annotations of the semiotic mode, how the multimodal meaning emerges from individual

modalities [9], of text-image pairs found that modalities provide mostly the same meaning [96].

Moreover, modality importance annotations for affective states found that a single modality of-

ten contains sufficient information to confirm an affective state [208]. While additive interactions

are sufficient in many cases, non-additive interactions are still needed, especially when datasets

contain the same unimodal representation in different multimodal contexts [69, 152].
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Model-specific quantification: Models can indicate how much they rely on potentially non-

additive interactions [187, 221]. Multimodal routing [187] was recently proposed to interpret the

relative importance of multimodal interactions. It uses the routing-by-agreement algorithm [161]

to focus more on modalities whose embedding is similar to other modalities’ embeddings. The

performance gains of the routing model hint at modalities containing partially redundant infor-

mation [32] for emotion and sentiment prediction. While most model-specific approaches cannot

rule out that a multimodal model potentially uses only one modality [204], MRO encourages that

a bimodal model focuses on bimodal interactions.

Model-agnostic quantification: Multimodal interactions can be quantified after a model has

been trained [69, 120, 188, 198]. EMAP [69] is based on the idea of factorizing any trained model

into additive and non-additive interactions. Unfortunately, this marginalizing is very costly: with

m modalities and a dataset of N samples, it requires Nm forward passes. Compared to EMAP,

MRO learns a model that directly separates multimodal interactions.

Taxonomy of Multimodal Interactions: Many categorizations have been proposed to quan-

tify the relationship between modalities [89, 198, 225]. A recent study [96] uses Koepfer’s par-

allel, amplifying, and divergent. Parallel signals that only one modality is needed for prediction

as they all provide the same meaning. Amplifying is sometimes also referred to as ”additive” in

a non-mathematical sense: modalities provide similar information but their combined meaning

is either amplified or diminished. Finally, divergent indicates that modalities provide opposing

information. Figure 6.1 is an example of opposing information.

6.2 Quantifying Multimodal Interactions

To learn a multimodal model that separates unimodal, bimodal, and trimodal interactions, we

begin by defining how to quantify these three types of multimodal interactions. The work pre-

sented in this section is a generalization of prior work [69], which defined metrics to quantify

multimodal interactions in the bimodal case.
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Consider three modalities T (text), V (vision), and A (acoustic) with corresponding features

xT , xV , xA. A bimodal function f is additive when it can be factorized into the sum of two

unimodal functions, ∀xT , xV : f(xT , xV ) = g(xT ) + h(xV ). Further, f contains unimodal

contributions when parts of the prediction depend on only one modality: ∃xT : Ev f(xT , v) ̸=

0 [120]. This equation is illustrated for the language modality but has the same formulation for

the vision modality. Prior work [69] proposed EMAP to quantify unimodal contributions (UC)

in the context of two modalities. In this paper, we generalize UC to three modalities.

Claim 1. A trimodal function f contains unimodal contributions when UC(f, xT , xV , xA) ̸= 0

with

UC(f, xT , xV , xA) =

E
v,a

f(xT , v, a) + E
t,a
f(t, xV , a)

+ E
t,v
f(t, v, xA)− 2 E

t,v,a
f(t, v, a) . (6.1)

The idea of UC is to evaluate the model with all possible combinations of unimodal features

(even feature combinations that are not in a dataset) so that the model cannot use non-additive

interactions between modalities. Similarly, we can formulate a function BI to quantify bimodal

interactions.

Claim 2. A trimodal function f contains bimodal interactions (BI) when BI(f, xT , xV , xA) ̸= 0

with

BI(f, xT , xV , xA) =

E
t
[f(t, xV , xA)− UC(f, t, xV , xA)]

+ E
v
[f(xT , v, xA)− UC(f, xT , v, xA)]

+ E
a
[f(xT , xV , a)− UC(f, xT , xV , xa)] . (6.2)

The remaining trimodal interactions (TI) are then simply what is not covered by the unimodal
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contributions and bimodal interactions:

TI(f, xT , xV , xA) = f(xT , xV , xA)

− UC(f, xT , xV , xA)−BI(f, xT , xV , xA) . (6.3)

When computational feasible2, UC,BI and TI are valuable tools to evaluate whether a

model contains unimodal, bimodal, and trimodal interactions.

6.3 Multimodal Residual Optimization

The main contribution of this paper is Multimodal Residual Optimization (MRO) which has the

goal of learning and decomposing predictions into unimodal, bimodal and trimodal interactions

to quantify them. Inspired by Occam’s razor, the intuition of MRO is that (simpler) unimodal

interactions should be prioritized before learning (more complex) bimodal and trimodal inter-

actions. MRO has two components to separate modality interactions: an architecture and loss-

function component.

6.3.1 MRO Architecture

Instead of using a single trimodal function to make a prediction ŷ = f(xT , xV , xA), the goal of

MRO is to make predictions as ŷ = UC(f, xT , xV , xA)+BI(f, xT , xV , xA)+TI(f, xT , xV , xA)

without having to compute UC,BI and TI . Therefore, MRO makes predictions ŷ based on three

components:

ŷ =ŷuni + ŷbi + ŷtri (6.4)

2UC, BI , and TI can computationally be demanding given the expectation terms. While this is not as much of

an issue when used as evaluation metrics, the computational cost prohibits us from using them as part of an iterative

optimization process, e.g., in the loss function of neural networks.
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where ŷuni, ŷbi and ŷtri model the unimodal, bimodal, and trimodal interactions respectively. It is

important to note that ŷbi and ŷtri are intended to model only non-additive interactions, while ŷuni

is designed to model only additive interactions. ŷuni is defined as

ŷuni =fθT (xT ) + fθV (xV ) + fθA(xA) (6.5)

where fθT , fθV and fθA are models, e.g., neural networks that use only one modality as an input.

Each model has its own set of parameters (θT , θV , and θA). We parameterize the bimodal and

trimodal models in a similar manner:

ŷbi =fθTV
(xT , xV ) + fθTA

(xT , xA)

+ fθAV
(xA, xV ) (6.6)

ŷbi =fθTV A
(xT , xV , xA) (6.7)

where fθTV
, fθTA

and fθAV
are the bimodal models that take only two modalities as input, and

fθTV A
takes all three modalities as input. The whole MRO model is parameterized with Θ =

(θT , θV , θA, θTV , θTA, θAV , θTV A).

This architecture already enforces that ŷuni can only contain unimodal contributions. While

dedicating unimodal, bimodal, and trimodal models was explored in prior work [187, 217, 220],

they did not explicitly encourage ŷbi and ŷtri not to contain unimodal contributions and similarly

ŷtri not to contain bimodal interactions. The MRO loss function described in the next section

addresses this issue.

6.3.2 MRO Loss Function

We first explain MRO for two modalities (language and vision) before presenting the more gen-

eral formulation for three and more modalities.

Bimodal case: To encourage ŷbi to not contain unimodal contributions, MRO prioritizes ŷuni.

MRO defines the loss function as

L(y, ŷ) = L(y, ŷuni) + L(y, sg (ŷuni) + ŷbi) (6.8)
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xL xV

+
ŷuni

ŷL ŷV

xL, xV

ŷbi+
ŷ

Forward pass

Backward pass

L(y, ŷuni) + L(y, sg(ŷuni) + ŷbi)

fθL fθV fθLV

Figure 6.2: Overview of MRO: bimodal model learns what cannot be predicted by the unimodal

contributions.

where sg refers to stop-gradient [154], which prevents back-propagation through sg’s arguments.

The first part of Equation 6.8 updates θT and θV to predict y using only unimodal contributions

ŷuni = fθT (xT ) + fθV (xV ). The second part of Equation 6.8 updates θTV so that L(y, ŷuni + ŷbi)

is smaller; i.e., ŷbi corrects mistakes that ŷuni makes. We do not backpropagate again to θT and

θV so that ŷbi does not influence ŷuni; i.e., ŷuni is optimized independently of ŷbi.

Figure 6.2 summarizes MRO in the bimodal case.

m-modal case: In the case of m modalities, we have m types of interactions: unimodal,

bimodal, trimodal, . . . , m-modal. Instead of separating just additive from all non-additive in-

teractions, we want to separate these m types of interactions. MRO defines the loss function

as

L(y, ŷ) =
m∑
i=1

L

(
y, sg

( i−1∑
j=1

ŷj

)
+ ŷi

)
(6.9)

where ŷi refers to the i-modal predictions, i.e., ŷ1 = ŷuni, ŷ2 = ŷbi, ŷ3 = ŷtri. For the trimodal case,

ŷuni, ŷbi, and ŷtri were defined in Subsection 6.3.1. When m is large than three, the models can be

defined following the same approach. Similar to the bimodal case, ŷbi is optimized independently
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of ŷtri as the gradient of ŷbi is stopped by sg when optimizing ŷtri.

6.3.3 Sequential MRO

An alternative to MRO’s approach of simultaneously optimizing all the main components (ŷuni,

ŷbi, ŷtri), the sequential MRO (sMRO) proposes to optimize them sequentially.

First, sMRO optimizes the parameters of ŷuni using the loss L(y, ŷuni) until convergence and

then freezes its parameters θL, θV , and θA before optimizing ŷbi and ŷtri. Next, sMRO optimizes

the parameters of ŷbi using the loss L(y, ŷuni + ŷbi) until convergence and then freeze the bimodal

parameters θLV , θLA and θV A. The trimodal ŷtri can then be optimized using the loss L(y, ŷuni +

ŷbi + ŷtri). For cases with more than three modalities, sMRO can optimize the parameters of ŷm

for L(y,
∑m

i=1 ŷi) until convergence and then freeze the parameters of ŷm.

6.4 Experimental Methodology

We evaluate whether we can train a model that separates unimodal, bimodal, and trimodal inter-

actions while not degrading predictive performance.

Datasets: We focus on five sentiment- and emotion-annotated datasets for which prior work

used multimodal models, see Table 6.1. We also include the Instagram dataset [96] as it has

modality interaction annotations (semiotic modes), which we can use to evaluate MRO.

We use the same features across all sentiment and emotion datasets: RoBERTa [117] as

a representation of transcribed utterances; OpenFace 2.0 [7] to summarize face-related features,

and openSMILE’s eGeMAPS [52] to summarize acoustic features. For the Instagram dataset, we

use the author-provided ResNet features [67] to summarize the image content and use RoBERTa

to represent captions.

Evaluation: We want that the prediction components ŷuni, ŷbi and ŷtri correspond to UC(ŷ), BI(ŷ),

and TI(ŷ) so that the prediction components represent only unimodal, only bimodal, and only
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Original Paper Tasks Abbreviation Samples Modalities

[217] Sentiment (regression) MOSI 2.2k 3

[221] Sentiment, Polarity, Happiness

(regression)

MOSEI 22.9k 3

[18] Arousal and Valence (regression) IEMOCAP 4.8k 3

[189] Arousal and Valence (regression) SEWA 1.9k 3

[131] Affect categories (4-way classifi-

cation)

TPOT 17.3k 3

[96] Intent of Instagram posts (7-way

classification)

Instagram 1.3k 2

Table 6.1: Dataset overview.

trimodal interactions. To test this, we use |UC(ŷbi + ŷtri)| to evaluate whether the bimodal and

trimodal predictions contain unimodal contributions and |BI(ŷtri)| whether the trimodal pre-

diction contains bimodal contributions. Given the MRO-architecture, ŷuni cannot include bi-

modal and trimodal interactions and ŷbi cannot include trimodal interactions. This means, if

|UC(ŷbi + ŷtri)|+ |BI(ŷtri)| is 0, the model perfectly separates unimodal, bimodal, and trimodal

interactions, i.e., ŷuni = UC(ŷ), ŷbi = BI(ŷ), and ŷtri = TI(ŷ). We use 5-fold test setup for all

datasets.

Models: We compare the MRO-architecture when optimized in different manners: with

L(y, ŷuni + ŷbi + ŷtri) (referred to as Joint), sMRO, and MRO. For performance comparison, we

include the routing model [187] (referred to as Routing), a recently proposed model with the goal

of modality interpretability. Lastly, we compare the performance against a single trimodal model

ŷ = fθTV A
(xT , xV , xA) (referred to as Tri) to evaluate whether the larger MRO-architecture has

two many parameters for smaller datasets.

Implementation Details: The functions f of Equation 6.4 are instantiated as multi-layer
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perceptrons. For each multimodal model, e.g., fθTV
, we implement two popular types of fu-

sion: early fusion (concatenating the modalities) and tensor fusion [219] (outer product between

modalities after learning unimodal embeddings). The type of fusion is a hyper-parameter to-

gether with the number of layers, their width, learning rate, learning rate decay, L2 weight decay,

dropout, and with/without prior feature selection. As a loss function, we use the mean absolute

error for regression tasks and the cross-entropy loss for classification tasks.

6.5 Multimodal Perception Study

We conduct a multimodal perception study to evaluate whether MRO learns non-additive inter-

actions, when humans also require non-additive interactions. We choose arousal and valence on

the IEMOCAP dataset for this study as arousal and valence are two fundamental dimensions to

describe emotional states [130].

Study Design: Crowd workers3 are asked to rate arousal and valence of video segments when

being exposed to only a subset of modalities. The four subsets are: 1) the transcript of what the

person says (T); 2) the muted video (V); 3) the low-pass filtered audio (A), and 4) the transcripts,

the video, and the original audio (TVAO). IEMOCAP has ten speakers. We randomly select ten

segments for each speaker, i.e. 100 segments.

Audio Processing: It is challenging to disentangle speech content and how we speak [12].

Similar to previous work, we low-pass filter the audio signal [215]. Instead of using 850 Hz as

a cut-off [215], we use a lower cut-off frequency, as we could understand spoken words at 850

Hz. We choose 660 Hz4 as it is the mean of the maximum pitch in an empirical study [106]

and it also closely coincides with the maximum pitch of contralto singers (E5 at 659.25 Hz). We

3We recruited 40 US-based crowed works from the platform prolific https://www.prolific.co/ whose

first language is English.
4We use ffmpeg for low-pass filtering with the following filter configuration: firequalizer=gain=’if(lt(f,660), 0,

-INF)’:min phase=1
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Arousal Valence

Min. age 19 21

Mean age 36 37

Max. age 79 62

Female 20 19

Male 20 21

Table 6.2: Basic demographic information about the annotators.

choose this pitch-focused definition as we believe that prosodic information will predict arousal

and valence.

Avoiding learning effects: Raters might be able to infer the missing multi-modal context

after having rated some of the unimodal subsets for a specific segment. We therefore use two

mechanisms to address learning effects across the modalities. First, each of the raters annotates

only 20 randomly selected segments for each modality subset (we have eight raters per segment

and modality subset). Second, we structurally randomize the order of the modality subsets by

first presenting all unimodal subsets in a random order and in the end the trimodal segments.

Ratings and reliability: Following the annotation setup from IEMOCAP, we use the ordi-

nal arousal and valence manikins scale consisting of five levels [16] to rate the two emotional

dimensions. The effective reliability [158] over k raters as measured by the Intra-class Corre-

lation Coefficient ICC(2, k-1) is excellent (above 0.9) [94] for all modality subsets. Further,

our new trimodal ratings (TVAO) correlate highly with the existing annotations on IEMOCAP

r(98) = 0.88, p < 0.001 for arousal and r(98) = 0.92, p < 0.001 for valence, indicating that we

can use our new annotations to inspect models trained on the original annotations.

Evaluation: To evaluate when humans require non-additive interactions, we train a linear

regression model (an additive model) that predicts TVAO given T, V, and A. We refer to this
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model as ŷhuman
uni . The model fit of ŷhuman

uni shows how important the missing non-additive interac-

tions are [152]. Further, the absolute error |TVAO − ŷhuman
uni | measures how important the missing

non-additive interactions are to humans for each segment. We use |TVAO− ŷhuman
uni | to answer the

question: does MRO learn more non-additive interactions when |TVAO − ŷhuman
uni | is larger, i.e.,

when humans require non-additive interactions?

6.5.1 Additional Study Details

In addition to the three unimodal and the trimodal combinations we explored bimodal combina-

tions: 1) the muted video with the transcript (TV); 2) the muted video with the low-pass filtered

audio (VA); 3) the transcript with the low-pass filtered audio (TA); 4) for comparison the original

audio with the transcript (TAO).

Reliability: We report two types reliabilities: the averaged pairwise reliability between two

random raters (ICC(2,1)) and the effective reliability of the mean over k=8 raters (ICC(2, k-1)).

Pairwise and effective reliability address different purposes: pairwise is needed to determine

how many raters are needed to achieve a targeted effective reliability [158]. Averaging over

raters is important as emotional dimensions are subjective and difficult to annotate (especially

when modalities are missing). The effective reliability describes how reliable the mean over the

raters is, i.e., if we were to draw a new set of ratings and were to average them, how similar is

this new mean to our current mean.

Except for transcripts-only (T) on arousal and acoustic-only (A) on valence, all pairwise re-

liabilities are moderate (between 0.5 and 0.75) [94], see Table 6.3. The effective reliability [158]

of the mean over k raters as measured by ICC(2, k-1) is excellent (above 0.9) for all combi-

nations. Instead of directly taking the mean over the raters, we apply, as common in affective

computing, a z-normalization for each rater [18, 189] and take a weighted mean [62] over the

raters.

Compensation: All raters are paid the same fixed amount, leading to an average hourly rate
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Combination Avg. ICC(2, 1) ICC(2, k-1)

Arousal Valence Arousal Valence

T 0.36 0.55 0.96 0.98

V 0.52 0.64 0.98 0.99

A 0.57 0.38 0.98 0.96

TV 0.48 0.62 0.97 0.98

VA 0.56 0.61 0.98 0.98

TA 0.60 0.54 0.98 0.98

TAO 0.55 0.62 0.98 0.98

TVAO 0.56 0.64 0.98 0.99

Table 6.3: Pairwise and effective reliability across the eight combinations. ICC is calculated with

the R package psych.

of 11.14 USD/h.

6.6 Results and Discussion

Sanity Check: Before evaluating MRO on more complex datasets, we conduct a sanity check on

two simpler datasets: xT +xV +xA which requires only unimodal contributions (we refer to it as

Sanity Check Unimodal) and xTxV + xTxA + xV xA which requires only bimodal interactions

(we refer to it as Sanity Check Bimodal). Figure 6.3 shows that the joint and the routing model

do not separate unimodal, bimodal, and trimodal interactions well as |UC(ŷbi + ŷtri)|+ |BI(ŷtri)|

is high. As expected, sMRO and MRO separate the interacts almost perfectly as |UC(ŷbi+ŷtri)|+

|BI(ŷtri)| is very close to 0.

To test how many epochs are needed to minimize |UC(ŷbi + ŷtri)| + |BI(ŷtri)|, we evaluate
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Figure 6.3: Average |UC(ŷbi+ŷtri)|+|BI(ŷtri)| for all models and datasets. Lower values indicate

a better separation of unimodal, bimodal, and trimodal contributions.
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Figure 6.4: |UC(ŷbi+ ŷtri)|+ |BI(ŷtri)| for the same model optimized with either L(y, ŷuni+ ŷbi+

ŷtri) (Joint, in blue) or with MRO (in red). Lower values indicate a better separation of unimodal,

bimodal, and trimodal interactions.

it after each epoch. The results in Figure 6.4a show that the separation during the first epochs

becomes worse as ŷuni has not yet learned much, meaning ŷbi and ŷtri try to predict unimodal con-

tributions which increases |UC(ŷbi + ŷtri)|. However, after a few epochs the separation becomes

better and |UC(ŷbi + ŷtri)| + |BI(ŷtri)| reaches 0. The same can be observed for the bimodal

sanity check in Figure 6.4b.

MRO significantly reduces |UC(ŷbi + ŷtri)| + |BI(ŷtri)|. Similar to the sanity check on

simpler dataset, we want that |UC(ŷbi + ŷtri)| + |BI(ŷtri)| is as small as possible. For easier

comparison across datasets, we normalize |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| by the standard deviation

of the ground truth from the training set. Figure 6.3 shows that sMRO and MRO significantly

reduce |UC(ŷbi + ŷtri)| + |BI(ŷtri)| compared to models optimized with L(y, ŷuni + ŷbi + ŷtri)

(Joint) and the routing model.

As it is computationally very expensive to evaluate |UC(ŷbi + ŷtri)| + |BI(ŷtri)| after each
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epoch, we plot it only for arousal and valence on IEMOCAP in Figure 6.4c and Figure 6.4d. We

focus on IEMOCAP as we also conduct the perception study on it, see Section 6.5. While the

plot for arousal in Figure 6.4c is a bit noisy, MRO quickly reduces |UC(ŷbi + tri)| + |BI(ŷtri)|.

The same can be observed for valence in Figure 6.4d.

MRO does not degrade performance. The secondary goal of MRO is not degrading per-

formance. Table 6.4 lists the models’ performance. Models optimized with MRO are in no case

significantly worse than any other model. However, they are statistically significantly better than

the joint model for valence on SEWA and happiness on MOSEI.

MRO might generalize slightly better because, similar to structural risk minimization [192],

it prioritizes simpler models and relies on more complex multimodal models only when needed.

Another reason is that MRO has similar effects as having auxiliary unimodal loss functions which

seems beneficial for multimodal models [196, 223].

Ablating ŷbi + ŷtri decreases performance. We quantify the average performance impact

of post-hoc removing ŷbi + ŷtri across datasets, i.e., ŷ = ŷuni. When comparing Table 6.5 with

Table 6.4, we observe that removing ŷbi + ŷtri (the non-additive predictions), hurts performance.

While additive contributions are very important, non-additive interactions are needed for best

performance.

MRO learns more non-additive interactions when two modalities are informative. The

TPOT dataset has human judgments for how important modalities are to confirm the current

affective state [208]. Three importance levels were annotated: 1) a modality is sufficient to

confirm the affective state (while ignoring other modalities), 2) a modality contains relevant

information for the affective state (information from a second modality is needed), and 3) a

modality contains no information for the current affective state.

We hypothesize that MRO uses more non-additive interactions (ŷbi + ŷtri) for samples with

at least two informative modalities (relevant or sufficient) compared to samples with only one

informative modality. To measure whether ŷbi + ŷtri are used more, we calculate how much
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Tri Routing Joint sMRO MRO

MOSI (Pearson’s r)

Sentiment 0.662 0.658 0.657 0.656 0.661

MOSEI (Pearson’s r)

Sentiment 0.723 0.727 0.727 0.726 0.727

Polarity 0.599 0.597 0.606 0.593 0.605

Happiness 0.637 0.642 0.637 0.630 0.641

IEMOCAP (Concordance Correlation Coefficient)

Arousal 0.588 0.613 0.622 0.624 0.611

Valence 0.647 0.655 0.624 0.603 0.634

SEWA (Concordance Correlation Coefficient)

Arousal 0.317 0.263 0.293 0.292 0.304

Valence 0.268 0.335 0.268 0.310 0.337

TPOT (Accuracy)

Constructs 0.565 0.554 0.566 0.566 0.574

Instagram (macro ROC AUC)

Intent 0.876 0.731 0.891 0.888 0.891

Mean 0.588 0.595 0.589 0.589 0.599

Table 6.4: Average performance over the test folds. Higher is better.

sMRO MRO

Mean 0.577 0.587

Table 6.5: Average performance when post-hoc removing ŷbi + ŷtri, i.e., ŷ = ŷuni.
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the softmax probabilities (TPOT is a classification task) change when removing ŷbi + ŷtri, i.e.,∑4
k=1 |softmax(ŷ)(k) − softmax(ŷuni)

(k)| where k indexes the probability vector for the four

classes. The means of samples with two informative modalities (0.299) and only one infor-

mative modality (0.264) are significantly different according to an independent t-test, t(2671) =

5.059, p < 0.001. This suggests that MRO not only mathematically separates unimodal, bimodal,

and trimodal interactions but that its separation also correlates with human assessments. Further,

this observation provides evidence that models are more likely to learn non-additive interactions

when several modalities are themselves informative.

MRO learns more non-additive interactions when modalities amplify each other. We

included the Instagram dataset [96] because it has modality interaction annotations (semiotic

modes) that are inspired by Kloepfer [89]. To test whether ŷbi (this dataset has only two modali-

ties) contributes more depending on the semiotic mode (parallel, amplifying, and divergent), we

conduct a one-way ANOVA on the probability changes when removing ŷbi. The means between

the semiotic modes are significantly different, F (2, 1296) = 5.059, p = 0.006, with the highest

average change for amplifying (0.317), followed by parallel (0.272), and then divergent (0.256).

The means between amplifying and parallel are significantly different t(1297) = 2.432, p =

0.015 as well as between amplifying and divergent t(1297) = 2.874, p = 0.004. Similar to

the results on TPOT, it is confirming that MRO learned significantly larger non-additive contri-

butions (ŷbi) for amplifying than for parallel. A possible explanation why diverging seems to

require the least non-additive interactions is that the definition of diverging requires that only

the meaning of the modalities is opposing but it does not specify how the combined meaning is

formed. Even if the combined meaning of Figure 6.1 was neutral (additive), the semiotic mode

is still divergent.

MRO learns non-additive interaction when humans need non-additive interactions. The

additive model ŷhuman
uni of predicting the mutlimodal ratings TVAO given the uni-modal ratings,

fits very well (r2 = 0.85 for arousal and r2 = 0.85 for valence) which is inline with similar prior
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work [152]. Even though our multimodal model is not on par with ŷhuman
uni (r2 = 0.68 for arousal

and r2 = 0.66 for valence), we observe a significant correlation of r(98) = 0.202, p = 0.043

for valence between |TVAO − ŷhuman
uni | (the missing non-additive interactions) and |ŷbi + ŷtri| (non-

additive contributions). This indicates that ŷbi + ŷtri learned non-additive interactions that cannot

be explained by ŷhuman
uni . For arousal, we do not observe a significant correlation, potentially

because the optimization seems far nosier for arousal then for valence, see Figure 6.4c.

6.7 Conclusion

We proposed MRO to explicitly learn and separate unimodal, bimodal, and trimodal interactions

in a multimodal model. This separation is essential for quantifying how much a model uses mul-

timodal interactions and is a step towards more interpretable models. Based on prior work [69]

we proposed a new evaluation metrics to quantify whether a trimodal models uses unimodal,

bimodal, and trimodal interactions. Empirically, we observed that MRO successfully separated

unimodal, bimodal, and trimodal interactions while not degrading predictive performance. Be-

yond the empirical evaluation, MRO learns non-additive interactions in accordance with human

judgments on three datasets.

This and the previous chapter focused on two core multimodal phenomena. The next chapter,

Chapter 7, will extend our efforts on those two phenomena by studying which contributions of a

modality are unique to it and which are redundantly expressed through multiple modalities.
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Chapter 7

Modality Contribution Transparency

The previous two chapters focused on two core multimodal model mechanics. In this chapter, we

focus on the last core multimodal model mechanics for this thesis: learning a model that factor-

izes its output into 1) unique modality contributions that can be derived from only one modality

and 2) pairwise redundant contributions that can be derived from at least two modalities. This

allows us to understand better how uniquely useful modalities are and how much two modalities

share for a task.

Humans express their affective states simultaneously through multiple modalities, often in a

redundant manner, giving people and computational models multiple ways to perceive affective

states, e.g., someone might be perceived as being in a positive state because they are visually

smiling or because they are also simultaneously audibly laughing. This redundancy makes it

challenging in multimodal machine learning to determine what a modality uniquely contributes

and what can redundantly be contributed by multiple modalities when predicting affective states.

Computational models that learn what is uniquely predicted by one modality and what can redun-

dantly be predicted by multiple modalities have the potential to a) help interpretability as machine

learning practitioners can inspect these two types of contributions and b) improve robustness to

missing modalities as they have to learn redundant contributions from multiple modalities, for

example, by relying on both visual smiles and audible laughter.
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(in different non-verbal contexts)
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Smiles & Laughter

ŷV ŷA ŷT+ + = ŷ

Typical Additive Model

xV xA xT
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SMURF: Factorize unique and pairwise redundant contributions

→ Better interpretability

→ More robust
     (to missing modalities)

Audio appears unused
Vision appears unique

Figure 7.1: Typical additive models might ignore a redundant modality, which can mislead ma-

chine learning practitioners and make the model less robust. SMURF factorizes unique and

pairwise redundant contributions, which includes extracting pairwise redundant contributions

from both modalities. SMURF’s factorization has the potential to improve interpretability and

also improves robustness to missing modalities.

Learning unique and redundant contributions is difficult for even additive models [65], such

as the models used in Chapter 5, that express their prediction as the sum of separately processed

modality contributions, as the contributions of two modalities can be correlated. To overcome

this difficulty, two challenges need to be addressed. First, we need to ensure that a model de-

rives the same information from two modalities simultaneously to represent pairwise redundant

contributions, as typical models might ignore a highly correlated modality, such as vision being

ignored in multimodal machine translation [1, 220, 224] as illustrated in Figure 4.1 on the left.

And second, we need a factorization to separate unique and redundant contributions that does

not degrade the model’s predictive performance while also directly describing how those con-

tributions relate to the model’s prediction to make them easier to inspect for machine learning

practitioners.

In this paper, we propose SMURF (Statistical Modality Uniqueness and Redundancy Fac-

torization), an additive model that learns to factorize its predictions into unique contributions

and pairwise redundant contributions by expressing them as the sum of a) unique contributions

that are uncorrelated with all other modalities and b) redundant contributions that are maximally
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correlated between pairs of modalities. SMURF learns these two types of contributions by maxi-

mizing the covariance between pairwise redundant contributions and by minimizing the absolute

value of the covariance between a modality’s unique contributions and its pairwise redundant

contributions. One crucial implication of maximizing the covariance between pairs of redundant

contributions is that SMURF extracts the same information from both modalities, e.g., SMURF

relies on both the audible laughter and the visual smiles. Our evaluation of SMURF is structured

by two research questions:

RQ1 Can SMURF learn its factorization while not degrading predictive performance?

RQ2 Does SMURF’s maximization of pairwise redundancies improve its robustness to missing

modalities?

We evaluate that SMURF does not degrade predictive performance on eight affective datasets

and one synthetic dataset. We further use the synthetic dataset, on which we have a ground truth

of the unique and pairwise redundant contributions, to verify SMURF’s learned factorization in

both a bimodal and trimodal setting (RQ1). We hypothesize that SMURF might be more robust

to missing modalities at test time as it maximizes pairwise redundant contributions (RQ2): if

visual smiles would make audible laughter completely redundant, SMURF will still rely on the

audible laughter, which becomes crucial when the vision modality is missing at test time. Finally,

we explore whether SMURF has the potential to improve interpretability by testing whether its

unique and pairwise redundant contributions have a significant relationship with human judgment

studies on three datasets.

7.1 Related Work

We cover three related topics: approaches that quantify the amount of unique and redundant

information, coordinated representations to learn redundancy, and multimodal collinearity.

Unique and Redundant Information: Mutual information [28, 230] and Partial Information
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Decompositions (PID) [109] have been used to train neural networks that estimate statistics of

those theoretic measures, for example, the redundant amount of information in bits between

two modalities for a task [28]. While these models predict a task and estimate statistics of

information theoretical measures, they do not couple these two goals as much as SMURF does,

meaning it is unclear, for example, if the estimated amount of redundancy is also used for the

task prediction. SMURF overcomes this issue by directly factorizing its prediction as the sum

of unique and pairwise redundant contributions. We want to note that estimating the amount

of redundancy expressed as bits and estimating the pairwise redundant contributions expressed

as additive values making up the model’s predictions are related but different tasks. Further,

some of the PID redundancy measures have unexpected properties as two variables can have

redundant information for a task, even when the two variables are independent (and are therefore

also uncorrelated) [93].

Coordinated Representation for Redundancy: Coordinated representation learning tries to

learn a representation by minimizing a similarity measure between two modalities [6], meaning

this representation focuses on redundant information simultaneously present in both modalities.

Many different similarity measures have been proposed to learn such a coordinated representa-

tion [2, 121, 195] and previous work also learned representations that represent what the other

modality does not contain [66, 214, 227]. The main difference between these representation ap-

proaches and SMURF is that SMURF is applied to the output of a model to directly express the

prediction as the sum of unique and pairwise redundant contributions. SMURF’s approach has

two advantages: 1) it ensures that the unique and pairwise redundant contributions impact the

prediction (embedding spaces undergo further layers which might learn not to use, for example,

the correlated information), and 2) it is easier to inspect the low-dimensional contributions for a

machine learning practitioners than to inspect the high-dimensional embedding spaces.

Multimodal Collinearity: Multimodal models can learn to ignore a modality even though

the modality contains predictive information when other modalities provide the same and more
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information. This has been observed in multimodal machine translation [205] and multimodal

sentiment recognition [220, 224]. Ignoring an informative modality is related to collinearity in

statistics, where at least one feature is a linear combination of the other features [1]. In such a

situation, a model might use the redundant feature to some degree or ignore it. SMURF avoids

this ambiguity by maximally relying on pairwise redundant contributions, meaning a redundant

modality will be used by SMURF. This can potentially improve interpretability and robustness

to missing modalities, for example, when only a completely redundant modality is available at

test time.

7.2 Problem: Unique and Pairwise Redundant Contributions

Our goal is training a model that factorizes its prediction into unique and pairwise redundant

modality contributions where the prediction is directly derived from those contributions to make

them easier to inspect for machine learning practitioners. Inspired by the interpretable but linear

factor analysis in statistics, which predicts a variable as the sum of uncorrelated factors [216],

we 1) express the prediction ŷ as the sum of the unique and pairwise redundant contributions and

2) define the unique contributions as being uncorrelated with other modalities and the pairwise

redundant contributions as being maximally correlated between modalities.

For N samples expressed as a tuple of vectors (xA,xB) from two modalities A and B, our

goal is to factorize the predictions ŷ as

ŷ = ŷA + ŷB + ŷAB + ŷBA (7.1)

where we use a single-letter subscript to denote the unique contributions (ŷA and ŷB) and a two-

letter subscript to denote the pairwise redundant contributions derived from the first mentioned

modality with the other modality (ŷAB and ŷBA), meaning ŷAB is derived from modality A and

represents what the two modalities A and B redundantly explain about y. The unique contribu-

tions should be uncorrelated with each other, meaning their Pearson’s correlation coefficient r
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should be 0.0

min |r(ŷA, ŷB)|. (7.2)

Further, the unique contributions should also be uncorrelated with the pairwise redundant contri-

butions, which are represented as the sum ŷAB + ŷBA

min |r(ŷA, ŷAB + ŷBA)| (7.3)

min |r(ŷB, ŷAB + ŷBA)| . (7.4)

For the sum of ŷAB and ŷBA to represent the pairwise redundant contributions, they should be

maximally correlated to represent the same information

max r(ŷAB, ŷBA) . (7.5)

To ensure that ŷA and ŷAB are derived from only A, they are predicted using a unimodal

model that uses only xA (and similar for the contributions from B)

[ŷA, ŷAB] = fθA(xA) (7.6)

[ŷB, ŷBA] = fθB(xB) (7.7)

where fθ is model with learnable parameters θ. The next section explains how SMURF learns

these models.

7.3 SMURF

We first explain SMURF (Statistical Modality Uniqueness and Redundancy Factorization) with

two modalities for regression where the prediction ŷ is a vector of N × 1. We then outline

SMURF more generally with m modalities.
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7.3.1 Bimodal SMURF

SMURF learns its factorization for an additive model as in Equation 7.1 through two auxiliary

loss terms (Luncor and Lcor) to achieve the two desired properties: the uncorrelated unique con-

tributions (Equation 7.2 to Equation 7.4) and the correlated pairwise redundant contributions

(Equation 7.5). The loss function of SMURF is

L(y, ŷ) + λ(Luncor + Lcor) (7.8)

where L(y, ŷ) is a downstream loss, y is the ground truth, and λ is a hyper-parameter determining

the trade-off between the different loss terms.

As Pearson’s r is differentiable, we could operationalize the two auxiliary loss terms through

Equation 7.2 to Equation 7.5. Pearson’s r is, however, scale-invariant, meaning its value can

widely fluctuate when one of the two contributions is close to zero, which makes the optimization

unstable. Instead, we use the sample covariance

cov(ŷA, ŷAB) =

∑N
i=1(ŷ

i
A − ¯̂yA)(ŷ

i
AB − ¯̂yAB)

N − 1
, (7.9)

where ¯̂y is the average over the N samples in ŷ, to uncorrelate the unique contribution with the

modality’s pairwise redundant contributions by minimizing

Luncor =
1

2

(
|cov(ŷA, ŷAB)|+ |cov(ŷB, ŷBA)|

)
. (7.10)

Figure 7.2 visually illustrates that Luncor uncorrelates the unique contribution from the modality’s

pairwise redundant contributions. To learn the pairwise redundant contributions (ŷAB and ŷAB)

we minimize

Lcor = −cov(ŷAB, ŷBA) +
1

2
var(ŷAB)var(ŷBA) (7.11)

where var is the sample variance

var(ŷ) =
∑N

i=1(ŷ
i − ¯̂y)

N − 1
. (7.12)
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Figure 7.2: Illustration of SMURF for three modalities.

The first term of Lcor maximizes the covariance between the pairwise redundant contributions.

The second term limits the individual variances as even weakly correlated contributions with

increasingly larger variances would increase the covariance without increasing their correla-

tion. Equation 7.11 is known as the scalar-version of an Hirschfeld-Gebelein-Ŕenyi (HGR)

correlation [71] approximation proposed to learn maximally correlated representation in neu-

ral networks and was demonstrated to perform better than maximizing Pearson’s r, the sample

covariance, and canonical correlation analysis [121].

As Lcor maximizes the covariance between pairwise redundant contributions, the model is

incentivized to use the pairwise redundant contributions as much as it can. Together with Luncor,

Lcor penalizes the model if it would learn correlated unique contributions.

7.3.2 m-modal SMURF

In the case of m modalities (A, B, . . . , M ), we learn again the unique contributions and but also

all pairwise redundant contributions as illustrated in Figure 7.2 for m = 3. This means that the
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model architecture becomes

[ŷA, ŷAB, . . . , ŷAM ] = fθA(xA) (7.13)

. . .

[ŷM , ŷMA, . . . , ŷMN ] = fθM (xM) . (7.14)

Luncor uncorrelates the unique contribution of modality I from all the pairwise redundant

contributions with modality J

Luncor = α
∑

(I,J),I ̸=J

|cov(ŷI , ŷIJ)| (7.15)

where α = 1
m2−m

is a normalization term to average over all the covariance terms so that the

same λ can be used across bimodal and m-modal experiments. Similarly, Lcor maximizes the

covariance between redundant contributions of all modality pairs (I , J)

Lcor = β
∑

(I,J),I<J

−cov(ŷIJ , ŷJI) +
1

2
var(ŷIJ)var(ŷJI) . (7.16)

where β = 2
m2−m

is again a normalization term to average over the covariance terms.

7.4 Non-additive SMURF (MRO-SMURF)

So far we focused on additive models, but conceptually we can also extend SMURF to non-

additive models. The focus of this chapter is SMURF for additive models but we want to high-

light how SMURF can be combined with our work in Chapter 6. A non-additive model with

modalities A, B, and C can learn non-additive interactions between pairs of modalities and

between the triplet of modalities. Multimodal Residual Optimization (MRO) [209] was pro-

posed in Chapter 6 to separate additive, pairwise non-additive (bimodal) and triplet non-additive

(trimodal) interactions from each other. We can extend MRO by applying SMURF within the

additive and within the bimodal interactions. This allows us to explore a) whether there are
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ŷ(ABC)++

Unimodal additive Bimodal non-additive Trimodal non-additive

Figure 7.3: Illustration of combining SMURF and MRO for three modalities. MRO factorizes

additive, bimodal non-additive and trimodal non-additive interactions and SMURF further factor-

izes the additive and bimodal non-additive interactions into unique and redundant contributions.

non-additive interactions between A and B that derive the same information as non-additive in-

teractions between other modality pairs (redundant bimodal interactions) and b) what the unique

non-additive interactions between modalities contribute to the prediction.

We have the following seven models when combining SMURF and MRO to factorize non-

additive interactions for three modalities A, B, and C as illustrated in Figure 7.3: the three

unimodal models

[ŷA, ŷAB, ŷAC ] = fθA(xA) (7.17)

[ŷB, ŷBA, ŷBC ] = fθB(xB) (7.18)

[ŷC , ŷCA, ŷCB] = fθC (xC) ; (7.19)

the three bimodal models

[ŷ(AB), ŷ(AB)(AC), ŷ(AB)(BC)] = fθAB
(xA,xB) (7.20)

[ŷ(AC), ŷ(AC)(AB), ŷ(AC)(BC)] = fθAC
(xA,xC) (7.21)

[ŷ(BC), ŷ(BC)(AB), ŷ(BC)(AC)] = fθBC
(xB,xC) , (7.22)

where ŷ(AB) are the unique non-additive contributions from the modality pair AB, ŷ(AB)(AC) are

the redundant non-additive contributions between the pairs AB and AC; and the trimodal model

ŷ(ABC) = fθABC
(xA,xB,xC) . (7.23)
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To define the loss function of MRO, we define ŷuni as the sum of all unimodal contributions

(the sum over all outputs from the three unimodal models)

ŷuni =ŷA + ŷAB + ŷAC + ŷB + ŷBA + ŷBC + ŷC + ŷCA + ŷCB (7.24)

and ŷbi as the sum of all bimodal contributions (the sum over all outputs from the three bimodal

models)

ŷbi =ŷ(AB) + ŷ(AB)(AC) + ŷ(AB)(BC) + ŷ(AC) + ŷ(AC)(AB) + ŷ(AC)(BC) (7.25)

+ ŷ(BC) + ŷ(BC)(AB) + ŷ(BC)(AC) .

To ensure that the bimodal models learn only the non-additive bimodal interactions, we use

the MRO loss formulation to define the loss L as

L(y, ŷ) = L(y, ŷuni) + L(y, sg(ŷuni) + ŷbi) + L(y, sg(ŷuni + ŷbi) + ŷ(ABC)) (7.26)

where sg means stop gradient [154] which prevents back-propagation through sg’s arguments.

To achieve the factorization constraints from SMURF within the unimodal and within the

bimodal contributions, we define the two auxiliary loss terms Luncor and Lcor as following
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Luncor =
1

12

(
cov(ŷA, ŷAB) + cov(ŷA, ŷAB) (7.27)

+ cov(ŷB, ŷBA) + cov(ŷB, ŷBC)

+ cov(ŷC , ŷCA) + cov(ŷC , ŷCB)

+ cov(ŷ(AB), ŷ(AB)(AC))

+ cov(ŷ(AB), ŷ(AB)(BC))

+ cov(ŷ(AC), ŷ(AC)(AB))

+ cov(ŷ(AC), ŷ(AC)(BC))

+ cov(ŷ(BC), ŷ(BC)(AB))

+ cov(ŷ(BC), ŷ(BC)(AC))
)

Lcor =
1

6

(
cov2(ŷAB, ŷBA) (7.28)

+ cov2(ŷAC , ŷCA)

+ cov2(ŷBC , ŷCB)

+ cov2(ŷ(AB)(AC), ŷ(AC)(AB))

+ cov2(ŷ(AB)(BC), ŷ(BC)(AB))

+ cov2(ŷ(AC)(BC), ŷ(BC)(AC))
)

where for brevity we use cov2(a,b) to refer to −cov(a,b)+ 1
2
var(a)var(b). Intuitively, we apply

the same constraints as for for the additive trimodal SMURF but in addition also apply them for

the bimodal non-additive interactions.
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Table 7.1: Dataset characteristics.

Dataset Tasks Samples Modalities (abbreviations)

MOSEI [221] Sentiment and happiness (regression) 23.3k audio (A), text (T), video (V)

MOSI [218] Sentiment (regression) 2.2k audio (A), text (T), video (V)

IEMOCAP [18] Arousal and valence (regression) 4.8k audio (A), text (T), video (V)

RECOLA [156] Arousal and valence (regression) 1.0k audio (A), ECG (E), video (V)

SEWA [189] Arousal and valence (regression) 2.2k audio (A), text (T), video (V)

UMEME [152] Arousal and valence (regression) 1.6k audio (A), text (T), video (V)

TPOT [131] Four affective states (multiclass classification) 15.2k audio (A), text (T), video (V)

VREED [176] Arousal-valence quadrants (multiclass classification) 312 ECG (E), GSR (G), gaze (V)

7.5 Experimental Setup

7.5.1 Datasets

As affective states are often expressed through multiple modalities, we focus on eight affective

datasets that include sentiment and emotion annotations. See Table 7.1 for a summary. To

evaluate SMURF’s factorization, we also create a synthetic dataset with a ground truth of the

unique and pairwise redundant contributions.

MOSI [218] and MOSEI [221]: These two datasets consist of single-person YouTube videos

where the person expresses an opinion, e.g., about a movie. In both cases, we predict the contin-

uous sentiment ratings (MOSI-S and MOSEI-S) and the happiness intensity ratings on MOSEI

(MOSEI-H).

IEMOCAP [18]: We use the improvised dyadic interactions of IEMOCAP and predict their

continuous arousal (IEMOCAP-A) and valence (IEMOCAP-V) ratings separately for each per-

son and utterance.

RECOLA [156]: This dataset consists of French-speaking dyadic interactions. Similar to

IEMOCAP, we predict arousal (RECOLA-A) and valence (RECOLA-V) ratings for each person
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and utterance.

SEWA [189]: This dataset consists of German-speaking dyadic interactions. As previously,

we predict arousal (SEWA-A) and valence (SEWA-V) ratings for each person and utterance.

UMEME [152]: The University of Michigan Emotional McGurk Effect (UMEME) dataset

contains a set of sentences enacted in different emotional settings. We predict arousal (UMEME-

A) and valence (UMEME-V) separately for each enacted sentence. UMEME has further combi-

nations of mismatched audio and video, e.g., the video from a positive enactment but the audio

from a negative enactment. As we focus on more natural interactions, we exclude those mis-

matched combinations.

TPOT [131]: As previously detailed in Chapter 5, the Transitions in Parenting of Teens

(TPOT) dataset contains video recordings of dyadic interactions between mothers and their ado-

lescents. These interactions consist of segments annotated for four affective states (other, aggres-

sive, dysphoric, and positive). We classify these segments for each person independently of the

previous and following segments.

VREED [176]: VREED is a virtual reality dataset of people watching emotion-eliciting 360-

degree videos. We predict the four quadrants of the arousal-valence space (the four combinations

of low/high arousal and low/high valence) separately for each person and video.

Synthetic: To test whether SMURF recovers the intended unique and pairwise redundant

contributions, we create a synthetic dataset. We define y as

y = a+ b+ c+ d+ e+ f (7.29)

where a, . . . , f ∼ N(0, 1) are randomly sampled and we define the three modalities A, B, and C

as containing three features each

A = [a,d, e], B = [b,d, f ], and C = [c, e, f ] (7.30)

where [] is the concatenation operator. a,b, and c are the unique contributions that are in only one

modality, and d, e, and f are the pairwise redundant contributions that are in multiple modalities,
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for example, d is in A and B. We use this synthetic test case in two settings: in the introduced

trimodal setting where the model has access to modalities A, B, and C and in a bimodal setting,

where the model has access to only modalities A and B.

Synthetic (Non-Additive): We validate MRO-SMURF on a synthetic dataset that has two

non-additive interactions in the form of two multiplications between k and l and between m and

n

y = kl+mn (7.31)

where k, . . . ,n ∼ N(0, 1) are randomly sampled. We define the three modalities A, B, and C as

A = [k,m], B = [k,n], and C = [l] . (7.32)

kl is a pairwise redundant non-additive interaction between modality pairs (A,C) and (B,C),

while mn is a unique non-additive interaction present only in the modality pair (A,B). We

evaluate MRO-SMURF only on this dataset as MRO learned few non-additive interactions on

affective datasets in previous work [209].

7.5.2 Features

We use the same features for each modality: MiniLM-L12-v2’s sentence embedding [197] for

text, openSMILE’s eGeMaPs [52] features for audio, and OpenFace 2.2 [7] features for video.

In all cases, we use statistics, such as mean and standard deviation, to aggregate the extracted

features at the labeled utterance level.

RECOLA does not provide transcripts of the spoken text: we use the heart rate related fea-

tures (ECG) that are provided by the dataset authors as a third modality instead of the text modal-

ity. VREED does not share the raw audio-video recordings and has no transcripts. We use the

author-provided features for eye-gaze, skin-conductance (GSR), and heart rate (ECG).
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7.5.3 Baselines

We compare SMURF to two baselines: SMURF w/o Lcor +Luncor and E-HGR [121]. For better

comparison, we use the same additive architecture for all models [65]: all models express their

predictions as in Equation 7.1. The only difference between the models are their auxiliary loss

terms, such as, Lcor and Luncor in Equation 7.8 for SMURF.

SMURF w/o Lcor+Luncor: To evaluate whether SMURF’s two auxiliary loss terms negatively

impact the predictive performance, we compare it without having those two additional terms, i.e.,

λ = 0 in Equation 7.8.

E-HGR [121]: While we are not aware of other approaches that explicitly factorize the pre-

diction into unique and redundant contributions, we compare SMURF to previous work that also

uses the Hirschfeld-Gebelein-Renyi (HGR) correlation approximation [121] to maximize redun-

dancy. Unlike SMURF, which maximizes HGR between the pairwise redundant contributions,

E-HGR maximizes the HGR correlation in an embedding space between all modalities simulta-

neously. Intuitively, this means that E-HGR might learn fewer redundancies than SMURF as the

”intersection” of three modalities can not be larger than the intersection of two modalities, e.g.,

while laughter and smiles frequently co-occur, they might not also be co-occurring together with

textual expressions.

7.5.4 Evaluation Methodology

We evaluate SMURF through our two research questions: whether SMURF achieves its factor-

ization while not degrading predictive performance (RQ1) and whether SMURF’s maximization

of redundant contributions makes it more robust to missing modalities (RQ2). We later also

analyze whether SMURF’s factorization relates to human judgments.

RQ1: Factorization and Performance: We evaluate SMURF’s factorization on the syn-

thetic dataset to verify that it achieves a) the two desired properties: uncorrelated unique contri-

butions (Equation 7.2 to Equation 7.4) and correlated pairwise redundant contributions (Equa-
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tion 7.5); and b) whether SMURF recovers the known ground truth of the unique and pairwise

redundant contributions, e.g., SMURF’s ŷA should correspond to the feature a on the synthetic

dataset, meaning r(ŷA, a) should be high. On all nine datasets, we further report Pearson’s r

for regression tasks and accuracy for classification tasks to evaluate whether SMURF impacts

predictive performance.

RQ2: Redundancy and Robustness: SMURF’s covariance maximization Lcor explicitly

encourages it to derive the same contributions from multiple modalities (pairwise redundancy),

e.g., SMURF will focus on both the audible laughter and the visual smile even if they always

cooccur. We hypothesize that this pairwise redundancy maximization might make SMURF more

robust to missing modalities compared to other additive models, such as SMURF w/o Lcor+Luncor

and E-HGR, that might learn pairwise redundancies to a lesser degree.

We evaluate this hypothesis by assuming that only one modality is available at test time, for

example, only A, which means we have only [ŷA, ŷAB] available. To test how much information

is present in these available modality contributions, e.g., [ŷA, ŷAB], we train a linear model to

predict the original model output ŷ using only the available modality contributions as an input. If

the original model did not extract all the pairwise redundant information from a modality, e.g., if

a model ignored audible laughter and relied only on visual smiles, this linear model will perform

poorly on the downstream task. This performance allows us to quantify whether the explicitly

encouraged pairwise redundancy in SMURF improves robustness to missing modalities.

7.5.5 Implementation Details

The unimodal models (fθA , fθB , and fθB ) are instantiated as multi-layer perceptions (MLP) using

PyTorch [144]. The bimodal and trimodal models of MRO-SMURF are instantiated using Tensor

Fusion Networks [219], where modalities are combined by first learning unimodal representa-

tions and then taking the outer product between the unimodal representations [219]. All models

are learned with the optimizer Adam [88] and have their hyper-parameters validated on the vali-
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dation sets. Hyper-parameters include λ ∈ [0.1, 1] (for both SMURF and E-HGR, SMURF w/o

Lcor + Luncor uses λ = 0), the number of layers of the MLP and their number of neurons, the

learning rate, and the strength of L2 weight decay. For SMURF, we minimize Equation 7.8 for

each batch.

Early stopping is performed on the loss values on the validation set, which includes auxiliary

loss terms for SMURF and E-HGR. The predictive performance metric on the validation set

determines the best model of the hyperparameter search. We use a 5-fold testing for all datasets.

These folds are person-independent except for MOSI and MOSEI for which we use the official

test set.

SMURF for Classification

When predicting one out of c class labels, ŷ can be represented as a vector of c logits for one

sample, meaning ŷ is now a matrix of N × c. We enforce the covariance constraints separately

for each class label, e.g., the unique contribution for the i-th class should be uncorrelated of

the pairwise redundant contributions of i-th class but we do not enforce covariance constraints

between different classes. The two loss terms in case of c classes and two modalities are

Luncor =
1

2c

∑
i∈[1,c]

|cov(ŷi
A, ŷ

i
AB)|+ |cov(ŷi

B, ŷ
i
BA])| (7.33)

Lcor =
1

c

∑
i∈[1,c]

−cov(ŷi
AB, ŷ

i
BA) +

1

2
var(ŷi

AB)var(ŷi
BA) (7.34)

where we select the i-th column in ŷ with ŷi.

7.6 Results and Discussion

7.6.1 RQ1: Factorization and Performance

The goal of the first research question is to evaluate whether SMURF achieves the factorization

outlined in Section 7.2 without degrading predictive performance.
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Pearson’s r Uncorrelated Correlated Pairwise Ground Truth

Unique Contributions ↓ Redundant Contributions ↑ Contributions ↑

Averaged over Equation 7.2 to Equation 7.4 Equation 7.5 r(ŷA, a), r(ŷB,b), . . .

Bimodal Synthetic Dataset 0.001 0.925 0.945

Trimodal Synthetic Dataset 0.001 0.800 0.817

Table 7.2: Averaged Pearson’s r on the bimodal and trimodal synthetic dataset: (left) within

the contributions from SMURF; (right) between the contributions from SMURF and the known

ground truth contributions.

Achieves factorization: The goal of SMURF is to learn a model that factorizes its predic-

tions ŷ as in Equation 7.1 subject to the constraints that the unique contributions are uncorrelated

with all other contributions (Equation 7.2 to Equation 7.4) and that the pairwise redundant con-

tributions are highly correlated (Equation 7.5). We observe that SMURF achieves these two

constraints on the bimodal and trimodal synthetic dataset, see Table 7.2 on the left.

On the synthetic dataset, we know which contributions SMURF should learn, i.e., we have

a ground truth of the unique and pairwise redundant contributions. As reported in Table 7.2

on the right, we observe that SMURF’s contributions correlate highly with the ground truth

contributions.

Maintains predictive performance: SMURF statistically significantly improves perfor-

mance in some cases, often achieves numerically the best performance, and never significantly

decreases the predictive performance, see Table 7.3.

Factorizes non-additive interactions: We test whether MRO-SMURF is able to reconstruct

the one unique (mn) and the one pairwise redundant (kl) non-additive interaction of the non-

additive synthetic dataset. MRO-SMURF closely reconstructs the unique non-additive interac-

tion, i.e., r(ŷ(AB),mn) = 0.944, and also the pairwise redundant non-additive interaction, i.e.,

r(ŷ(AC)(BC),kl) = 0.999 and r(ŷ(BC)(AC),kl) = 0.998, indicating that MRO-SMURF can con-

ceptually learn to factorize non-additive interactions.
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E-HGR [121] SMURF w/o Lcor + Luncor SMURF (proposed)

Pearson’s r (regression)

Synthetic 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

MOSEI-S 0.713 ± 0.006 0.713 ± 0.005 0.713 ± 0.005

MOSEI-H 0.623 ± 0.004 0.621 ± 0.006 0.623 ± 0.008

MOSI-S 0.700 ± 0.019 0.690 ± 0.025 0.690 ± 0.024

IEMOCAP-A 0.646 ± 0.061↓ 0.663 ± 0.048 0.665 ± 0.048

IEMOCAP-V 0.664 ± 0.078 0.662 ± 0.085 0.667 ± 0.079

RECOLA-A 0.553 ± 0.054↓ 0.586 ± 0.065 0.596 ± 0.047

RECOLA-V 0.450 ± 0.107↓ 0.418 ± 0.058↓ 0.474 ± 0.103

SEWA-A 0.499 ± 0.055 0.525 ± 0.029 0.509 ± 0.048

SEWA-V 0.472 ± 0.044 0.470 ± 0.036 0.465 ± 0.024

UMEME-A 0.660 ± 0.083↓ 0.671 ± 0.060↓ 0.695 ± 0.072

UMEME-V 0.739 ± 0.046↓ 0.740 ± 0.049 0.750 ± 0.040

Accuracy (classification)

TPOT 0.514 ± 0.020↓ 0.521 ± 0.015↓ 0.528 ± 0.015

VREED 0.551 ± 0.073↓ 0.602 ± 0.083 0.608 ± 0.041

Table 7.3: Performance of the trimodal E-HGR, SMURF w/o Lcor +Luncor, and SMURF. Higher

is better in all cases and bold indicates best performance. ↓ (and ↑) indicates when a baseline

performs significantly worse (or better) than SMURF at α = 0.05.
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7.6.2 RQ2: Redundancy and Robustness

The goal of the second research question is to evaluate whether SMURF’s maximization of pair-

wise redundant contributions is beneficial for robustness to missing modalities.

More robust to missing modalities: To evaluate how robust SMURF and the baselines are to

missing modalities, we evaluate the performance of using the learned contributions from just one

modality, i.e., we try to reconstruct ŷ using the contributions from only one modality [ŷA, ŷAB].

The resulting downstream performance indicates to which degree these contributions contain

redundant information in addition to the unique contributions. The original trimodal models

should always derive unique contributions as the model would otherwise perform worse, so the

main performance difference between the models should reflect the degree to which the trimodal

model extracted redundant contributions from multiple modalities. In Table 7.4, we observe

that SMURF’s contributions lead to a better performance than for its baselines, indicating that

SMURF is more robust to missing modalities.

7.7 Analysis

To explore whether SMURF might make a model more interpretable, we test whether its fac-

torization relates to three existing human judgment studies. As there are no large-scale human

judgments on the used datasets about uniqueness and redundancy, we compare SMURF’s factor-

ization to human judgments that might have indirectly a relationship to uniqueness and redun-

dancy.

Human unimodal judgments: UMEME and IEMOCAP have human unimodal judgments

of arousal and valence, where humans are, for example, given only the muted video to rate va-

lence. All samples of UMEME have these judgments for the muted video (yH
V ) and the audio

(yH
AT ; including the spoken texts). A subset of 100 samples has these judgments on IEMO-

CAP [209] for the muted video (yH
V ), the low-pass filtered audio (yH

A ), and the text (yH
T ). While
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Available Approach

Modality E-HGR [121] SMURF w/o Lcor + Luncor SMURF (proposed)

Pearson’s r (regression)
Synthetic A 0.644 ± 0.033↓ 0.693 ± 0.006↓ 0.702 ± 0.003

B 0.578 ± 0.037↓ 0.693 ± 0.008↓ 0.703 ± 0.004
C 0.399 ± 0.044↓ 0.646 ± 0.004↓ 0.685 ± 0.004

MOSEI-S A 0.321 ± 0.014 0.313 ± 0.012↓ 0.324 ± 0.012
T 0.690 ± 0.006 0.691 ± 0.007 0.691 ± 0.006
V 0.255 ± 0.009 0.243 ± 0.007 0.245 ± 0.007

MOSEI-H A 0.313 ± 0.007↓ 0.304 ± 0.004↓ 0.319 ± 0.011
T 0.356 ± 0.009 0.349 ± 0.009 0.355 ± 0.012
V 0.551 ± 0.003 0.550 ± 0.001 0.551 ± 0.003

MOSI-S A -0.067 ± 0.056↓ -0.050 ± 0.051↓ 0.034 ± 0.069
T 0.707 ± 0.021 0.696 ± 0.028 0.697 ± 0.023
V 0.073 ± 0.030 0.082 ± 0.030 0.088 ± 0.039

IEMOCAP-A A 0.632 ± 0.048↓ 0.644 ± 0.052 0.652 ± 0.059
T 0.322 ± 0.053 0.301 ± 0.029↓ 0.334 ± 0.020
V 0.357 ± 0.138 0.348 ± 0.163 0.358 ± 0.133

IEMOCAP-V A 0.444 ± 0.099 0.425 ± 0.085↓ 0.448 ± 0.093
T 0.554 ± 0.041 0.541 ± 0.046↓ 0.552 ± 0.049
V 0.416 ± 0.176 0.408 ± 0.182 0.416 ± 0.168

RECOLA-A A 0.530 ± 0.044↓ 0.544 ± 0.047↓ 0.561 ± 0.057
E 0.187 ± 0.125 0.248 ± 0.077 0.213 ± 0.144
V 0.277 ± 0.106 0.290 ± 0.144 0.309 ± 0.121

RECOLA-V A 0.116 ± 0.124 0.084 ± 0.132↓ 0.199 ± 0.082
E 0.151 ± 0.119↓ 0.120 ± 0.101↓ 0.260 ± 0.065
V 0.413 ± 0.127 0.428 ± 0.115 0.435 ± 0.130

SEWA-A A 0.145 ± 0.106↓ 0.172 ± 0.108↓ 0.258 ± 0.055
T 0.049 ± 0.067↓ 0.090 ± 0.067 0.123 ± 0.044
V 0.499 ± 0.049 0.514 ± 0.028 0.508 ± 0.031

SEWA-V A 0.182 ± 0.047 0.192 ± 0.042 0.194 ± 0.032
T 0.081 ± 0.024↓ 0.026 ± 0.029↓ 0.101 ± 0.037
V 0.525 ± 0.029 0.522 ± 0.030 0.525 ± 0.027

UMEME-A A 0.460 ± 0.115 0.490 ± 0.076 0.504 ± 0.104
T 0.137 ± 0.092↓ 0.152 ± 0.047 0.189 ± 0.067
V 0.450 ± 0.138 0.472 ± 0.072 0.495 ± 0.096

UMEME-V A 0.105 ± 0.056↓ 0.109 ± 0.079↓ 0.155 ± 0.060
T 0.258 ± 0.054↓ 0.254 ± 0.053↓ 0.280 ± 0.050
V 0.661 ± 0.051 0.670 ± 0.044 0.677 ± 0.043

Accuracy (classification)
TPOT A 0.373 ± 0.033 0.362 ± 0.013 0.360 ± 0.017

T 0.331 ± 0.040 0.318 ± 0.024↓ 0.334 ± 0.026
V 0.514 ± 0.012 0.515 ± 0.010 0.517 ± 0.013

VREED E 0.282 ± 0.030 0.273 ± 0.054 0.288 ± 0.018
G 0.273 ± 0.015 0.300 ± 0.059 0.297 ± 0.057
V 0.532 ± 0.080↓ 0.578 ± 0.070 0.604 ± 0.060

Table 7.4: Performance of the trimodal additive model when recovering the performance from
only one modality. Higher is better in all cases and bold indicates best performance. ↓ (and ↑)
indicates when a baseline performs significantly worse (or better) than SMURF at α = 0.05.
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UMEME IEMOCAP

Samples 1544 100

Modalities A+T × V A × T A × V T × V

ρ(|yH
AT − yH

V |, |ŷ(AT )V + ŷV (AT )|) ρ(|yH
A − yH

T |, |ŷAT + ŷTA|) ρ(|yH
A − yH

V |, |ŷAV + ŷV A|) ρ(|yH
T − yH

V |, |ŷTV + ŷV T |)

Arousal 0.089, p < 0.001 0.175, p = 0.002 0.126, p = 0.002 ns

Valence 0.087, p < 0.001 0.124, p = 0.031 ns 0.122, p = 0.033

Table 7.5: Spearman’s ρ between the magnitude of the pairwise redundant contributions from

SMURF and the absolute difference of human unimodal judgments.

we could characterize redundancy overall at the dataset level using the correlation between the

human unimodal judgments, for example, r(yH
T ,y

H
V ), or using a recently proposed partial infor-

mation decomposition-based approach [110], we do not have enough statistical power (only two

datasets with each two tasks) to evaluate whether those dataset level measures relate to SMURF’s

factorization. Instead, we focus on the sample-level with the expectation that we are more likely

to observe larger pairwise redundant contributions between two modalities when the human uni-

modal judgments of these modalities are more similar [110]. We hypothesize that, for example,

|ŷTV + ŷV T | (the magnitude of the predicted pairwise redundant contributions) has a nonlinear

correlation with |yH
T − yH

V | (the difference between the human unimodal judgments). Table 7.5

tabulates the Spearman’s ρ for these nonlinear correlation and shows that these hypotheses are

confirmed for arousal and valence on UMEME and that we see similar tendencies on the much

smaller subset of IEMOCAP.

Human modality judgments: TPOT has judgments of how informative modalities appear to

humans when confirming its four affective states [208] ranging from no, relevant, and sufficient

information. While these judgments do not separate between unique and redundant information,

we expect more unique contributions for samples where the modality is judged as relevant or

sufficient compared to different samples of the same modality that are judged as being uninfor-

mative. Wilcoxon’s unpaired ranksums test confirms this for both text (6.416, p < 0.001) and
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video (2.639, p = 0.004) but cannot confirm the hypothesis for audio (0.725, p = 0.234). This

observation could be because the annotators found audio mostly uninformative on TPOT [208].

7.8 Conclusion

Affective states are often expressed in a redundant manner where multiple modalities convey a

similar meaning. This makes it challenging to attribute what is uniquely predicted by a modality

and what can redundantly be predicted by multiple modalities. We proposed SMURF to learn a

model that factorizes its prediction into the sum of unique contributions and pairwise redundant

contributions. Besides its factorization, SMURF often improved performance and, importantly,

never significantly decreased performance. Further, SMURF became more robust to missing

modalities as its maximization of the covariance between modalities encourages it to extract the

same information from multiple modalities. Lastly, we observed that SMURF has the potential to

improve interpretability as its factorization correlates with human judgments on three datasets.
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Chapter 8

Conclusion and Future Directions

In this thesis, we focused on improving transparency for machine learning practitioners by delv-

ing into three dimensions of transparency: data transparency, which aims to provide more infor-

mation about the data used to train models, including understanding how person-specific differ-

ences affect the model; reliability transparency, which aims to provide more information about

how confident the model output is to enable better risk management, and model mechanics trans-

parency, which aims to provide more information about the decision-making process of a model.

We first focused on analyzing data patterns consistent across people (population-level data

transparency) in Chapter 2 by reviewing existing statistical approaches to analyze how acoustic

features relate to symptom severities of psychosis. We further demonstrated in machine learning

experiments that the acoustic features significantly predict the symptom severities.

Next, we provided prediction intervals in Chapter 3 to offer asymptotical guarantees for the

margin of error in regression tasks to improve reliability transparency. We estimated the re-

liability of a primary predictive model using a secondary model and converted the predicted

reliability to prediction intervals using the framework of inductive conformal prediction [138].

Our approach resulted in smaller prediction intervals than other approaches, enabling better risk

management.

We revisited data transparency in Chapter 4, focusing on patterns that differ between people
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while accounting for patterns consistent across people. We integrated mixed effect models with

neural networks to learn complex nonlinear patterns that can be both different or consistent across

people by learning person-generic and person-specific model parameters. We demonstrated that

an affective model that has person-specific temporal transition patterns between affective states

learns person-specific transition differences related to whether the person experienced symptoms

of depression.

In the second half of the thesis, we focused on model mechanics of multimodal models as

affect is often expressed through multiple modalities, such as audibly laughing while visually

smiling. We initially explored in Chapter 5 how important modalities are for a model (modality

importance transparency) to inform machine learning practitioners how much modalities influ-

ence the model output. For this, we first studied how informative humans perceive modalities

to then guide models using those annotations. Our guided model focused on modalities similar

to humans, and our experiments showed that the additional guidance increased predictive per-

formance. Finally, we observed that machine learning practitioners might be able to manually

improve the predictive performance in the future since our experiments showed that replacing

the learned importance with the annotated human informativeness increased performance.

We then made multimodal models more transparent in Chapter 6 by quantifying how much

a model uses unimodal additive, bimodal non-additive, and trimodal non-additive interactions

(multimodal interaction transparency). We achieved this by prioritizing simpler interactions,

such as prioritizing the unimodal additive over the bimodal non-additive interactions. This ap-

proach does not only inform machine learning practitioners about a particular model but also

indicates to which degree more complex non-additive interactions are needed for a particular

task on a given dataset.

Chapter 7 focused on the challenge that modalities often contain redundant information, such

as visually smiling while audibly laughing, which makes it difficult to determine what a modal-

ity uniquely contributes (modality contribution transparency). We proposed a covariance-based
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factorization to separate unique and pairwise redundant contributions between modalities. Our

factorization not only improved robustness to missing modalities but also correlated with human

judgments, indicating that our approach can make models more human interpretable.

8.1 Future Directions

8.1.1 Data: Multiple, Missing, and Unobserved Grouping Factors

In Chapter 4, we focused on scenarios where the grouping factor is known; in our case, all data

from a person formed one group. In practice, there are other ways of grouping data, including

gender, age, and the severity of task-relevant conditions, such as the severity of mood disorder

symptoms. In the following paragraphs, we outline three research questions as possible exten-

sions of the Neural Mixed Effects (NME) model to account for multiple, missing, or unobserved

grouping factors.

The first research question: how do we analyze data patterns from multiple grouping factors

simultaneously, such as for people and age? This is important when studying person-specific

behaviors, as some behavioral differences might already be explained by another grouping factor,

such as the person being younger. Multilevel models in statistics already provide a framework

for this [17, 191]. Can we efficiently integrate this framework with neural networks to further

tease apart complex patterns?

The second research question: what do we do when we do not observe the grouping factor at

test time? The most prominent limitation of NME is that we need to know the grouping factor

at test time, which required us to perform within-person testing. If we observe a new person,

can we make a better guess than falling back to the ”average” person? Directly predicting a

new person’s person-specific parameters might be feasible [212]. Alternatively, learning a task-

relevant similarity between a new person and previously known people might make it possible to

express a new person as a combination of the known people.
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The third research question: can we learn differences for an unobserved grouping factor? As-

suming we have an observable fine-grained grouping factor, such as people, and we hypothesize

that there is a more important coarse grouping factor, but we do not observe it. For example,

the more coarse grouping factor might be based on the Big Five personality dimensions [34].

We could use an approach similar to Latent Dirichlet Allocation (LDA) [14], which can describe

a book as a set of multiple unobserved topics based on the words in the book, by describing

a person (a book) as a set of unobserved personality clusters (set of topics) based on the per-

son’s observations (the book’s words). While this might make the training with known people

more difficult, it might extend more naturally to unknown people at test time as we, even for

known people, need first to infer their personality clusters. Such an approach might also be more

scalable to more people, assuming there are fewer personality clusters than people.

8.1.2 Model Mechanics: Many Modalities

With models incorporating more and more modalities [108], the question arises whether our

proposed methods can scale to a larger number of modalities. If we have dozens of modalities,

it might be overwhelming to present even machine learning practitioners with all these values

representing a modality’s importance, their interactions, or unique and pairwise redundant con-

tributions. All three chapters on multimodal model mechanics require dedicated model branches

to focus on specific modalities and Chapter 6 requires even more for all possible interactions be-

tween modalities. How can we scale these approaches to a larger number of modalities? Sharing

model parameters between branches might be a starting point, such as re-using unimodal rep-

resentations learned by unimodal branches in the bimodal branches. In settings where only the

inference time after training needs to scale, an approach could be first to learn many unimodal,

bimodal, . . . , and m-modal teacher branches. To then train one m-modal student model to mirror

the output of the many teacher models.
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8.1.3 Reliability: Out-of-Domain Data

Throughout this thesis, we assumed that we always work with in-domain data, i.e., that our

testing data has the same patterns as our training data. Datasets such as UMEME [152] that

purposefully combine audio with a mismatched video might lead to an incorrect estimation of

reliability (Chapter 3) or an incorrect prediction of what is unique and redundant between modal-

ities (Chapter 7). The problem of out-of-domain data will likely also occur when a model is

deployed in real-world settings. Two potential workarounds might be a) estimating an in-domain

probability to indicate when to rely on the provided transparency measures or b) providing ways

to test the plausibility of model mechanics, for example, in the case of the pairwise redundant

contributions, we can test whether they are highly correlated.

8.1.4 Towards Transparency for Everyone

With more and more people actively using machine learning models, such as large language

models (LLMs) in the form of chatbots, it becomes important for people to understand a) what

data these models were trained on, b) how reliable these models are, and c) have a better under-

standing of their model mechanics. This thesis focused on improving transparency for machine

learning practitioners from the perspective of a machine learning practitioner. This allowed us

to focus on technical concepts, such as model mechanics, that might be challenging to present

to non-machine learning practitioners. A starting point for future work to improve transparency

for everyone is conducting user studies [175, 194] and reviewing proposed policies regulating

artificial intelligence [23, 40] to understand better what information users would like to know

about machine learning models. In this thesis, we directly ingrained the transparency of model

mechanics in the model architecture and how the model is trained. A potentially more flexible

approach for transparency might be to let the user ask the model questions to describe how it

derived the output. This is already a common pattern when interacting with LLMs [199, 226].

One interesting research direction when approaching this interactive question-asking approach
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is ensuring that the model describes how it actually derived the output instead of describing how

one could potentially derive the output [82, 116].
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