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Abstract
Document-grounded workflows drive operational efficiency in many enterprise

domains. In Finance, onboarding and offboarding of clients, monitoring of client
activities, assignment of risk, assessment of credit, and other integral functions are
dependent on processing documents across a wide variety of categories and formats,
including business filings, financial reports, tax forms, legal contracts, invoices, pay-
ment records, and other disclosures. The document understanding tasks associated
with these processes encompass several multimodal reasoning challenges, including
spatial, visual, and quantitative reasoning.

Against this backdrop, investment in AI-augmented workflows has grown rapidly
over the past decade [59, 60]. In highly regulated industries such as Finance, such
workflows are expected to comply with requirements related to performance and
robustness, including the maintenance of comprehensive data lineage. This means
that an Information Extraction model is required to provide datapoints that are fully
traceable back to the context from which they were extracted. Groundedness has
major implications for downstream applications, as it can improve explainability,
expose the provenance of the output, and enhance human-AI interaction.

In recent years, multimodal (large) language models have emerged as a promis-
ing approach to document understanding. While these models have demonstrated
better overall performance across several tasks, their decoder-based, generative ar-
chitecture leaves them open to poor groundedness (if not hallucinations), and makes
it difficult to localize their outputs. This has led to challenges related to ground-
edness (or lack thereof) in tasks such as Key Information Extraction and extractive
Visual Question Answering, which has in turn complicated the adoption of such
models in production pipelines, especially when the requirements for reliability and
explainability outweigh performance.

This work addresses the challenge of groundedness in multimodal enterprise
document understanding in the context of two prominent reasoning tasks, namely,
quantitative reasoning and spatio-visual reasoning. We demonstrate how we can
enhance the performance, robustness, and generalizability of models by improving
their grounding within the input. In quantitative reasoning, we show how grounding
the model in numerical language can enhance compositional generalization, a key
challenge in robustness and OOD performance. We further demonstrate how spatio-
visual reasoning can be grounded in the layout and structure of a document, leading
to more efficient and robust multimodal models.

Concretely, we introduce three new methods to the field of grounded multimodal
enterprise document understanding: 1) A new mechanism to attend to fine-grained
components of the input that express arithmetic operations, hence improving compo-
sitional generalization in quantitative reasoning tasks. 2) A metric-learning strategy
that is grounded in counterfactually-associated samples, and leads to more robust
and generalizable quantitative reasoning models. 3) A topological representation
of documents that enhances performance on several multimodal tasks by grounding
textual reasoning within the spatial layout of each page. We tie these methods to-



gether by proposing an evaluation strategy that accounts for fine-grained spatial and
contextual grounding in a visual question-answering task. Using Visual Question
Answering as an umbrella task, we demonstrate how our evaluation framework can
expose shortcomings in spatio-visual and quantitative reasoning, especially when
compared against human performance.
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Chapter 1

Introduction

Multimodal document understanding, also known as Visually Rich Document Understanding
(VRDU), and the tasks that it encompasses—including Key Information Extraction (KIE), Rela-
tion Extraction (RE), Visual Question Answering (VQA), and Quantitative Question Answer-
ing (QQA), to name a few—constitute a major operational bottleneck in enterprise settings
[115, 129]. Due to their rich structure, length, domain-specific language, hybrid numeric/textual
content, and spatio-visual complexity, enterprise documents such as reports, memos, invoices,
forms, and contracts are often processed using human supervision. This manual process is cum-
bersome and therefore error prone, so much so that some institutions are compelled to adopt a
dual review protocol for the task of information extraction and data entry [18]. This, coupled
with the large volume of documents in many enterprise settings1 has led to a substantial and
growing demand for Document Intelligence services [59, 60].

Against this backdrop, researchers in the domain of VRDU have developed a suite of bench-
marks that examine the performance of SotA models on KIE [57, 63, 128, 166], RE [63, 128],
VQA [113, 114, 179], and QQA [26, 27, 224, 227]. The advent of Multimodal Generative
(Large) Language Models has moved SotA performance across these tasks to new frontiers, in
some cases coming close to human performance. As of February 2025, the top 5 performers
on the DocVQA2, InfographicsVQA3, and TAT-QA4 leaderboards are Generative LLMs. The
top performing model on DocVQA [11] is within 2 points of human performance, and the top-
performing model on TAT-QA [228] within 3 points.

Despite positive contributions to the VRDU domain, the popularity of generative models has
moved the field away from producing grounded outputs, as we will argue in Chapter 2. This
means that it is not always possible to determine the lineage of each output token with respect
to the input. For extractive tasks such as KIE and Extractive QA, this means that the output
cannot be deterministically traced back to where it was extracted from. This has constrained the
adoption of multimodal document understanding models in enterprise settings, where regulatory

1As an example, in 2024, J.P. Morgan Chase served nearly 80 million consumers [19]. Considering each cus-
tomer’s records, filings, tax forms, identification documents, and other disclosures, the volume of documentation in
the retail banking business alone could scale to hundreds of millions.

2https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1
3https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=3
4https://nextplusplus.github.io/TAT-QA/
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guidelines often require data lineage to be established in great detail [83].
The goal of our research is to propose grounded methodologies for the task of multimodal en-

terprise document understanding. This not only enables the operationalization of VRDU models
in enterprise settings, but, as we will demonstrate, enhances the robustness, efficiency, and gen-
eralizeability of such models. Toward this goal, we tackle grounded reasoning in two relevant
subdomains, namely, quantitative reasoning, and spatio-visual reasoning. Before we explore
these domains in detail, we examine the role of groundedness in enterprise settings, not only to
identify key challenges, but also to establish the motivation behind our work.

1.1 Groundedness in enterprise settings

Why should groundedness be uniquely important to enterprise applications? What sets enterprise
Document AI apart from other applications of the technology in other domains? In this section,
we address this question using a scenario that is inspired by a common real-world task.

Suppose Alice is a knowledge worker at a financial institution, and is in charge of reviewing
client documents. Each institutional client provides a document with a list of authorized signa-
tories, their titles, contact information, and signature samples. This list is later used to verify
whether legally binding agreements have been signed by authorized stakeholders. As part of a
remediation project, Alice is tasked with reviewing 1,000 authorized signatory forms, extracting
key information, and keying them into a new database.

To make the task more manageable, Alice would like to reduce her manual workload by 70%,
either by reviewing only 30% of the documents, or by reviewing only 30% of each document’s
contents, and delegating the remainder of the work to an automated solution. This would require
the automated solution to perform the following tasks:

1. Process each authorized signatory document and extract the following information: names,
metadata (such as titles, addresses, and contact information), and signature samples. This
is associated with the task of Key Entity Extraction (KIE).

2. Associate all attributes related to the same entity. For example, the name, contact in-
formation, and signature sample of each individual should be grouped together. This is
associated with the task of Relation Extraction (RE)

3. Map the information about each entity into a schema that the new database recognizes.

4. Create a detailed trace of where each piece of information was extracted from so that
auditors can verify that proper protocol was followed. This is associated with the task of
Localization.

The top row of Table 1.1 illustrates the output that Alice expects from an automated sys-
tem. Ideally, each entity must be tagged within the document so that the extracted entity can
be mapped to a bounding box within the page. In VRDU literature, this is known as Localiza-
tion. The model also needs to be able to group each signatory’s name and corresponding title
and signature. This is often addressed through the task of Relation Extraction (RE). Lastly, each
extraction (or ideally, each grouping, each page, or each document) needs to have a confidence
score that Alice can use to decide whether she needs to review the model’s output for accuracy.
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Ideal output:
Each signatory, title, and signature
box is extracted and tagged within
the document [red, blue, and gray boxes].
Each signatory is used as an anchor
to group the metadata [black links].
Each entity (or grouping) is assigned
a confidence score [black circles].

William J. Farrel: NAME0
Executive Vice President: TITLE0
bbox{30, 10, 50, 25}: SIG0
[NAME0, TITLE0]: LINK0
John M. Beeson, Jr.: NAME1
Senior Vice President: TITLE1
bbox{30, 30, 50, 45}: SIG1
[NAME1, TITLE1]: LINK1
...

Common output:
Extractions may not be associated
with bounding boxes.
Different solutions may be needed
for text vs. handwriting.
Links may be unavailable or
only partially available.
Confidence scores are often
not available (or log-probs
are uncalibrated).

Table 1.1: Top row: The expected output of a VRDU model when processing an authorized
signatory document. Bottom row: The output often generated by SotA approaches. Note that
due to the confidentiality of authorized signatory forms, we have used a public example from a
credit agreement [28].

This is related to the problem of model calibration.5

Let us go through the above-mentioned tasks and examine their relationship to the concept
of groundedness.

Relation Extraction (RE) is the associative counterpart to the task of Key Entity Extraction
(KIE), one of the most popular tasks in the VRDU literature. As our scenario demonstrates,
in many real-world settings, KIE and RE need to be performed in tandem to enable end-to-end
automation. In our scenario, a model that is solely trained on KIE would be able to identify each
authorized signatory, phone number, and address, but would not be able to group them together
or map them to the relational schema of a database.

Despite their relevance to real-world applications, associative tasks are often ignored in
VRDU datasets, possibly due to the high cost of annotating documents for multiple tasks. Datasets
such as FUNSD [63], CORD [128], DocILE [162], and BuDDIE [233] include some relation an-
notations, but only one (FUNSD) covers complete hierarchical relations in addition to key-value
pairings. FUNSD also happens to be the smallest dataset, covering only 199 samples. This
has led to an under-representation of RE in research publications, as we will see in Section 4.2.
As part of our research, we will demonstrate that spatially-grounded models, i.e. those that are
designed to effectively capture complex layouts, are able to capture relations between different
entities more effectively.

Groundedness (or lack thereof) poses additional challenges to the applicability of VRDU
models in enterprise settings. Let us once again consider our scenario. As stated earlier, Alice
would like to reduce her workload by 70%. Let us suppose that she is able to find a SotA model

5Note that the above requirements are not limited to our particular scenario and generalize to most information
extraction tasks in enterprise settings. Some requirements (such as traceability of output) extend to tasks beyond
information extraction, such as question answering over documents, and summarization.
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that has an F1 score of 0.99 across all KIE benchmarks. For simplicity, we will assume that
this means the model makes one mistake per 100 extractions. If Alice applies the model to the
signatory forms, there will likely be errors, given that 1,000 forms are likely to include more
than 100 signatories. If Alice is not able to locate the possible errors, she will have to review
every one of the model’s extractions to verify its accuracy. Assuming that Alice can perform
the verification task faster than the extraction task, we will estimate her time-saving as 50%.6

This will still not meet her target of 70% of documents (or 70% of fields) being processed in a
“straight-through” fashion without a manual touchpoint. In order for Alice to reach her target,
she would need a model that is well calibrated, and can indicate which documents or which
contexts are likely to include errors.

Despite the recent attention that calibration research has attracted with regard to the detection
of hallucinations in LLM outputs, the VRDU literature has remained largely focused on perfor-
mance without much regard for calibration. As we will see in Section 4.2.4, models that are
carefully designed to ground their reasoning in the multimodal signal can not only achieve better
performance, but also produce lower calibration error. Overall, our research will demonstrate
that enterprise document understanding models can be designed, trained, and evaluated with
groundedness in mind, resulting in models that are more parameter and data efficient, generalize
to out-of-distribution samples, and generate better calibrated outputs.

1.2 Enhancing groundedness in enterprise document under-
standing

Our investigation into improving groundedness for multimodal enterprise document understand-
ing is organized into three subdomains, namely, quantitative reasoning, spati-visual reasoning,
and model evaluation. The following sub-sections introduce each domain and the relevance of
groundedness within the VRDU literature in that domain.

1.2.1 Quantitative reasoning

Quantitative reasoning encompasses a wide range of research areas including numeracy [168,
172, 173], quantitative grounding of language models [149, 163, 164], solving math word prob-
lems [6, 193, 218], and question answering over tabular data [26, 27, 224, 227]. Each field has at-
tempted to take advantage of mathematical, arithmetic, and algebraic knowledge that governs the
reasoning required to perform quantitative tasks. Some studies have attempted to create models
that exhibit knowledge about magnitudes and are able to compare various quantities [172, 221].
Others have pursued more explicitly symbolic approaches [148, 149].

In multimodal document understanding, quantitative reasoning is focused on hybrid tabular/-
text contexts, and lies at the intersection of spatial and numerical reasoning. Several recently

6If Alice is following a dual review process (i.e. a Maker-Checker process), then the 50% time-saving estimate
is consistent with removing the Maker from the process, allowing Alice to act as the Checker. Having said that, the
estimate is still likely to be very generous, because ungrounded models do not contextualize their extractions, and
Alice would need to manually locate each extracted output in the original document before verifying it.
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published datasets aim to tackle this particular problem [26, 27, 93, 224, 227]. Table 1.2 illus-
trates a simple example of a question answering task over tabular data.

Question What was the net change in
revenue from 2019 to 2020?

Tabular
context

Metric ($M) 2018 2019 2020
Operating
expenses 35 29 30

Revenue 70 80 60

Verbalized
facts

2019 revenue was $80M.
2020 revenue was $60M.

Output
program subtract(80, 60)

Answer -20

Table 1.2: Example of a quantitative QA problem over tabular data.

One key challenge that is fundamental to developing robust models in this domain is the
challenge of compositional generalization [119, 125, 212]. Beginning with simple concepts and
primitives, humans are able to compose more complex concepts and use them to tackle sophis-
ticated reasoning tasks that require multi-step calculations. This has inspired some researchers
to emulate some of the strategies that humans use in order to learn these compositions. As an
example, chain of thought prompting has successfully been used to encourage models to break
down complex problems into smaller steps before solving them [197].

Another approach is to address gaps in the model’s learning by generating “what if” scenar-
ios. Consider the sentence:

“5 plus 3 equals 8.”.
If this is the only example of addition that the model encounters during training, it might

memorize operands such as 5 and 3 as signifying an addition. This is fundamentally a challenge
of grounding, as the model does not learn to ground its reasoning in the correct expressions. By
generating examples that perturb operands or operators, the model can be encouraged to capture
semantics at the component level [94]:

What if instead of “5” we used “2”? → “2 plus 3 equals 8.”
What if instead of “plus” we used “minus”? → “5 minus 3 equals 2.”

Research on compositional generalization has shown promise, but SotA models still lag be-
hind human performance [94], mainly limited by the inflexibility of the data augmentation meth-
ods mentioned above. In our research, we develop more robust models by exploiting the corre-
spondence between natural language terms and quantitative semantics in a more explicit fashion,
i.e. by grounding the model’s reasoning in natural expressions of arithmetic operations.

1.2.2 Spatio-visual reasoning
As we will lay out in Section 2.2.2, two transformer-based neural architectures [182] dominate
SotA VRDU benchmarks: Encoder-based models approach visual reasoning the same way it is
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tackled in open-domain Visual Question Answering (VQA). A neural language model is used
to generate contextual embeddings for the text in a document. Independently, a visual feature
extractor (usually a Convolutional Neural Network [46, 151] or a vision transformer [37]) is
used to generate visual embeddings. The two are then fused and trained in an end to end fashion
[9, 95, 205]. Decoder-based models follow the same principle, but use the generative objectives
of Large Language Models [11, 23, 104, 190].

Decoder-based models are prone to hallucinations [55, 65] and do not guarantee grounding
in their outputs [232]. Encoder-based models, while easier to ground, often produce poorly-
calibrated output probabilities, as we will show in Section 4.2.4.

The grounding challenge can only be addressed by developing models that exploit how visual
information is displayed in a document. These signals are often not present in open-domain
images, and therefore not exploited by popular image encoders. Consequently, VRDU models
that use these image encoders as their visual backbone fail to ground their spatio-visual reasoning
in the layout and structure of the input document.

Documents often follow a grid system of layout where horizontal and vertical alignments
play an important role in organizing information on a page. Visual contrast also helps the reader
navigate the information easily. A small study by Nguyen et al. [122] showed that when presented
with plain text, humans were 60% slower in finding relevant information for a question answering
task than when presented with the full layout.

The literature on layout design presents four key principles that govern how readers navigate
the information on a page [75]:

• Contrast: Differences in font face, size, color, or background can signal correspondence
between different elements, or a hierarchical relationship. Figure 1.1 illustrates how con-
trast can indicate a title/content relationship.

• Proximity: Elements that lay close to each other often have some semantic correspon-
dence. Figure 1.1 illustrates how proximate segments can form a block. Studies such as
Raman et al. [145] have demonstrated how visual attention maps utilize the spacing or gaps
between elements to determine structures such as blocks and columns.

• Alignment: Vertical or horizontal alignment is used extensively in constructs such as ta-
bles, lists, or infographics, as shown in Figure 1.1.

• Repetition: Consistency is a key component of layout design. If a certain font or size
is used for one footnote, it is likely that other footnotes will follow the same style. The
size difference between headings and sub-headings is the same throughout the document,
and so on. This principle ensures that each document follows a fixed “template” where a
limited set of rules, shapes, and colors govern the layout. This can be of great advantage
to automation efforts, since it limits the scope of features and their interactions.

There have been some recent efforts in accounting for these layout design principles in VRDU
models. Graph representations, covered in Section 2.2.1, attempt to capture the grid-like lay-
out of each page. Visual feature extraction networks, covered in Section 2.2.2, attempt to use
the visual signal to split each page into segments. Nevertheless, a more deliberate approach is
needed to fully exploit the advantages these principles offer. Throughout our studies, we will
demonstrate how models that are designed explicitly to draw on these principles produce better-
grounded outputs.
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Figure 1.1: Four key principles of layout design, illustrated in a form extracted from the FUNSD
dataset [64].

1.2.3 Model evaluation

Similar to most other research fields, the field of VRDU has been driven by popular benchmarks
and the standard evaluation metrics that they employ. In generative tasks such as question an-
swering, most such evaluation metrics rely on the surface similarity between ground truth and
predicted answers. This does not bode well for groundedness, as surface similarity can be a poor
indicator for correctness or robustness.

Document Question: What is the title of Cynthia L. Corliss?

Model A
Answer: Senior Vice President
ANLS: 1.0

Model B
Answer: Executive Vice President
ANLS: 0.625

Document Question: Is Cynthia L. Corliss a senior executive?

Model A
Answer: No
ANLS: 1.0

Model B
Answer: Yes
ANLS: 0.0

Table 1.3: An example illustrating how lack of grounding can lead to misleading assessments of
a model’s performance. Top-row: Extractive QA. Bottom row: Abstractive QA. The image is
excerpted from [28].

Let us illustrate this using an example from the top row of Table 1.3. Given an authorized
signatory form and the question “What is the title of Cynthia L. Corliss?” two hypothetical
models are shown to provide ungrounded answers. The models are evaluated using Average
Normalized Levenshtein Similarity, popularized by the DocVQA benchmark [113]. Model A
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produces the correct output with a perfect score, but without any grounding information, it is
unclear whether the output refers to the proper bounding box (blue) or is based on the incorrect
context (red). Model B produces an incorrect response, referring to the title of another signatory.
Nevertheless, the ANLS metric is calculated at 0.625 due to a partial match with the gold answer.

In 8.5% of the training samples in DocVQA, there are two or more instances of the gold
answer within the input page, making it difficult to properly contextualize the answers in a post-
processing step. Partial matches only complicate this problem further.

Another challenge arises from the lack of grounding for abstractive questions, despite the
requirement in many enterprise settings that every abstractive decision needs to be explicitly
evidenced. Consider the second row of Table 1.3 which shows an example of an abstractive
Yes/No question. To determine whether “Cynthia L. Carliss” is a senior executive, a model would
need to follow a particular reasoning path, first locating her title on the page, and then mapping
it to a collection of possible roles that qualify as senior executive titles.7 In the absence of any
grounding or explanation, it would be unclear whether a model is providing the correct answer
(“No”) or the incorrect answer (“Yes”) based on a simple match with the keywords “Senior” and
“Executive”, respectively. While grounded reasoning datasets exist in the unimodal literature [26,
220] and in open-domain VQA [135, 229], such datasets are yet to be popularized in multimodal
document understanding.

In Chapter 5 we propose an evaluation framework that accounts for localization and ground-
edness of predicted answer. We demonstrate that our score is better correlated with the calibrated-
ness and robustness of models, enabling downstream practitioners to better assess the reliability
of VRDU models within their domain.

1.3 Overview of the dissertation
The ultimate goal of our research is three-fold:

1. To address current gaps in research towards grounded document layout understanding and
quantitative reasoning.

2. To propose grounding methodologies that improve the performance, efficiency, and robust-
ness of current models.

3. To propose evaluation metrics that account for groundedness as a key metric.
In the next chapter, in addition to reviewing the current literature on document understanding,

we offer a high-level categorization of how groundedness can be encouraged in VRDU models.
These three categories are:

• Designing neural architectures that are grounded in relevant semantic signals.
• Creating innovative (unsupervised or self-supervised) objectives that ground the model in

the input.
• Changing the problem search space by curating training samples, or scaffolding the space

in an explicit fashion.

7In many enterprise settings, such knowledge bases and taxonomies are available as part of training material,
policy documents, business rulesets, or structured databases.
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Table 1.4 maps out this framework in relation to the multimodal signals that are relevant to
enterprise document understanding. This framework will inform how we present our research
contributions.

Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative
Design models
that recognize
numerical relations

Learn quantitative
compositions

Augment the search space
with quantitative knowledge

Spatio-visual
Design models
that follow the
document layout

Learn to
construct realistic
document layouts

Scaffold the search space
according to layout signals

Table 1.4: An overview of two multimodal reasoning areas and a summary of how grounding is
often encouraged in each area.

The remainder of this document will map out the background and our research contributions.
Below is a summary of what the remaining chapters of this document cover:

• Chapter 2 will review the current literature. The chapter will conclude by a summary of
SotA art models and how groundedness is incorporated (or left out) in their design and
training paradigm.

• Chapter 3 will cover our contributions to quantitative reasoning, specifically to composi-
tional generalization for multi-step reasoning tasks:

In Section 3.1, we introduce an attention mechanism that is grounded in the quantita-
tive semantics of natural language, and demonstrate that this leads to better composi-
tional generalization.

In Section 3.2, we extend our work to create metric-learning objectives that encourage
better-grounded representations, leading to models that generalize to OOD samples.

• In Chapter 4, we introduce grounded methodologies for spatio-visual reasoning of com-
plex enterprise documents for the tasks of Key Information Extraction (KIE) and Relation
Extraction (RE).

Section 4.1 demonstrates how graph-based structures can facilitate the representation
of complex layouts, and encourage VRDU models to capture the design principles
introduced in Section 1.2.2.

Section 4.2 extends this idea by proposing a generative graph neural network, show-
ing improvements in both grounding and calibration against SotA VRDU models.

• Chapter 5 proposes a new evaluation framework for Document VQA models that measures
the groundedness of their outputs, enabling enterprise users to investigate the utility of each
model for grounded applications.

• Chapter 6 provides an overview of our work and lays out future directions for research into
grounded enterprise VRDU.
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Chapter 2

Background

As mentioned in the previous chapter, enterprise VRDU models need to accommodate two cate-
gories of signal that go beyond textual semantics:

• Quantitative signal, which indicates content that requires discrete or numerical reasoning.
• Spatio-visual signal, which encompasses layout indicators such as distances and align-

ments among textual segments, as well as style, color, and other visual indicators.
Holistic understanding of an enterprise document requires modeling these aspects cohesively,

and extensive research has been devoted to addressing this challenge. Inspired by multimodal
neural language models, many studies have treated these signals as multimodal features that
are encoded individually and subsequently fused with textual representations. In contrast, cer-
tain studies have incorporated these signals as contextual grounding for textual semantics. As
an example, instead of encoding spatial, visual, and textual features separately and fusing them
afterward, some studies have incorporated the spatial signal as additive or multiplicative augmen-
tation for text representations. This form of contextual grounding has shown increasing promise
in the field of VRDU.

In this chapter, we will provide an overview of studies that have explored grounded multi-
modal reasoning over documents. As previously mentioned, most such studies have encouraged
multimodal grounding by extending the design, modifying the training objectives, or scaffold-
ing the search space of modern language models such that they can accommodate multimodal
signals more effectively. We therefore present our review of the literature in the context of the
above methods. Table 2.1 shows an overview of the two types of multimodal signals against the
three common approaches to grounding VRDU models in those signals. Each cell in the table
summarizes one or more common methodologies that are employed by today’s SotA models.
The following sections will describe these methodologies in more detail.

2.1 Grounded quantitative reasoning
Quantitative reasoning is a key but particularly challenging aspect of holistic document under-
standing. In contrast to spatial and visual signal both of which can be modeled separately from
the text and fused afterwards, quantitative signal can be expressed in a non-symbolic fashion that
makes it difficult to separate from the semantics of the text. Expressions that convey quantities,
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Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative Reason over graphs Learn aligned patterns
Augment input with
long-tail samples

Spatio-visual

- Augment or trim
attention patterns
according to
document layout
- Use modality-aware
fusion

- Learn to recover
masked components
in the layout
- Learn masked
vision-language
modeling

- Generate according to
intra-component relationships
- Augment visual input to
cover common gaps in the
search space

Table 2.1: A summary of two meta-textual reasoning areas and common approaches that are used
to encourage groundedness in them.

metrics, or arithmetic operations, need to be processed seamlessly together with text.
Some studies have explored language models that exhibit numeric literacy by modeling mag-

nitude and polarity [154, 172, 173]. But numeracy alone does not suffice for quantitative reason-
ing tasks in all contexts. Consider the below sentence:

“After a deductible of $600, for a co-pay of ten percent, your out of pocket cost is
$200.”

Even though “$600”, “ten percent”, and “$200” are all expressions that allow accurate es-
timations of magnitude and scale, they need to be contextualized properly with the concepts of
“deductible”, “co-pay”, “out of pocket cost”, all of which carry quantitative semantics. Lan-
guage models that have been trained for numeracy can capture the magnitude of each value and
perform comparative analyses to answer questions such as “Is the deductible higher than the out
of pocket cost?” They may also be able to do magnitude estimation to answer questions such
as “Does $600 sounds like a reasonable deductible?” But they may fail to perform complex
quantitative reasoning required to answer questions such as “What was the original cost of the
procedure?”

In tabular question answering tasks where numeric values are segregated in tabular struc-
tures, maintaining the semantic link between numbers and the textual context surrounding them
introduces an added challenge. In fact, a hybrid table/text context may be even more difficult to
tackle than an exclusively tabular or textual context [26].

Studies that have tackled quantitative reasoning in QA tasks fall into two categories. Some
studies have explored quantitative reasoning for answering questions over real-world data such as
statistical records [27], Wiki entries [22], enterprise documents [70], and financial reports [227].
Since numeric data is very often expressed in tabular structures, this category often involves
question answering over tabular data, or hybrid table/text passages. Other studies have explored
Math Word Problems [102], which require modeling abstractions and mapping the arithmetic
logic between language and math symbols [72, 200].

To tackle a manageable scope within this large domain, and since our studies are concerned
primarily with enterprise documents, our work will focus on the question answering task over
table/text input. In this task, the input is a natural language question with a table and surrounding
text, provided as context. The output is a program made up of arithmetic operators and operands
(see Table 1.2).
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2.1.1 QA over tabular data

As with many modern QA models, most tabular QA approaches use a retriever-generator archi-
tecture [69], where the retriever identifies relevant table cells and encodes them using spatially-
aware tabular encoding [47, 211] or verbalization [26]. The generator produces the program
necessary to derive the answer. This provides the opportunity to measure model performance in
terms of program accuracy as well as execution accuracy.

Numerous studies have tackled quantitative reasoning in retriever-generator models. Retriever-
focused studies have proposed structure and number aware representations that model the mag-
nitude, polarity, or relationship among quantities [194, 200]. The need for large-scale in-domain
datasets limits the applicability of these methods. Hence, generator-focused studies have at-
tempted to enhance quantitative reasoning at generation time, using graph-based reasoning [148,
220], knowledge infusion [120], logical programming [84], and causal reasoning [94]. In the
latter, counterfactual scenarios are used to augment the data in such a way that the model gen-
eralizes to never-before-seen operands.

Despite major improvements, quantitative reasoning remains a challenge [4]. The challenge
stems from the memorization of spurious lexical patterns by the model, especially in the absence
of large-scale training data [149]. This is reminiscent of the problem of compositional gener-
alization, which has been studied in-depth in numerous NLU fields including semantic parsing
[40], visual question answering [156], data-to-text generation [116], and learning from instruc-
tion [98].

2.1.2 Compositional generalization

Compositional generalization is a model’s ability to recognize new structures that are novel, but
made up of previously seen components [119]. Oren et al. [125] explore several methods to
improve compositional generalization for semantic parsing tasks, including the downsampling
of repetitive patterns, using grammar-based decoding, and supervising the attention weights to
ensure proper alignments are maintained between input and output terms. A method that consis-
tently outperforms other approaches in text-to-SQL and tabular QA tasks is attention coverage.
Coverage is a penalty term that encourages the model not to pay too much attention to familiar
(i.e. frequently seen) terms and focus its attention weights on new, unseen terms at test time.

Yin et al. [212] propose a simple yet effective method to supervise attention weights for a
semantic parser using a small number of samples. They first find span-level alignments between
the natural language input and the program output using a heuristic algorithm. Next, they encour-
age attention weights to follow the alignments by adding a supervised attention loss. The loss
can be thought of as a regularization term that prevents the model from overfitting to spurious
patterns.

Inspired by the above studies, in Chapter 3 we propose two novel mechanisms for grounding
quantitative reasoning in input expressions. Our methods not only outperform SotA models, but
also improve the robustness and OOD performance across several distributions.
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2.2 Grounded spatio-visual reasoning
The spatial signal (layout) and visual signal (design) of a multimodal document are often closely
intertwined and inform each other [75]. Nevertheless it is common practice in the VRDU liter-
ature to segregate these signals and develop strategies that optimize each of them separately. In
this section, we review these strategies and their relation to multimodal groundedness.

2.2.1 Exploiting the spatial signal (layout) of documents
The placement of textual elements on a page serves as an important semantic signal: Proximity
between elements can indicate continuity or segmentation. Horizontal or vertical alignments
within tables or forms can indicate correspondence.

Certain structures such as tables and bullet lists provide explicit spatial alignments that can
be exploited to enrich representations of text. Other structures such as form-like layouts are not
as explicit and require representations that are more flexible.

End-to-end approaches for capturing spatial information from tables are often inspired by the
sequence modeling paradigm used in neural language models. Herzig et al. [47] propose TAPAS,
a table-representation method that can be used for question-answering. TAPAS treats each table
as a sentence, serialized by concatenating the cells in a row-wise fashion, where the header of
the table forms the first row. It then augments each cell with several spatial features including
positional encoding [183], column ids, row ids, and rank ids. The rank id refers to the ranking
of the raw value of the cell compared to other cells in the table. This allows for max and min
operations to be performed on the content.

This encoding enables the seamless integration of tabular content with textual content. As an
example, it allows a question to be preprended to the table using a special SEP token. However,
as Shaw et al. [161] have shown, despite the early success of additive positional encoding in cap-
turing 1-D positions, 2-D positional encoding using horizontal and vertical coordinates (similar
to the row and column ids used in TAPAS), is not very effective in capturing relative positions in
two dimensions.

TABERT remedies this by adding a column-wise component that is the result of mean-pooling
cell representations from the same column. They also add a vertical self-attention layer over this
new component that can capture column-wise relationships across multiple rows. Using cell
recovery and masked column prediction objectives, they are able to encourage the model to
recover masked content in both direction. This effectively “grounds the objective(s)” of the
model, as described in Table 2.1. TABERT outperforms previous state of the art models on
question answering over tabular data.

As previously mentioned, tables are not the only components in a document that carry spatial
information. Bullet points, borderless forms, and even spatial separation between paragraphs can
carry important semantic signals. In order to encode these open-ended structures in a sequence
model, the model needs to decide on the order by which the text components are serialized. A
simple left-to-right and top-to-bottom order can break in case of multi-column pages or tables.
Instead of forcing this order, studies such as ROPE [87], FormNet [88], and FormNetV2 [89]
treat reading order as a walk on a beta-skeleton graph [79] over the tokens on the page. ERNIE-
Layout [131] uses an explicit serialization module, which first breaks each page down into its
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major layout elements (e.g. paragraphs, tables, figures, lists), and then uses this information to
adjust the ordering of elements if necessary.

To avoid having to serialize a page into a 1D structure, Xu et al. [205] propose a different
strategy for their LayoutLMv2 model. Inspired by Raffel et al. [144], they propose a Spatial-
Aware Self-Attention mechanism for their LayoutLMv2 model. The method can work with any
input as long as a sequence of tokens and corresponding bounding boxes is supplied (such as the
output of standard Optical Character Recognition tools). Given xi and xj as the query and key
tokens for the ith and jth tokens on a given page, they calculate an attention weight αij using
scaled dot-product attention [183].

αij =
1√
dhead

(xiW
Q)(xjW

K)⊺ (2.1)

where dhead is the hidden size, WQ is the query projection matrix and WK is the key pro-
jection matrix. In a typical self-attention mechanism, αij would then be subject to a softmax
function, but prior to doing that, the Spatial-Aware Self-Attention head augments it using the
following bias terms:

α′
ij = αij + b1D

i−1 + b2Dx
xj−xi

+ b
2Dy
yj−yi (2.2)

b1D
i−1 is a vector that is indexed according to the difference between the 1D positions of the two

tokens. b2Dx
xj−xi

is a vector that is indexed by the horizontal difference between the two tokens.
Similarly, b2Dy

yj−yi is a vector that is indexed by the vertical difference between the two tokens.
The horizontal and vertical differences are both grouped into 50 buckets, meaning both b2Dx

xj−xi

and b
2Dy
yj−yi are vectors of size 50. These additional bias terms allow the model to learn different

attention weights depending on the pair-wise distances between the ith and jth token.
To obtain the final output representation hi:

hi =
∑
j

expα′
ij∑

k α
′
ik

xjW
V (2.3)

where WV is the value projection matrix. A similar approach is adopted by Hong et al. [51],
but instead of using fixed buckets, they apply a sinusoidal function to the relative positions of the
two tokens and apply additional parameters for the relative positions of each coordinate.

The Spatial-Aware Self-Attention mechanism allows the model to capture spatial relations in
any context, including paragraphs and non-tabular segments. It is a way to “ground the design”
of the model in the spatial structure of the document, as mentioned in Table 2.1. The resulting
model outperforms state of the art on several tasks, including information and relation extraction
from forms, document classification, and visual question answering over documents.

Despite the success of sophisticated spatial representations, studies such as DocLLM [189]
have demonstrated that a simpler approach can perform well if the model is allowed to learn
disentangled representations. Modeling the position of each token as the four coordinates of its
bounding box, the model learns spatial representations by applying self-attention to the spatial
modality alone, and later fuses it with text embeddings. This allows the model to learn non-
linear relationships across modalities that can capture settings such as: if token=“Date” AND
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position=left-top AND size=large, then class=HEADER. In a way, the model disentangles
or “grounds the search space”, as described in Table 2.1.

Another approach to representing a document as a 2D structure is to use a graph-based rep-
resentation. Graph structures allow more flexibility in representing information and controlling
the way the information flows through the model. They can also be used seamlessly for several
tasks, including document classification, semantic labeling and key information extraction, seg-
mentation and relationship prediction, and document structure identification. Nevertheless, they
remain under-explored in state of the art VRDU models.

A common method is to represent each token (or less commonly, each segment) as a node in
a graph. The node can be represented using various information about the token, such as its text
embedding, positional information, visual features, and other key characteristics.

A key aspect of graph design is the heuristic used for connecting nodes via edges. Figure 2.1
shows five possible ways to construct a graph, where some are more common than others.

(a) Snippet of a
form in the FUNSD
dataset [64]. (b) Complete graph. (c) KNN graph.

(d) Free-form line-of-
sight.

(e) Axis-aligned line-of-
sight. (f) β-skeleton.

Figure 2.1: A snippet of a form and five different ways to represent its contents as a graph.

• A fully connected graph would require each token to be connected to every other token
on the same page. This dense representation is not used in practice, because of intensive
memory and runtime requirements.

• A K-Nearest Neighbor heuristic can be used to connect each token to its nearest neighbors
[139]. While this can alleviate the memory and runtime issues of a fully connected graph,
it does not provide useful layout information to the model and is sensitive to the choice of
K.

• A line-of-sight method improves on the KNN heuristic by connecting two tokens if they
are in each other’s line of sight, meaning there are no intermediary tokens between them.
While this can be a useful strategy to model placement and spacing, it can be brittle [31].
Furthermore, the number of edges within a local context with n nodes remains quadratic,
i.e. O(n2) [191].

• An axis-aligned line-of-sight method tries to improve on the line-of-sight heuristic by
accounting for the grid-like structure of a page. Two nodes are connected if there are
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no intermediary nodes between them and the nodes are horizontally or vertically aligned.
This reduces the number of nodes but can lead to over-pruning, especially when two nodes
aren’t perfectly aligned [191].

• A β-skeleton graph tries to balance the benefits of a free-form line-of-sight graph with
that of an axis-aligned line-of-site graph. Using a “ball-of-sight” strategy, it is less dense
than the former, but still captures certain connections that the latter misses. This strategy
is used in ROPE [87] as well as FormNet [88].

• Lastly, certain models such as Visual FUDGE use a neural module to predict whether an
edge should exist or not [31].

Graph representations allow the model to be more parameter efficient, but in terms of perfor-
mance on complex VRDU tasks, they still lag behind the much larger sequence-based models.
This is demonstrated in the third segment of Table 2.2, where the performance of graph-based
models is compared against sequence-based models. The fourth segment of the table, show-
ing models that combine the benefits of graph-based structured with sequence models, show the
strongest performance across key VRDU tasks.

In Section 4.2, we propose a novel graph-based architecture that matches or exceeds SotA
models on multiple form understanding tasks, with less than 30% of the number of parameters.
The parameter and data efficiency of our proposed approach results from the topological structure
of the graph, which is deeply grounded in the layout of each document.

2.2.2 Modeling the visual signal (design) of documents
Recent research in the field of VRDU has largely been inspired by Vision-Language Models
(VLMs), originally developed to tackle tasks such as image captioning [7] and retrieval [74].
Many VRDU models follow a process similar to open-domain image understanding models.
They use a visual feature extractor such as a CNN [9], an image encoder such as U-Net or
CLIP [136, 142, 153] or a Region Proposal Network (RPN) such as Mask-RCNN [46] or Faster-
RCNN [151] to identify segments within each page, and capture common visual features for each
segment [95, 205, 207].

Once visual features are extracted, they can be combined with text embeddings. Following
the success of Transformer-based architectures [183], modern VLMs often incorporate them as a
key component of fusion between the textual and visual signal [9, 50, 95, 207]. In encoder-based
models, the visual encoder is paired with a text encoder, and trained on a multimodal task that
is inspired by Masked Language Modeling [34]. In decoder-based models, the visual encoder is
paired with a text encoder/decoder, and trained on an autoregressive task similar to next token
prediction [141, 183].

Similar to spatial grounding, visual grounding can be encouraged through the three major
approaches listed in Table 2.1. Certain studies such as Arctic-TILT [14] and UDOP [171] design
modality-aware attention heads that are able to tie the textual representations to corresponding
visual features. Others, inspired by the Masked Language Modeling objective [34], employ
multimodal objectives such as Masked Vision-Language Modeling [9, 207] or Learning-To-
Reconstruct [9, 131]. Lastly, some studies such as TILT [136] focus on augmenting the model’s
search space by synthesizing and perturbing input samples.
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The top two segments of Table 2.2 show the performance of SotA encoder-based models and
decoder-based models on four common VRDU tasks. The table demonstrates a few key trends
among these models: First, while decoder-based models generally outperform encoder-based
models on Visual Question Answering, they lag behind on Key Information Extraction. This
might come across as counter-intuitive, because VQA is often considered a more challenging
task in terms of multimodal reasoning. In Chapter 5 we will suggest that this might partly be
due to how VQA performance is evaluated. Specifically, we demonstrate how common VQA
evaluation metrics do not account for the groundedness of VRDU models, leading to scores that
reward hallucinations.

Model # Params Archi
tecture

Doc
Class. Key Information Extraction Relation

Extraction
Question

Answering
RVL-

CDIP [44]
(Accuracy)

FUNSD [64]

(F1)

CORD

(F1)

SROIE [57]

(F1)

Kleister-
NDA [167]

(F1)

FUNSD [64]

(F1)

DocVQA [113]

(ANLS)
LayoutLMLARGE [207] 343M Seq-Enc 94.43 0.7895 0.9493 0.9524 0.8340 0.7259
BROS [51] 138M Seq-Enc 0.8121 0.9536 0.9548 0.6696
SelfDoc [95] 137M Seq-Enc 93.81 0.8336
LayoutLMv2LARGE [205] 426M Seq-Enc 95.64 0.8420 0.9601 0.9781 0.8520 0.8529
DocFormerLARGE [9] 536M Seq-Enc 95.50 0.8455 0.9699 0.8580
LayoutLMv3LARGE [56] 368M Seq-Enc 95.93 0.9208 0.9746 0.8035 0.8337
Donut [73] 143 - 176M Seq-Dec 95.30 0.8410 0.6750
Dessurt [29] 127M Seq-Dec 63.20 0.6500 0.4230 0.9360
UDOP [171] 794M Seq-Dec 96.00 0.9162 0.9758 0.8470
TILTLARGE [136] 780M Seq-Dec 95.52 0.9633 0.9810 0.8705
Arctic-TILT [14] <1B Seq-Dec 0.9430 0.9020
DocLLM [189] 7B Seq-Dec 91.80 0.5180 0.6740 0.9190 0.6030 0.6950
SMoLA-PaLI-X [198] 48B Seq-Dec 0.9055
InternVL 1.5 [24] 76B Seq-Dec 0.9090
InternVL 2 Pro [24] 40B Seq-Dec 0.9506
Qwen-VL-Max [11] unknown Seq-Dec 0.9307
Qwen2-VL-Max [190] 72B Seq-Dec 0.9670
Visual FUDGE [31] 17M Graph-Enc 0.6652 0.5662
ROPE [87] unknown Graph-Enc 0.5722
FormNet [88] 217 - 345M Graph-Enc 0.8469 0.9728
FormNetV2 [89] 204M Graph-Enc 0.9251 0.9770 0.9831
DocGraphLMBASE [188] unknown Hybrid 0.8877 0.9693 0.6984
GraphLayoutLMLARGE [96] 372M Hybrid 0.9439 0.9775
GeoLayoutLM [110] 399M Hybrid 0.9286 0.9797 0.9870 0.8945

Table 2.2: The performance of various multimodal models on several VRDU tasks. The size of
each model has been specified in terms of millions of parameters. Note that for some models, the
size can change depending on the number of parameters required to train on a particular task or
dataset. The Serialization column indicates how information on a page is serialized. Under each
task, the datasets and the corresponding performance metrics have been specified.

Second, bigger model size (in terms of larger number of parameters) is not always associated
with better performance across VRDU tasks. This can similarly be attributed to the importance of
groundedness. Grounding the visual signal in VRDU models can address key challenges related
to parameter and data efficiency. Certain studies have demonstrated that re-fashioning the vision
encoder to adapt to visual features in documents can lead to parameter-efficient representations.
For example, in LayoutLMv3 [56], the authors show that replacing LayoutLMv2’s sophisticated
RPN (pre-trained on open-domain images) with a linear embedding of pixel-level color features
(trained on documents in an end-to-end fashion) can save close to 15% of the parameters without
performance loss compared to LayoutLMv2. Similarly, in TILT [136] the authors show that a
U-Net encoder [153] trained on documents as part of end-to-end training can outperform Lay-
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outLMv2. They also propose a data augmentation strategy where affine transformations are used
to change the position, angle, size, and shear of various visual elements.

In Arctic-TILT [14], the authors further enhance TILT’s visual representations by proposing
“fusion by tensor product” as an alternative to the then-common additive fusion mechanism
between image and text embeddings. Inspired by Schlag et al. [157], the authors argue that
the tensor product mechanism is more efficient at representing contextual relationships between
text and image embeddings. This is demonstrated by Arctic-TILT’s robust performance across
several VRDU tasks, matching or surpassing models that are 70 times larger, using just below
1B parameters (see Table 2.2).

Models such as UDOP [171] and FormNetv2 [89] further developed the concept of contextual
image embeddings by tying them directly to corresponding text embeddings. Instead of produc-
ing patch-level embeddings or using an image encoder that produces arbitrary visual tokens, they
specifically develop visual tokens that correspond to the regions occupied by each token. This
allows these models to “align” each token embedding with its corresponding vision embedding,
leading to enhanced performance on tasks such as KIE (see Table 2.2).

In Section 4.1 we will extend the grounding ideas presented in this Section to propose a more
efficient VRDU model for visually rich forms. By factoring the visual features into “patterns”
(or clusters), we enable the model to capture key design features such as contrast and color
templates.

2.3 Grounded evaluation
When evaluating model performance on discriminative tasks such as Classification or IE, the
VRDU literature has largely followed the tradition of unimodal NLP, using standard metrics
such as F1 or MAP [88, 207]. For generative tasks such as Summarization or VQA, the field has
had to innovate. When benchmarks such as DocVQA [113] were first established, native vision-
language multimodality was not common in VRDU models. This meant that the models relied
on Optical Character Recognition software to detect the text on each page. In order to avoid over-
penalizing the models for errors made by OCR engines, Mathew et al. [113] proposed Average
Normalized Levenshtein distance (ANLS), which has since become the de facto metric used in
most Document VQA benchmarks [114, 175, 176, 179]. ANLS focuses on the surface similarity
between the ground truth and predicted answers and tolerates small errors. For example, if the
ground truth answer is “Apple” and the predicted answer is “App1e” where the letter “l” is
replaced by the digit “1”, the ANLS score remains high whereas an exact match score would fail
the model. This is to allow room for errors in optical character recognition.

One disadvantage of this approach is the fact that all misspellings are treated equally. For
example, consider the difference between numbers “1700” and “1788”. While the previous
example could be considered a minor misspelling, misrecognition of digits can alter the value
of numbers. Furthermore, the recent popularity of large vision-language models has introduced
native multimodality into the VRDU field, and has thus decreased reliance on OCR software.
This has encouraged research into alternatives to the standard ANLS metric. As an example,
Peer et al. [130] have proposed ANLS*, a semantically grounded metric that accounts for the
semantic category of the ground truth and predicted answers.
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In Chapter 5 we introduce a new evaluation framework for Document VQA models. Our
framework accounts for quantitative as well as spatio-visual groundedness of the model’s gener-
ations, and is configurable according to the end-user’s requirements. We show that our proposed
framework is better correlated with robustness and calibration for modern VRDU models.

2.4 Takeaways
The studies covered so far have all exploited various characteristics of spatial, visual, and quan-
titative signal in documents. The main distinction is in the way such grounding is encouraged
throughout training. Given the current literature, three such approaches can be identified:

• The neural design of a model can be configured to ground its reasoning in certain signals
within the input.

• The training objective(s) can be designed in such a way that they encourage model param-
eters to capture certain multimodal signals.

• Grounding can be enforced directly on the search space of the problem that the model is
attempting to solve. This is possible by imposing explicit rules or constraints on the output,
pruning the search space in a deliberate fashion, or curating the data to guide the model
throughout training.

Table 2.3 organizes the studies presented in this section into these three approaches. While
there has been considerable effort in each category, there remain a few gaps in the way multi-
modal groundedness is encourage in SotA models.

• First, objective-based approaches are underexplored in the quantitative reasoning space. In
spatial and visual reasoning, self-supervised objectives such as masked column prediction
and masked visual language modeling are used extensively to encourage models to create
expressive representations for document layout. In contrast, the attention alignment objec-
tive used in quantitative reasoning is supervised and requires the creation of explicit labels
that map components in the input to those in the output. Attention coverage is an unsu-
pervised objective, but it does not leverage the power of self-supervision to adapt itself to
different contexts.

• Second, graph-based representations are used to model spatial relationships and the re-
lationship among various quantitative concepts. However, they have not been explored
in the context of visual reasoning. Similarly in adjacent domains such as open-domain
VQA, scene graphs are often used to model spatial or relational aspects rather than visual
contrast between objects [58]. In documents, the contrast in visual features can be just as
important in navigating a document’s layout as the contrast in spatial placement, indicating
correspondence, importance, and segmentation.

• Third, approaches that explicitly scaffold the search space are quite rare. Researchers
often prefer to curate the space by augmenting their datasets and avoiding the addition of
any explicit constraints. This could be due to the brittle-nature of rules based approaches.
However, Ravichander et al. [149] have shown how proper scaffolding can be used to
improve numerical reasoning in quantitative NLI tasks. For example, QA tasks can prune

20



the space of answers that are impossible for a given context. This area calls for further
exploration.

We will attempt to address the above gaps in current research in multimodal document under-
standing, aiming to conclude with a holistic approach to model evaluation that can account for
spatial, visual, and quantitative reasoning. The following chapters will cover our contributions
to each of the above domains.

Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative Graph-based representation [148, 220]
Attention coverage [125]
Supervised alignments [212]

Data augmentation
via counterfactuals [94]

Spatio-visual
Spatial-aware attention [205]
Graph-based representation [31, 87, 88]
Modality-adaptive attention [95]

Cell recovery [47, 211]
Masked column prediction [211]
MVLM [9, 207]
TIA/TIM [9, 56, 205]
LTR [9, 131]

Probabilistic soft logic [169]
Data augmentation
via perturbations [136]

Table 2.3: Example studies that have examined various approaches to grounding the meta-textual
signal in document understanding.
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Chapter 3

Grounded learning objectives for
quantitative reasoning

In Section 1.1, we introduced Alice, a knowledge worker at a financial institute who is tasked
with processing authorized signatory forms. These forms are often composed of a list of autho-
rized signatories, their titles, and contact information. In addition, each signatory might have
limited authorization with regard to different types of transactions. For example, they might only
be authorized to sign off on transactions between $1 million and $10 million in value. These
limitations can be expressed in natural language (e.g. “between 1MM USD and 10MM USD”)
or using math symbols (e.g. “$1MM < and < $10MM”). Processing these limitations into a
standard canonical form would require some understanding of mathematical operations.

This is a relatively simple case of quantitative reasoning that is required in VRDU models.
Processing financial disclosures, loan documents, analytical reports, and other forms of enter-
prise documents would require more complex reasoning over quantitative data interspersed with
natural language expressions. As an example, consider the task of calculating the average rev-
enue of a given company over a period of three quarters, based on their latest financial report.
The task would require two major steps:

1. Retrieving the revenue for each year from the document.

2. Generating the response by performing multiple operations: adding the revenue of each
year and dividing by 3.

Many modern Quantitative Question Answering models follow the above steps in a frame-
work known as the Retriever-Generator architecture [69]. A key challenge of this architecture
is that the generator can suffer from overfitting to spurious patterns, especially when it needs to
generate multi-step operations [26]. As an example, if the token “2019” repeatedly appears in
samples that require a division operation, the generator might produce division whenever it
encounters “2019”. As we will describe in Section 3.1.4, this problem is related to Compositional
Generalization, which was first introduced in Section 2.1.2.

In this chapter, we explore how improving the groundedness of Quantitative QA models can
alleviate the challenge of Compositional Generalization. Toward that goal, we propose two new
methodologies for multi-step quantitative reasoning that ground the reasoning process in specific
expressions within the input, leading to more robust models. The previous chapter concluded
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with a list of common approaches by which groundedness is encouraged in state of the art mod-
els. Table 3.1 includes the same summary, but with three additional entries (highlighted in blue).
These entries denote our contributions covered in this chapter.

Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative Graph-based representations [148, 220]

Attention coverage [125]
Supervised alignments [212]
Unsupervised alignments (Section 3.1)
Metric learning (Section 3.2)

Data augmentation
via counterfactuals [94]
Counterfactual
sampling (Section 3.2)

Spatio-visual
Spatial-aware attention [205]
Graph-based representation [31, 87, 88]
Modality-adaptive attention [95]

Cell recovery [47, 211]
Masked column prediction [211]
MVLM [9, 207]
TIA/TIM [9, 56, 205]
LTR [9, 131]

Probabilistic soft logic [169]
Data augmentation
via perturbations [136]

Table 3.1: An updated view of Table 2.3, where our proposed methods have been added to
corresponding cells, blue. Each highlight has a reference to the section where it is covered.

In Section 3.1, we will demonstrate how unsupervised objectives can be used in QA models to
improve compositional generalization for quantitative reasoning. In Section 3.2, we will lay out a
method that uses counterfactual scenarios to sample negative and positive samples in such a way
that metric learning can lead to better compositional generalization for quantitative reasoning.

3.1 Operator-aware attention
Quantitative reasoning is an important aspect of question answering, especially when numeric
and verbal cues interact to indicate sophisticated, multi-step programs. In this section, we demon-
strate how modeling the compositional nature of quantitative text can enhance the performance
and robustness of QA models, allowing them to capture arithmetic logic that is expressed ver-
bally. Borrowing from the literature on semantic parsing, we propose a method that encourages
the QA models to adjust their attention patterns and capture input/output alignments that are
meaningful to the reasoning task. We show how this strategy improves program accuracy and
renders the models more robust against overfitting as the number of reasoning steps grows. Our
approach is designed as a standalone module which can be pre-pended to many existing models
and trained in an end-to-end fashion without the need for additional supervisory signal. As part
of this exercise, we also create a unified dataset building on four previously released numerical
QA datasets over tabular data.

3.1.1 Background
Any natural language system that processes or interacts with numeric data requires quantitative
reasoning to function. This has inspired research in several NLP domains, including reading
comprehension [8, 118], textual entailment [149, 154], data-to-text generation [127, 168], and
question answering [22, 220]. A major challenge in quantitative reasoning is the interplay be-
tween numeric expressions and natural language [154]. Standard neural approaches rely heavily
on lexical matching, leading to overfitting over spurious verbal patterns. In contrast, a purely
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symbolic approach excels at numerical reasoning, but struggles when sophisticated verbal rea-
soning is required [149]. We introduce a novel attention strategy that captures the interplay
between numeric and verbal modalities, which improves program accuracy and renders models
more robust to overfitting.

Focusing on the question answering task, we show how our proposed method, named Com-
pAQT (COMPositional Attention for QuanTitative reasoning), enables the model to attend to
relevant parts of text at each reasoning step. CompAQT enhances the performance of state of
the art models on several recently released QA datasets, especially for multi-step programs. It
is implemented as a plug-and-play module that can be added to existing models with minimal
effort and without the need for any additional supervision.

Concretely, we offer the following contributions:
• We propose a compositional attention module equipped with an alignment loss that im-

proves SOTA performance on numeric QA tasks.
• We demonstrate how the proposed approach improves the models’ program accuracy and

renders them more robust in multi-step reasoning tasks.
• We combine and refine four recently released datasets on QA over tabular data. We unify

their annotation schema so that they can be used interchangeably.

3.1.2 Problem statement
In the retriever-generator configuration of a QA model, our goal is to improve quantitative rea-
soning in the generator component. Figure 3.1 illustrates the typical architecture of a genera-
tor as an encoder-decoder model. The encoder uses a contextual representation model such as
RoBERTa [107]. The decoder combines a recurrent module with one or more cross-attention
heads between the natural language input and the program output. As the output is generated
step by step, it is crucial for the cross-attention module(s) to capture relevant components of
the input, otherwise they can simply memorize spurious verbal patterns and fail to generalize,
especially as the number of steps grows in the output.

Figure 3.1: The typical encoder-decoder architecture of a quantitative QA generator. We in-
troduce the compositional attention component (middle, enclosed in dotted line) to enhance the
alignments between natural language input and program output.

Table 3.2 illustrates this phenomenon with four examples from a QA task. Each row displays
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a natural language question, the set of facts that can be used as evidence to answer the question,
and the program to arrive at the correct answer. Presented with the first three examples, it is
conceivable that a human would be able to extrapolate that “percent change” is calculated by
first measuring the net change (i.e. subtraction) and then scaling the number as a percentage.
Humans are able to do this by recognizing components in the question that have been previously
encountered (e.g. “percent change” and “expenses”) even if they were not encountered in this
particular arrangement.

Question Evidence Program

1
What was the net change in
revenue from 2019 to 2020?

2019 revenue was $80M
2020 revenue was $60M subtract(80, 60)

2
What was the net change in
expenses between 2018 and 2021?

2018 expenses were $20M
2021 expenses were $30M subtract(20, 30)

3
What was the percent change in
revenue from 2019 to 2020?

2019 revenue was $80M
2020 revenue was $60M

subtract(80, 60)
divide(#0, 80)
multiply(#1, 100)

4
What was the percent change in
expenses between 2018 and 2021?

2018 expenses were $20M
2021 expenses were $30M

subtract(20, 30)
divide(#0, 20)
multiply(#1, 100)

Table 3.2: Example of compositional alignments between input questions and output programs
in the financial QA task. Blue underlined text indicates terms that relate to arithmetic operators.
Red italicized text indicates terms that relate to operands. Bold italicized text indicates terms that
are shared between the question and evidence.

Many neural models struggle to exhibit the same behavior, due to overfitting to spurious pat-
terns in natural language, or in the output. As we will later discuss in Section 3.1.4, quantitative
reasoning datasets can exhibit a long-tail distribution, biased towards simpler patterns. Figure
3.2 illustrates how this phenomenon takes place in the training split of one such dataset. The fig-
ure shows the prominence of the most common sequences of arithmetic operators in the FinQA
training set [26]. As the number of steps grows, the tail grows longer and the sample size smaller,
thus providing less information to the model and forcing it to rely on repetitively encountered
patterns in the past.

Our goal is to encourage the model to focus its attention on relevant components of the input
during generation. Figure 3.3 illustrates the expected attention patterns for the fourth example
from Table 3.2. The figure illustrates two key points: 1) During program generation, the terms
that overlap between the question and the evidence do not matter as much as non-overlapping
terms. 2) When generating operators (such as subtract or divide) attention should be focused
on terms that are exclusive to the question. Whereas when generating the operands (such as 80
or 20), attention should be focused on terms that are exclusive to the evidence. Constants such
as 100 or #0 may depend on the question, the facts, or the previously generated steps.

Using this insight, we encourage the model to adjust its attention patterns accordingly. The
remaining sections describe our methodology and experimental results in detail.
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Figure 3.2: The long-tail effect in multi-step programs in the FinQA training set [26].

3.1.3 Methodology

Let Q be a question made up of a sequence of tokens q1, · · · , qn. Let F be the evidence obtained
by the retriever, made up of a sequence of tokens f1, · · · , fm. Note that the evidence can be
composed of one or more concatenated facts, as illustrated in Table 3.2. Consistent with [26], we
represent the output program S as a sequence of steps s1, · · · , sl. Each step si is composed of an
operator oi (such as divide or subtract) and exactly two operands, ai,1 and ai,2

1. An operand
can have one of three values: 1) It can be one of the tokens in F . 2) It can be a constant used in
scaling or counting operations, e.g. const 100. The list of possible constants is pre-defined. 3)
It can be a reference to a previous step, e.g. #0. The maximum number of steps is pre-defined.

Given a retriever-generator model, we pre-pend a self-attention module to the generator, as
illustrated by the red dotted box in Figure 3.1. First, we encode Q||F using a contextual em-
bedding model such as RoBERTa [107] with embedding size denc. This results in an embed-
ding matrix U ∈ Rdenc×(n+m). At each generation step i, we apply scaled dot-product self-
attention [182] to U , resulting in the attention grid A(i) ∈ R(n+m)×(n+m) and the attention
output X (i) ∈ Rdenc×(n+m). Our goal is to encourage A(i) to focus its alignments properly, such
that X (i) supplies relevant information to the generator.

We follow a similar strategy to [212], but in the absence of gold alignments, use the heuristics
described in Section 3.1.2. Concretely, we add the below term to the loss:

L(i)
align =

1

n+m

n+m∑
k=1

n+m∑
j=1

(a
(i)
j,k − pprior(u

(i)
j |u

(i)
k ))2 (3.1)

where a(i)j,k is the attention weight between the jth and kth tokens in A(i), and pprior(u
(i)
j |u

(i)
k )

1We follow the notation used by FinQA, where programs are modeled as right-expanding binary trees with each
operation having two operands. If necessary, one or more operands are set to NONE.
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Figure 3.3: Semantic alignments between the natural language input from a financial QA task,
and the corresponding program output.

is defined as:
max{0,min

j′ ̸=k
(dist(u (i)

j′ ,u
(i)
k ))− a

(i−1)
j,k }

where dist is the cosine distance between two vectors, scaled between 0 and 1, and a
(0)
j,k = 0

for all j and k.
The term min

j′ ̸=k
(dist(u (i)

j′ ,u
(i)
k )) encourages the model to distribute attention to each token

based on its closest similarity to any other token in the input. This is balanced against the previous
attention distribution a

(i−1)
j,k , leading to the following behavior:

1. For tokens that are repeated more than once (e.g. those tokens shared between the question
and the evidence), lower attention is encouraged. This helps the model to disregard tokens
such as “expenses” and “2019” illustrated in Figure 3.3.

2. For terms that are unique to the question or the evidence, high attention is encouraged in
early steps. This helps the model to focus on tokens such as “percent” and “20”.

3. In later steps, the model is discouraged from focusing on previously well-attended tokens.
For instance after the model attends to the word “change” in order to generate subtract,
it learns to shift its focus away.

(1) and (2) emulate the regularization strategy proposed by [212], while (3) emulates the
concept of coverage proposed by [125] with the contrast that it tracks tokens seen in previous
generation steps for the same sample. The total alignment loss for a sample is calculated as an
aggregation over all steps, with linear decay:

Lalign =
1

l

l∑
i=1

L(i)
align − αi (3.2)
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The linear decay term helps the model assign a higher penalty to earlier generation steps.
Suppose the gold program is subtract(20, 30), divide(#0, 20), and the output generated by
the model is either subtract(20, 30), multiply(#0, 20) or add(20, 30), multiply(#0,
20). In the absence of linear decay, both predictions would receive the same penalty. The decay
term assigns a lower penalty to the first prediction, since it gets the first operation correct. Finally,
the alignment loss can be added to the default loss of the generator:

Ltotal = λLalign + (1− λ)Lgenerator (3.3)

3.1.4 Experiments
In this section, we describe our experimental set up, including the datasets and the baseline
models.

Datasets

We use four datasets that focus on numerical reasoning over hybrid table/text context, all released
within a year of this publication.

FinQA [26] is based on a collection of financial reports published by U.S. companies that
were released as part of FinTabNet [226]. Each passage is composed of a table and a few sen-
tences that surround the table, describing its content. The questions, designed by domain experts,
all require numerical reasoning.

TAT-QA [227] is also focused on financial reports, but includes documents from non-U.S.
companies. As such, the reports do not conform to a standard format and include a more diverse
set of metrics. The dataset includes span-based and multi-span questions as well as questions
requiring arithmetic reasoning. In our experiments, we focus on the latter category.

HiTab [27] is a collection of tables that include statistical data, collected from various na-
tional agencies. The tables have complex hierarchical or nested structure, and answering them
requires spatial as well as numerical reasoning. As with TAT-QA, we discard questions that do
not require any arithmetic operations.

MULTIHIERTT [224], which is also based on FinTabNet, combines the challenges of the
above-mentioned datasets, bringing together complex tabular structures and hybrid table/text
contexts. Again, we filter the dataset down to those samples that require numerical reasoning.

All four datasets provide the reasoning program required to derive the answers, allowing any
model to be evaluated on program accuracy. Since our study is focused on multi-step generation,
we use program accuracy as our evaluation metric.

Unified dataset Of the datasets mentioned above, FinQA is exclusively focused on multi-
step quantitative reasoning. The remaining datasets tackle additional challenges such as extrac-
tive QA, spatial reasoning, and table representation. Therefore we filter TAT-QA, HiTab, and
MULTIHIERTT down to those sample that require quantitative reasoning. We also transform
each sample so that it conforms to the standard FinQA format. This helps us bypass the chal-
lenge of addressing complex tabular structures, which is out of scope for this study. Please refer
to Appendix A.1 for further details. Table 3.3 shows statistics for each dataset, as well as the
distribution of 1 step, 2 step, and 3+ step programs.
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Dataset # passages # QA pairs used # steps in program
Train Dev Test 1 step 2 steps 3+ steps

FinQA 2,789 6,251 883 1,147 4,894 2,709 678
TAT-QA2 2,479 4,355 230 307 2,721 616 1,555
HiTab 513 879 186 199 1,075 120 69
MULTIHIERTT3 2,291 2,083 100 108 560 862 869
Combined 8,071 13,568 1,349 1,761 9,520 4,388 3,171

Table 3.3: Statistics of the four datasets, and the combined dataset. Note that with the exception
of FinQA, only a subset of samples (involving multi-step quantitative reasoning) is used from
each dataset.

Baselines

To establish baselines, we use the following models, which have demonstrated SOTA perfor-
mance on the datasets mentioned in the previous section4.

FinQANet was proposed by [26] and applied to the FinQA dataset. The architecture is
similar to that illustrated in Figure 3.1 but missing the compositional self-attention module.

TAGOP was proposed by [227] and applied to the TAT-QA dataset. A crucial difference be-
tween TAGOP and FinQANet is that the former is not designed to perform multi-step reasoning,
but approaches the task as a classification problem. As an example, it may predict that a change
ratio calculation is required, which implies a subtraction followed by a division. Seven such
arithmetic operations are permitted.

In addition to the above, we use a pointer-verbalizer network (PVN) as a universal baseline
against all four datasets. The model is inspired by the Expression-Pointer Transformer pro-
posed by [72]. The authors argue that generating an arithmetic program as a disjoint sequence
of operators and operands is not consistent with how humans approach quantitative reasoning.
Instead, they propose the concept of an “Expression Token”, which represents a full operation
autonomously (e.g. instead of generating divide, 20, 30 as a sequence, they recommend gen-
erating divide(20, 30) as one token). Following this idea, PVN also generates Expression
Tokens, but uses two pointer mechanisms—one to select operators from the list of all possible
options, and one to select operands from the list of numbers expressed in the evidence, or a pre-
determined list of possible constants. In addition, it uses verbalization to map operators from a
symbolic space (e.g. +) into the semantic space (e.g. “divide”). Please refer to Appendix A.2 for
implementation details.

We use the above three models as baselines, and measure their performance before and after
adding CompAQT. To remain as consistent as possible with the initial settings of these mod-

2TAT-QA samples includes a flag to distinguish arithmetic questions from span-based questions. However, this
flag is only available in the train and dev sets, but not in the test set. Therefore we split the dev set into 230 dev
examples and 307 test examples.

3MULTIHIERTT does not include an annotated test set. Therefore we split the validation set into 100 dev exam-
ples and 108 test examples.

4The creators of HiTab and MULTIHIERTT have proposed baseline models that were not included in our experi-
ments. This is because the HiTab model is focused on encoding tabular data rather than quantitative reasoning. The
MULTIHIERTT model, named MT2Net, is similar to FinQANet, but includes an additional sub-module that only
applies to span-based questions—again, out of the scope of this study.
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els, we use the same hyperparameters and settings described in the original papers. We also
use RoBERTa-large [107] to encode the input, since all models report best performance on this
model. We perform grid search on the development set of FinQA to tune the values for α and
λ, which are subsequently both set to 0.1. We use the same values throughout all of our exper-
iments. Please refer to Appendix A.3 for additional details and the full list of hyperparameters
for each baseline.

Note that TAGOP has been designed for single-step programs. Therefore we apply it to the
original version of the TAT-QA dataset, but analyze the results based on the actual number of
steps in each program. When adding CompAQT to TAGOP, we pre-pend it once, and instead
of using the multi-step loss with linear decay, we only calculate the alignment loss once per
program. Further, note that since our study is only focused on generation and not retrieval, we use
gold facts provided by each dataset. Please refer to Appendix A.4 to see details of experiments
using retrieved facts.

3.1.5 Results and discussion

In this section, we investigate the effectiveness of CompAQT through four questions: 1) Does
CompAQT improve the performance of the baseline models on the four datasets? 2) Does Com-
pAQT encourage compositional generalization by enabling the models to attend to relevant parts
of the input? 3) Does each component of CompAQT contribute to enhanced performance? 4)
Can CompAQT’s performance be attributed merely to added parameters? Additionally, we ex-
amine whether the combined dataset offers an advantage over the largest constituent dataset.

Model performance

Table 3.4 shows the program accuracy of each baseline model, before and after adding Com-
pAQT. As the table illustrates, CompAQT’s significantly contributes to performance on multi-
step programs in three of the four datasets. An interesting exception is the TAT-QA dataset, which
does not exhibit the long-tail distribution displayed in Figure 3.2. As Table 3.3 shows, TAT-QA
is biased towards 3-step programs with repeating patterns (e.g. change ratio is a common
3-step program). Here, CompAQT offers comparable performance to the baseline, with slightly
higher robustness to multi-step programs, sometimes at a slight cost to single-step programs. For
datasets that exhibit the long-tail distribution, CompAQT offers improvement on all categories,
but especially on multi-step programs. This is especially noteworthy for HiTab, which is the
smallest and most skewed collection.

Among the three baselines, FinQANet outperforms others on individual as well as the com-
bined dataset. Adding CompAQT further improves FinQANet’s performance on all datasets with
the exception of TAT-QA. Therefore we use FinQANet+CompAQT for the remaining analyses
presented in this section.

5Note that TAGOP cannot generate multi-step programs and can therefore only be applied to the TAT-QA dataset,
where multi-step programs have been collapsed into single-step operations (e.g. change ratio).
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Model Dataset Program accuracy
1 step 2 steps 3+ steps Overall

TAGOP5
TAT-QA

45.01 39.56 42.73 43.25
+CompAQT +1.06 +0.72 +1.00 +0.63
PVN

Combined
68.14 61.33 13.54 56.64

+CompAQT +2.64 +2.12 +3.09 +2.57
FinQANet

FinQA
75.63 65.87 30.36 68.44

+CompAQT +3.05 +9.25 +5.49 +5.30
FinQANet

TAT-QA
73.33 63.76 64.88 70.71

+CompAQT -3.33 +0.00 +1.38 -0.74
FinQANet

HiTab
34.70 25.14 15.91 30.12

+CompAQT +0.03 +4.50 +1.44 +2.11
FinQANet

MULTIHIERTT
38.99 40.07 15.01 38.94

+CompAQT -0.12 +2.28 +1.76 +1.88
FinQANet

Combined
65.11 62.00 30.76 58.60

+CompAQT +1.49 +3.14 +3.40 +2.28

Table 3.4: Program accuracy for program generation using baseline models. Additional perfor-
mance gain/loss is indicated after CompAQT is added to each model. Bold numbers indicate
that a gain/loss is significant at p < 0.005, based on the paired-bootstrap test proposed by [12],
with b = 103.

Qualitative examples

Table 3.5 shows four examples from the validation set of the FinQA dataset. The first question
asks for a percentage calculation. Percentage calculations are the most common two-step opera-
tions in the training set, and the FinQANet model is able to produce the gold program without any
additional guidance from CompAQT. In the second example, the model is asked to perform an
operation on two metrics that are expressed as percentages. This time, possibly by relying heav-
ily on memorizing the relationship between the word “percentage” and the subtract-divide
operation, FinQANet mistakenly generates a subtract-divide sequence, whereas CompAQT
is able to determine that “percentage” refers to an operand. In the third example, FinQANet once
again performs a percentage calculation, possibly by associating the word “change” with “per-
centage change”. Once again CompAQT is able to drive attention towards the correct program,
and distinguishes between a net and a percent change. The final example shows a case where
CompAQT is not able to improve baseline performance. This challenge here is to understand
the relationship between the number of shares and the average price. This requires a level of
financial literacy that is not resolved by compositional generalization alone. As demonstrated in
[26] financial expertise plays a major role, even in human performance.

Attention patterns

To confirm whether CompAQT is assisting the model in detecting key operational terms, we
analyze the top-attended tokens within the input. Table 3.6 lists the top attended tokens through-
out the training process for the FinQANet+CompAQT model on the FinQA dataset. As training
progresses, CompAQT learns to attend to key terms that indicate arithmetic operations (such as
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Question Evidence Gold program FinQANet FinQANet + CompAQT
What was the percentage change in the
fair value from 2010 to 2011?

1) the fair value of 2011 is $99
2) the fair value of 2010 is $81

subtract(99, 81),
divide(#0, 81)

subtract(99, 81),
divide(#0, 81)

subtract(99, 81),
divide(#0, 81)

What was the difference in operating profit
as a percentage of net sales between
2001 and 2003?

1) the company reported operating
profit as a percent of net sales
2) operating profit in 2001 is 19
3) operating profit in 2003 is 26

subtract(26, 19)
subtract(26, 19),
divide (#0, 19)

subtract(26, 19)

What is the change in the warranty reserve
from 2017 to 2018?

1) balance as of 2017 is $23
2) balance as of 2018 is $24

subtract(24, 23)
subtract(24, 23),
divide(#0, 23)

subtract(24, 23)

For the 4th quarter of 2011 approximately
how much was spent on stock repurchases?

1) total number of shares
purchased is 3915
2) total of average price paid
per share is $98

multiply(3915, 98) add(3915, 98) add(3915, 98)

Table 3.5: Four examples from the FinQA dataset, showing CompAQT’s success and failure in
capturing compositional expressions. Note that some numbers have been truncated to save space.

“net” and “growth”). Using a basic self-attention module shows a similar convergence, but the
module is not as quick to learn important terms. In fact even at the 50th epoch, the basic self-
attention module is still focusing its attention on terms that do not indicate an operation, such as
“annual” and “year”. This shows that the additional components in CompAQT (alignment and
coverage loss) assist the model in converging to more meaningful attention patterns.

Top attended token
Epoch #1 Epoch #25 Epoch #50

Self-attention [CLS], ?,
what, and

company, what,
year, 2018

percentage, ratio,
annual, year

CompAQT the, of,
?, what

year, company,
percentage, annual

percentage, growth
lowest, net

Table 3.6: Top attended tokens throughout the training process for a vanilla self-attention module
versus CompAQT. As training progresses, CompAQT learns to attend to tokens closely associ-
ated with quantitative operations. The results are based on FinQANet+CompAQT, applied to the
FinQA dataset.

Ablation study

We perform a series of experiments to examine the impact of each component of CompAQT.
Table 3.7 shows the results after applying FinQANet to the FinQA dataset. “Self-attention” indi-
cates the addition of a plain self-attention module without any compositional guidance. “Align-
ment loss” indicates the addition of the minimum-distance component in Equation 3.1.3. “Cover-
age term” indicates the addition of −a(i−1)

j,k to alignment loss. “Linear decay” indicates replacing
a simple average loss with the linear decay term in Equation 3.2. As the table shows, each com-
ponent contributes to the program accuracy. The self-attention module offers an improvement
that is relatively consistent across all programs, whereas the alignment loss and the coverage
term favor multi-step programs, as intended. Lastly, linear decay further improves results for the
longest programs by a small margin.

To ensure that the effectiveness of CompAQT is not simply due to added parameters, we
also perform a series of experiments that measure the performance of CompAQT with additional
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parameters in the form of additional layers and attention heads. Each row in Table 3.8 shows
how much program accuracy improves over using FinQANet without CompAQT. As the table
shows, additional parameters are not always helpful and can undermine the performance of the
model, especially for multi-step programs. This may also indicate that the regularizing effect of
CompAQT can be counteracted by larger parameters, leading to overfitting over smaller datasets.

Pre-training across datasets

Since the combined dataset uses the same format for all constituent datasets, it is easy to in-
vestigate the impact of pre-training on larger and more diverse data. Figure 3.4 shows how
FinQANet+CompAQT performs on the combined test set, as more collections are added to its
training set. As the Figure illustrates, despite providing a sizeable number of single-step pro-
grams, TAT-QA fails to improve the performance substantially on multi-step programs. This
is likely due to the fact that all TAT-QA programs fall into seven categories, which allows the
model to memorize them. In contrast, despite its small size, adding MULTIHIERTT improves
performance on 1 step and 2 step programs. 3+ step programs remain a challenge across all
datasets, but the model shows steady progress as the dataset size grows.

Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 75.63 65.87 30.36 68.44
+self-attention +2.95 +2.08 +2.00 +2.57
+alignment loss +0.07 +5.31 +2.01 +1.95
+coverage term +0.03 +1.97 +0.97 +0.69
+linear decay +0.00 +0.07 +0.51 +0.06

Table 3.7: Ablation results on the FinQA dataset using FinQANet as the base model.

# heads # layers # params
# Program accuracy

(improvement over baseline)
1 step 2 steps 3+ steps

1 1 4.2M +3.05 +9.25 +5.49
4 1 4.3M +3.97 +7.30 +5.31
1 2 8.4M +4.22 +6.76 +3.12
4 2 8.6M +4.26 +5.99 +2.86

Table 3.8: The performance of FinQANet+CompAQT on the FinQA dataset. As additional
parameters are added in the form of multiple heads or more layers, the model’s performance
does not increase.

3.1.6 Conclusion
In this study, we proposed a method to improve multi-step quantitative reasoning for question an-
swering. Our method facilitates compositional generalization by encouraging the model to attend
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Figure 3.4: Program accuracy on the combined dataset as training datasets are added iteratively.

to relevant components of the input at each generation step. We demonstrated the effectiveness
of our approach over four recently released tabular QA datasets. Our method, named CompAQT,
was able to significantly improve program accuracy on three of the datasets, especially for multi-
step programs. We also created a collection of QA samples for multi-step quantitative reasoning,
by the datasets and unifying their format.

3.2 Counterfactual sampling for QA
Enterprise documents such as reports, forms, and analytical articles often include quantitative
data in tabular form. The data in these tables can be self-contained, but more commonly the
surrounding text provides more context that is necessary to understand the content. Answering
questions over these hybrid tabular/text contexts requires reasoning that combines verbal and
quantitative semantics.

Question answering over quantitative tabular/text data has gained recent traction with the
release of datasets such as FinQA [26], TAT-QA [227], and HiTab [27]. Table 3.10 shows an ex-
ample of a question that requires quantitative reasoning to derive the answer. Given the question
and the tabular context, the output is a single-step program that leads to the final answer of -20.

A major challenge that state of the art models face is compositional generalization [119],
especially when the number of reasoning steps grows [26]. In the context of quantitative QA,
compositional generalization refers to the model’s ability to generalize to new compositions of
previously seen elements. As an example, if the model has encountered training examples that
demonstrate calculations for “growth rate” and “percent change”, we would like it to be able
to come up with a reasonable hypothesis as to how to calculate “percent growth” or “rate of
change”. Table 3.9 demonstrates how this challenge becomes more difficult as the number of
reasoning steps grows. For questions that require longer chains of reasoning, the model learns
spurious patterns and unsuccessfully tries to leverage these memorized patterns to solve new
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Figure 3.5: A high-level illustration of our proposed method. The input example (anchor) is
processed by cross-attention and recurrent modules to produce the output step by step. In addition
to a regular Cross-Entropy loss, CounterComp adds an auxiliary triplet loss based on positive
and negative examples. Note that the anchor and pos/neg examples are all processed through
the RNN before calculating the triplet loss, a process which we have not illustrated due to space
limitations. Also note that multiple pos/neg examples are sampled at each step.

problems.

# steps in
output

% wrong
operator(s)

% wrong
operands

% wrong order
of operands

1 step 39.07 53.64 7.28
2 steps 46.75 46.75 6.50
3 steps 56.47 29.41 14.12
>= 4 steps 52.00 40.00 8.00

Table 3.9: Share of FinQANet errors due to the selection of wrong operators or operands when
applied to the FinQA dataset [26], broken down by the number of steps in the output.

The Table also shows that as the number of steps grows, generating the wrong operator be-
comes a more dominant mistake than selecting the wrong operand. Not only is this error more
dominant, but it can also have a more destructive impact on the chain of reasoning, as it can
derail the model’s hidden representations from that point onward. As an example, our analysis
of the FinQANet model [26] output showed that if the model generates an incorrect operator, it
is about 30% more likely to commit other errors in the following steps compared to when the
model generates an incorrect operand.

In this section, we propose CounterComp, an approach that can enhance compositional learn-
ing in multi-step quantitative QA. We take inspiration from the symbolic composition of arith-
metic operations, and their correspondence to natural language phrases. Building on the work on
attention alignments from previous studies, we propose an auxiliary metric learning loss that is
focused on specific components of the input and output. Our sampling strategy is based on coun-
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terfactual scenarios. This means that the model learns proper representations for each component
based on what-if scenarios. To the best of our knowledge, this is the first study that successfully
applies component-wise counterfactual sampling as a metric learning strategy. We show how,
when state of the art models are augmented with our auxiliary metric learning loss, they exhibit
better performance in cases where multi-step reasoning is required. CounterComp outperforms
current baselines on four recently released datasets, and show stronger performance on OOD
samples.

Question What was the net change in
revenue from 2019 to 2020?

Tabular
context

Metric ($M) 2018 2019 2020
Operating
expenses 35 29 30

Revenue 70 80 60

Verbalized
facts

2019 revenue was $80M.
2020 revenue was $60M.

Output
program subtract(80, 60)

Answer -20

Table 3.10: Example of a quantitative QA problem over tabular data.

3.2.1 Background
The typical architecture of a quantitative QA model is composed of a retriever and a generator
[69]. The retriever identifies the particular context where the answer might be found. Since the
context can be a mix of table cells and sentences, often a tabular encoder [47] or verbalizer [26] is
used to convert the cells into a natural language sequence. The retrieved context is referred to as
retrieved facts. Next, the generator uses the question along with the facts to generate the output
in a step by step fashion. In multi-step QA, the generator often combines a recurrent module
with an attention mechanism [26], as illustrated in top half of Figure 3.5.

The output can be assessed in terms of program accuracy as well as execution accuracy. Our
study is focused on improving program accuracy by encouraging compositional generalization
in the generator.

There are two common approaches to improving compositional generalization. Attention
alignment models encourage explicit alignments between natural language utterances (e.g. “rate
of change”) and corresponding symbolic math operations (e.g. subtraction followed by division).
Methods informed by counterfactuals use what-if scenarios to generalize to a wider variety of
compositions and reduce the effect of memorization.

Attention alignments

Yin et al. [212] showed that additional supervision can be used to promote explicit alignments
between components in the input and in the output. They added a regularization loss that encour-
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ages the cross-attention module to adjust its attention weights according to gold alignments. Us-
ing as few as 16 examples, their model was able to improve generalization in a semantic parsing
task. CompAQT [123] extended this idea to multi-step quantitative QA. Instead of using addi-
tional supervision, it used natural language heuristics to create noisy alignment labels between
input tokens and output symbols. The additional alignment loss improved the performance of
three baseline models on multi-step reasoning tasks for four datasets.

Methods informed by counterfactuals

The success of alignment-based methods is limited by the fact that by heavily discouraging
memorization, they underperform in settings where memorization can be helpful [125]. To strike
a balance between memorization and generalization, one approach is to generate new training
examples that cover important semantic gaps in the training data. This is reminiscent of how
adversarial training can help better define the semantic contours of compositional representations
[219]. Contrastive or metric learning methods pursue a similar goal, but instead of generating
new samples, they leverage existing samples within the training set [61].

Counterfactual data augmentation (CAD) methods strive to achieve this by generating new
samples using what-if scenarios [20, 105, 230]. This can be done by altering a minimally suf-
ficient set of tokens in the input such that the output class changes [71]. There are two main
challenges to creating these samples. First, it is difficult to identify the minimal set of tokens
necessary to alter the output. Second, there is no guarantee that a counterfactual sample exists
in the training set. To address these challenges, some studies employ human labelers [71] or a
third party model [54]. In domains like semantic parsing and quantitative QA where the output
is symbolic, an alternative approach leverages the structure of the output to avoid the need for
human labelers. Li et al. [93] achieve this by intervening on the operands. Suppose that a ques-
tion states “What was the net change in revenue from 2019 to 2020?” and the retriever produces
two (verbalized) table cells: “2019 revenue was $80M” and “2020 revenue was $60M”. The
output program for this question would be: subtract(80, 60). Given the numeric nature of
the operands, it’s possible to generate new scenarios such as “What if 2019 revenue was $90?”
with the updated output subtract(90, 60). Employing this method, Li et al. [93] augment
the TAT-QA dataset [227] into a new dataset named TAT-HQA. They also enhance the verbal
reasoning capacity of their model by offering the counterfactual scenario as a natural language
prompt. Their model, named Learning to Imagine (L2I), outperforms state of the art models.

As mentioned in previously, models that struggle with compositional generalization suffer
from errors in operator selection, whereas L2I is focused on the selection of operands. In this
section, we present CounterComp, a method that focuses on counterfactual sampling for compo-
nents that indicate operators6. Using natural language constraints from previous studies, we first
find components that correspond to operators versus those that correspond to operands. Next, we
use an auxiliary metric learning loss with positive and negative samples chosen based on those
components. This helps us avoid the complexities associated with a data augmentation approach,
such as the need for creation of additional human labels. The next section lays out our problem
definition in more detail.

6Please refer to Appendix A.8 for a study on the use of CounterComp for operators versus operands.
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3.2.2 Problem formulation

Let us consider the example provided by Table 3.11. Suppose Q is the question, represented as a
sequence of tokens q1, · · · , qN (i.e. “what”, “was”, “the”, · · · , “2020”, “?”).

F is the evidence obtained by the retriever, made up of a sequence of tokens f1, · · · , fM (i.e.
“2019”, “revenue”, “was”, · · · , “$60M”).

The concatenation of these two sequences, i.e. Q||F , forms the input to the generator. The
generator encodes Q||F using a neural language model such as RoBERTa [107], resulting in an
embedding matrix U ∈ Rdenc×(N+M).

Consistent with Chen et al. [26], we represent the output S as a sequence of steps s1, · · · , sL.
Each step sl can be an operator (such as add or divide), or an operand. Similar to Chen et al.
[26], our programs are modeled as right-expanding binary trees with each operator having exactly
two operands. If necessary, one or more operands are set to NONE, where NONE is a special
constant. L is pre-defined as the maximum number of steps allowed. In the example from Table
3.11, S is: subtract, 80, 60, NONE, NONE, NONE.

To generate the lth output step sl, the generator applies a cross-attention module to U , re-
sulting in the attention weight matrix Al ∈ R1×(N+M) and the attention output X l ∈ RK . A
recurrent module then generates the hidden vector hl, which is used to produce the output step
sl.

hl = RNN(hl−1,X l)

sl = NN(hl)
(3.4)

where NN can be any neural module that projects hl onto the simplex sl ∈ RK , from which sl
can be sampled: sl = argmaxk sl,k. Our goal is to encourage hl to be sensitive to the composition
of the input Q||F with regards to the current output step sl. This means that hl needs to capture
proper alignments between important terms in the input and the relevant operator/operand in the
output.

To achieve this, we pursue a metric learning approach where positive and negative samples
are generated according to counterfactual scenarios.

Counterfactual samples

Given a training example ([Q||F ](i), S(i)), we define an intervention targetQ(i) as a subsequence
of the question tokens, i.e. Q(i) = {q(i)n ;n ∈ N (i)} where N (i) ⊆ {1, 2, · · · , N}.

Suppose that changing the intervention target affects a single step in the output program
S(i) = s

(i)
l , which we name the intervention outcome. Note that due to our focus on the genera-

tion of operators, we limit the intervention outcome to an operator. Since the output is composed
of one operator followed by two operands followed by another operator and so on, l is selected
from a limited index set: l ∈ {1, 4, 7, · · · , L− 3}. In the example from Table 3.11, the possible
indices will be 1 and 4, representing the operators subtract and NONE.

Given this definition, it’s possible to mine positive and negative examples for the ith training
instance. A positive example ([Q||F ]

(i)
pos, S

(i)
pos) is an instance for which, despite a possible inter-

vention in the target, the outcome remains the same, i.e. Q(i)
pos ̸= Q(i) and S(i)

pos = S(i). A negative
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example ([Q||F ]
(i)
neg, S

(i)
neg) is an instance for which an intervention in the target leads to a change

in the outcome, i.e. Q(i)
neg ̸= Q(i) and S(i)

neg ̸= S(i).
This allows us to define a triplet loss that encourages h

(i)
l to remain close to h

(i)
l,pos and far

from h
(i)
l,neg with a margin of α(i):

L(i)
triplet = max{||h(i)

l − h
(i)
l,pos||

2
2 − ||h

(i)
l − h

(i)
l,neg||

2
2 + α(i), 0} (3.5)

Figure 3.5 illustrates the sampling process for one training example. Note that this metric
learning approach will only be valid if causal assumptions with regards to the intervention target
are valid, i.e. the change in S(i)

neg is in fact the result of the intervention in Q(i)
neg and not a change

in any other part of the input. In a data augmentation setting, this can be achieved by keeping
the input fixed and perturbing a small segment that functions as the intervention target similar to
[71]. However, as discussed in Section 3.2.1. this requires additional manual labor to annotate
the perturbed examples.

In the next section, we describe how we impose certain constraints on the intervention target
to achieve this in a self-supervised setting7.

3.2.3 Methodology
Our goal is to identify potential positive and negative samples for the anchor ([Q||F ](i), S(i)).
Suppose the anchor is the one shown in the top three rows of Table 3.11. Some terms are redun-
dant between the question and the fact (i.e. “revenue”, “2019”, and “2020”). Those terms are
often used by the retriever to find the correct facts. They are also used by the generator to find
the correct order of operands.

There are also terms that are unique to the question, i.e. “What was the net change to”,
“from”, and “to”. In CompAQT, the authors showed that these can be used as indicators for the
operators. Lastly, there are terms that are unique to the facts, i.e. “was $80M” and “was $60M”.
These can be used as indicators for the operands. We use these heuristics to guide our sampling
strategy.

We flag all spans in the question that do not overlap with the facts, i.e. underlined blue
segments. Those spans serve as candidate intervention spans. In the example from Table 3.11,
this results in three candidates: “What was the net change in”, “from”, and “to”.

Next, we seek a positive and a negative example within the training set. A positive example
is a sample in which, despite possible changes in the question, the operators in the output remain
consistent with the operators in the anchor. Table 3.11 shows one such example. Several terms
have been altered in the question. However, we would only focus on the changes in the candidate
spans. Here, “was” has changed to “is”, “net change” has changed to “difference”, “from” to
“between” and “to” to “and”. This results in a token-level Levenshtein distance of 5 (four edits
and one insertion) [216]. We ignore the change from “revenue” to “operating expenses” and
from “2019” to “2018”, because those changes have occurred outside of our candidate spans and
only correspond to operands.

7Note that the term “self-supervised” is used in this context to refer to the sampling strategy, i.e. no additional
labeling is needed to generate the positive and negative samples.

40



A negative example is a sample in which exactly one output operator is altered, deleted, or
added. Table 3.11 shows one such example. Here, the output includes a new operator divide.
The question has also been altered with a token-level Levenshtein distance of 4.

The given positive and negative example can now be plugged into Equation 3.5. Instead of
a fixed margin, we use the edit distances mentioned before to dynamically adjust the margin.
Let NLD(i)

pos and NLD(i)
neg be the normalized, token-level Levenshtein edit distance between the

anchor and the positive example, and the negative example, respectively. We set the margin to:
α(i) = 1− |NLD(i)

neg − NLD(i)
pos|

This encourages a larger margin for cases where the anchor is equally similar to the positive
and the negative examples, and the model might have a harder time picking up on the nuances of
each component.

Anchor

Question What was the net change in revenue
from 2019 to 2020?

Facts 2019 revenue was $80M.
2020 revenue was $60M.

Program subtract(80, 60)
NONE(NONE, NONE)

Candidate
intervention
spans

What
the net change in
from
to

Positive
sample

Question What is the difference in operating
expenses between 2018 and 2020?

Facts 2018 operating expenses were $35M.
2020 operating expenses were $30M.

Program subtract(35, 30)
NONE(NONE, NONE)

Negative
sample

Question What was the rate of change of
operating income from 2018 to 2019?

Facts 2018 income from operating activities was $65M.
2019 income from operating activities was $60M.

Program subtract(65, 60)
divide(#0, 65)

Variables

Q(i)

S(i)

{q(i)1 , q
(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
6 , q

(i)
8 , q

(i)
10 }:

what the net change in from to
s
(i)
4 : NONE

Q(i)
pos

S(i)
pos

edit dist

{q(i)1 , q
(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
8 , q

(i)
10 }:

what is the difference in between and
s
(i)
4 : NONE

5
Q(i)

neg

S(i)
neg

edit dist

{q(i)1 , q
(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
5 , q

(i)
6 , q

(i)
12 }:

what the rate of change of to
s
(i)
4 : divide

4

Table 3.11: Example of positive and negative sampling using counterfactual components.
Blue underlined text indicates components that are unique to the question ( candidates for in-
tervention). These terms often indicate an operator. Red italicized text indicates terms that are
unique to the facts. These terms often indicate operands. Bold italicized text indicates terms that
are shared between the question and facts. These terms often indicate metrics.

Runtime optimization

There are two runtime challenges to this proposed approach: 1) Sampling can be costly if the
entire training set has to be scanned for each batch. This means an online sampling strategy
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cannot be used. On the other hand, an offline strategy introduces a large overhead. A hybrid
approach is needed. 2) Calculating the edit distance metric is a costly operation with O(n2)
steps.

To solve the first problem, we build two indices prior to training. One index groups the sam-
ples by their sequence of output operators. This index can be used to sample positive examples.

The other index includes all training examples, and for each example, it includes the full list
of one-step perturbations applied to its output operators. By generating all possible perturbations,
we are able to find other samples whose outputs match the perturbed sequence (i.e. negative
samples). For a sequence with n operators, all possible perturbations can be generated in O(n×
K) time, where K is the number of possible operators8.

Given the pre-generated positive and negative pools, we can also calculate and cache edit
distances ahead of time. However, in practice, we realized that we could do so during training
with little additional cost. This is because the edit distance is applied at the token-level9, and
is limited to candidate spans, rendering it relatively fast. The decision as to whether distances
should be cached or calculated on the fly depends on the average size of each pool versus the
number of training steps.

The algorithm outlined in Appendix A.7 summarizes our approach.

3.2.4 Experiments
Datasets

We use the hybrid CompAQT dataset, which is composed of four previously released datasets,
namely FinQA [26], TAT-QA [227], HiTab [27], and MULTIHIERTT [224]. The authors fil-
tered these four datasets down to QA pairs that require single or multi-step quantitative reasoning.
They also processed the tables and outputs in all four datasets to match the FinQA format.

Baselines

We apply our proposed auxiliary loss to three baselines: 1) FinQANet, originally developed
for the FinQA dataset [26]. 2) TAGOP, originally developed for the TAT-QA dataset [227]. 3)
Pointer-Verbalizer Network (PVN), originally proposed by Nourbakhsh et al. [123]. We also
apply the CompAQT loss to each model as a secondary baseline in order to determine how
CounterComp compares to an attention-alignment strategy.

Sampling success rate

Another possible concern is that our sampling strategy might be limited, in that positive and
negative samples might not always be available in the training set, or that limited availability
of samples might bias the training process. To remediate the problem of unavailable samples,
when a positive sample is missing, we use the anchor as the positive sample, and when a negative
sample cannot be found, we use a uniformly sampled instance from the batch.

8Since we follow Chen et al. [26], in all of our experiments K = 10.
9Since we’re using a language model that uses word-piece tokenization, in effect the runtime is at subword level.
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Table 3.12 shows some statistics about the success rate of the sampling algorithm. “% Fail-
ure” identifies the share of training examples for which either a positive or a negative example
was missing. Unsurprisingly this never happens for single-step programs, is very rare for two-
step programs, and with the exception of HiTab, happens in less than 10% of the cases for longer
programs. The Table also shows the average number of positive and negative examples found for
each anchor. Again, HiTab has the lowest number of available samples, making it the most chal-
lenging dataset. In Section 3.2.5, we demonstrate how, even in cases with few possible samples,
the model is able to generalize to unseen examples.

Dataset 1 step 2 steps 3+ steps

% Failure Avg. # pos
samples

Avg. # neg
samples % Failure Avg. # pos

samples
Avg. # neg

samples % Failure Avg. # pos
samples

Avg. # neg
samples

FinQA 0 1457 3254 0.2 913 630 8.2 41 190
TAT-QA 0 1808 638 0 295 958 1.3 1055 66
HiTab 0 221 554 2.5 30 29 29.8 4 24
MULTIHIERTT 0 189 533 0.2 326 335 7.8 92 190

Table 3.12: The failure rate of sampling from each dataset (when no positive or no negative
sample can be found for a given anchor), as well as the average number of positive and negative
samples found for each anchor.

Settings

Since we are focused on the generator, in the experiments discussed in this section we will use
gold facts and encode the input using RoBERTa-large [107]10. We run the baselines with and
without the additional Ltriplet for 50 epochs with a learning rate of 5e−5, the Adam optimizer
[77] with β1 = 0.9 and β2 = 0.999. At each step, we sample (with replacement) 5 positive and
negative pairs per anchor, and add the average auxiliary triplet loss to the main model loss with
a weight of λ. After a grid search with a step-size of 0.1, we set λ to 0.4 for all experiments. All
experiments were conducted on 8 NVIDIA T4 GPUS with 16 GBs of memory.

3.2.5 Results and analysis
Table 3.13 shows the program accuracy of baselines (top row of each cell) compared the addition
of CounterComp loss (bottom row of eachcell). Among the baseline models, TAGOP is not
designed to generate multi-step programs. Therefore we only apply it to the TAT-QA dataset,
which has a set of pre-determined operations (e.g. change ratio). We also apply the PVN
model to the combined dataset, but since FinQANet outperforms it on all benchmarks, we will
continue to use FinQANet as the reference baseline model for the remaining experiments in this
section.

As Table 3.13 shows, CounterComp consistently outperforms the baselines and the margin is
often higher for longer programs. One notable exception is the TAT-QA dataset. As mentioned
before, the dataset is not designed for open-ended multi-step reasoning and includes a limited set
of possible operations. Therefore methods that encourage memorization might achieve higher

10Please refer to Appendix A.6 for results using retrieved facts.
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performance on TAT-QA. HiTab is another challenging dataset, but despite low performance on
longer sequences, CounterComp offers an improvement over the baseline.

Model Dataset Program accuracy
1 step 2 steps 3+ steps Overall

TAGOP

TAT-QA
45.01 39.56 42.73 43.25

+CompAQT 46.07 40.28 43.73 43.88
+CounterComp 46.12 41.51 45.67* 45.38
PVN

Combined
68.14 61.33 13.54 56.64

+CompAQT 70.78 63.45 16.63 59.21
+CounterComp 71.58* 64.31* 18.44* 61.20*
FinQANet

FinQA
75.63 65.87 30.36 68.44

+CompAQT 78.68 75.12 35.85 73.74
+CounterComp 79.13* 75.45* 36.86* 74.49*
FinQANet

TAT-QA
73.33 63.76 64.88 70.71

+CompAQT 70.00 63.76 66.26 69.97
+CounterComp 70.56 63.80 66.90 70.01
FinQANet

HiTab
34.70 25.14 15.91 30.12

+CompAQT 34.73 29.94 17.35 32.23
+CounterComp 34.94 30.00* 17.39 32.61*
FinQANet

MULTIHIERTT

38.99 40.07 15.01 38.94
+CompAQT 38.87 42.35 16.77 40.82
+CounterComp 39.25* 42.51* 16.86 40.85*
FinQANet

Combined

65.11 62.00 30.76 58.60
+CompAQT 66.60 65.14 34.16 60.88
+CounterComp 67.91* 66.00* 36.91* 61.82*
(Fixed margin) 66.19 64.89 34.06 59.58

Table 3.13: Program accuracy for program generation using baseline models v.s. using Com-
pAQT loss, v.s. using CounterComp loss. * indicates that a gain/loss is significant at p < 0.005
compared to the baseline, using the paired-bootstrap test proposed by Berg-Kirkpatrick et al. [12]
for b = 103.

Auxiliary triplet loss versus auxiliary attention alignment loss

The middle row of each cell in Table 3.13 shows the program accuracy when CompAQT loss
is added instead of CounterComp loss. As previously described, CompAQT imposes an auxil-
iary attention alignment loss such that tokens related to operators receive more attention during
the generation of operators. Even though this leads to improvements over the baselines, Coun-
terComp outperforms CompAQT in all experiments. This might be due to the fact that the
regularizing effect of CompAQT loss is not as strong as the representation learning impact of
CounterComp.

Despite the fact that CounterComp was not designed as an attention alignment model, it
does have an impact on how attention patterns evolve during training. Table 3.14 shows the
top-attended input tokens during the generation of a divide operator in various contexts. For a
singular division operation, FinQANet attends to tokens such as “year” whereas CounterComp
encourages the model to attend to more relevant tokens such as “net” and “change”. A subtraction
followed by a division often indicates a percentage calculation, as captured by both models. An
addition followed by a division often indicates an average calculation. Again, CounterComp is
able to capture relevant tokens but the FinQANet baseline seems to attend to some memorized
tokens such as “annual”.
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Top attended tokens during
the generation of divide

Model divide
subtract
divide

add
divide

FinQANet share, year ratio, percent annual, per
+CounterComp net, change share, percent average, per

Table 3.14: Top attended tokens during the generation of the division operator in various se-
quences. The dataset used for this experiment is FinQA.

Fixed versus adaptive margin

The last row of Table 3.13 shows the performance of the FinQANet model on the combined
dataset using the CounterComp loss with a fixed margin of 1. The performance suffers, especially
as the number of steps grows. This further demonstrates the importance of the adaptive margin
α(i) that takes the edit distance into account.

Question Evidence Gold program FinQANet FinQANet + CounterComp
What was the gross margin decline in
fiscal 2004 from 2003?

1) the gross margin pct of 2004 is 27.3%
2) the gross margin pct of 2003 is 27.5%

subtract(27.5, 27.3)
subtract(27.5, 27.3),
divide(#0, 27.5)

subtract(27.5, 27.3)

What percentage of amounts expensed
in 2009 came from discretionary
company contributions?

1) amounts expensed for 2009 was $35.1
2) expense includes a discretionary
company contribution of $3.8

divide(3.8, 35.1),
multiply(#0, const 100)

divide(3.8, 35.1)
divide(3.8, 35.1),
multiply(#0, const 100)

Did the share of securities rated aaa/aaa
increase between 2008 and 2009?

1) the aaa/aaa share of 2009 is 14%
2) the aaa/aaa share of 2008 is 19%

greater(14, 19)
subtract(14, 19),
subtract(14, #0)

greater(14, 19)

On February 13, 2009 what was
the market capitalization?

1) on February 13, 2009, the closing price of
our common stock was $28.85 per share
2) as of February 13, 2009, we had 397097
outstanding shares of common stock

divide(397097, 28.85) multiply(397097, 28.85) multiply(397097, 28.85)

Table 3.15: Four examples from the FinQA dataset, showing CounterComp’s success and failure
in capturing compositional expressions. Note that some numbers have been truncated to save
space.

Model Program accuracy on test dataset

TAT-QA HiTab MULTIHIERTT
FinQA

(unseen programs)
FinQANet 41.64 22.80 35.33 65.74
+CompAQT 39.88 22.71 35.28 70.32
+CounterComp 42.00 22.97 36.94 73.53

Table 3.16: OOD performance of FinQANet variations when trained on the FinQA dataset and
tested on other datasets, or tested on unseen operator compositions in the FinQA dev set.

Qualitative examples

Table 3.15 shows four qualitative examples from the FinQA dataset. The first two rows show
how CounterComp enables the FinQANet model to represent concepts such as “decline” and
“percentage” more accurately. The third example shows how CounterComp is able to determine
the difference between a calculation question and a yes/no question. The last row shows a failure
example, where CounterComp does not improve the performance of FinQANet. This particular
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example requires deep domain expertise to address. This highlights the need for methods that
allow domain expertise to be represented more effectively [26].

Compositional v.s. OOD generalization

In a recent study Joshi and He [68] showed that current approaches to counterfactual data aug-
mentation do not necessarily lead to better generalization to out-of-distribution (OOD) samples.
To test whether this holds for CounterComp, we conduct two studies. First, we train FinQNet
with and without CounterComp loss on the FinQA dataset, then test it on the other three datasets.
Note that the four datasets are based on different domains. FinQA and TAT-QA are both based
on financial reports, but while FinQA was derived from US filings, TAT-QA is based on interna-
tional filings and therefore covers a wider variety of metrics. HiTab and MULTIHIERTT are both
based on other types of corporate reports with highly complex tabular structures.

The first three columns of Table 3.16 show a slight improvement when CounterComp is used
in this setting. In contrast, using CompAQT loss slightly hurts the performance, demonstrating
CounterComp’s higher OOD generalization potential.

Next, we select a subset of samples from the FinQA dev set that have unseen compositions
compared to the training set. This means that the particular combination of operations were
never seen during training. As the last column of the table shows, CounterComp outperforms the
baseline by more than 7 points. This further demonstrates how improving representation learning
at the component level can enhance generalization to unseen contexts.

3.2.6 Conclusion
In this section, we presented CounterComp, a method that leverages counterfactual contrast to
enable metric learning for quantitative QA. We show how using the auxiliary CounterComp loss
can improve compositional generalization in multi-step reasoning tasks, especially as the number
of steps grows.

Due to runtime challenges, we proposed a hybrid offline/online sampling strategy that uses
pre-defined indices for easier lookup operations. This allows us to capture samples that have a
contrast of one operator with the anchor. In future studies, we hope to capture contrastive samples
with longer perturbation chains. We also hope to examine the effectiveness of counterfactual
compositional contrast in other domains such as semantic parsing and question answering over
multimodal input.

Lastly, we hope to extend the use of CounterComp to enhance the performance of the re-
triever, using the heuristics introduced in Section 3.2.3 (i.e. by focusing on components in the
question that overlap with the facts). This can result in a quantitative QA pipeline that is powered
by compositional contrast in an end-to-end fashion.
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Chapter 4

Grounded structures for multimodal fusion

Let us return to the scenario that we introduced in Section 1.1 about Alice, a knowledge worker
at a financial firm who is tasked with processing authorized signatory forms. As we discussed
in that Section, Alice would like to automate the task of extracting key information and relations
from the forms in a grounded fashion. This would require a model that:

1. Can detect key relations as well as entities.

2. Produces grounded outputs, i.e. outputs that can be located within the input using bounding
boxes or other references.

In this chapter, we introduce two new methodologies that tackle the above challenges by
encouraging grounded spatio-visual reasoning. Table 4.1 places our contributions in the space of
grounding methodologies introduced in Section 2.4.

Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative Graph-based representation [148, 220]

Attention coverage [125]
Supervised alignments [212]
Unsupervised alignments (Section 3.1)
Metric learning (Section 3.2)

Data augmentation
via counterfactuals [94]
Counterfactual
sampling (Section 3.2)

Spatio-visual

Spatial-aware attention [205]
Graph-based representation [31, 87, 88]
Graph-based generation (Section 4.2)
Modality-adaptive attention [95]

Cell recovery [47, 211]
Masked column prediction [211]
MVLM [9, 207]
TIA/TIM [9, 56, 205]
LTR [9, 131]
Cluster membership (Section 4.1)

Probabilistic soft logic [169]
Data augmentation
via perturbations [136]

Table 4.1: An updated view of Table 2.3, where our proposed methods have been added to
corresponding cells, blue. Each highlight has a reference to the section where it is covered.

4.1 Graph-inspired representations for visual information ex-
traction

Layout-aware language models have been used to create multimodal representations for doc-
uments that are in image form, achieving relatively high accuracy in document understanding
tasks. However, the large number of parameters in the resulting models makes building and
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using them prohibitive without access to high-performing processing units with large memory
capacity. We propose an alternative approach named APReCoT that can create efficient repre-
sentations without the need for a neural visual backbone. This leads to an 80% reduction in the
number of parameters compared to the smallest SOTA model, widely expanding applicability. In
addition, our layout embeddings are pretrained on spatial and visual cues alone, and only fused
with text embeddings in downstream tasks, which can facilitate applicability to low-resource or
multi-lingual domains. Despite using 2.5% of training data, we show competitive performance
on two form understanding tasks: semantic labeling and link prediction.

APReCoT, which stands for Alignment, Proximity, REpetition, and COntrast-aware Transformer,
is inspired by the principles of layout design that were introduced in Section 1.2.2. By care-
fully designing multimodal features that represent these principles, APReCoT is able to perform
spatio-visual reasoning with fewer parameters and smaller training data.

4.1.1 Background

Layout-aware language models represent documents as multimodal artifacts, composed of visual
and textual content. By jointly modeling the stylistic, spatial, and semantic cues, they capture
constructs such as hierarchy, correspondence, enumeration, and tabulation. In this section, we
present an approach that combines the expressivity of large multimodal networks with the effi-
ciency of graph networks. This addresses three major challenges that transformer-based models
face:

1. The use of large neural backbones for extracting visual features vastly increases the size
and memory requirements for such models. For LayoutLMv2 for example, a NVIDIA
GTX 1080 GPU with 12 GBs of memory fails to accommodate a batch size of 8. On
single-GPU platforms, this means that fine-tuning the model alone can take prohibitively
long.

2. The visual feature extractor does not free the model of reliance on OCR engines for ex-
tracting text and bounding boxes. This means that the preprocessing step remains slow and
memory intensive.

3. The transformer architecture often uses a variation of Masked Language Modeling (MLM)
[35], which does not make efficient use of layout cues, requiring the model to be pretrained
on very large corpora. A common pretraining dataset is IIT-CDIP [44], composed of sev-
eral million documents. In low-capacity environments, preprocessing a corpus at this scale
can take weeks, further prohibiting the wider research community from adopting and ex-
perimenting with the models.

In contrast, our proposed method achieves competitive performance with a fraction of pa-
rameters, memory requirements, and pretraining data. Instead of a neural visual backbone, we
generate informative layout features using the OCR output alone. APReCoT takes inspiration
from recent graph-based approaches, but instead of an explicit graph representation with a highly
customized design, we extend the spatial-aware attention mechanism [205] to capture contrast
in spacing as well as style. Furthermore, we replace the MLM objective with a metric learning
paradigm that captures concepts such as proximity, alignment, and correspondence. This leads
to competitive performance in two form understanding tasks, namely semantic labeling as well
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Figure 4.1: APReCoT’s architecture during pre-training and fine-tuning.
.

as link prediction.

4.1.2 Methodology
Figure 4.1 illustrates the end-to-end architecture of APReCoT. As the figure shows, we follow
a three-step process. First, input documents are processed using an OCR engine, and relevant
layout features are extracted. Second, the layout features are transformed into layout-aware
embeddings through a self-supervised pretraining step. Finally, the layout-aware embeddings
are combined with text embeddings and fine-tuned on downstream tasks. The remainder of this
section describes each step in detail.

Preprocessing and token representation

We process each document through an OCR engine, which converts each page into a sequence of
tokens t1, t2, ..., tN and corresponding bounding boxes b1, b2, ..., bN . To represent a token ti (with
corresponding bounding box bi), we construct a vector by concatenating the following features:

• Position features: The top and left coordinates of bi, as well as the x and y coordinates of
its centroid.

• Spacing features: The spacing between bi and its immediate neighbors to the left, right,
top, and bottom, as well as the number of neighbors in bi’s line-of-sight to the left, right,
top, and bottom1.

• Size features: The height and width of bi as well as the average character width in bi.

1Line-of-sight is defined according to the formulation provided by [30].
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• Color features: The RGB values of the foreground and background colors of bi, ob-
tained by applying K-Means clustering (K=2) to the distribution of RGB values within
each bounding box2.

All features are concatenated into a vector vi ∈ R21, and normalized over minimum and
maximum values on the page3. This allows us to order the vis by their position using a simple
algorithm: 1) To approximate horizontal lines, we group vis whose bottom coordinates are within
1 percentile of each other. 2) We order the vis first by line number, then by left coordinates. This
results in a sequence of vectors v1,v2, ...,vN representing each page, where v1 corresponds the
top-left token and vN corresponds to the bottom-right token 4.

Layout-aware pretraining

To create rich representations of layout information, we refer back to the design principles of
contrast, proximity, alignment, and repetition, introduced in Section 1.2.2. The below subsec-
tions describe how we capture each principle in APReCoT.

Capturing proximity and contrast As previously mentioned, contrast can manifest itself in
position, size, style, or color. The literature on self-attention has so far mainly focused on captur-
ing positional contrast (i.e. proximity). [35] use additive 1-D positional encodings [184] for text
sequences. Since layouts carry two dimensional information, some studies have extended this
idea to include 2-D encodings [207]. However, additive 2-D encodings do not capture relative
positions very well [161]. A simple yet effective alternative was proposed by [144], who use an
additional bias term to capture relative positions. [205] extend this idea to create a spatial-aware
attention mechanism, where scaled dot-product attention between queries and keys is augmented
by three bias terms– representing relative 1-D position, relative x-axis position, and relative y-
axis position.

We further extend this idea to capture relative information along multiple dimensions, namely
position, spacing, size, and color. This allows the model to focus on contrast along all of these
dimensions instead of position alone. We refer to this approach as Layout-Aware Attention.
Concretely, we modify scaled dot-product attention to follow the below equation:

αij =
1√
dhead

(viW
Q)(vjW

K)⊺ (4.1)

where dhead is the number of attention heads, WQ is the query weight matrix, WK is the
key weight matrix, and αij is the attention weight for vi and vj . We calculate the augmented
attention weight α′

ij as:

α′
ij = αij +

∑
f

bfj−fi (4.2)

2Note that CDIP and FUNSD datasets are composed of grayscale documents, but NAF includes color. However
even for grayscale documents, color distribution can help distinguish different styles.

3Feature values are normalized over each page because all of the datasets used in this study are limited to single-
page examples. The same methodology can be applied at document level.

4The left-to-right-and-top-to-bottom order can be redefined depending on the language of interest. Note that this
method need not be robust against all compositions (e.g. multi-column pages) and is only applied to provide rough
ordering information.

50



where b ∈ RM is a bias vector, and bfj−fi represents the difference in the values of the f th
feature of vi and vj , binned into M groups. Finally, the output is calculated as:

hi =
∑
j

exp(α′
ij)∑

k exp(α
′
ik)

vjW
V (4.3)

where WV is the value weight matrix.
Capturing alignment Horizontal or vertical alignment plays an important role in determin-

ing semantic relationships between text segments. To capture this, we encourage the represen-
tations learned by the encoder to reflect these alignments, using a triplet loss function. For each
hidden representation hi, we sample from the set of tokens that align with it horizontally (hx

i ∈
{hj;v

(x)
j = v

(x)
i }), and the tokens that do not align with it horizontally (hx

i ∈ {hj;v
(x)
j ̸= v

(x)
i }).

We then use a triplet margin loss function to encourage hi to be close to hx
i and far from hx

i :

Lx = 1
N

∑N
i=1 max{||hi − hx

i || − ||hi − hx
i ||+ 1, 0}

Similarly, we calculate a triplet loss along the vertical dimension:

Ly = 1
N

∑N
i=1 max{||hi − hy

i || − ||hi − hy
i ||+ 1, 0}

In practice, instead of enforcing exact equality, we allow the horizontal and vertical alignment
of positive samples to be different from the anchor’s within a margin of [−0.01, 0.01]. For all
other features, we allow a larger margin of noise, i.e. [−0.1, 0.1]. This method, inspired by [145],
allows us to generate positive and negative samples synthetically, alleviating the computational
bottleneck that sampling poses.

Capturing repetition As previously mentioned, document layout often follows a consistent
pattern of styles. This limits the number of shapes, sizes and colors used in each document.
Tokens that have similar style often play a similar function in the document. To capture this, we
apply K-Means clustering to the style and color features of each sample to obtain K clusters.
Each hi will thus be associated with a cluster ci. We then sample other tokens that share the
same cluster and those that don’t, leading to a third loss:

Lc = 1
N

∑N
i=1 max{||hi − hc

i || − ||hi − hc
i ||+ 1, 0}

The total loss is then formulated as:

Ltotal = Lx + Ly + Lc + Lrecon (4.4)

where Lrecon is the reconstruction loss, calculated as the Mean Squared Error between vi and
the final output of the attention layer FFN(AddNorm(hi)). This term functions as a regularizer,
encouraging the layout embeddings to not stray too far from the original feature space.
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Fusion and fine-tuning

The outcomes of the pretraining process are layout-aware embeddings. To add text, we simply
concatenate the layout and text embeddings together, i.e. ei = hi ∥ wi, where hi is the layout
embedding for token ti, wi is its text embedding obtained using a pretrained language model,
and ∥ represents concatenation. The resulting eis can be used for spatial reasoning tasks over
documents. In this study, we explore two such tasks–semantic labeling and link prediction in
forms.

Semantic labeling This task involves token-level classification over four categories: “header”,
“question” (a.k.a field name), “answer” (a.k.a field value), and “other”. We use a minimal
architecture–a single-layer Bidirectional LSTM module followed by a linear projection. We
then use cross entropy loss to train the model for token classification:

Lsl =
1

N

N∑
i=1

CE(Softmax(FFN(BiLSTM(ei))), li) (4.5)

where li is the label corresponding to ei.
Link prediction Links within a form convey correspondence, e.g. field values are linked

to their corresponding field names, and field names to their corresponding headers. The main
challenge of the link prediction task lies in extreme class imbalance, i.e. only a few links exist
within the quadratic space of possible links between any given pair of tokens. We choose to
model this quadratic space using the self-attention mechanism.

Concretely, we use a linear projection to reduce the size of ei vectors to a smaller dimension
P . Next, we use a single self-attention layer as an activation function. This layer produces two
outputs—attention output OA ∈ RN×P and attention weights WA ∈ RN×N where N is the
document length. We apply binary cross entropy loss on WA to determine whether a link should
exist between any given pair of tokens:

Llp =
1

N2/2

N∑
i=1

N∑
j=i+1

BCE(σ(WA
ij),Lij) (4.6)

where Lij is a binary matrix identifying whether tokens ti and tj should have a link. Figure
4.1 illustrates the end to end pipeline. In both tasks, the fine-tuned model has fewer than 3
million parameters. This includes all parameters in the layout-aware pretraining model, plus the
parameters in the task-specific model for semantic labeling or link prediction.

4.1.3 Experiments and results

To demonstrate the effectiveness of our approach, we pretrain APReCoT on a collection of low-
quality image documents, and apply it to two downstream tasks, namely semantic labeling and
link prediction. As previously mentioned, RVL-CDIP [44] is a commonly used dataset for pre-
training layout-aware models. It is composed of 1 million image documents with diverse layouts
and visual quality. To demonstrate the data-efficiency of our approach, we choose a small sub-
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set for pretraining, namely the subset of documents tagged as forms. This amounts to 25,003
samples or about 2.5% of the complete dataset5.

To obtain tokens and bounding boxes, we process the documents using the Tesseract OCR
engine [2]. We use one multi-headed self attention layer with 3 heads and a hidden size of 120.
We set the number of bins for relative biases to M = 11, the number of style clusters to K = 12
and maximum sequence length to N = 512 tokens. To represent text, we use 768-dimensional
BERT embeddings [35]. We pretrain APReCoT with a batch size of 64 for 5 epochs, using the
AdamW optimizer [76] with a learning rate of 1e−2, gradient clipping of 5e−1, weight decay
of 1e−2, β1 = 0.9, and β2 = 0.999. During fine-tuning, without any change to the parameters,
we continue to train the model on the training split of the dataset of interest for an additional 5
epochs before freezing the embeddings6. On one NVIDIA 1080 GPU, the pretraining process
takes roughly two hours.

Datasets

We use two datasets that represent form understanding tasks, namely FUNSD [64] and NAF [30].
FUNSD is composed of 200 noisy scanned forms, split between 150 training and 50 test exam-
ples. NAF includes scanned forms with complicated layouts and overlapping or handwritten text
segments. The dataset offers 682 training, 59 validation, and 63 testing examples. Both datasets
support annotations for token-level semantic labeling as well as link prediction tasks. FUNSD
provides 4 labels for each token, namely “header”, “question”, “answer”, and “other”. NAF in-
cludes 14 classes, with a more granular breakdown of categories of field names and field values
such as checkboxes, number fields, text fields, etc. Both datasets also provide link annotations
that show correspondence between answers (field values) and questions (field names) as well as
correspondence between questions (field names) and headers.

Semantic labeling

We train the BiLSTM-based module for 100 epochs with the same optimizer as pretraining,
a learning rate of 5e−3 and gradient clipping of 5e−1. Table 4.2 shows the F1 performance
on the FUNSD dataset. Despite an 80% reduction in the number of parameters, APReCoT’s
performance is comparable to Word-FUDGE [31], an extension of Visual FUDGE that uses
native bounding boxes. To the best of our knowledge, there is no current benchmark on semantic
labeling on the NAF dataset. We report a F1 score of 59.07 (P=56.80, R=61.54) on the 14-class
labeling task.

Figure 4.2 shows two qualitative examples of semantic labeling results from the FUNSD
dataset. As the Figure illustrates, APReCoT is more effective at acknowledging horizontal align-
ment than vertical alignment. In the top example the word “Date” has been labeled as an answer,
possibly due to its uninterrupted alignment with “Fax”. APReCoT also shows vulnerability to
sequential dependencies that range beyond 2-3 tokens. This indicates that a stronger proximity

5Since FUNSD is a subset of RVL-CDIP, we remove the 50 test examples from the CDIP dataset.
6Note that FUNSD and NAF are much smaller than RVL-CDIP and do not introduce large instabilities during

continuous learning.
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(a) True labels. (b) Model predictions.

Figure 4.2: Semantic labeling example from the FUNSD dataset.Each category has been color-
coded. Yellow: header, blue: question, green: answer, pink: other.

bias such as a segment detection loss introduced during pretraining might improve APReCoT’s
results.

Model P R F1 # Params
BERTBASE** 54.69 67.10 60.26 110M
LayoutLMBASE* 75.97 81.55 78.66 113M
BROS* 80.56 81.88 81.21 138M
LayoutLMv2BASE* 80.29 85.39 82.76 200M
Word-FUDGE* 69.37 75.30 72.21 17M
APReCoT 70.42 71.13 70.77 3M
* Results reported in [31].
** Results reported in [205].

Table 4.2: Semantic labeling results for the FUNSD dataset.

Link prediction

As described in section 4.1.2, we use self-attention to train the model to predict whether a link
exists between a given pair of tokens. We train the model for 100 epochs with a learning rate
of 5e−3. Table 4.3 shows the F1 performance on the FUNSD dataset. APReCoT is able to
outperform LayoutLMBASE, which has 35 times as many parameters and is trained on the IIT-
CDIP dataset [92] with more than 6 million documents. It is outperformed by BROS (with 138M
parameters) and Word-FUDGE, a graph-based method designed for link prediction.

Table 4.4 shows the results on the NAF dataset, which offers a simple version (only links be-
tween field names and values), and full version (all links). APReCoT has lower performance on
NAF compared to FUNSD. This could be due to the data distribution in FUNSD being closer to
the pretraining dataset (RVL-CDIP). Both include grey-scale forms with the majority of bound-
ing boxes in horizontal or vertical alignment. Whereas NAF includes a wider color diversity,
stamped and hand-written content, and polygons with various orientations.
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(a) True links. (b) Model prediction.

Figure 4.3: Link prediction example from the NAF dataset.

Figure 4.3 includes a link prediction example from the NAF dataset. As the figure demon-
strates, APReCoT often fails to recover links across multiple lines. It also shows a preference for
short-distance links, possibly due to this pattern being more common in the pretraining dataset. A
possible way to address these issues is to use a different sampling technique during metric learn-
ing, to allow for larger variance for negative samples and select longer-range peers as positive
samples.

Model P R F1 # Params
LayoutLMBASE* 41.29 44.45 42.81 113M
BROS* 64.30 69.86 66.96 138M
Word-FUDGE* 58.08 67.83 62.58 17M
Ours 52.07 57.32 54.57 3M
* Results reported in [31].

Table 4.3: Link prediction results for the FUNSD dataset.

Model Version P R F1 # Params
Visual FUDGE* Simple 63.60 73.20 68.05 17M
Visual FUDGE* Full 59.92 54.92 57.31 17M
APReCoT Simple 51.15 52.10 51.62 3M
APReCoT Full 46.26 44.67 45.45 3M
* Results reported in [31].

Table 4.4: Link prediction results for the NAF dataset.

4.1.4 Ablation studies

To determine the impact of each component in the system, we perform the following ablation
studies on the FUNSD dataset. The results are listed in order in Table 4.5:

1. Using no layout-aware embeddings, we use 768-dimensional BERTBASE embeddings with
the same architectures that were described in Section 4.1.2—BiLSTM for semantic label-
ing and attention activation for link prediction.
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2. We replace the pre-trained layout token hi with the raw feature vector vi without any
pretraining.

3. We replace the pretraining process with a modified version of MVLM, which we refer to
as Masked Layout Language Modeling (MLLM). In each sample, 20% of vis are replaced
with random feature vectors and the encoder is trained to recover them using MSE loss
between the attention output and the original feature vectors7.

4. We use the full model but disable the alignment loss terms Lx and Ly.

5. We use the full model but disable the repetition loss term Lc.

6. We use the full model but disable the relative bias terms.

7. We apply the full model with no modification.
All configurations are run with the same settings mentioned in Section 4.1.3. The results

are listed in Table 4.5. Predictably, using text embeddings alone underperforms all alternatives.
Adding raw feature vectors alone boosts semantic labeling F1 by 7.6% and link prediction F1 by
78.17%. Notably, the embeddings trained using MLLM underperform compared to raw feature
vectors. This indicates that MLLM may not be a sufficiently instructive objective for learning
about layouts.

Rows 4, 5 display ablation results over metric-learning losses, namely alignment losses Lx

and Ly, and repetition loss Lc. Alignment and repetition losses (particularly the alignment loss)
seem to contribute to the semantic labeling task more than the linking task.

In contrast, as shown on row 6, the removal of relative bias terms has a larger impact on
link detection than on semantic labeling. This is consistent with the intuitive interpretation of
relative bias terms as parameters that capture contrast. AS previously mentioned, contrast is a
key indicator of correspondence (and hence linkage).

Overall, the biggest jump in performance occurs between the third and fourth rows, in other
words between the MLLM configuration and the ablated versions of the full model, indicating
that the expressive features and metric learning paradigm contribute to the model’s performance
on both tasks. In future studies we hope to enhance the expressivity of layout tokens by adopting
more sophisticated metric learning methods.

4.1.5 Conclusion
In this section, we presented an approach to modeling layout that encodes essential aspects of
layout design. The efficiency of the representations renders them useful in cases where compu-
tational resources are scarce. On the semantic labeling task, APReCoT performed comparably
to graph-based SOTA models. We also showed competitive performance on the challenging link
prediction task and exceeded the performance of LayoutLM with 35x more parameters.

The assumptions about the layout of a document are often not independent from its domain
and language. Assumptions such as left-to-right or top-to-bottom order, the orientation of text
segments, and the relative size and placement of components can limit the application of layout-

7Since feature vectors are not bounded by a dictionary, reconstruction loss cannot be applied as classification
loss. We tested two alternatives: 1) creating a pseudo-dictionary based on feature vectors observed during training
and using cross entropy loss, or 2) using a cosine embedding loss. Both underperformed compared to MSE loss.
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Model
Semantic
labeling

Link
prediction

P R F1 P R F1
Text only 57.68 61.43 59.50 20.11 20.87 20.48
Feature vectors 63.74 64.26 64.00 36.00 36.99 36.49
MLLM 61.49 61.46 61.47 30.37 35.44 32.71
No alignment loss 67.24 67.97 67.60 51.95 57.16 54.43
No repetition loss 69.05 69.06 69.05 51.96 57.28 54.49
No relative bias 69.85 69.64 69.74 51.58 56.51 53.93
Full model 70.42 71.13 70.77 52.07 57.32 54.57
All results reflect best performance over 100 runs.

Table 4.5: Ablation results for various pre-training settings. From top to bottom row: 1) Using
BERT embeddings alone. 2) Adding raw layout features. 3) Training layout embeddings using
MLLM. 4) Alignment loss disabled. 5) Repetition loss disabled. 6) Relative biases disabled. 7)
The full model. The results are reported for the FUNSD dataset.

aware models to non-English documents. We hope that wider research in this area can expand
the applicability and generalizability of layout-aware models.

4.2 Grounded layout generation for multimodal form under-
standing

(a) Original doc (b) KNN (c) LOS

(d) Axis-aligned LOS (e) β-skeleton (f) AligNet

Figure 4.4: Different graph representations for a given form.

As previously discussed, the two common tasks in form understanding include Key Infor-
mation Extraction (KIE) and Relation Extraction (RE), both of which rely on identifying field
names and field values, understanding tabular structures, and distinguishing between headings,
main content, and other components, all of which require joint reasoning over the spatial and
textual signal on each page.

With a few exceptions, most SotA researches focus on the task of KIE, disregarding RE,
whereas in most applications KIE and RE need to be paired in order to identify semantically valid
key-value pairs from forms. Without RE, key structural information about the document will not
be captured [110, 222], and open-ended key-value extraction will be difficult [110]. Despite
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Figure 4.5: Pre-training and fine-tuning steps in our proposed approach. (a) During pre-training,
a form is fed into the model as a set of tokens and bounding boxes. (b) The form is represented
as an AligNet graph. (c) The serializer orders the nodes and each node is represented using its
text embedding. (d) At step t = 2, the graph convolution produces representations h0 · · ·h3,
where any edges adjacent to nodes x2 and x3 has been dropped, hence masking their spatial in-
formation. (e) The next node predictor uses a pointer mechanism to correctly predict the next
node representation to be h2. (f) The model predicts the adjacency vector between x2 and the
previous nodes as a binary vector. (g) The model predicts a segmentation flag for x2. (h) Dur-
ing fine-tuning, AliGATr generates graph representations for each node. (i) Using the model’s
segmentation flags, the graph is split into segments, and an RNN is used to create sequence rep-
resentations for each segment. (j) For the KIE task, a classification head predicts a class for each
segment. (k) For the RE task, a link prediction head predicts the edges between segments.

this, RE remains underexplored in the form understanding literature [50, 99, 110], posing major
challenges to downstream applications.

Furthermore, most models require extensive pre-training data and infrastructure to perform at
the SotA level. As an example, the most popular pre-training dataset is the IIT-CDIP dataset [91],
composed of 11 million images. Lastly, the trade-off between grounding (i.e. providing bounding
boxes for each output token such that it can be traced back to the input) and calibration (i.e.
producing distributionally robust probabilities) is difficult to balance. Small, efficient, robust,
and well-calibrated models remain difficult to obtain for users with limited access to large-scale
pre-training data or compute.

In this Section, we introduce AliGATr, a new form understanding model that addresses the
above challenges by combining a graph-based representation and a layout-generation objective.
By focusing on the generation of layout (as opposed to the joint generation of text and layout),
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our approach leads to a model that is more compact and converges using a smaller pre-training
dataset. Our proposed graph representation, which we name AligNet, enables the model to
cover both KIE and RE tasks, leading to SotA performance on the former and exceeding SotA
performance on the latter. Even though AliGATr has a generative objective, it samples its output
from input tokens, leading to logits that are well-grounded and well-calibrated.

Concretely, our study offers the following contributions to the literature on visually rich form
understanding (VrFU):

• We propose AligNet, a graph representation technique for form documents, inspired by
the four principles of layout design [75]. AligNet uses soft alignments between tokens to
capture short- and long-range spatial dependencies. Its alignment-based structure (com-
pared to the proximity-based structures often used in SotA models) allows it to propagate
information more effectively.

• We introduce AliGATr, a GNN-based method inspired by GraphRNN [214], which uses a
generative objective to learn layout-aware node representations. The generative objective
combines next-node selection with adjacency prediction, allowing the model to recreate
the layout of a page token by token. To the best of our knowledge, AliGATr is the first
graph-based model to use a generative objective for form understanding.

• With 30% fewer parameters compared to the smallest SotA baseline, and using a small
pre-training dataset of 1 million documents, AliGATr performs competitively on the KIE
and RE tasks. Furthermore, we show that our model produces better-calibrated output
distributions compared to baselines and is not over-confident.

4.2.1 Background

Research in visually rich document understanding has explored models in two architectural
paradigms, namely transformer-based models and graph-based models.

Transformer-based models

Transformer-based models such as BROS [50], Docformer [9], and the LayoutLM series [56,
206, 207] are often inspired by encoder-only architectures and use an adaptation of Masked
Language Modeling (MLM ) [36] such as Masked Visual Language Modeling [99, 206, 207],
Masked Sequence Modeling [42], learning to reconstruct [9], word-patch alignment [56], and
vision-language alignment [42]. A drawback of encoder-based models is that their output proba-
bilities aren’t well calibrated [82]. This means that the output probabilities of these models don’t
reflect their performance, as the models can be arbitrarily over- or under-confident [67].

In recent years, the adaptation of autoregressive language models to the task of document
understanding has produced models that favor a decoder-based architecture and follow genera-
tive objectives such as next word prediction [171] or block infilling [189]. While often better
calibrated, these models sample their output from the vocabulary (as opposed to the input) and
are therefore not guaranteed to produce outputs that can be grounded within the input. This is
important for information extraction tasks, where the output should be traceable back to the input
(see Section 1.1).
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Another challenge of transformer-based models is their performance on associative tasks.
Proper understanding of a form relies on two tasks–the extractive task of KIE, and the associa-
tive task of RE. Transformer-based models have consistently underperformed on RE compared
to graph-based models such as VisualFudge [31], or hybrid graph-transformer models such as
GeoLayoutLM [110] and RE2 [147].

Graph-based models

Through their topology, graphs provide a natural way to encode the grid structure of form docu-
ments and allow more control over how information propagates across the nodes.

The graph representation in SotA studies captures each token on the page as a node, and the
adjacency structure often follows one of the below paradigms [192]:

In KNN graphs, each node is connected to its K closest neighbors on the page (see Figure
4.4b). Due to the dependency on the parameter K, it is difficult to guarantee optimal density (or
optimal sparsity) throughout the graph.

Line of Sight (LOS) graphs connect each node to other nodes within its “line of sight” (see
Figure 4.4c). This guarantees that nodes that are adjacent on the page are connected, but LOS
graphs can still introduce edges that don’t carry meaningful information., e.g. the connection
between “SUPPLIER” and “Pugh” in Figure 4.4c.

The β-skeleton graph can be thought of as a “ball-of-sight” approach [192] that removes
some of the edges from LOS by favoring proximity (see Figure 4.4e). This approach has been
adopted in line and paragraph-detection models [106, 192] as well as form extraction models
[87, 89].

As can be seen in Figure 4.4e, even though the β-skeleton graph captures more meaningful
relationships compared to KNN and LOS graphs, it can still produce unhelpful edges, e.g. the
edge between “PERSONNEL” and “Market”. This is because, like KNN and LOS, β-skeleton
graphs favor proximity over alignment, whereas alignment is not only one of the core principles
of layout design, but is crucial to maintaining the grid structure in forms [75]. An alternative to
LOS, namely Axis-aligned LOS (Figure 4.4d) has been proposed to capture alignments, but as
Davis et al. [31] argued, it is not effective for form understanding tasks due to its over-sparsity.

As shown by studies such as Liu et al. [106], the β-skeleton graph can be enhanced by
the addition of redundant (or “multi-hop”) edges. We adapt this idea to the Axis-aligned LOS
structure, and propose a new graph structure which we name AligNet (see Figure 4.4f).

AligNet captures short- and long-range dependencies by adding multi-hop edges to the Axis-
aligned LOS structure, which helps the graph honor alignment as well as proximity in modeling
the layout of a page. We demonstrate AligNet’s ability to capture the global structure of each
page using a community detection method. Additionally, when equipped with a graph convo-
lution network, the AligNet structure can route messages between nodes that are meaningfully
associated, such as field names and field values. Our proposed graph learning approach, AliGATr,
couples the AligNet representation with a layout generation objective, which leads to compet-
itive performance on VrFU tasks, including key information extraction and relation extraction.
To balance the calibration and grounding tradeoff, AliGATr uses a generative architecture, but
uses a Pointer mechanism [158] to strictly produce output tokens that are extracted from the in-
put. Furthermore, because of its generative objective, AliGATr’s logits are better calibrated than
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encoder-based models.
In summary, AliGATr addresses the previously mentioned shortcomings of SotA approaches

using the below solutions: 1) Lack of attention to alignments is resolved using an alignment-
based structure (i.e. AligNet). 2) Over-sparsity of alignment-based structures is addressed by
the introduction of redundant edges in AligNet. 3) Poor calibration is addressed by following a
generative objective. 4) Poor grounding is addressed by using a Pointer mechanism.

The following sections present our methodology and experimental results.

4.2.2 Methodology
In this section, we describe our proposed graph representation for documents (AligNet), as well
as our proposed model architecture (AliGATr). Figure 4.5 shows the overall flow of pre-training
and fine-tuning steps.

AligNet

We model each document as an undirected graph G = (V,E), where each node xi represents a to-
ken on the page, and two nodes xi and xj are adjacent if their bounding boxes are horizontally or
vertically aligned8. We define alignment between xi and xj as ∃c ∈ {left, center, right, top,middle, bottom} :
|bci−bcj| < D, where bci represents the coordinates of the bounding box of xi, andD is a threshold
that is expressed as a percentage of page width/height and can be tuned as a hyperparameter9.
Figure 4.5(a) shows a small snippet of a form. In 4.5(b), the form has been converted into an
AligNet graph (see Figure B.4b for a more substantive example).

We represent each node xi by it embedding vector xi that is generated by a language model
such as RoBERTa [107].

An edge between xi and xj is represented by the below attribute vector:

ei,j = [−|blefti − bleftj |,−|b
right
i − brightj |,−|btopi − btopj |,−|bbottomi − bbottomj |,

bheighti − bheightj ,
bwidth
i

numchars(xi)
− bwidth

j

numchars(xj)
]

Note that the first four elements show the negative absolute distance (i.e. proximity) between the
four coordinates of the bounding boxes10. The fifth element shows the difference in the heights
of the two bounding boxes, and the last element shows the difference in their average width per
character. In order to avoid the need to resample all images to be of the same size, we normalize
all coordinates based on the width and height of each page.

8Any methodology that relies on alignment-based signal, such as the AligNet structure, is at risk of failing to
recognize noisy alignments, e.g. on skewed or tilted pages. We rely on the accuracy of OCR software to recognize
the angle at which the document is presented, which may not always be reliable. However, as with segment/line
detection, the rotation detection capability of modern OCR software has substantially improved.

9Alternatively, alignments can be found using more sophisticated clustering-based or convolutional methods, but
based on our experiments, the simple threshold-based approach yields comparable performance.

10Using the negative distance is a naive but effective way to represent proximity. Our experiments demonstrated
that other methods such as using the reciprocal or log-order of distance were not as effective. See Appendix B.5 for
more details.
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In addition to edge attributes, we also assign a label to each edge, which reflects one of the 6
possible types of alignment between the adjacent nodes, namely: left, center, right, top, middle,
or bottom-aligned. The label also reflects whether the source node is located “before” the target
node in the reading order, i.e. whether the source node is to the left or top of the target node. This
yield 12 possible classes. In Figure 4.5(b), the edge between “Market” and “Facts” represents
two directed edges: a bottom-before edge from “Market” to “Facts”, and a bottom-after
edge from “Facts” to “Market”. This means that “Market” and “Facts” are bottom-aligned and
“Market” comes before “Facts”.

AliGATr

The AliGATr architecture is composed of three modules, inspired by Lee et al. [89]: a serializer,
a GCN, and a decoder. During pre-training, the serializer arranges the nodes into a sequence,
and the GCN generates node embeddings using generative objectives. During fine-tuning, the
decoder predicts node labels (KIE) or links (RE).

Serialization The serializer uses a simple heuristic to order the tokens in a sequence. Using
the top-left coordinates of each bounding box, the serializer orders the tokens in a left-to-right
and top-to-bottom sequence. For English-language documents, this is meant to mimic reading
order, even though it is a noisy approximation.11 Figure 4.5(c) illustrates the serialized graph
for the example in 4.5(b). This serialized sequence is used to traverse the AligNet graph during
pre-training, as described in the next section.

Generative pre-training After the serializer determines the ordering of nodes, the AligNet
graph is fed into a GCN. We use a Relational Graph Attention Network (RGAT) [17] as the
GCN backbone. The model follows an auto-regressive layout-generation objective coupled with
a segmentation objective. We describe these objectives below.

Layout generation objectives: First, we add a dummy start node x0 to the graph that is not
connected to any other nodes. This node functions as the <start> token for our generative task.
At each timestamp t, the model masks the bounding box coordinates of nodes xt, xt+1, · · · , xT

as well as any edges adjacent to them. The model then generates representations for nodes
x0, x1, · · · , xT , namely, h0,h1 · · · ,hT ∈ Rd where d is the hidden dimension. Figure 4.5(d)
shows the node representations at t = 2 for the example graph. Nodes with dashed borders
have their bounding boxes masked and edges removed. Using these representations, the model
optimizes two objectives: 1) Given h0:t−1, the model “picks” the next node ht from the set
of remaining nodes ht:T , where the ordering is determined by the serializer, and all positional
information (i.e. bounding box coordinates) are masked for ht:T . 2) Given the predicted next
node ht̂, the model predicts the edges between ht̂ and the subgraph composed of h0:t−1. This
is akin to presenting the tokens in a random order to the model, and encouraging the model to
put the layout back together token by token, placing each new token in its proper position with
regards to previous tokens on the page. Since the model has access to the token identities, it

11There are many cases where this heuristic won’t work, e.g. on multi-column pages. However, using a noisy
heuristic yields a more robust model, as it prevents the model from leveraging exact reading order information [217].
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is not performing text generation, but layout generation. This allows the model to learn layout-
aware representations without having to fulfill the text generation objective, which is a data- and
parameter-intensive task. Below, we describe the model’s two objectives:

First, given the node embeddings h0 · · ·ht−1, we use a pointer mechanism [158] to select the
next node from the set of remaining nodes. The pointer is implemented as scaled dot-product
attention between the sequence embedding h0:t−1 and the remaining embeddings ht:T . The node
whose embedding has the highest attention score is predicted as the next node:

h(0:t−1) = W (1)h⊤
0:t−1, h

(t:T ) = W (2)h⊤
t:T

αt̂ = softmax(
(
∑t−1

k=0 h
(0:t−1)
k )h(t:T )

√
d

)

j = argmax
i
{αt̂,i; i ∈ {0, 1, · · · , T − t− 1}}

ht̂ = hj+t+1

where W (1) and W (2) ∈ Rd×d are weight matrices, αt̂ are the attention weights, j + t + 1 is the
index of the node with the highest attention weight, and ht̂ is the representation of that node. In
Figure 4.5(e), the next node is correctly picked as h2.

To calculate the next node prediction loss, we follow See et al. [158] and use Negative Log
Likelihood as pointer loss: LNODE

t = − logαt

log (T−t)
, where αt is the attention weight of the correct next

node xt, and the 1/ log (T − t) factor is used to lower the penalty for cases when the selection of
the next node has a higher degree of freedom and is therefore a more difficult task.

Once the next node ht̂ is determined, the model predicts its adjacencies to the subgraph
composed of previous nodes. Inspired by You et al. [214] we model this task as predicting the
adjacency vector at̂, which is a binary vector of size t where at̂,k = 1 if xk and xt̂ are adjacent,
and at̂,k = 0 otherwise. The model predicts at̂ based on the attention between h0:t−1 and ht̂.
The adjacency loss is calculated using the binary cross entropy between the predicted adjacency
vector at̂ and the true vector at:

h′(0:t−1)
= W (3)h⊤

0:t−1, at̂ =
h⊤
t̂
h′(0:t−1)

√
d

LADJ
t = BCE(at̂, at)

where W (3) ∈ Rd×d is a weight matrix. In Figure 4.5(f), the adjacency vector of x2 is predicted
as [0, 1] indicating that no edge exists between x0 and x2, but an edge exists between x1 and x2.
Note that this adjacency vector only determines the existence of an edge, without sensitivity to
directionality. Directionality is only reflected in the attributes and labels of the unmasked edges.

Segmentation objective: In addition to the node and adjacency prediction objectives, the
model predicts the boundaries of various segments on the page. This is to encourage the model
to find groupings of tokens that correspond to an entity. Most OCR engines provide segment
boundaries based on the spacing between the tokens on the page. The model uses this information
to predict whether a given token marks the beginning of a new segment12. The loss is modeled
as a simple binary cross entropy: LSEG

t = −(st log st̂ + (1− st) log(1− st̂)),
12Studies such as Huang et al. [56] and Luo et al. [110] also use segment-level information. Note that AliGATr

only uses segment-level information at training time and does not expect this information during inference.
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where st̂ = w(4)h⊤
t̂

is the predicted binary segmentation flag for xt̂, st is the true flag, and
w(4) ∈ R1×d is a weight vector. Figure 4.5(g) shows that the segmentation flag for x2 has been
predicted as 1, indicating that it signals the start of a new segment.

The total pretraining loss at step t is calculated as the sum of node prediction, adjacency
prediction, and segment boundary prediction losses: Lt = LNODE

t + LADJ
t + LSEG

t .
AliGATr uses these objectives to learn layout-aware representations for each node xt.

Fine-tuning At fine-tuning time, we use the segmentation flags learned by the model to identify
the boundaries of each entity. This reduces the complexity of the downstream KIE and RE tasks
since they both rely on entity-grouping to produce accurate output. Figures 4.5 (h) and (i) show
the pre-segmentation and post-segmentation stages of the example graph, respectively.

We implement two fine-tuning heads, each corresponding to one of the two target tasks, i.e.
KIE and RE. KIE from forms can be modeled as a node classification problem, and RE can be
modeled as a link prediction problem.

The KIE node classification head uses the ordering created by the serializer to generate a
sequence representation using an RNN [49] (Figure 4.5(i)). The sequence can then be used to
predict I-O-B tags for each token. Finally, the KIE classification loss, LCLF, can be calculated as
cross entropy loss between the predicted and true classes. The introduction of the RNN is im-
portant as it models the sequentiality of the input more effectively than the graph. However, if its
representations deviate too much from the those created by the graph, they can “unlearn” certain
semantic information. Inspired by Yao et al. [208], we introduce an auxiliary co-distillation loss
that keeps the RNN representations (hRNN) and the graph representations (hGNN) close to each
other:

LCoD =
1

N

N∑
i=1

CL(hGNN
i , h̃RNN

i ) + CL(hRNN
i , h̃GNN

i )

LKIE = LCLF + LKIE + LSEC

where CL stands for the contrastive loss described in Tian et al. [174] and .̃ is the stop-gradient
operator, which freezes the corresponding representation. The model continues to learn segmen-
tation during fine-tuning via the segmentation loss LSEG. Figure 4.5(j) shows the final output of
the KIE classification head.

The RE link prediction head does not require serialization, as it simply uses the dot product
of two node representations hGNN

i and hGNN
j to predict whether an edge exists between them. The

RE loss, LRE is calculated based on the binary cross entropy between predicted and true edges.
Figure 4.5 (k) shows the output of the RE head. Note that the RE head would be able to identify
relations between nodes and segments, even if they are not aligned. The alignment edges are
only used during pre-training to create layout-aware node representations. See Figure B.2 for a
examples of unaligned RE results.

4.2.3 Experiments
In this section we describe the datasets and baselines used in our experiments. Other experimen-
tal settings are described in Appendix B.1.
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Dataset # Train # Test Tasks # Classes
FUNSD [63] 149 50 KIE, RE 4
SROIE [57] 626 347 KIE 4
CORD [128] 800 100 KIE, RE 30
BuDDIE [233] 1,172 332 KIE 69

Table 4.6: Statistics about four datasets that cover KIE and RE tasks. Note that we only list the
tasks that are used in our experiments. “# Classes” indicates the number of entity classes used in
the KIE task.

Datasets

We use four multimodal form understanding datasets that cover KIE and RE tasks. CORD
and SROIE are collections of retail receipts. FUNSD includes research and advertising forms
sampled from the RVL-CDIP dataset [45], and BuDDIE is a collection of business entity filings
collected from various US states. Table 4.6 shows high-level statistics about each dataset.

Baselines

We use four SotA baselines in multimodal form understanding. LayoutLMv3 [56] is a transformer-
based model that uses vision, spatial, and text signal to model multimodal documents. By aban-
doning a complex Region-Proposal Network in favor of a simple patch-based vision encoder,
LayoutLMv3 reduces the number of parameters compared to LayoutLMv2 [206], while achiev-
ing superior performance on the KIE task13. GraphLayoutLM [96] enhances LayoutLMv3
with a graph component that maps the relative positioning of various nodes with regards to
each other, improving performance on KIE. GeoLayoutLM [110] adds geometric constraints
to LayoutLMv3 and demonstrates SotA performance on both the KIE and RE tasks. Lastly,
FormNetv214 [89] uses a β-skeleton graph and a Graph Convolution Network to model visually
rich forms. In contrast to previous models, FormNetv2 does not rely on segment-level bounding
boxes, and relies entirely on token-level presentations. The model outperforms LayoutLMv3 on
KIE despite a 44% reduction in model size.

4.2.4 Results and discussion
Performance on KIE and RE tasks

Table 4.7 shows the performance of AliGATr and four baselines on the multimodal form datasets.
As mentioned in Section 4.2.3 three of the four baseline models rely on segment-level bounding
boxes, while FormNetv2 and AliGATr do not rely on segment-level bounding boxes during in-
ference, and only use token-level bounding boxes. To make the comparisons consistent across
all models, we have reported the performances using token as well as segment bounding boxes

13We do not cover the performance on tasks that are out of scope for AliGATr, such as document classification
and visual question answering

14Note that we do not include Multimodal LLMs such as UReader [209] or DocLLM [189] because they have
not yet achieved SotA performance on form processing tasks. OCR-free models such as UDOP [171] and mPLUG-
DocOwl1.5 [52] are excluded for the same reason.
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Model Modalities # Params Pre-training
dataset size FUNSD CORD SROIE BuDDIE15

LayoutLMv3LARGE T+L+I 357M 11M 82.53/92.08 95.92/97.46 94.96/98.63 83.42
GraphLayoutLMLARGE16 T+L+I 372M 11M -/94.39 -/97.75 -/- -
GeoLayoutLM T+L+I 399M 11M 84.40/92.86 96.57/97.71 95.04/98.70 84.86
FormNetv217 T+L+I 204M 11M 86.35/92.51 97.37/97.70 98.31/- -
AliGATr T+L 145M 1M 86.31/92.95 97.48/97.83 98.57/98.78 81.85

Table 4.7: Performance on the KIE task. “T”, “L”, and “I” stand for text, layout, and image.
The performance is reported as token/segment, where segment indicates performance when
segment-level bounding boxes are available at test time, and token indicates performance when
only token-level bounding boxes are available.

(see caption for more detail). Despite a 30% reduction in size compared to the smallest baseline
(FormNetv2), AliGATr performs on par with or better than the SotA models on the KIE task. The
model falls short of SotA on BuDDIE, which has the largest number of classes and is composed
of denser documents (business entity filings).

Table 4.8 shows the performance of AliGATr and two other baselines on the RE task. Once
again, AliGATr matches or outperforms SotA models despite having 60% fewer parameters than
the smaller baseline (LayoutLMv3LARGE).

Model Modalities # Params FUNSD CORD
LayoutLMv3LARGE T+L+I 357M 80.35 99.64
GeoLayoutLM T+L+I 399M 89.45 100.00
AliGATr T+L 145M 89.50 100.00

Table 4.8: Performance on the RE task. The numbers reported for the CORD dataset correspond
to the “REaKV” task mentioned in Luo et al. [110].

Calibration

There are two aspects of calibration that facilitate straight-through-processing of documents in
downstream applications. The first is the confidence of the model with regards to the output.
Under-confidence and over-confidence are both problematic as they do not reflect the model’s
true performance. The second, and arguably more important aspect is the consistency of the
confidence gap. If a model is consistently over or under-confident, it is much easier to set a fixed
threshold beyond which the model’s outputs can be trusted.

Figure 4.6 shows the confidence versus performance plot for LayoutLMv3LARGE, GeoLay-
outLM, and AliGATr, when finetuned on the FUNSD dataset. As the Figure shows, AliGATr’s
output probabilities are better calibrated, and do not exhibit the over-confident trend that is ob-
served in the baselines. As indicated by the lower ECE, AliGATr is also more consistent in its
confidence gap, and a confidence threshold of 0.8 and above yields near perfect performance.

15The BuDDIE dataset does not provide segment level bboxes. Therefore only token-level results are reported.
16Some experimental results are missing for GraphLayoutLM because the authors were not able to recreate the

baselines reported by Li et al. [96], and are therefore only reporting the numbers disclosed in the original paper.
17FormNetv2 is not Open Source. Therefore only the results reported in Lee et al. [89] are included.
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(a) LayoutLMv3 (b) GeoLayoutLM (c) AliGATr

Figure 4.6: Calibration plots and ECE measures for AliGATr versus two baselines. All models
have been finetuned for the KIE task on the FUNSD dataset.

4.2.5 Ablation and sensitivity studies
In this section, we investigate how three components of our proposed pipeline contribute to
downstream performance. Due to infrastructure limitations, all of the studies reported here are
based on a toy pre-training dataset of 30K examples sampled from OCR-IDL [13]. The gains/-
drops in performance are statistically significant at p < 0.005, based on the paired-bootstrap test
proposed by Berg-Kirkpatrick et al. [12], with b = 102. Therefore we expect the trends to hold
for larger pre-training datasets.

Approach KIE RE
Graph
Structure

β-Skeleton 50.89 64.52
AligNet 51.30 73.12

Serialization

No node prediction 50.44 70.01
No edge labels 49.29 68.43
Order-invariant labels 51.03 71.26
Order-sensitive labels 51.30 73.12

Full Gen. N = 1 51.30 73.12

Skip Gen.
N = 5 50.94 65.14
N = 10 50.39 64.97
N = 20 50.50 64.09

Chunk Gen.
M = 20 51.28 73.07
M = 50 51.31 72.98
M = 100 51.29 73.01

Table 4.9: The impact of graph representation, edge representation, and generation methods on
the KIE and RE tasks (F1 performance on the FUNSD dataset).

Graph structure

As mentioned in Section 4.2.1, β-skeleton graphs are a common choice in graph-based models.
The top segment of Table 4.9 shows the performance of the β-skeleton graph against the AligNet
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structure. The β-skeleton graph slightly underperforms AligNet on the KIE task, but has an
even larger gap on the RE task. The latter is expected, as alignments often play a major role
in indicating semantic correspondence between field names and values. This demonstrates the
effectiveness of the AligNet structure in modeling form understanding tasks. For further analysis
on this topic, see Appendix B.3.

Serialization

As discussed in Section 4.2.2, the serializer orders the nodes in left-to-right and top-to-bottom
fashion. This has an impact on two components of AliGATr, namely the next node predictor
(which is designed to predict the next node in the sequence according to the serializer’s ordering),
and the edge labels (which are determined based on the relative position of two nodes on the
page).

The second segment of Table 4.9 shows the impact of ablating these components. Without
node prediction, both KIE and RE tasks suffer. Removing edge labels has an even bigger impact
on performance, even though order-invariant labels recover some of the performance. The best
performance belongs to a model that has order-sensitive edge labels (i.e. 12 classes, as described
in Section 4.2.2), which is therefore the model used in our final experiments. For a deeper
analysis on how edge representations can impact downstream performance, see Appendix B.5.

Generation regime

Lastly, we analyze the impact of the generation regime on downstream performance. In the
default auto-regressive setting, every token is generated one by one. This can be costly if the
number of tokens on a page is large. SotA models such as LayoutLMv3LARGE cap the sequence
length at 512 tokens which poses a risk for text-heavy pages. Furthermore during pre-training
the model might not be exposed to sections that usually appear at the bottom of the page, e.g.
footers or page numbers. Instead of truncating the input during pre-training, we experiment with
two alternatives. In Skip Generation, the model generates every N tokens. In Chunk Gener-
ation, the model generates a randomly sampled subsequence of length M from each page. The
last segment of Table 4.9 shows the model’s performance in these settings. In the default setting
(titled “Full Gen.”), the model has the highest performance on RE and close to highest perfor-
mance on KIE. The performance suffers when switching to Skip Generation, especially for RE.
This may be attributed to the disjointedness of generations, because skipping over N − 1 tokens
can obscure the relationship between neighboring tokens. This problem is largely addressed by
Chunk Generation, as is evident from the model’s performance, even when M is small. Given the
competitive performance of Chunk Generation with M = 20, we selected this setting to perform
pre-training. A possible risk of Chunk Generation is that the robustness of output probabilities
might be undermined, but, as presented in Section 4.2.4, the model has better calibrated output
than baselines. The effectiveness of Chunk Generation further demonstrates the robustness and
efficiency of AliGATr’s learning objectives.
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4.2.6 Conclusion
In this Section, we presented AliGATr, a layout generation technique for form understanding that
is competitive with SotA on Key Information Extraction and Relation Extraction tasks, using
30% fewer parameters and 11x fewer training examples. We showed how, despite using the
spatial and textual modalities alone, and relying on subsequence generation, the model produces
better-calibrated probabilities. In future studies, we hope to investigate AliGATr’s effectiveness
in other adjacent tasks that lend themselves to graph-based representations, such as document
classification, page segmentation, and structure extraction.
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Chapter 5

Grounded evaluation

Visual Question Answering (VQA) over multimodal documents requires joint reasoning over
textual, spatial, and visual signals. Several benchmarks have been proposed to measure the
performance of SotA models on this task, including single-page and multi-page VQA [113, 114,
175, 176, 179]. In these benchmarks, the ground truth answer is expressed as a sequence of
tokens, and evaluated against the sequence of tokens produced by each model. As such, the
evaluation metrics that these benchmarks employ are focused on the surface similarity between
the model output and the ground truth answer. This misses two key aspects of the model’s
output: 1) Is it aligned with the expected semantic category? For example, if the ground truth
is a number, is the model also producing a number (or a related expression)? 2) Can it be
located within the input document? In other words, is the model hallucinating a response, or is
it generating something based on the document (even if it’s wrong)? Grounded responses help
determine the provenance of the model’s output and verify its accuracy.

(a) Tabular snippet. (b) Text snippet.

Figure 5.1: Two excerpts from an image document from the DocVQA dataset [113].

Figure 5.1 and Table 5.1 illustrate this using an example from the DocVQA benchmark [113],
which uses Normalized Levenshtein Distance [86] as its evaluation metric. Given the two ex-
cerpts from an image document in Figure 5.1, two questions are listed in Table 5.1. The first
question, “How many mgs of iron is in enriched farina?”, requires the model to reason over a
tabular structure. If the model produces “26” as the answer, it will be rewarded by a score of
0.5 because “26” shares one digit with the ground truth answer, “12”. In contrast, if the model
produces “8.5” as the answer, it will not be rewarded, as there is no overlap with the ground
truth. This is potentially problematic, as the first answer is not mentioned anywhere on the page,
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Table 5.1: Two example questions based on the snippets in Figure 5.1. The “NLS” column
shows the score awarded to hypothetical answers for each question using the NLS metric [113].
In “Ours”, we show how our proposed score is calculated.

Question Context GT
Answer

Predicted
Answer NLS

SMuDGE (Ours)
Match
Score

Grounding
Score Composite

Score
(α = 0.25)Text

Score
Num
Score Agg. Horizontal

Distance
Vertical
Distance Agg.

How many mgs of
iron is in enriched farina?

Figure 5.1a 12
26 0.5 - 0.0 0.0 - - 0.0 0.0
8.5 0.0 - 0.0 0.0 ∼ 0.0 0.2 0.02 0.01

How much added iron
do premodified infant
formulas contain?

Figure 5.1b
up to 12
milligrams

up to
12 mgs 0.58 0.59 1.0 0.74 0.0 0.0 1.0 0.93

up to 1z
milligrams 0.95 0.94 0.0 0.0 0.0 0.0 1.0 0.75

and can therefore be considered hallucinatory. The second answer, while inaccurate, captures
a number that is present on the table in Figure 5.1a, and is located on the same column as the
ground truth, potentially signifying some level of tabular reasoning by the model. A more robust
evaluation metric would provide a small reward to the second answer, and give the first answer a
score of 0.0.

Another question, “How much added iron do premodified infant formulas contain?”, requires
verbal reasoning over the paragraph in Figure 5.1b. If a model responds by “up to 12 mgs”, it
is penalized for the surface dissimilarity to the ground truth answer, “up to 12 milligrams”.
In contrast, if the model produces “up to 1z milligrams”, it is awarded a higher score since its
answer has a larger overlap with the ground truth. Again, this is problematic as the second answer
misrecognizes a key component of the ground truth (i.e. the number), and as such indicates a
completely inaccurate quantity. A more robust evaluation metric should reward a higher score to
the first answer than the second.

In this Chapter, we propose a new evaluation methodology, which we name SEmantics and
Document Grounded Evaluation (SMuDGE). SMuDGE addresses the above issues by grounding
the similarity score in the expected output type(i.e. numeric, textual, or hybrid). We also add a
new component—a multimodal grounding score that determines whether the model’s output is
located within the input document, and where it is located in relation to the ground truth. While
grounding is a major requirement (and challenge) for the operationalization of Document VQA
models [124], it is difficult to determine how much grounding might matter to one downstream
application versus another. Therefore, we design our evaluation approach to accommodate dif-
ferent settings by allowing users to set preferred weights for each component.

Concretely, our study makes the following contributions to the field:
1. We propose a new evaluation framework (SMuDGE) that accounts for the groundedness

of outputs.

2. Using SMuDGE, we re-evaluate the performance of SotA models on four common Doc-
ument VQA benchmarks, and analyze the impact of grounding on the ranking of each
leaderboard.

3. We perform a detailed analysis of the types of questions and answers most impacted by
grounding-sensitive criteria, and propose a configurable setting that allows the downstream
users of each model to tune the evaluation to their needs.
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4. Our analyses show that SMuDGE produces scores better aligned with human preferences.

5. We experimentally demonstrate that better-grounded generation is associated with better
calibrated outputs.

6. Lastly, our analyses show that SMuDGE rewards models that are more robust to variations
in tasks and datasets.

5.1 Background

In recent years, generative multimodal models have made major strides in Visual Question An-
swering over image documents. As an example, as of October 2024, the top-performing model
on the DocVQA leaderboard is within 2 points of human performance1.

A key challenge of generative models is that their output is difficult to ground within the
input document [232]. Since generative models produce sequences that are sampled from the
vocabulary, they are not guaranteed to generate answers that are based on the input, unless forced
to do so via grounded decoding (e.g. as in [137]). This in turn makes it difficult to detect
hallucinations, establish the provenance of the model’s generations, or measure the reliability of
its outputs, all of which limit the applicability of such models in many enterprise domains [124].

This problem is compounded by the fact that most popular Document VQA benchmarks do
not account for grounding in their evaluation criteria. A common metric used by these bench-
marks is Average Normalized Levenshtein Similarity (ANLS), as proposed by Mathew et al.
[113], which measures the similarity between the ground truth and predicted answers based on
their edit similarity. If the NLS for a ground-truth/prediction pair is below a predefined thresh-
old (typically 0.5), the score is flattened to zero, otherwise the NLS is used. The flexibility
that the NLS metrics provides allows the benchmarks to handle minor errors such as charac-
ter misspellings resulting from poor Optical Character Recognition, without over-penalizing the
models.2 Nevertheless, relying solely on surface similarity carries other risks for robust evalua-
tion.

The issues mentioned above are rooted in two fundamental disadvantages of similarity-based
metrics: 1) The metrics measure surface similarity, without accounting for how a small change in
the characterization of an answer can impact its meaning (e.g. changing a single digit in a number
can change its value by a large magnitude). 2) The metrics do not distinguish between answers
that can be traced back to the input document, and those that can result from hallucination.

More recently, some studies have noted the shortcomings of common evaluation metrics in
the field of multimodal document understanding, and proposed alternatives [231]. Most no-
tably, Peer et al. [130] proposed ANLS*, a data-type-aware metric that can be used for single
or multi-piece extraction and QA over documents. While it addresses many challenges of the
ANLS metric, ANLS* is not designed to capture the multimodal groundedness of model out-
puts. In contrast, we focus on the challenge of measuring groundedness for extractive VQA over

1https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1
2Contrast this to a metric that relies on n-gram overlap metrics, or cosine similarity of distributed representations.

Such metrics might consider “apple” and “app1e” to be very dissimilar words, given a single-character difference
between them.
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documents, where correct answers are guaranteed to be expressed in the input. We propose a
configurable evaluation method that not only accounts for the groundedness of predictions, but
also incorporates the type-aware nature of metrics, similar to ANLS*. To the best of our knowl-
edge, this is the first study that examines the impact of groundedness in evaluating Document
VQA models. The following section describes our proposed approach in detail.

5.2 Proposed methodology
To measure the impact of groundedness in Document VQA performance, we develop a composite
score to rate the output of each model. To ensure that the score can be applied to all models and
benchmarks, we assume access to four objects only: 1) The question. 2) The ground truth answer.
3) The answer provided by the model. 4) A dictionary of words and corresponding bounding box
coordinates extracted from the input document. This dictionary can be obtained by applying any
OCR tool to the document, though the quality of character recognition often differs between
different providers. Most benchmarks provide this dictionary as part of their data release.

In the next two subsections, we describe how we calculate two subscores: 1) The multimodal
grounding score addresses the question of whether the predicted answer can be located within
the input document, and if so, where it is located with respect to the ground truth answer. 2) The
type-aware surface similarity score evaluates the predicted answer based on its type, i.e. numeric,
textual, or hybrid.

5.2.1 Multimodal groundedness
Given a question qi, a ground truth answer ti, and a predicted answer ai, we develop a score
gi that places ai within the originating document (composed of words w1, w2, · · · , wN and cor-
responding bounding boxes b1, b2, · · · , bN ) and measure its distance to ti. We do this in two
steps:

Locating ai and ti within the document. To locate ti within the document, we find a con-
tinuous sequence of words wk, wk+1, · · · , wk+n that matches ti.3 If no such segment is found
(say, due to OCR errors), then we find a sequence that has the highest Normalized Levenshtein
Similarity (NLS) to ti. We name this sequence wti and the corresponding bounding box bti ,
which is calculated by merging bk, bk+1, · · · , bk+n

4. Similarly, we find the sequence wai and cor-
responding bounding box bai by placing ai within the document. Note that ai is not guaranteed
to be found on the page, for instance in case of hallucinations. If we can’t find a wai such that
NLS(ai, concat(wai)) > 0.3, then we define bai as:

[bleft
ti

,btop
ti ,−widthi − bright

ti ,−heighti − bbottom
ti

] (5.1)

3Note that a multimodal document is a 2-D artifact, and therefore a “continuous sequence” can extend in multiple
directions, depending on the reading order of the page. Most commercial OCR packages such as Textract segment
each page based on semantic information, e.g. an address block is presented as one segment, even if it contains
multiple lines. We therefore rely on the segments provided by these packages to determine continuity. In the
absence of such information, a graph representation of the document can be used as a proxy. In Appendix C.1, we
provide an algorithm that can be used to ground the sequence using this graph representation.

4See Appendix C.2.1 for additional details.
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where bleft
. ,btop

. ,bright
. ,bbottom

. indicate the four coordinates of the bounding box b. and
widthi, heighti indicate the width and height of the page, respectively. In other words, we use
the bounding box of the ground-truth answer ti and mirror its bottom right corner in the negative
space. This ensures that the distance between bti and bai is measured as 1 (see below).

Measuring the distance. Next, we measure di, the distance between bai and bti . We do this
by first finding the centroid of each bounding box, and then measuring the Normalized Manhattan
Distance (NMD) between the centroids. In other words:

di = (5.2)

| bright
ti

2×widthi
− bleft

ti

2×widthi
− bright

ai

2×widthi
+

bleft
ai

2×widthi
|+

| bbottom
ti

2×heighti
− btop

ti

2×heighti
− bbottom

ai

2×heighti
+

btop
ai

2×heighti
|

If the predicted answer ai cannot be located within the document, the formulation presented
in Equation 5.1 yields di = 1. Note that 0 ≤ di ≤ 1.

Finally, we calculate the grounding score gi by applying an exponential decay function to di:

gi = e
−di
1−di . Note that the score rewards cases where bti and bai are close, or horizontally/ver-

tically aligned (due to lower Manhattan Distance) with the reward dropping exponentially with
distance.

5.2.2 Type-aware surface similarity

To measure mi, the surface match score between ti and ai, we follow the below criteria:

1. If ti is textual5, we use the NLS metric.

2. If ti is numeric, we use a binary score that indicates whether the predicted answer matches
the ground truth exactly. We allow some flexibility in the match, for example numbers
scaled by 100, thousand, million, or billion are considered a match. This is to account for
different expressions of percentages, basis points, financial metrics, etc.

3. If ti is composed of both textual and numeric characters, we first create substrings numai ,
strai , numti , and strti by extracting the numeric and non-numeric characters of ai and ti,
respectively. Next, we calculate the number-based and text-based scores for each substring
according to the above criteria. The final score is a weighted harmonic mean of the two
subscores: 11

10
num scorei

+ 1
str scorei

.6 Note that the model has to get the numeric part of the answer

correctly to be rewarded higher.

5.2.3 Composite metric

Given the mutimodal grounding score gi and type-aware match score mi, we propose the follow-
ing composite score parameterized by α:

5See Appendix C.2.2 for additional details.
6See Appendix C.2.3 for additional details.
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si = αmi + (1− α)gi (5.3)

Note that α = 0 yields the grounding score and α = 1 yields the type-aware match score.

5.3 Experiments

5.3.1 Datasets
Given the composite score proposed in Section 5.2.3, we investigate the impact of groundedness
on four prominent Document VQA benchmarks.

DocVQA [113] is a visual question-answering (VQA) dataset designed specifically for doc-
ument images. It contains over 12,000 document images sourced from scanned business forms,
reports, and invoices, among others. The dataset is structured with over 50,000 question-answer
pairs, and questions are broken down into 9 categories, indicating the context of the correct an-
swer (e.g. “Free text”, “Layout”, “Figure/Diagram”, etc.). This breakdown is not available for
the text collection. Therefore we determine the type of each question using GPT-4o [1]7. Next
we remove questions in the “Yes/No” category to filter potentially abstractive questions. This
results in 5,130 questions in the final dataset.

InfographicVQA. [114] is a dataset aimed at visual question answering over complex info-
graphic documents. The dataset includes over 5,000 infographic images and over 30,000 ques-
tions that require reasoning over text, charts, and images embedded within the infographic. We
filter multi-piece answers from the test collection, resulting in 3,272 samples.

MP-DocVQA [176] focuses on multi-page documents. It consists of over 46,000 question-
answer pairs from 6,000 multi-page documents. We use 5,019 questions in the test set.

DUDE [179] is a document understanding dataset focused on structured documents such
as forms, invoices, and tables. It includes around 5,000 documents and 41,000 question-answer
pairs. We limit the test collection to single-piece extractive questions, resulting in 2,552 samples.

For each sample in each dataset, we calculate the NLS as well as the composite score, with
α set to increments of 0.05 in the [0, 1] range.

5.4 Analysis
Throughout most of our experiments, we set α = 0.25, as it proves optimal based on the calibra-
tion analysis provided in Section 5.4.3. Since α is optimized on the DUDE dataset, we have not
included this dataset in any of the analyses that use this optimal value for α.

5.4.1 Leaderboard analysis
We first analyze how SMuDGE can affect the rankings produced by Document VQA bench-
marks. Figure 5.2 illustrates this using the top 10 models8 on the DocVQA leaderboard. The left-

7Please see Appendix C.5 for details.
8As of September 2024.
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most column of the figure shows the original ANLS-based ranking9. The second column shows
how the ranking changes if we switch to SMuDGE with α = 0.25. As the figure shows, human
performance and QWen2-VL [190] remain stable, but all other models move by at least one po-
sition on the leaderboard. The middle segment of the figure shows how the models would rank
based on the type of question. Certain question types such as “Figure/Diagram” and “Table/List”
offer little volatility, but for questions that fall under “Handwritten” or “Other”, the volatility is
higher.10 The middle segment of the figure also shows that some models such as SMoLA-PaLI-X
[199] are better at answering questions based on “Free text” contexts, whereas they struggle with
“Table/List” questions compared to other models.

The right segment of the figure shows the rerankings broken down by the type of answer.
As expected, textual answers offer the closest ranking to the original one produced by ANLS,
whereas numeric and hybrid answers perturb the ranking of the leaderboard. Notably, humans
remain the top performer for textual and hybrid answers, but fall behind two other models in the
numeric category. This can be attributed to the human tendency to rephrase certain entities such
as numbers and dates. For example, in Question #3027, the ground truth answer “(16.1%)” is
rephrased as “-16.1%” by human respondents, and for question #3290, “1,700” is modified as
“about 1,700”.

Figure 5.2: The rankings of the top 10 models on the DocVQA leaderboard, before and after
applying our composite score with α = 0.25. Left segment: Rankings based on ANLS versus
our score. Middle segment: Our rankings broken down by question type. Right segment: Our
rankings broken down by answer type.

Figure 5.3 shows the correlation between rankings produced by ANLS and by our composite
score with α = 0.25. Following Alzahrani et al. [5], we calculate the correlation based on a two-

9Note that our ANLS-based rankings could be slightly different from the leaderboard, since we have filtered the
questions per Section 5.3.1.

10An example of a question classified as “Other” is: “What does GCC stand for?” requiring the model to infer
that an acronym mentioned on one part of a page is related to an entity mentioned on a different part. This category
of questions constitutes about 0.2% of the DocVQA dataset, and can be considered negligible.
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Figure 5.3: The correlation between the rankings produced by our method (with α = 0.25) and
the original ANLS-based ranking, broken down by the type of answer. All τ values are significant
at p≪ 0.05.

tailed Kendall’s τ analysis. Note that the y-axis on Figure 5.3 begins at 0.70. As the figure shows,
questions with textual answers are the least affected by switching to our score, but numeric and
hybrid answers impact the ranking by a larger margin. This is expected as the text-only version of
our score is the closest to ANLS. Of the three benchmarks shown in the figure, InforgraphicVQA
is most affected by our score, whereas DocVQA and MP-DocVQA retain a strong correlation
with their original rankings. As evidenced by Figure 5.2, this strong correlation does not indicate
a stable leaderboard, but one where the models move by ±d, where d is a small number.

5.4.2 Question type analysis
Figure 5.4 shows the correlation between our composite score and the original ranking of the
DocVQA leaderboard for each question type. As expected, moving from small values of α
(weighing groundedness more that type-aware similarity) to large values (weighing type-aware
similarity more than groundedness), moves the rankings closer to the original ANLS ranking.
This is especially true of the “Free text” category, where our score comes closest to ANLS.
Once again, “Other” is the outlier category, which can be safely ignored due to its small sample
size. The remaining categories show a similar trend, further establishing that groundedness is
not accounted for in ANLS-based rankings.

5.4.3 Association with calibration
The DUDE dataset provides the confidence scores produced by each model (when available).
This enables the benchmark to report Expected Calibration Errors (ECE) [126], indicating if the
models are wrongfully over or under-confident about the accuracy of their output. We use this
metric to determine whether our proposed score can account for accuracy through calibratedness.
To do this, we map the score at various αs against the calibration error of each model, and
calculate the Pearson-R correlation between the two. The results are displayed in Figure 5.5. As
the figure shows, at small values of α (focusing on groundedness), there is a negative correlation
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Figure 5.4: Kendall’s τ rank correlation with the original DocVQA leaderboard, broken down
by question types. All τ values are significant at p≪ 0.05.

with ECE, indicating that a higher score is correlated with a lower ECE. As α increases and the
score shifts towards surface similarity, the association moves towards positive, crossing 0 around
α = 0.5. This trend can be observed for all categories of questions except “Textual” questions,
which enforce surface similarity at all α values. The optimal value for α, which minimizes the
correlation with ECE across most categories lies at around α = 0.25.

Figure 5.5: Pearson R correlation with the calibration error of models based on the DUDE
leaderboard, broken down by answer type.

5.4.4 Association with robustness

Next, we inspect the association between SMuDGE and the robustness of a given model. Ro-
bustness is not a formally defined term in the Document VQA field, but can be interpreted
as a model’s consistent performance across different settings, benchmarks, and sample types.
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Therefore, we define robustness as the volatility11 of a model’s ranking when evaluated on var-
ious subsets of questions (e.g. textual, numeric, hybrid, or all questions at once). We plot this
volatility against the volatility of a model’s scores, using the DocVQA, MP-DocVQA, and Info-
graphicVQA benchmarks. Figure 5.6 shows the results using ANLS as well as SMuDGE with
α = 0.25. Each dot represents one model, with red dots representing models evaluated using
ANLS, and blue dots representing models evaluated by SMuDGE. As the regression lines in
the figure show, both approaches maintain a positive trend between the volatility in scores and
rankings. In other words, models with stable rankings tend to have stable scores as well. How-
ever, the positive trend is stronger for our score compared to ANLS, with a small but statistically
significant regression coefficient of 0.58 (compared to ANLS’s 0.33).

Figure 5.6: The mean volatility of each model’s score versus its ranking. Red dots represent
ANLS scores and blue dots represent SMuDGE with α = 0.25.

Next, to present a qualitative view of how our score can reward robust models, we calculate a
robustness score for each model in the DocVQA benchmark. To do this, we scale a model’s rank
volatility by its median rank. This ensures that if a model is stable across rankings, it receives a
high robustness score, unless it is a generally poor performing model (e.g. a model that comes
last in all rankings). Table 5.3 lists the top-5 models identified using this technique. The ANLS-
based models reflect the default ranking of the DocVQA leaderboard, with Humans leading the
group, followed by Large MLMs such as QWen2-VL [190] and InternVL2-Pro/InternVL-1.5
[25].

In contrast, our score produces a ranking that includes a Small MLM, namely, Arctic-TILT
[15]. As of October 2024, this model is ranked 11 on the DocVQA leaderboard, above all other
Small MLMs and a few Large MLMs. In addition, it is ranked 1st on the MP-DocVQA and
DUDE leaderboards. No other models listed in the ANLS column show the same level of cross-
benchmark robustness. Similarly, Molmo-72B [32] is 4th on the InfographicVQA benchmark.
The strong cross-benchmark rankings indicate that our method can generate rankings that reward
robust models.

11See Appendix C.2.4 for additional details.
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Table 5.2: Five samples from the human preference study, showing cases where the human
judges preferred our score, NLS, or neither scores. In the latter case, the human judges preferred
equal scores for Models A and B.

Dataset Question GT Model A Model B Human pick

DocVQA
What is the vitamin A requirement
(in I.U.) for a ’lactating’ mother ?

“1,000 i.u. plus
basic requirements”

“basic requirements” “1,000”
SMuDGENLS: 0.54 NLS: 0.0

Ours: 0.0 Ours: 0.62

MP-DocVQA What is the day and date of Meeting?
“thursday 22
october”

“thursday” “saturday 24 october”
SMuDGENLS: 0.0 NLS: 0.74

Ours: 0.81 Ours: 0.25

InfographicVQA
Which age group uses social media
the most?

“18-29
year olds”

“18-29 group” “18-24 year olds”
SMuDGENLS: 0.53 NLS: 0.93

Ours: 0.98 Ours: 0.0

DocVQA What is the date of the letter? “august 1, 1983”

“The date of the letter
is August 1, 1983.”

“August 1983”
NeitherNLS: 0.0 NLS: 0.78

Ours: 0.97 Ours: 0.0

InfographicVQA
What is the estimated number
(in billions) of social media
users around the globe by 2019?

“2.72”
“#infographic” “2. 72”

ANLSNLS: 0.0 NLS: 0.8
Ours: 0.0 Ours: 0.0

Table 5.3: Top-5 models based on robustness rankings produced by ANLS versus our score (with
α = 0.25).

ANLS SMuDGE
1 Human 1 Human
2 QWen2-VL 2 QWen2-VL
3 InternVL2-Pro 3 InternVL2-Pro
4 QWenVL-Max 4 Molmo-72B
5 InternVL-1.5-Plus 5 Snowflake Arctic-TILT

5.4.5 Human evaluation

We used human judgment to assess the validity of our scores compared to ANLS. To do this,
we used data from three benchmarks: DocVQA, MP-DocVQA, and InfographicVQA. In each
benchmark, we sampled questions and a pair of answers produced by two models, indicated
by model A and model B (different models could be selected for each sample). We limited
the samples to cases where model A’s NLS score was higher than B, but SMuDGE scored B
higher than A, or vice versa. We sampled up to 10012 such question-answers triplets from each
benchmark. Three researchers were presented with these triplets, as well as the ground truth
answer, and asked which model they thought should be scored higher. The annotations produced
a mean Cohen’s κ of 0.82, indicating a high level of agreement. We filtered the annotations to
those on which at least two annotators agreed. This resulted in 28 samples for DocVQA, 86
samples for MP-DocVQA, and 66 samples for InfographicVQA.

Figure 5.7 shows the annotators’ agreement rates with NLS versus our score. The “Neither”
bucket indicates that the annotators believed the models should have been scored equally. As the
figure shows, annotators agreed with SMuDGE in the majority of cases across all three bench-
marks, indicating that our approach is better aligned with human judgment. We observe that

12Some datasets had fewer qualifying triplets.
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InfographicVQA, yielded has the highest rate of agreement with NLS, contains the largest num-
ber of misspelled numbers, as in the last row of Table 5.7, which could be a result of the complex
layout and design of infographics.

Figure 5.7: Human preference for pairwise rankings produced by NLS versus SMuDGE (with
α = 0.25).

5.5 Conclusion
In this study, we showed how popular evaluation metrics such as ANLS can miss important nu-
ances when used to analyze Document VQA models. Instead, we proposed SMuDGE, a new
metric that is sensitive to the groundedness of the models’ outputs. Through extensive analyses,
we showed how SMuDGE is better aligned with human judgement as well as the calibratedness
of the models. Our analyses also showed that rankings produced by SMuDGE were better indi-
cators of a model’s robustness across question types and in different benchmarks. Our studies
demonstrate the importance of groundedness in the performance and assessment of Document
VQA models. We hope that in addition to presenting a new evaluation method, our study inspires
researchers to develop better grounded Document VQA models.
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Chapter 6

Conclusion and future work

In Section 1.1 we introduced a real-world scenario in which Alice, a knowledge worker at a
financial firm is tasked with processing 1,000 authorized signatory forms. We examined the
challenges that Alice would face if she were to use modern VRDU models to automate all or
part of her process. Throughout this dissertation, we have introduced a series of studies that
attempt to address one or more of the challenges faced by Alice. CompAQT and CounterComp,
introduced in Chapter 3 enhance the compositional generalization of Quantitative Question An-
swering, hence enabling Alice to process questions that require multistep quantitative reasoning,
such as calculating an authorized signatory’s maximum authorization limit. APReCoT and Ali-
GATr, introduced in Chapter 4, enable Alice to extract relevant information from the forms,
guarantee localization, and provide well-calibrated outputs. SMuDGE, introduced in Chapter 5,
allows Alice to evaluate Document VQA models more effectively, selecting those that provide
answers that are better grounded semantically and multimodally.

In the remainder of this Chapter, we reflect on the advancements that the field of VRDU has
made toward grounded document AI in the recent years, review the contributions of our research
in detail, and lay out directions for future work.

6.1 Reflections on recent advancements in grounded VRDU

Since the conception of our work, the field of VRDU has evolved rapidly. Thanks to the di-
minishing cost of computation and new advancements in infrastructure design, data and memory
efficiency are less central to achieving robust performance across tasks. In tandem, the popu-
larity of Large Language Models and their multimodal counterparts has transformed the VRDU
field. Adapting open-domain vision-language models to VRDU tasks has yielded models that
have surpassed all prior SotA results [11, 24, 103].

As a result of these advancements, the lens through which we have explored efficiency via
models such as APReCoT and AliGATr may no longer seem crucial to VRDU technologies
or the broader field of multimodal AI. As an example, by extending the generative target of
AliGATr from layout alone to layout and text, the model might achieve better performance at
scale. Nevertheless, certain studies continue to challenge the assumption that efficiency is an
increasingly nonessential topic, from the perspective of environmental impact [180], user privacy
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[204], and on-device enablement [3, 181].
In the meantime groundedness continues to gain attention in the field, as a small but grow-

ing number of studies explore grounded multimodal reasoning for VRDU tasks. These models
are inspired by prior work in grounded visual question-answering, which goes as far back as
scene-graph representations [58]. Studies such as Point-and-Ask [112] and Connect Caption and
Trace [117] successfully demonstrated that localizing answers within the input can improve per-
formance on visual question answering. In the era of Multimodal LLMs, this idea was further
developed to show improvements for reasoning over open-domain images [32] as well as user
interfaces [101, 213].

More recently, studies such as LMDX [132] have begun to explore the task of localization for
generative VRDU models. Localized VQA datasets, which were once limited to open-domain
settings [135] are now being developed for VRDU tasks [203]. This slow but steady growth in
the grounding-focused VRDU literature corroborates our argument for the importance of ground-
edness in the development of VRDU models, and their applicability to real-world settings.

6.2 Summary of our contributions
The core contributions of our work can be grouped into five main categories, each addressing
one of the aspects of multimodal reasoning that are key to any enterprise VRDU model:

1. Grounding the model’s attention patterns in quantitative language (Section 3.1): We
showed that self-supervised attention units can learn spurious patterns that undermine com-
positional generalization when performing multi-step question answering over quantitative
data. Instead, we proposed CompAQT, an attention mechanism that is explicitly grounded
in quantitative expressions, and showed that it can improve reasoning over multi-step oper-
ations. Further, we contributed a unified collection of quantitative QA benchmarks based
on four popular datasets with diverse schemata.

2. Grounding the model’s quantitative reasoning by counterfactually augmenting the
search space (Section 3.2): We extended CompAQT’s reasoning performance by aug-
menting the search space using counterfactual sampling. This not only further enhanced
the model’s compositional generalization, but also improved its performance on OOD sam-
ples. The resulting model, CounterComp, can be used in small-data regimes, or when
training samples are skewed towards few-step operations, both of which are scenarios that
are common in enterprise settings.

3. Grounding the model’s visual reasoning in the document’s design (Section 4.1): We
demonstrated that complex visual backbones inspired by open-domain vision-language
models were inefficient and unnecessary for VRDU tasks. Instead, by factorizing the vi-
sual signal into clusters, we were able to recognize the color palette of visually rich forms.
We proposed APReCoT, a small and efficient model that is able to learn contrastive repre-
sentations and performs on par with SotA models on processing forms.

4. Grounding the model’s spatial reasoning in the document’s layout (Section 4.2): We
demonstrated that graphs provide a rich structure for modeling complex layouts in doc-
uments that follow grid-based structures (such as forms). Based on this finding, we de-
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veloped AliGATr, a parameter and data-efficient graph generation model that can perform
exrtactive tasks (KIE) as well as associative tasks (RE) on visually complex forms, and
can localize its outputs. AliGATr can be used as a robust, lightweight, and well-grounded
alternative to SotA models. Because AliGATr uses graphs as abstractions, it is not bound
to certain characteristics of the input image such as its resolution and dimensions, which
is a challenge that continues to impact SotA vision-language models [90].

5. Enabling grounding-aware evaluation methodologies (Chapter 5): Lastly, we brought
together our previous work on spatio-visual and quantitative reasoning by proposing SMuDGE,
an evaluation methodology that accounts for groundedness in all three aspects. By allow-
ing flexibility in how SMuDGE is calculated, enterprise practitioners can adapt the metric
to the requirements of their downstream applications.

Reasoning Grounding the design Grounding the objective Grounding the search space

Quantitative Unsupervised alignments (Section 3.1)
Metric learning (Section 3.2)

Counterfactual sampling (Section 3.2)

Spatio-visual Graph-based generation (Section 4.2) Cluster membership (Section 4.1)
All Grounded evaluation (Chapter 5)

Table 6.1: An updated view of Table 2.3, where our contributions have been added to corre-
sponding cells, blue. Each highlight has a reference to the section where it is covered.

As suggested in Chapter 1, multimodal grounding can be encouraged by modifying the design
of VRDU models, by defining grounding-aware learning objectives, or by scaffolding the search
space. Table 6.1 provides an overview of the contributions that we have made to the field of
grounded enterprise VRDU from the perspective of these intervention methodologies. Through-
out this thesis, we have explored all three aspects of intervention, covering venues that were
previously under-explored. Most notably, in the category of grounding-by-design, while graph-
based structures have been used in the past to capture spatial and visual signal (as evidenced by
Table 2.2), generative approaches to graph-based representation have not been examined. The
resulting graph-encoder models suffer from poor calibration, a problem which we addressed by
proposing AliGATr, an auto-regressive graph generator.

Additionally, studies that modify the learning objectives of VRDU models to encourage mul-
timodal grounding have largely followed reconstructive objectives akin to Masked Language
Modeling, which sample random segments of the input. In contrast, we have proposed a suite
of new methodologies that target specific components of the input, with the goal of improved
compositional generalization, robust OOD performance, and better calibration.

Lastly, augmenting the search space of VRDU models as a way to improve their ground-
ing within the input has been an under-explored venue. By proposing a new methodology to
augment the search space using counterfactually sampled data, we open the door to new self-
supervised techniques in small data regimes, especially when compositionality largely governs
the distribution of samples.

All of the above contributions are crucial to the adaptation of VRDU models in enterprise
settings. We hope that the thesis’ contributions to this domain encourage further research into
grounded multimodal reasoning for enterprise documents.
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6.3 Limitations of our work
As demonstrated throughout our work, groundedness in multimodal enterprise document under-
standing can take on many forms. In the spatio-visual modality, groundedness can be interpreted
as localization of information. Localization is most relevant to extractive tasks such as Infor-
mation Extraction or Extractive VQA, where every piece of information in the output needs to
be traceable to the input. Extending this idea to abstractive tasks such as Classification or Ab-
stractive QA requires mapping out in detail the reasoning steps required to address the task. For
example, if certain segments of a document are most relevant to a question, a well-grounded
model should be able to identify those segments as such. This is a complex and semantically
underdefined challenge that has been tackled in the unimodal domain [69] as well as multimodal
QA outside of VRDU [58]. We consider this task to be outside the scope of our research, though
we hope that our work has provided sufficient motivation for VRDU researchers to examine it.

In enterprise VRDU, semantic groundedness can go beyond multimodal localization. As we
observed in Chapter 5, models that are not grounded in semantic categories such as numbers can
produce errors that are just as undesirable as hallucinations. In examining semantic grounded-
ness, our work in Chapter 5 did not examine semantic categories beyond textual/numeric/hybrid
forms, such as currencies, dates, timestamps, etc. each of which come with nuances that can
have impacts on downstream applications if mishandled or mis-produced. Complex constructs
such as tables further complicate the evaluation of VRDU models. If a model is expected to pro-
duce a table or a snippet of a table as a response, a robust evaluation metric should be invariant
to the ordering and rendering of the content within the table. We leave the exploration of such
complexicites to future work.

Additionally, most of our work on document-grounded VQA is focused entirely on single-
span, extractive answers. To extend the grounding mechanism to multi-span answers, our algo-
rithms would need to handle an arbitrary number of possible answer spans within the document,
which we leave to future work.

In the context of quantitative reasoning, despite impressive advancements in SotA perfor-
mance, research in certain domains such as Financial QA remains nascent. As such, benchmarks
such as FinQA and TAT-QA only scratch the surface of the challenge of multi-step quantita-
tive reasoning. Our proposed QA models in Sections 3.1 and 3.2 are not intended for settings
where complex or high-level quantitative insights are required (e.g. anomaly or trend detection).
In such settings the large space of operations makes it challenging to rely exclusively on soft
alignments between the input and output. This is analogous to the challenge of localization in
VQA, where the more “abstractive” a question, the more challenging it is to ground the reasoning
within specific segments of the document. The multi-faceted nature of this challenge calls for
new research into natively grounded multimodal reasoning over enterprise data.

Additionally, our work does not fully explore the extent to which compositional modeling
of language can improve quantitative reasoning in multi-step Financial QA. Since CompAQT
and CounterComp use soft alignments to enhance compositional generalization, they merely
approximate the decomposition of arithmetic components using simple heuristics. While other
distant-learning methods continue to dominate the literature on mathematical reasoning [41, 140,
177], further work in this domain may build on alternative approaches such as neural-symbolic
architectures [62, 100] or preference-optimization methods [160].
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In addition to limitations specific to our work, the field of VRDU is constrained by broader
limitations within the literature. The following sections provide an overview of these limitations
in the context of four key components of research in enterprise document understanding, namely,
data, model, and evaluation methods.

6.3.1 Data limitations

Image documents, especially in the enterprise domain, are often owned by specific legal entities
and are therefore not always available for redistribution, even when they do not include confiden-
tial data. This makes open-domain collections of public documents difficult to source compared
to unimodal corpora such as Wikipedia, Common Crawl, and social media posts. As a result,
research in the domain of multimodal document understanding is dominated by a limited set of
corpora, as demonstrated in Table 6.2.

Unsurprisingly, due to licensing restrictions, the US government is the leading supplier of
VRDU datasets.1 Regulatory disclosure protocols and legal settlements have resulted in collec-
tions such as IIT-CDIP [91], Kleister [166], and DeepForm [170], which cover documents from
regulated industries such as tobacco manufacturing and political advertising. This poses two
challenges to our research. First, these public collections are not always representative of the va-
riety of enterprise documents, even in English-language jurisdictions. As an example, authorized
signatory forms are often not represented in any of the datasets due to their confidentiality.

Second, many datasets used in financial quantitative reasoning studies including those used
in our research were created based on financial reports, with many focusing specifically on regu-
latory disclosures provided by the United States Securities and Exchange Commission. As such,
these data assets are biased towards attributes and patterns expected in such reports, including
GAAP metrics2, currency units, and left-to-right orientation for tabular structures.

Additionally, VRDU datasets that cover the KIE task are often evaluated using a standard
IOB schema. Originally developed for the IE task in unimodal text, the IOB schema honors
a sequence order that is inherent to unimodal text. In contrast, multimodal documents are 2-
dimensional artifacts, and a canonical ordering of the words might not be readily available due
to their complex structure.

Nevertheless, in order to support the IOB schema, many VRDU datasets provide a proposed
ordering as part of their annotations, which the models in turn use during evaluation. This leads
to a fundamental problem of information leakage—the datasets are providing information to the
model regarding the order of the words which would not be available in real-world test settings.

Lastly, as pointed out by Lee et al. [89], some models assume that they have access to
segment-level bounding boxes at test time. They demonstrated how the performance of Lay-
outLMv3 on the FUNSD dataset would decrease by almost 10 points when access to segment-
level information wasn’t provided (see second row of Table 6.4).

Recent studies such as Zhang et al. [217] have taken steps towards addressing this problem
by proposing graph-based models that are sensitive to reading order. The authors have also re-
leased revised versions of the FUNSD and CORD datasets to address the problem of information

1See Figure 6.1 for an illustration of the lineage of the datasets listed in Table 6.2.
2https://www.cfainstitute.org/en/advocacy/issues/gaap
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Dataset Citation Training size License Upstream
publisher

VrDU
tasks

IIT-CDIP [91] 6,910,192 docs Fair Use US Gov. None
RVL-CDIP [45] 400,000 pages Fair Use US Gov. CLS
DocLayNey [133] 80,863 pages CDLA-Permissive Unknown/varied SEG

DocILE [162]
106,680 docs
108,715 pages Fair Use US Gov.

KIE
LIR

DocVQA [113] 12,767 pages Fair Use US Gov. VQA
DUDE [179] 5,019 docs Unspecified Unknown/varied VQA
BuDDIE [233] 1,665 pages Proprietary US State Govs. KIE

FUNSD [63] 199 pages Custom US Gov.
KIE
RE

CORD [128] 2,000 pages CC-BY-4.0 Businesses KIE
SROIE [57] 1,000 pages CCA 4.0 Businesses KIE
DeepForm [170] ∼20,000 docs MIT US Gov. KIE

Kleister [166]
3,318 docs
64,872 pages OGL US & UK Govs. KIE

VRDU [195] 2,556 docs Fair Use US Gov. KIE
Payment [89] ∼10,000 docs Proprietary Google KIE

Table 6.2: 14 popular datasets in the VrDU literature, used by the models in Table 6.3. VrDU task
legend: CLS: Document classification. SEG: Page segmentation. KIE: Key information extraction.
VQA: Visual question answering. LIR: Line item recognition. Note: The table excludes OCR
datasets as well as those focused on historical document understanding.

leakage. Further investigation in this domain will enhance real-world outcomes for downstream
users.

6.3.2 Model limitations
SotA models inherit the licensing challenges of the datasets that they have been trained on.
Additionally, the models carry their own Intellectual Property, which might restrict their use.
Moreover, the unavailability of open-sourced code and/or model weights further limits usage
in downstream tasks. As Table 6.3 shows, only 4 of the 7 SotA models on the list have any
open-sourced components, and no model has all three components that are required for it to be
considered fully open-source (i.e. pre-training code, pre-trained weights, fine-tuning code).

This has limited our ability to recreate baselines in several studies presented throughout this
thesis, and has led us to rely heavily on self-reported performance measures in other publications.

6.3.3 Evaluation limitations
The benchmarks in the VRDU field often calculate a model’s performance as an average over
all fields within the dataset, whereas in real world settings, performance is often measured at
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Figure 6.1: The lineage of the datasets listed in Table 6.2. Each dataset is displayed in a bordered
box. The remaining boxes represent upstream sources of documents, with the most upstream
publisher highlighted in orange.

the document level. As an example, Table 6.4 shows the performance of LayoutLMv3 when
measured overall, compared to context-specific measurements such as doc-level accuracy and
average F1 per document. Doc-level accuracy shows the percentage of documents that can be
processed in a “straight-through” fashion, i.e. ones which the model processes without any
errors. As the table shows, only 4% of documents are processed by the model without any
errors. On the other hand, LayoutLMv3’s average F1 per document is 83.08. This means that
any human reviewers that remain in the loop can focus their effort on reviewing the portions
of each document that the model is likely to mishandle. They can strategize by analyzing the
model’s performance per entity type, and focus their efforts on the “Header” category for which
the model performs poorly compared to other entity types. Alternatively, given a model that
produces well-calibrated probabilities, they can focus their efforts on low-confidence outputs.

Throughout this thesis, in order to remain consistent with the literature and establish consis-
tent benchmarks, we have reused standard metrics (Precision, Recall, F1, etc.) to report on
the performance of our proposed models. However, in order to accommodate many downstream
applications in the enterprise domain, a more nuanced approach might be required, as argued
above.

6.4 Future directions

Given the challenges laid out in the previous section, we will now discuss the opportunities that
they offer to researchers and practitioners in the field. We will present these opportunities in the
context of several high-level focus areas, each covering one or more of the research challenges
discussed in the previous section.
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Model Citation # Params Architecture License Commercial
Affiliate

OSS
Status

Generative/
Grounded

VrDU
tasks

LayoutLMv3LARGE [56] 368M TR CC BY-NC-SA 4.0 Microsoft
PW
FW
FC

N/Y

CLS
SEG
KIE
VQA

UDOP [171] 794M TR MIT Microsoft
PW
FC Y/N

CLS
KIE
TR
VQA

FormNetV2 [89] 204M GR N/A Google None N/Y KIE

UReader [209] 86M* MLLM Apache 2.0 Alibaba
PW
PC Y/N

KIE
TR
VQA

DocLLM [189] 1B, 7B MLLM N/A JP Morgan None Y/N

CLS
KIE
TR
VQA

Qwen-VL-MAX [11] Unknown MLLM Custom Alibaba FC Y/N VQA
SMoLA-PALI-X [199] Unknown MLLM N/A Google None Y/N VQA

Table 6.3: Models with SotA performance on a variety of VrDU tasks as of Jan, 2024. Archi-
tecture legend: TR: Transormer-based. GR: Graph-based. MLLM: Multi-modal LLM. OSS Status
legend: PC: Pre-training code. PW: Pre-trained weights. FC: Fine-tuning code. FW: Fine-tuning
weights. VrDU task legend: CLS: Document classification, SEG: Page segmentation, KIE: Key
information extraction, TR: Tabular reasoning, VQA: Visual question answering. *UReader re-
ports its number of trainable parameters, but the model is created by applying LoRA [53] to
mPLUG-Owl [210], which has around 7B parameters.

6.4.1 Data Curation

The inherent issue of copyright and ownership that limits the use of document collections in
training VRDU models is compounded by the confidentiality of content in most enterprise set-
tings. Recent work that has focused on synthetic document generation explores the possibility of
creating realistic layouts [146], content [48], or both [10]. A challenge in using synthetic docu-
ments for VRDU tasks is that many of them are modeled after the same public-domain datasets
mentioned in Table 6.2, and are therefore likely to carry the same biases in their multimodal
signal. To tackle this problem, a two-pronged approach is needed: 1) Enterprise researchers and
practitioners can take on a leading role in releasing synthesized collections that reflect their pro-
prietary documents with high fidelity, without violating their confidentiality. 2) Public-domain
collections such as the IIT-CDIP dataset can be augmented with a larger variety of enterprise col-
lections from a wider range of industries and time spans. As Figure 6.1 illustrates, the datasets
that are derived from a variety of upstream sources are rare, and curators often focus on one or
two specific publishers.

Additionally, datasets can be curated with better localization signal. When annotating datasets,
we encourage researchers to use tools that support visual annotations, such as PAWLS [121]. De-
veloping models that provide bounding-boxes as part of their output further enables downstream
users to verify them.
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Reported F1 (with segments) 92.08
True F1 (no segment info) 82.86*

F1 per
entity type

Header 57.49
Question 86.03
Answer 83.25

Doc-level accuracy 4%
Avg F1 per doc 83.08

Table 6.4: Evaluation of LayoutLMv3 performance as reported in Huang et al. [56] (Reported
F1) versus when using contextualized metrics (e.g. Doc-level F1). *The “True F1” value of
82.86 is consistent with the value reported in Lee et al. [89], i.e. 82.53.

6.4.2 Model Calibration

We encourage the development of new benchmarks that probe a model’s output or its internal
representations from a calibration perspective. In the unimodal literature, previous studies have
often done so by presenting evidence that the model generates compositional representations
[38], that the model’s confidence aligns with its performance [66], or that the model makes
“forgivable” errors [152]. Similar measures can be used by VRDU researchers to demonstrate
whether the models produce well-calibrated outputs. Below are some research questions that can
probe the issue of calibration in the VRDU domain:

• Is the model able to map documents to a compositional semantic space, where similar
documents (in terms of content) are grouped together? How about similar documents
in terms of visual style? In terms of layout? In terms of category (e.g. forms versus
contracts)? Or in terms of issuer/producer?

• Does the model produce well calibrated probability distributions as part of its output? If
not, does it lend itself to a post-hoc calibration approach such as in Jiang et al. [66]?

• Does the model’s performance linearly scale with its confidence?
• Can the model’s errors be identified at test time using contextual signals? For example,

does the model consistently do well on tables but poorly on diagrams?
• How can the model be integrated into an operational pipeline where human oversight can

be directed toward high-risk samples?

6.4.3 Contextualized Performance

We encourage researchers to report performance metrics not only at the dataset-level, but also at
the document (and possibly output-type) levels. This can be used as an estimate of the amount of
time that a knowledge worker can save by using the model in an operational pipeline, provided
that the model is well calibrated.

Performance can also be profiled based on the category, type, visual complexity, and contents
of the input. As an example, the DocVQA benchmark provides a breakdown of the different
classes of questions and the type of reasoning that is required to answer them (e.g. reasoning
over tables, charts, layout, or text). This can facilitate a more purposeful analysis of each model’s

91



performance compared to a singular measurement.

6.4.4 Building on recent advancements
Lastly, we reflect on the progress that neural architectures and large-scale training paradigms
have made in recent years, as described in Section 6.1. The success of Large Language Models
in tackling foundational tasks in natural language processing has led researchers to explore their
utility in enterprise applications [33, 81, 150, 155, 196, 201, 215, 225]. In settings that require
domain expertise or multifaceted analyses, these models have been reimagined as autonomous
or semiautonomous agents that can carry out a complex task by tackling a single component at
a time [202]. These agents are often coordinated through a Mixture-of-Experts model [21] or a
collaborative agentic framework [97]. Due to the complexity of the input and the task, Financial
QA lends itself to this approach, and recent studies have explored agent-based frameworks with
some success [39, 43]. Nevertheless, SotA performance quickly degrades in contexts where
deep domain expertise is required [111], or where compositional generalization plays a major
role [134, 165].

Meanwhile, in adjacent domains that rely on symbolic reasoning such as math-word problem
solving or code generation, researchers have made breakthroughs by borrowing methods from
the Reinforcement Learning literature to tune LLMs. The success of preference optimization
methods such as PPO [1], DPO [143] and GRPO [160] has established reward modeling as a
promising direction in augmenting LLMs’ symbolic reasoning capabilities. This offers a major
opportunity to researchers in the Financial QA domain to explore similar approaches. Early stud-
ies have shown promise [138], but impact continues to be constrained by the limited availability
of domain-specific data [108].

More recently, Qwen et al. [140] have demonstrated that combining a reward model with a
data synthesization technique can lead to robust performance in mathematical reasoning. This is
consistent with our findings in 3.2, where we showed that careful augmentation of the model’s
search space through counterfactually sampled data can enhance its robustness in Financial QA.
Combining CounterComp’s sampling strategy with preference optimization methods might fur-
ther enhance the model’s performance in challenging contexts.

In tandem, research in multimodal groundedness has continued to gain traction in the litera-
ture [32, 132, 213] and some researchers have explored the adaptation of agentic frameworks to
the navigation of user interfaces [80, 101, 186] as well as enterprise documents [159, 215, 223].
Layout-aware approaches, such as AliGATr, offer an advantage in that they can be adapted to
accommodate visually rich web pages as well as documents, allowing enterprise users to seam-
lessly navigate the multitude of information resources, from confidential financial disclosures
that are available in document form, to publicly available disclosures that are posted to regula-
tory websites and portals.

Agentic frameworks can not only move the field in the direction of higher performance, but
they may also create new opportunities in effective Human-Machine collaboration in enterprise
settings, allowing humans to optimize their workflows toward tasks that require deep contex-
tual expertise. The maker-checker protocol that governs many document-grounded applications
in enterprise settings [18] lends itself to a productive model of Human-Machine collaboration,
where the LLM agent can act as a maker, and the human expert, acting as the checker, provides
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feedback to tune the LLM on an ongoing basis. To do this, the field needs to prioritize the pursuit
of grounded methodologies that produce localized, contextualized, and well-calibrated outputs.

We began this thesis by presenting a scenario in which Alice, a knowledge worker at a finan-
cial firm, is tasked with processing a collection of enterprise documents. We demonstrated that
semantic and multimodal groundedness were key aspects of any automation tool, without which
Alice’s workflow would continue to be burdened by laborious data extraction, normalization, and
entry tasks. By building on current advancements, the field of VRDU can move in the direction
of producing methodologies that allow Alice access to tools that provide her with the desired
output, where information is processed holistically, outputs are localized, errors are highlighted,
and her workflow is elevated to that of an expert reviewer. We hope that our research on grounded
multimodal enterprise document understanding has offered a step in that direction.
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Appendix A

Chapter 3 Appendices

A.1 Dataset unification

In order to unify the datasets, we convert each of them into the same format. We choose FinQA
as the reference format, since it encodes multi-step programs in a standardized representation.
Each program is encoded as a right-expanding binary tree where each operation is guaranteed to
have two operands, with one of more operands set to NONE if necessary.

FinQA provides two versions of each data-table: one with the raw format, and one where
the content has been normalized such that all row headers are merged into one row header, and
all column headers are merged into one column header. This removes discrepancies in the way
tabular data is represented across different samples. The dataset also includes gold facts from
each table and surrounding text. The facts have been tokenized and verbalized such that the
model can easily map operands to number expressed in them.

Transforming other datasets to match the FinQA format requires following three steps: 1)
Normalizing the tables, 2) Normalizing the programs, and 3) Normalizing the evidence. Below,
we describe these steps in detail.

A.1.1 Normalizing the tables

In the TAT-QA and HiTab, each table is represented as a nested array. In MULTIHIERTT, each
table is represented by the raw html code, which is easily convertible into a nested array.

The top n rows and the left m columns of each table form the column and row headers,
respectively. To find n, we follow Algorithm 1. A similar method is applied to determine m.
We then merge the contents of the top n rows and the left m columns to form a singular column
header and a singular row header.

A.1.2 Normalizing the programs

MULTIHIERTT represents programs in a format that is compatible with FinQA (e.g. subtract(20,
30), divide(#0, 20)). TAT-QA and HiTab represent them in a non-standardized format (e.g.
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Algorithm 1 Column header finder
1: N ← num rows
2: K ← num cells in first row
3: non empty cells← []
4: for i ∈ {1, . . . , K} do
5: if table[1][i] ̸= empty then
6: non empty cells[i] = TRUE
7: else
8: non empty cells[i] = FALSE
9: end if

10: end for
11: n← 2
12: while n ≤ N and FALSE ∈ non empty cells do
13: for i ∈ {1, . . . , K} do
14: if table[n][i] ̸= empty then
15: non empty cells[i] = TRUE
16: else
17: non empty cells[i] = FALSE
18: end if
19: end for
20: n := n+ 1
21: end while
22:
23: returnn
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(20-30)/20 or 1-30/20). We use an Abstract Syntax Parser1 to process each expression into
a tree. We then programmatically traverse the tree to generate a FinQA-compatible program.
Next, we match each operand to the evidence. If not found within the evidence, an operand is
replaced by a constant (e.g. multiply(#0, 100)→ multiply(#0, const 100).

A.1.3 Normalizing the evidence
We use a tokenizer similar to the FinQA tokenizer to process each sentence and table within each
passage. This is to ensure that the operands are guaranteed to match the numbers mentioned in
the evidence.

Table A.1 shows additional filters applied to each dataset.

Dataset Configuration
FinQA no filters
TAT-QA arithmetic category only

HiTab
no multi-span answers
at least one operation required

MULTIHIERTT
arithmetic category only
no span-based answers

Table A.1: How each dataset was filtered to include in the unified collection.

A.2 Pointer Verbalizer Network
The programs are composed of two types of tokens: 1) operator tokens, which are sampled from
a symbolic space (i.e. math symbols), and 2) operators, which are either numbers mentioned in
the facts, or constants such as 100 or 1,000,000 for scaling the output. Models such as FinQANet
treat the program as a sequence of tokens, not differentiating between operators and operands.
At each step a new token is sampled from the universe of all possible operators and operands,
and a mask is used to make sure two operands are generated after each operator. The process
stops once the EOF operator is generated.

In contrast to FinQANet, our Pointer Verbalizer Network uses a two-pronged approach that
accounts for the differences between the operators and operands, and employs verbalization to
enhance performance.

A.2.1 Generating operators
The generator can be regarded as an encoder-decoder model akin to sequence-to-sequence mod-
els employed in Neural Machine Translation (NMT). However as opposed to NMT, the oper-
ators are sampled from a symbolic space (i.e. math symbols), which does not have the same
distribution or compositionality as the input space (i.e. text). A similar problem exists in most

1We use the standard python3.7 ast module. https://docs.python.org/3.7/library/ast.html
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semantic parsing tasks, but it is sometimes alleviated by mapping the target domain into a space
that is close to the input domain. For example in a Text-to-SQL task, instead of referring to
“table #3.column #1”, the names or descriptions of the table and column are used (e.g. “stu-
dents.name”). This allows the model to leverage compositional semantics in the target domain
as well as the source domain.

We pursue a similar strategy by mapping the program operators into text, i.e. verbalizing
them. For example, instead of the categorical symbol divide, the token “divide” is used to
represent the division operation. As a result, the operator generator produces a sequence of
tokens. These tokens can be mapped to the nearest operator based on their cosine similarity. The
loss is thus calculated as:

Loperator = γLCE + (1− γ)Lreg (A.1)

where γ is a hyperparameter, LCE is the cross-entropy loss between the predicted operators and
the true operators, and Lreg is a regression loss defined as the sum of cosine distance and MSE
loss between predicted operator token embeddings oi and the true operator token embeddings ai.

Lreg =
1

N

N∑
i=1

cosine(oi, ai) + MSE(oi, ai) (A.2)

The regression loss functions as a regularizer to ensure that the verbalized predictions do not
stray too far from true operator tokens. In our experiments, we set γ = 0.8.

A.2.2 Generating operands
As opposed to the operators, the operands are always selected from a list of existing numbers
or constants. This, along with the verbalization of operators allows us to approach operand-
generation using a pointer network [187]. At each step, the predicted operator token embedding
oi is used as the hidden state, and the model selects the top two options from the list of possible
operands.

Figure A.1 illustrates the proposed architecture. The top part of the figure shows how the
sequence of operators id generated. The cross-attention mechanism helps augment the question
with information from the facts. The output is then attended to by the verbalized vocabulary of
operators. The output of this step is used in a recurrent network to predict the operator in each
step.

The bottom part of the figure shows how the operands are selected for each predicted operator.
This time, attention is used to augment the fact representation with information from the question.
Using this, as well as the output of the operator predictor, the model uses a pointer network to
select operands from a list of possible numbers and constants.

A.3 CompAQT’s experimental details
Tables A.2 lists the settings and parameters for each baseline. The settings used for FinQANet
and TAGOP are based on [26] and [227], respectively. For all experiments that involved Com-
pAQT, α and λ were both set to 0.1.
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Figure A.1: The architecture of the Pointer Verbalizer Network. The top half shows the operator
predictor and the bottom half shows the operand predictor.

All experiments were conducted on a machine with 8 NVIDIA T4 GPUs with 16GBs of
memory per GPU.

Parameter FinQANet TAGOP PVN
encoder RoBERTa-large[107]
batch size 16 32 64
learning rate 2e−5 5e−5 2e−5

optimizer
Adam [77]

with β1 = 0.9 and β2 = 0.999
epochs 100 50 50

Table A.2: Settings used for FinQANet experiments.

A.4 CompAQT experiments using retrieved facts

Table A.3 shows ablation results similar to Table 3.7 but for retrieved facts (instead of gold
facts). Similar trends hold when using retrieved facts, with CompAQT modifications having a
larger impact on multi-step programs.
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Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 64.13 57.03 20.56 58.30
+self-attention +3.01 +1.97 +1.95 +2.44
+alignment loss +0.01 +4.66 +1.83 +2.00
+coverage term +0.00 +2.02 +0.55 +0.31
+linear decay +0.00 +0.10 +.48 +0.00

Table A.3: Ablation results on the FinQANet model, applied to the FinQA dataset with retrieved
facts.

A.5 Operation-aware pre-training
The FinQANet generator performs better on examples with simpler programs which contain 1
or 2 steps compared complex programs with 3 or more steps. We perform masked language
modeling (MLM) finetuning on the FinQANet language encoder over FinQA and TAT-QA data
to see how it can encourage the generator perform better on complicated programs. First, we take
the dev sets of FinQA and TAT-QA, and split both dataset 80/20 for training and testing masked
token prediction. The resulting train and test set sizes are 1136 and 284, respectively. Second,
we finetune Roberta [107] using three masking methods.

• op: mask one operator in every program
• const: mask one constant/operand in every program
• op+const: mask either an operator (50%) or a constant/operand (50%) in every program

For each example in our new dataset, we encode the natural language question, supporting
facts, and program in a sequence. For each experiment, we finetune Roberta until it achieves 70-
80% accuracy in guessing the masked tokens. Finally, we train the FinQANet program generator
with our finetuned Roberta model. During inference we use the finetuned Roberta encoder in the
FinQANet generator.

Table A.4 shows the experiment results. The baseline program out-performs most of the
finetuned program generators except on the FinQA test set. In all experiments, masking the
program operators (e.g., add, subtract, divide) leads to better performance compared to masking
program operands or masking both operators and operands. A possible explanation may be that
there are only 10 program operators compared to many possible operands. Furthermore, given
the small size of our data used for finetuning, masking different types of tokens with a large
range of values may confuse the finetuned model, and impair its ability to learn ties between text
semantics and the desired output program. This intuition is reflected in figure A.2 which shows
the loss and accuracy curves of the op, const, and op+const experiments compared to the baseline
program generator.

We conduct further analysis on the generated programs with respect to program complexity
to better understand how finetuning the Roberta encoder affects the generated programs. As
shown in figure A.3, the baseline program generator performs better than most finetuned program
generators in program accuracy in 1-step and 2-step programs. However, the finetuned program
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Finetune FQA-Valid FQA-Test TQA-Valid

baseline 62.29 61.90 71.32
op 61.61 62.34 70.35
const 60.02 58.24 71.32
op+const 58.55 57.9 68.60

Table A.4: Program accuracy of FinQANet program generator with baseline and finetuned
Roberta encoders on the FinQA dev set. FQA-dev: results on the FinQA dev set at 25 epochs.
FQA-test: results on the FinQA test set at 300 epochs. TQA-dev: results on the TAT-QA dev set
at 50 epochs.

generators perform better than the baseline program generator in program accuracy on ≥ 4-step
programs on both the FinQA dev and test sets. A possible explanation is that while the baseline
program generator is competitive in overall program accuracy, it is biased to performing well
on shorter programs due to the distribution of program lengths in the FinQA dataset. Thus,
finetuning the program generator can help the model generalize better to complex programs
at a slight cost in performance on shorter programs (as indicated by performance of ≥ 4-step
programs).

A.6 CounterComp results on retrieved facts

Table A.5 shows the performance of FinQANet versus FinQANet+CounterComp on retrieved
facts from the FinQA dataset. Similar to gold facts, CounterComp improves program accuracy,
especially on multi-step output.

Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 64.13 57.03 20.56 58.30
+CounterComp 67.52 58.87 22.79 61.18

Table A.5: Ablation results on the FinQANet model, applied to the FinQA dataset with retrieved
facts.

A.7 CounterComp training algorithm

Algorithm 2 details our pre-indexing, sampling, and training processes. Note that the algorithm
is a simplified version of our implementation, e.g. it follows a basic SGD instead of a batch SGD
process, and shows the process for only one epoch.
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Figure A.2: Loss and accuracy curves of finetuned program generators on FinQA on the valida-
tion set

A.8 CounterComp for operators versus operands

CounterComp intervenes on operators, whereas operands provide another possible intervention
target. As mentioned in Section 3.2.1, Learning to Image (L2I) [93], which focuses on coun-
terfactual scenarios for operands, was able to outperform TAGOP by a large margin. L2I was
evaluated on TAT-QA, a dataset with a limited set of possible multi-step operations, resulting
in the challenge of compositional generalization being mainly focused on operands. Since we
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Figure A.3: Program accuracy, % wrong operands, and % wrong operations with respect to
number of steps of finetuned program generators on the FinQA dev set (right column) and test
(left column).

were not able to recreate the results reported in the original L2I paper2, instead we evaluate an
operand-focused approach via a metric learning method similar to CounterComp.

Given an anchor, we generate new samples using the operations laid out in the L2I paper (i.e.
SWAP, ADD, MINUS, etc.), where one or more operands are perturbed in random. We apply
the same perturbation in the facts. This effectively eliminates the ”imagination” component but
provides a baseline that is more comparable to CounterComp. These samples are used as positive
examples, whereas negative examples are randomly sampled from the batch.

Table A.6 shows the program accuracy of CounterComp versus the new method when ap-
plied to each dataset. As expected, TAT-QA is the only dataset responsive to the perturbation
of operands. All other datasets suffer from an exclusive focus on operands. For HiTab and
MULTIHIERTT, the operand strategy also underperforms compared to the baseline FinQANet
performance (see Table 3.13).

2This could be because we failed to generate a TAT-HQA dataset that was comparable to the one used in the
original paper.
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Model FinQA TAT-QA HiTab MULTIHIERTT
CounterComp
(operators) 74.49 70.01 32.61 40.85

CounterComp
(operands) 68.98 70.80 28.88 37.67

Table A.6: Program accuracy of CounterComp versus a sampling strategy focused on operands.
FinQANet was used for all experiments.
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Algorithm 2 Training algorithm

1: Training data: {([Q||F ](i), S(i))}Ii=1

2: Parameters: λ
3: Model: model

// Create the indices for pos and neg samples
4: pos index← {}
5: neg index← {}
6: for i ∈ {1, . . . , I} do
7: O(i) ← s

(i)
1 , s

(i)
4 , · · · , s(i)L−3

8: add to index(pos index, O(i), i)
//p is the perturbed output and l is the location of the perturbation

9: for p, l ∈ possible perturbations(O(i)) do
10: j ← find matching sample(p)
11: add to index(neg index, O(i), (j, l))
12: end for
13: end for

// Train (single epoch, non-batch version)
14: for i ∈ {1, . . . , I} do
15: for j ∈ {1, 2, · · · , 5} do

// Basic model loss
16: L(i) ← loss(model.forward([Q||F ](i)), S(i))

// Pos/neg sampling
17: O(i) ← s

(i)
1 , s

(i)
4 , · · · , s(i)L−3

18: pos sample← sample(pos index[O(i)] \ i)
19: neg sample, l← sample(neg index[O(i)])

// Find candidate intervention spans
20: Q(i) ← find intrvntn span(i)
21: Q(i)

pos ← find intrvntn span(pos sample)
22: Q(i)

neg ← find intrvntn span(neg sample)
// Calculate edit distances and loss

23: NLD(i)
pos ← norm edit dist(Q(i),Q(i)

pos)

24: NLD(i)
neg ← norm edit dist(Q(i),Q(i)

neg)

25: α(i) = 1− |NLD(i)
neg − NLD(i)

pos|
26: pos dist(i)j = ||h(i)

l − h
(i)
l,pos||22

27: neg dist(i)j = ||h(i)
l − h

(i)
l,neg||22

28: L(i)
tripletj

= max{pos dist(i)j − neg dist(i)j + α(i), 0}
29: end for
30: L(i) = (1− λ)L(i) + λ

5

∑5
j=1 L

(i)
tripletj

31: end for
32: L = 1

I

∑I
i=1 L(i)

33: model.backward(L)
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Appendix B

Chapter 4 Appendices

B.1 AliGATr’s experimental settings

For AligNet, we set the alignment parameter D = 0.01. This means that if the horizontal or
vertical distance between a pair of nodes is smaller than 1% of the width or height of the page,
the two nodes are considered aligned (and thus adjacent).

Our GCN backbone is a 2-layer RGAT, implemented by the Pytorch Geometric library.1

We use a 2-layer unidirectional LSTM [49] as the RNN module.
We use a sample of 1 million documents from the OCR-IDL dataset [13] to pre-train the

model. During pre-training, we initialize the token embeddings using RoBERTaBASE[107]. We
use a batch size of 1, a learning rate of 5e−6, the AdamW optimizer [109] with (β1, β2) =
(0.9, 0.999), and train the model for 1 epoch. During fine-tuning for the KIE and RE tasks, we
use a batch size of 16, learning rate of 1e−5, the AdamW optimizer with (β1, β2) = (0.9, 0.999),
and train the model for 1000 epochs. We set the negative sampling rate for the co-distillation
loss as 5.

B.2 Qualitative examples of AliGATr’s performance

Figure B.1 shows the performance of AliGATr on the KIE task on two samples from the FUNSD
dataset. As the figure shows, AliGATr struggles with tokens that do not have a clear alignment
with other elements of a similar class. This can be attributed to AliGATr’s weaker text backbone
compared to other SotA models.

Figure B.2 shows the performance of AliGATr on the RE task on two samples from the
FUNSD dataset. AliGATr recovers all edges that correspond to aligned elements. The perfor-
mance is lower for elements that are not horizontally or vertically aligned. Notably, the rate of
false negatives is higher than false positives.

1https://pytorch-geometric.readthedocs.io/en/latest/generated/torch geometric.nn.conv.
RGATConv.html
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(a) KIE results on form with tabular segments (b) KIE results on sparse form

Figure B.1: KIE results on two samples from the FUNSD dataset. Green boxes show correct
predictions and red boxes show incorrect predictions.

B.3 Constructing β-skeleton graphs
As mentioned in Section 4.2.1, the β-skeleton graph is favored in many graph-based form un-
derstanding models. Consistent with Lee et al. [89], we set β = 1, making our graph a Gabriel
graph-—a subset of Delaunay triangulation [78]. Unlike typical point-based β-skeleton graphs,
our approach involves bounding box β-skeleton graphs. We use each token’s four coordinates
(top-left, top-right, bottom-left, bottom-right) as vertices and employ Delaunay triangulation
from scipy.spatial2 to construct the graph, as shown in figure B.3a. We then remove all in-
ternal connections within a bounding box. While a strict β-skeleton graph would exclude any
edges with vertices inside the circle formed by those edges, this results in excessive sparsity due
to token proximity. To address this, we maintain all edges but simplify by collapsing the four
corners to the center of each bounding box, as demonstrated in figure B.3b.

B.4 Community sensitive self-supervision

B.4.1 Community detection

The AligNet representation can be used to segment the page based on alignments, using a graph
segmentation algorithm. These algorithms are designed to find cliques, partitions, or communi-
ties (i.e. locally dense segments) within the graph. Among such algorithms, the Leiden commu-
nity detection method [178] is a particularly useful approach, because: 1) It focuses on maximiz-

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
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(a) RE results on form with tabular segments (b) RE results on sparse form

Figure B.2: RE results on two samples from the FUNSD dataset. Green links show correct
predictions. Red links show false negatives. Blue links show false positives.

ing the modularity of a network, which is defined as the density of intra-community edges com-
pared to inter-community edges. This is congruent with the segmentation objective in AligNet,
since high-density areas of a page can indicate a segment (see Figure B.4c). 2) The greedy im-
plementation of the Leiden method leads to log-linear complexity in most experimental settings
[85], which offers a runtime advantage. 3) The recursive nature of the Leiden method exempts it
from requiring a pre-determined number of communities. The algorithm stops when the overall
modularity of the network can no longer be improved beyond a minimum threshold.

We use the implementation of the algorithm offered by the NetworkX python library3. Edges
are weighted according to the following distance calculation:

weij =
W(eij)√

(bcenteri − bcenterj )2 + (bmiddle
i − bmiddle

j )2
(B.1)

where W(eij) is a weighing hyperparameter. This weighing scheme allows the Leiden algo-
rithm to consider distance and proximity when identifying the segments. Once the algorithm
converges, each node in the AligNet graph vi is assigned a community label ci.

3https://networkx.org/documentation/networkx-3.1/reference/algorithms/generated/networkx.
algorithms.community.louvain.louvain communities.html
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(a) Point-based β-skeleton graph on bbox coor-
dinates

(b) β-skeleton graph merging internal bbox
connections

Figure B.3: Construction of a β-skeleton graph on a sample form. First, create a point-based
β-skeleton graph with the 4 corners of each bounding box as vertices (a). Next, remove internal
connections within each bounding box and merge the 4 vertices into the centroid (b). The width
of the edges in (b) indicates the edge weight: shorter edges have higher weights.

B.4.2 Community-aware GAT
The classic GAT model [185] learns the representation of each node by convolving its original
representation with those of its neighbors. In the GATv2 convolution [16], this is designed as:

h′
i = αi,iΘshi +

∑
j∈N (i)

αi,jΘthj (B.2)

The attention score αi,j is calculated as:

αi,j =
exp(f⊤LeakyReLU(Θshi +Θthj +Θeei,j))∑

k∈N (i)∪{i} exp(f
⊤LeakyReLU(Θshi +Θthk +Θeei,k)

(B.3)

where f is an affine parameter,N (i) represents the set of nodes adjacent to xi and Θs, Θt, and
Θe are weight parameters corresponding to source, target, and edge representations, respectively.

For Leiden community detection, we setW(eij) to 1 for horizontal edges and to 1
16

for ver-
tical edges. This encourages the algorithm to prioritize the merging of nodes along horizontal
edges, which leads to the creation of horizontally-aligned segments. This is consistent with the
general reading order of English-language documents (left-to-right, then top-to-bottom), but can
be adjusted for other languages.

In a similar fashion, a community detection algorithm can be used to segment the β-skeleton
graph (see Figures B.7 and B.8).
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(a) Raw form (b) AligNet graph (c) Leiden communities

Figure B.4: Visual illustration of how the AligNet representation can enable page segmentation.
The example document is excerpted from FUNSD [63].

B.4.3 Graph Representations and Number of Communities

Graph Structure
# of communities β-skeleton AligNet
baseline 16.56 19.53
1 0.0 11.10
2 20.50 13.45
4 16.68 17.03
8 15.48 -
16 16.24 -

Table B.1: Ablation results on graph representations and community numbers. For the β-skeleton
graph, 2 communities per document yield the best results. For the AligNet graph, the baseline
with the Louvian algorithm’s optimal community number performs best. All numbers reflect F1
performance on the FUNSD dataset.

In this section, we investigate the effect of splitting each page into a predetermined set of
communities. Our ablation experiments aim to compare different graph representations, focusing
on β-skeleton graphs and AligNet graphs. All experiments use β = 1 (Gabriel graph) and a very
small pre-training dataset of 149 documents from FUNSD [63]. We also explored the effects of
different community detection configurations using the Leiden method, focusing on variations in
the resolution parameter γ and explicitly setting community sizes.

Adjusting the resolution parameter γ allowed us to control community detection granularity,
impacting both community count and size. Higher γ values led to more but smaller communities.
However, γ adjustments did not yield consistent results across different graph structures. There-
fore, we predetermined the number of communities by initially assigning nodes to a set number
of groups, allowing the algorithm to refine these into fixed community counts without exceeding
the predefined limits.
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Figure B.5: Training curves for β-skeleton with different community sizes. The number after
”beta” in the legend indicates the number of communities per document. β-skeleton with 2
communities yields the best results. Graphs with 4 and 8 communities have lower convergence
rates compared to the baseline and the graph with 16 communities, despite similar F1.

(a) β-skeleton community distribution, baseline
configuration.

(b) β-skeleton community distribution, # of
comm = 16

Figure B.6: Cumulative counts for community size for β-skeleton graphs. In (a), for graphs
with 5 communities (left-most column), approximately half of them have less than 10 nodes
(blue segment at the bottom), while the other half have 10-25 nodes (green segment). The typ-
ical community size for β-skeleton graphs is 10-25 nodes. In (b), when explicitly setting the
maximum community size to 16, the distribution trend is similar to (a).

For the β-skeleton graph, setting all nodes into a single community prevented the model from
converging. As shown in Figure B.5, models with two communities achieved higher and more
stable F1 scores throughout the epochs. Conversely, increasing the number of communities to
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(a) β-skeleton communities for a form with tab-
ular segments

(b) β-skeleton communities for form with
nested segments

Figure B.7: β-skeleton communities baseline. In uniformly dense documents, communities are
not properly separated (a), whereas distinct communities are formed in less dense and more
structured documents (b).

4, 8, or 16 generally decreased performance. Notably, models with 4 or 8 communities showed
slower convergence rates, whereas configurations with 16 communities unexpectedly improved
convergence compared to the previous two. Further analysis of community size distributions,
shown in Figure B.6, reveals that setting the community number to 16 aligns the distribution
closely with the baseline model, resulting in similar performance trends. Moreover, Figure B.6
also indicates that the maximum viable number of communities for the β-skeleton graph is 12,
highlighting the graph’s limitations due to sparsity.

For AligNet, the results in Table B.1 show a different pattern compared to the β-skeleton
graph. The baseline model, which uses the Leiden algorithm to determine the optimal community
numbers, achieves the best F1 scores. However, explicitly setting a lower number of communities
results in lower F1 scores. The lowest F1 score is observed when all nodes are grouped into
a single community. These findings suggest that AligNet performs optimally with multiple,
smaller-sized communities.

Our findings indicate that community information enhances modeling for both AligNet and
β-skeleton graphs, each benefiting from different community configurations. The β-skeleton
graph performs optimally with larger communities, effectively utilizing extensive neighboring
information, while the AligNet graph is more effective with finer community granularity. For
the β-skeleton graph, smaller communities do not ensure accurate separation into distinct blocks
in uniformly dense documents, as shown in Figure B.7a. Conversely, utilizing larger commu-
nities reduces the focus on smaller clusters and enhances the separation of specific tokens like
“questions” and “answers”, thereby improving the task performance as shown in Figure B.8.
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(a) β-skeleton communities with #comms = 2
for a form with tabular segments

(b) β-skeleton communities with #comms = 2
for a form with nested segments

Figure B.8: β-skeleton communities with number of communities = 2. The visualizations show
the communities generally separating out the ”question” type token on the left and the ”answer”
type tokens in the middle.

B.5 Order sensitive edge representations

Building on the findings of Lee et al. [87], we explored the impact of reading order on graph
structures in our ablation experiments. All experiments in this section are base on a small pre-
training dataset of 149 documents from FUNSD [63].
Raw Distance: We modified our approach by using raw distances instead of the original edge
definition shown in the edge representation described in Section 4.2.2. The distance between
nodes xi and xj is represented as:

ei,j = [blefti − bleftj , brighti − brightj , btopi − btopj , bbottomi − bbottomj ] (B.4)

We hypothesize that this raw distance can implicitly convey reading order, with negative values
suggesting xi precedes xj , and positive values indicating the reverse.
Order-Sensitive Edge Label: We initially defined alignment edge labels as

∃c ∈ {left, center, right, top,middle, bottom}
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Figure B.9: Training curves comparing different edge representations show that incorporating
raw distance improves model performance and accelerates convergence compared to the base-
line. Additionally, utilizing order-sensitive labels along with raw distance leads to even faster
convergence. However, using order-sensitive labels alone results in slower convergence.

as described in Section 4.2.2. For our ablation experiments, we expanded these into twelve
labels:

∃c ∈
{leftpre, centerpre, rightpre,
toppre,middlepre, bottompre,

leftpost, centerpost, rightpost,

toppost,middlepost, bottompost}

The label is determined by the summation of vectors in B.4: negative sums result in one of the
first six labels (which xi precedes xj), while positive sums assign one of the latter six, indicating
xi follows xj . This adjustment aims to further encode the reading order into the graph.

w/ Raw Distance w/o Raw Distance
Order-invariant labels 16.49 15.08
Order-sensitive labels 18.29 12.82

Table B.2: Ablation study results for edge representations in AligNet, showing F1 performance
on the FUNSD dataset. Utilizing raw distance and explicit order-sensitive labels improves model
performance.
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Incorporating raw distance as implicit order-sensitive edge representations improves model
performance, as shown in Table B.2 and Figure B.9. However, adding explicit order-sensitive
edge labels did not consistently enhance performance. The edge labels did improve convergence
when combined with raw distance, but using them alone resulted in slower convergence.

B.6 Representing edge types

Edge Types
# horizontal short horizontal long vertical short vertical long beta horizontal beta vertical beta other F1
1 ✓ 42.99
2 ✓ 38.21
3 ✓ 30.05
4 ✓ 36.82
5 ✓ 39.17
6 ✓ 37.74
7 ✓ 35.99
8 ✓ ✓ 41.24
9 ✓ ✓ 34.53
10 ✓ ✓ 29.38
11 ✓ ✓ 35.46
12 ✓ ✓ 36.92
13 ✓ ✓ ✓ ✓ 37.92
14 ✓ ✓ ✓ 35.51

Table B.3: Ablation results on edge types. The baseline F1 score is 35.81, using all edges in
AligNet. Experiments 1-7 use single edge types, with horizontal short edges performing best.
Experiments 8-11 test combinations of edge types for AligNet. Experiments 12-14 evaluate the
effect of adding horizontal short edges to the β-skeleton graph.

Of the two graph structures, we also perform ablation studies to determine which edge types
are useful for the task. In this section, all experiments use segment loss instead of community
loss, and are based on a small pre-training dataset consisting of 149 documents from FUNSD
[63]. In AligNet, we classified edges into four categories: horizontal-long, horizontal-short,
vertical-long, and vertical-short. We set a threshold λ = 0.3 for short edges, including those
shorter than 30% of the page width or height, and λ = 0.5 for long edges, which are longer
than 50% of the page dimensions. Edges not meeting these criteria were excluded. For the β-
skeleton graph, which primarily comprises short edges, we categorized edges into three groups:
horizontal, vertical, and others, using the same threshold criteria as AligNet for orientation de-
termination.

In our analysis, we used the AligNet graph as the baseline for comparison. The results,
depicted in Table B.3 (Experiment 1-7), indicate that horizontal short edges significantly outper-
form all other types. Vertical short edges from AligNet notably reduced performance relative to
the baseline, while vertical long edges and horizontal long edges showed performance similar to
the baseline. For the β-skeleton graph, horizontal edges provided a slight improvement over the
baseline.

We further tested combinations of edge types, maintaining the same experimental settings
and considering the union of overlapping edge types. As also shown in Table B.3 (Experiment
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8-11), the best results within the AligNet graph were achieved by combining horizontal short and
horizontal long edges, with performance trends similar to those of horizontal short edges alone.
Conversely, combinations of horizontal long and vertical short edges yielded the poorest results,
indicating their limited utility. In the β-skeleton graph (Experiment 12-14), adding horizontal
short edges enhanced performance. Those results show the importance of horizontal short edges
in effectively connecting segment information in this task.
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Appendix C

Chapter 5 Appendices

C.1 A β−skeleton based grounding algorithm
Algorithm 3 describes a possible way to ground a model output O within a page, without apriori
access to the reading order. First, a page is represented by a β-skeleton graph, similar to Lee et al.
[87]. Next, the first and last tokens of O are matched to the page by finding all nodes (i.e. tokens)
on the graph that have a Levenshtein similarity to the first and last token, beyond a threshold T .
Lastly, all possible paths between such nodes are found, and the path with the highest NLS to O
is selected as the matching path.

A threshold can be set on the score of the best matching path S, below which the path is
considered a mismatch and therefore no effective matches are found on the page, e.g. in cases
when the model has hallucinated the output.

This algorithm ensures that any path that is matched to O is within a contiguous 2-D walk
on the page, without the need for information related to reading order. A major downside of
this algorithm is its quartic time complexity, which can be improved by caching partial paths.
Nevertheless, we decided to use a simpler algorithm that relies on the reading order provided by
OCR tools.

C.2 Additional experimental details for SMuDGE

C.2.1 Merging bounding boxes
A sequence of bounding boxes can be merged by finding the left-most, top-most, right-most, and
bottom-most corners in the sequence in order to create a new bounding box. If all bounding boxes
in the sequence form a contiguous segment, merging them would yield their union. However, if
the bounding boxes are in disparate locations, this simple merging algorithm will not yield their
union, and will cover additional areas. As an example, if a ground truth answer spans two lines,
covering the second half of one line and the first half of the next, the merging algorithm will
create a bounding box that covers both lines in full. Despite this limitation, we use this algorithm
because we are only interested in measuring the distance between the resulting bounding boxes
based on their centroids.
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C.2.2 Determining the semantic type of the predicted answer

To classify a string of characters s as numeric, textual, or hybrid, we follow the below algorithm:

1. If every character in s is a digit, then s is numeric.

2. If every character in s is alphabetical, then s is textual.

3. Otherwise s is hybrid.

Note that this simple algorithm renders a large portion of strings such as “1,700” or “(8)” as
hybrid. This is not detrimental to SMuDGE, as it still favors the accuracy of numbers against
non-numeric characters by a factor of 10 to 1.

Note that hybrid strings are split into numeric sequences and non-numeric sequences, e.g.
“1,700” is split into “1700” and “,” and each part is evaluated separately before being combined
in the weighted harmonic mean.

C.2.3 Tuning the weights for the numeric score and the text score

We tuned the weight of num scorei against str scorei by testing {1, 10, 100, 1000}. The tuning
was performed on a subsample of 100 hybrid answers from the DocVQA validation set.

C.2.4 Calculating volatility

We use the standard definition of volatility as scaled standard deviation:

vol([x1, · · · , xT ]) = std([x1, · · · , xT ])
√
T (C.1)

C.3 Determining the types of questions in DocVQA

To determine the type of each question, we passed the following information to GPT-4o: 1) The
document image. 2) The question. 3) The ground truth answer, as provided by the dataset. 4) A
prompt, asking the model to determine the context from which the answer was extracted.

You can see an example prompt below:
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Question: What is the extension number?
Answer: 5177
The above question was answered based on the document attached. What do you think best
describes the context from which the answer was extracted? Select one of the below options.
Simply return the correct option without any explanation.

1. Figure/Diagram

2. Form

3. Table/List

4. Layout

5. Free text

6. Image/Photo

7. Handwritten

8. Yes/No question

9. Other

The experiment ran on September 7th, 2024. The agreement rate with the DocVQA valida-
tion set was 69.5%.

C.4 Extended leaderboard analysis

Figures C.1 to C.3 show the reranking analysis for MP-DocVQA, InfographicVQA, and DUDE
benchmarks, respectively. As with Figure 5.2, our composite score has been calculated with
α = 0.25.

C.5 Extended question type analysis for DocVQA

Figure C.4 shows how the top 10 models on the DocVQA leaderboard would be reranked if our
score was used to evaluate them, broken down by question types.

C.6 Answer type analysis for DocVQA

Figure C.5 shows how the top 10 models on the DocVQA leaderboard would be reranked if our
score was used to evaluate them, broken down by answer types.
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Figure C.1: MP-DocVQA leaderboard.
Figure C.2: InfographicVQA leaderboard.

Figure C.3: DUDE leaderboard.
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(a) Figure/Diagram (b) Form (c) Table/List

(d) Layout (e) Free text (f) Image/Photo

(g) Handwritten (h) Other

Figure C.4: The impact of our score on the ranking of the top 10 models on the DocVQA
benchmark, broken down by question type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure C.5: The impact of our score on the ranking of the top 10 models on the DocVQA
benchmark, broken down by answer type.
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C.7 Answer type analysis for MP-DocVQA
Figure C.6 shows how the top 10 models on the MP-DocVQA leaderboard would be reranked if
our score was used to evaluate them, broken down by answer types.

C.8 Answer type analysis for InfographicVQA
Figure C.7 shows how the top 10 models on the InfographicVQA leaderboard would be reranked
if our score was used to evaluate them, broken down by answer types.

C.9 Answer type analysis for DUDE
Figure C.8 shows how the top 10 models on the DUDE leaderboard would be reranked if our
score was used to evaluate them, broken down by answer types.

C.10 Correlation between answer types and original ranking
Figure C.9 shows the correlation between the ranking of each leaderboard and the ranking pro-
duced by SMuDGE at various various for α, broken down by the type of answer.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure C.6: The impact of our score on the ranking of the top 10 models on the MP-DocVQA
benchmark, broken down by answer type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure C.7: The impact of our score on the ranking of the top 10 models on the InfographicVQA
benchmark, broken down by answer type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure C.8: The impact of our score on the ranking of the top 10 models on the DUDE bench-
mark, broken down by answer type.
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(a) DocVQA (b) MP-DocVQA

(c) InfographicVQA (d) DUDE

Figure C.9: Kendall’s τ correlation between different α settings and the original ranking of each
benchmark, broken down by the type of answers.
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Algorithm 3 β-skeleton walk for placing a sequence of tokens within a page.
// β-skeleton representation of a page

1: Input: G = (N, V )
// Matching target: a sequence of tokens

2: Input: O = o1, o2, · · · , on
// Threshold for token similarity

3: Input: T
// Best path on the graph that matches O

4: Output: P
// The similarity of the best path to O

5: Output: S
// Create empty indices of all possible paths over the graph, starting from o1 ending in on.

6: ps ← {}
7: pe ← {}
8: for i ∈ {1, . . . , |N |} do
9: si1 = NLS(Ni, o1)

10: sin = NLS(Ni, on)
11: if si1 > T then
12: append(ps, ni)
13: end if
14: if sin > T then
15: append(pe, ni)
16: end if

// Search all possible paths and select the one with the highest score
17: for pj ∈ ps do
18: for pk ∈ pe do
19: for path ∈ paths(pj → pk) do
20: if NLS(path, O) > S then
21: S ← NLS(path, O)
22: P ← path
23: end if
24: end for
25: end for
26: end for
27: end for
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[175] Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Document collection visual ques-
tion answering. In Document Analysis and Recognition–ICDAR 2021: 16th International
Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II 16, pages
778–792. Springer, 2021. 19, 71
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