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Abstract

Multimodal learning, which integrates information from vision, language, and
sound, plays a central role in human perception and cognition. Humans naturally
combine inputs from different modalities to understand complex environments, learn
from limited examples, and generalize across tasks. Inspired by this ability, recent
advances in multimodal learning have led to significant progress in tasks such as visual
question answering, image-text retrieval, and multimodal information extraction.
Despite these achievements, existing models face key challenges that limit their
scalability and applicability in real-world scenarios.

One major limitation is the heavy reliance on large-scale, manually annotated
datasets for both pre-training and downstream tasks. Collecting such data is labor
intensive, costly, and difficult to scale, especially for complex modalities such as
open-ended reasoning and video understanding that require contextual and temporal
reasoning. Moreover, these models often struggle to generalize in low-resource
settings, where annotated data is limited. In addition, many state-of-the-art models
are trained in a closed-book fashion, where all knowledge is stored in the model
parameters. This hinders their ability to incorporate external knowledge sources
dynamically, such as structured databases or large language models, limiting their
flexibility and explainability in open-domain reasoning.

This thesis addresses these limitations by advancing data-efficient multimodal
learning through three key strategies. First, we investigate how structured human
priors can be embedded into model design and training to improve learning efficiency
and generalization in low-data regimes. Second, we explore the use of weak supervi-
sion signals, such as natural-occurring image-text pairs and external knowledge bases,
to enhance representation learning without relying on extensive manual annotation.
Third, we introduce preference-leraning frameworks that leverage large language
models to guide training in complex tasks, particularly in video understanding and
open-domain reasoning, where traditional labels are difficult to define or scale. Across
these components, this thesis aims to reduce the need for explicit supervision while
improving model performance, interpretability, and adaptability, contributing to the
development of more scalable and robust multimodal Al systems.
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Chapter 1

Introduction

1.1 Motivation of Research

Human perception naturally combines different types of sensory inputs, such as vision, language,
and sound, to understand and interact with the world. This ability allows people to quickly learn
new concepts, generalize in different situations, and adapt to new tasks with minimal supervision.
Inspired by this, the goal of multimodal machine learning is to develop models that can process and
reason across multiple modalities in a similar way. Recent advances in large-scale pretraining have
led to rapid progress in multimodal tasks like visual question answering(VQA) [9, 180, 166, 2061,
image-text retrieval [151}185]], image captioning, optical character recognition (OCR) [178}211],
and multimodal information extraction [93, 96]. However, several challenges still limit the

scalability and practical use of multimodal systems.

High Dependence on Extensive Human Supervision. Most existing multimodal models [48),
67, 1115, 133) 1134, [143], 212, 276] rely on large-scale human-annotated datasets for both pre-
training and fine-tuning. Although this enables strong performance, creating such datasets is
costly and time-consuming, especially for complex tasks like video understanding or open-ended

reasoning. Reducing this dependence is the key to making multimodal systems more scalable.

Limited Generalization in Low-Data Scenarios. Despite achieving impressive results in
benchmark datasets, multimodal models [49} 167, 115,133,143} [276] often struggle when applied
to unseen data distributions and novel tasks. Unlike humans, who can use prior knowledge and
context to adapt, current models have limited ability to generalize in a few-shot and zero-shot
learning settings. Improving this requires the use of human-inspired priors and weak forms of

supervision.



Lack of Dynamic Knowledge Integration in Open-Domain Tasks. Most state-of-the-art
multimodal models [3} 45} 245 [269]] operate in a “closed-book" fashion, where all knowledge is
embedded within the model parameters. This limits their flexibility and their ability to incorporate
new information or provide explainable reasoning. Open-domain tasks, such as visual question
answering and multimodal reasoning, would benefit from models that can access and use external

knowledge, including structured databases and large language models.

Challenges in Video Understanding and Temporal Reasoning. Video-based tasks, such as
instruction following, captioning, and question answering, introduce additional complexities due
to the need for temporal reasoning and contextual understanding. Traditional supervised learning
approaches require extensive human annotations, making large-scale video dataset annotation
impractical. A promising alternative is to align model predictions with human preferences using
large language models, reducing the need for manual labels.

This thesis focuses on improving data-efficient multimodal learning, with the goal of reduc-
ing human supervision, improving generalization, and enabling models to reason in open-domain
and video-based tasks. To achieve this, we explore three key strategies: (1) incorporating human
priors to improve model adaptability in low-data scenarios; (2) Leveraging weak supervision
from naturally occurring image-text pairs and external knowledge; and (3) integrating preference
learning with large language models to guide training, especially in tasks that are difficult to
annotate, such as video understanding and open-ended reasoning. These strategies aim to reduce

the reliance on labeled data while building more general and practical multimodal systems.

1.2 Thesis Organization

This thesis explores multimodal learning in the data by gradually reducing the dependence on
human supervision. It follows a structured approach, beginning with leveraging human priors,
then incorporating weakly supervised signals, and ultimately utilizing the implicit knowledge
embedded within large language models. Each part builds upon the previous one, forming a
coherent progression from manual encoded knowledge to automated learning from large-scale

models.

Part I: Human Priors for Data Efficiency The first part of the thesis investigates how human
prior knowledge can enhance multimodal learning. Humans naturally use contextual and structural
information to recognize patterns and generalize from limited examples. By embedding these
priors into machine learning models, we can improve data efficiency and learning effectiveness.

Chapter [2] examines the challenges of handwritten text recognition, particularly Arabic script,

2



which exhibits complex structures and contextual dependencies. This chapter explores how human-
inspired priors, such as character dependencies within local contexts, can improve recognition
accuracy. By embedding these priors into the learning process, the proposed approach enhances
model robustness while requiring fewer labeled examples.

Chapter [3] addresses the learning of a few shots, a setting in which models must generalize
from a limited number of labeled samples. This chapter introduces a data augmentation method
guided by human priors, leveraging the intuition that similar objects exhibit similar behaviors. By
generating realistic variations, the proposed approach improves model performance in low-data
scenarios, demonstrating the effectiveness of human-inspired augmentation strategies.

Although human priors provide valuable information to reduce supervision in specific tasks,
a more scalable approach is needed for generalizable multimodal learning. The next part of
this thesis investigates how weakly supervised signals can be leveraged to improve multimodal

representation learning, reducing reliance on explicit annotations.

Part II: Weak Supervision for Multimodal Representation Learning The second part of this
thesis explores how weakly supervised signals can serve as an alternative to large-scale labeled
data. Instead of relying on explicit human annotations, models can utilize naturally occurring
associations, such as image-text pairs, and external knowledge sources to learn meaningful
representations with minimal supervision.

Chapter [ investigates the use of image-text pairs as a source of weak supervision, demonstrat-
ing how leveraging loosely aligned data improves multimodal representation learning.

Chapter [5] extends this approach by integrating structured external knowledge bases and
implicit knowledge stored in large language models to improve reasoning capabilities, particularly
for open-ended tasks such as visual question answering.

Although weak supervision improves multimodal learning across static image-based tasks,
video understanding presents additional challenges due to temporal dependencies and the need for
sequential reasoning. The final part of this thesis explores how large language models can further

reduce annotation costs while improving model adaptability in video-based tasks.

Part I11: Preference Learning for Video Understanding The third part of the thesis focuses on
using large language models to facilitate data-efficient learning in video-based tasks. Unlike static
image-text learning, video understanding requires capturing sequential dependencies and aligning
actions with human intent. By incorporating preference learning with large language models, we
can mitigate the need for extensive human annotations while improving the adaptability of the
model.

Chapter [0 introduces a preference learning framework that leverages large language models



to align predictions with human expectations in video-based tasks such as instruction following,
captioning, and question answering. Learning from implicit signals rather than explicit labels

significantly reduces annotation costs while improving model performance.

Summary of Contributions This thesis contributes to the field of multimodal learning by
reducing the reliance on labeled data through the use of human priors, weak supervision, and
preference learning. By transitioning from explicit supervision toward learning from broader, less-
curated sources, it presents a step-by-step approach for developing more efficient and adaptable
models. The findings support both theoretical progress and practical applications, paving the way

for more scalable and generalizable Al systems in real-word scenarios.



Part 1

Human Priors for Data Efficiency






Chapter 2

Arabic Handwriting Recognition with
Human Prior Knowledge

This chapter explores the incorporation of human prior knowledge into the recognition of Arabic
handwriting. Specifically, the inherent dependence of a letter on its local context is utilized to
improve recognition accuracy. By modeling such contextual dependencies, this work demonstrates
how leveraging domain-specific priors can enhance the performance of handwriting recognition

systems while reducing reliance on extensive labeled data.

2.1 Overview

Handwritten text recognition has been a ubiquitous research problem in the field of computer
vision. Most existing approaches focus on the recognition of handwritten words without consider-
ing the cursive nature and significant differences in the writing of individuals. In this paper, we
address these problems by leveraging an adaptive context-aware reinforced agent which learns the
actions to determine the scales of context regions during inference. We formulate our approach
in a reinforcement learning framework. Specifically, we construct the action set with a number
of context lengths. Given an image feature sequence, our model is trained to adaptively choose
the optimal context length according to the observed state. An attention mechanism is then
used to selectively attend the context region. Our model can generalize well from recognizing
1solated words to recognizing individual lines of text while remain low computation overheads.
We conduct extensive experiments on three large-scale handwritten text recognition datasets. The

experimental results show that our proposed model is superior to the state-of-the-art alternatives.
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Figure 2.1: Two samples from KHATT dataset. The shape of the same character & (red) varies

under different surrounding context, while two different words of U (blue) and (y (green) share a
similar shape. Correctly inferring a character depends on its correlated characters which we denote
as local context. We refer to the number of adjacent characters needed to make an inference as
context length.

2.2 Motivation

Handwritten text recognition (HWR) is commonly used to extract natural languages from images.
It remains an open research problem, in which noisy, real-valued input streams are annotated with
strings of discrete labels, such as letters or words. Handwritten text recognition presents relevant
applications such as bank check reading, mail sorting, and content preservation of historical
documents. Due to the importance of these applications, it has attracted increasing research
attention in recent years.

Despite recent advances in scene text recognition [29, 152, [132, 209, 1236]], recognizing hand-
written text, due to the cursive nature of handwritten characters and significant differences in the
writing of individuals, remains challenging. Several attempts using convolutional neural networks
(CNNps) [23 121} [186] have been shown to produce impressively low error rates on handwritten
word datasets. However, these systems use fixed-size CNNs and focus on isolated words which
are rarely readily available in real world applications. Another general approach is to use recurrent
neural networks (RNNs) associated with connectionist temporal classification (CTC) [82]. They
are capable of recognizing a line of text without word-level segmentation. Doetsch et al [64] use
a stacked bidirectional long short-term memory (BLSTM) [I83} 193] with PCA-based features. In a
recent German handwritten text recognition competition [201]], the top methods use architectures
which generally consist of CNNs and RNNs and achieve remarkable performance. Bluche et
al [26] propose a MDLSTM-attention system to recognize handwritten text from paragraphs by
incorporating multi-dimensional LSTM [81] and attention mechanism. We are inspired by this
idea but propose significant modifications.

One observation is that the reading order of characters is typically established by convention

(e.g., a primary order from right to left in Arabic scripts). Therefore, while LSTM is capable of
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capturing long-term dependencies in the handwritten text recognition task, the local context around
a target position is informative to determine a character, as illustrated in Figure [6.1] Characters
may rely on different scales of context region. For example, due to the cursive writing, inferring
the character in dash-line box may rely on the context in solid-line box. Meanwhile, within the
context region, the characters may contribute differently to the inference. Motivated by this, we
propose to introduce an adaptive context length selection and soft attention mechanism into the
handwritten text recognition task.

To address the above mentioned issues, we present a framework that treats context regions
localization as a decision making process, by which an agent would adaptively select a context
length according to the observed states. In our framework, we prepare a number of context
lengths as the action set. Choosing the context length is formulated as a reinforcement learning
framework. By applying a policy network, an agent learns to select the optimal length of context
region by analyzing the observed content. To keep the policy execution lightweight, we take all
the decisions in a single step which can be seen as an instantiation of associative reinforcement
learning [222]]. Thus we maximize the negative loss as the global reward of our policy network.

We refer the proposed framework as Adaptive Context-aware Reinforced Agent. Our contribu-
tions are summarized as follows:

* We make the first attempt to address the handwritten text recognition problem in a rein-
forcement learning framework. By learning an adaptive context-aware reinforced agent, our
proposed model is capable of selectively attending context regions during inference.

* Unlike previous work on Arabic words recognition, we solve a more challenging task of
Arabic handwritten text line recognition.

* We show that our proposed model generalizes well from isolated words to text lines
recognition and achieves the state-of-the-art performances on several benchmarks.

Our paper is structured as follows. We first overview the recent research on handwritten text
recognition, attention mechanism, and reinforcement learning in Section [2.3] We then present
our model in Section followed by a description of experiments in Section [2.5|and results in
Section[2.5] We conclude and present future directions in Section[5.7]

2.3 Prior Work

We first discuss widely used approaches for handwritten text recognition. We then discuss the
recent advances in attention mechanisms and reinforcement learning which our work builds on.
Handwritten Text Recognition. Traditional approaches to handwritten text recognition are
mainly focused on two key elements: the strategy to extract features and the way to decode the

output of the classifiers to predict the sequence of characters [215]. Poznanski et al [186] propose
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a CNN-N-Gram model to estimate the n-gram frequency profile given a handwritten word image.
Despite of the remarkable performance on several handwritten benchmarks, the manually defined
N-gram CNN model has a large number of output nodes which increases the training complexity.
Shi et al [209] propose a CRNN model to recognize text in the wild and is closely related to our
work. In their work, a CNN model is used to extract feature sequences from input images and a
recurrent network is built for making prediction for each frame of the feature sequence. While
their approach is designed for scene word recognition with a constrained image scale, our model

is focused on handwritten text recognition and can generalize from single word to text lines.

Attention Model. “Attention-based" methods have shown to be successful for machine transla-
tion [14], image caption generation [53,261]] and speech recognition [32,54]. Attention-based
mechanisms can allow the model to learn alignments between different modalities. Many re-
searchers have explored different attention methods to solve the image-based text recognition task.
Deng et al [61] propose a coarse-to-fine attention mechanism to convert images into presentational
markup by constructing a sparse coarse attention to reduce the number of fine attention cells. To
recognize the text in the wild, Lee et al [[123] propose a R2ZAM model to selectively exploit image
features in a coordinated way by incorporating soft attention [261]. Bluche et al [26] propose
a multi-dimensional LSTM architecture associated with an attention mechanism to recognize
handwritten text in paragraphs without explicit segmentation. Different from previous work, we
follow the idea of local attention [162]] which can be viewed as a blend between hard and soft
attention. Our model focuses on the local context around the target states and avoids the expensive
computation incurred in the soft attention. Thus, our model is scalable to images with long
character sequences. Mnish et al [173]] proposes a recurrent neural network to extract information
from an image or video by adaptively selecting a sequence of regions or locations. Different from
their work, we focus on handwritten text recognition and attend different regions during training

and inference.

Reinforcement Learning. Reinforcement learning (RL) is to learn a policy network that deter-
mines certain actions under particular states. It is effective to optimize the sequential decision
problems. Recently, several attempts have applied RL to computer vision tasks [30, 104, 108,147,
253, 1283]]. Zhao et al [283] and Wu et al [253] explore deep RL to dynamically choose layers
of CNNs during inference.A video object segmentation model [108] is proposed to learn object
foreground-context regions by incorporating a reinforcement cutting-agent learning framework. In
our work, we adopt a policy network to select context regions to attend according to the observed
states during inference. Inspired by the BlockDrop model [253]], we view our decision making
process as an instantiation of associative reinforcement learning where all the decisions are taken

in a single step.
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Figure 2.2: The framework of our proposed model. The policy network (PN) is trained to choose
an optimal context length from the action set according to the observed state. The attention
module then selectively attends to this context region and explicitly encode it into the local context.
The context captured by LSTM and the local context are simultaneously taken into consideration

during inference.

2.4 Context-aware Reinforced Agent

In offline handwritten text recognition tasks, the goal is to build a system which, given an
image, produces a prediction of the image transcription. Our insight is that it is beneficial to
simultaneously leverage both local context (as illustrated in Fig. and global context. The
key idea is that we adaptively select context region to attend during inference according to the

observed states. Fig.[2.2]shows an overview of our framework.

Formally, given a dataset S = {(/, 2)}, I is an image and z is the textual transcription. We
take a raw image as input and encode it into a feature sequence s, where s; is the state at time-step
t. We train an adaptive context-aware reinforced agent to predict the context length of s,. We then
derive the expectation ¢; within the window size by leveraging the soft attention mechanism. ¢; is
applied as the adaptive local context during inference. Details of the model are demonstrated in
the following sections.
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Visual Features Encoder

The visual features of an image are extracted from a fully convolutional neural network which
consists of max-pooling layers. We model it using the CNN network [209] for OCR from images
(Specification is given in Table 2.1). The network takes the raw inputs and produces feature maps
that are robust and contain high-level descriptions of the input images. Suppose the feature maps
are of size D x H x W, where D denotes the number of channels and H and W are the height
and width of the feature maps.

According to the translation invariance property of CNN, each column of the feature maps
corresponds to a local image region as the receptive field. The feature maps are then flattened into
a sequence with a length of W, each of which has D x H dimensions. Specifically, each feature
vector of the feature sequence is generated from left to right on the feature maps by column. We
denote the the visual feature sequence as v = (vy, ..., vy ). We follow the same settings [209],
and fix the height of each column H as a single pixel.

Restricted by the sizes of the receptive fields, the feature sequence leverages limited image
contexts. We run a RNN over the feature sequence V' to model the long-term dependencies
within the sequence. Formally, a RNN is a parameterized function that recursively maps an input
vector and a hidden state to a new hidden state. At time ¢, the hidden state is updated with an
input v; in the following manner: h; = RN N (h;_1,v;;6). For simplicity we will describe the
model as a RNN, but all experiments use the BLSTM. We denote the encoded states from v as
h=nhy,..., hy.

Conv MaxPool Conv MaxPool Conv Conv MaxPool Conv Conv MaxPool Conv

3x3 2x2 3 x3 2x2 3x3 3x3 2x2 3 x3 3x3 2x2 2x2
num: 64 num: 128 num: 256 | num: 256 num: 512 | num: 512 512
sh:l sw:l | sh:2sw:2 | sh:1 sw:l | sh:2sw:2 | sh:l sw:l | sh:1sw:l | sh:2sw:l | sh:l sw:l | sh:1sw:1 | sh:2sw:l | sh:l sw:l
ph:1 pw:1 | ph:0 pw:0 | ph:1 pw:1 | ph:0 pw:0 | ph:1 pw:1 | ph:1 pw:1 | ph:0 pw:1 | ph:1 pw:1 | ph:1 pw:1 | ph:0 pw:1 | ph:0 pw:0

Table 2.1: The CNN architecture configuration.

Context Features Decoder

Considering the cursive and imprecise nature in the handwritten text recognition problem, our
insight is that explicitly encoded local context (as illustrated in Fig. [6.I) is complementary to
global context when determining observed states into characters. Given a feature sequence,
learning the context region localization agent would result in a nearly continuous decision-making
process. To simplify this problem, we discretize the context regions into an action set and leverage

a policy network to make decisions in selecting appropriate context regions.
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We introduce an adaptive context-aware agent to select and attend different context regions
given states at different time-steps. We first leverage a BLSTM to extract higher level of abstrac-
tions from the encoder outputs s as s; = RN N (s;_1, hy; 0).

Adaptive Context-aware Reinforced Agent. Our method is based on Q-learning, a kind of
reinforcement learning, which focuses on how an agent ought to take actions so as to maximize
the final reward. The Q-learning model consists of an agent, states and a set of actions.

We adopt s as the sequence states. The searching action set A contains different context
lengths and is denoted as A = {d, ..., d,}, where n is the number of context lengths. For an
input s;, we design a policy network to learn the expected adaptive context-aware reinforced agent,
which determines the action policy a(s;) according to the observed s;. Both the state and action
are finite and discrete to ensure a relatively small searching space. Given a (s, a(s;)), we adopt
the negative loss defined in Sec.[2.4] as our reward. Following the training strategy [253]], we train
the policy network to predict all actions at once which is different from the standard reinforcement
learning algorithms and is essentially a single-step Markov Decision Process (MDP) given the
input states. This can also be viewed as contextual bandit [122]] or associative reinforcement
learning [222].

Formally, given a sequence s, we define an action policy as a multinomial distribution:

T

mw(als) = [ [ p*. @.1)
t=1

b= fpn(s; W)a (22)

where f,,, denotes the policy network parameterized by weights W and p is the output of the
network after the softmax function. We denote the probability of the corresponding action a;,
at time-step ¢ as p;‘. To learn the optimal parameters of the policy network, we maximize the
following expected reward:

J = Egry [R(a)]. (2.3)

To maximize Eqn. [2.3] we utilize policy gradient [222]], one of the seminal policy search meth-
ods [60], to compute the gradients of J. The gradients can be derived as:

VwJ = E[R(a)Vw log mw (als)], (2.4)

Where W denotes the parameters of the policy network. We approximate the expected gradient in
Eqn. [2.4) with Monte-Carlo sampling using all samples in a mini-batch. To reduce variance [222]]
in these gradient estimates, we utilize a self-critical baseline R(%) as in [197] and Eqn. can
thus be rewritten as:

Vwd = E[(R(a) — R(a))Vw log mw (als)], (2.5)
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where a is defined as the maximally probable configuration under the current policy. For example,
a is the action from .4 with the index of argmax(p;).
To further encourage exploration in policy searches, we adopt a parameter « to bound the

distribution p and prevent it from saturating. The modified distribution p’ can be formulated as:
P=ap+t(l-a) (1-p). (2.6)

The modified distribution p’ is applied when we sample the action policies.

Local Attention. Since not every time-step of the sequence is relevant for the prediction, the
model should extract the salient parts. Our local attention mechanism selectively focuses on a
small window of context. In concrete details, given a predicted window size D at time-step ¢,
the source hidden states within the window are denoted as h, b, ). We follow past empirical

work [162]] and compute the attention weight vector as:

a™ = softmaz(s; Wahj,_p,, p)), (2.7)
where W, is the projection vector which will be jointly trained with the model. Then the context
at time-step ¢ is defined as an expectation of s within the window of [t — % - %]:

=Y aih;. (2.8)

i
To take both the global context and explicitly encoded local context into consideration, we use the
concatenation of s; and ¢; as the representation at time-step .

In summary, our model works as follows: f,, is used to decide which window size to attend
conditioned on the input feature sequence. A prediction is generated by running a forward pass
and we aim to maximize the total expected reward, or equivalently minimize the negative expected

reward as our loss.

Transcription Layer

Transcription is a process of converting the per-frame predictions made by the decoder module
into a label sequence. Mathematically, transcription procedure is to find the label sequence with
the highest probability conditioned on the per-frame predictions.

In this section, We adopt Connectionist Temporal Classification (CTC) [82] layer to transform
variable-width feature tensor into a conditional probability distribution over label sequence. The
probability ignores the position where each per-frame prediction is located and avoids the labor of
labeling positions of individual characters.

Formally, let £ be the alphabet and L=LU {—} where — is a blank character. Given an
input image /, the generated predictions m = {7y, ..., 7}, where T is the sequence length and
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7 € RE. The probability distribution over the alphabet L is denoted as v =1vy1,..,yr}. We
denote 7% as the probability of generating label , at time-step ¢. The sequence 7 may contain
blank characters and repeated labels. CTC defines a map function B which maps 7 to a concise
representation [ by removing blank characters and repeated labels (e.g., hhee—ll-lo—=hello).
Thus, the probability of 7 is defined as p(r|y) = Hthl y% . The conditional probability of

observing the output sequence [ is then given as:

p(lly) = > logp(rly). (2.9)
m:B(m)=l

Due to the exponentially large number of summation items, directly computing Eqn. [2.9] is
computationally infeasible. While Eqn. can be efficiently computed using the forward-
backward algorithm [82]].

2.5 Empirical Evaluation

Experimental Setup

In this section, we present our experiment setups by introducing the benchmarks, the experiment
settings and evaluation metrics used for evaluation.

Datasets. We present results on the commonly used handwritten text recognition benchmarks.
The datasets used are KHATT, IAM and RIMES, which contain images of handwritten Arabic,
English and French, respectively. We use the same network for all experiments and no language
specific information is needed except for the character set of each benchmark. A brief description
of these benchmarks is as follows.

The KHATT [164] database is an offline handwritten text recognition database of cursive
Arabic text documents. It contains 2,000 paragraphs by 1,000 writers. The paragraphs are
segmented into a total number of 9, 327 lines. The database is provided with line level annotations
and a standard data set splits.

The IAM [168] database is a handwritten text recognition database of mostly cursive English
text documents. The training set comprises 747 documents (6,482 lines, 55, 081 words), the
validation set 116 documents (976 lines, 8, 895 words) and the test set 336 documents (2,915
lines, 25,920 words). The texts in this database typically contain 50 characters per line.

The RIMES [86] database contains more than 60, 000 words written by over 1, 000 authors in
French. This database has several versions with each one a super-set of the previous one. We use
the latest version presented in a ICDAR 2011 contest for our experiments.

Experiment settings. We follow the lexicon-based methods [7, 24} [70, [186] and use all the
dataset words, both train and test sets, as the lexicon. The model’s predictions are compared with
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the actual image transcriptions. To ease comparison to other algorithms, we report using the same
measure commonly used in the respected benchmarks. On IAM and RIMES, we show our results
using WER and CER measures. Whereas on KHATT, images are annotated at line level which
makes the measure of WER infeasible. We report our results using CER calculated at sequence
level.

Different character sets are used for the benchmarks. More specifically, the character set
for IAM contains the lower and upper case Latin alphabet. Digits are not included as they are
rarely used in this dataset. For RIMES, the character set contains the lower and upper case Latin
alphabet, digits and accented letters. For KHATT, as the images are at line level, the character set
contains the Arabic alphabet, comma, dot, space and unknown letters.

Evaluation protocols. We apply our model to the test set and compare the predicted transcription
with the ground truth transcriptions. The performance can be measured by Word Error Rate
(WER) and Character Error Rate (CER). WER is the ratio of the reading mistakes calculated at the
word level. CER measures the Levenshtein distance normalized by the length of the ground-truth
word. That is, we measure the total number of substitutions, insertions and deletions that would
be required to turn the prediction sequence into the ground-truth one.

Implementation details. In our experiments, we binarize images by applying Otsu’s method
[180]. The heights of images are scaled to 32 and the widths are proportionally scaled with heights.
The size of hidden states for encoder and decoder modules are set as 128. We implement the neural
network using PyTorch. Parameter optimization is performed using the Adam algorithm [116]] with
a batch size of 32 and a learning rate of 0.01. To reduce the effects of “gradient exploding", we use
a gradient clipping of 0.1 [182]. We insert batch normalization layer after each convolutional layer
to accelerate the training process. We empirically set values of actions as A4 = {1, 5,10, 15,20}.
Training the network takes around 20min on KHATT dataset using a single GPU TITAN X.

Results and Discussion

To evaluate the effectiveness of our proposed algorithm, we conduct an extensive set of experiments
on handwritten words recognition benchmarks. We also investigate the ablation studies on
handwritten text lines recognition benchmarks.

Handwritten word recognition task. We compare to the state of the art on IAM and RIMES
datasets in Table [2.2] Our model outperforms previous work by large margins on the handwritten
words recognition benchmarks. Wigington et al [249] reports two results with/without data
augmentation techniques on the test set. For a fair comparison, we compare the performance
under the same experiment settings by leveraging the training set only. As Shi et al [209] is
closely related to our work, we report the performance on two benchmarks. While their work is

focused on scene text recognition, it is still competitive compared to other previous work. Our
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model outperforms Shi et al [209] which indicates the adaptive context-aware reinforced agent

can help with recognizing handwritten words.

Database IAM RIMES
Model WER | CER | WER | CER
Boquera et al [70] 15.50 | 6.90 - -
Telecom ParisTech [85]] - - 24.88 -
IRISA [85] - - 21.41 -
Jouve [85]] - - 12.53 -
Kozielski et al [118]] 13.30 | 5.10 | 13.70 | 4.60
Almazan et al [[7] 20.01 | 11.27 - -
Messina and Kermorvant [[170] | 19.40 - 13.30 -
Pham et al [184] 13.60 | 5.10 | 12.30 | 3.30
Bluche et al [24]] 20.50 - 9.2 -
Doetsch et al [64]] 1220 | 4.70 | 12.90 | 4.30
Bluche et al [25]] 1190 | 490 | 11.80 | 3.70
Shi et al [209] 6.74 | 3.75 | 4.23 | 2.10
Menasri et al (combined) [169]] - - 4.75 -
Poznanski et al [186] 6.45 | 344 | 3.90 | 1.90
Wigington et al [249] 7.18 | 393 | 3.84 | 1.82
Our work 545 | 3.10 | 297 | 145

Table 2.2: Comparison to previous methods on IAM and RIMES (ICDAR2011) datasets. Our
model achieves the state-of-the-art performance by large margins on both benchmarks. All
numbers are in percent.

Handwritten line recognition task. To test the scalability to long sequences (e.g., 60 characters
per sequence in KHATT dataset), we compare our model to the state-of-the-art algorithms on IAM
and KHATT benchmarks. Our models are trained and evaluated using full lines. The comparisons
are as shown in Table We report the performance of Shi ef al’s work [209], as it is closely
related to our work and can be viewed as a baseline. Our model lowers the error rate by 1.7%
compared to the baseline model. On IAM dataset, we compare our model to Bluche et al’s work
which achieves remarkable performance on multi-line handwritten recognition [26/]. Our model
outperforms their work on both line and isolated word recognition.

Ablation studies. To investigate the impact of our proposed model, we conduct an extensive
set of experiments. The first experiment is to validate if local attention mechanism outperforms
global attention over the full sequence. As shown in Table[2.3] the global attention performs worse
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on both benchmarks. One possible reason is that unlike other tasks (e.g., machine translation),
global attention introduces more noise when dealing with long sequences due to the imprecise
nature of handwriting. We then replace the adaptive context-aware reinforced agent with a single
fixed-size. The window size is empirically set as 9, the median value of our action sets. This
modified model performs better than the baseline while consistently worse than our proposed
model on both benchmarks.

Database IAM | KHATT
Model CER CER
Shi et al [209]] 6.20 8.65

Bluche et al (w/o attention) [26] | 6.60 -
Bluche ef al (w/ attention) [26] | 7.00 -

Our work (w/ GA) 8.35 10.20
Our work (w/ fixed-size LA) 5.91 7.62
Our work (full model) 5.15 6.93

Table 2.3: Comparison to previous methods and ablation studies on IAM and KHATT datasets.
Our experiments are conducted on full lines instead of isolated words. All numbers are in percent.
GA: global attention, LA: local attention.

2.6 Summary

In this paper, we have made a pioneer effort to formulate handwritten text recognition in a
reinforcement learning framework and propose a novel adaptive context-aware reinforced agent
to tackle this problem. The proposed method can generalize well from isolated word recognition
to full lines recognition. Comprehensive experiments on commonly used benchmark datasets
demonstrate the effectiveness of the proposed method. In the future, we plan to extend this method

to multi-lines and paragraphs recognition without pre-segmentation.
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Chapter 3

Few-Shot Image Classification with
Knowledge-Guided Data Augmentation

In this chapter, we address the challenge of data scarcity in few-shot image classification tasks
by incorporating structured human prior knowledge into data augmentation strategies. The
assumption that similar objects exhibit similar behaviors is formalized to create synthetic samples,
enabling better generalization from limited data. This approach highlights the potential of

leveraging human intuition to enhance classification models in data-constrained scenarios.

3.1 Overview

Learning to hallucinate additional examples has recently been shown as a promising direction
to address few-shot learning tasks. This work investigates two important yet overlooked natural
supervision signals for guiding the hallucination process — (i) extrinsic: classifiers trained on hal-
lucinated examples should be close to strong classifiers that would be learned from a large amount
of real examples; and (ii) intrinsic: clusters of hallucinated and real examples belonging to the
same class should be pulled together, while simultaneously pushing apart clusters of hallucinated
and real examples from different classes. We achieve (i) by introducing an additional mentor
model on data-abundant base classes for directing the hallucinator, and achieve (ii) by performing
contrastive learning between hallucinated and real examples. As a general, model-agnostic frame-
work, our dual mentor- and self-directed (DMAS) hallucinator significantly improves few-shot

learning performance on widely-used benchmarks in various scenarios.
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(b)

Figure 3.1: Learning a hallucinator to generate useful examples for few-shot learning through

extrinsic and intrinsic supervision.

3.2 Motivation

To alleviate the reliance on large, labeled datasets for learning deep models, few-shot learning
has attracted increasing attention, with the goal of learning novel concepts from one, or only
a few, annotated examples [72) (73} 213} 1233, [242]]. Existing work tries to solve this problem
from the perspective of meta-learning [20, 203, 225]], which is motivated by the human ability
to leverage prior experiences when tackling a new task. Unlike the standard machine learning
paradigm, where a model is trained on a set of examples, meta-learning is performed on a set
of “simulated” tasks, each consisting of its own support and query sets [233]. The support set
is used as the few-shot training data for the leaner, and the query set is used as the test data to
evaluate the leaner’s quality. By sampling small support and query sets from a large collection of
labeled examples of base classes, meta-learning based approaches learn to extract task-agnostic

knowledge, and apply it to a new few-shot learning task of novel classes.

One notable type of task-agnostic (or meta) knowledge comes from the shared mechanism
of data augmentation or hallucination across categories [/4, 204} 244, 280]]. Since synthesizing
raw images is often challenging or sometimes unnecessary, recent work has instead focused on
hallucinating examples in a learned feature space (74,204, 244, 12551275, 280, 281]]. This can be
achieved by, for example, integrating a “hallucinator’” module into a meta-learning framework,
where it generates hallucinated examples guided by real ones from the support set [244]]. The
hallucinator captures the intra-class variation shared across categories, which generalizes to
unseen classes. The learner then uses an augmented training set, which includes both the real and
the hallucinated examples to learn classifiers. The hallucinator is meta-trained end-to-end with the
learner, through back-propagating a classification loss based on ground-truth labels of query data.

Despite the success of prior approaches, we argue that solely using the classification loss on the

small query set as supervision is insufficient to adjust the hallucinator to produce effective samples
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in the few-shot regime. Therefore, the performance of the classifiers trained on hallucinated
examples is still substantially inferior to that of the classifiers trained on real examples [57, 210].
To overcome this challenge, our key insight is that there are two important yet under-explored
natural signals for guiding the data generation process — extrinsic and intrinsic supervision. This
work explores how to leverage such supervision to enable hallucinating examples in a way that

helps the classification algorithm learn better classifiers.

The first source of supervision is an extrinsic signal from large-sample learning. As
illustrated in Figure 3.1} to be most helpful as a hallucinator, a classifier trained on the hallucinated
examples (which are generated from a small support set of real samples) is expected to be close
to a strong classifier that would be trained on a large amount of real examples . This extrinsic
signal from large-sample learning is a natural source of supervision for few-shot learning, but it
has been largely overlooked in prior work. While we have very little data on novel classes, we do
have a large number of real examples on base classes. Therefore, on base classes we introduce a
“mentor” model, which is a strong classifier pre-trained on all the available large amount of real
examples. Correspondingly, the classifier trained on hallucinated examples along with few real

support examples becomes the “student.”

We now minimize the discrepancy between the student and mentor classifiers. A straightfor-
ward approach would be minimizing the distance between the two classifiers in the parameter
space [33} 1242, 243]], which tends to be difficult and noisy due to the lack of suitable metrics.
Hence, we instead encourage the output predictions from the student classifier (e.g., the distri-
bution of class probabilities) to be similar to those predicted by the mentor on the query set.
This way of learning is reminiscent of knowledge distillation [92]]. By doing so, the hallucinator
explicitly learns how to produce examples that enable the student classifier to mimic the behavior
of the mentor. Note that the student-mentor pairs are only used for meta-training on base classes;

there are no mentor classifiers for meta-testing on novel classes.

In practice, the student and mentor classifiers could be quite different from each other at the
beginning of the training, if the mentor is produced by a large amount of real examples while the
student has access to only few real examples. To address this issue, we propose a progressive
guidance scheme inspired by curriculum learning [21]], and explore two dual directions — (1)
we start with a mentor and a student, both trained on a small number of real examples, and we
gradually strengthen the mentor by re-training it with increasing number of real examples; and (2)
we start with a mentor and a student, both trained on a large number of real examples, and we
gradually weaken the student by removing its real examples. During both of the processes, the

hallucinator is also trained progressively.

The second source of supervision is the intrinsic label consistency between hallucinated and
real examples. As illustrated in Figure [3.1] hallucinated and real examples belonging to the same
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class should be pulled together, while simultaneously pushing apart clusters of hallucinated and
real examples from different classes. However, without appropriate constraints, the hallucinated
examples might be noisy and spread over across class boundaries (e.g., a hallucinated dog example
resides within the cat cluster). To this end, we formulate the problem as supervised contrastive
learning, inspired by recent progress on self-supervised learning [43, 90, (112} 252]. We treat
hallucinated and real examples as different views of the data, and generate the positive and
negative pairs correspondingly. For example, the positives are drawn from both hallucinated and
real samples of the same class. Note that different from conventional contrastive learning that
learns an embedding space (where the data augmentation is pre-defined), we use the contrastive
loss to self-direct the hallucinated examples in the right class cluster or manifold (where is the

feature space is pre-trained).

As shown in Figure during meta-training, we sample a few-shot task (e.g., 2-way 2-shot
classification) on base classes (Fig. [3.Th). Extrinsic supervision: The desired classifier for this
task is the (dashed) one that would be learned from a large set of real examples (Fig. [3.1p). We
explicitly introduce this strong classifier as “mentor” (abundant examples are available for base
classes). We then learn the hallucinator in a way that minimizes the discrepancy between the (solid)
“student” classifier (trained on hallucinated examples together with the few real examples) and
the (dashed) mentor classifier (Fig. [3.1f). Intrinsic supervision: Through contrastive learning,
clusters of hallucinated and real examples belonging to the same class are pulled together (—+—),
while simultaneously pushing apart (<) clusters of hallucinated and real examples from different
classes (Fig.[3.1c). During meta-testing, we use the meta-trained, fixed hallucinator to generate
additional examples as augmentation for learning classifiers on novel classes. Real examples as

light diamonds, hallucinated examples as dark triangles, and classifiers as solid or dashed lines.

Our contributions are three-fold. (1) By jointly leveraging the complementary extrinsic
and intrinsic supervision, we develop a general meta-learning with hallucination framework. (2)
We not only extract shared knowledge across a collection of few-shot learning tasks, similar
to most existing meta-learning methods, but also progressively exploit extrinsic knowledge in
large-sample models trained on base classes as mentor to guide hallucination and few-shot
learning. (3) Through a contrastive learning process, the hallucinated examples are self-directed
to maintain the intrinsic label consistency with real examples. Our dual mentor- and self-directed
(DMANS) hallucinator is model-agnostic, which can generate data in different feature spaces and
can be combined with different classification models to consistently boost their few-shot learning
performance on a variety of benchmarks, including ImageNet1K [88, 244, minilmageNet [[193,
233]], tieredlmageNet [[195], and CUB [233]].

22



3.3 Prior Work

Generative Models. Generative models have recently shown great potential as a way of data
augmentation for few-shot learning [[10} (74} 244, 280]] and semi-supervised learning [57], but the
improvement of recognition performance is still limited [210]. The generation can be performed
either in image space [S0] or in a pre-trained feature space [88]], by using an auto-encoder architec-
ture [204], GAN-like generator [244]], or the combination of GANs and auto-encoders [254} 255]].
Our work is independent of these different types of generators, and we focus primarily on how
to train the generator to improve its use for recognition tasks by leveraging large amounts of
auxiliary data and self-supervision.

Few-Shot Learning and Meta-Learning. Meta-learning, or the ability to learn to learn [225]],
is a powerful framework for tackling the problem of learning with limited data. Most of modern
approaches fall into one of the categories between optimization and metric learning based methods.
Optimization based methods learn how to do fast adaptation to novel tasks, by learning appropriate
parameter updates [193]] or a general initialization [73]. Adaptation could be done in the original
feature space [L1} 12} [73] or in an embedded space [199]. Prior work on few-shot domain
adaptation [113} 200] learns how to balance cross-domain clustering that is domain invariant.
Metric learning methods focus on learning a similarity metric [[117]]. Several distance functions
have been explored, from the Euclidean distance [6, 213]] and the cosine distance [44, 169, [76] to
more complex parametric functions and metrics [[142, 221} 233][273]], or using an additional task-
specific metric [179]. Most methods often treat each category separately without considering the
relations between them. Graph neural networks are thus introduced to leverage those relations (77,
114, 202]]. To conduct meta-learning more effectively, recent approaches often first compute a set
of features of the images using a trained feature extractor network. Given that high-dimensional
features have better modeling capacity but are computationally expensive to work with, each
meta-learning task is then formulated as a convex optimization problem and solved in its low-
dimensional dual space [22}126]. Our hallucinator component is generic and can be integrated
into different meta-learning methods.

Teacher-Student Networks. Learning a model under the guidance of a teacher or mentor
model has been widely used for model compression. Compressing one cumbersome or several
models into a smaller model is a classic idea [28, 165] and has been popularized by the distillation
formulation in [92]. Recent work focuses on advanced techniques to guide the distillation
process [3,1171,1262]] and its applications to practical problems, such as object detection [247, 259]]
and distributed machine learning [8]]. In addition, knowledge distillation has been extended to
address other tasks, including multi-task learning [224] and continual learning [[146} 205)]. To the
best of our knowledge, our work is the first to introduce a mentor network for learning recognition

task oriented generative models. Importantly, different from existing work that addresses models

23



of different capacity, we consider models of the same capacity but trained on real or synthetic
data.

Contrastive Learning. Powerful self-supervised representation learning approaches have
recently been developed in image domain via manually specified pretext tasks. Examples include
auto-encoding methods which leverage contexts [[183]], channels [279], and colors [278]] to recover
the input under some corruption. Some pretext tasks form pseudo-labels by relative patch
locations [63]], image rotations [78]], and jigsaw puzzles [[176]. These pretext tasks are collected
under the umbrella of the contrastive learning framework, which maintains the relative consistency
between the representations of an image and its augmented views [43] 146,84, 90, 177, 226, 252,
267, 1271]. In our work, we treat hallucinated and real examples as different views of the data

and use the contrastive loss to self-direct the hallucinated examples in the right class cluster or

manifold.
rrrrrrr Back prop
aug
Ssupp Ssupp === sample
~— - - s =)  Build
_ _ upp sog —  Forward
G % ———
H SsupIJ? -
- J s e
B 7 | s
B -
Slurge

(a) Meta-training on base classes (b) Meta-testing on novel classes

Figure 3.2: Overview of our dual mentor- and self-directed hallucinator “DMAS,” learned through

extrinsic and intrinsic supervision. Real examples as diamonds, hallucinated examples as triangles.

3.4 Dual Mentor- and Self-Directed Hallucinator

Few-Shot Learning Setting. We are given a set of base categories Cp.s. and a set of novel
categories Cyovel, Where Cpase N Crovel = 0. We have a base dataset Dy, with a large amount of
annotated training examples per class and a novel dataset D,,ov With only few annotated training
examples per class. Few-shot learning aims to learn a good classification model A for C,,o based
on the small dataset D,,..;. Recent work achieves this through a meta-learning procedure [233]],
which learns from a collection of sampled few-shot classification tasks on Cj.... Given a set
of categories C and a set of data D, an m-way k-shot task is composed of a subset Cg,, of m

categories from C, a support (training) set S, of k& examples from D for each class in Cgyp,, and
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a query (test) set Squery Of one or few examples from D for each class in Cy,,. Meta-learning is

performed in two phases as follows.

During meta-training, a classifier learns from a collection of m-way k-shot tasks sampled
from Cypase and Dy.ee. While our work is agnostic to different classification models, here we
take a simple cosine classifier [44] as an example — a variant of prototypical networks [213]]
which uses the cosine instead of the standard Euclidean distance function. In each iteration, we
compute a prototype representation for each class in Cq,p,. Each example is fed to an embedding
function f, with learnable parameters §. The prototype of class c is the mean of the outputs
through fy of examples from c in Sy,p. We then feed the examples in Sqyery to the classifier and
update the parameters 6. During meta-testing, we use the same approach and build our previously
meta-learned classifier with one unique m-way k-shot task, using Coye1 instead of Cpase and Dyoyel

instead of Dy,.s.. We evaluate the final classifier on unseen examples with labels from C,oyel-

Meta-Learning with Hallucination. Incorporating a generative model which produces
additional examples for data augmentation has been shown to facilitate meta-learning [74, 204,
244]). While our approach does not rely on specific types of generative models, here we focus on
the feature hallucinator in [244], due to its simplicity and state-of-the-art performance, which
is implemented as a light-weight multi-layer perceptron (MLP) module. The hallucinator is
a function G(z, z;w) : R4 dueise — R? that produces examples in a pre-trained feature space
of dimension d, where x is the feature vector of a real example, z is a random noise vector
of dimension d,,.;s. sampled from a Gaussian distribution, and w is the parameters of G. The

hallucinated example G(x, z; w) is of the same category as .

Now the procedure of meta-learning integrated with the hallucinator G is illustrated in Fig-

ure 3.2} During each iteration of meta-training, the support set Sy is first augmented by a

gen

generated set S& train

wppe Specifically, for each class y, we sample k&

examples (x,y) in Seypp,

sample associated random noise vectors z, and then add (', y) to 8§, where 2/ = G(x, z; w).
Our final support training set is S38 = Sqpp U S&,p- As long as G is differentiable with

respect to the generated set Ss(flpp,

back-propagated into G to produce useful hallucinated examples. Through meta-training over

the gradients of the final classification loss on Sery can be

a large amount of iterations, the hallucinator learns to capture shared modes of variation across
different classes and can thus generalize to unseen classes. During meta-testing, we use the
learned G to generate additional examples for recognizing categories in Cyoyer.

Hallucination with Extrinsic Guidance from Mentor. The end-to-end optimization of the
classification loss enables the hallucinator to produce useful examples in the few-shot regime.
However, since the classification loss is computed on small query sets, such supervision solely
is insufficient to adjust the hallucinator to produce discriminative examples that most contribute

to formulating classifier decision boundaries. Hence, the resulting classifier trained on the
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hallucinated examples could be still far away from the desired classifier that would be learned
from a large set of real examples. This makes it critical to close the gap between these two
classifiers. In fact, during meta-training, a large amount of annotated examples are already
available for the base categories Cy,.s, Which allows us to explicitly obtain the classifier trained on
a large set of examples and use it to guide the learning of the hallucinator.

Formally, we treat the classifier trained on the augmented set of the hallucinated examples and
the few support examples as a student model, and we treat the classifier trained on a large set of
real base examples as a mentor model. Our goal then is to learn the hallucinator by minimizing
the discrepancy between the student classifier and its mentor model. While a naive approach
would be to directly characterize the difference between their model parameters, it turns out to be
challenging due to the high dimensionality of the parameter space. Inspired by the teacher-student
network [92]], we instead enforce the student to mimic the distribution of class probabilities
predicted by the mentor network, which can be viewed as a way of regularization to improve the
generalization performance of the student model [[172].

As shown in Figure [3.2] meta-training the hallucinator G is conducted in the following way.
We first sample a large set of examples Sjage With kjaree €xamples per class in Cpage and train
a mentor classifier using all the examples in Sjage. During each iteration of meta-training, we
augment S, by generating new examples using the hallucinator G. We train the student classifier

on 83 ¢ through the knowledge distillation loss function in [92]:

Lex(s,m,y) = Lcr(o(s),ey) + Mfﬁcpz(o(%), 0(%)), (3.1

which consists of a standard cross-entropy loss (the first term) and an additional component that
measures the difference between student and mentor outputs (the second term). s and m are the
logits produced by the student and the mentor, respectively, for a test example of label y in Syyery.
o denotes the softmax function, Lcg denotes the cross-entropy loss, e, is the one-hot encoding of
y, and « is a trade-off hyper-parameter that balances the two terms. Note that 7, > 0 is a critical
learnable parameter called temperature, which smooths the probability distribution produced by
the mentor and makes the corresponding decision boundary easier to learn for the student than the
original one.

Self-Directed Learning with Intrinsic Label Consistency. While the hallucinated examples
directed by the extrinsic mentor are useful, without other constraints they might spread over across
class boundaries and thus be noisy. Inspired by supervised contrastive learning [112]], we enforce
intrinsic label consistency between hallucinated examples and real examples.

Formally, suppose we sample N real examples per mini-batch and generate M hallucinated
examples, resulting in a batch Z of M + N examples. Given an anchor example z;, P(i) is the

set of indices of all positives in the batch distinct from ¢ and A(i) = I\{i}. The supervised
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contrastive loss is defined as L’m = N + ~ ZMHV L; and

exp(z; - T,/ T2)
L; = E 3.2
| Y G-

ac€A(i) exp(x, xa/7-2)

where 7, > 0 is a temperature parameter and | P(4)| is its cardinality. This loss allows the real

and hallucinated examples from the same classes to attract mutually, while they repel the other
examples from different classes in the mini-batch.
Thus, our dual mentor- and self-directed hallucinator can be derived from Eqn.|3.1{and Eqn.
as
L = Lex + BLin, (3.3)
where [ is a trade-off hyper-parameter that balances the two terms. Minimizing Eqn. over
Squery thus guides the hallucinator towards producing useful examples that help the student

classifier recover the decision boundary from the mentor model.

Progressive Guidance from Mentor Model

Under the framework of meta-learning with extrinsic guidance, a straightforward way is to build
the mentor model by using k... as large as possible (potentially the full set of Dy, ) and keep it
fixed, and to train the hallucinator and student classifier using only few real examples. By doing
so, however, we face the problem that the decision boundaries obtained by those two models
could be very far from each other at the beginning of the training, making the learning of the
hallucinator difficult. To address this issue, we perform the learning process in a progressive
manner with varied number of real examples. We start with a mentor and a student which have
access to a not too different number of real examples, and then progressively change the number
of examples, so that the decision boundaries transform in a smooth manner. Concretely, this can
be achieved in the following two dual directions.

Progressive Guidance by Strengthening the Mentor. In this setting, both the student and
the mentor start with a small number of real examples. However, the number of real examples
for the mentor gradually increases over the training. The objective for the hallucinator then is
to learn to generate additional examples so that its corresponding student can always match the
performance of the mentor, whenever the mentor is re-trained with more samples and becomes
stronger. More specifically, during meta-training, the support set S, of each few-shot task is
composed of very few examples per class, ki ain, as in regular meta-training. At the beginning, we
sample Siarge, With Ki,ree being set to the value of k.. We then progressively sample new real
examples in the same amount for each class and add them into Sjarge. Klarge grows from ki, to
kmax in a linear or logarithmic scale, where k., is the maximum available number of examples

per class in Dy,,s.. We re-train the mentor model every time we add new examples.
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Figure 3.3: Illustration of progressive guidance by weakening the student classifier in the case of

recognizing two classes.

Progressive Guidance by Weakening the Student. In this setting, both the student and
the mentor start with a large number of real examples. However, we gradually remove the real
examples for the student over the training. The objective for the hallucinator then is to learn to
generate the missing examples based on the remaining real examples. This allows the student to
preserve or stabilize the original decision boundary formulated by the large set of examples (i.e.,
the mentor boundary), when the student has access to less real examples and becomes weaker.
More specifically, during meta-training, the support set S, of each “few-shot” task is composed
of a large number of examples per class, unlike regular meta-training. This number of examples
per class in Squpp, Ktrain, decreases in a linear or logarithmic scale, until it reaches a small value.

As shown in Figure[3.3] we start with a large number of real examples for both the student and
the mentor, and learn the corresponding mentor model (the leftmost image). We then gradually
remove the real examples for the student over the training. The hallucinator learns to generate
additional examples based on the remaining real examples to preserve the mentor decision

boundary (the middle two and rightmost images).

3.5 Empirical Evaluation

We now present experiments to evaluate our dual mentor- and self-directed (DMAS) hallucinator
on few-shot classification, and study the effect of progressive guidance from extrinsic and intrinsic
supervision. Since DMAS is agnostic to the choice of classification models, we validate its
generalizability to different types of features and various meta-learning models. In particular, we
focus on simple cosine classifiers, which have been recently shown to achieve very competitive
few-shot performance [44].

Datasets. We evaluate on four widely-used datasets: (1) minilmageNet [193] 233]], with
64, 16, and 20 classes for meta-training, meta-validation, and meta-testing, respectively; (2)

tieredlmageNet [[195], with 20, 6, and 8 super-classes for meta-training, meta-validation, and
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minilmageNet tieredlmageNet Method Backbone k=1 5
Method Backbone 1 s 1 s ProtoNet [213 ResNet12 [66.09 4 0.92 82.50 + 0.58
i ] X . .3 .
Cosine Classifier [24] | ResNet12 |55.43 +0.81 77.18 = 0.61 61.49 +0.91 82.37 + 0.67 RelationNet [4/l221] | ResNet34 | 66.20 £ 0.99 82.30 =+ 0.58
DEML [? ] ResNet50 |66.95 + 1.06 77.11 + 0.78
TADAM [I79] ResNet12 |58.50 +0.30 76.70 % 0.30 - -
MAML [44. ResNet34 | 67.28 4+ 1.08 83.47 £ 0.59

ECM [194] ResNetl2 159.00+ - 7746+ - 6399+ - 8197+ - Cosine Classifier [44] | ResNet12 [ 67.30 £ 0.86 84.75 + 0.60
TPN [156] ResNetl2 5946+ - 7565+ - 5991 +0.94 73.30 +0.75 MatchingNet [233 ResNet12 | 71.87 & 0.85 85.08 &+ 0.57
PPA [188] WRN-28-10|59.60 £ 0.41 73.74 £ 0.19 - _ DeepEMD [273] | ResNetl2 | 75.65 + 0.83 88.69 + 0.50
ProtoNet [213] ResNet12 |60.37 +0.83 78.02 + 0.57 65.65 £ 0.92 83.40 & 0.65 DMAS (Ours) ResNet12 | 78.47 + 0.62 90.67 = 0.39
WDAE-GNN [77] | WRN-28-10|61.07 +0.15 76.75 £ 0.11 68.18 & 0.16 83.09 & 0.12
MTL [218] ResNet12 |61.20 + 1.80 75.50 & 0.80 - - (b) Test accuracy (%) on the novel
LEO [199] WRN-28-10|61.76 £ 0.08 77.59 & 0.12 66.33 & 0.05 81.44 % 0.09 classes for CUB. ‘+’ indicates 95% con-
DC (48] ResNet12 |62.53 £0.19 79.77 + 0.19 - - fd . 1 K
MetaOptNet [126] ResNet12 |62.64 +0.82 78.63 + 0.46 65.99 + 0.72 81.56 & 0.53 ence ntervals over tasks.
FEAT [266] ResNet24 |62.96 +0.20 78.49 + 0.15 - - Mothod Backborel el 2 5 10
MatchingNet [233] ResNet12 |63.08 £+ 0.80 75.99 £ 0.60 68.50 £+ 0.92 80.60 + 0.71 ProtoNet [213] ResNet10 |39.3 54.4 66.3 71.2
CTM [131] ResNetl8 |64.12 +0.82 80.51 & 0.13 68.41 +0.39 84.28 + 1.73 ProtoNet Gen [244] ResNet10 [45.0 55.9 67.3 73.0
RFS [227] ResNetl2 |64.82 +0.60 82.14 + 0.43 71.52 +0.69 86.03 = 0.49 MatchingNet [233 ResNet1043.6 54.0 66.0 72.5
DeepEMD [273] ResNetl2 |65.91 +0.82 82.41 = 0.56 71.16 = 0.87 86.03 = 0.58 Logistic regression [S6] ResNet10384 51.1 648 71.6

Logistic regression Analogies [88] | ResNet10 |40.7 50.8 62.0 69.3
DMAS (Ours) ResNetl2 |67.42 +0.28 83.74 + 0.20 73.54 + 0.73 86.27 £ 0.47 )

Prototype Matching Net Gen [244] | ResNet10 |45.8 57.8 69.0 74.3

Cosine Att. Weight [76] ResNetl0 46.0 57.5 69.1 74.8
(a) Test accuracy (%) on the novel classes for minilmageNet  pmas Ours) ResNet10 465 583 69.7 75.1

and fieredlmageNet. ‘+’ indicates 95% confidence intervals
(¢) Top-5 accuracy (%) for 311-

way novel-class classification on Ima-
geNetlK. The 95% confidence inter-
vals for all number are of the order of
0.2%.

over tasks.

Table 3.1: Comparisons with state of the art on four widely-benchmarked few-shot classification
datasets. With simple cosine classifiers, our DMAS significantly and consistently outperforms all

the baselines (including sophisticated classification models) across the board.

meta-testing, respectively; (3) ImageNet1K [88, 244], with 193 base and 300 novel classes for
cross-validation and 196 base and 311 novel classes for evaluation; (4) Caltech-UCSD Birds-
200-2011 (CUB) [235,1266], with 100, 50, and 50 classes for meta-training, meta-validation, and
meta-testing, respectively.

Implementation Details. For a fair comparison with previous work, we employ ResNet10 as
our model backbone for ImageNet1K [244] and ResNetl12 as our model backbone for the other
three datasets [273]. As is commonly implemented in the state-of-the-art work, we follow the
feature pre-training step [273]]. We first train a convolutional network based feature extractor on
the base classes. Then we extract and save these features to disk, and use these pre-computed
features as inputs for meta-learning. We follow the feature hallucinator architecture in [244] and
use a three layer MLP with ReLLU as the activation. The embedding function fy of our cosine

classifier is a two layer MLP.
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During progressive guidance by weakening the student, we start training the mentor with
Flarge = 256, and we decrease the number to 1 in a logarithmic scale over 12,000 iterations.
We initialize the learnable parameters including the temperature 7; to 7, the scale factor of the
cosine distance to 75, and the temperature 7, to 0.07. As the performance is not sensitive to
trade-off hyper-parameters o and /3, we empirically set them to 5 and 1, respectively. The number
of hallucinated examples is a hype-parameter ranging from 2 — 10. The saturation point of
hallucinated examples on improving performance is typically 6. For ImageNet1K, we follow the
settings in [244]] and average over 5 pre-determined k-shot (i.e., k = 1, 2,5, 10) tasks. We report
the mean top-5 accuracy and the 95% confidence intervals for all number are of the order of 0.2%.
For the other datasets, we average over 1, 000 randomly sampled tasks and report the accuracies

and the 95% confidence intervals.

Method Feature | k=1 2 5 10

Cosine Classifier (baseline) Standard | 37.8 51.0 65.5 72.5
Cosine Classifier Gen (baseline) | Standard | 42.6 53.9 664 72.6
Cosine Classifier DMAS w/ in Standard | 43.4 54.7 67.1 73.5
Cosine Classifier DMAS w/ ex Standard | 44.5 56.2 68.6 74.2
Cosine Classifier DMAS w/ ex! | Standard | 44.3 56.3 68.8 74.2
Cosine Classifier DMAS w/ ex] | Standard | 454 56.7 68.8 74.8
Cosine Classifier DMAS (full) | Standard | 46.5 58.3 69.7 75.1

Table 3.2: Ablation studies (top-5 accuracy) on ImageNet1K 311-way classification.

Comparisons with State of the Art. We compare our model with the state-of-the-art methods.
We report 5-way 1-shot and 5-way 5-shot performance on three benchmarks: minilmageNet,
tieredlmageNet, and CUB, and 311-way k-shot on ImageNetl1K. The results are summarized
in Table[3.1] Under the same backbones, our model consistently achieves the best performance
on all the datasets and across different sample-size regimes, even outperforming sophisticated
methods, such as the attention based classifier ‘Cosine Att. Weight’ [[76] and DeepEMD [273]].
In particular, our 1-shot model outperforms state-of-the-art methods by significant margins, e.g.,
1.5% on minilmageNet, 2% on tieredlmageNet, and 2.8% on CUB.

Ablation Analysis. To unpack the performance gain and understand the impact of different
components, we perform a series of ablations on the challenging ImageNet1K dataset. Tables [3.2]
summarizes the top-5 accuracies and the 95% confidence intervals for all number are of the
order of 0.2%: : (1) different pre-trained feature spaces for hallucination — ‘standard’ (the
feature backbone is a ResNet10 pre-trained using a standard cross-entropy linear classifier on
base classes) vs. ‘cosine’ (the ResNet10 feature backbone is pre-trained using a cosine classifier);
(2) different types of classifiers — prototypical net vs. cosine classifier; (3) impact of different
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Method k=1 5

ProtoNet [213]] 50.01 +£0.82 72.02 4+ 0.67
MatchingNet [233]] 51.65+0.84 69.14 +0.72
Cosine Classifier [44]] 44.17 £0.78 69.01 + 0.74
Linear Classifier [44]] 50.37 =0.79 73.30 £ 0.69
KNN [141] 50.84 +£0.81 71.25 +0.69
DeepEMD [273] 54.24 +0.86 78.86 4+ 0.65
DMAS (Ours) 63.72 + 0.29 81.24 + 0.20

Table 3.3: Cross-domain evaluation (minilmageNet — CUB). Our model outperforms other

baseline methods by large margins, showing the generalization of our learned hallucinator.

sources of supervision and progressive training. w/ aug: with standard data augmentation.
Gen: with a plain hallucinator [244] trained using the classification loss on the query set solely.
DMAS w/ ex: DMAS trained only under the guidance of the mentor without progressive training.
DMAS w/ ex?: progressive guidance through strengthening the mentor. DMAS w/ ex]: progressive
guidance through weakening the student. DMAS w/ in: DMAS trained only in a self-directed
way through contrastive learning. DMAS (full): trained under both (progressively) extrinsic and
intrinsic supervision.

Robust to different types of pre-trained features and classifiers. Table[3.2] shows that DMAS
can effectively hallucinate data in different types of pre-trained feature spaces and can work with
different types of classifiers. Notably, DMAS achieves the best performance in a homogeneous
setting, where the feature is pre-trained by using a cosine classifier and the final classification
model is also a cosine classifier.

Extrinsic guidance from mentor. From Table [3.2] we can observe that DMAS significantly
outperforms baselines by benefiting from the extrinsic guidance of the mentor. There are 5.8%
improvement when combining with the prototypical network and 6.7% improvement when
combining with the cosine classifier. More importantly, DMAS outperforms the plain halluci-
nator [244]] which is trained using the classification loss only. Note that both the baselines and
DMAS use the same amount of data for meta-training on base classes.

Intrinsic supervision. Table [3.2] also shows that DMAS trained only with the intrinsic su-
pervision already outperforms the baselines. The improvement is more pronounced when there
are very few examples, e.g., 5.6% improvement when k£ = 1. This implies the importance of
preserving the label consistency between hallucinated and real examples. In addition, the full
DMAS model achieves the best performance, demonstrating that the extrinsic supervision and the
intrinsic supervision are complementary to each other.

Strengthening the mentor vs. weakening the student. We compare two directions for progres-
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Method Backbone k=1 5

MetaOptNet [[126] ResNetl2 | 62.64 +0.61 78.63 £ 0.46
MetaOptNet + Gen [244] ResNetl2 | 63.46 +0.43 80.02 4+ 0.28
MetaOptNet + DMAS (Ours) | ResNetl2 | 64.55 +0.64 80.42 + 0.46
S2M2 [165] WRN-28-10 | 63.90 £0.18 81.03 £0.11
S2M2 + Gen [244] WRN-28-10 | 63.37 +0.56 81.23 +0.19
S2M2 + DMAS (Ours) WRN-28-10 | 65.35 + 0.63 83.55 + 0.41
DeepEMD [273] ResNetl2 | 6591 +0.82 82.41 4+ 0.56
DeepEMD + Gen [244] ResNetl2 | 64.73 +0.30 79.92 +0.21
DeepEMD + DMAS (Ours) ResNetl2 | 67.42 +0.28 83.74 + 0.20

Table 3.4: Ablation study on the generalizability of our approach and additional comparisons
with state of the art on minilmageNet. Our DMAS hallucinator is general and can work with
different types of classification models and different backbone models to consistently improve
their performance. In addition, DMAS consistently outperforms the plain hallucinator [244]].

sive guidance by strengthening the mentor (w/ ex?) and weakening the student (w/ ex]). We use a
logarithmic scale when changing the number of examples on which the student or mentor model
is trained [217, 243]. As shown in Table [3.2] both directions outperform the normal guidance
without progression (w/ ex), and weakening the student achieves better results. It comes from the
fact that, if both mentor and student start being weak, the learning problem could actually be hard
due to the high variance of both mentor and student.

Figure 3.4: Visualization with t-SNE of the evolution of the decision boundary for two novel
classes, when meta-training our DMAS hallucinator through progressive guidance by weakening
the student. Best viewed in color with zoom.

Comparisons with standard data augmentation. Table [3.2] shows that our learned data hal-
lucination outperforms meta-learning with standard hand-crafted data augmentation (‘w/ aug’),
which includes random crop, random horizontal flip, and color jittering as in [44]], indicating the
importance of exploiting shared intra-class variation.

Cross-Domain Evaluation. So far, we have focused on the within-domain scenario. Now

we consider the cross-domain scenario, which allows us to investigate the generalization of our
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Figure 3.5: Visualization of nearest neighbor real images of hallucinated examples for four novel
classes. Best viewed in color with zoom.

Figure 3.6: Visualization of classification results of two novel classes (Top row: malamute;
bottom row: mixing bowl) and comparison between our DMAS hallucinator and the plain
hallucinator [244]].

DMAS hallucinator and understand the effects of domain shifts. Following the cross-domain
setup in [44] 273]], the experiment in Table [3.3] shows that our DMAS hallucinator trained on
minilmageNet is effective for never-before-seen classes on CUB without any fine-tuning.

DMAS as a General Plug-and-Play Module. Table [3.4] further shows the generalizability
of our approach — the DMAS hallucinator can work with different types of classification models
and different backbone models to consistently improve their performance. To fully investigate the
impact of DMAS and for a fair comparison, we conduct experiments on minilmageNet with the
same training setups (e.g., backbones, data augmentation techniques, and training strategies) as the
state-of-the-art approaches [[126] (165, 273]. In all cases, DMAS can be seamlessly incorporated
into these approaches (denoted as ‘+’), and substantially improve their performance, e.g., 1.9%
improvement when combining with MetaOptNet [126] and 1.5% improvement when combining
with S2M2 [165] under the challenging 1-shot setting.

Comparisons with the plain hallucinator. Table [3.4] also shows that DMAS consistently
outperforms the plain hallucinator [244] for different types of models (Table [3.2] has already
shown this for ProtoNet and cosine classifier). More importantly, ‘DeepEMD + [244]’ is worse
than the plain DeepEMD; a similar phenomenon is observed with S2M2 in the 1-shot case. These
results suggest that, while DMAS is general, [244)] is not a general module for different few-shot
models. For more sophisticated models (S2M2 and DeepEMD), solely using the classification
loss as in [244] is insufficient to adjust the hallucinator to produce effective samples. This further
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verifies the importance of extrinsic and intrinsic supervision.

Visualizations. To further understand how our model helps learning a classifier and refining
the hallucinator, we conduct visualizations on ImageNet1K. We first visualize in Figure @
the evolution of the decision boundary for two novel classes during progressive guidance by
weakening the student using t-SNE [230]. Real examples (small dots) are progressively removed,
and hallucinated examples (triangles) are generated in a way that helps maintain the student
decision boundary (black solid line) as close as possible to the desired decision boundary that
would be formulated by a large set of real examples (red dashed line). We observe that PCA
visualization has a similar phenomenon. We then visualize in Figure [3.5]the hallucinated examples
in the pixel space, using their nearest neighbor real images in the feature space. For each class,
the single black framed image comes from the original dataset and is used as a seed for generating
new examples. Color framed images correspond to the nearest neighbor real images of the
hallucinated examples in the feature space. Finally in Figure [3.6] we compare our approach with
the state-of-the-art meta-learned hallucinator [244] and show that ours is able to recognize a large
range of visual variations. The left block shows images correctly classified by both approaches.
The middle block shows images that are misclassified by [244] as other classes (with predicted
class names overlaid on the images), but correctly classified by our approach. The right block
shows images from other classes that are misclassified by [244] as the target class, but correctly
classified by our approach. In these examples, our classifier is able to recognize objects with

different poses and view points, whereas [244] fails to distinguish between similar classes.

3.6 Summary

We present an approach to few-shot classification that uses a dual mentor- and self-directed
hallucinator to generate additional examples. This is achieved by exploiting two important
natural supervision signals that facilitate data hallucination in a way that most improves the
classification performance, and is trained end-to-end through meta-learning. Our hallucinator
can be inserted as a plug-and-play module into different classification models. The extensive
experiments demonstrate our state-of-the-art performance on the widely-benchmarked few-shot

datasets in various scenarios.
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Part 11

Weak Supervision for Multimodal
Representation Learning

35






Chapter 4

Learning Generalizable Representations
from Image-Text Pairs

This chapter investigates the use of image-text pairs as weakly supervised signals to learn general-
ization and effective multimodal representations. By aligning visual and textual modalities, the
proposed approach mitigates the need for extensive human annotations and fosters the development

of robust representations that transfer effectively across tasks and domains.

4.1 Overview

In previous chapter, we show that external (i.e., implicit and explicit) knowledge is required in
multimodal tasks. While incorporating external knowledge is complementary to open-domain
multimodal understanding, it still needs lots of human efforts to construct (e.g., the construction
of of Wikidata). In this chapter, we focus on the rsearch question: can we learn multimodal
representations without expensive human efforts (e.g., human annotations) in a single, unified
architecture?

We show that vision-language transformers can be learned without human labels (e.g. class
labels, bounding boxes, etc). Existing work, whether explicitly utilizing bounding boxes [49, 159,
223]] or patches [115], assumes that the visual backbone must first be trained on ImageNet [[198]
class prediction before being integrated into a multimodal linguistic pipeline. We show that this is
not necessary and introduce a new model Vision-Language from Captions (VLC) built on top
of Masked Auto-Encoders [91] that does not require this supervision. In fact, in a head-to-head
comparison between ViLT, the current state-of-the-art patch-based vision-language transformer
which is pretrained with supervised object classification, and our model, VL.C, we find that our
approach 1. outperforms ViLT on standard benchmarks, 2. provides more interpretable and

intuitive patch visualizations, and 3. is competitive with many larger models that utilize ROIs
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trained on annotated bounding-boxes.

4.2 Motivation

A pitcher at a baseball game who has just thrown the ball.

COCO annotations

]
a3 o
B .
= wa_ &
N\ b ]
)
i

VILT (supervised with ImageNet) Ours (no BBox/class supervision)

Figure 4.1: We present an image with its corresponding annotations and caption. Visualized
are the model’s top aligned patches with the word thrown. Note, VILT often chooses a single
(predictive) patch, where our model VLC produces a more meaningful (if diffuse) distribution
over the relevant patches.

Should vision guide language understanding or does language structure visual representa-
tions? Vision-language (VL) transformers have put language first. Most popular vision-language
transformers [49, [139] 159} 223]] only integrate vision from selected bounding boxes extracted by
pretrained ImageNet [198] classifiers. In this paradigm, the bag of visual tokens are embedded
into an existing linguistic space (i.e., the lexical embeddings of BERT [62]).

The introduction of ViT [66] empowered the community to flip the paradigm. Notably,
VILT [[113] initializes with ViT [66], so the initial semantic representation is vision based and
language projects into the patch space. This flipped paradigm places visual representations as
the initial conceptual space to which language must adhere. Additionally, there are engineering
benefits to this paradigm as it removes the computationally expensive need for Region of Interest

(ROIJ) extraction. However, because ViT is trained with supervised class labels, its representation
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may be constrained by the limited concepts ImageNet covers, the space is still somewhat linguistic
in nature when initialized, and requires expensive data annotation, a hindrance to scaling to
arbitrarily many visual classification categories.

We take the important next step and remove the need for supervised pretraining. An unsuper-
vised visual semantics is learned via Masked Auto-Encoders [91] before language is integrated.
This leads to both a better performing and more general model. In addition, every component
can be improved and scaled with unsupervised and weakly aligned data — removing the need for
future annotation efforts while still scaling to open-vocabulary domains in the wild.

Our Vision-Language from Captions (VLC) model matches or outperforms nearly all vision-
language transformers despite being 1. Smaller, 2. Avoiding use of ROIs, and 3. Not leveraging
object-level supervised labels. We evaluate across several popular benchmarks in addition to
retrieval and probing. Performance also continues to improve with data and model size scaling, and
as it relies only on weak alignment of image-text pairs, future work with access to large compute
may be able to continue driving up performance. Ablation study shows masked modeling on
images can consistently improve the performance on downstream tasks which is in sharp contrast
to existing approaches. Finally, we provide several analyses on the underlying patch/lexical
representations to understand what our models are learning and guide future VL transformer
research.

4.3 Prior Work

Vision-Language Modeling. Based on how they encode images, most existing works on vision-
language modeling fall into three categories. The first category [49} 139,140, 143, 159, 187, 214,
223\, 1276]] focuses on using pre-trained object detectors to extract region-level visual features
(e.g., by Faster R-CNN [196]]). In particular, OSCAR [143] and VinVL [276]] further boost the
performance by feeding additional image tags into the transformer model. However, extracting
region-level features requires pretrained object detectors with high-resolution inputs that can be
time-consuming. To tackle these two issues, the second category [97,198|,1103]] proposes to encode
images by using grid features from convolutional neural networks. SOHO [98]] discretizes the grid
features by a learnable vision dictionary, and feeds the discretized features to their cross-modal
module. The third category [67, 133} 189, 263]] uses a Vision Transformer (ViT) [66] as the
image encoder and designs different objective functions for vision-language pretraining. The
most similar to our work is ViLT [[115]. ViLT does not use pretrained object detectors or extra
visual embedders for visual embedding, but still needs weights pretrained on ImageNet-21K for
initialization. Different from the previous work, we show such supervised initialization, pretrained
object detectors or visual embedders are not necessary. While momentum distillation [[133]] and
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image-text contrastive loss [[133}|134]] are shown effective in previous work, such techniques are

orthogonal to our work and not included in our discussion.

Masked Language Modeling. Masked language modeling (MLM) and its auto-regressive
counterparts are widely used in natural language processing for learning text representations.
MLM [62] trains a model to predict a random sample of input tokens that have been masked
in a multi-class setting. In vision-language pretraining, MLM has shown useful to enforce the
consistency across modalities [67, 115, 143][276]. In vision-language modeling, we randomly
mask some of the input tokens, and the model is trained to reconstruct the original tokens given
the masked tokens and their corresponding visual inputs. To be consistent with previous work, we

follow the default settings of training BERT [62] for masked language modeling.

Masked Image Modeling. Masked image modeling (MIM) is a pretext task to learn repre-
sentations from images corrupted by masking. Inspired by the success of masked language
modeling (MLM) in NLP, different masked prediction objectives have been proposed for image
tasks. iGPT [42] predicts unknown pixels of a sequence. ViT [66] predicts mean colors of masked
patches. BEIT [19] proposes to use a pre-trained discrete variational autoencoder (dVAE) [[192] to
encode masked patches. MaskFeat [246] predicts HoG [58]] features of the masked image regions.
SimMIM [258]] and MAE [91]] predict RGB values of raw pixels by direct regression. MIM has
also been explored in the field of vision-language representation learning by either regressing the
masked feature values [49, 167, 115} 223]] or predicting a distribution over semantic classes for the
corresponding image region [49, (159, 214]. In contrast to previous approaches [49, 167, (115] that
show MIM does not contribute to or hurt the performance on downstream tasks, we show that

using MIM can consistently improve the performance as the training steps increase.

4.4 Vision-Language from Captions

Model Architecture

Our aim is a vision-language transformer that can be trained without the need for expensive
object-level supervised labels (e.g., class labels or object bounding boxes). More concretely,
our results empirically show that such object based supervised signals are not necessary for
vision-language pretraining. To this end, we use a ViT-based framework to learn multi-modal
representations by 1) intra-modal reconstruction through masked image/language modeling; 2)
inter-modal alignment through image-text matching. The architecture of our proposed VLC
framework is illustrated in Figure[5.2] VLC consists of a modality-specific projection module
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Figure 4.2: The overall architecture of our VLC model. Our model consists of three modules:
(1) Modality-specific projection. We use a simple linear projection to embed patched images
and a word embedding layer to embed tokenized text; (2) Multi-modal encoder. We use a 12-
layer ViT [66]] initialized from MAE [91] (ImageNet-1K without labels) as our backbone; (3)
Task-specific decoder. We learn our multi-modal representations by masked image/language
modeling and image-text matching which are only used during pre-training. We use a 2-layer
MLP to fine-tune our multi-modal encoder for downstream tasks. Importantly, we find that the
masked image modeling objective is important throughout second-stage pre-training, not only for
initialization of the visual transformer.

a multi-modal encoder [5.4]and three task-specific decoders 4.4, We aim for minimal visual and
textual embedding designs during pretraining.

Modality-specific Projection Module

While most of existing methods rely on complex ResNeXt [97] or object detection components [49,
14311159, 276], we use a trainable linear projection layer to map flattened visual patches to the
visual embedding space. The patch embeddings are represented as v = {vy,...,vx} € REX?
where K is the number of image patches and d is the hidden dimension of our model. For text
embedder, we follow BERT [62] to tokenize the input sentence into WordPieces [251]. We then
adopt a word embedding lookup layer to project tokenized words to the textual embedding space.
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Here we use w = {wcpg, Wi, ..., wr} € RT>d to represent the token embeddings, where 7' is the
number of tokens and the special token CLS denotes the start of the token sequence. We encode
patch and token positions separately by v7°* € R*? and wP** € R™*?. We use v'?¢ € R'* and
w'P¢ ¢ R4 as modality-type embeddings to distinguish the modality difference between patch
and token embeddings. The final representations of each patch v; and token w; are calculated as

0; =LayerNorm(v; + v7*° + v"¢),  and (4.1)

w; =LayerNorm(w; + w?” + w'°). 4.2)

Multi-modal Encoder

To learn the contextual representations from both visual and textual modality, we follow single-
stream approaches [49, [115] and use the ViT-B/16 architecture as our multi-modal encoder.
ViT-B/16 consists 12 alternating layers of multiheaded self-attention (MSA) and MLP blocks.
LayerNorm comes before every block and residual connections after after every block [66].

We use a merged-attention [67] mechanism to fuse the visual and textual modalities. More
specifically, we concatenate the token and patch embeddings together as {w¢ s, W1, ..., Wr, U1, ..., Uk },
then feed them into the transformer. We use the hidden states A at the output of the last layer of
the encoder as the contextual representations {hcrs, hY, ..., h%, hY, ..., h% }. In sharp contrast to
existing approaches that use object detectors, visual detectors pretrained with supervised labels or
pretrained language models (e.g., BERT, Roberta), we initialize our model with MAE pretrained
on ImageNet-1K with no labels.

Pretraining Objectives

To learn a universal visual and textual representation for vision-and-language tasks, we apply
self-supervised methods to pre-train a model on a large aggregated dataset. Unlike previous
approaches that only mask text tokens, we randomly mask both image patches and text tokens
simultaneously. We train our model with three objectives: masked image modeling (MIM),

masked language modeling (MLM) and image-text matching (ITM).

Masked Language Modeling. In language pretraining, MLM randomly masks input tokens,
and the model is trained to reconstruct the original tokens based on unmasked context. Following
BERT [62], we randomly mask text tokens with a probability of 0.15, and replace the masked
ones wy, with a special token [MASK]. The goal is to predict the masked tokens based on
both non-masked text tokens w\y, and image patches v\,. The learning target £/, can be

formulated as

Lyiiv = —Ew,v)~plog p(Wm|W\m> V\m)' (4.3)
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We use a linear layer with default parameters [62] as the MLM head to output logits over the
vocabulary, which are used to compute the negative log likelihood loss for the masked text tokens.

Masked Image Modeling. Existing approaches explore MIM either by regressing the masked
features values [49, [115] 263] or by predicting a distribution over semantic classes for a certain
image region [49, 67, [159]. In contrast, we follow MAE [91] to randomly mask image patches
with a probability of 0.6, and reconstruct the missing pixels based on both non-masked tokens
W\, and patches v\n,,. The learning target £y, can be formulated as

Ly = E(w,v)wa(‘/m’W\m? V\m)» 4.4)
where the feature regression objective f is to regress the masked image patch representations to
pixel values. We use 8-layer transformer as the MIM head r. For a masked image patch v;, the
objective f can be formulated as: f(v;|W\m, Vim) = ||[r(hY) — v;]|*>. Each output of the MIM
head is a vector of pixel values representing a patch. Different from the observations in ViLT [115]]
and METER [67], we show MIM can consistently improve the performance on downstream tasks

as training steps increase.

Image-Text Matching. Given a batch of image and text pairs, the ITM head identifies if the

sampled pair is aligned. We randomly replace the aligned image with a different one with a

probability of 0.5. We use the special token [CLS] as the fused representation of both modalities,

and feed h¢p s to the ITM head. The learning target £;7; can be formulated as

Lirv = —Ewv)~plogp(y|w,v), 4.5)

Where y € {0, 1} indicates whether the image and text are matched (y = 1) or not (y = 0).

We use a single linear layer as the ITM head and compute negative log likelihood loss as our ITM
loss. We weight the pretraining objectives equally so the full pre-training objective is:

L= Lyrm + Lrrav + Laru (4.6)

For a fair comparison with existing approaches, We do not include image-text contrastive loss [133,

134], momentum distillation [[133] and other techniques in our implementation.

4.5 Empirical Evaluation

We conduct extensive experiments on a diversified set of vision-language benchmarks, including
image-text retrieval, visual question answering and natural language for visual reasoning. We
evaluate our pretrained model to each downstream task through end-to-end fine-tuning. To further
show the generalization ability of our pre-trained model, we examine our model on ImageNet-
1K classification task following common practice [66, 91]. We also evaluate our model on the

open-domain VQA task that requires commonsense reasoning of the scene depicted in the image.
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Text Retrieval Image Retrieval
Model Flickr30K (1K) MSCOCO (5K) Flickr30K (1K) MSCOCO (5K)
Params @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

ALBEF' [133] 163M 943 994 99.8 73.1 914 960  82.8 96.7 98.4 56.8 81.5 89.2
VinVL arcg [276] 452M - - - 754 929 96.2 - - - 58.8 83.5 90.3
UNITER_ arcGE [49] 371IM  87.3 98.0 99.2 65.7 88.6 93.8 75.6 94.1 96.8 529 79.9 88.0
METER-Swingasg [143] 288M 924 99.0 995 76.2 932 96.8  79.0 95.6 98.0 54.9 81.4 89.3
PixelBERT [97] 144M  87.0 989 99.5 63.6 87.5 93.6  71.5 92.1 95.8 50.1 77.6 86.2
VILT [115] 86M  83.5 96.7 98.6 61.5 86.3 92.7 64.4 88.7 93.8 42.7 729 83.1
VLC-Base (ours — 5.6M) 86M 89.2 99.2 99.8 71.3 91.2 95.8 72.4 934 96.5 50.7 78.9 88.0

VLC-Large (ours — 5.6M) 307M 94.4 99.6 999 76.7 945 973  79.1 95.8 98.2 58.4 84.0 91.1

Table 4.1: We compare our model with several state of the art bounding box based and supervised
methods. We see substantial gains across all settings. TALBEF uses specifically designed coarse-

to-fine objectives for the image-text retrieval task.

Pre-training Datasets

Following previous work [49, 167, 115, 1133]], our pre-training corpus comprises four commonly
used vision-language datasets including COCO [[151], Visual Genome [[120], Google Conceptual
Captions [208] and SBU Captions [[178], totalling 4.0M unique images and 5.1M image-text pairs.
To show the benefits of data-scaling, we also use the VinVL [276] pretraining data which includes
Flickr30k [268], GQA [99], VQA [80], VG-QAs [120] and a subset of OpenImages [119]. This
larger pre-training corpus contains 5.65M unique images (see detailed statistics in Appendix A.1).
Future work can trivially grow the size of the corpus by including large-scale web crawls.

Downstream Tasks

We evaluate our model on image-text retrieval tasks including Flickr30K [185] and MSCOCO [151]],
and image-text understanding tasks including VQAv2 [80] and NLVR? [216]]. For retrieval tasks,
we follow the standard splits and evaluate our models in the finetuning settings. For VQAv2,
we follow the standard practice [49, [133]] to train the models with both training, validation and
additional question-answer pairs from Visual Genome while reserving 1, 000 validation samples
for internal validation. For ablation and analysis, we mainly focus on VQAv2. More evaluation

details can be found in Appendix A.3.
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Implementation Details

We pretrain two variants of the multi-modal encoder which uses a 86M parameter ViT-B/16
denoted as VLC-Base and 307M parameter ViT-L/16 denoted as VL.C-Large. Both variants are
initialized with MAE pre-trained on ImageNet-1K without labels. For text inputs, we tokenize text
with the bert-base-uncased and bert-large-uncased tokenizer, respectively. The text embedding
parameters are learned from scratch, in lieu of loading pre-trained BERT weights. We randomly
mask image patches with a probability of 0.6 and text tokens with a probability 0.15. To accelerate
training, we follow MAE [91]] and skip the mask token [MASK] in the encoder and only apply it
in the lightweight decoder. We use AdamW [158] with a weight decay of 0.01. The learning rate
is warmed-up to le~* in the first 10% of total training steps and is decayed to zero for the rest of
the training following a linear schedule. During pre-training, we resize the shorter edge of input
images to 384, take random image crops of resolution 384 x 384, and apply RandAugment [56].
We pre-train for 200k steps with a batch size of 4, 096. For the parameter estimation, we exclude
the textual embedder as it is shared by all vision-language transformers. We also exclude the
parameters of all the auxiliary heads as they are only required during pretraining. Unless otherwise
specified, we use the base version of VLC for visualizations and ablation studies.

For all downstream tasks, we fine-tune our model with a learning rate of 5e~* for 10 epochs.
We use a layer-wise learning rate decay [S35] of 0.5. We use 576 x 576 as the input image resolution
for the VQA task and 384 x 384 for NLVR? and image-text retrieval tasks.

Visual Question Answering (VQA [80]). Given an input image and a question, the VQA task is
to predict an answer from the visual content. We conduct experiments on VQAvV?2 dataset [80] that
is built on MSCOCO. It contains 83K images for training, 41K for validation, and 81K for testing.
Following previous work [49, [133, 223], we use the training, validation splits and additional
question-answer pairs from Visual Genome while reserving 1, 000 validation image-question
pairs for internal validation. We report performance on the test-dev and test-std splits. We use a
2-layer MLP with a hidden size of 1, 536 to adapt VLC to the VQA task. We follow the standard

practice [1135]] to convert the task to a multilabel classification task with 3, 192 answer classes.

Natural Language for Visual Reasoning (NLVR? [216]). Given a triplet of two images and a
description, this task is to predict whether this description describes a pair of images. Following
previous work [49] [115]], we use the pair method which treats one input sample as two image-
text pairs by repeating the text twice. Each pair is passed through our model and we take the
concatenation of two pooled representation [CLS] from our model as the representation of one
input sample. Similar to the settings of the VQA task, we use a 2-layer MLP with a hidden size of
1,536 to adapt VLC to the NLVR? task.
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Image-Text Retrieval. Image-Text retrieval contains two subtasks: image-to-text retrieval (TR)
and text-to-image retrieval (IR). We evaluate our pre-trained models on the Karpathy splits [110]
of MSCOCO [151] and Flickr30K [1835]] in fine-tuning settings. MSCOCO contains 123K images,
and each image has five corresponding human-written captions. We split the data into 82K/5K/5K
training/validation/test images. To be consistent with previous work [49, [115], we use the
additional 30K images from MSCOCO validation set to improve the performance. Flickr30K
contains 31K images with five captions for each image. We split the data into 30K/1K/1K as the
training/validation/test set.

Adapt VLC to Downstream Tasks

Image-Text Retrieval Tasks. We begin with a proof of concept experiment, evaluating our
model on the Karpathy splits of the Flickr30K [185] and MSCOCO [151]] benchmarks. Table {.1]
compares VLC to strong multimodal transformers which leverage ROIs, more parameters, and
are pretrained on ImageNet classification. Note that as most of detection-based models have the
advantage of using Faster R-CNN [196] pre-trained on VG [120] or MSCOCO [151].

The closest comparison to VLC-Base is ViLT as it is the same model size, though still requires
more supervised data in the form of ImageNet classification pretraining for ViT [66ﬂ When
comparing to dual-encoder models, our VLC-Large achieves competitive results across all settings.
ALBEF uses pre-trained ViT and BERT model for initialization. Additionally, it specifically
designs the coarse-to-fine objectives while we directly fine-tune the pre-trained ITM head for

retrieval tasks. Thus we treat ALBEF as a strongest available baseline.

Image-Text Understanding Tasks. Table |4.2|presents VLC results on two popular image-text
understanding datasets: VQAv2 and NLVR?. We use the same training data as ViLT denoted as
4M and VinVL denoted as 5.6M.

Comparison to models supervised/initialized with ImageNet bounded boxes. Most of these
models use object detectors pretrained on VG [120] or MSCOCO [151]] to extract region features.
Object detectors help in VQA tasks as they mainly ask about objects. Within the similar scale of
pretraining data, our model achieves competitive performance on both tasks. Note that our model
uses 384 x 384 or 576 x 576 as input resolution during our fine-tuning stages. This resolution is
much lower compared with previsou work using 800 x 1333 [49, [159]. In particular, VinVL [276]]
has a multi-stage pre-training for its object detector that has access to ImageNet-5K [257] (6.8M
images from 5K classes) and four object detection datasets [[119, 120, 151}, 207]] (2.5M images
with bounding box annotations). In addition, VinVL uses pretrained BERT as the multimodal

'ViLT uses ViT-B/32 pretrained with ImageNet-21K and finetuned on ImageNet-1K with supervised labels.
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Model
Params

VQAvV2

NLVR?

test-dev test-std dev  test

Supervised ImageNet Bounded Boxes

ViLBERT [159] 274M  70.55 70.92 - -
LXMERT [223] 240M 7242 7254 7490 74.50
VisualBERT [139] 170M  70.80 71.00 674 67.0
UNITER{ aArGE [49] 371IM  73.82 74.02 79.12 79.98
OSCARp arcE [143] 371IM  73.61 73.82 79.12 80.37
VinVLparge T [276] (5.6M) 452M  76.52 76.60 82.67 83.98
Supervised ImageNet Classes

METER-Swingasg ¥ [68] 288M  76.43 7642 8223 82.47
ALBEEF [133] 163M  74.54 74.70  80.24 80.50
Visual Parsing [263] 180M  74.00 74.17 77.61 78.05
PixelBERT [97] 144M 7445 7455 765 T71.2
ViLT [115] 86M  71.26 - 75.70 76.13
No supervised classes or bounding boxes

VLC-Base (ours — 4M) 86M 7298 73.03 77.04 78.51
VLC-Base (ours — 5.6M) 86M  74.02 740 77.70 79.04
VLC-Large (ours — 5.6M) 307M  76.95 77.02 82.27 83.52
Pre-trained or initialized with > 10M data

METER-CLIP-ViTpasg [68] (4M) 280M  77.68 77.64 82.33 83.05
X-VLM [272] (16M) 216M 7822 7837 84.41 84.76
BLIP [I34] (129M) 252M 7825 7832 82.15 82.24
OFA [239] (54M) 930M  82.0 82.0 - -
CoCa [269] (4.8B) 21B 823 823 86.1 87.0

encoder and pretrained Roberta as the text encoder.
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Table 4.2: We compare our model with state-of-the-art pre-trained methods on vision-language
understanding tasks. Our model (VLC), unlike all others, is only pre-trained with weakly-aligned
image-caption pairs. Again, our approach matches or outperforms larger and more hevaily
supervised approaches within a similar scale of training data and model size. 'VinVL uses the
object detector trained with 6.8 labeled imageNet images and 2.5M images with bounding box
annotations. *METER-Swingagg uses Swin-B trained with 14M labeled ImageNet as the image

encoder. Our VLC-Large, which has a similar model size, achieves better performance on the
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Figure 4.3: Comparison with our model with state-of-the-art pre-trained methods using different
model size. While models initialized with supervised data provide strong priors, our VLC
approach has the most substantial improvement when scaling the model size.

VQA task and competitive results on the NLVR task without any supervised initialization.

Comparison to models with supervised ImageNet classes. Most of these approaches use
additional visual embedders together with a pretrained BERT as their backbones. For example,
ALBEF [133]], Visual Parsing [263], PixeBERT [97] use pre-trained ViT-B/16, Swin transformer,
ResNeXt-152 as their visual embedder, respectively. All these embedders are trained with labeled
ImageNet data. In particular, METER-Swingsse uses Swin-B/16 pretrained with more than 14M
labeled ImageNet22K images as the image encoder and pretrained Roberta as the text encoder.
Experiments show that our model achieves better results than larger and more heavily supervised
approaches.

Note that there are some other baselines which have access to a much larger scale of data
during pretraining. For example, METER-CLIP-ViTgasg uses CLIP as the image encoder which
is trained with 400M image-text pairs. X-VLM [272] uses the same image encoder as METER-
Swingasg but with extra bounding box annotations and two times larger training data. While these

models achieve higher performance, the comparisons are out of the scope.

Ablation Study

To understand the impact of different components, we ablate and compare variants of our model
(i.e., pretraining objectives and mode sizes) and report VQAv2 test-dev accuracy. In Figure [4.3]
we compare our VLC with three baselines that use pretrained object detectors and BERT for

initialization. We see that while supervised initialization provides strong priors for the VQA task
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Figure 4.4: Ablation study on masked image modeling (MIM). Our experiments show that VLC-
Base with MIM consistently outperforms the variant without MIM. Further increase in training
steps enlarges the improvement on the VQAV?2 task.

(e.g., VinVL), scaling the model size only has a marginal improvement. As a comparison, our
model is initialized with MAE pretrained on ImageNet1K without labels. There is a substantial
gain when scaling to a larger model.

In Figure[d.4] we conduct an ablation study on masked image modeling (MIM). We train VLC-
Base with 4M image-text pairs. As the training steps increase, there is a consistent improvement
for VLC with MIM. This contrasts to findings in previous work [67, 115} [133]].

4.6 Understanding the Models

While simpler and more efficient, patch-based models differ in important ways from traditional
bounding-box based approaches. In particular, while the visual stack is traditionally frozen in
those models, now the entire “backbone” is learnable. Also, where previously, the goal was to
“map" vision to language, now the two are learned jointly. We therefore take this opportunity to
investigate the models to better understand how their behaviors differ due to the two (pre-)training
objectives. For a fair comparison with ViLT, we use VLC-Base which is trained with the same

model architecture and image-text pairs.
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Original Image VILT clusters VLC clusters

Figure 4.5: Visualization of patch clusters for an example image as produced from ViLT (many
densely clustered patches) versus VLC’s more fine-grained and diffuse representations. We
believe this representational difference makes for easier and faster learning and scaling — akin to
“fast mapping" in language acquisition.

Model Image Size Top-1 (Base) Top-1 (Large)
Supervised
ViT-B/16 [66] 3842 77.9 76.5
DeiT-B 3842 83.1 -
Swin-B 3842 84.5 -
Self-supervised
DINO [31] 2242 82.8 -
MoCo v3 2242 83.2 84.1
MaskFeat 2242 83.6 85.7
SimMIM 2242 83.8 85.4
BEiT* 3842 84.6 85.2
MAE 2242 83.6 85.9
VLC (ours) 3842 84.5 86.3

Table 4.3: Models are pretrained on ImageNet 1K and self-supervised models are evaluated by
end-to-end fine-tuning. *BEiT uses a DALLE [192] pre-trained tokenizer.

Understanding Patches. We begin with a simple patch clustering visualization (Figure 4.3).
Without the inclusion of any language, we can simply cluster (and color) the visual patch em-
beddings of VIiLT and VLC. ViLT relies on on larger patches (32 x 32) for higher resolution
(384 x640). We instead use smaller patches and lower resolution (16 x 16 for 384 x 384). It is easy
to see how both models are identifying key semantic regions of the image (e.g. the rug, painting
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and plant). Also note, both models incorrectly place the painting and plant in the same cluster.
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Figure 4.6: Plots of the top noun-patch similarity per image for ViLT and VLC-Base. ViLT rarely
produces a high similarity lexical score, likely due to its discriminative pretraining objective and
its score distribution shifts down as we move further away from its supervised pretraining data. In

contrast, VLC-Base has a smoother distribution and high lexical alignment across all settings.

To investigate this representation collapse at scale, we leverage the nocaps dataset [2]. Nocaps
provides captions for images based on object classes in COCO, similar to COCO, and out of
domain. By visualizing the embedding similarities of nouns from these three classes with patches
in the images, we can determine: 1. Are ViLT patches more tightly clustered — perhaps due to the
discriminative training objective and 2. How do both models’ behaviors change for classes more
(or less) like the ImageNet pretraining. In Figure 4.6 we see several trends. First, VILT’s “most
similar" patch to the noun rarely has a passes 0.1, perhaps indicating that they are not shifting
from their pretrained representations. Second, we see the mass shift slightly lower as we move
from left to right (in-domain to out-of-domain), indicating the model has a harder time finding
alignments to novel words. VLC has a markedly different behavior, with a smoother overall set
of similarities — often able to to find a visual patch with high similarity to the query across all
conditions. VLC also exhibits an opposite trend where the model’s scores climb as we shift out of
domain. These plots do not show if the alignment is semantically meaningful, but they do show
starkly different behaviors. This concentration of embeddings by ViLT can also be seen visually

in examples in the Appendix A.4.

Image Classification. Given that the underlying visual representations are shifting through the
cross-modal training, we run a simple image classification experiment to see the effects language
training has on the underlying visual “backbone". We compare VLC with state-of-the-art models
on ImageNet-1K classification and report top-1 validation accuracy of a single 384 x 384 crop.
As shown in Table 3] VLC learns generic representations which are transferable to vision
tasks. With only fine-tuning on ImageNet-1K, our model matches the performance of Swin-

B [157] that is trained with supervised labels. Note that BEiT [19] is a two-stage pre-training
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Model Model Size MC-test DA-test

Random 0 2536  0.06
BERT [62] 110M 33.54 8.41
Large-scale GPT-3 [27] 175B 3521 11.49
pretrained model ResNet [89] 23M 28.81 2.30
CLIP [189] 150M 51.01 7.10
ViLBERT [159] 274M 41.5 25.9
LXMERT [223] 240M 41.6 259
Specialized model KRISP [le]] S0M 422 211
VLC-Base (ours) 195M 4482 27.49
ClipCap' [T74] 930M 5143  25.90
GPV-2* [[T09] 380M 53.7 40.7

Table 4.4: We compare VLC with state-of-the-art methods on A-OKVQA dataset in both Multiple-
Choice (MC) and Direct Answer (DA) evaluation settings. TClipCap uses pretrained CLIP and
GPT-2 large as the encoder and decoder. {GPV-2 uses pretrained VinVL and T5-base and learns a
large number of concepts with Bing data. We report accuracy (%) on the test split returned from

the evaluation server.

model of which the tokenizer is trained on 250M examples of DALLE [192] data. Compared
with MAE [91]], our model learns competitive multi-modal representations from vision-language

pre-training while retains high-quality image representations.

Evaluation on Open-domain VQA. To investigate if the alignments between image patches
and text tokens are semantically meaningful, we evaluate our VLC on A-OKVQA dataset [206].
Different from VQA [80], A-OKVQA requires some form of commonsense reasoning about the
scene depicted in the image. In multiple choice (MC) setting, a model chooses its answer from
one of four options. In the direct answer setting, a model can generate any text as its answer
that is more applicable in real-world scenarios. We use VLC as the mulitmodal encoder and a
pre-trained BERT to generate answers. In Table we compare VLC with large-scale pretrained
discriminative models (BERT [62]], ResNet [89]]), contrastive model (CLIP [189]), generative
model (GPT-3 [27]) and models specifically designed for open-domain VQA tasks. While CLIP
trained with 400M image-text pairs is very strong for multiple choice matching, it performs
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The bird is on the branch with leaves alone

i

L, fo -
Fx B b s !
. : .
bird branch leaves

Figure 4.7: Lexical-Patch alignment for an COCO image. We visualize three different words
from the same caption to see how the model uniquely represents them. This is a particularly

challenging case as the model attempts to differentiate branches from leaves.

worse than other baselines in the DA setting. KRISP [167] ensembles different pretrained image
classification and object detection models to exact image features. As a comparison, our VLC
outperforms KRISP in both settings. It implies that our model provides more powerful image
features by aligning image patches and text tokens. Note that ClipCap [174] and GPV-2 [109] use
either much more data for pretraining or finetuning on the open-domain VQA task.

Visualizations. These patch-language transformer architectures allow for intuitive visualizations
of the lexical alignment. Doing so provides a simple way to explore what the model is learning to
represent about an image. In Figure 4.7] we show results from visualizing three different words in
the same caption for an image from COCO. Note that for the word branch, the model is actively
attempting to avoid the abundant leaves. Second, since there is nothing about our model besides
the MAE initialization that should be biased (as shown previously) towards ImageNet classes, we
present three images in Figure [5.4] that highlight words not present in the standard ImageNet1K
training split used by other models. Specifically, a noun (string), adjective (yellow), and verb
(swinging). These demonstrate the general trend of VIiLT often focusing on surprising locations.

We show additional examples for nouns in Figure 4.9] adjectives in Figure 4.10] and verbs in

Figure {.T1]
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Caption with focus

Original Image ViLT VLC

A person on a beach holding a kite string and a kite is in the air

Figure 4.8: To investigate concepts not present in COCO or ImageNet, we present three images
and highlighted words which are out of domain (i.e. not in ImageNet-1K). Specifically, we are
visualizing a noun (top), adjective (middle) and verb (bottom). The model again delicately avoids
nearby but distinct concepts (e.g. the cat on the chair or irrelevant parts of the baseball field).

4.7 Summary

We present Vision-Language from Captions (VLC), a transformer pretrained with only image-
caption pairs. While VL.C uses only a linear projection layer for image embedding, it achieves
competitive performance on a diverse set of vision-language tasks as compared to existing
approaches that rely on object detectors or supervised CNN/ViT networks. We perform a number
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Caption with focus Original Image ViLT VLC

A hawk is perched on
a metal bar
A
e | e B e
‘r .
A gift wrapped with a " t

ribbon sits on a table
with a knife

A plate with pan-
cakes, syrup, grits,
and butter

There is a colorful

/)
-
g o

parachute in the sky

Figure 4.9: Visualized are OOD noun examples. Note that ViLT is often picking up on relevant
features but has a single strongest correlation with a single, presumably predictive, patch.

of analysis and investigations of the representations. For example, we demonstrate VLC visual
representations are effective for ImageNet-1K classification and our visualization demonstrates
that VLC can accurately align image patches with text tokens. As performance scales with
increased training data this opens an exciting avenue for large-scale weakly-supervised open-

domain vision-language models.
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Caption with focus Original Image ViLT VLC

A red fire hydrant in
front of a skyscraper

A monarch butter-
fly lands on a pink

- |
flower. . -y
- d u
A small orange and - L] . .
blue ladybug sitting LR °.I-- g
on long green leaves L] A =
A brown and white v G) -

dog is holding a yel-

low Frisbee

Figure 4.10: Visualized are OOD adjective examples. VLC produces more accurate and compre-
hensive masks. Note that the lady bug is correctly identified but not exclusively and likely not
based on an understanding of the relative size small. Future work would ideally show results that
indicate models understanding more abstract and comparative concepts.
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Caption with focus Original Image ViLT VLC

B | |
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staring at the viewer A

Figure 4.11: Visualized are OOD verb examples. Note that verbs from still images is a slightly
strange concept, but there are key perceptual indicators that align to the verb’s semantics. For
example, holding is aligned to the person’s hands and staring picks up on the cat’s eyes.
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Chapter 5

Open-Ended Visual Question Answering
with External and Implicit Knowledge

In this chapter, we explore the integration of external knowledge bases and the implicit knowledge
embedded in large language models to address the limitations of human-annotated datasets in
open-ended visual question answering. By leveraging these auxiliary sources of knowledge, the
proposed method improves answering capabilities while significantly reducing the reliance on

human-generated annotations.

5.1 Overview

The primary focus of recent work with large-scale transformers has been on optimizing the amount
of information packed into the model’s parameters. In this work, we ask a complementary question:
Can multimodal transformers leverage explicit knowledge in their reasoning? Existing, primarily
unimodal, methods have explored approaches under the paradigm of knowledge retrieval followed
by answer prediction, but leave open questions about the quality and relevance of the retrieved
knowledge used, and how the reasoning processes over implicit and explicit knowledge should
be integrated. To address these challenges, we propose a - Knowledge Augmented Transformer
(KAT) - which achieves a strong state-of-the-art result (+6% absolute) on the open-domain
multimodal task of OK-VQA. Our approach integrates implicit and explicit knowledge in an
encoder-decoder architecture, while still jointly reasoning over both knowledge sources during
answer generation. Additionally, explicit knowledge integration improves interpretability of

model predictions in our analysis.
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Question:
What did this organism evolve

Question:
What do you call the device that

from? keeps boats in place in see?
Category: Category:
Plants and Animals Vehicles and Transportation
Answer: Answer:
Reptile. Anchor.

Figure 5.1: Examples of knowledge-based VQA that requires external knowledge. Success on
this task requires not only visual recognition, but also logical reasoning to incorporate external

knowledge about the world.

5.2 Motivation

There has been a revival of interest in knowledge-intensive tasks which require an external
knowledge source for humans to perform. Many applications in real-world scenarios, such as
autonomous Al agents, need to seamlessly integrate implicit (i.e., commonsense) and explicit
knowledge (e.g., Wikidata) to answer questions. In this work, we investigate how to effectively
integrate implicit and explicit knowledge for reasoning. Tasks like Outside Knowledge Visual
Question Answering (OK-VQA) [[166] require that models use knowledge not present in the input
to answer questions, making it an ideal test bed for investigating this implicit-explicit knowledge
trade-off.

Consider the examples from OK-VQA shown in Figure[5.1] To answer the question in the left
example, the system needs to both ground organism to bird through explicit knowledge and then
apply the implicit knowledge birds evolved from reptiles to answer the question. Similarly for
the question in the right example, the system needs to recognize boats and harbor and requires
the implicit knowledge anchors are used to stop boats from moving. A key challenge here is to
accurately link image content to abstract external knowledge. There have been a number of recent
developments demonstrating the feasibility of incorporating external knowledge into Question
Answering models [75, (130, 167, 238} 250]. Existing methods first retrieve external knowledge
from external knowledge resources, such as DBPedia [13]] and ConceptNet [[154] before jointly
reasoning over the retrieved knowledge and image content to predict an answer.

However, most existing approaches have several drawbacks. First, explicit knowledge retrieved
using keywords from questions or image tags may be too generic, which leads noise or irrelevant
knowledge during knowledge reasoning. Second, existing work mainly focuses on explicit

knowledge which is often in the form of encyclopedia articles or knowledge graphs. While this
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type of knowledge can be useful, it is insufficient to answer many knowledge-based questions.
As shown in Figure [5.1] questions require the system to jointly reason over explicit and implicit
knowledge, which is analogous to the way humans do.

To address these challenges, we propose an approach, KAT, to effectively integrate implicit
and explicit knowledge during reasoning. The main contributions of our work are as follows:
i) Knowledge extraction. We adopt two novel methods for knowledge extraction that significantly
improve the quality and relevance of extracted knowledge: for implicit knowledge, we design new
prompts to extract both tentative answers and supporting evidence from a frozen GPT-3 model;
for explicit knowledge, we design a contrastive-learning-based explicit knowledge retriever using
the CLIP model, where all the retrieved knowledge are centered around visually-aligned entities.
ii) Reasoning in an encoder-decoder transformer. We design a novel reasoning module in
KAT to perform jointly reasoning over explicit and implicit knowledge during answer generation,
which is trained by using an end-to-end encoder-decoder transformer architecture.
iii) OK-VQA performance. KAT sets a new state of the art on the challenging OK-VQA [166]]
benchmark, and significantly outperforms existing approaches.

5.3 Prior Work

Vision-Language Transformer. Multimodal transformers have made significant progress over
the past few years, by pre-trained on large-scale image and text pairs, then finetuned on downstream
tasks. VisualBERT [139], Unicoder-VL [129], NICE [40], and VL-BERT [214] propose the
single-stream architecture to work on both images and text. VILBERT [159]] and LXMERT [223]
propose a two-stream architecture to process images and text independently and fused by a third
transformer in ta later stage. While these models have shown to store in-depth cross-modal
knowledge and achieved impressive performance on knowledge-based VQA [160, 167, 250],
this type of implicitly learned knowledge is not sufficient to answer many knowledge-based
questions [[167]. Another line of work for multimodal transformers, such as CLIP [189] or
ALIGN [103]], aligns visual and language representations by contrastive learning. These models
achieve state-of-the-art performance on image-text retrieval tasks. Different from existing work
that uses multimodal transformers as implicit knowledge bases, we focus primarily on how to
associate images with external knowledge. Importantly, our model only relies on multimodal
transformers learned by contrastive learning which do not require any labeled images. This makes

our model more flexible in real-world scenarios.

Knowledge-based VQA. Some Knowledge-based visual language tasks requires external
knowledge beyond the image to answer a question. Early exploration, such as FVQA [237],
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creates a fact-based VQA dataset by selecting a fact (e.g., <Cat, CapableOf, ClimbingTrees>)
from a fixed knowledge base. A recent Outside Knowledge VQA (OK-VQA) dataset is a more
challenging dataset, covering a wide range of knowledge categories. In our work, we focus on

OK-VQA due to its large-scale knowledge-based questions as well as its open-ended nature.

Recent approaches have shown a great potential to incorporate external knowledge for
knowledge-based VQA. Several methods explore aggregating the external knowledge either
in the form of structured knowledge graphs (75, 130, 175, 237, 238], unstructured knowledge
bases [160, (167, 250], and neural-symbolic inference based knowledge [38, 248]. In these
methods, object detectors [196] and scene classifiers [89] are used to associate images with
external knowledge. Further, external APIs, such as Google [160, 250], Microsoft [39,265] and
OCR [160} 250] are used to enrich the associated knowledge. Finally, pre-trained transformer-
based language models [39, 265]], or multimodal models [75} 160, 167, 250, 250] are leveraged

as implicit knowledge bases for answer predictions.

Different from previous approaches, Our work aims to develop a single, unified architecture,
by jointly reasoning over explicit and implicit knowledge to augment generative language models.
While part of our approach is similar to PICa [265] which considers GPT-3 as implicit knowledge
base, our model takes one step further by showing that how explicit and implicit knowledge
can be integrated during knowledge reasoning. Another similar work Vis-DPR [160] collects
a knowledge corpus from training set by Google Search which is specific to a certain dataset.
Our proposed model is more generic by collecting entities from Wikidata and not limited to the

training set.

Open-Domain Question Answering (ODQA). ODQA is the NLP task of answering gen-
eral domain questions, in which the evidence is not given as input to the system. Several
approaches [34, [111] propose to predict the answers by first retrieving support document from
Wikipedia, before extracting answers from the retrieved document. Recent works [101} [128]]
combine text retrieval models with language generative models which achieve state-of-the-art
performance on knowledge-intensive natural language processing tasks. Similar to these works
as part of our method, we extend this framework to VQA domain and show the effectiveness of

aggregating explicit and implicit knowledge for knowledge-based VQA.
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from an explicit knowledge base, and uses GPT-3 to retrieve implicit knowledge with supporting
evidence. The integration of knowledge is processed by the respective encoder transformer, and
jointly with reasoning module and the decoder transformer as an end-to-end training with the

answer generation.

5.4 Knowledge Augmented Transformer

Overview

When humans reason about the world, they process multiple modalities and combine external
and internal knowledge related to these inputs. Inspired by this idea, we introduce a new KAT
approach. The overview of the proposed KAT model is shown in Figure [5.2] We define the
knowledge from explicit knowledge bases as the explicit knowledge, and the knowledge stored in
large-scale language models as the implicit knowledge (i.e., implicit commonsense knowledge).
We describe the retrieval method of our explicit knowledge (§5.4)) and the retrieval method of our
implicit knowledge (§5.4). Next, we introduce the details of our knowledge reasoning module
which jointly reasons over both explicit and implicit knowledge (§5.4).

Problem Formulation. We apply our KAT on OK-VQA task in this paper. Formally, given
a training dataset D = {(v;, ¢;, a;) };_,, where v; denotes the i'" training image; s is the total
number of the training images; ¢; and a; represent the i'* question and its corresponding answer,
respectively. We use a sequence-to-sequence model that is composed of an encoder and a decoder,
which is a comparison method of TS5 [191]] or BART [127]. Let 6 be the parameters of the model
p that needs to be trained. Unlike previous approaches that treat this task as a classification

problem [167, 250], our model is to take v; and ¢; as inputs and generate the answer a; in an
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auto-regressive manner. It should be noted that our proposed model tackles a more challenging
problem. As the generated answer may contain an arbitrary number of words from the entire
vocabulary.

Explicit Knowledge Retrieval
Explicit Knowledge Extraction

Given an image v; and corresponding question g;, it 1s important to ground image regions with
fine-grained descriptions, which is conducive to understanding both the image content and the
question with the referred items. Existing approaches [103, [189] on OK-VQA apply object
detectors to generate image tags which are used for explicit knowledge retrieval. Such image
tags can be generic and have a limited vocabulary size, leading noise or irrelevant knowledge.
Motivated by the recent progress of visual-semantic matching approaches [[103}[189]], we leverage

a contrastive-learning-based model to associate image regions with external knowledge bases.

Similar to the previous work [160, [167] which uses a subset of external knowledge, we
construct an explicit knowledge base that covers the 8 categories of animals, vehicles and other
common objects from Wikidata [234]. The details can be found in Section[5.4] We denote the
constructed knowledge base as K. Each knowledge entry e from X is a concatenation of the entity

and its corresponding description.

The goal of our explicit knowledge retriever is to index all knowledge entries in d,.-dimensional
dense representations by a dense encoder F.,,(-), such that it can efficiently retrieve the top m
knowledge entries relevant to each input image. Given an image v;, we use a sliding window with
a stride to generate N image regions {v}, ..., ;" }. Then an image encoder E;,,(-) is applied to
map each patch to a d,-dimensional dense representation, and retrieves k knowledge entries from
IC whose representations are closest to the patch-level representation. To define the similarity
score between the image region vf and the entity e, we use the inner product of their normalized
representations:

sim(vg, e) = Eem(e)TEimg(vg). (5.1)
In total, we retrieve the top N x k knowledge entries relevant to image v;. We keep top-m

knowledge entries ranked by similarity scores as explicit knowledge source x“*?.

In principle, the image and knowledge entry encoders can be implemented by any multimodal
transformer. We use the CLIP model (ViT-B/16 variant) [[189] in our work and take the [CLS] as
representations. We pre-extract representations of the knowledge entries in the knowledge base

using the entity encoder F.,; and index them using FAISS [107].
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Knowledge Base Construction

We use the English Wikidata [234] dump from Sep. 20, 2021 as the explicit knowledge source base
which contains 95, 870, 584 entities. Each data item is stored in a structured format constituted of
property-value pairs. Properties are objects and have their own Wikidata pages with labels, aliases,
and descriptions. We extract a subset that covers common objects in real-world scenarios. We
remove all entities whose string labels or corresponding descriptions are empty or non-English.
This results in a total of 423, 520 entity triplets in the end (e.g., <Q2813, Coca-Cola, carbonated
brown colored soft drink>) (See Table[5.1).

Subclass Number
Role (Q214339) | 162,027
Point of interest  (Q960648) | 85,900
Tool (Q39546) 78,621
Vehicle (Q42889) 44,274
Animal (Q729) 18,581
Clothing (Q11460) 17,711
Company (Q891723) | 12,173
Sport (Q349) 4,233
Total 423,520

Table 5.1: We collect a subset of Wikidata that covers common objects in real-life scenarios as
our explicit knowledge base. Above are statistics of these subclasses.

Implicit Knowledge Retrieval

While our explicit knowledge retriever focuses on semantic matching between image regions and
knowledge entries, it lacks implicit commonsense knowledge (e.g., Lemons are sour) which is
usually stored in large-scale language models [27]]. In this section, we retrieve implicit knowledge
with supporting evidence by prompting from a large-scale pre-trained language model.

We design our implicit knowledge retriever with inspirations from the previous work [265].
We leverage GPT-3 as an implicit language knowledge base and treat VQA as an open-ended
text generation task. For each image-question pair, we first convert the image v; into a textual
description C' via a state-of-the-art image captioning model [[143]], and then construct a carefully
designed text prompt consisting of a general instruction sentence, the textual description C, the
question, and a set of context-question-answer triplets taken from the training dataset that are

semantically most similar to the current image-question pair for a concrete example). We then
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input this text prompt to the GPT-3 model in its frozen version and obtain the output from GPT-3
as the tentative answer candidate to the current image-question pair.

To gain deeper insights from the implicit knowledge coming out of GPT-3 and its rationale,
we design another prompt to query GPT-3 for supporting evidence behind the tentative answer
candidate that it generates. More specifically, for each image-question pair (v;, ¢;), and for a
tentative answer a generated by GPT-3, we construct the prompt in the form of: “(question ¢;)?
(answer a). This is because” to query GPT-3 for supporting evidence for a concrete example). We
finally compile both the tentative answers and the corresponding supporting evidence from GPT-3

as implicit knowledge source 277,

KAT Model

As showed in the Figure the explicit knowledge entries are from an image, which are
concerned with semantic matching of the image regions. These knowledge entries could be
noisy or irrelevant to its corresponding question. Moreover, some of the supporting evidence
prompted from GPT-3 is generic or not related to image content. Simple concatenation of different
knowledge may introduce noise during model training. We design a knowledge reasoning module
with inspirations from the previous work [111]. Our knowledge reasoning module encodes
each question and knowledge pair separately, and jointly reason over both explicit and implicit

knowledge when generating an answer.

Encoder. We concatenate question ¢; with each knowledge as a question-knowledge pair. Firstly,
we add sentinel tokens question:,entity: and description: before the question, the
retrieved entity, and its description separately. Similarly, we add sentinel tokens question:,
candidate: and evidence: before the question, the tentative answer, and its evidence.
Secondly, we use an embedding layer followed by a sequence of encoder layers to encode
the question-knowledge pairs separately. We average the token embeddings of each question-
knowledge pair from the last encoder layer, which results in an embedding matrix of explicit
knowledge X ¢ R™*? and implicit knowledge X" < RP*Y, where d, m and p are the
embedding dimension, the number of explicit knowledge x“*, and the number of implicit

knowledge '™, respectively.

Reasoning Module. To jointly reason over implicit and explicit knowledge, we concatenate the
embeddings of explicit and implicit knowledge form a global representation X € R(™*+P)*d The
cross-attention module takes the global representation X of the encoder as the input. Let H € R?

be the output of the previous self-attention layer of the decoder. By definition [232], the scaled
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dot-product attention can be expressed as:
T

Q. = softmax( Qfa

where queries (), keys K, and values V' are computed by applying linear transformations: () =
WoH, K = WgX,V = Wy X. The attended representation (), is a weighted sum of the values,

and implies that our model performs a joint reasoning over explicit and implicit knowledge when

WV, (5.2)

generating answers.

Decoder. We feed the embeddings of explicit and implicit knowledge to a sequence of decoder

layers for answer generation. We train our model with a cross-entropy loss:

Lop=—Y_logpo(yely<r, x7; 2™, (5.3)

t=1
where y; is predicted autoregressively.

5.5 Empirical Evaluation

Dataset

OK-VQA [166] is currently the largest knowledge-based VQA dataset, The questions are crowd-
sourced from Amazon Mechanical Turkers and require outside knowledge beyond the images in
order to be answered correctly. The dataset contains 14, 031 images and 14, 055 questions cover-
ing a variety of knowledge categories. We follow the standard evaluation metric recommended by
the VQA challenge [9].

Implementation Details

For the knowledge reasoning module, we initialize our model with the pre-trained TS model [191].
We compare two model sizes, base and large, each containing 2200/ and 7700 parameters
respectively. We fine-tune the models on OK-VQA dataset, using AdamW [158]]. We use a
learning rate of 3e — 5 to warm up for 2/ iterations and train for 10K iterations. Limited by the
computational resources, we set the number of retrieved entities to 40. The model is trained with
a batch size of 32, using 16 V100 GPUs with 32Gb of memory each. Unless otherwise specified,
all results reported in this paper as KAT use this model which we found to perform best. We
evaluate our predictions with ground-truth after normalization. The normalization step consists
of lowercasing, and removing articles, punctuation and duplicated whitespace [34, [125]. To be
consistent with previous work [167], we train our model with 3 different random seeds and use

the average results for the leaderboard submission.
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Method Knowledge Resources Acc (%)

o Q only [166] - 14.93
B Vanilla TS - 18.56
é MLP [166] - 20.67
'S BAN [166] - 25.1
“ MUTAN [I66] . 26.41
BAN+AN [166] Wikipedia 25.61
gn BAN+KG-AUG [130] Wikipedia+ConceptNet 26.71
= MUTAN+AN [166] Wikipedia 27.84
é ConceptBERT [[75] ConceptNet 33.66
£ KRISP [167] Wikipedia+ConceptNet 38.35
= Vis-DPR [160] Google Search 39.2
MAVEX [250] Wikipedia+ConceptNet+Google Images | 39.4
2 PICa-Base [265] Frozen GPT-3 (175B) 43.3
S PICa-Full [265] Frozen GPT-3 (175B) 48.0
KAT-explicit (w/ reasoning) Wikidata 44.25
KAT-implicit (w/ reasoning) Frozen GPT-3 (175B) 49.72
KAT (w/o reasoning) Wikidata+Frozen GPT-3 (175B) 51.97
KAT (single) Wikidata+Frozen GPT-3 (175B) 53.09
KAT (ensemble) Wikidata+Frozen GPT-3 (175B) 54.41

Table 5.2: Results of OK-VQA comparing to standard baselines show that our KAT (large size)
model achieves state-of-the-art performance on OK-VQA full testing set. It is important (see
table sections) to compare methods based on their access to increasingly large implicit sources of
knowledge and utilization of explicit knowledge sources. Our five KAT models variants make the
relative importance of these decisions explicit. We train our model with 3 random seeds and the

result is denoted as ensemble.

Comparison with Existing Approaches

We compare our model against existing approaches on the OK-VQA dataset and the results are
summarized in Table[5.2] Our model outperforms state-of-the-art methods by significant margins.
We compare our model with existing approaches from two aspects. (1) If we only consider using
explicit knowledge, our model achieves 44.25% which is 4.85% and 5.9% higher than MAVEx
and KRISP, respectively. Our model uses contrastive-learning-based model to extract knowledge,
leaving headroom by incorporating supervised pre-trained models, such as pre-trained object
detectors. It should be noted that our proposed model is working on a more challenging problem.
As the generated answer could contain an arbitrary number of words from the entire vocabulary.
Our model is slightly better than PICa-Base which is a plain version of PICa-Full without example
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engineering. It implies that our single, unified architecture can effectively associate images with
the explicit knowledge base. (2) If we take the implicit knowledge from GPT-3 as the additional
input, our model outperforms PICa-Full by 6.41% which indicates it is important to integrate

knowledge of different types when generating answers. The detailed comparison can be found in

Table[5.3]

5.6 Understanding the Models

To unpack the performance gain and understand the impact of different components, we ablate and

compare different model architectures, types of knowledge and the number of explicit knowledge.

Model architecture Knowledge Accuracy (%)
Base Large Explicit Implicit
vV 18.56
Vv Vv 40.93
v 4 44.25
v v 47.60
v V4 49.72
v v v 50.58
Vv Vv V4 54.41

Table 5.3: Ablation study on model architectures and types of knowledge. Our experiments show
that larger model has more capacity for implicit knowledge reasoning and jointly reasoning over

both knowledge sources has a consistent improvement with baselines.

Specifically, as shown in Table [5.3] our KAT-large shows a consistent improvement over using
KAT-base. This larger model has more capacity for implicit knowledge reasoning. The integration
of explicit and implicit knowledge achieves a performance gain of ~4%, supporting the intuition

that these two types of knowledge provide complementary pieces of knowledge.

Effectiveness of Knowledge Reasoning

To verify the effectiveness of our knowledge reasoning module, we use a KAT without the
knowledge reasoning module which is denoted as KAT (w/o reasoning). This model concatenates
explicit and implicit knowledge as a sentence and adopts a maximum length of 256 tokens. We
train this variant with the same parameter settings. As shown in Table simply concatenating

knowledge sources is 2.43% lower than our proposed model. It indicates that KAT (w/o reasoning)
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Method Accuracy (%)

KAT (w/o reasoning) 51.97
KAT 54.41

Table 5.4: Comparison with KAT (w/o reasoning) which uses the concatenated knowledge as
inputs without the knowledge reasoning module.

may introduce noise to relevant knowledge during encoding. Our model adaptively attend different

knowledge sources for answer generation that can reduce the influence of irrelevant knowledge.

Extracting Explicit Knowledge

52

—8— CLIP-ViT/16
—&— RN50

51

Accuracy (%)
w
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L
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Figure 5.3: Our model achieves consistent improvement when aggregating more knowledge
entries from an explicit knowledge base. However, as CLIP-ViT/16 and RN50 are very different
explicit knowledge retrieval backbones we see the choice of backbone and number of sources to
include are intimately related. Here we use KAT-base for demonstration.

From Figure[5.3|we can see, the performance of our model is directly affected by the size of
retrieved explicit knowledge. When only considering the implicit knowledge (i.e., the number of
retrieved entities is 0), our model achieves 47.6% which is slightly worse than PICa-Full baseline.
It indicates that solely increasing model complexity cannot improve the performance. This also
demonstrates the importance of explicit knowledge. Our model shows a consistent improvement
by incorporating more explicit knowledge. While a more extensive knowledge set may include
more distracting knowledge, retrieved knowledge entries can share either visually or semantically
similar knowledge as the relevant ones. Thus this can massively reduce the search space and/or
reduce spurious ambiguity.
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Explicit Knowledge: Explicit Knowledge:
Tactile paving: system of Wakeboard boat: boat
textured ground surface designed to create a wake
indicators to assist for wakeboarding.
pedestrians who are blind k der: someone

or visually impaired. practicing wakeboarding.
Coca Cola: carbonated Kitesurfer: practitioner of
brown-colored soft drink. kitesurfing.

Bench: piece of furniture on Skiboarding: freestyle skiing
which several people may using short skis and no

sit at the same time. poles.

Street furniture: collective Boardsport: sports that are
term for objects and pieces practiced with some sort of

Question: of equipment installed Question: board as the primary
What is painted on the bench? outdoors for various What kind of board is this? equipment.
. urposes. . L
Category: LT Category: Implicit Knowledge:
Brands, Companies and Products Implicit Knowledge: Sports and recreation
Answer: Answer: Surfboard: This sport is
Exp: strand KAT (w/o KRM): red Red: the bench is painted Exp: wakeboard  KAT (w/o KRM): surfboard surfboard.
Imp: red KAT: Coca cola red. Imp: surfboard KAT: surfboard

Figure 5.4: Two examples from OK-VQA dataset that our model generates correct answers by
jointly reasoning over both implicit and explicit knowledge. (exp: predictions by using explicit

knowledge only and imp: predictions by using implicit knowledge only).

We compare different explicit knowledge retrieval module. Though ViT/16 has a large
classification improvement over ResNet-50 (e.g., 6.9% on ImageNet) [189]], there is a less gap
between these two backbones. As the number of retrieved entities increases, our knowledge
reasoning module can further migrate this gap by adaptively attending to different explicit
knowledge.

Category Results on OK-VQA

Here we present quantitative analyses to illustrate how explicit and implicit knowledge influence
the final predictions. Based on the types of knowledge required, questions in OK-VQA are
categorized into 11 categories and the accuracy results of each category are reported in Table [5.5]
We re-train our model under the same settings with only either explicit or implicit knowledge,
denoted as “exp” and “imp” respectively.

For most categories, the model using only explicit knowledge performs worse than that using
only implicit knowledge. As implicit knowledge comes from the results of state-of-the-art object
detection, image captioning models and supporting evidence by prompting GPT-3. While explicit
knowledge is retrieved based on semantic matching between images and entities from knowledge
bases, it contains richer but more distracting knowledge. Note that using explicit knowledge
performs better for category “Brands, Companies, and Products" and “Weather and Climate".
It indicates that accurately recognizing objects with fine-grained descriptions in the images is

important for these categories to answer corresponding questions.
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Question Type Exp Imp Ours A

Plants and Animals 422 51.5 547 +3.2
Science and Technology 444 433 52.8 +8.3
Sports and Recreation 49.7 53.8 604 +6.7

Geo, History, Lang, and Culture 45.6 45.4 55.8 +10.2
Brands, Companies, and Products 41.7 38.2 48.5 +6.8

Vehicles and Transportation 41.5 429 513 +84
Cooking and Food 47.9 4777 527 +4.8
Weather and Climate 51.7 46.3 548 +3.1
People and Everyday 43.1 444 515 +7.1
Objects, Material and Clothing  42.9 454 493 +3.9
Other 41.5 50.2 51.2 +1.0

Table 5.5: Accuracy (%) of question types in OK-VQA full testing set. Our models outperforms
exp and imp models by a large margin on all categories. (exp: explicit-only model and imp:
implicit-only model)

Qualitative Analysis

Analyzed in previous sections, jointly reasoning over both knowledge sources during answer
generation improves the explicit-only and implicit-only models by large margins. Figure
shows two examples comparing answers generated by different models along with retrieved
knowledge. The left example shows that while explicit knowledge retrieved from the knowledge
base contains the necessary knowledge entries for reasoning, it fails to generate the answer which
requires the relation between bench and Coca Cola logos. On the other side, implicit knowledge
retrieved from GPT-3 can only infer the bench is painted red, failing to recognize its logo. By
jointly considering both knowledge sources, our model can associate the color of Coca Cola
logo with the painted color of the bench which derives the correct answer. The right example
shows that though explicit knowledge does not contain the right knowledge entries, it provides
visually similar descriptions of this sport which further constrains the search space of our model
and verifies the correctness of the implicit knowledge.
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Analysis on More Examples

In this section, we showcase more predictions from variants of our model. As shown in Figure[5.5]

we analyze the predictions based on different type of knowledge from several aspects:

Effectiveness of explicit knowledge retriever. Our explicit knowledge retriever can retrieve
fine-grained knowledge entries from the explicit knowledge base, such as golden retriever (a
fine-grained breed of dogs), cucumber sandwich (a specific type of sandwich) and Macbook Pro
(a specific model of Apple products). These fine-grained entities are hardly obtained from existing
object detection models, which can constraint the search space of our model and are beneficial to

our answer generation process.

Effectiveness of implicit knowledge retriever. Our implicit knowledge retriever can retrieve
supporting evidence from GPT-3, such as Thomas: the train is named after the man who designed
it. and Refrigerator: the refrigerator is used to keep food cold. These kinds of knowledge are
highly related to commonsense knowledge which needs further inference based on entities and

provide complementary explanation to explicit knowledge.

Answer generation & classification. As most previous work on OK-VQA task, such as KRISP
or MAVEX method, implement OK-VQA as a classification task. The prediction vocabulary
is dataset-specific and assumes the training and test set are sharing a similar vocabulary. The
limitation of these methods is the generalization ability. Our proposed KAT model treats OK-VQA
as an open-end generation task. From these examples we found, our model can generate answers
like Iphone or Hercules that are visually and semantically reasonable. Our proposed novel KAT
model using the explicit and implicit knowledge is designed to enhance semantic alignment and

generate representations with stronger knowledge-awareness.

5.7 Summary

This paper takes a step towards understanding the complementary role of implicit knowledge
gained from continuing to scale models and explicit knowledge from structured knowledge bases.
Importantly, it appears that there is headroom in both directions (i.g. improving retrieval and
reasoning). Our conceptually simple yet effective approach for knowledge-based VQA makes
these relationships explicit while still achieving a significant improvement against state-of-the-
art results. Additional challenges remain, for example how best to align image regions with
meaningful external semantics deserves and how to efficiently and accurately integrate multiple
knowledge bases.
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Explicit Knowledge:
(entity:description)
Snow pillow: measuring
device for snowpack.
Search and rescue dog : dog
trained tolocate or retrieve
a missing or trapped person.

Explicit Knowledge:
-description)
Acer Aspire one: line of
notebooks by Acer Inc.
Drawing instrument: tool used
for drawing or drafting.
Writing implement: tool used

for writing Golden retriever: dog breed.
Book bag: a bag, usually a Mushing: Sport or dog
backpack, used by students to powered transport method.

carry their textbooks.

XN -
Question: =
Can you guess the material used to make the Question:
bag shown in this picture? What breed are the dogs?
® - = - Implicit Knowledge:
ategory: ategory: (candidate:evidence)
Objects, Material and Clothing Implicit Other T e Ay
Answer: (candidatezevidence) Answer: intelligent dog. They are
Exp: canvas KAT (w/o KRM): leather leather: the bag is made of Exp: golden retriever  KAT (w/o KRM): husky independent and will do
Imp: leather KAT: canvas leather. Imp: husky KAT: golden retriever what they want to do.
Explicit Knowledge: Explicit Knowledge:

(entity:description)
Salad: dish consisting of a
mixture of small pieces of
food, usually vegetables or
fruit
Cucumber sandwich: the
traditional cucumber
sandwich is composed of
thin slices of cucumber
placed between two thin
slices of crustless, lightly

(entity:description)
Floor lamp: lamp standing on
the floor, often with a hight
reaching up to the vertical
middle of the room.
Macbook Pro: laptop made by
Apple.
MacOS: operating system for
Apple computers, launched in
2001 as Mac O X.
Smart mattress: Mattress

butterd white bread. monitoring sleep patterns.
Vegetable chip: cooked chip Question:
Question: prepared using vegetables. What sort of phone would you associate with
What type of sandwich s being served? this computer?

implicit Knowledge:
(candidate:evidence)

Category: Category:
Cooking and Food Brands, Companies and Products

Implicit e computer is
Answer: (candidate:evidence) Answer: not a smartphone.
Exp: cucumber KAT (/o KRM): sub Sub: the sub is a type of Exp: Iphone KAT (w/o KRM): cell
Imp: sub KAT: cucumber sandwich. Imp: smartphone  KAT: Iphone

Explicit Knowledge:
(entity:description)

Sighthound: dog breed.
American Staffordshire
Terrier: dog breed.
Greyhound racing: canine
racing sport involving the
Greyhound dog breed.
Whipper racing: dog sport.

Explicit Knowledge:
(entity:description)
Fog machine: device that
emits a dense vapor that
appears similar to fog.
Draisine: small powered rail
vehicle used by track
maintenance workers.
Oast house: buildings
designed for kilning (drying)
hops as part of the brewing

process.
Clouding agent: type of
emulsifier used to make

Question: beverage such as fruit juice Question:
What s the name of the famous train pictured? o ook more cloudy. What s this dog running after?
e Implicit Knowledge:
Category: Category:

(candidate:evidence)

. Implicit Knowledge:
Vehicles and Transportation : B T

Plants and Animals

Answer: Thomas: the train is named Answer: theball
: Smoot KAT (w/o KRM): Thomas after the man who designed Exp: person  KAT (w/o KRM): ball
Imp: Thomas KAT: Thomas. it. imp: ball KAT: ball

Explicit Knowledge: Explicit Knowledge:

i (entity:description) (entity:description)
4 Bathroom linen: household Embroidery workshop:
=\ linen used specifically for workshop where

the bathroom.
Toothbrush: oral hygiene
instrument used to clean
the clean the teeth, gums,
and tongue.

Toothbrush holder:
container or rack for
toothbrushes.

Laubwerk: delicate foliage

embroidery is created.
and-operated

cutting instrument.
Paper knife: an implement
used for cutting open
sealed envelopes.

Leather cutter: craftman.

- ornament with interlacing
Question: S Question
How often should someone use this? - What hobby might this depict?
Category: genelict implicit
. gory: (candidate:evidence) Category: (candidate:evidence)
Objects, Material and Clothing Daily: the product is made Obects, Material and Clothing G
i — with natural ingredients. N 2 form of art
Exp: twice day. KAT (w/o KRM): daily ;"‘IS ERlyltisereiiolee Exp: paper craft  KAT (w/o KRM): painting
Imp: daily KAT: daily. aily- Imp: scrapbook  KAT: scrapbook
Explicit Knowledge: Explicit Knowledg
(entity:description) entity:description)
Avro Shackleton: maritime Shelf-stable food: food of a

patrol aircraft family by
Avro.

MC-130 Hercules: airlifter
series by Lockheed.

P-38 Orion: anti-submarine
maritime patrol aircraft.
C-1308 Hercules: airlifter
series by Lockheed.

type that can be safely stored
at room temperature ina
sealed container.

Free box: box or location used
to allow for people to rid
themselves of excess items.
Icebox: non-mechanical
household applicance for
cooling foodstuffs.
Refrigenration: process of

Question: Question:
What type of plane is this? P — What is this machine used for?
Implicit
Category: (candidate:evidence) Category:
Vehicles and Transportation Jet: the plane is flying at a Brands, Companies and Products
high speed.
Answer: Answer: Refrigerator: the refrigerator
Exp: Hercules KAT (w/o KRM): jet Exp: refrigerate food  KAT (w/o KRM): freeze is used to keep food cold.
Imp: jet KAT: jet Imp: freezer KAT: keep food cold

Figure 5.5: More examples from OK-VQA dataset that our model generates
answers by jointly reasoning over both implicit and explicit knowledge.
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Preference Learning for Video
Understanding
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Chapter 6

Preference Learning with Large Language
Models for Video Understanding

This chapter focuses on video-based tasks, including instruction following, captioning, and
question answering, and introduces the method to utilize large language models for learning
preferences. By aligning model behavior with implicit human preferences, the proposed approach
reduces the reliance on annotated datasets while enhancing the effectiveness and generalization of

video understanding models.

6.1 Overview

Preference modeling techniques, such as direct preference optimization (DPO), have shown to
be effective in enhancing the generalization abilities of large language model (LLM). However,
in tasks involving video instruction-following, providing informative feedback, especially for
open-ended conversations, remains a significant challenge. Although previous studies have
explored using large multimodal models (LMMs) as reward models to guide preference modeling,
their ability to accurately assess the quality of generated responses and their alignment with
video content has not been conclusively demonstrated. This paper introduces a novel framework
that utilizes detailed video captions as a proxy of video content, enabling language models to
incorporate this information as supporting evidence for scoring video question-answering (QA)
predictions. Our approach demonstrates robust alignment with OpenAl GPT-4V model’s reward
mechanism, which directly takes video frames as input. Furthermore, we show that applying our
reward mechanism to DPO algorithm significantly improves model performance on open-ended
video QA tasks.
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6.2 Motivation

This paper addresses the challenge of aligning LMMs, particularly in tasks that involve video
instruction following. Despite recent advances in reinforcement learning (RL) [[16} 124} 181, 220]]
and DPO [31} 194, [190], which have been effective in guiding LLLMs towards generating more
honest, helpful, and harmless content, their effectiveness in video domain remains limited. The
critical obstacle lies in developing a robust reward system capable of distinguishing preferred
responses from less preferred ones based on video inputs. The challenge is further complicated
by the coverage and potential inaccuracies in generated content, stemming from the scarcity of
alignment data across different modalities [[153, 219].

Although human preference data are valuable, scaling is challenging due to its cost and labor
intensive nature, as highlighted by the LLaVA-RLHF [219] paper, which collected 10k human-
evaluated instances at a considerable cost of $3000. Existing approaches for distilling preferences,
such as those for image data using GPT-4V [138]], encounter scalability issues, especially for
video inputs that require analyzing multiple frames. While [4] leverage a supervised finetuning
(SFT) model for self-evaluation, the efficacy of the SFT model remains uncertain, particularly in
accurately assessing the factuality of responses in relation to their corresponding videos.

To tackle the aforementioned challenges, we introduce a cost-effective reward mechanism that
is both computationally and financially efficient for evaluating the quality of responses generated
by video LLMs, serving as a basis for further on-policy preference optimization. We propose the
use of detailed video captions as a proxy for video content, enabling a language model analyze the
content and assess the quality of an LMM’s response to related questions. The language model
generates natural language feedback as a chain-of-thought step, and produces a numerical score
as the reward, thereby creating an efficient feedback system.

However, high-quality video captions are essential for this process. To mitigate the short-
age of high-quality video captions, we have developed a comprehensive video caption dataset,
SHAREGPTVIDEO, using a simple prompting technique with the GPT-4V model, comprising
900k captions that encompass a wide range of video content, including temporal dynamics, world
knowledge, object attributes, and spatial relationships. With this video caption dataset available,
we verify that our reward mechanism, which utilizes video captions as a proxy, is well-aligned with
evaluations derived from the more powerful, albeit costlier, GPT-4V model-generated rewards.
Using this reward mechanism as the basis for the DPO algorithm, we train LLAVA-HOUND-DPO
that achieves an improvement in accuracy of 8. 1% over the SFT counterpart. This marks a
significant advancement in video LMM alignment and represents the first successful application
of a DPO method in this domain.

Our contributions are outlined as follows:

1. We release a large-scale detailed video caption (900k) and instruction-following (900k)
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dataset covering a wide range of video content, which facilitates video LMM model training

and research.

2. We demonstrate the effective application of DPO to improve model performance by lever-
aging the language model feedback as reward, which substantially improves model perfor-
mance on open-ended video QA tasks.

3. We propose an automated development benchmark for evaluating video instruction-following
capability, serving as a cost-effective way to validate model performance.

6.3 Prior Work

Large Multi-Modal Models. LMMs [15,137,1135,1152,!153] have enabled instruction following
across modalities by utilizing LLLM as backbones. In the context of video understanding, LLMs
have been adapted to process video content [4, 106, 136,155,161, 163}, [274]. Our work adopts
Video-LLaVA [149] backbone, focusing on model enhancement through preference modeling
with the DPO technique.

Video-text Datasets. Existing video-text datasets typically provide brief sentences or mere
keywords as captions, as indicated by [[18, 102} 241} 260, 270]. Video-ChatGPT [136] employs
human effort to create high-quality video instructions, albeit limited to the ActivityNet domain
with only 100k instruction pairs. Concurrent work [41]] leverages GPT-4V to label video captions.
Our work also leverages the GPT-4V model to produce detailed video captions, which we release

as community resource for LMM training.

Preference Modeling for LMMs. Preference modeling techniques are DPO [87, (138, 219]]
or PPO [219] are applied to LMM alignment. More recently, [4] used RL on Al feedback to
improve video LMM performance. Our contribution extends DPO to the video LMM alignment,

with the use of detailed captions as factual evidence for reward modeling.

6.4 Method

As shown in fig. [6.1] our methodology enhances video LMM alignment through DPO method
using rewards from a language model. We elaborate on constructing a video caption dataset
in § Subsequently, in § we discuss the generation of video instruction data and the
fine-tuning process of our model. Lastly, §[6.4] details the incorporation of generated captions

79



Concatenate a seguence of frames to regresent a video

GPT-4v
Imagining yourself as a customer service agent overseeing an (A) Prompting for
uploaded video. The video comprises a sequence of frames... caption generation
SFT\A?ﬁta dI he individuals perf in the video? @ Detailed Video Caption
Q: at do the individuals perform in the video: The video takes place on a grass soccer
A: They perform a sequence of movements ChatGPT  fie|d with white boundary lines. It features
including running, skillful footwork ... two individuals, one wearing a light-colored

football kit ...

Sampled Responses

Pred1: They are playing football.
Pred2: They are resting on grass.

feedback

(B) Video instruction
Fine-tuning

: sample
LMM-SFT 1' (C) Factually-enhanced DPO Pred6: They are practicing wrestling.

Figure 6.1: Workflow diagram showing: a) the use of GPT-4V for creating a detailed caption
dataset for videos; b) generating video instruction data for SFT; c) integrating captions into a

feedback loop for DPO, improving the model’s performance on video instruction-following tasks.

as a feedback mechanism for DPO method to refine our model’s factual alignment in video

instruction-following tasks.

Prompting GPT-4V Model for Detailed Video Caption Distillation The selection of dataset
includes videos from three sources: WebVid (400k) and VIDAL (450k) ActivityNet (50k) datasets.
WebVid and VIDAL videos are in the general domain sourced from YouTube, and ActivityNet
videos focus on human activities. The three datasets together result in a comprehensive collection
of 900k videos. To accommodate the requirement that GPT-4V only takes images as input,
we preprocess videos by uniformly extracting ten frames per video content. These frames
are then concatenated into a sequence to serve as a proxy for the video. We use GPT-4V to
generate a coherent caption for the represented video based on the frame sequence. The prompt
covers temporal dynamics, world knowledge, object attributes, spatial relationships, aesthetic

assessments, etc., with the goal of comprehensively understanding the video contents (examples

in fig.[6.8).

SFT with Generated Video Instruction Data from Detailed Caption To generate video

instruction-following data for SFT, we adopt a similar methodology outlined in Video-ChatGPT [136].

Specifically, we first randomly sample 300k video captions and then employ ChatGPT to generate
3 question-answer pairs conditioned on each caption. We release the 900k instruction-following
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(A) Sample Multiple Outputs from LLM with Temperate=1.0

Sampled Output No. 1]
The second symbol is a pound sign. |

Sampled Output No.2 ]
The second symbol that is drawn is a dollar sign. |

Sampled Output No. 6 |
» The second symbol that is drawn on the blank piece of paper is
"¥" which stands for Japanese Yen.

(B) Language-based Feedback from ChatGPT as Reward

| Query | LMM-SFT
What is the second symbol

drawn on the paper?

Given the following inputs:

: ; . Explanation: In the caption of the video,
1. **Ground Truth Video Caption**: {caption}

the second symbol drawn is a Japanese

2. **Question Related to the Caption**: {query} " .

3. **Ground Truth Answer**: {answer) ChotGPT Yen, so the “dollar sign” in the model

4. **Model Predicted Answer**: {sampled output} b prediction is not accurate ....

Reward: 2/5

Follow the guidelines to generate reward ..
(C) Build Preference Dataset (highest paired with lowest, skip if all > 3 or all <3) "
Sampled Output No.1 No. 2 No.3 No.4 No.5 No.6 | win: No.6 =
Scores 1 2 4 3 3 5 lose: No.1 LMM-DPO

Figure 6.2: Detailed illustration of the proposed factually-enhanced DPO method.

data to public, but we only use a random subset of 240k for our training. This approach ensures
that the instructional data remains factually consistent with the content of the detailed captions.

DPO with Language Model Reward Acquiring high-quality on-policy preference data can
be costly and labor-intensive. Although GPT-4V can be used for reward distillation, for video
data, its high computation cosﬂ slow response, and limited accessibility hinder scalability. We
propose a cost-efficient method to generate reward data for DPO using detailed video captions as
supporting evidence, as shown in fig.[6.2]

Initially, we randomly select a subset of 20k instruction pairs from the dataset described in
§[6.4] The SFT model generates six responses per input at a temperature of 1.0. This procedure
results in 120k question-answer pairs. Subsequently, we employ ChatGPT to evaluate the model
responses based on the ground truth answer and detailed description. ChatGPT generates an output
that includes a natural language explanation as chain-of-thought step, followed by a numerical
reward score on a scale from 1 to 9, indicating the overall quality.

For each video and question pair, we randomly select an answer with a score > 3 as positive
example, and an answer with a score below 3 as negative. Cases where all responses are uniformly
scored above or below 3 are excluded from the dataset. After the selection process, approximately

17k training instances are compiled for DPO training. Formally, the dataset is denoted as

Video representation is typically encoded with 2048 tokens, while our captions only uses roughly 140 tokens.
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Dpro = {(V,x,yw, y) }» where V is the video, x is the question, y,, and y; are the positive and
negative responses. The DPO objective is defined as below:

Lppo (793 Tret) = —EW 2,yw,m)~Doro [

10g0<mog Tl | 2.V) g m(ylw,w)

)

Tref (yw | €, V) Tref (yl ‘ $>V)

where 7y is the policy model to be optimized and 7 is the base reference model, both models
are initialized with SFT weights. o is the logistic function and f3 is set to 0.1.

For on-policy reward generation, our method incurs a cost of less than $20, under a pricing
model of $1.5 per million tokens. In comparison, previous methods of preference data collection,
such as in [219]], required an expenditure of $3,000 to gather 10k human preference data points.
Additionally, the method proposed by [[138], which employs GPT-4V for reward data labeling,
incurs a significantly higher cost—3$30 per million tokens—and demonstrates considerably slower

inference speeds.

Majority of Name Disagree Agree Rate
ChatGPT scores
are within .
CPT-4v score ActNet 31 87 73.7%
+o =131
(ChatGPT score
~ GPT-4v score) Vidal 31 88 73.9%
5 WebVid 45 111 71.2%
-3 —0 +o +4
(a) Score Difference Distribution (b) Preference Agreement Rate

Figure 6.3: Assessing Evaluator Quality Using Captions in Place of Frames. (a) The distribution
of evaluation score differences between ChatGPT (with caption as proxy) and GPT-4V (directly
on frames) evaluations. (b) The rate of preference agreement between ChatGPT and GPT-4V as
evaluators.

Assessment of Evaluator with GPT-4V Caption as Video Content To assess the effectiveness
of our proposed reward assignment method, we conducted a comparative analysis the GPT-4V
used as a video QA evaluator. Our method utilizes detailed captions as a proxy of actual video
frames, while GPT-4V directly takes in video frames as inputs. Both reward systems follow the

same set of guidelines for scoring reward.

82



To compare the two methods, we sample 200 videos from each of the WebVid, VIDAL, and
ActivityNet datasets, each associated with one question and two model predictions from our SFT
model, with one preferred and one dispreferred by ChatGPT. This results in 1, 200 examples, for
which we used GPT-4V to assign scores. Filtering through the Azure API backend resulted in 196,
151, and 143 videos from each dataset, respectively, having both answers evaluated. The average
scores of all examples from ChatGPT and GPT-4V evaluations were 2.9 and 3.5 respectively,
indicating a tendency of GPT-4V to yield slightly positive evaluations. The Pearson Correlation
Coefficient (PCC) of 0.47 (p < 0.01) suggests a moderate positive correlation. In fig. [6.3] (left),
the distribution of the difference between ChatGPT and GPT-4V scores reveals that majority
(> 75%) of ChatGPT scores fall within one standard deviation (o = 1.31) of GPT-4V scores.
Additionally, in fig. [6.3] (right), the agreement on preference between ChatGPT and GPT-4V,
excluding ties, exceeded 70%. These findings cautiously support our benchmark’s applicability
in video QA evaluation. Further refinements for better alignment—such as incorporating Likert

scales [285]] or GPT-4 evaluation—are areas for future research.

Human Annotation of Captions: To evaluate the quality of the distilled captions, we conducted
human annotations focusing on two aspects: coverage and accuracy (hallucination). Annotators
were asked to assess each caption by identifying the number of missing items and the number
of incorrect facts. The assessment was performed on a sample of 75 videos, with 25 from each
domain. The results showed that annotators identified a total of 21 inaccurate items across 14

videos (accuracy: 81%) and 12 missing items across 8 videos (accuracy: 89%). Annotated

examples are provided in § [6.6

Question ID: v_video9990_0 (MSRVTT-QA) Question ID: v_uiLrO9bdOLOM_23_30_2 (MSVD-QA)
Question: what do a show about on a cartoon show? Question: what moves a plastic glass containing liquid into
GT: superhero a bowl?

GT: bird

Video-LLaVA Prediction: The video shows a cartoon show called
"The Smurfs" and it features a character named Smurfette who

Video-LLaVA Prediction: A person’s hand moves the plastic
is shown in a pink dress.

glass containing liquid into the bowl.
SFT: The video shows a cartoon character in a spacesuit floating in

space with a speech bubble that reads "I'm not scared of space." SFT: A person’s hand moves a plastic glass containing liquid
DPO: The show appears to be about adventure and into a bowl. : o
exploration, as indicated by the animated characters and their DPO: The parrot moves a plastic glass containing liquid
actions. into a bowl.

Figure 6.4: Examples from MSRVTT-QA and MSVD-QA showcase that our LLAVA-HOUND-

DPO generates better responses, and reveal key limitations of the existing benchmark evaluation.
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Existing Video QA Benchmark from [163]

. MSVD-QA MSRVTT-QA TGIF-QA

Methods LLM Size
Acc. Score Acc. Score Acc. Score

FrozenBiLLM [264]x 1B 32.2 - 16.8 - 41.0 -
VideoLLaMA [274]x 7B 51.6 25 296 1.8 - -
LLaMA-Adapter [277]x 7B 549 3.1 438 2.7 - -
VideoChat [[136]* 7B 563 2.8 45.0 2.5 344 23
BT-Adapter [155]x 7B 675 37 57.0 3.2 - -
Video-ChatGPT [163] 7B 686 3.8 589 34 47.8 3.2
Chat-UniVi [1035] 7B 70.0 3.8 531 3.1 46.1 3.1
VideoChat2 [137] 7B 700 39 541 3.3 - -
Video-LLaVA [150] 7B 71.8 39 59.0 34 484 3.2
LLaMA-VID [144] 7B 726 39 587 34 492 33
LLaMA-VID [144] 13B 743 40 59.8 34 50.8 3.3
VLM-RLAIF [4]* 7B 764 40 63.0 34 - -
LLAVA-HOUND-SFT 7B 757 39 587 3.3 535 33
LLAVA-HoOUND-DPO 7B 80.7 41 702 3.7 614 3.5

reproduced by our team.

Next-QA

No. Methods R

Acc. Score
[1] Video-ChatGPT [163] 4523 2.09
[2] LLaMA-VID-7B [144] 49.43 3.24
[4] Chat-UniVi [105] 47.62 3.14
[S] Video-LLaVA [150] 48.97 3.25
[6] LLAVA-HOUND-SFT 60.60 3.51

[7] LLAVA-HOUND-DPO 74.27

3.74
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Table 6.1: Evaluation of Model Performance on Zero-Shot Video Question Answering
Benchmarks Using gpt-3.5-turbo-0613. Models denoted with % have their results directly
sourced from their original publications. Caution is advised when interpreting these results; see

Appendix [6.6] for an in-depth analysis of evaluation challenges. All other baseline models were

Table 6.2: Evaluation on Next-QA benchmark using gpt-3.5-turbo-0611 on official test set.



6.5 Empirical Evaluation

We adopt Video-LLaVA [149]] as the backbone of our video LMM, but our method can be applied
to any other architectures as well.

Caption Pre-training Stage (LLAVA-HOUND-PT): We use captioning data including 650k
image caption data from ALLaVA [36] and our distilled 900k video caption. We freeze the visual
encoder and fine-tune the MLP projector and LLLM, with learning rate 2e-5 and batch size 128.
SFT Stage (LLAVA-HOUND-SFT): We use 600k image instruction data from ALLaVA and our
generated 240k video instruction data, with learning rate Se-6 and batch size 128.

DPO training Stage (LLAVA-HOUND-DPO): We use the 17k preference data introduced in
§ [6.4]for DPO training. Following [100], we train our policy model with full model training for 3
epochs with learning rate Se-7, and a batch size of 128. All the experiments are performed on 8
A100 gpus.

Benchmark Evaluation

Dataset and Testing Environment. We evaluate model performance on four benchmark
datasets: MSVD-QA [35], MSRVTT-QA [260], TGIF-QA [102], and Next-QA [256] using
ChatGPT with version gpt-3.5-turbo-0611 to assess model predictions. The evaluation prompts
follow [163]. In our experiment, we found that different ChatGPT versions have high impact
on absolute score of metric, but the overall ranking of models is relatively stable. We select
gpt-3.5-turbo-0613 due to its closeness to the reported score in Video-LLaVA paper. Further
details on the selection rationale and evaluation pitfalls are discussed in Appendix [6.6]

Baseline Selection. We select video LMM models that have demonstrated SOTA performance
with with accessible code and checkpoints at the time of paper writing, specifically including
Video-LLaVA, which is also our choice of architecture. We replicate results including Video-
ChatGPT [163], LLaMA-VID [144] (7B and 13B), Chat-UniVi [105], and Video-LLaVA [150].
We copy the results from additional baselines including FrozenBiLM [264], VideoChat [136]] and
VideoLLaMA [274]], sourced from their original publication.

Results. In table our analysis shows that within the SFT models, LLaMA-VID-7B and
Video-LLaVA exhibit comparable performance, with LLaMA-VID-13B performing the best. Our
LLAVA-HOUND-SFT model achieves comparable performance to LLaMA-VID-13B. Incorpo-
rating preference modeling, LLAVA-HOUND-DPO achieves an average accuracy of 70.75%,
surpassing LLAVA-HOUND-SFT, which has an average accuracy of 62.65%, by 8.1%. Further-
more, LLAVA-HOUND-DPO exhibits superior accuracy compared to other RL. methods such as
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VLM-RLAIF. In table our model demonstrated consistent result on a relative new benchmark
Next-QA.

Error Analysis. Figure|6.4]illustrates two examples. In the left example, LLAVA-HOUND-SFT
provides an accurate description of the video’s first half but introduces a hallucination with the
phrase “I’m not scared of space," absent in the video content. LLAVA-HOUND-DPO yields a
more accurate inference. In the right example, both LLAVA-HOUND-SFT and Video-LLaVA
models produce incorrect inferences, whereas LLAVA-HOUND-DPO successfully correctly

identifies the subject in the video.

Open-ended QA Analysis In this section, we conduct analysis on open-ended long-form QA
with a proposed development benchmark. Specifically, we select 2,000 videos from each source:
WebVid [17], VIDAL [286], ActivityNet [71], MSRVTT [260], MSVD [35], TGIF [102], and
Something-something V2 (SSV2) [/9]]. For each video, ChatGPT was utilized to generate three
QA pairs based on the detailed captions, and we evaluate model predictions with our reward
mechanism. WebVid, VIDAL, ActivityNet are classified as in-domain, which are involved in the
model’s training pipeline. MSRVTT, MSVD, TGIF, SSV2 are classified as out-of-domain.

The evaluation reveals insights into (1) the quality of long-form open-ended QA, (2) in-domain
and out-of-domain generalization, and (3) Ablations on SFT and DPO experiments. Additionally,
we select our best performing model on the development bench before evaluating on public
benchmarks, which avoids tuning hyperparameters on test data. Comparisons are shown in § 6.6
Domain Generalization: Table and table shows the in-domain and out-of-domain
evaluation. SFT with our data tends to perform better both in- and out-of-domain, and DPO
further enhances the model performance, showing the effectiveness of preference modeling.
Video LMM without Video Instruction: [8] in table is baseline trained with only image
instruction fine-tuned on LLAVA-HOUND-PT, which achieves an average accuracy of 65.97%,
comparable to the LLAVA-HOUND-SFT model’s 66.06% in in-domain QA scenarios. How-
ever, its performance significantly drops in out-of-domain QA contexts (49.32% vs. 56.50%),
suggesting that Video QA training could potentially enhance generalization capabilities.
Quality of Generated SFT: [9] substitutes our generated video QA with the Video-ChatGPT
dataset for Video-LLaVA fine-tuning. A comparison between the findings of [9] and [6] reveals a
marginal performance disparity of 0.2% in average accuracy, indicating that the quality of our
generated QA closely parallels that of the existing video QA datasets. Given the similar quality in
SFT data, the large gain of [6] over [5] can be reasonably concluded from large-scale pre-training
on video captions.

Unfreeze MLP: The comparison between [10] and [7] reveals a significant decrease in per-
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Proposed Video QA Benchmark (In-domain)
ActivityNet-QA  VIDAL-QA  WebVid-QA

No. Methods

Acc. Score Acc. Score Acc. Score
[11  Video-ChatGPT [163] 34.17 2.19 29.35 2.10 38.88 227
[2] LLaMA-VID-7B [144] 36.54 2.27 30.58 2.15 3699 224
[3] LLaMA-VID-13B [144] 37.33 2.29 32,50 2.8 39.73 230
[4] Chat-UniVi [105] 39.35 2.32 3140 2.16 40.05 2.3l
[51 Video-LLaVA [150] 41.35 2.38 3430 224 4247 239
[6] LLAVA-HOUND-SFT 66.62 3.05 60.50 2.88 71.07 3.17
[71 LLAVA-HOUND-DPO 76.62 3.18 70.06 3.04 79.82 3.29
[8] LLAVA-HOUND-PT + Image Inst. 69.31 3.09 60.57 2.85 68.03 3.02
[91 LLAVA-HOUND-PT + VChat 67.34 3.02 62.33 2.89 68.98 3.00
[10] LLAVA-HOUND-DPO + training MLP 71.89 3.10 65.57 295 7537 3.21
[11] LLAVA-HOUND-SFT + Self-play 64.11 2.85 56.28 2.68 67.89 295
[12] LLAVA-HOUND-DPO w/ Ir3e-7 71.13 3.08 6490 292 7325 3.17

Table 6.3: Our proposed video QA benchmark evaluation on in-domain dataset using gpt-3.5-

turbo-0301, with detailed captions as supporting evidence.

Proposed Video QA Benchmark (Out-of-domain)
MSVD-QA MSRVTT-QA  TGIF-QA SSV2-QA

Methods

Acc. Score Acc. Score Acc. Score Acc. Score
Video-ChatGPT [[163] 3406 220 2565 198 31.35 209 1936 1.75
LLaMA-VID-7B [144] 34.14 221 2502 199 27.18 200 22.16 1.84
LLaMA-VID-13B [144] 3581 225 2634 202 2758 201 2198 1.83
Chat-UniVi [105] 3561 223 2589 2.01 3323 213 2059 179
Video-LLaVA [150] 3946 2.37 30.78 2.15 3295 218 2431 190
LLAVA-HOUND-SFT 6699 3.09 5782 285 66.13 3.07 3507 223
LLAVA-HOUND-DPO 73.64 3.12 6829 298 74.00 3.12 48.89 2.53

LLAVA-HOUND-PT + Image Inst.  65.19 2.96 48.66 2.52 53.83 2.62 29.60 2.04

Table 6.4: Our proposed video QA benchmark evaluation on out-of-domain dataset using gpt-3.5-

turbo-0301, with detailed captions as supporting evidence.

formance when the MLP is unfrozen during DPO training. Despite this drop, however, the
performance remains superior to that of the SFT baseline.

Smaller Learning Rate: The comparison between [12] and [7] reveals that using a smaller
learning rate of 3e-7 (vs. Se-7) results in a decreasing of model performance. This highlights the
future improvements by finding better hyperparameters.

Self-Play vs. DPO: [51] introduced a self-play methodology for DPO training, which designates
ground truth answers as preferred and model-generated responses as dispreferred. When com-
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paring the results of [11] with those in [6], a notable decrease in accuracy by 3% from the SFT
model is observed, suggesting that self-play may be less effective for video LMM alignment, and
introducing reward model is helpful.

80DPO Acc vs. Training Epochs (Out-of-domain) DPO as Ranker for MSRVTT (Out-of-domain)
74.73 75.02 73.64 e vy
74.0Q 5
701 68.29 05 o
61.27 :
601
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ssv2 451 43.25 — =+ SFT temp=0
30— : : : : : — : : : :
0.5 1.0 1.5 2.0 2.5 3.0 24 8 16 32 48 64
Epochs Number of Candidate Answers
(a) DPO Test Set Accuracy (b) DPO Performance: Generator vs. Ranker

Figure 6.5: DPO Model Performance. (a) The test set accuracy of the DPO model with respect
to the number of training epochs. (b) A comparison of DPO model performance as a generator

versus a ranker.

DPO Accuracy vs. Training Epochs. The left of fig. depicts the generalization performance
of the model on out-of-domain video QA tasks with respect to the number of training epochs. We
observe a consistent enhancement in model performance among datasets during the initial O to
2 epochs, with peak performance materializing at around 2.5 epochs, which corresponds to 350
training steps.

DPO as Ranker vs. Generator. Following [94], we compare the performance of employing
the DPO model as a ranker for candidate answers produced by the SFT model, operating at a
temperature setting of 1.0. As depicted on the right in fig. [6.5] we illustrate the test accuracy
progression through the selection of the best among /N candidates by the DPO ranker. Initial
observations indicate that the SFT model, when set to a temperature of 1.0, demonstrates a
reduced accuracy (43.3%) compared to that achieved through greedy decoding (57.8%). A steady
enhancement in performance is noted as the number of candidates increases, plateauing at an
accuracy of approximately 62% with 64 candidates. This performance, however, falls short when
compared with the direct application of the DPO model for answer generation, which yields an
accuracy of 68.29%. This difference suggests the stronger generalization of DPO model in answer
generation, despite it is trained on a reward classification loss. The contradictory results to [94]]
may be due to the difference of tasks, i.e. Math vs. Video QA. Refer to § [6.6|for more results.
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6.6 Understanding the Models

) MSVD-QA MSRVTT-QA  TGIF-QA Summary
Methods LLM Size
Acc. Score Acc. Score Acc. Score Avg Acc. Rank

gpt-3.5-turbo-0301 evaluation
Video-ChatGPT [163] 7B 78.62 4.00 71.67 3.63 5631 345 68.87 6
LLaMA-VID [144] 7B 82.57 412 7194 365 59.00 3.63 71.17 4
LLaMA-VID [144] 13B 83.72 416 73.63 3.68 59.72 3.66 72.36 3
Chat-UniVi [103] 7B 80.52 4.02 6692 341 5773 3.49 68.39 7
Video-LLaVA [150] 7B 81.44 4.08 7329 3.65 5834 3.61 71.02 5
LLAVA-HOUND-SFT 7B 85.65 4.10 7385 3.62 6498 3.65 74.83 2
LLAVA-HouND-DPO 7B 88.50 4.20 82.10 3.84 7548 3.81 82.03 1

gpt-3.5-turbo-0613 evaluation
Video-ChatGPT [163] 7B 68.55 3.80 5890 336 47.83 321 58.43 6
LLaMA-VID [144] 7B 72.62 392 5873 338 4921 3.28 60.19 4
LLaMA-VID [144] 13B 7429 396 59.82 341 5083 333 61.65 3
Chat-UniVi [105] 7B 70.01 3.79 53.08 3.14 46.09 3.12 56.39 7
Video-LLaVA [150] 7B 71.75 3.88 5897 339 4839 324 59.70 5
LLAVA-HOUND-SFT 7B 75.70 3.86 5873 331 5351 330 62.65 2
LLAVA-HOUND-DPO 7B 80.73 4.07 7015 3.66 6138 3.46 70.75 1

gpt-3.5-turbo-1106 evaluation
Video-ChatGPT [163] 7B 73.02 4.01 62.09 3.61 4776 3.36 60.96 6
LLaMA-VID [144] 7B 7549 4.08 62.09 3.61 5172 347 63.10 4
LLaMA-VID [144] 13B 76.97 4.10 63.16 3.61 5253 3.50 64.22 3
Chat-UniVi [[105] 7B 7222 392 5502 335 48.16 331 58.47 7
Video-LLaVA [150] 7B 7476 4.04 62770 3.60 5121 3.45 62.89 5
LLAVA-HOUND-SFT 7B 81.09 4.08 64.13 357 58.05 3.53 67.76 2
LLAVA-HOUND-DPO 7B 86.05 423 7675 385 70.02 371 77.61 1

Table 6.5: Performance Evaluation Across ChatGPT Versions on Zero-Shot Video Question
Answering Benchmarks. This table compares the performance of state-of-the-art video LMMs
evaluated under different ChatGPT versions. The absolute performance metrics scored by Chat-
GPT vary by versions. However, the comparative ranking of models under the same ChatGPT

version is relatively stable.

Effect of ChatGPT Version on Official Benchmark Evaluation. In Table we show impact
of using different ChatGPT versions on metric scores within zero-shot video question answering
benchmarks. Our analysis reveals significant variations in the absolute scores across ChatGPT

versions, but based on the average accuracy metric, the relative ranking of models under the same
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ChatGPT version shows consistency.

This comparison underscores a critical issue: many prior studies neglect to specify the
ChatGPT version used, potentially leading to inaccurate conclusions during evaluation. We
advocate for the explicit designation of the ChatGPT version in future evaluations. Analysis from
Table [6.5]indicates that the version gpt-3.5-turbo-0613 aligns most closely with the performance
of the Video-LLaVA [149] model, serving as the benchmark for model performance comparison

in our study.

In-domain WebVid GPT-4V Evaluation In-domain VIDAL GPT-4V Evaluation
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Figure 6.6: Training subsets exhibit varying levels of generalization difficulty. The WebVid subset
(left) requires less data compared to the VIDAL subset (right)
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Figure 6.7: The video caption ability w.r.t number of training data evaluated on both in-domain

and out-of-domain test videos using GPT-4V.

Evaluation of Captioning Ability from pre-training. In Figure we present the video

captioning ability of models across various datasets, with a total of 900k distilled data instances.

GPT-4V is employed for self-evaluation, serving as the upper-bound performance, while the

Video-LLaVA serves for comparative analysis, establishing a baseline. Notably, Video-LLaVA
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is trained on 54k video QA data instances. However, our first checkpoint, utilizing only 10% of
the data, is trained on 90k high-quality caption data instances, likely accounting for the observed
performance disparity in the video captioning task. Our results demonstrate that incorporating
more distilled data contributes to improved model performance across both in-domain and out-
of-domain datasets. Despite these improvements, a performance discrepancy with the GPT-4V
model remains. Further, we evaluate the generalization potential in specific data subsets, as shown
in fig. [6.6]in the Appendix. These subsets reveal varying degrees of generalization challenges
for different types of dataset. For example, the WebVid subset, which concentrates on relatively

static scenes, necessitates less data for effective training compared to the VIDAL subset, which is

marked by dynamic scene transitions and a diversity of video themes.

Original Caption: Time-lapse of purple iris flowers blooming. Original Caption: When you flip a pancake (pt.26) #shorts
GPT-4V Annotation: The video captures a close-up time-lapse GPT-4V Annotation: The video begins with a close-up view of a pancake
of purple irises with bright yellow accents against a black on a griddle or pan, which has not been flipped yet, showing its
background. Initially, the buds are tightly closed, with green uncooked, batter side. The pancake is pale in color with bubbles forming
sepals protecting the petals. As the frames advance, the buds on the surface, typical of a pancake as it cooks. There is a spatula with a
begin to open slowly, revealing the velvety texture and deep novelty design. It resembles a Stormtrooper helmet from the Star Wars
purple hue of the petals. The blooming is sequential, with franchise placed beside the pancake. Text urging the viewer to "Send this
some buds opening earlier than others, offering a dynamic to your bestie!" along with a Snapchat handle are overlaid on top of the
contrast between the stages of bloom. At final bloom, the video. The spatula is then slid underneath the pancake, which is then
yellow stamen stands out against the purple petals. flipped over to reveal a cooked side featuring the drawing of a cartoon
Throughout the sequence, the number of visible flowers crab and the phrase "U R CLAWSOME!" written on it. The cooked side of
changes. the pancake has a golden-brown color, and the cartoon and text appear

to be created with some dark-colored substance, possibly chocolate or
some edible ink.

Figure 6.8: A showcase of our dataset for detailed video caption automatically distilled from
GPT-4V via our prompt technique in § @

GPT-4V Caption Distillation

Human Annotated Examples of Distilled Captions
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WebVid Video ID: 2994286

GPT-4V Caption
Initially, the video displays a curved road lined with multiple orange traffic
cones and greenery on either side. The focus shifts to a large, dark-colored
truck approaching, its engine sound becoming increasingly prominent. The
camera angle changes to the rear of the truck, revealing a runner, wearing a
blue top with a white number bib marked '108', passing the truck on its left
side. The video concludes with the truck's rear-end seen driving away with the
traffic cones visible in the background.

Human Annotation

Inaccuracy (Hallucination):
1. The truck is driving away instead of approaching

Coverage:

1. The runner is holding a cup-like item
Figure 6.9: Human Annotation Analysis: The video frames depict a truck driving away from
the camera, but the distilled caption incorrectly describes the direction, which is identified as a
hallucination. Additionally, human annotators noted that the GPT-4V model failed to recognize a
man holding a cup.

Vidal Video ID: -d3h9kQAMvw

GPT-4V Caption
The cat is observed suspended by a limb caught in an electrical cable. It is a
light-colored feline, possibly tan or cream, with a noticeably fluffy tail. Below,
the person stands on what appears to be a blue stool or small ladder, reaching
out towards the cat in an attempt to free it. The environment includes a green,
neatly trimmed bush directly under the cat, and to the side, there appears a
section of a vehicle — likely a car, suggesting the proximity to a driveway or
parking spot. The pavement where these activities are occurring has a distinct
pattern, likely tiles, surrounded by green grass, which borders a residential
building. Above, an electrical pole is partially visible with thick cables extending
from it — one of which the cat is caught in.

Human Annotation

Inaccuracy (Hallucination): Coverage:
1.No blue stool or ladder visible -

Figure 6.10: Human Annotation Analysis: GPT-4V incorrectly identified a man wearing blue

pants as a man standing on a blue ladder, which is labeled as a hallucination.
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ActivityNet Video ID: v__Y4czVolxvE-Scene-006

LA Al

GPT-4V Captlon
Initially, two people are seen sitting on the floor with crafting materials. They both
wear casual clothing: one in a dark blue long-sleeve top with "Johnny’s BBQ"
written on it and the other in a red and black checkered shirt. They appear to be
in a cozy room with a wooden floor and a heater in the background. The next
scenes showcase the crafting process in detail, focusing on hands carefully
placing square-shaped burgundy materials with patterned textures onto a lighter
brown base. The precision of their movements suggests they are experienced in
this type of work.

Human Annotation

Inaccuracy (Hallucination):
1. The text on shirt should be “Jimmy’s BBQ”

Coverage:
1. Missing text: “Step 3: Adhere Squares Together”

Figure 6.11: Human Annotation Analysis: The example demonstrates OCR hallucination and a
coverage issue. The text on the woman’s t-shirt is incorrectly labeled as ‘Johnny’s BBQ’ instead

of ‘Jimmy’s BBQ.” Additionally, the text ‘Step 3: Adhere Squares Together’ is missing from the
description.

ActivityNet Video ID: v__ wITx73-BXw-Scene-003

GPT-4V Caption

The video showcases multiple scenes from a soccer match being played on a
field surrounded by an athletic track. It appears to be in the evening, and a
scoreboard is visible in the background indicating the game is underway. The
players, wearing contrasting uniforms, are seen running, maneuvering the ball,
and aiming at the goal. The crowd can be faintly seen on the sidelines watching
the game.

Human Annotation
Inaccuracy (Hallucination): Coverage:
- 1. “Gopher” and “Coca Cola” on the board
2. Score board shows time left
Figure 6.12: Human Annotation Analysis: The caption does not contain any hallucinations, but
some text recognized by human annotators is missing, such as ‘Coca Cola’ and ‘Gopher’ on the
scoreboard, as well as the time of the score match shown.
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ActhltyNet VldeoID v WagﬁCT 0]8 Scene 003

GPT-4V Caption

Throughout the video, there are multiple sequences featuring women in athletic
attire engaged in a field hockey match. The players are distributed across a well-
maintained, green artificial turf field. Two teams are visible: one in dark blue and
white striped jerseys, and the other in white jerseys with black numerals. The
white-jersey team appears to be on defense, while the dark-jersey team is in an
offensive posture, advancing the ball. Some of the key visual elements include the
athletic gear, such as shin guards, field hockey sticks, and cleats that the players
are wearing. The background includes features like team benches, spectator
stands, and a scoreboard that shows "MONMOUTH 0 2nd RIDER 2". Throughout
the various frames of the video, players can be seen running, likely maneuvering
the ball, and repositioning to either defend or continue their offensive push.
Ambient shadows suggest sunny weather conditions during the recording of this
match.

Human Annotation

Inaccuracy (Hallucination): ~ Coverage:
- 1. Score transition from "MONMOUTH 0 2nd

RIDER 2” to "MONMOUTH 1 2nd RIDER 2".
Figure 6.13: Human Annotation Analysis: The figures illustrate a scoring transition that is not
recognized by the GPT-4V model, highlighting the challenge of using static frames for accurate
captioning.

Video QA Dataset Demonstration To build the test dataset, we curated a dataset comprising
2,000 videos from each source: WebVid [17], VIDAL [286], ActivityNet [[/1], MSRVTT [260],
MSVD [35], TGIF [102], and Something-something V2 (SSV2) [79]. For each video, ChatGPT
was utilized to generate three QA pairs based on the detailed captions. The first three datasets
(WebVid, VIDAL, ActivityNet) are classified as in-domain, since the captions and QA pairs
derived from these sources are used in the model’s training pipeline. Conversely, the remaining
datasets (MSRVTT, MSVD, TGIF, SSV?2) are classified as out-of-domain, evaluating model’s
zero-shot QA ability.

§ [6.6) compares our development benchmark with existing benchmark dataset, we identify
several issues with the existing evaluation methods: (1) the auto-generated questions from current
benchmarks may be grammatically incorrect or nonsensical, and (2) the answers are limited to
a single word, which is inadequate for evaluating LMMs in the context of long-form QA. We
conduct further analysis on open-ended long-form QA with a proposed development benchmark.

We apply our reward system as described in § [6.4] and report scores from ChatGPT. A
score of > 3 is considered correct for accuracy calculations. The development benchmark
reveals insights into (1) the quality of long-form open-ended QA, and (2) in-domain and out-of-

domain generalization. Additionally, our development benchmark results correlate with existing
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benchmarks. We recommend that models be evaluated on the development benchmark first,

followed by human evaluation.

MSRVTT Video ID: video7012

Existing Video QA Dataset
Q: what is a suit man doing? Q: what does a man seated in a chair Q: who is speaking about the relevance
A: talk discuss? of disorders?

A: health A:man

Our Video QA Dataset
Q: What is the person in the video doing and what does their appearance suggest?

A: The person in the video is sitting in a leather chair against a wooden backdrop with framed art
and a small light fixture on the wall and appears to be delivering a speech or presentation. Their
appearance suggests that they are confident and engaged in the presentation or interaction.

Q: What decorative items are on the desk in the video and what does the lighting in the room look
like?

A: The desk in the video features a couple of decorative items including a blue-striped spherical
object and a small chrome lamp with a white shade. The lighting in the room is soft and comes from
the person's left side, casting soft shadows.

Figure 6.14: Comparing testing QA in existing benchmark with that in our proposed new bench-

mark.
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MSRVTT Video ID: video7016

Existing Video QA Dataset

Q: what are girls and their ~ Q: who does a woman teach how to Q: what is kids doing?
mom doing? paint eggs? A: color

A: marble A: girl

Our Video QA Dataset

Q: What is the purpose of the video?
A: The purpose of the video is to showcase the process of dyeing Easter eggs.

Q: What are the tools and materials used in the video?
A: The tools used in the video are a wire egg holder, and the materials are a variety of colorful dyes,

eggs, and a tablecloth.

Q: What is the significance of the tablecloth in the video?
A: The tablecloth is adorned with whimsical fish designs and protects the workspace where the
dyeing process takes place.

Figure 6.15: Comparing testing QA in existing benchmark with that in our proposed new bench-

mark, example 2.
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DPO Acc vs. Training Epochs (In-domain)

DPO Acc vs. Training Epochs (Out-of-domain)
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Figure 6.16: Test Set Accuracy of the DPO Model vs. Training Epochs. The figure illustrates a

consistent trend in both in-domain and out-of-domain video QA, with peak performance occurring

at approximately epoch 2.5, equivalent to 350 training steps.
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Figure 6.17: Comparison of DPO Model Performance: Ranker vs. Generator. The DPO model

serves as a ranker, assigning reward scores to candidate answers generated by the SFT model with

a temperature setting of 1.0. Employing the DPO model directly for answer generation results in

superior performance compared to its use as a ranker.

Additional DPO Results
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6.7 Summary

We study the techniques for effective video LMM alignment. Specifically, we propose an cost-
effective reward system that utilizes detailed captions as proxies for video content. We have
shown the reward scores is well-aligned with the evaluation metrics of GPT-4V, and DPO training
greatly enhances model performance. In addition, we have released 900k detailed video caption,
900k video instruction-following data, and 17k preference data pairs, with a complete code
pipeline including pre-training for video captioning, fine-tuning for video instruction following

and reinforcement learning with DPO for better LMM alignment.
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Chapter 7
Conclusion and Future Directions

This thesis explores multiple strategies to achieve data-efficient multimodal learning, with a
focus on reducing the reliance on large labeled datasets while maintaining robust performance
across vision and language tasks. At the heart of this thesis is the hypothesis that, with appropriate
reasoning capabilities, models can learn robust and generalizable representations by leveraging
structured human priors, human-generated weak supervision and common sense knowledge
embedded in large-scale pre-trained models.

The first part of this thesis presents methods for incorporating structured human priors into
model design and training to improve generalization in low-data settings. By embedding inductive
biases drawn from human cognition, our proposed approaches achieve significant improvements
in tasks such as handwritten Arabic text recognition and few-shot image recognition. For example,
in Chapter 2] we introduce a method for handwritten Arabic text recognition that leverages mor-
phological priors of the Arabic language, allowing accurate recognition under limited supervision.
In Chapter [3) we propose a prior-guided data augmentation that generates informative synthetic
samples, thereby significantly improving performance in few-shot classification scenarios. These
findings in first part demonstrate the effectiveness of integrating structured human priors into
model design and training, producing robust results even when annotated data are limited.

The second part of this thesis further reduces the reliance on explicit domain knowledge by
leveraging human-generated weak supervision. The focus is primarily on naturally occurring
image-text pairs (e.g., alt-text, noisy web captions) or external knowledge sources. In Chapter ]
we demonstrate that visual representations learned from weakly aligned images and text data can
match or outperform those trained on large manually labeled datasets, while requiring far less
curated data. By aligning images with descriptive text information, the proposed model learns
high-level semantic concepts and relationships. Such visual representations benefit from the
sematic richness of natural language, which leads to more generalizable and transferable open-

world visual understanding. Furthermore, in Chapter [5| we extend this paradigm by integrating
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image-text pairs extracted from external knowledge bases (e.g., Wikidata) and common sense
knowledge based on LLM. This integration enables the model to answer questions that require
reasoning beyond visual content. Overall, this part transitions from specialized human priors
to broadly distributed weak supervision, which minimizes the need for manual annotation. We
demonstrate that large-scale labeled datasets are not the only path to high-quality multimodal
representations. Carefully using human-generated weak supervision, such as image captions or
alt text, can help models learn more efficiently and improve their ability to reason.

Weak human-generated supervision can introduce noise, which can limit its effectiveness in
multimodal learning. This limitation is particularly evident in video understanding tasks, where
alt-text or hashtags often correspond to only a single frame or a high-level action. The third part
of this thesis addresses this challenge by proposing a preference learning framework that aligns
model outputs with evaluations derived from large language models (LLMs). It further extends
the potential for human-generated weak supervision by using it to guide model training through
preference-based learning. In Chapter [6] we use pre-trained LLMs as evaluators to supervise
the training of video understanding models. The model outputs are scored by an LLM-informed
reward model and the training is optimized to maximize these preference scores. This method
demonstrates that LLM-based feedback can significantly improve the quality and relevance of
generated output without requiring manual evaluation for every sample. In this part, we show
that LLM-informed feedback can effectively guide multimodal learning in complex video tasks,
where fine-grained annotations are difficult to collect and scale.

Across these three parts, this thesis provides a unified perspective on data-efficient multi-
modal learning by progressively broadening the sources of supervision, from structured human
priors to weakly aligned human-generated signals, and finally to LLM-informed feedback. The
findings demonstrate that multimodal learning can be achieved without extensive reliance on
large-scale labeled datasets. It is possible to substantially reduce the need for manual annotation
by strategically leveraging human knowledge, weak supervision, and feedback from pre-trained
language models. Extensive experiments highlight the feasibility of learning generalizable, robust
multimodal representations across diverse tasks. In general, our thesis offers a practical and
scalable foundation for the advancement of multimodal systems in both research and real-world

applications.

7.1 Discussions

This thesis builds on advances in language models. We leverage (large) language models to
reason across modalities and to reduce the amount of supervised data. However, the information

asymmetry persists between language and vision. Vision-to-language mapping has an information
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bottleneck that loses fine-grained details and collapses ambiguous descriptors (e.g., big, near).
Conversely, language-to-vision mapping is underspecified, many images can satisfy a single
textual description, and crucial physical or spatial cues may be absent. These factors hinder
the efficiency of the sample and the effectiveness of the learning. Although LLMs can improve
cross-modal alignment by scalable preference learning, this modality-intrinsic asymmetry cannot
be fully eliminated. Evaluation adds another complication. Current open domain assessments
are based on LLM-based judges. Different LLM versions, trained with different post-training
strategies, exhibit varying preferences and sensitivities to prompt format and response length,
which undermines fairness and comparability.

While language provides structured labels and abstractions, images and videos encode dense,
fine-grained spatial, temporal, and physical information. Vision-only pretraining is prone to
overfitting to low-level cues and fails to induce invariances, object representations, and relational
structure. In this thesis, it remains unexplored how to reliably elicit the knowledge embedded in
fully pre-trained vision encoders. In Chapter |4, we show that fully trained vision models can
be aligned with language through lightweight adapters. However, evaluation remains nontrivial:
relying exclusively on linguistic outputs to assess visual quality introduces a language bottleneck
that potentially degrades what the visual backbone has learned.

We further propose a vision-language feedback loop to advance data-efficient multimodal
learning. However, because this training is largely observational, the model has limited access to
causal structure and counterfactual reasoning (e.g., what would happen under alternative actions),
which are essential for discovery and innovation. The current learning pipeline lacks several key
inductive biases, including object-centric 3D structure, causal dynamics, and hierarchical temporal
organization. Humans rarely provide explicit instruction about physical laws (e.g., gravity) or
object consistency between viewpoints. Models trained primarily on weak textual supervision
often lack deep understanding of underlying mechanisms. As of 2025, state-of-the-art video
generators still produce implausible ballet sequences (e.g., extra limbs), errors that can be easily
detected by humans. Injecting commonsense knowledge and physical priors implicitly, without
sacrificing generalization, is therefore central to fully exploiting high-fidelity data.

At the same time, our proposed framework demonstrates strong breadth by composing and
rephrasing knowledge, enabling it to address a wide range of queries. However, learning causal
structure at the level of objects and events, and abstracting knowledge from long-context sequence
and everyday routines, remains an open challenge that this thesis does not fully address and

requires further exploration in future work.
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7.2 Future Directions

Although this thesis makes progress toward scalable and data-efficient multimodal learning, there
remain several avenues for further research. In particular, we highlight three important directions

that could extend and build on the present work.

Visual Representation Learning. The recent success of large language models has revolu-
tionized the field of natural language processing and boosted progress in multimodal research.
However, most current systems still rely on CLIP-style contrastive training [[152, 282]] or combine
several separate image encoders [145, 228]. These approaches each capture only part of the
visual signal and there is currently no unified method for integrating them into a single visual
encoder. Scaling up the model size, such as ViT-22B [59]], has led to only marginal improvements,
indicating that scaling alone is insufficient without more generalizable forms of supervision. In
chapter[6] we propose using human preference signals as an additional training objective. Early
results demonstrate that a preference learning framework can help align vision and language
objectives and improve generalization to new tasks. Future work should explore how preference-
based supervision can provide a more comprehensive and less biased learning signal, aiming for

stronger and more generalizable multimodal representations.

Unified Visual Generation and Understanding. Another important direction is the develop-
ment of unified multimodal models that can jointly perform perception and generation tasks across
multiple modalities. Currently, visual understanding tasks (e.g., recognition or question answering)
and visual generation tasks (e.g., image or video generation) are addressed by separate models.
A unified framework could enable a single model to interpret inputs and generate high-quality
outputs across modalities, improving overall efficiency and generalization. In Chapter 4] we
propose a joint prediction framework that learns to predict masked image patches and language
tokens simultaneously, and demonstrate improved visual understanding abilities with significantly
fewer training samples. However, due to computational constraints, we were unable to scale this
approach to larger models or datasets. Recent works, such as Transfusion [284] and Emu3 [240],
explore unifying vision and language within a single model. Although these methods demonstrate
encouraging improvements, they tend to underperform compared to specialized models. Further-
more, there remains an open debate on the use of diffusion-based generation versus next-token
prediction, and no conclusive strategy has been reached on how to model different modalities in a
unified architecture. More recently, GPT-40 has demonstrated strong performance in instruction
following capabilities in image generation tasks, with early evidence suggesting that these gains
come from a unified model architecture. Google’s Veo3 has pushed this further by simultaneously

generating both video and audio. These developments highlight the potential of unified models
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and motivate future work in the building of instruction follow-up systems capable of understanding

and generating multimodal content within a single architecture.

On-Device Personalization and Privacy. A third direction is the development of multimodal
learning systems that can personalize and adapt to individual users with limited computational
resources and strict privacy constraints. This direction is particularly challenging, as recent
advances have focused on scaling up model sizes, making them difficult to deploy on resource-
constrained devices. This thesis has taken initial steps toward reducing the data requirements
for multimodal learning. Building on this foundation, our aim is to develop systems capable of
effective personalization using a limited amount of user data. To address these challenges, future
research should focus on lightweight adaptation techniques, which update only a small subset of
model parameters and operate without transmitting user data to external servers. Recent advances
in hardware-optimized models for mobile platforms [1, 231] further support the feasibility of
running multimodal systems locally on user devices. By combining efficient adaption strategies
with lightweight architectures, multimodal systems could enable truly user-centric AI: models that
not only perform well on standard benchmarks but also continuously adapt to users’ preferences,

while ensuring privacy and low latency.
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