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Abstract

This work introduces a class of decision problem modeled on real-world applica-

tions where a human expert selects a course of action while drawing on a set of

disparate information sources. Our primary contributions target decision makers

who are looking to refine existing decision tasks and enable automatic processing.

We construct three datasets to reflect these types of decision problems: one dataset

uses federal hiring records containing details on applicants to public trust positions,

another documents trademark registration applicants and outcomes, and the third

consists of resolutions introduced in the US House or Senate for deliberation. Each

dataset comprises documents from multiple distinct sources that contain a mix of

structured and unstructured contents, as well as time series data that evolve over

the course of the decision process. The problems represented by these datasets are

of great practical importance to government and industry, but there has not been a

systematic study that examines how to approach such problems. We demonstrate

that these tasks can be modeled as text classification. A typical text classification

approach involves concatenating all data sources into a single document for model

input, but we show that this approach has limited effectiveness on complex datasets

and that state-of-the-art models may fail to learn the training objective. We ex-

plore an ensemble approach that leverages the unique properties of these datasets,
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demonstrating that multisource ensemble models outperform state-of-the-art sin-

gle source baselines. Furthermore, the ensemble approach can be implemented

under real-world resource constraints. Because we expect that decision makers

who are considering automation will be concerned with the fairness of any solu-

tion, we outline a basic first analysis that comprises a series of tests, the results

of which can feed into deeper fairness investigations informed by domain exper-

tise. We also consider the application of large language models (LLMs) within

the practical resource constraints of our classification experiments, and find that

these models contribute to explainability of the dataset but do not improve classi-

fication accuracy. We close with a discussion of how to adapt our findings into a

repeatable framework that can be applied to other practical decision scenarios. We

also explore areas of future experimentation, with a focus on solutions that may

arise from relaxing resource limitations and improving methodologies from greater

access to domain expertise.
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1 Introduction and Background

This work is focused on predictive modeling for a specific type of decision process

that involves a human expert selecting an outcome (often binary) while taking

into account multiple sources of information that may be drawn from different

domains. Such tasks are commonly encountered in government and industry, and

final decisions can have significant effects on involved parties. Some examples of

these decision processes are the adjudication of clearances for sensitive positions

in government, the awarding of a trademark or patent to a business venture, the

approval to sell into a highly regulated market (prescription drugs, initial pub-

lic offering of stock), and rulings in high-volume legal cases such as immigration

or medical claims. These decision processes can be protracted, leading to well-

publicized backlogs1 in areas with a high case volume. Furthermore, there is often

a high degree of inconsistency across decision makers in a given domain2, which

raises existential questions about the validity and fairness of the decision process.

Consequently, there is great practical significance in developing a system that

accurately predicts the outcome of a specific decision process when given the same

set of inputs that a human expert would use. A strongly performing system offers

the benefit of automation, as predictions generated nearly instantaneously can as-

sist or even replace the manual decision making process. An automated system

1https://crsreports.congress.gov/product/pdf/IN/IN12463
2https://news.stanford.edu/stories/2015/04/deportation-research-hausman-042015



2

may also offer more consistency in decisions than a diffuse group of experts who

hold different biases and interpretations of the decision guidelines. The combina-

tion of greater efficiency and consistency in decisions better serves the end users of

these decision processes (commonly the general public); delays to critical services

can upend lives, and inconsistent judgments erode trust and legitimacy in public

and private institutions.

Given the real-world practicality of potential solutions, we envision key stake-

holder groups who would be interested in adapting the results of this thesis, and

use these groups to drive the scope and experimental design of this work. Our

primary stakeholder group, which we refer to as end-users, comprises owners of rel-

evant decision processes who want to build a predictive system for their own novel

datasets. The group’s interests are focused on identifying modeling approaches

that will achieve prediction accuracy levels that warrant a practical deployment.

These stakeholders may be exploring an initial foray into predictive systems, based

on the previous examples of decision processes in non-technical areas of govern-

ment and law, and have limited resources to devote to computing infrastructure.

This necessitates a technical approach that emphasizes parsimony in model and

experimental design. We also expect this stakeholder group to hold concerns with

respect to fairness of a given solution, and will be interested in repeatable pro-

cesses to identify if a trained model disadvantages a subgroups in the dataset. We

also identify a group of secondary stakeholders - model purveyors - who comprise

scientists and engineers developing solutions and conducting research on similar

problems. Model purveyors will be interested in implementing and extending the
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approaches introduced in this paper. They will want to understand the tradeoffs

across different technical approaches, particularly when dataset features motivate

the choice of one approach over another. They may desire diagnostic tests for

fairness that will lead to process improvements, and they may also be interested

in applying newer approaches, such as the use of large language models (LLMs),

to improve accuracy or explainability.

Throughout this work, we will reference both stakeholder groups to focus dis-

cussions on design choices and experimental findings while providing a real-world

grounding. Keeping stakeholder needs in mind, this thesis investigates the follow-

ing research hypotheses:

1. A multisource ensemble of text classifiers will outperform state-of-the-art sin-

gle source baseline classifiers, and the ensemble can be feasibly implemented

with real-world resource constraints.

2. Datasets with greater variety of sources in terms of domain, content (e.g.,

structured, semi-structured, unstructured data), and length will have a higher

performance differential for the ensemble over single source baselines.

3. There will be a significant bias with respect to sensitive variables we identify

for each dataset, and this bias will correlate with the actual and predicted

outcomes in each dataset.

4. The use of LLMs to augment datasets with decision rationales and external

information will increase classifier accuracy while remaining feasible under

resource constraints.
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The results in this thesis are very positive for both stakeholder groups. For

the first stakeholder group, we show that the ensemble significantly outperforms

single source baselines on all but the simplest of our three datasets, and it is read-

ily implemented on a single GPU system. We also outline a basic first analysis

of fairness and show through a series of three tests that significant biases with

respect to the selected sensitive variables exist. Additionally, the ensemble model-

ing approach offers greater insight into the correlations between sensitive variables

and the outcome. We then provide a repeatable framework with practical steps

for how a stakeholder would apply our modeling approach to a new dataset, and

which requirements need to be met to achieve a successful implementation.

For the second stakeholder group, our results discussion provides detailed in-

sights into dataset characteristics that are most amenable to the ensemble ap-

proach, in partial support of hypothesis 2 above. We provide a follow-on discus-

sion to the fairness results detailing actionable steps that a policymaker might

take to introduce process improvements that address fairness issues. Although we

find that the application of LLMs does not improve classifier accuracy (contrary

to hypothesis 4), we explore experimental designs for LLMs that become feasible

with the relaxation of resource constraints and will advance understanding of the

solution space for this class of decision problem.

The remainder of this document is organized as follows:

• additional background on the classification task and discussion of practical

motivations (current chapter)
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• a survey of existing work on similar problems (Chapter 2)

• description of the datasets and associated stakeholders (Chapter 3)

• details on the proposed approach, including dataset creation and a discussion

of the ensemble model (Chapter 4)

• an outline of the experimental design, with results and an exploration of

performance differences across models (Chapter 5)

• further exploration of the datasets to determine characteristics that benefit

from the ensemble classifier approach (Chapter 6)

• an evaluation of fairness in the datasets and top performing models, moti-

vated by the real-world grounding of our datasets (Chapter 7)

• experiments in applying a large language model (LLM) to improve task ac-

curacy and explainability (Chapter 8)

• steps for practical deployment of our methodology on new datasets and dis-

cussion of future work (Chapter 9)

1.1 Motivation

Our initial work on this class of decision problem centered on a dataset collected

during a background check for applicants to government positions that require a

pubic trust clearance. This dataset, which is one of the three examined in this



6

thesis, offers a good example of practical significance due to well-documented ac-

counts of human error and inefficiency that can be addressed with an automated

solution. The background check and evaluation process is resource-intensive and

the penalties for failure can be very high, leading to undesirable trade-offs between

completion time and confidence in the final outcome. The decision process com-

prises multiple steps of data collection, verification, and analysis; newly arriving

information may substantially change the outcome; and a final decision may need

to be rendered using incomplete or uncertain information. A well-trained classifier

system can add significant value by making this process faster, more accurate, and

potentially more consistent. Although text classification is a well-understood prob-

lem, a review of prior work finds that nearly all approaches focus on classification

using static inputs that are limited to a single document or source.

There are a broad range of occupations that require public trust clearances

such as public health workers, immigration officials, and officers working in finance

and contracting. The federal government has experienced repeated difficulties in

evaluating applicants to cleared positions at scale, as reported in national media34.

Most of the reported challenges are for positions that require a security clearance,

which involve a process similar to public trust. These jobs employ a large number

of people, all of whom require an evaluation at hiring along with periodic updates:

in 2010, the Washington Post estimated that 854,000 people in the US held a

3https://www.washingtonpost.com/business/economy/company-allegedly-misled-
government-about-security-clearance-checks/2013/06/27/dfb7ee04-df5c-11e2-b2d4-
ea6d8f477a01 story.html

4https://www.pogo.org/analysis/27-and-counting-another-background-check-dumper-pleads-
guilty
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top-secret security clearance 5. This number has most likely grown over the past

decade, and the number of people with lower level clearances, including public

trust, is probably several times larger. At such high volumes, the government

has had difficulty keeping pace - in 2018, the Government Accountability Office

added the personnel security process to its “High Risk List” of functions needing

“broad-based transformation or specific reforms,” primarily because the backlog of

security assessments reached 700,000 in 2017 6. The pressure of managing a high

application volume has also created additional problems. Since 2008, the Depart-

ment of Justice prosecuted 27 cases against contractors who processed fraudulent

assessments, the most famous being a 2014 lawsuit against the contractor USIS

7. The lawsuit alleged that the company filed at least 665,000 fraudulent back-

ground checks, composing 40 percent of its contracted work, from 2008 to 2012.

USIS allegedly used software to improperly mark its background checks as hav-

ing passed a full review, when either a partial or no review had been performed

8. Notably, one of the subjects of a USIS background investigation was Aaron

Alexis, a US Navy contractor who killed 12 people in a workplace shooting at the

Washington Navy Yard in 2013. Although the lawsuit did not specifically identify

the Alexis background check as fraudulent, subsequent press reports indicated a

number of red flags in the Alexis case that were missed at the time 9. The incident

5https://www.washingtonpost.com/investigations/top-secret-america/2010/07/19/hidden-
world-growing-beyond-control-2/

6https://www.gao.gov/press-release/gao-adds-government-wide-personnel-security-clearance-
process-high-risk-list

7https://www.pogo.org/analysis/2018/07/27-and-counting-another-background-check-
dumper-pleads-guilty/

8https://www.reuters.com/article/us-usa-usis-idUSBREA0M0BD20140123
9https://www.theguardian.com/world/2013/sep/23/aaron-alexis-navy-yard-gunman-



8

underscores the stakes involved in background checks and exemplifies a worst-case

scenario arising from an overburdened system.

The public trust evaluation process takes place over an extended period of

time, and can require months for completion. In general, the process starts once

an applicant submits the required biographical data. The evaluators then obtain

a standard set of additional information, in the form of discrete documents, from

other sources. As these documents arrive, they are reviewed to determine if more

information is needed to resolve questions. The presence of significant negative

information can also cause the entire case to be canceled. Once all documents are

available, there is a review to determine if a case is ready for a final decision or if

further information is needed. These steps repeat until the available information

is deemed sufficient, and then a final decision is issued. This process is inefficient

because it requires repeated manual review of lengthy documents. If significant

issues in a case are not identified early, then extra time will be spent late in the

process to acquire more information. We expect that it is possible to accurately

predict the outcome early in the process with incomplete information, and that

we can further refine the prediction as more information arrives. In doing so,

we can provide a valuable signal to human evaluators that might lead to more

efficient processing, identifying red flags early, and reducing time spent reviewing

and triaging documents. The goal of this thesis is to show that there is support

for this to be done automatically; we will defer investigations into the effects on

real-world processes for future work.

clearance
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Not much academic research has been done on classifiers for multiple documents

with structured, unstructured, and time series contents. As we show in the next

section, most related tasks focused on traditional static text classification problems.

In addition, the initial practical (i.e., non-academic) approaches to this task that

used static text classification did not yield promising results. This is why we believe

that a thesis is needed to investigate this task and propose a better solution.
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2 Related Work

We find that our classification task is underrepresented in the existing literature.

Although we have identified tasks with some similarity to ours, the proposed so-

lutions at best partially fit the problem we are working on. Text classification re-

search tends to focus on single-document tasks, and we have not observed datasets

that mix text and time-series data. We have identified a number of prior works

that are relevant to various aspects of our problem, and in this section we summa-

rize commonalities while highlighting important contrasts that show how our task

is unique.

2.1 Text Classification

Text classification is a fundamental task in NLP, having been a focus of research

for several decades. Maron (1961) introduced the Naive Bayes algorithm for au-

tomated classification of documents, and Mosteller and Wallace (1963) similarly

applied Bayesian analysis to trace the disputed authorship of 12 Federalist pa-

pers. Over time, additional machine learning algorithms began to be applied to

text classification, including expectation maximization (Nigam et al., 1998), sup-

port vector machines (Joachims, 1998b), logistic regression (Schütze et al., 1995),

and eventually neural networks, most noticeably using recurrent architectures like

long-short term memory (Hochreiter, 1997) and convolutional networks (Collobert
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and Weston, 2008). These studies tended to apply machine learning to tasks that

focused on a single document, including news articles, websites, emails, and his-

torical texts. Such datasets are useful for testing the efficacy of algorithms and

feature representations to encode information on document content and semantics,

and they may simulate real-world tasks like spam detection and recommendation

engines. Our interest is in extending this work to decision tasks, taken from prac-

tical use cases, that require the decision maker to evaluate and assign a label to a

collection of documents that contain varying kinds of data.

Text classification over multiple documents is a relatively uncommon task, and

the closest analogue to our multi-document work is Lynn et al. (2020) . This work

predicted “Big Five” personality traits for Facebook users, and a varying number

of each user’s posts were treated as document inputs to the model. The authors

adapted the Hierarchical Attention Network model from Yang et al. (2016), us-

ing the successive attention layers to first encode representations over words, then

over documents, and finally encoding a single user-level vector to then generate

the personality prediction. There are key differences between the dataset in Lynn

et al. (2020) and our task, which inform the different structure of our approaches.

The documents in the Facebook dataset tend to be short, although large in num-

ber (an average of 163 documents per user, or 3,619 total words). The documents

have a degree of equivalency because they are drawn from the same domain, which

comports with using a single model to process all of a user’s messages. In our task,

the various document sources are drawn from different domains, convey different

information about the subject, and have a time series aspect. This does not con-
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form to the design specifications in the Lynn et al. (2020) model, which treats all

of the source documents the same (i.e., encodes them with the same GRU layer),

which implies that the documents convey similar information about the subject.

As a result, we believe that a much different approach is required for our task.

We surveyed many text classification papers to define state-of-the-art perfor-

mance on single document text classification. Adhikari et al. (2019) provided

a useful comparison between the AWD-LSTM model from Merity et al. (2017)

adapted to text classification, and several popular classifiers including the hier-

archical attention network (Yang et al., 2016), sequence generation model (SGM)

from Yang et al. (2018) and multiple CNN-based models. The AWD-LSTM consis-

tently outperformed the other models across four common datasets, and as a result,

we select it as one of the individual models for our ensemble while excluding the

others. We are also interested in CNN models, as these avoid the cost of backpropa-

gation through time that recurrent layers impose with long input sequences. CNN

models with strong performance include Conneau et al. (2016), which incorpo-

rates techniques from popular computer vision models including VGG (Simonyan

and Zisserman, 2014) and ResNet (He et al., 2016). We also note Xiao and Cho

(2016), which introduces a character-level model that offers a hybrid convolution

and recurrent layer that offers strong performance and a low parameter count. In

general, we find that existing CNN models do not match the top performing recur-

rent models when comparing results on like datasets. Because of this, we opt to

build a new CNN model using techniques from QANet (Yu et al., 2018), originally

used in the question answering domain. This model, which we describe in the
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Proposed Approach, has architectural features not typically found in CNN-based

text classifiers and offers an alternative approach to the common CNN models.

Heavily pretrained models have achieved very low error rates in text classifi-

cation and other NLP tasks as well. ULMFiT Howard and Ruder (2018) used

the AWD-LSTM, but with significant pretraining as a language model on the

Wikipedia corpus. The model is then fine-tuned as a language model on a task-

specific corpus, and again fine-tuned as a classifier. ULMFiT recorded better

scores across multiple datasets than its comparison models. The pretraining and

fine-tuning techniques used for ULMFiT may be quite useful for our task, although

pretraining on Wikipedia may be of limited use because the form-based text data

in our domain is significantly different. BERT (Devlin et al., 2018) was the first of

many pretrained transformer models that achieved state of the art results across

many tasks. We opt to use BERT as a strong baseline, with the caveat that it

has three significant limitations on our task: BERT’s pretraining corpus is out of

domain for our task; many of our documents exceed BERT’s limitations on input

size; and BERT’s large size make it infeasible for inclusion in our ensemble, due to

prohibitive hardware requirements to run multiple BERT models simultaneously.

Although larger transformers such as XLNet (Yang et al., 2019) have superseded

BERT’s performance while allowing for much longer input documents, the model

sizes are impractical for our environment, so we exclude them from our experi-

ments. Dai et al. (2022) and Premasiri et al. (2023) explored techniques for text

classification on long documents using transformers, with the latter’s experimen-

tal approach of embedding chunks of long documents and fusing the embeddings
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together leading to less accurate results than document truncation.

During the course of this work, large language models (LLMs) have arisen to a

central focus in NLP research for a wide range of tasks. This includes text classi-

fication, although results have been mixed on benchmark datasets in comparison

to the encoder-type transformers that established prior state of the art results.

Zhang et al. (2024) demonstrated an LLM-based method that outperformed state

of the art transformer methods on multiple datasets. Their RGPT approach uses

adaptive boosting with a recurrent ensemble of strong learners; the base models in-

cluded RoBERTa (Liu et al., 2019), LLaMA 2 (Touvron et al., 2023a), and others.

Although the results are convincing, such an ensemble is highly computationally

intensive and impractical for the constraints (see Chapter 4) that we establish for

this work. Sun et al. (2023) introduces an in-context learning method that uses

kNN search coupled with few-shot prompting to achieve state-of-the-art results on

four benchmark classification datasets. We again note resource limitations, as the

work uses a 175 billion parameter model, which again exceeds the resources we are

willing to allocate to a solution. Edwards and Camacho-Collados (2024) surveyed

nearly 20 text classification datasets, comparing in-context learning approaches

using a variety of LLMs with fine-tuned transformers. Their findings revealed that

the fine-tuned models - RoBERTa and T5 (Raffel et al., 2023) - outperformed

the in-context approaches. We explore the use of LLMs for rationale generation

and feature set augmentation in Chapter 8; the high computational cost for the

best-performing LLM methods precludes their use in this work.
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2.2 Time Series Classification

Ismail Fawaz et al. (2019) produced a survey documenting performance on time

series data for nine types of archetypal deep learning models (MLP, ResNet, CNN,

CNN with simple attention, etc., plus some variants). The models were tested on

85 univariate and 13 multivariate time series datasets. The survey found that the

ResNet architecture consistently outperformed the other model types on univariate

and multivariate time series data. We found that Ismail Fawaz et al. (2019) of-

fered the most comprehensive comparison of deep learning models across datasets,

although its direct applicability to our task is somewhat limited because all of the

datasets are inherently numeric, whereas our dataset combines text with a time di-

mension and comprises multiple documents per input. However, Ismail Fawaz et al.

(2019) offers a useful point of comparison for benchmarking deep models on pure

time series data, and we plan to test our models (i.e., the ensemble components)

to determine their applicability to purely numeric time series data. Ismail Fawaz

et al. (2019) mainly used simpler models, none of which included recurrent ar-

chitectures. Results for our CNN model, which incorporates residual layers and

self-attention, and the regularized LSTM will be complementary to the findings in

Ismail Fawaz et al. (2019) and offer insight into how sequential NLP models apply

to traditional time series tasks.

Lipton et al. (2015) explored a time series prediction task in the healthcare

domain using an LSTM model. The dataset is a multivariate time series with

measurements recorded at irregular intervals, and one goal of the classification task
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is to generate accurate labels throughout the time series, not just at the final step.

One of the training methods for the LSTM involves replicating the target labels

across all time steps, generating a prediction for every element in the sequence

and computing combined loss for the sequence. The total loss is expressed as a

combination of the loss at the final step and the average loss for all steps. The

techniques in Lipton et al. (2015) are highly relevant for our time series data, as

we also use data recorded at irregular intervals and need to generate predictions

throughout the sequence. Although our time series combines numeric and textual

data, the details in this work inform our modeling approach.

2.3 Text Classification Datasets

Given that text classification is a well-understood task that has long been studied

in NLP, there are many benchmark datasets in wide use today. Common domains

include news articles, where the task is often to assign categories to documents,

such as in AG News (Zhang et al., 2016), 20 Newsgroups (Lang, 1995), and Reuters

(Lewis et al., 2004). Sentiment analysis is a similar task which often involves movie

and product reviews, such as SST-2 (Socher et al., 2013) and IMDB (Maas et al.,

2011). Other domains include medical texts (Joachims, 1998a), online discussion

and comments such as Jigsaw toxicity1 and SemEval tasks (Barbieri et al., 2018).

There are many similar datasets drawn from the aforementioned domains, as well

others, such as legal texts. These classification tasks most commonly focus on

1https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
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text at the document or sentence level, as tasks that involve classification over

multiple documents are quite rare. This is a key motivation to create new datasets

or compile them from existing public data.

We turn to US government data as a source of repeatable decision tasks that

draw on multiple documents or information sources. Of our two public datasets,

one is derived from US Patent and Trademark Organization (USPTO) trademark

case data. We have not identified NLP or machine learning studies that use this

data source. A similar dataset assembled from the USPTO’s patent information

(Suzgun et al., 2022) includes annotations for an outcome prediction task. This

dataset bears a number of similarities to the trademark data that we compile, but

it is missing time series data that we consider to be a key component of our work.

Our other public dataset focuses on predicting whether a congressional res-

olution will successfully pass. We use data provided by the US Congress. Nay

(2017) presents a similar text classification task to predict whether a bill will be-

come law. Nay (2017) uses a different data source2, and the task is structured

as static, single document classification with no time series aspects. We choose

to work with congressional resolutions because they are greater in number and

have a more balanced binary outcome. Purpura and Hillard (2006) also performs

text classification on congressional legislation, but their task assigns topics to bills,

which does not require data to be as broadly scoped.

2https://www.govtrack.us/
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3 Datasets and Modeling Approach

We selected three datasets that conform to the problem class description outlined

in Chapter 1. All contain multiple data sources, which may include structured or

unstructured data, and all unfold over time. These datasets comprise the original

documents and outcomes for the public trust clearance process, used for vetting

applicants for certain types of federal jobs; the trademark application process, as

administered by the US Patent and Trademark Organization (USPTO); and con-

gressional resolutions introduced in the US House or Senate. The public trust data

are proprietary, which strictly limits the details we can share, but the remaining

datasets are openly published and have no such constraints.

We return to the discussion of the key stakeholder groups introduced in Chap-

ter 1 (end users and model purveyors) and describe the desired outcomes for each

dataset through the lens of both groups. We envision similar stakeholder needs

for the public trust and trademark datasets. End users for these datasets are

the government organizations executing the decision processes, and they will be

seeking a highly accurate solution that can bring efficiency, automation, and con-

sistency. For example, in the public trust domain, earlier predictions can inform

longer-term workforce and hiring planning, which is normally complicated by the

uncertainty of the clearance process. End users are likely to be interested in the

fairness of a solution and the desire to prevent an algorithm from discriminating
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against sensitive groups. Model purveyors, who may include technical staff or affil-

iated researchers, will be interested in process improvement. If a model accurately

predicts a negative outcome early, purveyors may want to alter the decision pro-

cess to close the case quickly and conserve resources or identify proactive steps

to prevent the negative outcome. Similarly, model purveyors will be interested in

findings that link key features to an outcome disadvantage for a given subgroup.

Such findings may prompt further investigation into the decision process to address

outcome discrepancies.

Stakeholders for the congressional resolution dataset are somewhat different,

as this dataset involves a political process instead of decisions made in accordance

with a specific rubric. Examples of end users include the staff of an elected rep-

resentative or national party who are interested in political forecasting to inform

legislative strategy. An accurate solution may hold value beyond predicting the

outcome for a single piece of legislation, because it may enable end users to adjust

the parameters of a resolution (sponsors, language, committee referrals, etc.) to

see if the predicted outcome changes. Model purveyors may again be experts who

implement or iterate on a given solution. They may also include political scientists

or other researchers who are interested in quantitative modeling of the legislative

process to understand outcomes or sources of bias or are looking to improve their

existing models.

There are also key stakeholder-driven limitations on data and solutions for

each of the three domains. We anticipate that stakeholders are likely to face

practical resource limitations when operationalizing a solution, as none of the
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domains are traditionally associated with heavy investment in machine learning.

This drives our choice of models toward favoring parsimony and efficiency over

simply choosing the largest frontier model available. We also assume that any

solution will use imperfect or incomplete information as input. In the public trust

domain, for example, there may be additional data sources that are not available to

the model due to sensitivity, or because the information becomes available so late

in the process that a prediction would no longer hold value. As another example,

the outcomes in the congressional dataset are determined by votes, committee

actions, or other activities taken by elected officials. These representatives may

consider additional information that is outside the scope of the resolution (e.g., the

needs of a powerful constituent group) and not accounted for in the dataset. The

constraint of imperfect information, which is present each of the datasets, increases

the difficulty of the prediction task and should further stress the models that we

use.

We treat each of these tasks as text classification problems that specifically

illustrate a multi-document scenario. In the sections that follow, we explain the

dataset selection criteria and then describe each dataset and its associated prepro-

cessing steps in detail.

3.1 Dataset Specification and Selection

This work focuses on a multi-document text classification scenario. For a given

problem, we have a set of n input document sources [s1, s2, ..., sn] ∈ S. Each
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document source can emit one or more documents throughout the duration of the

task, where a document di consists of words w
i
j. A document source can optionally

emit a timestamp ti and descriptor ui simultaneously with each di, and we refer

to such a source ([(t1, u1), (t2, u2), ..., (tn, un)] ∈ T ) as a control sequence. Finally,

we have the set of possible outcomes for the task [y1, y2, ..., ym] ∈ Y .

In a typical text classification task, the above description collapses to a single

document (n = 1) and no control sequence. We would then apply each wj as a

sequential input to a model to develop a vector representation of the document

d1 and issue a prediction ŷ. However, as we discussed in Chapter 2, not all text

classification tasks collapse to a single document specification, which motivates the

introduction of the above framework.

Data sets that meet this specification should contain:

• Multiple data sources that function as separate documents and contain fea-

tures for use in the classification task

• Document sources that mix structured, semi-structured, or unstructured

data

• At least one control sequence that chronicles actions and events (with dates

or timestamps) throughout the decision process

Many real-world tasks that fit these requirements tend to use restricted or pro-

prietary data, so we particularly value datasets that are openly published. We also

seek to maximize variance across datasets in terms of size, complexity, features, and

domain. This helps to generate stronger evidence that our experimental ensemble
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approach generalizes beyond a single task. In cases where traditional (baseline)

modeling approaches are superior, the results are useful for defining conditions or

detection methods to inform an ideal approach for future datasets that also fit the

above requirements.

The public trust dataset conforms to most of the key requirements, with the

exception that it is non-public. The decision process requires weighing evidence

from multiple documents, most of which comprise form data with varying degrees

of structure. It also includes a control sequence that provides a comprehensive

summary on all actions and events that occurred throughout the decision process.

The trademark dataset has a similar organizational structure with some im-

portant differences. It contains one data source that is explicitly a document (the

usage statement). The other data sources are more accurately characterized as

groups of related features, some of which have been distilled from original doc-

uments, according to USPTO information. This dataset also includes a control

sequence with the unique properties of covering multiple years or even decades for

a single case, as well as including a much larger number of unique actions than the

other datasets. The USPTO publishes this dataset openly.

The congressional resolution dataset is smaller and offers less complexity in its

features than the other datasets, which also provides a useful contrast. Most of

the data sources are unstructured text, but they are typically short in length and

follow a consistent pattern. The control sequence is much shorter than in the other

datasets, and the events often occur on the same day. This dataset is also openly

published.
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In using publicly released datasets, we are most likely making a tradeoff in

terms of complexity, as only the public trust dataset comprises the original doc-

uments used in the decision process. The benefit of non-proprietary data is that

we can provide examples of dataset members with all data elements intact. The

two datasets we selected are the result of a best effort in searching for relevant

tasks among many thousands of openly available, textual datasets. There are cer-

tainly other tasks and data that would yield interesting further studies, such as the

approval process for prescription drugs or applications from companies for invest-

ment funding or initial public offering. However, these data are not available to the

public, would require special agreements to obtain, and almost certainly contain

privileged information that we could not disclose in a publication. Consequently,

we leave the investigation of additional proprietary datasets to future work.

Table 3.1: Dataset Summary

Dataset N Avg. Tokens Document Sources

Public Trust 19197 493 3 semistructured, 1 control sequence

Trademark 59999 1664 1 structured, 1 semistructured, 1
unstructured, 1 control sequence

Resolutions 18750 337 2 semistructured, 1 unstructured,
1 control sequence



24

3.2 Public Trust Dataset

The public trust dataset consists of unstructured and semi-structured text derived

from five different document sources. We work with a sample of approximately

35,000 applicants over a 12 year period. The public trust process is best repre-

sented as a pipelined system (Figure 3.1), in which each applicant passes through

a common set of discrete steps. Each step in the pipeline is associated with the

release of a document from one of the sources. Applicants generally follow the

same progression of steps, but depending on an applicant’s circumstances, some

steps may be repeated or occur out of order. In addition, applicants may be elim-

inated from consideration at any one of the steps; as a result, the system does

not have all possible documents for all of the applicants. The system also emits a

series of states that forms a time-series and also contains the output variables. The

time series is commonly referred to as ”milestones” in this domain, which track

an applicant’s progress through the pipeline in detail and contain a record of all

significant actions and events.

The public trust pipeline (Figure 3.1) generally conforms to the following pro-

cess: the prospective candidate submits an application (Source A), which includes

limited biographical information. A candidate who receives and accepts a formal

job offer then submits a detailed biographical history (Source B). After receipt of

Source B, the formal evaluation process begins, during which the candidate can

be removed from consideration at any point if significant negative information sur-

faces. Evaluators receive a credit report (Source C) on the candidate, and one or



25

more due diligence checks (Source D). Multiple instances of these documents may

be received depending on the details of the case. Once all information is received,

the case evaluator makes a final determination for granting public trust access.

A set of milestones with timestamps (Source E) is updated throughout the entire

process, providing a detailed accounting of all significant actions and summarizing

all communications with the applicant. Sources A and B arrive in order for every

applicant, but documents and updates from Sources C-E arrive asynchronously

with no guarantee of ordering. A candidate who is eliminated from consideration

prior to the final decision may be missing some of these sources, but will always

have a document from Source A. Current stakeholders desire an intelligent system

that can predict the final milestone (i.e., the output variable) at any point in the

process, and we have designed our proposed model to meet this requirement.

Figure 3.1: Summary of the Evaluation Pipeline to Model

We created the dataset by selecting specific data sources and performing ex-
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tensive cleaning and standardization, as most sources were designed for human

consumption. Our selection process was informed by consultation with subject

matter experts who create and review applicant risk evaluations on a daily ba-

sis. We also drew on the US Government’s standard rubric that prescribes how

to consider and weigh individual risk sources. The raw data sources comprised a

combination of relational database tables and document stores. The consultation

process was critical to understanding the data sources, narrowing down tables and

fields to reasonable sizes, and standardizing sources that evolved multiple times

over 12 years. As an example, over 60 relational database tables were relevant to

our task, and some tables contained as many as 150 fields.

The following subsections provide a detailed look at each document source.

Because of the proprietary nature of the data, we refer to the sources as Document

Sources A-E. Although we cannot show specific instances of the public trust data,

we provide pseudocode in Appendix A for constructing a notional instance of the

public trust dataset. Summary statistics for the data sources are given in Table 3.2.

These measures are taken after preprocessing and do not represent raw, unedited

documents, which would be much longer. Source C is omitted from the table as it

is withheld from use in any model, due to limited coverage in the dataset.
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Table 3.2: Field Length Summary for Public Trust Data

Document Mean σ Min Max

Source A 91.83 23.46 45 259

Source B 184.80 152.22 17 3132

Source D 40.17 16.63 3 140

Source E 176.46 60.00 32 609

3.2.1 Dataset Components

3.2.1.1 Document Source A: Job Application

Document Source A is common to all applicants, and consists of data submitted

through an online job application portal. This source is always the first available

document in the process, and it is generated only once per applicant. The key

document contents include:

• A list of positions the applicant is applying for

• Basic biographical information

• Desired salary

• Employment and residence history

• Self-reported issues, including police record, military disciplinary history, and

drug use
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• Free-response sections for an objective statement, cover letter, and optional

explanatory statements for above issues

We consider this source to be semi-structured data. Although the text is essen-

tially a common form and appears tabular, the employment and residence history

sections contain an arbitrary number of entries. The free-response sections are

unstructured but vary widely among applicants in length and content.

This source is critically important to prediction because it is always the first

document available, and an accurate prediction early in the process carries greater

relative value than predictions made later. However, among subject matter ex-

perts, this source is considered the most unreliable because applicants are more

likely to conceal negative information or provide untruthful answers in Source A

than in any of the other documents.

3.2.1.2 Document Source B: Detailed Personal History

Source B is the longest and most complex of the five sources and provides the

most comprehensive view of an applicant’s background. This source is generated

after an applicant accepts a job offer, and its completion marks the start of the

formal evaluation process. It is essentially an expansion of Source A, with many

additional unique fields added. Key contents include:

• Place of birth, age, citizenship, and similar biographical details

• Comprehensive residence, employment, and educational history
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• Negative employment experiences (firings, layoffs, etc.) with optional expla-

nations

• Criminal, drug, alcohol, and mental health histories

• Marital history and information on immediate relatives

• Information on prior government background checks

• Financial history, including debts and negative events such as collections or

bankruptcies

Similar to Source A, this document is primarily semi-structured. Although it

is an electronic form, many fields contain a variable number of entries, and some

optional fields allow for short explanatory responses. One significant departure

from Source A is that some applicants submit supplementary free-written pages,

mainly providing detailed explanations for negative personal information. The

supplementary pages also serve as overflow space when applicants have more entries

than the form supports.

The data in Source B is considered more reliable than in Source A. The extra

detail that the form requests from applicants, together with a signed statement at-

testing to the truthfulness of the responses, probably nudges applicants to provide

more accurate information.

The documents in Source B can be separated into three groups based on key

characteristics. Each group requires varying levels of effort to extract the important

fields and standardize the data contents:
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• The most recent group, which includes all current and future applicants,

requires minimal preprocessing. The data in this group are created from

a web-based, interactive form and are stored in JSON format. The web

form improves response consistency among applicants and eliminates sup-

plementary material. Approximately 3000 documents are in this format,

which is insufficient to train an accurate classifier. In addition, these forms

are a biased sample of the applicant population: because the public trust

process is time-intensive, the available documents overcount applicants who

were quickly disqualified while undercounting applicants who were hired, es-

pecially the most complex cases that required extra processing time. We

supplement these documents with legacy data to expand our training corpus

and alleviate the issue of selection bias.

• The second group comprises 20000 forms originally received in hardcopy,

then scanned and sent through OCR software to produce a PDF document.

Although the forms contain typed responses, the OCR process introduces

numerous errors in the text that need to be resolved during preprocessing.

• The earliest format, approximately 6000 forms, contain handwritten responses,

which the OCR process cannot capture.

3.2.1.3 Document Source C: Credit Report

Source C is a standard credit report generated by one of the major credit bureaus.

The document is originally received as a PDF (pre-processing details below) and
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conforms to one of three formats. The report contents are semi-structured, typ-

ically including a text summary that adheres closely to a standard template, a

significant amount of boilerplate text, and structured text for each of a subject’s

financial accounts. The summary sections across all formats provide an overview

of the subject’s personal data (e.g., name, address), totals for accounts opened by

type, and records for negative events such as bankruptcies, judgments, collections,

and late payments. The details for each account generally include information on

the creditor, the amount of credit extended, the balance, alerts for accounts that

are in collection or overdue, and payment history (a string encoding the lateness

of prior payments).

Depending on an applicant’s financial situation, more than one credit report

may be available. We use only the most recent credit report as an input because

the earlier reports do not contain unique information. We have credit reports

for approximately 30,000 candidates, excluding duplicate or multiple reports for

the same subject. As is reported in Chapter 5, the limited coverage for Source C

prevents us from using it in experiments; the inclusion of Source C in this document

is only to maintain continuity with our previous materials on the public trust task.

3.2.1.4 Document Source D: Due Diligence Reports

Source D is used to corroborate an applicant’s self-reported data, and provides

insight into whether an applicant is withholding or distorting information. This

data source is terse and follows a structured format; the only deviation from purely
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structured data is that each document contains an arbitrary number of entries.

When a candidate has multiple documents from Source D, we concatenate the

contents using a special token to indicate the start of additional data. The contents

of multiple documents are always complementary.

We have documents from Source D for approximately 25,000 candidates. There

are two reasons why candidates may be missing Source D information: they were

disqualified before any Source D information was available, or they had recently

undergone a similar evaluation process with another federal agency.

3.2.1.5 Document Source E: Tracking and Milestones

Source E is unique in that it forms a time-series of short text spans. This source

tracks a candidate’s progress through the entire hiring process, beginning with

initial application submission and ending with an onboarding date or disquali-

fication. The milestones track every significant event in the process, including

receipt of documents from Sources A-D, any correspondence with the candidate,

and administrative procedures that are part of the hiring and evaluation process.

Each milestone consists of a timestamp, a title, and an optional comments

field. The title is a categorical variable with 30 different levels, and in raw form

is a short (< 10 token) span. The comments field usually contains terse, admin-

istrative notes which usually have no clear relevance to the evaluation process. In

rare circumstances, the comments may contain a summary or verbatim copy of

correspondence from a candidate, with an arbitrary text length.
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We treat Source E as a single document concatenation of the milestones. Source

E is guaranteed to be available for all candidates.

3.2.2 Preprocessing and Dataset Construction

In this section we discuss the process for normalizing each data source prior to

the prediction task. Because much of the data are self-reported, there is often

significant variance within each data source. Some of the sources (e.g., Source

B) have evolved over the 12 year period of our collection, which compounds the

challenge of normalization. We focus primarily on enforcing a common schema for

all data within each source. For sources that have changed over time, typically the

most recent format is more structured and emphasizes a greater number of specific

fields over free-text entry. In these cases we treat the most structured format as

canonical and perform cleaning and text extraction to transform historical data

into a best approximation of the canonical format. We also develop common

vocabularies or formats for frequently occurring entity types such as countries,

organizations, and dates to ensure that these are expressed in the same way across

all documents and sources.

There is also an internal concern about bias in the raw data and the evaluation

process. During preprocessing we remove features that could lead to obvious bias

or spurious correlations in our model, such as names, gender, age, ethnicity, and

detailed location data (e.g., zip codes and street addresses). Many of the other

features in the dataset may correlate strongly with one or more protected categories
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where bias is often a concern. However, we do not wish to obfuscate sources of

bias in features that are of practical use to the evaluation process; we choose to

leave these as-is to facilitate further investigation into potential sources of bias.

A final aspect of our preprocessing is the removal of boilerplate text. This typ-

ically includes instructions for the subject when filling out a form, administrative

details, or other standard text that occurs across most or all of a document set.

This text is extraneous to the classification task, provides little to no information,

and can easily add thousands of tokens to document length.

The following subsections detail our preprocessing for each dataset and provide

rationales for our decisions to reduce data size and feature counts.

3.2.2.1 Preprocessing Document Source A (Job Application)

Although Source A reflects the contents of a prospective employee’s job application,

the constituent data is stored in a relational database across 25 different tables.

The goal of preprocessing for Source A is to reconstruct relevant parts of the

application document and enforce consistency with the other document sources.

We engaged extensively with human experts over the data in Source A to

understand which parts of the application were most relevant to evaluations for

public trust accesses. We then collected the data from these fields and recreated

a flattened, unstructured text document by concatenating the text features and

using short boilerplate spans of text to delimit the major sections of the document.

Some of the sections in Source A allow for a variable number of responses (e.g.,
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employment history may have zero, one, or even tens of entries for an applicant),

we delimit each entry with a special token in the document. For the additional

features in Source A that were not identified as having the greatest relevance, we

experimented with adding these features one at a time and observing if a significant

increase in classification accuracy appears relative to baseline over three separate

trials with different random seeds. Features with a significant accuracy increase

were added to the document, and features with an insignificant or decrease in ac-

curacy were excluded. The most notable features we excluded were free-response

sections, including an applicant’s objective statement and optional statements for

explaining negative circumstances in one’s background. The inclusion of these

fields added to model complexity because they commonly increased vocabulary

size by a factor of 2 or 3, but the effect on accuracy was either insignificant or

negative. This finding suggested that the unstructured explanatory statements

mainly provided noise rather than additional information, which reflected some

comments from the human experts. We also remove personal identifying informa-

tion from Source A, including name, address data (except for country of residence),

birth dates and social security numbers. We do not want the classifier to make

predictions based on spurious correlations from this data; moreover, some of the

information may correlate strongly with race or other protected categories, poten-

tially leading to disparate predictions across these population groups.

We also append metadata for each applicant to Source A, as this information

is available at the same point in the decision process and is not large enough to

constitute an additional information source. The metadata results from querying
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other database tables and consists of a subject’s prior application history and

outcomes, whether the subject was a previous employee, and whether the subject

had been previously granted or denied public trust accesses.

We describe consistency enforcement in later subsections, as data consistency

for Source A is only relevant in comparison to the other data sources.

3.2.2.2 Preprocessing Data Source B (Detailed Personal History)

Source B contains the longest documents in our dataset and presents the largest

preprocessing challenge by a wide margin. We partition the Source B documents

into three groups, each of which have different preprocessing requirements. There

are, however, some preprocessing steps common to all three formats: we sani-

tize the documents for personally identifying information in the same manner as

Source A. We remove sections from Source B that do not directly contribute to

the evaluation, such as personal references and certification pages. We currently

exclude the optional free-response fields, as these occasionally grow to multi-page

documents that mirror responses in other fields. Similar to Source A, we then use

the raw semi-structured data to assemble a flattened document that is a simplified

version of the original form. We insert text to mark the start of each major section,

and use special tokens to delimit consecutive responses in sections that allow for

a variable number of response entries. We expect this process to be much less

time-intensive for future data, as the new format for Source B does not require a

high degree of preprocessing.
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Source B, Group 1 Group 1 contains the most recent Source B documents,

and it consists of JSON files containing responses entered by an applicant into a

web form. The form has internal logic to enforce consistency of responses across

applicants and to reduce the incidence of mistakes or typos (e.g., two applicants

entering “New York” and “New Yokr” for the same location). We treat this group

as the standard for Source B because it contains more specific fields and detailed

information than the others. We map preprocessed data from the other groups to

match this one. Because the data in Group 1 are clean and consistent, we perform

no additional preprocessing.

Source B, Group 2 The second group comprises the majority of the documents

in Source B. This group consists of PDFs documents that are at least 15 pages

in length, with optional pages available for extra responses. Applicants typed

responses into the PDFs and submitted them in hard copy; the printed copies

were later scanned and passed through an optical character recognition (OCR)

system to recreate the PDF with selectable text. The process of converting the

hard copy document into soft copy introduces noise into the text, which complicates

our preprocessing.

We developed a tool to extract responses from the PDF and produce a JSON

structure that mirrors the format for Group 1. This involves first extracting plain

text from the PDF on a page-by-page basis, then identifying the location of key

fields and copying responses into the JSON structure. We use pdftools for text

extraction (Ooms, 2023), as its output was more consistent across documents than
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other open source tools. The printing, scanning, OCR, and PDF-to-plain text

conversion processes create an error cascade that greatly complicates this task;

as a result, the raw text in the PDF very often does not match what is printed

on the page. The complex layout of many of the document pages worsens this

problem, and documents that were scanned at an angle contain more inconsisten-

cies. Because we have no alternative source for these documents, our extraction

and preprocessing tool needs to be robust to handle the wide range of errors and

inconsistencies present. Some examples of common errors are:

• Swapping of adjacent rows of text and adjacent fields within the same row

• Substitution of letters, letter pairs, or numbers with another letter or number

that has a similar appearance (e.g., 9 and g).

• Conversion of non-character form elements, such as the icon for a drop-down

menu or horizontal and vertical bars used to separate fields, to one or more

characters.

• Insertion of random characters, particularly when scan quality is poor or

stray marks are present.

• Deletion of characters or spans of text. This is an issue in the OCR process;

it occurs frequently in fields with single-character responses, and also when

a portion of a document has been crossed out.

• Misordering of pages in the document as a result of handling errors. The

document may also contain pages of hand-typed text to supplement the form
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contents, as well as various extraneous pages that are of no relevance to our

task.

To overcome these issues, we developed a process that scans each page of the

document for key text spans to identify which form sections are present. Once

the page is identified, we then locate specific text spans that form a boundary

around each response that we want to extract. We target text spans that are

unique to the targeted page or section and not easily mistaken for text in other

parts of the document. We use a multi-step process, falling back to searches with

greater tolerance after each failure: we first attempt an exact match, then try a

set of regular expressions to match common variants of the target span, and finally

identify the closest matching span that is within a maximum Levenshtein distance

from the target. We initially selected the target spans, regular expressions, and

distance thresholds through an iterative trial-end-error process, with the goal of

minimizing errors over a random sample of 10 documents. We then scaled to a

random sample 100 documents to further tune our selections. We scaled further

to a random sample of 1000 documents, identified the most frequent errors, and

adjusted the parameters and target spans to minimize error occurrence.

The extraction process remains imperfect, as some of the errors introduced

by the scan/OCR process - particularly the deletions of text spans - can only be

rectified through manual review. Our text extractor is designed to fail gracefully,

and it records errors in a log file every time it fails to identify a page, locate

an extractable span, or it encounters an unexpected condition. Following the

automated extraction process, we employ human annotators to quickly review the
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extracted result and correct significant errors, such as the omission of fields or

entire document sections. We find that annotators, with some practice, can spot-

check and correct the extraction results for one document in two to three minutes.

With a small team of annotators were able to make steady progress at extracting

and cleaning text the full collection of typed PDFs.

Source B, Group 3 The third format comprises the oldest documents in our

dataset. Most documents are identical to Group 2 except they contain handwrit-

ten responses, which the OCR process cannot capture. There is also a subgroup of

1500-2000 documents in Group 3 that uses an older and slightly more condensed

version of the paper form. The response data in both versions are essentially the

same, so we do not treat these versions differently. We employ human annotators

to transcribe the text in these documents, targeting the same fields as the auto-

mated extractor. We developed a custom GUI for annotators to enter transcribed

text into, using menus and selectable elements wherever possible to limit typos

and other sources of variance. We then write the transcribed data to a JSON,

matching the structure of data from Groups 1 and 2. We initially crowd-sourced

the annotation task to an internal workforce, and later hired a temporary worker.

We were able to complete approximately 2000 of the handwritten forms with these

resources; the unfinished forms are from the earliest years in the document collec-

tion, which we view as being the least relevant to applicants and decisions for the

current pipeline in 2023.
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3.2.2.3 Preprocessing Document Source C (Credit Reports)

The credit reports in Source C are electronic PDF files, so no scanning or OCR

process is involved. There are three possible formats for the credit reports, each

corresponding to one of the three major consumer credit bureaus. The formats con-

vey the same basic information, although their terminology and syntax differ. One

format accounts for approximately 50% of the documents, and the other formats

have 25% each. There are multiple credit reports available for some applicants,

but we use only the most recent report, as it supersedes the previous ones.

The credit reports vary in length, typically up to 10 pages. However, all three

formats contain a large amount of boilerplate text at the beginning and end of the

document, which we remove. What follows is typically a summary section and then

semi-tabular data for each credit account, ordered chronologically or by descending

levels of delinquency, depending on the format. Although credit reports contain

a significant amount of numeric data, during preliminary testing we found that

the contents of the summary section, which is mostly categorical data, and the

text annotations that accompany each account and indicate collections, past-due

issues, and bankruptcies, are the most relevant to the prediction task. This finding

is consistent with the views of expert examiners who review the credit reports. As

a result, we simplify numeric values in the credit reports, binning them by order

of magnitude and assigning a unique token to each bin.

Similar to Source B, we use the pdftools package to extract raw text from the

credit reports. This process yields consistent results because the text in these PDFs
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is already clean. After removing lengthy boilerplate spans, we remove personally

identifying information, including account numbers where possible (some account

numbers are nearly indistinguishable from numeric values). We then truncate each

document to a maximum length of 900 tokens. We tuned this value by observing

effects on classification accuracy, and found that maximum lengths above 900

conferred almost no benefit. Without truncation, documents can exceed 3000

tokens, which limits batch sizes and slows down training and inference.

3.2.2.4 Preprocessing Document Source D (Due Diligence)

Source D contains the smallest and most straightforward documents in our corpus.

We do not have full access to Source D because of sensitivity, and instead receive

a summary table. The table contains several categories, and with a discrete risk

score (an ordinal value) and optional notations (1-2 tokens each). The scores are

ordinal variables, and depending on circumstances, some categories may not be

present. We preprocess each document simply by flattening the table. Candidates

often have multiple documents from Source D, in which case we concatenate the

documents and separate them with a special delimiter token.

3.2.2.5 Preprocessing Document Source E (Milestones)

Data Source E comprises a list of milestones that track a candidate’s progress

through the entire hiring process, including the public trust evaluation. Source

E is not really a document, but rather a time-series of categorical variables. The
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milestones are asynchronous in that they are recorded after significant events,

instead of at regular intervals.

One of the objectives for our model is to make accurate predictions at any

point in the public trust process. We expect that the timing between milestones

may carry important information, which the model should take into account. We

represent the milestones as a sequence of tokens, where each milestone corresponds

to a unique token. We encode the timestamps as a numeric value and append it to

the word embedding for the corresponding milestone token. We set the timestamp

value for the initial milestone to zero, and each subsequent milestone reflects the

number of days elapsed since the first item.

We do not currently use the notes associated with each milestone, as these

typically contain information irrelevant to our task, and the notes are usually

far more verbose than the milestone text. However, on rare occasions, the notes

contain unique data that cannot be found in any of our other sources. We plan

to investigate these circumstances further in a future error analysis to determine

whether inclusion of the notes data can improve classification accuracy.

3.3 US Patent and Trademark Organization Trademark Case Files

The USPTO publishes this dataset on its public website, providing the following

summary of its contents:

The Trademark Case Files Dataset contains detailed information

on 12.1 million trademark applications filed with or registrations is-
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sued by the USPTO between January 1870 and February 2023. It is

derived from the USPTO main database for administering trademarks

and includes data on mark characteristics, prosecution events, owner-

ship, classification, third-party oppositions, and renewal history.1

The trademark dataset offers a partial reconstruction of the data used in the

decision process to formally register or renew a trademark in response to an appli-

cation. The data are a digest of the files that applicants submit to USPTO – those

original files are not made available to the public. As the official documentation

states in Graham et al. (2013), the trademark case files dataset is ”derived from

USPTO administrative records.” Nevertheless, the data that USPTO publishes

are already logically grouped into document-like structures that are consistent

with how public trust clearance data are organized into discrete documents.

The task that we seek to model for this dataset is predicting whether or not

a trademark application results in a successful registration, which is a binary out-

come. Each application or case in the trademark data is assigned a unique serial

number. Applications can be for new marks or to renew a mark that was previ-

ously registered. Renewals are given a new serial number to distinguish them from

previous applications. In addition, a single entity – typically a corporation – may

have filed many applications and renewals in the dataset.

We have not identified any prior research on predicting outcomes from USPTO’s

trademark datasets. The sole empirical study we identified used these to detect

1https://www.uspto.gov/ip-policy/economic-research/research-datasets/trademark-case-
files-dataset
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disparities in outcomes across various demographic groups (Schuster et al., 2021).

This study applied statistical tests to identify disparities and was not focused on

using machine learning to predict outcomes. Although the authors applied textual

analysis to some of the dataset’s features, their intent was to probabilistically assign

gender and ethnicity from applicant names. Although predictive in nature, this

subtask did not involve supervised learning due to the lack of ground truth labels,

and was therefore much different from our predictive modeling approach. We also

do not intend to investigate fairness on the basis of gender or ethnicity because

of the inherent unreliability in predicting demographics from names. In addition,

many of the trademark applicants are corporations and not individuals, a fact that

Schuster et al. (2021) acknowledges. We investigate fairness on a geographic basis

to avoid these issues (refer to Section 7.2.2 for details).

3.3.1 Dataset Components

The trademark dataset is split across 15 files, each of which contains a unique set

of features. We treat some files as separate document sources and merge some

smaller files into larger ones. Most files are unused because they have very limited

coverage across dataset elements (present in less than 10% of trademark cases,

often much less). We detail the five files that we use in experimentation, followed

by brief descriptions of the remaining files. Table 3.3 provides summary statistics

on the lengths of the dataset elements in each file, and example contents for each

file type are shown in Appendix A.
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Table 3.3: Field Length Summary for Trademark Data

Document Mean σ Min Max

case file 51 0 51 31

owner 57.87 91.87 0 5155

event 46.11 20.92 6 968

statement 1421 1689 1 57848

foreign app 89.12 31.20 0 201

3.3.1.1 case file

The contents of case file are the basic facts for the trademark application, including

dates, the type of mark that an entity is seeking to register (e.g., trademark, service

mark, certification mark, or collective), characteristics of the mark (text, image,

image with text, etc.), details on legal representation, and many other fields. We

use 51 fields in case file, so this list is by no means exhaustive.

case file contains only structured data, which is in contrast to most of the docu-

ment sources for public trust clearances. The majority of the fields are categorical

variables, with many being binary indicators. There are some exceptions, including

fields containing names, locations, and dates. We do not use all 80 fields, because

many represent intermediate or near-final decisions in the application process that

correlate strongly with the final outcome, thereby trivializing any prediction task.

We eliminate these fields from use through a combination of examining their corre-
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lation against the outcome and referencing documentation provided by USPTO.23

case file also contains the final disposition of the case, which we code as a binary

variable for the outcome. There are hundreds of unique values for this field that

are essentially variants of three different outcomes – live, dead, and pending. We

exclude pending cases and recode the rest to dead (0) or live (1). An example of

the partial contents of case file is shown in Appendix A, Figure A.1.

3.3.1.2 event

This file contains the control sequence for each case, and is semi-structured, as

the sequences are variable length. Each element in the sequence consists of an

event code, an event type, and a date. Event code is a four-letter string, and there

are 607 unique codes in the dataset, per Graham et al. (2013). In our sample

of the dataset, 590 of the 607 codes are observed. Event type is a single-letter

code and appears intended to provide further context, but we exclude it because

“event codes of interest tend to have only one possible or an irrelevant event type”

(Graham et al., 2013).

Individual event codes each correspond to a single action during the trademark

application process, and largely equivalent to milestones in the public trust clear-

ance data. There are far more unique event codes than milestones, and although

the control sequences for trademark data are shorter than in public trust data,

they often cover much longer date ranges – multiple decades are not unusual. We

2https://www.uspto.gov/sites/default/files/documents/casefiles schema high level 2022 v1.pdf
3https://www.uspto.gov/sites/default/files/documents/vartable 2022 v1.pdf
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treat event data exactly the same as milestones in the public trust data – a sep-

arate document source consisting of a sequence of textual events that are linked

with timestamps. An example of the event data for one case is given in Figure

A.2, which contains a relatively short (8 item) event sequence.

3.3.1.3 owner

This source contains data on each owner associated with the application. These

data are also semi-structured, due to the variable number of owners for any given

record. The owner fields specify the full address of each owner entity, which may

be domestic or foreign. There is also a code that indicates the type of entity

(individual, corporation, etc), and additional fields that alternate names of the

entity, if applicable.

We treat the owner data as its own document source because it is semi-

structured and its data are relatively self-contained. We concatenate across fields

and then across owner entries to create this document source for model input. As

with event, we show a shorter example of the owner data in Figure A.3.

3.3.1.4 statement

This source is primarily unstructured data. Besides the serial number, it contains

only two fields: a code that specifies the type of mark across multiple different

categories, and a text statement that specifies goods or services associated with

the mark. There is no limit to statement length, as some statements are in excess of
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55,000 tokens. There can be more than one statement linked to a case. We treat

statement as its own document source because its structure and contents differ

greatly from the other sources. See Figure A.4 for a partial (truncated) example.

3.3.1.5 foreign app

This source links cases to foreign trademark applications. It is semi-structured

data (a case may involve multiple foreign applications) and contains fields on the

foreign country, dates for the foreign trademark application and status, whether

the mark has been renewed, and the mark’s expiration date. We concatenate data

from foreign app with case file because the data types are similar and foreign app

does not contain much data. Approximately 30% of our data sample has at least

one entry in foreign app. See Figure A.5 for an example.

3.3.1.6 Unused Dataset Contents

classification. This source consists of semi-structured data and relates to the

different classes of marks. There are 24 classes in total, which represent broad

categories of use. A mark can be associated with a variable number of classes.

Each class associated with the mark has a separate entry in these data, which

include fields such as dates of first use and status codes for each of the classes.

Although we intended to use these data as another document source, the status

codes appear to confer information that strongly correlates with outcomes and

trivializes the prediction task. As a result, we exclude it from the task.
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correspondent domrep attorney. This file refers to correspondent address,

domestic representative, and attorney. As specified in Graham et al. (2013), this

file was separated from case file to reduce file size due to its free-text fields, which

refer to the name and address for the correspondent of record for the case, the

attorney for the applicant entity, and a domestic representative that is used by

some foreign applicants. We exclude this file due to limited coverage across the

dataset.

design search. Specifies the presence of specific design elements (e.g., geometric

shapes) for marks that include images. Not included due to relevance and partial

overlap with features in case file.

prior mark Includes data on other marks that the applicant has previously reg-

istered. Covers less than 10% of the dataset, and features in case file and event

can indicate if the application is a renewal of a prior mark.

madrid intl file and and madrid event. Documents history for international

filing. Data only available for approximately 30,000 marks, which is far less than

1% of the dataset.

tm app daily. Provides dates of dataset generation, which has no clear relevance

to the task.
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3.3.2 Preprocessing and Dataset Construction

In keeping with our goal of curating datasets that maintain similarity with the

complexity and multi-document nature of the public trust data, we selectively

sample individual records from the trademark data. The entire trademark dataset

encompasses 12.7 million applications, covering 1870 to the present, according to

documentation from the USPTO.4 However, the data become increasingly sparse

for earlier periods in the collection, as records are incomplete or the era predates

the recording of some features. As specified in Graham et al. (2013), applications

recorded as abandoned are not visible in the data until 1982.

As noted in table 3.3, there is high variance in the length of the statement

and event documents for each data element, and lesser variance for owner, foreign

app, and classification. We use data length as a proxy for case complexity, on

the basis that cases with more observable features, longer use statements, and a

large number of recorded events represent a more challenging decision process. In

addition, lengthier data should stress text classification models and afford better

insight into which approaches are preferable for a more challenging task.

We sample the dataset by selecting members with the longest token counts,

which is consistent with the approach taken by Park et al. (2022) when evaluating

transformer models on text classification over long documents. Because the length

of statement can range into the tens of thousands of tokens, its length would

dominate the token counts and mask potentially useful variance in the lengths of

4https://www.uspto.gov/ip-policy/economic-research/research-datasets/trademark-case-
files-dataset



52

other features. To compensate, we multiply the length of statement by the sum of

the token lengths for all other features, and then take the 60,000 records with the

largest values. The application dates for this subset of marks are almost entirely

from the 2000-present date range, which is well within the modern era of USPTO

record keeping.

We prepare the data for the models using the same processes as for the public

trust data. For baseline models, we render all of the features as text and treat

each member as a single document. All of our features are categorical or free text,

with the exception of a small number of dates; these are binned into 10 categories

based on the temporal distance from a common epoch date (January 1, 1980) that

predates all records in the data sample. For long documents, we truncate after 1250

tokens, as longer token counts have no effect on accuracy. We order the features

so that statement is last, so that truncation only applies to long statements. We

also map the alphanumeric code fields in case file into textual descriptions; these

mappings are deterministic and based on the explanatory documentation provided

by USPTO.

For the ensemble, we segment the data into four separate documents but oth-

erwise treat the data identically. The dates for each observation in event are

represented as real values, taking the difference (in years) from January 1, 1980

and appending the value to the embedding for each event. The documents we use

for each classifier module in the ensemble are as follows:

• A concatenation of case file and foreign app
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• owner

• statement

• event

One key difference with the public trust data is that events in trademark cases

are not explicitly connected to the submissions of individual documents. This is

partly because we do not have access to the original documents provided by trade-

mark applicants, and also because there is a different methodology for tracking

events in the trademark data.

Because of this, we have to take a different approach to using event data in

a prediction task. We cannot use the entire event sequence, because the last few

items tend to be unique to the binary outcome and would trivialize the task. We

instead identify the index in the sequence where the final outcome is evident, and

then randomly select a lower index value from a uniform distribution. We truncate

the sequence at that point and use the same truncation points in experiments with

all models. In randomizing the truncation point, we intend to simulate prediction

at all parts of the temporal sequence, up to the point that the actual outcome

is self-evident. This approach is in contrast to the public trust data, where we

identify a common milestone across all data points and use it for prediction (static

task), or select a random nearby milestone in the sequence (dynamic task).
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3.4 Congressional Resolutions

Our third dataset is furnished by the US Government Printing Office (GPO),

which publishes data on all Congressional bills and resolutions introduced in the

US House and Senate from 2003 to the present.5 Similarly to the trademark data,

this dataset is also a digest and the result of processing that the GPO performed

prior to making the data available. We again do not have direct access to the

primary source documents; the original full text of bills and resolutions may be

available, but they are not directly linked to this data. Other supplementary

material could include transcripts of discussions on the House or Senate floor or in

individual committees, but if these exist, they are not readily linked to the GPO

data. Putting aside these limitations, we are still able to construct a dataset with

characteristics that are broadly compatible with the public trust and trademark

datasets.

The predictive task for the congressional data is determining whether a House

or Senate resolution will successfully pass. Although the GPO’s data include bills

and resolutions, bills are small in number and very few (less than 5% in an example

that we examined) reach a vote and successfully pass. We are using data on simple

resolutions from the House and Senate, which number just under 19,000 for the

period of 2003 to present. The records are consistent in schema and completeness

across the full date range.

The congressional resolution dataset is simpler than the public trust and trade-

5https://www.govinfo.gov/bulkdata/BILLSTATUS
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mark datasets that we introduced, but its inclusion adds useful variance to our

dataset pool. Each dataset component contains fewer fields, but is more likely

to consist of unstructured text. We again have a control sequence in the form of

congressional actions, which track major occurrences in the resolution’s lifecycle

(eg, introduction, floor votes, committee referrals, etc). These actions, however,

are far fewer in number than in the other datasets, with the average resolution

containing only five. This results in a dataset where the control sequence may be

significantly less useful; coupled with the simpler feature set, the data may be less

amenable to the ensemble approach. We have not identified predictive modeling

work on any of the GPO’s Congressional resolution data.

3.4.1 Dataset Components

Each congressional resolution is contained in a single XML file. Because there is

only a single, comprehensive document for each dataset member, we will discuss

the individual fields that we use as inputs to the model. All of the fields are

guaranteed to be present in each XML file, but some may not be populated. In

the listing below, we will note the fields that may be left blank. The congressional

records frequently contain legislative jargon, and we use official reference materials

provided by the GPO and Congress 6 to ensure correct interpretation; outside

resources we consulted for each field will be given in footnotes. Dataset examples

are shown in Appendix A.

6https://www.govinfo.gov/ and https://www.congress.gov/
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3.4.1.1 Basic Details

Although not a single field, these are a collection of simple details for each reso-

lution, including Congressional chamber, type (resolution, bill, etc.), date intro-

duced, and the numbered Congressional term. These are all structured data, and

we concatenate them with some of the other, smaller fields during dataset con-

struction.

3.4.1.2 Actions

This is the control sequence that contains a list of timestamped events. In contrast

to the other datasets, all actions frequently to fall on the same date, potentially

making the temporal information less useful. The date can still contain useful

information, since any legislation that has actions pending at the end of a congres-

sional term is rendered dead7, so resolutions introduced late in a term may be less

likely to pass.

Each individual action consists of a date, the text content of the action (e.g.,

”Referred to the Committee on Rules and Administration.”), and a type, which is

a categorical variable. The text content is not as strictly coded as in the trademark

data, where the actions are selected from a finite set. Instead, the text follows a

predictable pattern but is subject to some variation. Within each action, there

may be another data structure specifying a committee related to the action. We

do not use this piece of data because it is duplicative of the text content.

7https://ask.loc.gov/law/faq/334496
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3.4.1.3 Sponsors and Cosponsors

Each of these follow the same structure. They contain a list of congressional repre-

sentatives (full name, party, state, unique ID, and whether they were requested to

sponsor or co-sponsor). We flatten the list, concatenate the names and states for

each representative, and merge the listings with a separating token for inclusion

in the dataset. There is always a single sponsor for each resolution, and some

resolutions have no cosponsors.

3.4.1.4 Subjects

This contains a list of legislative topic areas and often includes the names of com-

mittees and the policy area of each committee. Each list element is a phrase

selected from a finite list of possible phrases. We concatenate the list and use a

special token to delimit the elements prior to sending the data to a model.

3.4.1.5 Summary

This contains the official description of the resolution and is typically one to two

sentences. If a resolution was amended, there will be a description for each amend-

ment. There may be multiple summaries, each given a timestamp, but they nearly

always contain equivalent information. We use the original summary for the reso-

lution and the amendment descriptions, as other data can contain additional text

that indicates the final disposition of the resolution.
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3.4.1.6 Title

This is another list of free-text elements, containing the official titles of the resolu-

tion. Although at times duplicative of the summary, some of the titles can provide

additional information. As with similar features, we concatenate the titles.

3.4.1.7 Outcome

Although not an explicit field in the dataset, we determine the binary outcome

from the list of actions. The final action in the list (duplicated in the latestAction

field) usually specifies the disposition. There are some exceptions, such as a star

print8 being ordered, which is not an outcome for this task but tends to appear

after the final disposition.

In order to code the outcomes, we collect a complete list of the possible final

actions and construct a list of linguistic patterns that uniquely correspond to each

binary outcome. Passed resolutions nearly always contain text about the legislation

passing by floor vote or acclimation. Failed resolutions end with a committee

referral (and no further actions), a successful motion to table (the key phrase “lay

on the table”9), or a failed vote on the floor or in a committee.

8https://www.senate.gov/about/research-tools/glossary.htm#S
9https://www.govinfo.gov/content/pkg/GPO-HPRACTICE-104/pdf/GPO-HPRACTICE-

104-30.pdf
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3.4.1.8 Unused Fields

For completeness, we list fields in the XML that are unused. Unused fields tend

to be duplicative or have no clear relevance to the task.

committees. A timestamped listing of committees associated with the resolu-

tion. These are always listed in actions.

policyArea. Duplicative of fields in subjects.

textVersions. Contains the first element in actions and irrelevant metadata for

the XML format.

latestAction. Duplicative of the final element in actions.

dublinCore. Boilerplate content that is irrelevant to the prediction task.

3.4.2 Preprocessing and Dataset Construction

We perform no sampling of the congressional resolution data, instead using all

19,000 elements. For baseline models, we concatenate all features and treat each

dataset member as a single document. For long documents, we use the same

truncation strategy as in the trademark data, as there are no improvements to

accuracy when allowing for text over 1500 tokens. We order the features so that

sponsor/cosponsor features are last, as these are the longest in the dataset.
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For the ensemble, we segment the data into four separate documents but oth-

erwise treat the data identically. The dates for each observation in events are

represented as real values, taking the difference (in years) from January 1, 2000

and appending the value to the embeddings. The documents we use for each

classifier module in the ensemble are as follows:

• Basic details and title

• Actions

• Sponsors and cosponsors

• Summary

For the list of actions, we repeat the same process as with the trademark data:

identifying the action where the final outcome is decided or becomes self-evident,

and then selecting a random index to truncate the sequence for prediction. We use

the same truncation point for the baselines and the ensemble.

Table 3.4 provides summary statistics on the lengths of each of the fields that

we use.
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Table 3.4: Field Length Summary for Congressional Resolution Data

Document Mean σ Min Max

Basic Details 53.03 51.23 2 989

Actions 5.27 3.51 2 31

Sponsor/cosponsors 168.64 291.33 9 4320

Summary 81.92 82.31 0 3253

Titles 28.45 20.72 4 700
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4 Model Overview

We choose to model the decision processes in each of the datasets as text classifi-

cation tasks. We rule out techniques designed for structured data because earlier

(unpublished) modeling attempts by stakeholders in the public trust domain did

not yield practical results, largely due to information loss in handling semistruc-

tured and unstructured features. The trademark dataset contains a similar amount

of structured data, whereas the resolution dataset predominantly contains unstruc-

tured data; we expect modeling approaches for structured data to be a weak fit

for these datasets as well.

Our choice of modeling approaches is driven by the key properties of our three

datasets, which contain multiple document sources and a control sequence that

journals every event in the decision process. In a typical, single document text

classification task, there would be only a single source (n = 1) and one outcome.

In our tasks, we are instead working with n = 4. This raises the question of

whether the use of a single model, as in a typical classification task, would be

appropriate for the data. The single model formulation would require concatena-

tion of all document sources, which may require truncation for long inputs. There

is also potential loss of information from encoding the control sequence into a

text-only representation, and the single model approach may be inflexible for an

input that changes over time. Robustness to an evolving data source is critical



63

because we want to generate predictions throughout the decision process. An ac-

curate prediction early in the process is most valuable, as it provides much greater

insight to decision makers. Accurate predictions become progressively easier as

more data arrive, and near the end of the process become trivial because the final

events are often obvious indicators of the outcome. We specify additional goals and

constraints based on the nature of the task and real-world operating conditions:

• We want the model to indicate which document sources contribute the most

risk and substantially drive the decision.

• The model should be able to train and run inference on constrained resources,

primarily a single-GPU system. This requirement reflects the needs of the

stakeholders that we described in Chapter 3. We cannot assume that a sys-

tem owner would have resources for large-scale infrastructure; furthermore, a

practical deployment may require many replicated instances to run inference

for a userbase.

• The expectation is that the model will be tuned for each of the data sources.

This drives our choice of a modular design in the solution architecture.

These criteria motivate our choice of an ensemble, with a dedicated classifier in

the ensemble assigned to each data source; a single model design risks data loss and

limited responsiveness when handling the control sequence input. Each classifier

in the ensemble produces a vector representation for the corresponding data source

and uses an MLP to project the combined representation into prediction space. The

model will be deployed as an API that takes in the appropriate documents from
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each source and generates a label and corresponding likelihood. We hypothesize

that an ensemble approach will offer three key advantages over a single model that

reads a long, concatenated input document. In Section 5.1 we describe how we

will test these hypotheses.

1. The ensemble is better suited to handle heterogeneous data sources. One of

our sources is a time series, and treating it as purely unstructured text to

match the other data risks a loss of information.

2. The ensemble will be more effective at identifying risk from each document

source, which we believe will improve accuracy and facilitate explainability.

3. The ensemble will scale better when presented with longer inputs. This is

particularly important for RNN-based architectures, where computational

costs increase with longer documents. We also have flexibility to select sim-

pler individual classifiers in environments with limited compute resources.

We train all of the classifiers and the output layers in the ensemble end-to-end.

We recognize that some of the classifiers and their corresponding data sources may

benefit from pretraining. This may be particularly beneficial for data sources with

unique characteristics, such as long document lengths or time series features. We

will determine experimentally if data sources benefit from pretraining. A typical

pretraining process would involve training a single classifier module against the

label set for the overall decision process.

A key requirement for the classification task is to generate accurate predictions

throughout the evaluation process. We account for this by truncating the control
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sequence at earlier milestones or events in the decision process. It is worth noting

that at early steps in the decision process, some document sources will not be

available yet. We elect to train multiple variants of the ensemble that are designed

to work with fewer sources (i.e., some of the individual classifiers are left out).

Although this is cumbersome in comparison to a single model, we do this for two

reasons. One is that the model’s performance degrades when one or more inputs

are zeroed out. The second reason is that the base probability of a favorable

outcome increases as a candidate advances through the process, since candidates

are eliminated at each step. We prefer to have separate models that more reliably

learn the base probability for a fixed set of document sources, rather than updating

the prior each time a new input source becomes available. When presenting our

main experimental results in Chapter 5, our comparisons use all data sources in

order to represent the maximum complexity of the datasets. We conduct ablation

studies in Chapter 6, which reports results when fewer data sources are available.

In the following sections, we discuss the classifiers available for use in the ensem-

ble. Based on the related work survey (Section 2.1), we have chosen two classifiers

that we think will perform best on this task. The first uses LSTM layers with

specific regularization techniques, and the second uses residual CNN blocks with

self-attention, similar to the QANet model from (Yu et al., 2018); to our knowl-

edge, this type of model has not previously been applied to text classification.

We select these models to represent contrasting design philosophies. The LSTM

classifier is relatively simple, and the extensive use of dropout encourages more

parsimony. The original basis for this model was the AWD-LSTM from (Merity
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et al., 2017), which achieved state-of-the-art performance as a language model,

suggesting that this classifier may be strongly suited to identifying patterns in

shorter documents with more freely-written text. The CNN model has a much

more complex structure, but the convolution and attention layers are efficient and

scale better than an LSTM when handling long inputs. We believe the CNN model

will be more effective at finding key patterns in long, form-like documents where

the CNN’s translation invariance properties will be useful. For time-series inputs

we use a variant of the LSTM model, as our training procedure is designed for use

with recurrent layers.

We recognize that large pretrained transformers like BERT and its variants

may appear desirable for this task. We are not using these models in the ensemble

because the resulting model would be much larger and would violate our constraint

of using limited resources. In addition, many document sources are too large for

BERT’s limited input size, requiring either truncation or the use of even larger

transformer models. These models are still useful as a baseline for comparison, as

detailed in Section 5.2.

4.1 Regularized LSTM Classifier

This model reflects a “simpler is better” design philosophy for text classification.

It consists of a varying number of LSTM layers (as a tunable parameter, we use

2 based on experimental results), followed by an average pooling layer to create

a fixed-size vector representation, and finally an MLP to map the vector to the
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output space. When used in the ensemble, we remove the final MLP layer and

make use of the document vector representation from the previous layer.

To regularize the LSTM, we implement many of the same techniques used in the

AWD-LSTM language model (Merity et al., 2017). The regularization techniques

are intended to prevent overfitting in the recurrent connections of the LSTM. These

include applying dropout to the LSTM weight matrices (weight-dropping), using

dropout on the embedding matrix, and applying a scaled L2 penalty to hidden

layer activations at consecutive time steps to discourage large changes in the hidden

state. We adapt the model as a classifier by average pooling the sequence of hidden

state outputs and feed this to the MLP layer. Adhikari et al. (2019) demonstrated

that this simple approach with an LSTM achieved consistently better accuracy

than other strongly performing classifiers (excluding BERT) across several well-

understood classification datasets.

Many of our data sources contain text that follows a rigid and predictable

syntax, a result of the form-based documents they are derived from. We suspect

that standard LSTM classifiers may be prone to overfitting and effectively mem-

orizing training inputs, due to their predictable structure, and thereby degrade

performance on unseen data. Therefore, the regularization techniques may be

particularly useful in improving classification accuracy.
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Figure 4.1: Model Diagram for Regularized LSTM

4.2 CNN Model with Self-Attention

In contrast to the LSTM, our proposed CNN model is a much more complicated

and expressive model. This model uses techniques from QANet Yu et al. (2018),

which was used on question answering and reading comprehension tasks. QANet

was later shown in Pugaliya et al. (2019) to outperform a group of models that

included BERT on multi-hop QA tasks, where a model has to synthesize related

facts scattered throughout a document to arrive at the correct answer. We believe
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that multi-hop QA performance is relevant to our task - in documents from Source

B, for example, there are often key connections between responses in different

document sections that provide important clues to the applicant’s suitability for

public trust access. Human evaluators must synthesize these facts to render a

judgment, and a model with similar capabilities may be well-suited to the task.

Our implementation uses a similar structure to the encoder portion of the

QANet model. The model initially builds a joint word-character representation of

the text. Each input token is represented by a word embedding and a sequence of

character embeddings; the character sequence is passed through a 1D convolution

layer and then a highway network joins the word and character embeddings into

a combined representation. The embedding sequences are then passed through

multiple stacked residual blocks, as shown below in Figure 4.2. A residual block

consists of alternating layernorm and 1D convolution layers (four pairs of these),

followed by a layernorm and 8 self-attention heads, and then a layernorm and a

fully connected layer. Each pair of layers has a residual connection as well. After

four residual blocks, we run max pooling and average pooling over the entire output

sequence, concatenate the two resulting vectors, and pass the vector representation

through an MLP for the prediction result.

We believe this is the first time that a CNNmodel with multi-head self-attention

had been used in a text classification task. We hypothesize that this model will

show better performance than the LSTM on long documents, particularly from

Source B in the public trust dataset and the statement document from the trade-

mark dataset.
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4.3 Handling Time-Series Data

The control sequence in each dataset consists of a time-series of short text labels

(milestones) with corresponding timestamps. The milestones do not occur at regu-

lar intervals, and instead mark significant events in the hiring process or document

interactions with the applicant. We require a model that can generate predictions

at any point in the time series, although the timesteps of practical interest may

be much more constrained. In the public trust dataset, for instance, around 40%

of the milestones are typically present by the time the evaluation process begins,

and by the time 90− 95% of the sequence is complete, the predictions are usually

irrelevant as the outcome is already apparent. We still train over the full sequence

because exceptions and unusual circumstances do occur.

To train a model for the control sequence, we adapt the process from Lipton

et al. (2015), which proposed an RNN-based approach to predict diagnoses for

patients using healthcare data. This approach involved generating a prediction at

each time step and then calculating loss over the entire sequence. The same gold

output label is assigned to every time step. This results in a network that learns to

predict at any time step, and rewards models that predict the correct output early

and maintain the correct prediction throughout the sequence. One key difference

with our tasks is that control sequence events are not emitted at regular intervals,

whereas Lipton et al. (2015) assumed that measurements occurred regularly. We

find that by encoding the timestamp as an offset value from the initial milestone

and appending it to the embedding vector for each milestone, the model is able to
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make accurate predictions. An example of the data and training process is given

below in Figure 4.3. Although we experimented with coercing the time series into

regular intervals by padding the sequence with blank milestones, we found that

this did not improve accuracy. In rare cases where the time series had large gaps

between milestones (this can be years or even decades in the trademark data), the

padding lengthened the sequence to an extreme degree; we therefore eschewed this

practice in favor of parsimonious data.

We use the same regularized LSTM model from Section 4.1 for the time series

data, the only modifications being an additional dimension to incorporate the

timestamp and the use of a single-direction LSTM instead of a biLSTM. When

integrating this model into the ensemble, we are only able to pass a single vector

to the final MLP layer. During end-to-end ensemble training, we truncate the time

series at a random point and pass the vector output for the final timestep in the

sequence. The truncation point is independently chosen for each set of inputs at

runtime in order to maximize the variance of the input data. When selecting the

truncation point, we only allow selections in the middle 80% of the time series,

because at inference time the initial 10% of the time series should always be present,

and predictions for the final timesteps are trivially easy.
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Figure 4.2: Model Diagram for CNN with Self-Attention Module
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Figure 4.3: Diagram for Predicting Outputs from Time Series Data
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5 Experimental Design and Results

Through the experiments we detail in this chapter, we aim to determine whether

an ensemble offers a better approach over a single model for multi-document clas-

sification. These experiments focus on two of the research hypotheses introduced

in Chapter 1, along with additional hypotheses introduced in Chapters 3 and 4:

1. A multisource ensemble of text classifiers will outperform state-of-the-art sin-

gle source baseline classifiers, and the ensemble can be feasibly implemented

with real-world resource constraints.

2. Datasets with greater variety of sources in terms of domain, content (e.g.,

structured, semi-structured, unstructured data), and length will have a higher

performance differential for the ensemble over single source baselines.

3. The ensemble approach will show higher accuracy on dataset members with

longer inputs, which are a proxy for greater case complexity.

4. The ensemble will offer higher accuracy when generating predictions at vary-

ing timesteps in the decision process, owing to the dedicated classifier module

for control sequence data.

5. Performance levels that warrant consideration for real-world use are achiev-

able under the established single GPU resource constraints.
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Among stakeholder groups that we identified in the Introduction and in Chap-

ter 3, this set of experiments is primarily focused on end users, who will want to

know whether automation or other efficiencies can be realized for their data and

tasks. They will also benefit from an understanding of what performance levels can

be reached with different model approaches under real-world resource constraints.

The results are still of interest to model purveyors, who are likely to be implement-

ing any solution. In order to evaluate the above hypotheses and provide results

that will satisfy stakeholder needs, we propose the following tests:

• Compare the accuracy of the ensemble model against multiple static text

classifier baselines.

• Implement a testing strategy that emphasizes the dynamic aspects of each

dataset, where possible. We expect the model to issue predictions throughout

the process, and the testing process should examine the model’s accuracy at

various times in the process compared to the baselines.

• Identify dataset members with particularly long inputs and determine if the

ensemble approach scales more effectively.

• Identify common error cases in each dataset and determine whether a specific

modeling approach is better suited to error-prone inputs.
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5.1 Training and Testing Setup

Within each dataset, we determine which individual classifiers perform the best on

each individual document source, and then compose the ensemble using the best-

performing classifier for each source. We use an 80/10/10 split (train/dev/test) on

all datasets, with the dev set used for tuning model hyperparameters. We choose

five random seeds and report averages and standard deviations for accuracy and

f1 metrics on the test set. Because each of our datasets have slightly imbalanced

class labels, we treat f1 score as the more definitive measure when tuning models

and discussing results.

Within the context of the ensemble, we pay special attention to the control

sequence data. We use the model and training approach specified in Section 4.3.

Because this model’s training process differs from the other classifiers, we explore

pretraining the classifier on the control sequence for each dataset. The number of

pretraining epochs is a tuned parameter. We discuss the pretraining approach in

the sections specific to each dataset. No other classifier modules are pretrained, as

doing so did not yield improvements to ensemble accuracy.

For all reported tests, we choose five different random seeds and record test set

scores for each model. We report averaged results with standard deviations for each

model. We select hyperparameters for the ensemble using dev set results only, and

reuse the same hyperparameters on the single model LSTM. We report accuracy

and f1 scores for binary classification tasks, along with the standard deviations for

both metrics across the five seed runs.
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5.2 Baselines

We propose four baseline models to offer comparisons against the models we se-

lect for inclusion in the ensemble. Efficiency is important to our task because we

desire solutions that are feasible in low resource environments, so we include two

baselines that do not use deep learning. For these, we use bag of n-gram features

where n ∈ [1, 3] and fit logistic regression and SVM models to generate predictions.

We use the scikit-learn (Pedregosa et al., 2011) implementation for both models.

We also include a simple multilayer LSTM classifier (hidden layer sizes and layer

count tuned on the dev set) and the CNN model with self-attention. We employ

the BERT base model (Devlin et al., 2018) as a strong baseline. We expect that

BERT’s performance on NLP tasks is likely to be limited by its small context win-

dow and out of domain data. However, the model should still provide a worthwhile

comparison, given its common use in a broad range of NLP tasks.

For each of the baselines, we treat the input as a concatenation of the document

sources. We also treat the control sequence as a static data source, rather than

allowing the sequence length to vary during training. This is necessary because

all of the neural network baselines fail to converge if we vary the control sequence

lengths across training epochs. We address the treatment of the control sequences

during training and inference in the dataset-specific sections that follow. We re-

port results on five seeded runs for each baseline, with the exception of logistic

regression, as the L-BFGS solver provides a deterministic solution.

We report results on each dataset separately. The discussion of error cases
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and key features will focus on the top performing model for each dataset. We

also include comparisons between the ensemble and highest performing baseline.

Further cross-dataset comparisons are presented in Chapters 6 and 7.

5.3 Results by Dataset

5.3.1 Public Trust Dataset

In addition to the generalized testing procedures above, we specify further testing

conditions to better approximate the real-world nature of this dataset. One of our

key model requirements is the ability to issue predictions throughout the public

trust clearance process. The control sequence (Source E) is the most important

data source for this task, as the other sources are relatively static.

For the ensemble, we pretrain the Source E classifier for seven epochs using

the process outlined in Section 4.3. We then train the full ensemble end to end,

minimizing cross-entropy loss. We concatenate the final hidden layers from each

of the document classifiers, and use two fully connected layers to project the con-

catenated vector to 2-dimensional space for the binary prediction output. This is

a departure from the pretraining for the Source E classifier, as now only the final

vector in the sequence contributes to the overall prediction.

In order to ensure that the Source E classifier can generate accurate predictions

throughout the control sequence, we vary the length of the milestone sequence

during training. We perform this randomization process separately during each

training epoch. We vary the sequences for the dev and test sets prior to experiments
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so that they are consistent across trials. Although we could fix the control sequence

to a specific point, such as the milestone corresponding to receipt of the final

document source, this would not fully capture the real-world use case. We would

also lose insight into the model’s ability to generate predictions throughout the

control sequence.

To conduct the randomization, we select an index at which to truncate the

sequence. For a set of indices S for a given milestone sequence, we bound the

possible truncation index to the interval Strunc = (0.4 ∗ |S|, |S|), where |S| is

the length of a given milestone sequence. We randomly select an index from the

uniform distribution over Strunc. We bound the index as such because receipt of the

final document occurs, on average, at approximately 0.7 · |S|, which matches the

expected value of Strunc. Receipt of the first document, which is the earliest point

that our model would begin generating predictions, occurs at around 0.45 ∗ |S|.

With the lower bound at 0.4 ∗ |S|, we slightly expand the truncation range while

keeping E(Strunc) at 0.7.

We cannot vary the length of Source E when training baselines, as the models

will fail to converge. We truncate the sequence at the milestone that corresponds

to receipt of the final document source. The average lengths of the control se-

quences in the test sets for the ensemble and baselines are both approximately

170, differing by less than one token. Thus, the static and dynamic truncation

approaches present the same amount of information to the models.
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5.3.1.1 Results on Individual Public Trust Data Sources

We first need to establish which of our classifier modules perform best on each

document source so that we can compose an optimal ensemble. We train and test

classifiers for data sources A, B, and D, using the outcome of the entire public trust

process as the label set. We also include the results for the LSTM on Source E. The

accuracy on each individual source is expected to be lower than over the combined

data from all sources, as each source presents a limited view of the subject. The

results are given in Table 5.1.

Table 5.1: Results for Classifier Modules on Individual Data Sources

Data Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Source A LSTM .7106 .0061 .6538 .0067

CNN .7082 .0050 .6493 .0123

Source B LSTM .6674 .0066 .6481 .0075

CNN .6620 .0065 .6447 .0140

Source D LSTM .7146 .0025 .7161 .0058

CNN .7142 .0015 .7110 .0020

Source E LSTM .7473 .0103 .7358 .0103

The accuracy and f1 scores for each classifier are very close, typically within a

single standard deviation. Because the accuracies of the two models are so similar,

the set of correctly predicted documents for each classifier differs by around 10-20
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elements each, which does not allow for meaningful error analysis. Furthermore,

classification from a single data source is a restrictive exercise, as the document in

question typically lacks all the information needed to render an accurate predic-

tion. For these reasons, we cannot offer a strong explanation for why one model

outperforms the other; in a practical sense, the performance differences are not

meaningful. We elect to build the ensemble from regularized LSTM classifiers

only because the CNN model’s character-level embeddings substantially increase

memory usage.

5.3.1.2 Results on Full Dataset

Table 5.2 shows the results for all models. For the baseline LSTM, we report

accuracy on the static test set - where Source E is truncated at the time that the

last document is received - as well as the dynamic test set where the truncation

point is randomly assigned.
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Table 5.2: Ensemble and Single Model Results on Full Dataset

Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Ensemble .8775 .0055 .8722 .0067

LSTM (dynamic) .8510 .0050 .8453 .0050

LSTM (static) .8619 .0025 .8574 .0038

CNN (static) .8623 .0030 .8587 .0025

BERT .7503 .1271 .6474 .3265

LR .7781 - .7520 -

SVM .7154 .0011 .6749 .0230

Averaging over five trials, the ensemble outperforms all of the baselines. The

LSTM baseline’s performance decays by over a single percentage point if the mile-

stones sequences are varied to match data given to the ensemble, which is better

representative of a real-world use case. We note that BERT underperforms the

best models by nearly 10 points, partly because the input documents nearly al-

ways exceed BERT’s context window. We use the sliding window approach so

that BERT sees multiple slices of the full document when the window length is

exceeded. The public trust data, being a mix of terse, semi-structured data and

unstructured text, is almost certainly out of domain for BERT, which causes fur-

ther performance degradation. The high variance in BERT’s accuracy scores are

due to the model failing to learn the objective on multiple random seeds. On a

single run, BERT’s highest accuracy was approximately 0.84, but on other runs it
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learned a trivial solution and predicted majority class for every element. Adjusting

the number of training epochs did not resolve this issue, but we note that even the

best-case runs for BERT did not outperform the LSTM or CNN baselines.

5.3.1.3 Error Analysis

In analyzing the ensemble’s performance, we can identify some clear sources of

error based on the semantics of the documents and knowledge of the public trust

evaluation process. We begin with a simple confusion matrix for the test set (Table

5.3 to highlight the balance of false positive and false negative errors.

Table 5.3: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 803 167 776 181

Pred. 0 66 884 93 870

As indicated, the dataset labels are not strictly balanced, with a 45/55 ratio

for the hired and not hired outcomes. Both of the top-performing models are

prone to predicting the minority class, and incorrectly predicting the hired outcome

accounts for 167 of the ensemble’s 233 prediction errors. Although it may appear

counterintuitive for the model to prefer the minority class, we find commonalities

among members of the dataset where the model incorrectly predicts the hired
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case. We provide further results (below) of the model’s accuracy after splitting the

not hired outcome into three subgroups. We also include accuracy on the hired

category as a comparison (which restates the results from the confusion matrix).

Table 5.4: Ensemble Error Rates by Subgroups of the Outcome Variable

Subgroup N Fraction Correct

DQ Type 1 356 .856

DQ Type 2 461 .866

Cancellation 232 .763

Hired 869 .924

The two disqualification types refer to different decision processes in the public

trust system. We find that mistakes for both types are most common for subjects

whose data appear to be relatively clean - in other words, no major sources of

risk in data sources A and B, but the subject is still disqualified. Because our

data sources are not comprehensive, there can be key sources of information that

influence the actual decision but are not available to the model. This is a more

significant issue for DQ Type 1, which partially relies on an additional data source

that is unavailable for our work. Another common issue involves fields in Source

D that lack specificity, as more detailed information is also not available. This

affects the DQ Type 2 cases, and we find that the model’s accuracy is lower when

data in these non-specific fields are present.

The model’s performance is the worst on the cancellation group. Members of
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this group self-select out of the public trust process before being hired or disquali-

fied. Subjects who canceled after being approved for public trust but before being

formally hired are particularly difficult for the model. The model’s accuracy for

these cases is slightly above 50%, and this subgroup comprises approximately 14%

of the ensemble’s incorrect predictions. One might assume that the source docu-

ments for these cases are generally indistinguishable from subjects who are hired.

We offer some evidence-based assements for why the model’s performance on these

cases is around 50% and not lower:

• We find that prior to attrition, there may be a significant time period with no

milestone activity, or repeated milestones documenting an attempt to reach

the subject. These patterns are more likely to appear for subjects who self-

select out than for the other outcome subgroups. The Source E classifier’s

output consistently shows a sharp decrease in softmax values when these

milestones appear.

• In comparison to the overall population and the group with the positive

(hired) outcome, the late attrition group is in the evaluation process for

longer. The Source E classifier’s output tends to be lower for very long cases,

but we cannot control for all of the features that may influence the output.

• Contrary to common intuition, individuals in the opt-out group contain more

risk factors than those who are successfully hired, and the model scores

these accordingly. However, the 50% of the opt-out group with incorrect

predictions are much closer to the hired group, based on manual inspection
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of features.

We have access to some of the reasons given when a subject cancels out of the

process, and a clear majority of the reasons involve issues that would appear to

be exogenous to the public trust process (e.g., accepting a different job, having an

emergent family situation, etc.). We leave further exploration of this error source

to future work, as additional data sources are likely to be required for the model to

better resolve these cases. We provide additional results comparisons in Appendix

B (Tables B.1-B.4) for test set cases that cover the self-cancel subgroups, DQ

Type 1, and a special case where the applicant provides contradictory information

in Sources A and B, which is an indicator of deception. The ensemble’s accuracy

is modestly higher for all of these cases.

To evaluate the hypothesis that the ensemble is better suited to handling long

inputs than a single model, we sorted the test set by total input length and sepa-

rated the top decile. We determined this threshold by partitioning the dataset into

two groups and selecting the percentile level that maximizes statistical significance

between group means. We report confusion matrices for the ensemble and single

model LSTM over this subset of the data in Table 5.5. Both models have reduced

accuracy on the longer documents (.7604 and .7813, respectively. Document length

is considered a proxy for case complexity in this domain, so lower accuracies are to

be expected. The single model outperforms the ensemble, which does not support

our hypothesis. The difference in accuracy between the modeling approaches is

lower compared to the full test set and is non-significant, based on a single-tailed

permutation test (100000 iterations), where subgroup membership was randomly
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reassigned and a new difference in accuracy means between classifiers was calcu-

lated.

Table 5.5: Ensemble and Single Model LSTM Predictions on Long Documents

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 85 30 85 26

Pred. 0 16 61 16 65

The ensemble demonstrates higher accuracy than the top-performing single

model approach on most test set subgroups that we identified, except for length,

although no single subgroup accounts for a substantial portion of the performance

margin. We return to this dataset in Chapter 6 to examine dataset characteristics

that drive the ensemble’s accuracy advantage.

5.3.2 Trademark Dataset

We replicate the training and testing process detailed for the public trust data,

with a few key exceptions. The control sequence for this dataset does not contain

timestamped events that are explicitly related to the receipt of documents. We

previously used this information to determine a truncation point in the control

sequence. Instead, we identify the events that appear toward the end of the control

sequence that are closely linked to the binary outcome. Some events contain an
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outcome in the description provided in USPTO’s documentation (e.g., DEAD,

REGISTERED), and others nearly always appear adjacent to outcome-bearing

events. We identify all such events and mark the index, which we refer to tcut.

We randomly select a truncation point in the interval (0.25 · |S|, tcut), allowing for

a wide range of control sequence lengths. We follow this truncation process for

the data used in the baseline models and the dev/test sets for the ensemble, using

the same truncation points for all models. For the ensemble training data, we

randomly select new truncation points during each training epoch.

We institute two minor changes to the control sequence classifier in the ensem-

ble. We do not perform any pretraining, as there is no performance benefit; this

is due to the relative simplicity of the control sequence, which is detailed further

in Section 6.3. We also transform the control sequence timestamps; rather than

providing raw dates to the model, we use January 1, 1980 as a common epoch and

subtract this date from the timestamp. We express the difference in years (includ-

ing fractional values) and provide it to the model. The use of a common epoch

accounts for the wide range of starting dates in the control sequence, which can

include historical events (stretching back to the early 20th century) that predate

the current trademark application. This information contributes to to ensemble

accuracy.
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5.3.2.1 Results on Trademark Data Sources

The CNN classifier shows a slight improvement over the LSTM on the case file

data only. This is the only data source so far where the CNN outperforms. During

preliminary studies using public trust data for Source C, the CNN also showed

higher performance. Both data sources contain a higher frequency of numeric

tokens, which suggests that the CNN’s joint representation of character and word

embeddings is able to better represent numeric values than the binning strategy

we employ for the LSTM. Case file is the only document source across all three

datasets where the CNN shows a performance advantage (Source C from the public

trust data was not put into use due to limited coverage). In addition, the CNN did

not perform as well on the statement data, which has the longest token counts of

any data source. As a result, our hypothesis that the CNN model would have an

advantage with longer text inputs was incorrect. In accordance with the individual

data source findings, we compose the ensemble using the CNN for case file and

LSTM classifiers for the other sources.
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Table 5.6: Results for Individual Trademark Data Sources

Data Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Case file LSTM .7885 .0047 .8383 .0061

CNN .7888 .0013 .8407 .0007

Owner LSTM .7861 .0066 .8389 .0075

CNN .7717 .0026 .8318 .0022

Statement LSTM .7746 .0025 .8246 .0058

CNN .7646 .0070 .8172 .0041

Events LSTM .6414 .0122 .6753 .0104

5.3.2.2 Results on Full Dataset

The ensemble again demonstrates stronger accuracy than all of the baselines, but

by a narrower margin than on the public trust dataset. We explore why the

ensemble approach has a greater advantage on the public trust dataset in Chapter

5. The BERT model’s performance is also limited, although it did not learn a

trivial, majority-class solution on any of the five seeded runs. We again consider

the limited accuracy for BERT the result of the small context window (in particular

compared to the statement data source), and the data almost certainly being out

of domain. The out of domain nature of the data is more salient for BERT’s lower

performance, as the trademark data have larger token counts than the public trust
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data, yet the performance gap between BERT and the other models is smaller. In

addition, the statement data are unstructured and bear more similarity to BERT’s

training data than the other sources in the trademark and public trust data.

Table 5.7: Ensemble and Single Model Results on Full Dataset

Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Ensemble .9236 .0026 .9394 .0019

LSTM .9112 .0005 .9286 .0004

CNN .9018 .0002 .9215 .0018

BERT .8116 .1106 .8625 .0601

LR .8636 - .8879 -

SVM .8544 .0005 .8797 .0004

Averaging over five trials, the ensemble outperforms all of the baselines. The

LSTM baseline’s performance decays by over a single percentage point if the mile-

stones sequences are varied to match data given to the ensemble, which is better

representative of a real-world use case. BERT underperforms the best model by

more than 10 points, with the limitation of BERT’s context window again being a

relevant factor. The metadata-heavy nature of the dataset is also out-of-domain,

and although the statement data source consists only of unstructured text, its

unusual format (typically a long list of product descriptions) does not match the

narrative style text that would be more consistent with BERT’s pretraining cor-

pus. BERT’s accuracy across random seeds shows higher variance than the other
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models, but unlike the public trust data, it does not fail to learn the the objective.

5.3.2.3 Error Analysis

Our analysis of the public trust data benefited from direct access to subject matter

experts (i.e., the actual decision makers) and the primary source documents used in

the decision process. We do not have the same degree of access for the trademark

data, with the data sources being a mix of primary source (e.g., the statement

data) and case details that have been processed by USPTO. Because of this, much

of our discussion will focus on comparing predictions between the single model and

the ensemble when controlling for specific characteristics in the input.

One clear difference between the ensemble and best single model is that the

ensemble shows a stronger bias toward predicting the outcome for successful regis-

trations, which is the majority class (Table 5.8). These differences remain persist

across all seeded runs. Upon sampling 100 cases from the test set for manual

comparison, we were unable to identify any patterns or features that drive the

ensemble’s preference for predicting the positive label at a higher rate than any

of the single model approaches. In order to identify which data sources may con-

tribute this result, we trained a variant of the ensemble (as detailed later in Section

6.1) that generates separate predictions for each individual classifier, and captured

values from the softmax layer. Although the variant is less accurate and its predic-

tions are closer to the single model LSTM, it still offers an approximation of the

classifiers in the original ensemble. We filter the test set to the elements where the
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ensemble and single model disagree, and provide average scores from the individ-

ual classifiers in the ensemble. These are reported in Table 5.9, and the scores are

split based on whether the ensemble’s prediction was correct. When the ensem-

ble’s prediction is incorrect, the largest upward shift in score is for the statement

document, which suggests that the ensemble’s representation of this data source

drives the some of the differences in prediction.

Table 5.8: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 3561 412 3465 350

Pred. 0 70 1956 166 2018

Table 5.9: Average Ensemble Classifier Module Softmax Values

Condition Case file Owner Statement Events

Ensemble Correct .6007 .6589 .5250 .5664

Ensemble Incorrect .6036 .6073 .6275 .6096

Next we address the hypothesis that the ensemble performs better than the

single model approach when the inputs consist of long documents. Repeating the

approach taken with the public trust data, we identified the 45th percentile as the

level that maximizes statistical significance when sorting the dataset by length.
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We again compare classifier predictions via confusion matrix (Table 5.10). The

accuracies over this subset are .9347 for the ensemble and .9305 for the single

model. This difference is non-significant, based on a one-tailed permutation test

with 100000 iterations.

Table 5.10: Ensemble and Single Model LSTM Predictions on Long Documents

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 1949 185 1899 149

Pred. 0 30 1131 80 1167

We did not find the same success in exploring model weakness and error cases

as with the public trust data. We had the benefit of supplementary materials that

documented the reasoning behind decisions, which was a great source of insight.

The trademark dataset is less interpretable, due to its greater metadata content,

terse features, and lower availability of original documents. The control sequence

contains over 600 unique event codes, which must be mapped to descriptions that

are often not very meaningful to the layman. Accordingly, common approaches

like sampling error cases and looking for common features or patterns did not yield

very useful results. As alternative approach, we split the test set by quadrant of

the confusion matrix from Table 5.8 and identified words that were most com-

monly occurred in each group (but not the others). These are shown in Table

5.11. The model tends to favor feature tokens related to industry (machines, ap-
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paratus, industrial) and software (software, downloadable), and disfavoring media

(television, entertainment, advertising). Many of these terms reappear when we

conduct a similar analysis on this data in Chapter 7, splitting the data by geo-

graphic location. Locations with higher predicted success rates, such as Germany,

tend to be associated with the same favored words (and vice versa).

Table 5.11: Tokens in Trademark Data Split by Classifier Prediction

TP TN FP FN

software providing usa aids
downloadable purposes america office
nature services states home
namely advertising united suits
machines entertainment nosu academic
field information automobiles metal
data toy prev disease
apparatus computer motorcycles care
parts paper crfa skin
electric video cosmetic trading
industrial television hair applicances
measuring business belts shoes
printing others machines furniture
recorded pharmaceutical vehicles supplies
control management skin structures

The availability of external resources, similar to those available on the public

trust data would strengthen our approach for explaining results and identifying

areas of weakness in the model. Beyond access to domain expertise, the avail-

ability of rubrics and evaluation documents were both important. The evaluation

data justified the final decisions and provided explanations that related features

to the outcome. These were particularly useful references to consult for incorrect
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predictions in order to identify key features and determine if those features were

available to the model.

To further underscore the importance of domain expertise for interpreting the

trademark dataset, most entities registering a trademark retain specialized legal

representation to assist in the process, which also increases the registration success

rate (Schuster et al., 2021). Moreover, an internal USPTO investigation from

20201 documented shortcomings in examiners’ abilities to accurately identify goods

and services from registration applications. This highlights the challenges in data

interpretation, as even seasoned experts face similar challenges.

The availability of such resources would warrant revisiting the results for a

deeper analysis. We return to this dataset in Chapter 6 to identify characteristics

that make the trademark dataset more amenable to the ensemble approach.

5.3.3 Resolution Dataset

The congressional resolution dataset shares a few key similarities to the trademark

data, and we take a similar approach to prepare it for use in the models. The

control sequence does contain events that map to the receipt of documents, but

the sequences are much shorter: the average dataset element contains five events,

including one or more events that contain the outcome. We do not allow outcome-

bearing events to be included in the input, as they would trivialize the prediction

task. We remove these events and select a random index at which to truncate the

1https://www.oig.doc.gov/OIGPublications/OIG-21-033-A.pdf
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sequence, with the constraint that the truncated sequence includes at least one

event. Similar to the trademark data, we follow same truncation process for all

models. We also conduct no pretraining of individual classifiers in the ensemble,

as there is no performance benefit.

5.3.3.1 Results on Resolution Data Sources

The LSTM outperforms the CNN in accuracy on all data sources (Table 5.12.

Similar to the public trust data, we compose the model from LSTM classifiers

only. In the prior datasets, the two data sources where the CNN yielded better

accuracy contained many numeric tokens. None of the sources in the congressional

resolution data contain many numeric values. The sponsor data source contains

some numerics in the district identifiers for US house members (e.g., D-CA-19),

but these numbers represent categorical data. Also of note is that the single source

accuracies for the summary data are nearly 10 percentage points higher than the

other data sources. Perhaps it is not surprising that the success of a congressional

resolution can be predicted relatively easily by a short summary of its contents,

but the usefulness of a single data source suggests that a simpler model may be

more effective than an ensemble of classifiers.
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Table 5.12: Results for Individual Resolution Data Sources

Data Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Basic Details LSTM .8123 .0085 .8074 .0059

CNN .8090 .0081 .7958 .0083

Sponsor LSTM .8176 .0057 .8104 .043

CNN .8064 .0047 .8032 .0032

Summary LSTM .8912 .0031 .8770 .0024

CNN .8869 .0011 .8768 .0028

Actions LSTM .8644 .0009 .9009 .0066

5.3.3.2 Results on Full Dataset

In contrast to the other datasets, multiple single model approaches outperform the

ensemble. These results establish a general pattern over the three datasets, where

the ensemble’s performance advantage decreases with lowered dataset complexity.

The congressional resolution dataset is characterized by short control sequences

and a greater number of unstructured data sources, although each data source

is short. The BERT model’s performance is much closer to the other models,

although still not better than the LSTM. The average dataset member is still

longer than BERT’s context window. However, the features are much closer to

being in-domain for BERT, with most data consisting of multiple sentences or a
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list of names.

Table 5.13: Ensemble and Single Model Results on Full Dataset

Model Acc (mean) Acc (σ) f1 (mean) f1 (σ)

Ensemble .9261 .0047 .9171 .0022

LSTM .9366 .0016 .9294 .0018

CNN .9344 .0020 .9267 .0019

BERT .9200 .0060 .9091 .0072

LR .9275 - .9184 -

SVM .9190 .0004 .9081 .0004

5.3.3.3 Error Analysis

The congressional resolution data represents a different decision process than the

other datasets: rather than a standard set of guidelines that decision makers follow,

this is a collective political process whose participants may be sensitive to a wide

array of features that are unseen by the model. The identification of error cases is

complicated by the fact that we do not have a complete explanation for why each

resolution was or was not passed, as well as an accounting of outside factors that

may have influenced a decision. Because of this, we follow similar approach to the

analysis for the trademark data.

We compare confusion matrices for the ensemble and single model LSTM in

Table 5.14. The ensemble’s incorrect predictions tend toward false negatives (ma-
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jority class), whereas the single model shows a more balanced error profile. As

with the trademark data, we train a separate ensemble that issues predictions for

each of the classifier modules. Scores after the softmax layer are recorded in Table

5.15. On test set cases where the ensemble is incorrect, we see a drop in the scores

for the sponsor classifier and a larger score increase for the actions classifier.

Table 5.14: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 768 46 797 60

Pred. 0 79 982 50 968

Table 5.15: Average Ensemble Classifier Module Softmax Values

Condition Basic Details Summary Sponsor Actions

Ensemble Correct .4380 .4706 .5634 .2250

Ensemble Incorrect .4539 .4734 .4761 .4444

For the hypothesis that the ensemble outperforms single model approach for

long inputs, we partition at the top decile of the test set, which again maximizes

statistical significance. The accuracies over this data subset are .8723 for the

ensemble and .9255 for the single model; the accuracies are lower in comparison

to the full test set, and the difference between the classifiers has widened by over
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5 percentage points (Table 5.16). Repeating the one-tailed permutation test, the

difference is significant (p < .01), and so contra to the hypothesis, the ensemble

performs worse on long documents for this dataset.

Table 5.16: Ensemble and Single Model LSTM Predictions on Long Documents

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 87 5 96 4

Pred. 0 19 77 10 78

Similar to the trademark data, we had limited success in determining features

that drove model predictions and identifying common sources of error. Using the

results from Table 5.15 as a guide, we split the test set by quadrant from the

confusion matrix for each model to determine if features or groups of features

occurred uniquely within each subgroup of the test set (Table 5.17). The model

clearly favored Senate resolutions and disfavored those from the House. Terms

related to international affairs (international, nations, Russian) are associated with

incorrect predictions, as are names. The presence of names in the false positive

group reinforces findings in Table 5.15, in which the sponsor data source may

contribute to false positive predictions in the ensemble. Using this information,

we examined the error cases in the test set (less than 150 cases total for the

best models), but did not find any clear commonalities among resolutions with

incorrect predictions. Error cases spanned a wide range of subjects; even among
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resolutions that shared a common subject like international affairs, there were no

clear similarities.

Table 5.17: Tokens in Resolution Data Split by Classifier Prediction

TP TN FP FN

sen. rep. sen. rep.
committee 1000 committee michael
measure hres rep. john
senate representatives international international
amended intro-h reported russian
summary health house republic
introduced sense united support
version expressing consideration national
repeated introduced human military
consideration should foreign democratic
rules support rule christopher
bill introreferral nations jim
h. designation xiii joe
cr expresses h. calls
floor s. requirement robert

For an additional analysis, we used the sponsor data to identify which political

party most strongly backed each resolution, then use the congressional session

feature and historical data to determine if the party was in the minority in the

House or Senate. As expected, resolutions backed by the majority party have

a higher rate of success (.4801 to .4211). When we compare ensemble to single

model accuracy, the ensemble continues to show higher accuracies at a margin

that is similar to the overall test set.

Although the congressional resolution data are relatively straightforward to

interpret, further error analysis would greatly benefit from subject matter exper-
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tise. With specialized knowledge of the public trust process, for instance, we were

able to identify cases with non-intuitive outcomes that were associated with much

lower prediction accuracy. Similar insights would drive the identification of clear

error cases on this dataset. We suspect there are unseen or latent features in the

data, such as relationships among representatives or changes in the US political

atmosphere that affect outcomes in ways that the models cannot account for.

Overall, we find that the single model LSTM outperforms the ensemble on

every subset of the test data that we identified, a clear indicator that the ensemble

approach is suboptimal for this dataset. We noted earlier that the resolution

dataset is much simpler and has short control sequences in comparison to the

other datasets. There is another key difference, which is that the individual data

sources strongly correlate with each other. There is overlap between the summary

data source and features in basic details (e.g., resolution title), and the political

party of the sponsors and cosponsors would naturally be related to the contents of

the resolution. The actions reported in the control sequence, such as committee

referrals are also connected to the contents of summary. These correlations are

quantified in Chapter 6, where we find that data sources with less overlap and

correlation are more suitable for the ensemble approach; these findings comport

with the results on the resolution data.
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5.4 Conclusion

The overall findings across all datasets are highly positive for stakeholders, in

particular the end users. Accuracy levels approaching 90% on the public trust

data well exceeded minimum levels for practicality cited by domain experts (above

70%). Although we did not have access to domain experts for the other datasets,

we observed even higher scores (well above 90% on accuracy and f1) on each.

These findings should validate the text classification approach under the resource

constraints that we imposed.

The ensemble’s performance was best on datasets with greater complexity, and

it outperformed single model baselines (including a state-of-the-art model) on two

of the three datasets, which supported all but one of the hypotheses that we ad-

vanced at the beginning of this chapter. The ensemble clearly outperformed single

model baselines on the public trust data. Performance margins approached three

percentage points in accuracy and f1, which constituted error rate reductions in

the range of 18% to 20% for each metric. The performance benefit for the ensem-

ble was not as strong on the trademark dataset, where the difference was above

one percentage point (error rate reductions of 14% and 15% for accuracy and f1).

In contrast, the single model LSTM outperformed the ensemble on the resolu-

tion dataset. The public trust and trademark datasets have greater data variety

and longer control sequences than the resolution dataset, which is the least com-

plex of the three. The testing process emphasized prediction at varying timesteps

throughout the control sequence, and the results supported the hypothesis that the
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ensemble would offer better performance across time. The resolution dataset was

again the only exception. However, its control sequences consisted of an average

of five timesteps prior to truncation, which is short in comparison to the other

datasets.

The unsupported hypothesis was that the ensemble would outperform single

models on dataset members with long inputs. This hypothesis did not hold for

any of the datasets, as ensemble performance was worse on all but the trademark

dataset, which had the highest token counts. There was no significant performance

change on the public trust data and trademark data, and the single model approach

outperformed on long inputs on the resolution dataset by a significant margin. This

hypothesis may be worth revisiting on future datasets with very long documents,

given the results on the trademark data. Similarly, we expressed an interest in

exploring error cases for each dataset to determine if a particular model offered an

advantage. We found that the best performing model for each dataset consistently

outperformed the others across error cases and other dataset splits.

Collectively, these results convincingly demonstrate that the decision processes

represented by each dataset are amenable to automation. Furthermore, a mul-

tisource ensemble of classifiers outperforms state-of-the-art single source baseline

classifiers, and the ensemble can be feasibly implemented with realistic resource

constraints. These are the exact outcomes that stakeholders in the end user group

require in order to consider exploring real-world implementations. The results also

provide a starting point for model purveyors, who would be implementing any so-

lution. This group is likely to be further interested in understanding what dataset
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characteristics motivate the choice of an ensemble, so that they can select the ap-

propriate modeling approach on future, novel datasets. We address this topic in

the next chapter.
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6 Results Exploration

We demonstrated in Chapter 5 that the ensemble approach to text classification

outperformed all single model baselines on the public trust and trademark datasets,

but not on the simpler congressional resolution dataset. We now want to deter-

mine what dataset characteristics provide an advantage to an ensemble over a

single model. This chapter focuses on further exploring each of the datasets to de-

termine what features account for the performance margin between the ensemble

and the best-performing single model. Results should inform the model selec-

tion process when encountering a new multisource text classification task, which

primarily benefits the model purveyor stakeholder group.

The intuition that ensembles should be composed of diverse classifiers is one

motivator for our investigation of the datasets. Our focus on disagreement and er-

ror diversity among neural classifiers traces back to concepts introduced in Krogh

and Vedelsby (1994). Kuncheva and Whitaker (2003) surveyed a number of tech-

niques for measuring ensemble diversity, which in turn drew on ideas established

in the development of boosting (Schapire, 1990) and bagging (Breiman, 1996).

We apply similar approaches for measuring agreement among classifier modules

for each dataset, with the expectation that data sources with greater diversity

generate classifiers that are less correlated and compose a stronger ensemble.

We also measure the relative predictive value of each document source within
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a dataset. If a single data source accounts for the vast majority of the variance

between the positive and negative classes, as measured by classification accuracy

using only that source, we expect the ensemble approach to offer less of an advan-

tage. We are interested in identifying cases where a single source dominates the

ensemble, and then determining if merging the other sources or shifting to a single

model approach is preferable.

Finally, we examine the assumption that the control sequences in each dataset

constitute data that are sufficiently out of domain to require a separate classi-

fier module. The public trust and trademark datasets, which have relatively long

control sequences, yield higher performance on the ensemble model. This is in con-

trast to the congressional resolution dataset that contains short control sequences

with little to no temporal variance. We are interested in comparing the relative

usefulness of the control sequences in each dataset, and determining what features

maximize the utility this data source.

6.1 Ensemble Diversity

In testing for diversity within ensembles trained on each dataset, we look to mea-

sure how frequently each individual classifier agrees with the others. Our ensemble

architecture concatenates the final layer from each classifier module before apply-

ing an MLP to generate predictions. In order to approximate each classifier’s

predictions, we append another MLP to each individual classifier’s final layer to

generate a binary output. This results in a multitask learning objective where the
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loss function becomes

L = Lens + λ ·
n∑

i=1

Li

where Lens is the loss for the ensemble and the individual losses for the n classi-

fiers are summed and weighted by λ. We set λ to 0.05 to maintain training stability.

We observe no significant penalty (or improvement) to ensemble accuracy with this

compound loss, which should indicate that we have not greatly altered the indi-

vidual classifiers’ predictions. The output from each classifier MLP is fed through

a softmax, and we report values for the positive label. We use pairwise measures

for classifier agreement, starting with the correlation coefficient ρ. This gives us a

similarity measure for the softmax values, but we are also interested in how fre-

quently the classifiers disagree in terms of predicted label. We convert softmax

values to labels and take the Jaccard similarity, as a simple and straightforward

measure of agreement. Table 6.1 reports pairwise measures for each dataset.

An inverse relationship between classifier agreement and ensemble performance

holds across the three datasets. The correlation coefficients indicate a weak rela-

tionship among the classifiers in the public trust ensemble, a weak-to-moderate

effect size for the trademark ensemble, and strong effects for the congressional res-

olution ensemble. The Jaccard scores show similar effects; the classifiers in the

public trust ensemble disagree with each other most of the time, in contrast to the

other ensembles where the classifiers agree more often than not.

These results confirm the expectation that ensemble methods perform better

when the individual sources in a dataset result in a discordant ensemble of clas-
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sifiers. The results also suggest that partitioning features into separate document

sources, while minimizing feature correlation across sources, may be an effective

strategy to further improve the performance of ensemble methods. We will examine

concepts of document partitioning in the next section.
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Table 6.1: Ensemble Classifier Agreement by Dataset

Classifier Pair ρ Jaccard

Public Trust

Source A-B .3083 .3553

Source A-D .2558 .4504

Source A-E .3581 .4868

Source B-D .2377 .3878

Source B-E .1975 .3170

Source D-E .1957 .3793

Trademark

Case File-Owner .3033 .5943

Case File-Statement .3341 .5858

Case File-Events .3420 .6068

Owner-Statement .3331 .6422

Owner-Events .5538 .7923

Statement-Events .2589 .6383

Resolution

Basic Data-Sponsor .6519 .6005

Basic Data-Summary .6910 .6811

Basic Data-Actions .6706 .5808

Sponsor-Summary .6706 .6253

Sponsor-Actions .7127 .6346

Summary-Actions .6268 .6024
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6.2 Ablation Studies

In analyzing the components of the ensemble classifier for each dataset, it is impor-

tant to understand the relative contributions of each classifier, and by extension,

each document source. We perform two different ablation tests to accomplish this.

For the first, we ablate the document sources available to the model and observe

the changes in accuracy. We are looking for sources that exert a large (or small)

influence on the model’s results. Our expectation is that if a single classifier dom-

inates the others, the dataset is probably less suitable for an ensemble approach.

We conduct ablations following the ”leave one out” approach, showing results when

we subtract each of the data sources while leaving the others intact. We then leave

out the least valuable source and ablate the next, until we are left with only a

single source.

Table 6.2 contains results from the first ablation test. We do not ablate what we

consider the primary document source from each dataset (Source A, Case file, and

basic details), as these sources contain the central case facts for each dataset type.

One clear result from these tests are that that the control sequences contribute

substantial predictive value in all datasets, and this is particularly true for public

trust (Source A) and trademark (events) data.

For the public trust data, Source B contributes the least predictive value of

the sources, even though it is the largest source by size. This document source

substantially overlaps with Source A, even though the classifiers for each have

only weakly correlated outputs, as established in the previous section. The control
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sequence (Source E ) clearly contributes the most predictive value among ablated

sources, as its removal drops accuracy by nearly 13 percentage points (and approx.

6 f1 points). Sources A and D show similar contributions. These results are

consistent with the relative accuracies when training a model on a single data

source only (Table 5.6).

On the trademark dataset, we again see that the long, unstructured data in

Statement is of limited predictive value, contributing less than one point in accu-

racy and f1. The value of the Owner features are also relatively modest, but the

Events control sequence is substantial. In comparison to the public trust data,

accuracy on the trademark data starts at a higher level from a single source, and

does not improve as much when additional sources are added.

The results are similar for the congressional resolution data, where the Sponsor

data, which is also unstructured and the longest source, adds limited value. The

Summary data source makes the single largest difference of each of the document

sources; the reduced value of the control sequence, relative to the other datasets,

is due to its short length and lack of variance in temporal data (most events share

the same timestamp). These results are consistent with the relative accuracies

when training on a single data source (see Table 5.12).
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Table 6.2: Ablation Results by Document Source

Document Source Acc. f1

Public Trust

Full ensemble .8812 .8772

-Source D .8479 .8411

-Sources B, D .8365 .8299

-Sources D, E .7307 .7107

-Sources B, D, E .7018 .6522

Trademark

Full ensemble .9236 .9394

-Statement .9142 .9317

-Statement, Owner .8885 .9129

-Statement, Owner, Events .7920 .8418

Resolution

Full ensemble .9366 .9294

-Sponsor .9253 .9150

-Summary .8581 .8468

-Sponsor, Summary .8586 .8460

-Sponsor, Summary, Events .8128 .7963

For the second test, we want to determine how ensemble accuracy is affected if

we merge two or more sources together. Although not ablation in the traditional
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sense, this merging exercise allows us to observe effects as the model architecture

shifts from an ensemble toward a single model approach. Source merging also

enables exploration of whether merging is advantageous for document sources that

have similar domains and data formats. In order to avoid exhaustively training

models on all possible combinations of merged data sources, we exclude the control

sequence and report results from merging all other possible pairs, as well as the

triplet of remaining sources. Because merging the control sequence with other

sources would incur data loss, we offer a comparison between the results of the

single model approach and the merged triplet to demonstrate the effects of merging

the control sequence. Table 6.3 contains results from this test.

The merging of pairs of sources in the public trust data results in very small

changes to accuracy and f1, regardless of which pair of sources is merged. An

approximately one point drop occurs when merging three sources, and then another

two points when merging in the control sequence, which produces the single model

approach. The fact that a single merge has only small effect, while there is some

degradation after two merges, suggests that the individual classifiers may perform

best when working with smaller amounts of text. This would account for the

degradation when merging three sources, because the pairwise merges have little

to no effect regardless of which features are grouped together.

For the trademark data, we see a slight improvement in performance when

merging the case file and statement sources. As previously noted, statement is the

weakest of the sources in this dataset while also being the longest. The product

description given in statement can be considered additional context to some de-
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scriptive fields in case file, so the merging of these data sources does group similar

information together, despite the differences in data format. When merging three

data sources, we again observe a reduction in accuracy. However, the results are

not much different from the single model approach. This result indicates that the

treatment of the control sequence as a separate data source may not be as ad-

vantageous in the trademark dataset, even though the results in Table 6.2 clearly

show that event are strongly information bearing for the classification task. We

investigate this further in the next section.

The congressional resolution dataset is the only one where the single model

approach was superior. The merging of basic details and summary results in a

modest improvement. Both have similar data: basic details contains the title of

the resolution, which the data in summary expands upon. Similar to the trade-

mark data, merging a pair of related document sources again results in a slight

decrease in classification error. The merging of three sources produces further

(slight) improvement, as the ensemble’s architecture begins to look more like the

single model approach.

We find that merging data sources is beneficial when the two sources contain

data that are similar or share semantic content. Successful merges also tend to in-

volve data sources that are relatively simple in terms of the variety of features that

they contain. Variety in this case is not a substitute for length, as the statement

source in the trademark data can be quite long but provides a very specific type

of information. This is in contrast to the sources in the public trust data, which

all contain a large variety of fields.
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Table 6.3: Merging Clearance Data Sources

Merged Document Sources Acc. f1

Public Trust

No merge (full ensemble) .8812 .8772

Sources A + B .8812 .8746

Sources A + D .8823 .8745

Sources B + D .8812 .8768

Sources A + B + D .8708 .8677

All (single model) .8510 .8453

Trademark

No merge .9236 .9394

Case File + Owner .9203 .9370

Case File + Statement .9260 .9401

Statement + Owner .9038 .9240

Case File + Statement + Owner .9110 .9302

All (single model) .9112 .9286

Resolution

No merge .9261 .9171

Basic Details + Sponsor .9189 .9100

Basic Details + Summary .9285 .9195

Sponsor + Summary .9216 .9121

Basic Details + Sponsor + Summary .9285 .9208

All (single model) .9366 .9294
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6.3 Examining Control Sequences

In the previous section, we raised the question of when treating the control se-

quence as a separate data source is beneficial. We now examine what features in

a control sequence motivate using a separate classifier for this data source. We

focus on comparisons between the public trust and trademark datasets, as these

both contain long control sequences with a high degree of variance among dataset

members. The congressional resolution data, in contrast, contains short sequences

(five events, on average) that all tend to share the same timestamp. We will offer

limited comparisons to the resolution dataset in this section, but the short and

simple nature of the resolution dataset’s control sequences will trivialize most of

our exploration.

We posit that a control sequence that is most useful to model as a separate

data source, rather than a set of static tokens will contain at least some of the

following characteristics:

• Each sequence comprises a wide variety of states, and the sequences are

relatively long (tens of states or more).

• The initial states in the sequence offers relatively little predictive value to-

ward the final outcome.

• The predictions generated by the classifier over time gradually evolve to favor

the correct label. The changes (with respect to a single label) should not be

strictly monotonic, as this would imply a trivial process. However, frequent

discontinuities are also undesirable.
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• As corollary, the sequence should not introduce new information in the final

states that substantially change the predicted outcome. Such changes may

be the result of an exogenous event that the model cannot account for, which

devalues the predictive content of the control sequence.

• The timing of events in the sequence should hold predictive value.

We evaluate the control sequences for the public trust and trademark data

to determine how well each conforms to the above criteria. Our expectation is

that the public trust data should better conform, as this would account for the

comparatively better performance of the ensemble approach. All comparisons are

based on classifier models trained on the control sequences for each dataset. We

generate predictions at each timestep in the sequence for all elements in the test

set, and we use the softmax values for the positive label.

We start by identifying the largest discontinuity in each control sequence, which

we define as the greatest difference in softmax values between consecutive predic-

tions. We aggregate these differences across datasets; in Figure 6.1 we show a

histogram of the discontinuity values on the left, and the chart on the right shows

the locations of discontinuities in the sequence. Because the sequences have vary-

ing lengths, we take the index where the discontinuity occurs and normalize it by

sequence length.

For the majority of the public trust data (approx. 64%), the largest disconti-

nuity sizes are between 0.1 and 0.35. Nearly 20% of the trademark data control

sequences have no discontinuity larger than 0.05, which is a strong indicator that
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Figure 6.1: Comparing Discontinuity Size (left) and Location (right)

the predictions are consistent throughout the sequence. These sequences appear

to represent trivial prediction tasks, as the entire sequence could be replaced with

the initial state.

Both datasets show large spike in discontinuities at the end of their sequences.

This spike does not necessarily indicate that classifier predictions flipped to the

other label. The final elements in the sequences for both datasets tend to be

uniquely mapped to a binary outcome, and many of the discontinuities reflect

stronger model confidence. There is a concerning trend in the trademark data, as

the discontinuity counts rapidly increase in the final third of the sequences. In the

public trust data, there is a clear increase in discontinuities around 20% of the way

through the sequence. We find that this consistently occurs when an applicant is

matched to a job in the hiring process, which signals the start of the public trust

clearance process.

We want to resolve whether the discontinuities that frequently occur at the end

of the control sequences reflect the model changing the predicted label or growing

more confident in the current prediction; the former would violate the criteria that

control sequences not introduce critical information at or near the final event. In
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Figure 6.2 we reproduce the chart showing where discontinuities occur, but this

time filter the data so that only sequences where the initial and final predicted

labels differ.

Figure 6.2: Discontinuity Locations When Initial/Final Predictions Disagree

There is a greater contrast between datasets with this filtering in place - the

trademark dataset shows a large spike occurring late in the sequence, whereas the

spike for the public trust dataset is much smaller. This indicates that when there

is at least one change in the predicted label during the sequence, the key evidence

in the trademark data tends to arrive late. In the context of our prediction task,

the data may arrive too late to be of use to the classifier, which makes the control

sequence less useful.

We also compare the predicted labels throughout the control sequences, and

Figure 6.3 shows the longest consecutive stretch of predicted labels. A value of

1.0 indicates that the same label was predicted throughout the sequence, and

a value of 0 indicates continual alternating predictions. The right side of the

figure shows where the changes in label predictions occur. The patterns from the

earlier figures for each dataset hold. In over 50% of the trademark data control

sequences, the same label is predicted at nearly all timesteps, and when the model



122

flips predictions, it is more likely to occur later in the sequence. The public trust

dataset has fewer sequences dominated by the prediction of the same label and is

more likely to show a high level of disagreement (typically softmax scores close to

the 0.5 threshold). When predicted labels change, they tend to change in the first

quarter of the sequence.

Figure 6.3: Consecutive Predicted Labels (left) and Location of Changes (right)

We find that the public trust data are most consistent with our expectations

for control sequences that are amenable to the ensemble approach. Accordingly,

this control sequence adds more value to the ensemble than in the other datasets,

and there is a greater penalty to accuracy when treating the sequence as a set

of static tokens. The reasons for this are clearly shown in the data: the control

sequence is not trivially short, the predictions very early in the sequence are not

particularly accurate, and there is not a high prevalence of exogenous events late

in the sequence that substantially affect predictions.

The ideal characteristics we identified for a control sequence are not necessarily

straightforward to identify a priori when presented with a new dataset and a sim-

ilar prediction task. Domain expertise can assist with analyzing control sequence

features for suitability with an ensemble of classifiers. A lightweight empirical



123

approach, by training a classifier on only the control sequence, can also yield re-

sults that are straightforward to analyze to determine suitability for the ensemble

approach.

6.4 Actionable Results

We find that there are clear, identifiable characteristics common to datasets where

the ensemble approach outperforms single model baselines. These characteristics

are most pronounced in the public trust data, in which the ensemble holds the

greatest performance advantage. This is another positive finding for stakeholders,

especially model purveyors, who would be responsible for developing solutions for

novel datasets. The results now enable the description of a repeatable process to

examine future, unseen datasets for compatibility with the ensemble approach.

Datasets with stronger ensemble accuracy show greater disagreement among

classifier modules and higher marginal performance differentials when one or more

data sources are ablated. We are able to connect quantitative scores from these

tests with qualitative characteristics for each of the data sources. For example,

there is limited feature overlap between Sources A and B in the public trust data,

but not across the other data sources. In contrast, there is often significant feature

duplication across the basic details and summary sources in the resolution data;

there are also strong correlations between resolution sponsors and the summary

(certain representatives tend to sponsor certain types of legislation), as well as

sponsors and actions (specific representatives can exert influence the legislative
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process).

Clear patterns arise for the control sequence as well. The control sequences in

the resolution data hold less marginal predictive value than in the other datasets.

This is the likely result of the control sequences’ short length and minimal vari-

ance along the time dimension; there is no advantage in representing the control

sequence with its own classifier. These characteristics favor the single model ap-

proach. The ensemble approach benefits when the control sequences are longer,

the initial states offer minimal predictive value, and information that substantially

changes the prediction is unlikely to arrive at the very end of the decision process.

Compiling these results, we offer a list of dataset characteristics that indicate

a performance advantage for an ensemble. These can save time and resources

by identifying an ideal approach without having to train and compare multiple

models.

• Individual data sources each offer a view of the data that is largely indepen-

dent of the other sources.

• Data sources contain little to no feature overlap. When feature overlaps

occur, the features have different representations and levels of detail.

• Sources contain a range of data types (structured, semi-structured, unstruc-

tured data), including multiple types within a single source.

• Data sources are drawn from different domains, such that developing a com-

mon schema would be difficult or unreasonable.
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• Control sequences are relatively long, with average lengths on the order of

tens or more.

• There is significant variance over the time dimension in the control sequence

(i.e., all events do not occur nearly simultaneously).

• Early events in the control sequence are not strongly predictive of the out-

come; it is atypical for the predicted outcome to remain the same throughout

the entire sequence.

• Critical information that results in a label change or large jump in softmax

output may occur throughout the control sequence, not primarily at the end.

Insights from domain expertise may be needed to effectively apply these items

to a novel dataset. We leave to future work the development of heuristics that can

evaluate an unseen dataset on one or more of the forgoing items at a significantly

lower cost than training a model.
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7 Examining Fairness in Model Decisions

The experiments and results in this thesis have so far focused on a general classi-

fication approach. We now want to outline a basic first analysis for fairness. The

results from this analysis are intended to be a starting point for future investi-

gation, as what might initially look like unfairness may not be unfair. Further

investigation will require domain expertise for a balanced interpretation of results

and determination of next steps.

In earlier discussions about stakeholders, we asserted that end users and model

purveyors would hold keen interest in fairness testing. End users will want to

understand if a solution systematically disadvantages one or more subgroups, par-

ticularly if the solution diverges from the original decision outcomes to treat a

given subgroup more unfairly. Decision processes, especially those run at scale

by large institutions, often have official documentation stating core values and

non-discrimination policies; an unfair solution would violate these principles and

therefore be unacceptable to end users. Furthermore, end users would not want

to risk operationalizing a solution of unknown fairness, as doing so could expose

their institution to lawsuits, penalties, and reputational damage if the solution is

unfair.

Model purveyors will be interested in using results from fairness testing to crit-

ically examine and potentially refine their decision processes. These refinements
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would be broader in scope than remediating an unfair solution. For example, test-

ing may uncover a feature that is potentially important to the decision process but

is also a source of outcome discrepancy for a subgroup of concern. Model purvey-

ors may decide to examine this feature and decide whether or not the discrepancy

constitutes an unfair bias in the decision process. Such a bias would require remedi-

ation, which could include altering, removing, or replacing the feature in question,

or even redesigning a part of the decision process.

Our goal in this chapter is to develop a repeatable process for identifying po-

tential sources of unfairness in both the data and the model’s interpretation of the

data. We recognize that research on fair classifiers commonly includes work on

remediating unfairness. Such studies often focus on datasets such as UCI Adult

(Becker and Kohavi, 1996), Propublica’s analysis of COMPAS1, and medical data

(Johnson et al., 2016). However, these datasets tend to comprise structured data

and do not involve decision tasks with a considerable degree of subjectivity. As a

result, it is relatively straightforward to conclude that discrepancies in predicted

outcomes are unfair; this is not the case in our datasets, where discrepancies may

arise from group-level traits that correlate strongly with an important feature.

Limited exceptions exist, such as Lipton et al. (2018), which includes a case study

on graduate CS admissions. However, this study also relies on structured data and

omits complex, unstructured sources such as personal statements and letters of

recommendation that are important to the decision process. These data sources,

1https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-
analysis
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which are similar to ones found in our datasets, require subjective processes to

evaluate. The appearance of discrepancies would raise important questions about

whether the decision process was actually unfair, and these questions would need

to be answered before taking remediative action.

Before introducing our testing process, we define some terms and notation.

Consider a dataset {an, xn, yn}Nn=1, where an is a sensitive variable or feature (we

use the terms interchangeably), xn is the set of observations or characteristics used

to generate a prediction, and yn ∈ {0, 1} is the binary outcome. Depending on the

task, an may be present in xn and used to generate a prediction ŷn. We represent

the real-world decision process as the function d such that d(xn) = yn. If a model

is successful in accurately predicting the outcome of a decision process, then it is

identifying correlations among features that are indicative of the actual outcome.

Within the context of our datasets, we primarily consider fairness on the in-

dividual level: cases with highly similar features that differ only in terms of one

or more sensitive variables should have highly similar predicted outcomes. This

definition is consistent with decision guidelines published by agencies that grant

various types of clearances23, as well as USPTO’s manual for processing trade-

mark applications4; these sources emphasize individual-level details for decision

making and do not mention any guidelines for group-level fairness. We also apply

group-level fairness metrics, and assert that a trained solution should not magnify

2https://www.dni.gov/files/NCSC/documents/Regulations/

SEAD-4-Adjudicative-Guidelines-U.pdf
3https://www.dcsa.mil/Portals/128/Documents/pv/DODCAF_/DOD_CAF_Whole_Person_

Factsheet_042021.pdf
4https://tmep.uspto.gov/RDMS/TMEP/current#/current/TMEP-1200d1e1.html
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cross-group discrepancies in the original decision. Although prior studies (Corbett-

Davies et al. (2017), Kleinberg et al. (2016), among others) have established that

inherent tradeoffs exist among group and individual fairness measures, both types

of fairness are likely to be of interest to stakeholders and should be measured.

For each dataset, we pick at least one sensitive variable to examine for fair-

ness. Our general hypothesis is that there is a bias with respect to each sensitive

variable that correlates with the outcome. This bias results in a significant, mea-

surable difference in outcome across subgroups that share specific values of the

sensitive variable. The sensitive variables that we examine are all categorical, and

most tests involve pairwise comparisons against the dominant subgroup. Because

it is impractical to test every sensitive variable in each dataset, we pick salient

features that would be of common interest in the domain of each decision process.

These choices are independent of the feature selection process that we followed dur-

ing model development, and they are also pre-registered: we performed no prior

fairness tests to inform these choices. The sensitive variables for each dataset are:

• Public trust: race, gender

• Trademark registration: country of origin

• Congressional resolutions: gender of primary sponsor

These choices are consistent with the types of demographic variables examined

in previous fairness studies using real-world data, primarily in the criminal justice

domain (e.g., COMPAS) as described in Berk (2019) and Kleinberg et al. (2016).
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7.1 Ensemble of Tests for Fairness

We propose a series of fairness tests to evaluate a model for each of our three

datasets. The first test examines how the inclusion or removal of a sensitive variable

an in the feature set xn alters the model’s predictions. We compare classifier results

between feature sets that differ in the inclusion of each an of concern, examining

results for each level of the protected variable along with the baseline rates from the

original decision process. For the public trust and congressional datasets, we add

the variables of concern to the feature set for the test case; for the trademark data,

we remove it. We are interested in whether the changes in the model’s predictions

differ among the levels of the protected variable, if the difference is significant, and

if the differences across groups are larger in model predictions than in the actual

outcomes. We use Pearson’s chi-square test for significance testing when an has

binary values, and the paired Wilcoxon rank-sum test otherwise. This is a group

fairness measure, and we also consider the traditional disparate impact (80%) rule,

where the success rate of the minority class should be at least 80% of the majority

(or baseline) class:

Pr(ŷ = 1|an = i)

Pr(ŷ = 1|an = j)
≤ 0.8

In the second test, we train a model to predict the protected variable an from

the feature set xn, using the same architecture as the original prediction task. In

cases where xn includes the protected variable, we omit it and other features that

would trivialize the task by being a close proxy (we detail all such cases in the
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following sections). We intend this test to identify how strongly the feature set

correlates with the protected variable. Although we are not measuring a traditional

correlation coefficient, text classifiers allow us to estimate the degree of relation-

ship between a textual dataset of arbitrary complexity and a protected variable.

In addition, we split the dataset by predicted label and identify words occur most

frequently in each group relative to the others. This process will identify stereotyp-

ical terms for each group, providing insight into proxies for the protected variable

and features that may be driving differences in group outcomes. Krishna et al.

(2022) detail a similar process, which they refer to as a protected status model.

We consider this test to be an exploratory analysis and do not set thresholds for

an acceptable level of correlation between xn and a given an, as this value may

be inherent to the decision task. We expect that the results of this test will be

particularly useful for future investigations; features that correlate strongly with a

disadvantaged subgroup are candidates for evaluation by domain experts to deter-

mine if the feature should be excluded from the decision process or down-weighted

in the interest of improving fairness.

In the third test, we examine counterfactual fairness. We use the feature set

from the first test, and at inference time set the an to a specific level. We observe

how the model’s predictions change in response. This approach has well-known

shortcomings - characteristics like race or gender rarely change in isolation - which

can result in unrealistic feature sets. The counterfactual test may appear less

relevant to the public trust and congressional data, since the protected variables

are not normally included in the features for these datasets. This test still provides



132

insight into how much variance in the outcome a given an can account for in each

dataset when we control for all other features. We contend that this is useful

information for understanding the decision process and provides starting points

for further investigation.

We conduct all tests on the best-performing model for each dataset: we use the

ensemble model for public trust and trademark data, and the single-model LSTM

for the congressional resolutions.

7.2 Fairness Evaluations by Dataset

7.2.1 Fairness Evaluation on Public Trust Dataset

For the public trust data, we consider the protected variables of race and gender

and test to determine if there are disparities in outcome across race and gender

groups. It is worth mentioning that during the feature selection process, we re-

moved many features that probably correlate with one or more protected variables,

because the features had no identifiable predictive value. These features include

street-level addresses, zip codes, and some occupational details. Our fairness tests

should help illustrate whether or not the omission of these features results in a

more fair classifier relative to base outcomes.

We show the levels of the variables for race and ethnicity in the test set below.

For race, we omit the not reported group from test 2 due to small sample sizes.

There are four additional levels not shown here because their sample sizes are under

10; we omit these from the analyses. For gender, we focus on male and female
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values; there is also a not reported group with four members that we exclude. The

size of the test set remains 1920, which includes all the groups omitted from Table

7.1.

Table 7.1: Race and Gender Breakdown in Test Set

Race N Gender N

White 1297 Male 1127

Black 217 Female 789

Asian 176

Hispanic 166

Not reported 50

Table 7.2 shows the base rate of applicants in each group who were granted

a clearance, alongside the number of applicants for whom the model predicted to

clear. The model predicts the clearance granted outcome at a higher rate than

the true outcomes for all groups except for the not reported and female groups.

With the exception of the not reported group (which is not a race), the model’s

predictions show less inter-group variance than the actual outcomes, which suggests

that the combination of feature selection and omission of the protected variables

is successful in reducing discrepancies across groups.

We use the white and male groups as comparison baselines, since they represent

the majority groups. The only group that fails to meet the 80% test for disparate

impact is the model’s not reported race group, and this difference is significant.
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Differences in rates, relative to baseline, for the other groups are all non-significant.

The not reported group holds a unique property, as the subject has elected to

withhold information. In discussions with domain experts, it is widely believed

that applicants who are less cooperative in providing information tend to be less

successful in the process, and this is reflected in the base rates. The classifier

magnifies this effect, which may at least partially be the result of the not reported

group constituting less than 3% of the dataset.

Table 7.2: True and Predicted Clearance Rates by Race and Gender

Race Cleared Predicted Gender Cleared Predicted

White .490 .504 Male .426 .519

Black .433 .548 Female .516 .487

Asian .405 .468

Hispanic .427 .484

Not reported .400 .100*

We now explicitly include race and gender in the input features and collect

model results. We add the features to data sources A and B (as described in Sec-

tion 3.2), which is consistent with where these data occur in the original sources.

Including these features yields a slight decrease in accuracy compared to the origi-

nal feature set; this was a typical outcome during feature selection when including

features with no additional predictive value.
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Table 7.3: Classifier Accuracy after Including Race/Gender Features

Feature Set Accuracy f1

Original .8820 .8787

+ Race .8796 .8745

+ Gender .8792 .8465

+ Both .8807 .8771

We also compare the predicted clearance rates for the original feature set and

the modified features with race and gender included. The predicted clearance

rates for most demographics shift in the direction of the base rates reported in

Table 7.2. The model becomes more discriminatory than the base rates for most

of the groups; the black, Asian, and not reported groups all violate the 80% test

for disparate impact, and the differences are significant for each of these groups

and for the female group.

Simply by blinding the model to race and gender features, coupled with prun-

ing via feature selection, we observe greater parity across groups in the model’s

predictions. The only exception is the group of applicants who decline to provide

race data, where the model imposes a strong penalty for withholding such data.
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Table 7.4: Predicted Clearance Rates with Race/Gender Added to Features

Race Orig. Added Gender Orig. Added

White .504 .484 Male .519 .403

Black .548 .354* Female .487 .523*

Asian .468 .380*

Hispanic .484 .458

Not reported .100* .275*

For the second fairness test, we train the model to predict race and gender as

outcome variables. We combine categories omitted from Table 7.1 into a single

level rather than remove elements from the dataset. We find a test set accuracy of

0.8421 for predicting race and 0.7870 for predicting gender. These show that the

feature set strongly correlates with both demographic categories. Of the four data

sources in the public trust dataset, only source A and source B exhibit correlations

with race or gender. When training on a single data source, the model fails to

learn the objective when using data sources D and E; it learns a trivial solution

of predicting the majority class, which indicates that both sources are effectively

uncorrelated with the protected variables. Sources A and B, in contrast, contain

biographical features that we would expect to correlate with race and gender.

In order to better illustrate these correlations, we split the dataset elements by

predicted label and identify feature tokens with the largest differences in occurrence

between a target label group and the other groups. We provide a summary of the
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types of tokens that are most closely associated with each label in Tables 7.5 and

7.6 (actual tokens are not provided due to proprietary restrictions on the dataset).

We do not provide tokens associated with the not reported group because the model

fails to learn a decision boundary for this label, generating very few predictions for

it.

One consistent pattern is that demographic categories with lower clearance

rates tend to have more tokens associated with negative information (financial is-

sues, alcohol use, etc). This is a likely explanation for why the black and male

groups have lower clearance rates. The most common tokens in the Asian and

hispanic groups relate to overseas travel and experience. Although not necessar-

ily negative factors in the clearance domain, published government adjudication

guidelines like the SEAD-4 evaluate factors like foreign preference, which probably

account for the lower rates for these groups. The cross-group differences in pre-

dicted clearance rates increase when the model has access to race and gender as

part of the input, which suggests that the model may penalize these demographic

groups when stereotypical negative features appear in the input. We examine this

as part of the third test.
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Table 7.5: Summary of Tokens that Co-Occur with Racial Group

White Asian Black Hispanic

US birth Travel to Asia Maryland Latin America

Military exp. Asian languages Financial issues Florida

Virginia STEM degrees Caribbean travel Associate degree

European travel Internships HR experience Telecom experience

Bachelor degree California Layoffs/work issues Romance languages

Table 7.6: Summary of Tokens that Co-Occur with Gender Group

Male Female

Military exp. Travel to Europe

Alcohol use Education

Travel to Asia Humanities

Drug use Foreign language

Layoffs/work issues Financial issues

For the counterfactual fairness test, we again include race and gender as input

features. At inference time, we change the demographic feature to a specific level

and measure the response in the model’s output, both in terms of softmax score

and the predicted label.

Table 7.7 summarizes the results from counterfactual testing. Values reported
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under the N column are the number of test set members for which race/gender

were modified (i.e., the group’s population subtracted from 1920). Avg Chg.

reports how much the softmax score moved for each category, and the next two

columns count how many members had increased or decreased scores. The final

two columns report how often the predicted label shifted to 1 or 0.

The results for counterfactual fairness are generally follow the results for group

fairness. A small number of dataset elements within each group experience large

shifts in softmax scores, typically negative and with magnitudes above 0.5. These

occur most frequently when the dataset member contains features that are more

commonly associated with the target race or gender group, which indicates in-

teraction effects between the protected variables and other features. The Asian

and not reported groups experience a statistically significant difference in softmax

compared to the majority group.

From the three fairness tests, we conclude that the model and feature set are

generally more equitable with respect to race and gender than the original deci-

sion process. We use the paired Wilcoxon rank-sum test to determine significance

for the softmax values, comparing scores for each subgroup to baseline categories

(white for race, male for gender). For the significance test, we include only the

dataset elements that were originally in the baseline subgroup (e.g., male candi-

dates that shifted to female during the counterfactual test). All subgroups show

a significant difference in score from the baselines (p < 0.01) with Bonferroni cor-

rections applied. This raises the question of whether the effect sizes hold practical

significance. We can compute an effect size from the Wilcoxon test, and according
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to Cohen’s (Cohen, 1998) effect size classifications, most groups show a strong ef-

fect (approx. 0.5 or above), with the exception of the black group (approx. 0.19).

However, these figures do not provide explicit practicality measures in the context

of our particular task, and no such guidance for practicality yet exists. We note

that only two groups (Asian and not reported) have scores that differ by more

than one percentage point, and both have a much greater count of the predicted

labels shifting to the negative prediction (45 and 119) than the other groups. This

suggests that both groups experience a practical level of discrimination when race

is included as an explicit feature in the data.

Further investigation is needed to determine whether differences across groups

are discriminatory, and the Asian group should be a clear priority for additional

study. The large penalty assessed toward the not reported group, even in the

absence of racial features, is also notable. Due to the small size of this group, a

manual examination of features may be warranted to determine why the model

treats this group differently; there may be additional features that are absent or

unreported that causes this group to be an outlier.
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Table 7.7: Counterfactual Fairness Results for Public Trust Data

Group N Avg Chg. Score ↑ Score ↓ To 1 To 0

White 623 .0110 474 149 8 0

Black 1703 .0038* 900 803 11 2

Asian 1744 -.0215* 53 1691 2 45

Hispanic 1754 -.0012* 343 1411 6 11

NR (race) 1869 -.0544* 72 1797 0 119

Male 793 -.0069 4 789 0 8

Female 1131 .0072* 1129 2 8 0

7.2.2 Fairness Evaluation on Trademark Dataset

For the trademark registration dataset, we examine the primary location of the

owning entity (individual or company/institution) that submitted the trademark.

When dataset elements contain multiple locations for an entity, we choose the lo-

cation that occurs the most often, and in the event of a tie, pick the one listed

first. We code location by US state for domestic entities and country for interna-

tional owners. We note that a previous study (Schuster et al., 2021) documented

an extensive investigation into gender and race disparity in trademark prosecu-

tions, which we do not elect to reproduce. Their work focused on applications

filed by individuals who were US citizens, but such requirements would eliminate

applications by institutions and foreign citizens, which constitute the majority of
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our dataset. Furthermore, Schuster et al. (2021) estimates race and gender using

probabilities derived from US Census data, which introduces coding errors that we

wish to avoid.

Within our sample of 50,000 elements, there are nearly 200 unique locations

available; we focus on the top 11 locations plus twelfth catch-all group for the

remainders. The top 11 locations account for 68.6% of the test set, with each

group comprising at least 2% of the test set. If we considered additional groups,

the sample sizes would be at a similar or smaller proportion as the not reported

group from Section 7.2.1, which was too small for the second fairness test.

The feature set for the trademark data already includes the full address of

the submitting entity (i.e., the an for this dataset). This is in contrast to the

clearance data, where we excluded race and gender because they are protected

categories that should be exogenous to the decision process. Within the trademark

domain, location is not a protected category, and it holds predictive value. For

the first fairness test, we remove location data from the feature set and compare

the model’s predicted registration rates by location group. Although the feature

set still includes the name of the entity applying for trademark registration, entity

name does not perfectly correlate with location, as a single entity can be coded for

different locations across different trademark applications.

Table 7.8 lists the 12 location groups. Reported values are for the original

feature set, the feature set with location data removed, and the base rates from

the actual outcomes. Significance testing for the model results uses the other

group as a baseline, and more than half of the groups show a significant difference.
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Applications from entities in California fail the 80% test for disparate impact, and

this result holds for the model predictions and the actual outcomes.

The removal of location data from the feature set results in minimal changes

in the predicted rates, and the largest observed difference (for France) is 1.6 per-

centage points. We also compare classifier accuracy when removing location data

(Table 7.9). There is predictive value in location data, even though these features

do not significantly change the model’s prediction rates for each location group.

Table 7.8: Location Groups and Registration Rates in Test Set

Location N Pred. Pred (no loc.) Actual

UK 819 .714* .722* .652

Delaware 751 .607 .603 .562

Germany 719 .701* .695* .643

France 378 .624* .608* .569

Japan 325 .652 .640 .606

California 222 .409* .401* .360

Italy 219 .721* .712* .658

Canada 196 .739* .745* .688

Switzerland 190 .716* .700* .689

Australia 174 .752* .747* .678

New York 123 .552 .545 .528

Other 1883 .640 .640 .599
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Table 7.9: Classifier Accuracy after Removing Location Data

Feature Set Accuracy f1

Original .9207 .9368

- Location .9055 .9243

For the second test, we remove all location features and train the ensemble

model to predict the location groups from Table 7.8. We observe a test set accu-

racy of 0.8500, similar to the results for predicting race in the public trust data.

This is a clear indicator that the input features correlate strongly with location.

We also identify tokens that are most unique to each location group (with the

exception of the Other group), shown in Table 7.10. Many of these tokens are

foreign language words or company terms that are specific to a single country

(societé, GMBH, S.p.A., etc.). The majority of these tokens occur in the goods

and services document and in the document that contains information on the sub-

mitting entity. Notably, when we ablated each of the document sources in this

dataset, the goods and services document contributed less predictive information

than the other sources; its removal resulted in less than a point of accuracy loss.

This indicates that many of the features that correlate most strongly with location

do not strongly influence the model’s predictions.

For the test on counterfactual fairness, we focus on the top 11 countries only,

since the catch-all other group is not a specific location. We remove finely-grained

location features (city, state, street address) that would act as a proxy to the
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Table 7.10: Summary of Tokens that Co-Occur with Location Group

UK Delaware Germany France

limited software machines societé
services exp. health gmbh issues data
computer information apparatus advertising
games computer parts transmission
software management electric cards
information data vehicles access
downloadable llc metal management
video eext devices anonyme
entertainment online electrical telecommunication
music care control radio

Japan California Italy Canada

machines toy bags cnsl
apparatus exp. leather gmbh cnsi
maintenance bags metal gnsl
rental television s.p.a. gnsi
electrical audio clothing hemp
retail video shoes health
wholesale game precious financial
industrial children creams ltd.
power educational jackets phones
kabusiki music s.r.l. bath

Switzerland Australia New York Other

sports services services services
ag exp. ltd advertising entertainment
systems pty business business
financial music educational educational
bags nature hair online
electronic real estate entertainment providing
transport financial sports field
control marketing events electric
sensors educational marketing conducting
machines chocolate computer pharmacy



146

location variable. A complete listing of results is shown in Table 7.11.

We again use the paired Wilcoxon rank-sum test for significance, and the other

group serves as a baseline for comparison. All of the score changes are significant

(p < 0.01). Effect sizes are mostly in the weak to moderate range, with only Italy,

Japan, and Delaware showing strong effects (r > 0.5). In terms of practicality, all

of the average score changes are below one percentage point. The locations with the

strongest effect sizes paradoxically have more predictions shift to the positive label

than the negative. This is because many of the largest negative score changes occur

on dataset elements where the model is strongly predicting the positive outcome,

but the score decrease does not cross the 0.5 threshold. As with the public trust

data, there are no existing guidelines for effect size practicality. Given the results,

we can be confident that there are systematic differences among the groups, but

the size of the differences appear to effect only a minor change in the predictions.

Unlike the other datasets, most of the changes have a negative sign, even for lo-

cations that the model tends to favor. A possible reason is that the counterfactual

cases have unusual feature combinations that result in lower scores. When exam-

ining individual dataset elements, we find score changes to be modest; in contrast

to the public trust dataset, there are very few data points with large score swings

(0.5 points or more). This is despite similar accuracy scores for both datasets when

predicting the sensitive attribute. One difference between the two datasets is that

domain expertise informed the feature selection process for the public trust data,

and we selected out many features with no measurable predictive value that were

highly likely to correlate with sensitive attributes. Adding the sensitive attributes
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to the feature set resulted in large shifts in model predictions across groups. No

such shift occurred for the trademark data, and the slight change in scores in the

counterfactual test may be the result of more proxies in the features.

Table 7.11: Counterfactual Fairness Results for Trademark Data

Group N Avg Chg. Score ↑ Score ↓ To 1 To 0

UK 5180 -.0086* 1825 3348 18 14

Delaware 5248 -.0068* 1397 3845 41 15

Germany 5280 -.0009* 2619 2653 9 18

France 5621 .0038* 3124 2490 12 19

Japan 5674 -.0062* 1187 4478 33 6

California 5777 -.0076* 1865 3901 5 66

Italy 5780 -.0072* 1040 4736 36 5

Canada 5803 -.0017* 2709 3038 16 18

Switzerland 5809 .0020* 3211 2568 7 21

Australia 5825 -.0039* 1738 4081 20 14

New York 5876 -2.325× 10-5* 2858 3016 19 37

We conclude that the trademark dataset and ensemble model favor some loca-

tions over others, in accordance with the base rates from actual trademark appli-

cation outcomes. There are non-location features that correlate strongly with the

submitting entity’s location, but these features appear to exert a modest influence

on model predictions. It is less clear whether the differences in success rates among
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the locations we examined are the result of a bias.

We note that the USPTO is known to be more stringent with foreign patent

applications5. This suggests that foreign entities would have lower success rates

for trademark applications, which is the opposite of the results in our dataset. A

possible reason is that foreign applicants in our sample tend to be mature com-

panies that have higher success rates, which may be a side effect of our sampling

process that selected for complex cases. We note that the entities that occur most

often in this dataset are luxury goods firms, such as Burberry and Gucci, that are

mostly foreign. These firms would be expected to aggressively defend and renew

their trademarks, but they cannot account for all of the variance in success rates

across location groups. Also, USPTO requires foreign applicants to file with a

US-based attorney, and a previous analysis of trademark cases (Gerhardt and Lee,

2022) indicated that entities filing with an attorney have higher registration rates

than those who file pro se.

More work is needed to investigate why success rates vary. As we discussed

when introducing this dataset in Chapter 4, the trademark case data consist of a

large number of metadata fields, which makes interpretation more challenging. Our

findings can inform a more detailed evaluation of the data, which would particularly

benefit from the inclusion of primary source documents that USPTO received as

part of the trademark application.

5Some examples can be seen at https://www.uspto.gov/sites/default/files/documents/PracticeTip-
ForeignEntity2d.pdf
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7.2.3 Congressional Resolution Dataset

For the congressional resolution data, we again examine gender as a protected

category. We focus on the gender of the resolution’s sponsor, noting that each

resolution has one designated sponsor and any number of cosponsors. Cosponsors

can number into the tens or even hundreds (for the US House), so the gender of

the resolution’s sponsor offers a single variable to isolate and test.

We treat the list of sponsor and cosponsors as a self-contained document source

in the congressional resolution dataset. Gender is not explicitly given in the source

data, and we do not include it in the feature set. However, the data and features

include the full names of House and Senate representatives, along with their district

and state identifiers (e.g., D-PA). Names and identifiers are proxies for gender,

although identifiers require a date or congressional session number (both included

in the features). We control for these relationships among features when preparing

the dataset for fairness tests. Because gender is not explicitly coded in our source

data, we cross-reference additional data6 to avoid errors.

In the first fairness test, we examine changes to model predictions and accuracy

when we explicitly include sponsor and cosponsor gender as an input feature.

Table 7.12 compares rates of successful resolutions in the male and female groups.

The first column gives the rates from the actual outcomes, and the next columns

provide the predicted rates using the original feature set and a modified feature

set that includes gender. The differences across the original and modified feature

6https://cawpdata.rutgers.edu/women-elected-officials
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set and the actual outcomes are not significant. The differences across the male

and female groups are significant, but they do not cross the 80% threshold for

disparate impact.

Table 7.12: Actual and Predicted Success Rates for Resolutions

Sponsor N Actual Pred Pred. w/Gender

Male 1448 .466 .460* .447*

Female 427 .403 .393* .396*

We also compare changes in model accuracy when including gender as a feature.

Because name is a clear proxy for gender, we train and test models with feature

sets that include name, gender, and both, in order to control for proxy effects

(the original feature set includes names but not gender). The inclusion of gender

features does not improve prediction accuracy, which indicates that gender alone

does not contribute unique information. When we remove names and do not

include gender features, such that the sponsor/cosponsor source consists solely of

state or district identifiers, there is a similar decrease in accuracy.
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Table 7.13: Classifier Accuracy after Including Race/Gender Features

Feature Set Accuracy f1

Original .9408 .9344

+ Gender .9232 .9137

+ Gender, no names .9301 .9212

No gender or names .9285 .9204

For the subsequent test, we predict gender as the outcome variable. We remove

the names of sponsors and cosponsors, as otherwise the proxy effect from names

results in a trivially easy task (the model records near-perfect accuracy). We

observe prediction accuracy of 0.9456 and an f1 score of 0.8770, with the lower

f1 score resulting from imbalanced labels. This result is a clear indicator that the

feature set strongly correlates with sponsor gender. We identify feature tokens

that uniquely occur in each group in Table 7.14. There is a clear separation in the

token sets for each group, as tokens associated with women, children, and families

occur much more frequently in the female group. The three district identifiers that

occur in the female group, when cross-referenced with the congressional sessions

where these identifiers appear, correspond to female members of the US House.

Resolutions that include tokens from the female group have lower success rates

than resolutions that include tokens from the male group, which further reinforces

inter-group outcome differences.

For the counterfactual test, we include gender in the feature set and adjust it
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Table 7.14: Tokens Uniquely Appearing by Gender

Male Female

house woman
senate month
congress health
international national
foreign goals
representatives awareness
president children
summary education
anniversary families
state support
federal history
actions commemorative
rights d-ca-13
human d-tx-18
appropriations d-mi-13

at inference time. We also remove representative names, which again may obscure

effects of gender features due to being a proxy. The results in Table 7.15 are con-

sistent with the results of the first test: the female group has a disadvantage, and

the differences in model scores are significant (p < 0.01) based on Wilcoxon rank-

sum testing. Effect size for the female group is 0.43, which is moderate-to-strong.

Although the results from the previous test provide a convincing explanation for

the lower success rates for the female group, they do not necessarily account for

all cross-gender variance, as the model still favors inputs with male sponsors when

controlling for all other features. The practical effect sizes are small - close to a

1% average difference in scores after the softmax layer for each group, and a small

net difference in predicted labels.
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Table 7.15: Counterfactual Fairness Results for Resolution Data

Gender N Avg Chg. Score ↑ Score ↓ To 1 To 0

Male 427 .0120 320 107 5 7

Female 1448 -.0080* 355 1089 19 23

We again observe a preference for a specific group in the congressional dataset.

This preference is consistent in all three tests and is at least partially explained by

differences in stereotypical features associated with each group. The disadvantage

for female sponsors persists even when controlling for the resolution’s subject,

cosponsors, and other features.

The congressional dataset is relatively simple, and we cannot expect its fea-

tures to express the full complexity of the political process. There are almost

certainly many additional factors that influence decision-making in Congress that

are unaccounted for in the data, and that in turn may affect model fairness. As

the results in Table 7.12 indicate, the model predictions closely mirror the base

success rates for each group. This dataset is derived from a political process, which

may be inherently unfair with respect to gender, in contrast to a decision process

governed by an institution. This raises the question of whether a model in this

domain should be more fair than the decision process it is trained on. Answering

this question is beyond the scope of this work, but the tests we conducted have

identified discrepancies for further investigation.
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7.3 Conclusion

We found significant outcome differences for subgroups in all of the sensitive vari-

ables we examined, which supports our hypothesis. Differences in model predic-

tions across subgroups generally followed the true outcomes. The model for the

public trust data had smaller group-level differences than the true outcomes, most

likely due to the high degree of feature selection that we performed, which stripped

many demographic markers and their proxies.

Counterfactual fairness results were similar to the group-level measures, as the

outcome disadvantage associated with one subgroup was present when a different

dataset element was assigned to the same subgroup. This is inconsistent with our

ideal for individual fairness, in which the outcome should be invariant after sub-

group reassignment. However, the differences between groups tended to be small,

often less than one percentage point when comparing softmax layer outputs. Do-

main expertise is needed to evaluate the practical significance of the counterfactual

tests and group-level tests, as we have no strong rationale to determine acceptable

ranges for cross-group discrepancies. End user stakeholders, which would include

policymakers for a decision process, would have to make such a decision.

Having identified subgroups that are disadvantaged in tests 1 and 3, the feature

correlations in test 2 offer starting points for future investigation. Using the public

trust results as an example, the male subgroup had consistently lower outcome

scores. Of the feature types associated with this subgroup, some (e.g., military

experience) are of unclear significance to the decision process. Others (drug and
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alcohol use) are clearly negative. Not all features will be as clear-cut, and domain

experts may be needed to separate features that are less meaningful to the decision

process from those that hold decision value. For the features that are useful,

an investigation might include a cost/benefit analysis to determine whether the

features should continue to be used. Alternatively, the feature may be an explicit

part of the decision process (e.g., drug use), and the fact that it occurs more

frequently in a subgroup does not constitute unfairness.

Process improvement, which we consider to be a responsibility of the model

purveyor stakeholders, is a potential positive outcome of the fairness tests. In the

trademark dataset, we found that trademark applications from Californian enti-

ties had lower success rates than any of the other locations. The same trademark

applications contained more features related to entertainment than the other sub-

groups. If this outcome discrepancy was deemed to be unfair by domain experts,

a further investigation into the process for evaluating entertainment-related trade-

marks may be warranted. This might result in a change to the evaluation process or

a notification to future applicants that the trademark landscape for entertainment

companies is crowded, and stronger justifications will be required for registration.

We assert that the builder of a classification model is responsible for answering

basic questions about fairness before a solution can be considered for practical

use. The three-part test that we proposed offers a repeatable way to answer ques-

tions about fairness with empirics. The results alone are probably insufficient to

determine if a solution is fair, but they provide a foundation for constructive dis-

cussions with stakeholders to determine solution permissibility. The results are
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also a starting point to investigate the fairness of the decision process and develop

improvements. This may have been previously infeasible for decision tasks that in-

volved substantial amounts of unstructured data, in which traditional approaches

such as regression studies would be difficult to apply.
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8 LLM Experiments

In this chapter, we detail the use of LLMs to compress the input feature space and

generate rationales for the final prediction, with the goal of improving classification

accuracy and providing an interpretable summary of the classification decision.

One of the key challenges for classification across all three datasets (public trust

clearances, trademark registration, and congressional legislation) is that the feature

sets are unbounded in length and can grow to thousands or tens of thousands

of tokens. The length and variety of of the features disadvantages encoder-type

transformer models, as the features may be out of domain and often well in excess

of context window length. This is one reason why our recurrent models outperform

transformers such as BERT, as reported in Section 5.3.1.2.

We are motivated to explore the application of LLMs to produce a more com-

pact expression of features, with the assumption that the features can be summa-

rized to preserve key factors that drive the classification decision while reducing

the length of less pertinent information. We are further interested in using the

LLM to incorporate relevant outside knowledge and apply rules or guidelines from

the human decision process with the intent of identifying latent features and mak-

ing them explicit. One of our key assumptions in Chapter 3 was that any solution

would need to use imperfect or incomplete input data; outside knowledge may cre-

ate a more complete feature set and improve accuracy. We will test summarization
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and incorporation of outside knowledge in this chapter. In terms of stakeholders,

improvements to accuracy would be of interest to end users, whereas successful

feature compression or use of outside knowledge offers starting points for model

purveyors to refine their technical approaches.

We consider Dutt et al. (2024) as a basis for this line of inquiry, in which an

LLM generates a rationale from a dialogue snippet. The explanation augments the

dialogue features for use in a downstream classifier for two social meaning detection

tasks. In this work, we apply an LLM to generate a combination of summary and

commentary on the input features, and then combine the LLM’s outputs with the

input features or use them in isolation in a text classification task.

Alternative approaches with rationales include Rajani et al. (2019) and Nye

et al. (2021), in which decoder-type transformers were fine-tuned on rationales

generated by human annotators or via a rule-based template. These approaches

do not fit our use cases, as we do not have the benefit of enlisting annotators

through services like Mechanical Turk. Trained examiners execute the real-world

decision processes for two of the datasets (public trust clearances and trademarks),

and this expertise is not openly available. For the Congressional legislation dataset,

the decisions are the result of a political process that involves negotiation and is

less bound by rubrics or guidelines; human annotation would most likely require

specialized domain expertise to be relevant.
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8.1 Model Selection

In applying an LLM to this problem space, we want to maintain consistency with

a key constraint expressed in Section 4, in which any solution should be executable

on a lower-resourced system. We limit our selection of LLMs to smaller models in

the seven to eight billion parameter range. We explored the use of several LLMs

that fit this constraint, including Llama3 8B (Dubey et al., 2024), Starling-7B

(Zhu et al., 2023), Mistral 7B (Jiang et al., 2023), and Llama 2 7B (Touvron

et al., 2023b), using the instruct-tuned versions of these models as appropriate.

We selected models that satisfied resource constraints with the highest scores on

a public leaderboard1 based on the work of Chiang et al. (2024). We performed a

limited, qualitative evaluation of model responses to 20 randomly selected members

from each dataset. Llama 3 8B generated consistently better responses than the

others, and was the only model that did not make occasional errors in interpreting

prompts and input data, particularly on longer documents.

8.2 Prompting Strategy and Model Execution

We use zero-shot prompting across all datasets. Although few-shot prompting

would be preferable, we face two key limitations. The first is that we have no

ideal summaries or rationales for use in few-shot prompts. Even if such examples

existed, we are further limited by Llama 3’s context window size. Many dataset

members require truncation to fit in the window, and the addition of multiple

1https://lmarena.ai/
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examples with outputs would further reduce the window size available for the

target input. Furthermore, few-shot prompts quickly become long and complex

on these datasets; even with notional few-shot examples, the model is prone to

generating inconsistent responses and conflating input features with the examples.

Fine-tuning may offer some approaches to overcome these limitations, and we

discuss some possibilities for future work in the end of this section.

We run Llama 3 in vllm (Kwon et al., 2023), which enforces model-specific

chat templates and handles batching. We emphasize the use of prompts that take

advantage of the model’s existing domain knowledge. We probe this knowledge by

asking open-ended questions about the domain and noting the model’s responses,

and then reuse key language from the responses in our prompts at inference time.

By referencing the model’s pre-trained knowledge, we avoid enumerating domain-

specific rules and guidelines in our prompts, which results in much shorter and

simplified instructions and improved response consistency. In the following sub-

sections, we discuss the development of dataset-specific prompts.

8.2.1 Public Trust Clearance Dataset

Our prompting for public trust data draws on information that the US govern-

ment has published about its adjudication processes for various clearance types.

Standards for public trust clearances vary by agency, and not all agencies publish

their standards online. However, the guidelines for security clearances, which are
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publicly available2, form a basis for public trust decisions.

We probe the model for knowledge of the guidelines for security clearances,

which are also referred to as the National Security Adjudicative Guidelines and the

Security Executive Agent Directive 4 (SEAD-4). An example prompt and response

are given in Appendix D.2. The model demonstrates some domain knowledge

in this response, but it was only able to correctly name (or provide semantic

equivalents for) seven of the 13 major guidelines. The remaining portions of the

response were relevant but referred to sub-issues under the main guidelines. When

questioned about specific guidelines in the SEAD-4, the model generates reasonable

explanations. These results indicate the model has limited domain knowledge and

requires more specificity in the prompt to generate desired results.

To compensate for this, we use a prompt that provides more explicit instruc-

tions for how to evaluate an input document. We adapt concepts and terminology

from the SEAD-4 guidelines to fit the public trust use case. Instead of providing

the full feature set to the model, we provide only the document from Source B

(the detailed personal history). This document is the most relevant to the federal

guidelines, as the other document sources consist of metadata or lack specificity to

cleanly map to the guidelines. Source B also comprises the longest documents in

the dataset and includes a mix of structured, semi-structured, and unstructured

text; this complexity makes it the best candidate for LLM summarization. We

provide the prompt template below in Table 8.1, which we tailor to the adjudicat-

2https://www.dni.gov/files/NCSC/documents/Regulations/SEAD-4-Adjudicative-
Guidelines-U.pdf
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ing agency specified in the input data. The Output Format given in the table is

an example.

As with the trademark dataset, we reformat the raw data in Source B to provide

clear descriptions for each feature. This creates a more human-readable structure

that is more likely to be in-domain for the LLM than the terse features used by a

classifier.

Table 8.1: Prompt Template for Public Trust Data

Role You are an expert adjudicator for government public
trust clearances.

Instructions The following document contains information from a
public trust clearance application to <agency>. Evalu-
ate the document on the basis of <agency>’s adjudica-
tive guidelines.

Output Format Your response should address each of the following cri-
teria. Limit your response to 1-2 sentences for each cri-
terion.
* Misconduct or negligence in employment
* Criminal or dishonest conduct
* Material intentional false statement, deception or
fraud in employment
* Refusal to furnish testimony as required
* Alcohol abuse
* Illegal drug use
* Knowing and willful engagement in acts/activities de-
signed to overthrow the U.S. Government by force.
* Statutory or regulatory bar to employment

Document <input features>

We cannot offer an example response to the prompt due to the proprietary

nature of the dataset. However, the model was highly consistent in generating
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pertinent responses. The syntax and word choice in its responses closely resembled

language used in actual adjudications, which strongly indicated that the Llama 3

training corpus included real case documents.

8.2.2 Trademark Dataset

The trademark dataset contains a large number of features that are essentially

metadata, rather than the original documents that an entity would submit in an

application to the USPTO. This makes the dataset more difficult to interpret, so

rationales generated by the LLM have the potential to significantly improve ex-

plainability. We probe the model’s understanding of the trademark process by

asking it about the criteria that the USPTO applies when evaluating an applica-

tion. An example prompt and response are given in Appendix D.1. The model’s

responses were consistent across variations in the prompt and temperature set-

tings, which suggests that the model will be reliable in applying this knowledge at

inference time.

We draw on the results of these questions to construct a prompt for the trade-

mark dataset, in which we ask the model to comment on the strengths and weak-

nesses of the application given a set of input features. By prompting the LLM

to remark on the application, we intend for the model to apply the USPTO’s

standard criteria and potentially surface information is new or otherwise not ex-

plicitly encoded in the original features. We also expect the response to summarize

key features from the input. The features, as used in the classification task, are
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terse and most likely out of domain for an LLM. We reformat them so that a

clear description accompanies every feature. We concatenate the features from

each document source (case metadata, owner details, control sequence, and usage

statement), with each feature on a separate line. The table below shows how we

structure the prompts for the model.

Table 8.2: Prompt for Trademark Data

Role You are an expert trademark examiner in the USPTO
with experience handling applications from domestic
and foreign entities.

Task Overview The following document contains information on a
trademark application to the USPTO. The document is
not a complete application, but instead consists of case
metadata, a list of events during the application, and a
portion of the statement that describes the applicant’s
business use cases.

Instructions Review the document and provide commentary on the
strengths and weaknesses of the application. Base your
commentary on the criteria that examiners use to deter-
mine trademark registration eligibility.

Output Format Provide your response in this format, and limit the re-
sponse length to 300 words:
Strengths <your response>
Weaknesses <your response>
Overall assessment: <your response>

Document <input features>
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8.2.3 Congressional Resolutions

The Congressional resolution dataset is unique in that there are no established

guidelines or rubrics for the real-world decision process. Both houses of Congress

follow standard procedures for discussions, votes, and committee hearings; how-

ever, the substance of these proceedings are do not necessarily adhere to a common

rule set. Because of this, we prompt the LLM to apply commonsense reasoning on

political topics and request that it offer commentary on a resolution’s likelihood

of passing.

We posit that an understanding of historical policy priorities in Congress, along

with knowledge of contentious issues of the day, constitute a useful starting point

for commonsense political reasoning. We probe the model’s understanding of the

these topics and show examples in Appendix D.3. The model demonstrates a

general understanding of major topics and the political atmosphere from prior

years and Congressional terms. However, it tends to mismatch names and details.

In the first prompt, for example, comprehensive immigration reform was a major

issue in 2007, but the model cites a bill (with a slightly different name) that was

introduced in the Senate; the relevant House bill had a different name. Among

other issues, the bill citation numbers are all incorrect, and the Judicial Nomination

Reform Act does not appear to exist. The second prompt yields similar results,

with the model generating broadly correct statements but making mistakes on

some specifics. For example, Lisa Monaco is the deputy attorney general and

some of the vote margins are inaccurate. As example outputs will demonstrate,



166

the model’s general understanding of American politics is sufficient to generate

reasonable responses.

We take advantage of the model’s general political knowledge to prompt it

for a prediction and commentary on whether or not a Congressional resolution

will pass. We prompt the model to apply external, historical knowledge in order

to test if such data improves classification accuracy. The model displays a clear

bias for predicting that resolutions successfully pass, which is counter to the true

outcome distribution. We reduce this bias by adding an additional instruction to

the prompt. Although the model only predicts the correct outcome approximately

60 percent of the time, we are more interested in the commentary and its affect on

a downstream classifier. The relatively low accuracy is an indicator that the LLM

has not memorized the true outcomes in a way that will trivialize the classification

task.

We provide two examples of the model’s output for the Congressional resolution

dataset in Appendix D.3, illustrating a negative and positive prediction. The

model’s reasoning for each prediction appears sound, and the response style is

representative of the remainder of the dataset.

8.3 Experimental Design and Results

We now investigate whether the feature summaries/rationales for each dataset

improve classification accuracy when added to the base features. We treat LLM-

generated text as a separate document source in each dataset and train an ensemble
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Table 8.3: Prompt for Congressional Resolution Data

Role You are an expert on US national politics and Congress.

Task Overview You will be provided a document that contains infor-
mation on a Congressional resolution discussed in the
House or Senate, along with instructions on how to re-
spond.

Instructions From the information in the following document, make
an educated guess about whether the resolution was suc-
cessfully passed or failed to pass. Consider which party
held the majority in the chamber and the kinds of issues
that were a focus at the time. Keep in mind that most
resolutions do not pass. Provide a brief explanation for
your prediction

Document <input features>

classifier on the augmented features. We compare the accuracy and f1 scores to

those from the original feature sets and report averaged results from five seeded

runs.

We also examine classifier accuracy when using the LLM data in isolation as the

primary features source. For the trademark and Congressional datasets, we train

a classifier on just the LLM-generated responses and the each dataset’s control

sequence. For the public trust data, the LLM features are based on Source B, so

we use the LLM features in place of Source B in the ensemble.
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Table 8.4: Comparison among LLM-augmented Features and Baselines

Dev Test

Dataset Features Acc f1 Acc f1

Public Trust Base .8820 .8787 .8775 .8722

+LLM .8792 .8752 .8731 .8660

LLM only .8758 .8727 .8716 .8661

Trademark Base .9247 .9391 .9236 .9394

+LLM .9238 .9397 .9214 .9377

LLM only .7430 .7935 .7468 .8003

Resolution Base .9466 .9417 .9408 .9344

+LLM .9440 .9385 .9296 .9215

LLM only .8415 .8254 .8288 .8090

Across all datasets, we observe a slight decrease in accuracy and f1 score when

adding the LLM-generated text to the standard set of features. This is an indica-

tor that our attempts to apply commonsense reasoning or add outside information

using the LLM did not surface information-bearing features on most datasets. In

addition, there is a substantial decrease in accuracy on the trademark and Con-

gressional datasets when using only the LLM features and control sequence for

prediction. The LLM’s summarization process is not conditioned on the down-

stream classifier’s weighting and representation of the input features, so it not
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surprising that there is information loss in the summarized output.

One challenge with summarizing or generating rationales for the trademark

dataset is that the underlying features comprise many binary metadata fields.

During feature selection for the classification task, these fields proved to be useful.

However, the degree to which many of the fields contribute to the LLM’s response

is unclear. One possible solution is to explicitly prompt the model to handle each

metadata field in a specific way, based on further research into the trademark reg-

istration process or by probing the classifier’s feature representation. However, it

would be cumbersome to enumerate over 40 specific instructions for each meta-

data field, and the result may be at best an approximation of the classifier’s learned

representation.

For the public trust data, the accuracy decrease for the LLM only condition

is much smaller, as the LLM output replaced one document source. We applied a

more detailed prompt, based on published federal guidelines for the actual decision

process, to generate the LLM output; this may have resulted in a more efficient

use of the raw features and less information loss.

The LLM output on the Congressional resolution dataset is straightforward to

compare to the original features. The model’s application of commonsense rea-

soning (e.g., a congratulatory resolution for a university sports team is politically

non-controversial) or introduction of outside knowledge (LGBTQ issues are his-

torically contentious in Congress and unpopular with Republicans) may not be

providing new information to the classifier, which is likely to be encoding this

information during training. For example, if congratulatory motions for sports
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teams frequently pass, we would expect this pattern to be learned. There are also

sufficient features to associate specific topics with the majority or minority party,

which can be inferred from the sponsor and cosponsor features, particularly if the

association occurs frequently. It is also possible that the LLM’s assertions, while

reasonable, may be unsupported in the data, in which case the generated text may

be introducing noise.

8.4 Conclusion and Further Investigation

The primary limiting factor in applying an LLM to these datasets is that we

have no ideal responses for fine-tuning or few-shot prompting. LLM responses

from zero-shot prompting are persuasive for a human reader and offer a degree of

explainability. However, they are limited in their capacity to improve classification

accuracy when added to the dataset and do not offer comparable accuracy levels

when used in place of the full data.

A secondary challenge is that the LLM’s text generation process is isolated

from the downstream classification task; ideally, the LLM’s output would reflect

the classifier’s learned decision process. One possible solution framework would

involve training the classifier and fine-tuning the LLM together, such the gradient

from the classification task propagates to the LLM’s weights. Such an arrangement

would require reinforcement learning to allow backpropagation through an LLM’s

decoding process, but would be beyond the scope of the resource constraints for

this work.
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Zelikman et al. (2022) develop a prompting-based approach that they show

to be ”an approximation of an RL-style policy gradient objective.” Of the two

methods for rationale generation that they introduce, one may be of particular

interest to our use cases. They instruct an LLM to generate a ”rationalization,”

in which they provide the correct answer as a hint in the prompt and request the

LLM to generate a rationale. The rationalizations are then used to to fine-tune

the LLM (with the hints removed). This approach offers a potential solution to

the lack of data for fine-tuning or few-shot prompting. It also opens a new point of

comparison to evaluate the LLM’s prediction accuracy against trained classifiers,

in addition to augmenting the base feature set with the rationale.

The RGPT method introduced in Zhang et al. (2024) offers an alternative

approach via fine-tuning an ensemble of LLMs arranged in a pipeline (”recurrent

ensemble”) to process input documents and generate a prediction. Although more

computationally expensive than our methods, an initial investigation with smaller

LLMs would offer a useful starting point. Unlike the previously discussed methods

that use rationales, this approach only requires labeled data. The use of our multi-

document datasets, which differ greatly from the classification datasets used in the

study, should make for a useful indicator of how well this approach generalizes

to more complicated classification tasks. CARP, as introduced by (Sun et al.,

2023), offers an approach that focuses on kNN search and in-context learning,

which lowers the required compute resources. CARP focuses on using the LLM to

identify key terms and clues in the document, and it demonstrated strong results on

general-domain public datasets. This raises the question of how well the method
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extends to specialized domains and more complicated decision processes, which

merits investigation on the datasets that we have introduced.
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9 Conclusion

9.1 Summary

In this thesis, we introduced a class of decision processes that typically require hu-

man expertise to evaluate multiple documentary sources of information. Such tasks

are often characterized by the data sources arriving over time. The steps of the

decision process, including the arrival of documents, may be journaled in what we

term a control sequence, which comprises a sequence of timestamps and events. We

formulate the prediction task as a variant of text classification, with a key hypoth-

esis that an ensemble of classifiers will offer better performance, and potentially

better explainability, than a single model that takes a concatenation of all input

documents. Our formulation of the ensemble assigns a separate classifier to each

document type and generates predictions from the fused vector representations of

each classifier. We also introduce constraints on the solution space, particularly in

terms of computational resources. This is to disallow extremely large models that,

while potentially high-performing, would be impractical to deploy in real-world

environments where a solution might be fielded.

We developed three datasets to evaluate the ensemble against multiple single

model baselines. The first dataset was the primary motivation for the task, and

it consists of documents from the US federal government hiring process that are

used to evaluate job applicants for public trust clearances. These include two
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document types submitted by the applicant and two that are generated during the

evaluation process, including a control sequence. The second and third datasets

are composed of publicly released government data: one contains data from the

USPTO’s trademark registration process, and the other documents resolutions that

were introduced for action in the US House or Senate. Both datasets are simpler

than the public trust data in terms of feature counts and variety, partly owing to

their public nature. This is a net positive, as the three datasets offer diversity in

their feature characteristics and complexity.

We demonstrated that the ensemble approach is superior to the single model

baselines on the public trust and trademark data, but not on the congressional

resolution data. Superficially, we can conclude that the ensemble is preferable

for datasets that are more complex. By probing the outputs of the individual

classifiers in the ensemble, we can determine the amount of disagreement. The

better performing datasets have more disagreement among the classifiers, which

we can approximate to how independent the features are across document types in

the dataset. Our exploration of the control sequences yielded similar results. The

public trust control sequence contained richer information and its event sequence

was less likely to be driven by exogenous events. In general, ideal datasets for the

ensemble approach contain document types with minimal feature overlap and or

collinearity. This can be difficult to measure a priori, but a review of the dataset

contents, particularly with the assistance of a domain expert, can be of great use

to understanding the suitability of a dataset to a given approach.

Because we are applying models to real world decision processes, a model that
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is placed into practical use without an understanding of its biases has the potential

to inflict harm if it disadvantages a given subgroup. We identify one or more vari-

ables of concern for each dataset and apply a three step fairness test to each. We

identify areas of concern in each model-dataset pair, although effect sizes for dis-

crimination tended to be low. We also found a high degree of correlation between

each variable of concern and other input features. More importantly, each area of

concern highlighted aspects of the decision process that warrant further investiga-

tion of bias. There remains an open question of whether outcome discrepancies for

a given subgroup constitute discrimination, a question that is beyond the scope of

this work to answer. We contend that the benefit of such a quantitative analysis

is that it provides a clear framing of the issue and its potential magnitude, which

may help to motivate future studies.

We also undertook a preliminary examination of using LLMs with each dataset.

We focused on rationale generation and the application of common-sense reasoning

to augment or simplify feature set. This approach was necessary to work within

our established constraints on compute resources. Our initial approaches did not

yield results that improved model accuracy, but the generated rationales appear

to be useful for explaining the decision outcomes. As detailed in Section 8.4, we

identified multiple approaches that are more resource-intensive but should yield

interesting results on our datasets and better define how LLMs can be effectively

applied to this problem space.

Our findings demonstrated that it is feasible to model each of the decision

tasks as text classification problems, and that for a sufficiently complex dataset,
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an ensemble of text classifiers outperforms state-of-the-art models while remaining

within strict (single-GPU) resource constraints. To conclude this section, we offer

a general repeatable process for preparing datasets, training an ensemble, and

performing initial fairness evaluations.

Dataset Requirements and Preparation We first need to evaluate the task

and its data for feasibility before proceeding. The decision must have a finite

number of outcome labels to choose from, and the set of outcomes cannot change

over time. Although not tested in this thesis, a real-valued outcome should also

be feasible. The following properties and conditions must be satisfied:

• The dataset consists of multiple types of documents, which may mix struc-

tured and unstructured data.

• Time series data (control sequences) are acceptable and valued, including

data sources that mix temporal data with unstructured text.

• The same document sources must be present in every member of the dataset.

• Data must be cleaned and verified for consistency. For example, text output

from optical character recognition systems must be checked for noise and

cleaned prior to use.

• For data formats that have changed over time, a canonical schema should be

selected and enforced.
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• Necessary preprocessing steps should be determine ahead of time, and must

be feasible given the time and resources allowed for implementation.

Feature Selection Raw data sources may include information that should not

be provided to the model, such as intermediate outcomes that might artificially

inflate accuracy. Domain expertise is recommended, as important nuances may

not be otherwise apparent.

• Prior to training, determine which features are most important to domain

experts at decision time and prioritize their inclusion in the feature set.

• Determine features that might correlate with protected variables or other-

wise increase the risk of training an unfair model. Mark these features for

exclusion.

• For datasets with control sequences, determine the start and end points in

the decision process, during which the model should generate predictions.

• Identify features that might trivialize the task because they are outcome

proxies or become available after the critical period outlined above. Remove

these feature from the dataset.

• Using common principles such as leave one out, determine the marginal value

of features in the dataset through iterative training runs using a preliminary

modeling approach. Depending on stakeholder needs, one may optimize for

accuracy, parsimony/efficiency, or a combination of factors.
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Model Selection and Training This process assumes that the ensemble ap-

proach is being used, and that multiple classifier modules are considered for each

data source.

• Select the classifier modules to consider for use in the ensemble. This thesis

used LSTM and CNN-based classifiers. Depending on resource availability,

encoder-type transformer models or LLMs may warrant consideration.

• Evaluate classifier module performance on each data source separately, and

select the best-performing module.

• Pretrain each classifier module on its associated data source and determine

if pretraining improves accuracy. Pretraining typically benefited control se-

quences in the datasets that we considered.

• Train the full ensemble end-to-end and measure initial performance.

• Experiment with merging data sources to determine if accuracy improves.

Alternatively, consider splitting off unique or large features into a separate

data source and observing effects on accuracy.

• If time and resources allow, compare the ensemble approach to strong, single-

model baselines to ensure that performance is better than simpler approaches.

Performance Evaluation The practitioner will need to determine whether the

solution meets the threshold for practical implementation. This is domain- and

task-specific, and domain experts should be consulted to understand what the
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minimal performance level might be. Accuracy metrics may be of limited use, and

expert evaluation can be a helpful complement or replacement.

• In addition to raw accuracy metrics, determine if stakeholders have interest

in performance on certain types of cases; provide the appropriate metrics.

• Use accuracy metrics to search for common error cases. Domain experts

may have ideas for addressing these; some may be the result of data issues.

Error cases should be provided to stakeholders to define limitations of the

approach.

• Examine model performance throughout the decision process with an eye

toward identifying potential efficiencies. If the model is successful at predict-

ing negative outcomes early in the process for a subset of cases, these cases

might be referred for early closure to save resources. Identifying at-risk cases

early may enable interventions that promote positive outcomes.

Fairness Evaluation Rather than repeat the description of fairness tests here,

we recommend replicating the procedures described Chapter 7.

• In concert with stakeholders and domain experts, identify sensitive variables

or groups of concern to examine during testing. Domain experts may have

further hypotheses at the subgroup or feature level that require specialized

testing.

• Test results, even if non-significant, should inform stakeholder thinking about
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the fairness of the decision process and the solution. Hold an open discussion

about whether the solution is permissible given the results.

• Identify subgroups or features of concern and facilitate investigations to de-

termine if discrepancies constitute unfairness. Domain expertise is likely to

be required.

• Consider if changes to the decision process should be explored to ameliorate

fairness concerns. Determine what follow-up tests are needed to enable an

investigation, and what metrics should be collected to determine if a reme-

diation is effective.

9.2 Future Work

The experiments in this thesis were tailored to the needs of the stakeholder groups

that we outlined in the introduction. As we consider areas to explore in future

work, we can relax constraints on resource usage to broaden the space of potential

solutions.

Increasing ensemble model diversity. We limited our ensemble solution to

two relatively lightweight neural classifier modules: an LSTM with custom regular-

ization and a CNN model with multi-headed self-attention. Encoder transformer

models were already available at the start of this work, but including multiple

instances of this model type in the ensemble (while supporting long documents)

would have been prohibitively expensive. Hypotheses to investigate include:
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• An ensemble of large, state-of-the-art transformer classifiers will outperform

the current ensemble as well as a single-model approach using the same

transformer.

• Adapting these transformers to the task domain through masked language

model training (or an equivalent process) will close the performance gap that

we observed with BERT when compared to the LSTM and CNN models.

In order to test these, we would select a stable of transformer models to exam-

ine, with a preference for models with longer context windows such as longformer

(Beltagy et al., 2020) or t5 (Raffel et al., 2023). Pretraining for domain adapta-

tion may be an important step. Due to the semi-supervised nature of this task, we

may be able to collect a much larger set of documents than would be possible for

the classification task, because we do not need to ensure completeness of dataset

elements and outcomes. Our testing would first compare model accuracy for each

document source in a given dataset. In keeping with the experimental approach in

this work, we would then select the best performing models for the ensemble and

repeat our accuracy measurements on the full dataset.

In addition to the encoder-type transformers discussed above, LLMs could also

be considered. Zhang et al. (2024), which we also mentioned in the previous

chapter, uses an ensemble of LLMs for text classification. We propose adapting

this methodology to our datasets by using a separate LLM instance for each data

source, fine-tuning each LLM on the data source, and measuring the same accuracy

metrics. LLMs in the 70 billion parameter range and above would be considered
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for comparisons against encoder-type transformers.

Survival models for control sequences. We relied on a single modeling tech-

nique using an LSTM to generate predictions from the control sequence. To add

further diversity to an ensemble, we propose the exploration of survival models,

which analyze time-to-event data. In our datasets, the event in question is the

final outcome, which is always present and therefore avoids complications of left-

censored and right-censored data. Recent studies have combined survival analysis

with deep learning models to enable the use of multimodal data, including images,

unstructured text, and structured data. Some examples include Thorsen-Meyer

et al. (2022), which uses a deep learning model to extract features from x-rays,

medical records, and clinical measurements, as well as an LSTM to generate the

survival analysis. Giunchiglia et al. (2018) also uses recurrent networks with a more

limited set of input features, and Hu et al. (2021) introduce a custom transformer

architecture that achieves state-of-the-art results. Hypotheses to investigate are:

• A deep survival model’s use of time-to-event data increases the amount of

relevant information available when generating predictions and will improve

ensemble accuracy over the current approach.

• An alternative architecture, in which an ensemble of classifiers vectorizes the

document sources and the deep survival model generates the final predictions,

will improve accuracy over a baseline ensemble.

For the first hypothesis, the survival model replaces or complements the LSTM

that we currently use for time series data; each of the three survival models cited
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above will be incorporated into the ensemble and their vector representation used in

generating a final prediction. For the second hypothesis, we propose extending the

approach from Thorsen-Meyer et al. (2022), using our existing classifier modules

(or other transformers, as discussed previously) to vectorize data sources for input

to the survival model.

Our expectation is that time-to-event data provide an additional output to op-

timize against. The ensemble receives more information during loss calculations,

resulting in a better representation of the data. The model’s time-to-event predic-

tions should be useful to end user stakeholders, who will want to understand the

time remaining in a decision process before case closure.

Incorporating domain expertise. Access to domain expertise for the public

trust dataset informed our approach to feature selection, which most likely pro-

vided a more efficient path to a solution. It also contributed to the removal of

unnecessary features that may have had adverse effects on model fairness; model

predictions showed less of a difference across protected subgroups (relative to the

true outcomes) than the predictions for the other datasets. However, we do not

know if this difference is the result of feature selection informed by domain ex-

pertise or simply due to properties inherent to the datasets and their associated

decision tasks.

We propose an experiment to measure the beneficial effects of access to domain

expertise for similar decision tasks. Our hypothesis is that access to a domain

expert will enable a better understanding of the feature space for a decision task,
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leading to a more rapid development of a solution, higher solution accuracy, and

lower group-level variance in predicted outcomes in comparison to a control that

has no access to an expert. In order to conduct this experiment, we require at least

two datasets (preferably three or more) that share the same characteristics as the

three examined in this work. The experiment for each dataset would involve the

following:

• Two separate development processes, one with a domain expert, the other

without. Different individuals or teams implement each solution, with the

domain expert randomly assigned to each team.

• Both processes follow a common methodology for feature selection, but they

face no restrictions on how to represent features and document sources.

• The number of training runs needed to arrive at a complete feature set and

solution will be tracked for comparison, as will the trajectory of improvement

for accuracy metrics.

• Accuracy and fairness metrics (using the same fairness tests as in Chapter 7

will also be compared.

With the above experiment, we want to quantify the marginal value of access

to a domain expert during solution development. Although the expectation is

that access to expertise is a net benefit, the expert may exert an anchoring effect

that limits how widely the solution space is searched during development. With

experiments on three or more datasets, we hope to identify cases where a domain

expert is more (or less) helpful during development.
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A Example Dataset Contents

A.1 Public Trust Dataset

Algorithm 1 Pseudocode for Constructing Public Trust Dataset Instance

initialize sourcea, sourceb, sourcec, sourced, sourcee
outcome← Null
while outcome is Null do
new event, timestamp, payload← poll for event()
if payload is of type A then
sourcea ← payload

else if payload is of type B then
sourceb ← payload

else if payload is of type C then
sourcec ← payload

else if payload is of type D then
append payload to sourced

end if
append (new event, timestamp) to sourcee
if new event is an ending condition then
if new event is ”candidate hired” then
outcome← 1

else
outcome← 0

end if
end if

end while
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A.2 Trademark Dataset

Figure A.1: Example case file Excerpt (Names Anonymized)
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Figure A.2: Short Example of event Data
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Figure A.3: Example owner Data
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Figure A.4: Example statement Data
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Figure A.5: Example foreign app Data
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A.3 Congressional Resolution Dataset

Figure A.6: Example XML Data for Basic Details and Actions
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Figure A.7: Example XML Data for Sponsors, Subjects, Summaries, and Titles
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B Supplementary Experimental Results

Table B.1: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

for Public Trust Self-Cancel Outcomes

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 1 54 2 62

Pred. 0 1 176 0 168

Table B.2: Confusion Matrix Comparison for Public Trust Applicants who Cancel

Post-Clearance

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 1 32 2 35

Pred. 0 1 32 0 29
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Table B.3: Confusion Matrix Comparison for Public Trust Applicants with Incon-

sistent Source A/B Data

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 202 59 191 65

Pred. 0 16 330 27 324

Table B.4: Confusion Matrix Comparison for Public Trust DQ Type 2 Cases

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 1 62 1 68

Pred. 0 0 400 0 394

Table B.5: Confusion Matrix for Ensemble with Auxiliary Outputs on Trademark

Data

Label 1 Label 0

Pred. 1 3446 351

Pred. 0 185 2017
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Table B.6: Confusion Matrix for Ensemble when Trademark Test Set Predictions

Disagree with Single Model

Label 1 Label 0

Pred. 1 124

Pred. 28 76

Table B.7: Confusion Matrix for Ensemble with Auxiliary Outputs on Resolution

Data

Label 1 Label 0

Pred. 1 769 65

Pred. 0 78 963

Table B.8: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

on Majority Party Resolutions

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 424 31 435 39

Pred. 0 39 469 28 461



206

Table B.9: Confusion Matrix for Ensemble (Left) and Single Model LSTM (Right)

on Minority Party Resolutions

Ensemble Single LSTM

Label 1 Label 0 Label 1 Label 0

Pred. 1 344 15 362 21

Pred. 0 40 513 22 507
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Table B.10: Agreement between Classifier Modules and Full Ensemble

Classifier ρ Jaccard

Public Trust

Source A .8553 .7455

Source B .5087 .4579

Source D .4021 .4874

Source E .5800 .5826

Trademark

Case File .5963 .6601

Owner .6753 .7285

Statement .5980 .7112

Events .6500 .7360

Resolution

Basic Data .6496 .5853

Sponsor .7491 .6623

Summary .6951 .6383

Actions .8985 .7758
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C Model Parameters

For the regularized LSTM classifier module, we list all parameters following the

terminology used in Merity et al. (2017). The same parameters were used across

datasets.

Table C.1: Regularized LSTM Parameters

Parameter Value

Embedding size 256

Embedding dropout 0.2

Weight-drop 0.1

Hidden size 512

LSTM layers 2

Temporal activation weighting (β) 0.1

MLP layer dropout 0.5

Batch size 64

Learning rate 0.001

EMA decay factor 0.99

Optimizer Adam

Parameters for the CNN with self-attention classifier module are given below.

All parameters not listed (e.g., CNN kernel sizes) follow the baseline design given
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in Yu et al. (2018).

Table C.2: CNN Classifier Parameters

Parameter Value

Word embedding size 300

Character embedding size 200

Hidden size 512

Attention heads 8

Dropout 0.1

Batch size 64

Learning rate 0.001

EMA decay factor 0.99

L2 weight decay 5× 10−8

Learning rate warmup steps 1000

Optimizer Adam
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D LLM Prompts and Responses

D.1 Trademark Dataset

What criteria do examiners use at the US Patent and Trademark Office when
evaluating a trademark application?
The USPTO (United States Patent and Trademark Office) uses the following criteria
to evaluate a trademark application:
1. **Distinctiveness**: Is the mark distinctive and not generic or descriptive? In other
words, is the mark unique and not simply a description of the goods or services?
2. **Likelihood of Confusion**: Will the mark be confused with existing trademarks
or marks that are likely to be registered in the future? The examiner will consider
the similarity of the marks, the similarity of the goods or services, and the degree of
consumer recognition of the marks.
3. **Descriptiveness**: Is the mark descriptive of the goods or services? If so, is it a
common term or phrase that is used in the industry?
4. **Functionality**: Does the mark serve a functional purpose, such as the shape of
a product or the color of a product?
5. **Geographical Significance**: Is the mark a geographical name, such as a city or
state name? If so, is it a well-known geographical name?
6. **Immoral or Scandalous**: Is the mark immoral, scandalous, or disparaging?
7. **Likelihood of Dilution**: Will the mark dilute the reputation of another mark,
even if the marks are not similar?
If the examiner finds that the mark does not meet these criteria, the application will
be refused. If the examiner finds that the mark meets these criteria, the application
will be approved and the mark will be registered.
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Example set of input features and response using prompt template from
Table 8.2.

Input features:
Collective membership mark indicator: no
Collective service mark indicator: no
Collective trademark indicator: no
Color drawing currently: no
Color drawing at filing: no
3D drawing currently: no
3D drawing at filing: no
Service mark indicator: yes
Standard characters claim: no
Amendment to foreign application priority basis: no
Amendment to foreign registration basis: no
Amendment to intent to use basis: no
Amendment to use basis: no
Cancellation proceeding pending: no
Certification mark indicator: no
Any amendment, correction, less goods, less classes: no
Subject to concurrent use: no
Concurrent use proceeding pending: no
Use application at filing: yes
Foreign registration basis: no
International registration basis currently: no
Foreign application priority basis currently: no
Foreign registration basis at filing: no
International registration basis at filing: no
No basis claim currently: no
Contains foreign application info and priority claim: no
Intent to use application at filing: no
Actual characters of mark text: AAA
Opposition proceeding pending: no
Amend to principal register: no
Published subject to concurrent use: no
Affidavit of incontestability acknowledged: yes
Acquired distinctiveness entry: no
Acquired distinctiveness entry to part of mark: no
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Amend to supplemental register: no
Filed for or registered on supplemental register: no
Trademark indicator: no
Use application currently: yes
US issued notice of first refusal to IB: no
Words ’and others; appear in list of prior registrations: no
No records for foreign trademark applications
Mark physical characteristics: 1 0 0 0
Owner: 3 AMERICAN AUTOMOBILE ASSOCIATION, INC.
Events during trademark processing:
1987-03-11: REGISTERED - SEC. 9 FILED/CHECK RECORD FOR SEC. 8
1987-05-23: REGISTERED AND RENEWED (FIRST RENEWAL - 20 YRS)
2006-08-30: TEAS SECTION 8 & 9 RECEIVED
2006-08-30: REGISTERED - COMBINED SECTION 8 (10-YR) & SEC. 9 FILED
2006-10-27: ASSIGNED TO PARALEGAL
2006-11-21: REGISTERED - SEC. 8 (10-YR) ACCEPTED/SEC. 9 GRANTED
2006-11-21: REGISTERED AND RENEWED (SECOND RENEWAL - 10 YRS)
2008-02-03: NOTICE OF SUIT
2008-02-03: NOTICE OF SUIT
2008-02-12: NOTICE OF SUIT
2008-05-29: NOTICE OF SUIT
2008-05-30: NOTICE OF SUIT
2008-06-06: NOTICE OF SUIT
2008-06-16: NOTICE OF SUIT
2008-06-18: NOTICE OF SUIT
2008-06-19: NOTICE OF SUIT
2008-06-20: NOTICE OF SUIT
2008-08-04: NOTICE OF SUIT
2008-08-21: NOTICE OF SUIT
2008-08-22: NOTICE OF SUIT
2008-09-03: NOTICE OF SUIT
2008-09-12: NOTICE OF SUIT
2008-10-03: NOTICE OF SUIT
2008-10-28: NOTICE OF SUIT
2009-02-02: NOTICE OF SUIT
2009-02-05: NOTICE OF SUIT
2009-02-06: CASE FILE IN TICRS
2009-02-25: NOTICE OF SUIT
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[126 ’NOTICE OF SUIT’ lines removed]
2014-02-04: NOTICE OF SUIT
Statement of goods/services related to mark: TEACHING MOTOR VEHICLE OPER-
ATION; CONDUCTING TRAFFIC AND PEDESTRIAN SAFETY CAMPAIGNS, AND
GIVING TRAFFIC SAFETY LESSONS DISSEMINATING TRAVEL INFORMATION
AND MAKING TRAVEL ARRANGEMENTS PROVIDING EMERGENCY ROAD SER-
VICE PROVIDING BAIL BOND ARRANGING FOR DISCOUNT PURCHASES, COL-
LECTING DAMAGE CLAIMS; OFFERING REWARDS FOR INFORMATION LEAD-
ING TO ARREST AND CONVICTION OF PERSONS STEALING MEMBERS’ AU-
TOMOBILES; AND PLACING INSURANCE WITH UNDERWRITERS AUTOMO-
BILE ASSOCIATION SERVICES RENDERED TO MOTOR VEHICLE OWNERS, MO-
TORISTS, AND TRAVELERS GENERALLY-NAMELY, OBTAINING MOTOR VE-
HICLE LICENSE PLATES AND TITLE CERTIFICATES; SPONSORING SCHOOL
SAFETY PATROLS; ADVOCATING LEGISLATION FAVORABLE TO SAFE AND
ECONOMICAL MOTOR VEHICLE TRAVEL, OPERATION, AND MAINTENANCE;
CONDUCTING MOTOR VEHICLE TESTS AND MAKING TESTS OF AUTOMO-
TIVE AND RELATED PRODUCTS; AND RATING TOURIST ACCOMMODATIONS

LLM Response:
Strengths:
1. The mark is distinctive and memorable, making it more likely to be recognized by
the public.
2. The applicant has a strong reputation and is well-established in the industry, which
can increase the likelihood of the mark being registered.
3. The mark is used in commerce and has been used for over 30 years, which can
demonstrate its validity and enforceability.

Weaknesses:
1. The mark is a service mark, which may be more difficult to register than a trade-
mark, as it is used to identify the source of a service rather than a product.
2. The mark is used in a variety of industries, including education, insurance, and
travel, which may make it difficult to determine the scope of the mark’s use and the
goods or services it is used to identify.
3. The applicant has filed multiple notices of opposition, which may indicate that
there are potential conflicts with other marks or that the applicant is trying to assert
its rights over a broader scope of goods or services than initially claimed.

Overall assessment:
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Overall, the strengths of this application include its distinctiveness, the applicant’s
reputation, and the mark’s long history of use. However, the weaknesses include the
potential difficulties in registering a service mark, the complexity of the mark’s use
across multiple industries, and the potential conflicts with other marks. As an exam-
iner, I would carefully review the application to determine whether the mark is eligible
for registration and whether any potential conflicts or issues with the mark’s use should
be addressed.
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D.2 Public Trust Dataset

Within the context of US government security clearances, list the 13 adju-
dicative guidelines in the SEAD-4.
The 13 adjudicative guidelines are:
1. Allegiance: The individual’s loyalt to the United States.
2. Foreign Influence: The extent to which the individual has been influenced by foreign
powers or their agents.
3. Foreign Preference: The extent to which the individual has demonstrated a prefer-
ence for a foreign power or its interests over those of the United States.
4. Dual Citizenship: The individual’s status as a dual citizen of the United States and
another country. 5. Foreign Travel: The extent to which the individual has traveled to
or resided in a foreign country, particularly if it is a country of concern.
6. Foreign Financial Ties: The extent to which the individual has financial ties to a
foreign power or its agents.
7. Conflicts of Interest: The extent to which the individual has conflicts of interest
that could compromise their loyalty to the United States.
8. Criminal Conduct: The individual’s criminal history, including any criminal conduct
that could compromise their loyalty to the United States.
9. Financial Problems: The individual’s financial problems, including any debt or fi-
nancial obligations that could compromise their loyalty to the United States.
10. Emotional Instability: The individual’s emotional stability, including any mental
health issues that could compromise their ability to perform their duties.
11. Sexual Behavior: The individual’s sexual behavior, including any behavior that
could compromise their loyalty to the United States.
12. Personal Behavior: The individual’s personal behavior, including any behavior that
could compromise their loyalty to the United States.
13. Security Clearance History: The individual’s history of security clearances, includ-
ing any previous denials or revocations of clearance.
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D.3 Congressional Resolution Dataset

What were the legislative priorities for the Republicans in the US House in
2007? Limit your response to 200 words.
In 2007, the legislative priorities for the Republicans in the US House of Representatives
were:
Tax Relief: Republicans sought to extend the 2001 and 2003 tax cuts, which were set
to expire in 2010.
Immigration Reform: Republicans pushed for comprehensive immigration reform, in-
cluding border security and a pathway to citizenship for undocumented immigrants.
Energy Independence: Republicans advocated for increased domestic energy produc-
tion, including drilling in the Arctic National Wildlife Refuge (ANWR) and the Outer
Continental Shelf (OCS).
Judicial Nominations: Republicans sought to confirm conservative judicial nominees to
the federal bench.
Regulatory Reform: Republicans aimed to reduce the regulatory burden on businesses
and individuals, particularly in areas such as environmental and financial regulation.
These priorities were reflected in several key bills, including: H.R. 2, the ”Fair Tax Act
of 2007” (tax reform)
H.R. 164, the ”Immigration Reform Act of 2007” (immigration reform)
H.R. 322, the ”Energy Policy Act of 2007” (energy independence)
H.R. 142, the ”Judicial Nominations Reform Act of 2007” (judicial nominations)
H.R. 123, the ”Regulatory Reform Act of 2007” (regulatory reform)

What were the most contentious issues in the Senate during the 117th US
Congress?
The 117th United States Congress, which convened on January 3, 2021, and adjourned
on January 3, 2023, was marked by significant partisanship and contentious issues. Here
are some of the most notable ones:
1. Confirmation of Supreme Court Justice Ketanji Brown Jackson: The Senate con-
firmed Justice Jackson to the Supreme Court on April 7, 2022, but not before a
contentious hearing and a 53-47 vote, with three Republicans voting in favor of her
confirmation.
2. Biden Administration Nominees: The Senate confirmed several Biden administra-
tion nominees, including:
* Merrick Garland’s successor, Lisa Monaco, as Attorney General, with a 98-2 vote.
* Marty Walsh as Secretary of Labor, with a 68-29 vote.
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* Xavier Becerra as Secretary of Health and Human Services, with a 50-49 vote.
* Deb Haaland as Secretary of the Interior, with a 51-40 vote.
* Gina Raimondo as Secretary of Commerce, with a 92-5 vote.
3. COVID-19 Relief and Stimulus Packages: The Senate debated and passed several
COVID-19 relief and stimulus packages, including:
* American Rescue Plan Act (March 2021): A $1.9 trillion stimulus package that
passed with a 50-49 vote, with Vice President Kamala Harris casting a tie-breaking
vote.
* Infrastructure Investment and Jobs Act (November 2021): A $1.2 trillion infrastruc-
ture package that passed with a 69-30 vote.
4. Gun Control Legislation: The Senate debated several gun control bills, including:
* Background Check Expansion Act: A bill that would have expanded background
checks for gun purchases, which failed to pass with a 47-50 vote.
* Red Flag Law: A bill that would have allowed courts to temporarily confiscate firearms
from individuals deemed a risk to themselves or others, which failed to pass with a 47-
50 vote.
5. Immigration Reform: The Senate debated several immigration reform bills, includ-
ing:
*Dream and Promise Act: A bill that would have provided a pathway to citizenship
for undocumented immigrants brought to the United States as children, which failed
to pass with a 52-48 vote.
* Border Security, Economic Opportunity, and Return Act: A bill that would have
provided funding for border security and a pathway to citizenship for undocumented
immigrants, which failed to pass with a 55-45 vote.
6. Climate Change and Energy Policy: The Senate debated several climate change and
energy policy bills, including:
* Green New Deal: A non-binding resolution that outlined a plan to transition the
United States to a clean energy economy, which failed to pass with a 47-50 vote.
* Clean Energy for America Act: A bill that would have provided tax credits for clean
energy production, which failed to pass with a 52-42 vote.
7. Voting Rights and Election Reform: The Senate debated several voting rights and
election reform bills, including:
* For the People Act: A comprehensive election reform bill that would have expanded
voting rights and campaign finance reform, which failed to pass with a 50-49 vote.
* John Lewis Voting Rights Advancement Act: A bill that would have restored the
Voting Rights Act of 1965, which failed to pass with a 49-46 vote.
These are just a few examples of the contentious issues that arose during the 117th US
Congress. The Senate’s partisanship and gridlock were evident throughout the session,
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with many bills failing to pass or being blocked by filibusters.
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Example sets of input features and responses using prompt from Table
8.3.

Input features:
Date introduced: 2014-01-13
Chamber: US Senate
Majority Party: Democratic
Legislative Categories: Athletes, Congressional tributes, Higher education, North Dakota,
School athletics, Sports and Recreation
Summary of resolution: (This measure has not been amended since it was introduced.
The summary of that version is repeated here.) Congratulates the North Dakota State
University football team as the champion of for [sic] winning the 2013 National Colle-
giate Athletic Association Division I Football Championship Subdivision title.
Titles: A resolution congratulating the North Dakota State university football team for
winning the 2013 National Collegiate Athletic Association Division I Football Champi-
onship Subdivision title.
Sponsor: Sen. Hoeven, John [R-ND]
Cosponsors: Sen. Heitkamp, Heidi [D-ND]

LLM Response:
Based on the information provided, I predict that the resolution was successfully passed.
The resolution was introduced in the Senate, where the Democratic Party held the ma-
jority. The resolution is a congratulatory measure, which is a relatively non-controversial
issue. Additionally, the resolution is focused on a specific university and its athletic
team, which may have garnered support from both parties. The fact that the reso-
lution has not been amended since its introduction suggests that it may have been a
straightforward and uncontroversial measure.

Input features:
Date introduced: 2017-05-17
Chamber: US House
Majority Party: Republican
Legislative Categories: Commemorative events and holidays, Elementary and secondary
education, Foreign aid and international relief, Health care quality, Higher education,
Human rights, School administration, Sex, gender, sexual orientation discrimination,
Civil Rights and Liberties, Minority Issues
Summary of resolution: Expresses support for the goals and ideals of an International
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Day Against Homophobia and Transphobia. Encourages: (1) health care providers to
offer culturally and clinically competent care to the lesbian, gay, bisexual, or transgen-
der (LGBT) community; (2) schools to support the creation of gay-straight alliances to
achieve safer learning environments; (3) individuals to learn about national resources
for those who identify as LGBT, and (4) the federal multilateral aid efforts to prioritize
the health and human rights of LGBT people.
Titles: Supporting the goals and ideals of the International Day Against Homophobia
and Transphobia.
Sponsor: Rep. Lee, Barbara [D-CA-13] Cosponsors: Rep. Grijalva, Raul M. [D-AZ-3]
Rep. Kildee, Daniel T. [D-MI-5] Rep. Roybal-Allard, Lucille [D-CA-40] Rep. Pocan,
Mark [D-WI-2] Rep. Pallone, Frank, Jr. [D-NJ-6] Rep. McCollum, Betty [D-MN-4]
Rep. Hastings, Alcee L. [D-FL-20] Rep. Cicilline, David N. [D-RI-1] Rep. DelBene,
Suzan K. [D-WA-1] Rep. Wasserman Schultz, Debbie [D-FL-23] Rep. Speier, Jackie
[D-CA-14] Del. Norton, Eleanor Holmes [D-DC-At Large]Rep. Smith, Adam [D-WA-9]
Rep. Gallego, Ruben [D-AZ-7] Rep. Clark, Katherine M. [D-MA-5] Rep. Brownley,
Julia [D-CA-26] Rep. Blumenauer, Earl [D-OR-3] Rep. Watson Coleman, Bonnie
[D-NJ-12] Rep. Slaughter, Louise McIntosh [D-NY-25] Rep. McEachin, A. Donald
[D-VA-4] Rep. Lowenthal, Alan S. [D-CA-47] Rep. Maloney, Sean Patrick [D-NY-18]
Rep. Johnson, Henry C. ”Hank,” Jr. [D-GA-4] Rep. Deutch, Theodore E. [D-FL-22]
Rep. Gutierrez, Luis V. [D-IL-4] Rep. Kilmer, Derek [D-WA-6] Rep. Schakowsky, Jan-
ice D. [D-IL-9] Rep. Lowey, Nita M. [D-NY-17] Rep. Pingree, Chellie [D-ME-1] Rep.
Sánchez, Linda T. [D-CA-38] Rep. Ellison, Keith [D-MN-5] Rep. Keating, William R.
[D-MA-9] Rep. Khanna, Ro [D-CA-17] Rep. Frankel, Lois [D-FL-21] Rep. Quigley,
Mike [D-IL-5] Rep. Swalwell, Eric [D-CA-15] Rep. Hanabusa, Colleen [D-HI-1] Rep.
Napolitano, Grace F. [D-CA-32] Rep. Larsen, Rick [D-WA-2] Rep. Himes, James A.
[D-CT-4] Rep. Yarmuth, John A. [D-KY-3] Rep. Levin, Sander M. [D-MI-9] Rep.
Meeks, Gregory W. [D-NY-5] Rep. McGovern, James P. [D-MA-2] Rep. Sires, Albio
[D-NJ-8] Rep. Engel, Eliot L. [D-NY-16] Rep. Demings, Val Butler [D-FL-10] Rep.
Polis, Jared [D-CO-2] Rep. Panetta, Jimmy [D-CA-20] Rep. Raskin, Jamie [D-MD-
8] Rep. Jayapal, Pramila [D-WA-7] Rep. Espaillat, Adriano [D-NY-13] Rep. Davis,
Susan A. [D-CA-53] Rep. Perlmutter, Ed [D-CO-7] Rep. Clarke, Yvette D. [D-NY-9]
Rep. Huffman, Jared [D-CA-2] Rep. Lynch, Stephen F. [D-MA-8] Rep. Moulton,
Seth [D-MA-6] Rep. Correa, J. Luis [D-CA-46] Rep. Kihuen, Ruben J. [D-NV-4] Rep.
Vargas, Juan [D-CA-51] Rep. Titus, Dina [D-NV-1] Rep. Lieu, Ted [D-CA-33] Rep.
Jackson Lee, Sheila [D-TX-18] Rep. Dingell, Debbie [D-MI-12] Rep. Brady, Robert
A. [D-PA-1] Rep. Rush, Bobby L. [D-IL-1] Rep. Shea-Porter, Carol [D-NH-1] Rep.
Maloney, Carolyn B. [D-NY-12] Rep. Gomez, Jimmy [D-CA-34] Rep. Esty, Elizabeth
H. [D-CT-5] Rep. Higgins, Brian [D-NY-26] Rep. Carson, Andre [D-IN-7] Rep. Soto,
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Darren [D-FL-9]

LLM Response:
Based on the information provided, I predict that the resolution did not pass. The
resolution was introduced in the House of Representatives, which was controlled by the
Republican Party at the time. The resolution focuses on issues related to LGBTQ+
rights, which have historically been a contentious issue in Congress. While there may
have been some Democratic support for the resolution, it is unlikely that the Republican
majority would have supported it. Additionally, the resolution’s focus on issues such
as healthcare, education, and human rights may have been seen as too progressive or
controversial for some lawmakers. Given these factors, it is likely that the resolution
did not pass.


