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Abstract

Advancements in language foundation models have primarily fueled the re-
cent surge in artificial intelligence. In contrast, generative learning of non-textual
modalities, especially videos, significantly trails behind language modeling. This
thesis chronicles our endeavor to build multi-task models for generating videos
and other modalities under diverse conditions, as well as for understanding and
compression applications.

We start with two pixel-space prototypes for separate multi-task and multi-
modal setups. Despite their effectiveness, these models are constrained by task-
specific modules and predefined label spaces, underscoring the need for more uni-
versally applicable designs.

Given the high dimensionality of visual data, we pursue concise and accurate
latent representations. Our video-native spatial-temporal tokenizers preserve high
fidelity. We unveil a novel approach to mapping bidirectionally between visual
observation and interpretable lexical terms. Furthermore, our scalable visual to-
ken representation proves beneficial across generation, compression, and under-
standing tasks. This achievement marks the first instances of language models sur-
passing diffusion models in visual synthesis and a video tokenizer outperforming
industry-standard codecs.

Within these multi-modal latent spaces, we study the design of multi-task gen-
erative models. Our masked multi-task transformer excels at the quality, efficiency,
and flexibility of video generation. We enable a frozen language model, trained
solely on text, to generate visual content. Finally, we build a scalable generative
multi-modal transformer trained from scratch, enabling the generation of videos
containing high-fidelity motion with the corresponding audio given diverse condi-
tions.

Throughout the course, we have shown the effectiveness of integrating multiple
tasks, crafting high-fidelity latent representation, and generating multiple modal-
ities. This work suggests intriguing potential for future exploration in generating
non-textual data and enabling real-time, interactive experiences across various me-
dia forms.
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Introduction

Motivation

Since its inception nearly seven decades ago, the field of Artificial Intelligence (AI) [139]
has undergone significant evolutionary strides, marked by a succession of pivotal milestones.
This journey witnessed the transition from rule-based expert systems [28] to the data-driven
paradigms ushered in by machine learning [173], subsequently transcending to the realms of
deep learning where the focus shifted from feature engineering [135] to the acquisition of rep-
resentations directly from raw data [117]. The advent of foundation models [17] further epit-
omizes this evolutionary trajectory, promoting the sharing of knowledge across tasks, thereby
obviating the need for task-specific models. Within this continuum, BERT [49] emerges as a
quintessential exemplar of foundation models, epitomized by its training on extensive data via
self-supervision and its proficiency in adapting to a plethora of downstream tasks. This disser-
tation delves into the multi-task versatility at the heart of methodological innovations, tracing
the evolution from hierarchically structured supervised modules to cohesive, universally appli-
cable self-supervised frameworks.

Large Language Models (LLMs) [7, 25, 191], emblematic of foundation models, are architec-
tured with generative goals, crafting text outputs from diverse inputs. Notably, certain adap-
tations of LLMs [133, 145] have expanded their input capacity to encompass images, though
their outputs are exclusively textual. This text-centric output is a manifestation of a human-
conceived low-bandwidth abstraction, leading to projections of an impending scarcity of high-
quality textual data [202]. In stark contrast, there exists a prodigious generation of raw signal
data, particularly videos, which often surpasses the computational resources available for their
effective utilization in training paradigms. Moreover, the progression of self-supervised genera-
tive learning for these non-textual data types significantly lags behind that of language models,
thereby curtailing the potential of associated tasks. The crux of this dissertation is anchored
in the exploration of generative learning aimed at producing outputs beyond text, including
videos, images, and audio, thus embracing a more holistic multi-modal approach.

The transformer architecture [201], initially conceived to interpret text tokens, stands as the
cornerstone for scalable models across various domains. Yet, when it comes to handling raw
signals, such as videos, we encounter a paradigm marked by considerably greater complexity
due to their inherently higher dimensional nature, encapsulating high spatial-temporal reso-
lutions alongside multiple channels. While straightforward downscaling techniques [52] may
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Table 1: Overview of thesis structure with involved modalities and evaluations. Chapters in
the same row are paired latent representation and generative models. The letters in parenthe-
ses refer to the focused component in the thesis statement: (A) integrating multiple tasks, (B)
crafting high-fidelity latent representation, and (C) generating multiple modalities.

suffice for discriminative models when predicting labels, they present formidable hurdles for
generative models tasked with producing content in these high-dimensional spaces, particu-
larly in the context of high-resolution image or extended video generation. To address this
challenge, we embark on a journey to construct learned latent representations within highly-
compressed spaces and subsequently formulate generative models tailored to operate within
these constrained dimensions.

Thesis Organization

In this thesis, we strive to build multi-task models for multi-modal generation and understand-
ing. We start with two pixel-space prototypes for separate multi-task and multi-modal under-
standing setups in Part I. Given the high dimensionality of visual data, we pursue concise and
accurate latent representations in Part II. Within these multi-modal latent spaces, we study the
design of multi-task generative models in Part III. Tab. 1 presents the logical structure of this
thesis, with a brief over below.



Part I: Prototypes. In the first part of this thesis, we unveil a pair of prototypes designed for
multi-task and multi-modal problems that encompass video, image, and text modalities. These
prototypes showcase effective comprehension outcomes within the designated tasks, yet also
underscore the need for additional exploration into generative modeling to achieve broader
capabilities.

In Chapter 1, we introduce a versatile system designed to comprehend videos, achieving fa-
vorable outcomes across a variety of assessment benchmarks. This system showcases a range
of capabilities, including but not limited to object detection, object tracking, foreground seg-
mentation, activity proposal generation, and activity recognition. Its primary emphasis is on
spatial-temporal activity recognition and localization, consistently delivering state-of-the-art
performance across a series of benchmark scenarios. As a prototype of multi-task video system,
its ability to incorporate new tasks is noticeably limited, achievable solely through the integra-
tion of new modules. In the following chapters, we will explore models adaptable to various
tasks without major changes.

In Chapter 2, we embrace the concept of masked vision-language pre-training to enhance
document understanding. Masked modeling represents a form of generative pre-training objec-
tive that benefits language modeling when applied with transformer architectures. In our case,
the model acquires valuable multi-modal representations for tasks of visually-rich document
entity retrieval, achieved by learning to recover the masked text and pixel information. With
a singular inference step, this model resembles a prototype for mask-based generative models.
In subsequent parts, we will delve into the realm of generation models trained using masked
modeling techniques and inference through multi-step iterative decoding.

Part II: Multi-Modal Latent Spaces. While language models commonly function using sub-
word tokens as their processing units, employing the direct equivalent of pixels for visual gen-
erative modeling with transformers presents more difficulties. This challenge stems from the
complex, high-dimensional, and repetitive nature of pixel data, which hinders the scalability of
transformers to high-resolution images or lengthy videos. As a result, the prevailing approach
in contemporary visual generative models involves operating within a learned latent space.
This latent space is intricately connected to the pixel space through a bidirectional mapping.
In this part, we explore the concept of multi-modal latent spaces for generative visual modeling
with transformers.

In Chapter 3, we present a spatial-temporal vector-quantization model designed to map a
video into a discrete latent space (i.e. tokenization) defined by a learned codebook. Taking in-
spiration from the achievements of different image tokenization methods, we devise a unique
architecture for this model that incorporates 3D convolutions to effectively model video data
with both spatial and temporal dependencies. As a result of this design, the model achieves sat-
isfying reconstruction fidelity even at significant compression ratios, thereby laying the foun-
dation for the subsequent achievements of generative video transformers.

In Chapter 4, a novel strategy is introduced, which involves the mapping of visual data
into the latent space of a pre-trained LLM. This model achieves its transformation by utilizing
lexical token embeddings from the LLM during the process of vector quantization. This mech-
anism adeptly converts non-linguistic modalities, like images, into a distinct language using



the vocabulary of the LLM. By adopting a hierarchical arrangement of tokens from broad to
intricate, this interpretable visual lexical representation effectively encompasses both semantic
significance and visual intricacies. This holistic approach facilitates visual reconstruction and
empowers the performance of various multi-modal tasks.

In Chapter 5, we delve into an introspective examination of the insights garnered from the
explorations in Chapters 3 and 4, setting the stage for introducing an innovative scalable vi-
sual token representation learning approach. This approach marks a departure from traditional
methods by integrating large vocabularies with a novel lookup-free quantization process and
leveraging scaled causal architectures that facilitate the joint tokenization of images and videos.
The proficiency of this model in visual generation, compression, and understanding appears fa-
vorable against existing designs. Significantly, it presents the first evidence of LLMs surpassing
diffusion models in visual synthesis tasks. Moreover, it pioneers in demonstrating that a visual
tokenizer, specifically tailored for video content generation, can achieve performance on par
with, if not better than, established codecs such as HEVC and VVC.

Part III: Multi-Task Generative Models. Harnessing the acquired high-fidelity represen-
tations detailed in Part II, we possess the capacity to construct latent generative models that
adeptly perceive, comprehend, and replicate the intricacies of the world. Within this section,
our concentration is directed toward formulating techniques for data modeling and shaping
task structures. Notably, we present methodologies tailored to facilitate multi-task learning
using a solitary model.

In Chapter 6, we unveil a multi-task video generation model, leveraging the capabilities of
masked generative transformers. By utilizing the spatial-temporal vector-quantized representa-
tion detailed in Chapter 3, videos are conceptualized as sequences of visual tokens within the
latent space. To enrich the landscape of multi-task learning, an effective embedding technique
for masked video token modeling is introduced. Remarkably, a single model, with no alter-
ations, supports an array of conditional video generation tasks, encompassing scenarios where
input involves a subset of pixels or an embedding. This model not only exhibits an adaptabil-
ity spectrum across diverse tasks but also attains a favorable level of video generation quality,
alongside an efficient sampling process.

In Chapter 7, we delve into the realm of generating video, image, and text through a frozen
LLM, fortified by the visual lexical representation introduced in Chapter 4. Our approach intro-
duces a progressive in-context learning methodology, empowering static LLMs to proficiently
undertake both generation and understanding tasks spanning non-linguistic domains, includ-
ing images and videos. Remarkably, even without any updates to the LLM’s parameters, it
showcases prowess in image and video tasks such as classification, captioning, visual question
answering, text-to-image, and frame prediction.

In Chapter 8, our exploration advances as we develop scalable generative multi-modal trans-
formers from the ground up, utilizing the scalable representation conceptualized in Chapter 5.
This development employs modality-specific discrete tokenization to cohesively integrate text,
images, videos, and audio within a decoder-only, transformer-based framework akin to LLMs.
By pretraining this model on a broad array of multi-modal generative tasks using the established
LLM training methodologies, we endow the model with robust capabilities for multi-task video



generation. Notably, this model represents a pioneering achievement in its ability to generate
high-quality videos, complete with corresponding audio, based on a wide range of input signals.

Thesis Statement

In this thesis, we build multi-task models for generating videos and other modalities under
diverse conditions, as well as for understanding and compression applications.
We show the effectiveness of
(A) integrating multiple tasks
into a single framework for understanding and generation;
(B) crafting high-fidelity latent representation
for visual data in a discrete space, optionally into text tokens; and
(C) generating multiple modalities
from a shared latent space, through a unified interface, and by a single model.
Tab. 1 lists the highlighted component in each chapter.






Part 1

Prototypes



Part I Overview. In the first part of this thesis, we unveil a pair of prototypes designed for
multi-task and multi-modal problems that encompass video, image, and text modalities. These
prototypes showcase effective comprehension outcomes within the designated tasks, yet also
underscore the need for additional exploration into generative modeling to achieve broader
capabilities.

In Chapter 1, we introduce a versatile system designed to comprehend videos, achieving fa-
vorable outcomes across a variety of assessment benchmarks. This system showcases a range
of capabilities, including but not limited to object detection, object tracking, foreground seg-
mentation, activity proposal generation, and activity recognition. Its primary emphasis is on
spatial-temporal activity recognition and localization, consistently delivering state-of-the-art
performance across a series of benchmark scenarios. As a prototype of multi-task video system,
its ability to incorporate new tasks is noticeably limited, achievable solely through the integra-
tion of new modules. In the following chapters, we will explore models adaptable to various
tasks without major changes.

In Chapter 2, we embrace the concept of masked vision-language pre-training to enhance
document understanding. Masked modeling represents a form of generative pre-training objec-
tive that benefits language modeling when applied with transformer architectures. In our case,
the model acquires valuable multi-modal representations for tasks of visually-rich document
entity retrieval, achieved by learning to recover the masked text and pixel information. With
a singular inference step, this model resembles a prototype for mask-based generative models.
In subsequent parts, we will delve into the realm of generation models trained using masked
modeling techniques and inference through multi-step iterative decoding.
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Chapter 1

Multi-Task Video Understanding

Overview. Activity detection stands out as a captivating computer vision endeavor that cap-
italizes on video streams garnered from extensively deployed cameras. Despite achieving com-
mendable results, traditional activity detection algorithms are often formulated within specific
limitations. For instance, they tend to operate with trimmed or object-focused video clips as
inputs. Consequently, these algorithms struggle to effectively address scenarios involving mul-
tiple scales and instances within real-world, unconstrained video streams. Such streams remain
untrimmed and encompass wide field-of-views. Moreover, the necessity for real-time analysis
of streaming data renders the straightforward expansion of these methods impractical.

To overcome these issues, we propose Argus++, a robust real-time multi-task activity de-
tection system for analyzing unconstrained video streams. The design of Argus++ introduces
overlapping spatial-temporal cubes as an intermediate concept of activity proposals to ensure
coverage and completeness of activity detection through over-sampling. The overall system is
optimized for real-time processing on standalone consumer-level hardware. Extensive experi-
ments on different surveillance and driving scenarios demonstrated its favorable performance
in a series of activity detection benchmarks, including CVPR ActivityNet ActEV 2021, NIST
ActEV SDL UF/KF, TRECVID ActEV 2020/2021, and ICCV ROAD 2021.
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1.1 Motivation

Nowadays, activity detection has drawn a fast-growing attention in both industry and research
fields. Activity detection in extended videos [43, 144] is widely applied for public safety in
indoor and outdoor scenarios. Activity detection on streaming videos captured by in-vehicle
cameras is applied for vision-based autonomous driving. The development of these applications
brings several challenges. First, most of these systems take unconstrained videos as input, which
are recorded in large field-of-views where multi-object and multi-activity occur simultaneously
and continuously over time. Second, the unconstrained videos in real world are in multiple
scenarios and under multiple conditions, e.g. in dynamically changed road environments from
day to night in autonomous driving [178]. Third, efficient algorithms are demanded for real-
time processing and responding of streaming video.

Conventional activity detection works [60, 66, 109, 193, 210] have achieved impressive per-
formance. However, they are not suitable for real world unconstrained video understanding.
Most of these works are applied under certain constraints, e.g., only for processing trimmed
and/or object-centered video clips. Meanwhile, they usually are specified for certain scenarios,
such as person activity, etc. Therefore, such algorithms would fail when being transferred to
unconstrained videos on both efficiency and effectiveness.

Previous works [134, 164, 239] on unconstrained video analysis proposed to generate and
analyze tube/tubelet proposals, which are trajectories extracted from object detection and track-
ing results. Tube proposal has several drawbacks. First, tube proposals failed to capture the
trace of moving objects when cropping the proposals from the original videos. Therefore, learn-
ing the activities highly relied on trace would be difficult, e.g. ’vehicle turning right’. Second,
the tube proposals still cannot stay away from temporal activity localization to determine the
existence of the activities. Besides, most of the previous works [164] utilize non-overlapping
proposals, which straightforwardly cuts the tube proposals by fixed length of temporal win-
dows. Inevitably, such methods destroy the completeness of activities. Therefore, it would
result in significant degrade of performance. Third, the objects in the tube proposal will suffer
from the bounding box shift and distortion across frames, which could result in a high false
alarm rate on activity detection.

To overcome the aforementioned challenges, we propose Argus++, an efficient robust spatial-
temporal activity detection system for extended and road video activity detection. The proposed
system contains four-stages: Proposal Generation, Proposal Filtering, Activity Recognition and
Activity Deduplication. The major difference between Argus++ and the former works, such as
[134], is the concept of cube proposals. Rather than simply adapted tube proposals, i.e. cropped
trajectories of detected and tracked objects, we propose to merge and crop the area of detected
objects across the frames.

We summarize the contributions of this chapter as follows:

* We propose Argus++, areal-time activity detection system for unconstrained video streams,
which is robust across different scenarios.

* We introduce overlapping spatial-temporal cubes as the core concept of activity proposals
to ensure coverage and completeness of activity detection through over-sampling.

* The proposed system has achieved favorable performance in a large series of activity
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detection benchmarks, including CVPR ActivityNet ActEV 2021, NIST ActEV SDL UF/KF,
TRECVID ActEV 2020/2021, and ICCV ROAD 2021.

1.2 Prior Work

Object detection and tracking. Object detection and tracking are fundamental computer
vision tasks that aims to detect and track objects from images or videos. Image-based object de-
tection algorithms, such as Faster R-CNN [163] and R-FCN [44], have demonstrated convincing
performance but are often expensive to apply on every frame. Video-based object detection al-
gorithms [153, 261] use optical flow guided feature aggregation to leverage motion information
and reduce computation. With the deep features extracted from the backbone convolutional
network, multi-object tracking algorithms [217, 223] associates objects across frames based on
feature similarity and location proximity:.

Activity detection. Inrecent years, there emerged some systems designed for spatial-temporal
activity detection on unconstrained videos [35, 134, 154, 164, 236, 237, 239]. Generally, theses
systems first generates activity proposals and then feeds them to classification models. Since
there have been a variety of video classification networks [60, 130, 193], the major focus is on
the paradigm of proposals and the generation algorithm. In [35, 134], a detection and tracking
framework is employed to extract whole object tracklets as tubelets, where temporal localiza-
tion is required. In [164], an encoder-decoder network is used to generate localization masks on
fixed-length clips for tubelet proposal extraction, which has varied spatial locations in different
frames.

1.3 Argus++ Activity Detection System

We tackle the activity detection task in unconstrained videos which are untrimmed and with
large field-of-views. Given an untrimmed video stream V, the system S should identify a set of
activity instances S(V) = {A;}. Each activity instance is defined by a three-tuple A; = (T}, L;, C,),
referring to an activity of type C; occurs at temporal window T; with spatial location L;. L;
contains the precise location of A; in each frame, forming a tube in the timeline. As such,
activity detection can often be decomposed into three aspects, i.e., temporal localization (T;),
spatial localization (L;), and action classification (C;).

Each of the three aspects poses unique challenges to the video understanding system. Due
to its multi-dimensional nature, it remains hard to define and build a useful activity detection
system under the strict setting. Therefore, we also evaluates with some loosened requirements.

Strict setting. All activity types are defined as atomic activities with clear temporal bound-
aries and spatial extents. The evaluation metric performs bipartite matching between predic-
tions and ground truths.
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Figure 1.1: Architecture of Argus++. A video stream is processed frame-by-frame through object detection and tracking to gener-
ate overlapping cube proposals. With frame-level foreground segmentation, stable proposals are filtered out. Activity recognition
models determine the classification scores for each proposal. These over-sampled cubes are deduplicated to produce the final ac-

tivity instances.
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Loosened setting. Activity types are either atomic activities within a temporal window (e.g.
standing up) or continuous repetitive activities that can be cut into multiple identifiable win-
dows (e.g. walking). The evaluation metric allows multiple non-overlapping predictions to be
matched with one ground truth.

1.3.1 Argus++ System

The architecture of the proposed Argus++ system is shown in Figure 1.1. To tackle the task of
activity detection, we adopt an intermediate concept of spatial-temporal cube proposal with a
much simpler definition than an activity instance:

pi = (50, X1, Yo, V1o oo ). (1.1)

This six-tuple design relieves the localization precision and caters modern action classification
models which works on fixed-length clips with fixed spatial window.

For an input video stream, the system first generates candidate proposals with frame-wise
information such as detected objects, which will be covered in Section 1.3.2. These proposals
are filtered with a background subtraction model as detailed in Section 1.3.3. Then, action
recognition models described in Section 1.3.4 are applied on the proposals to predict per-class
confidence scores. Finally, Section 1.3.5 introduces the post-processing stage to merge and filter
the proposals with scores and generate final activity instances.

1.3.2 Proposal Generation

Starting this section, we introduce each of the components of Argus++. The system begins
by generating a set of cube proposals. They are generated based on information from frame-
level object detection with multiple object tracking methods. Cubes are sampled densely in the
timeline with refined spatial locations.

Detection and tracking. To conduct activity recognition, we first locate the candidate ob-
jects (in most cases, person and vehicle) in the video. For each selected frame F,, we apply an
object detection model to get objects O; = {o;; | j = 1, -, n;} with object types ¢; ; and bounding
boxes (xo, X1, Yo, ¥1)i,j. Objects are detected in a stride of every Sy, frames. A multiple object
tracking algorithm is applied on the detected objects to assign track ids to each of them as tr; ;.

Proposal sampling. To sample proposals on untrimmed videos without breaking the com-
pleteness of any activity instances, we propose a dense overlapping proposals sampling algo-
rithm. As illustrated in Figure 1.2, this method ensures coverage of activities occurring at any
time, with no hard boundaries. Two parameters, duration D,,,, and stride S,,,, controls the
sampling process. Each proposal contains a temporal window of D,,,, frames. New proposals
are generated every S, < D, frames, possibly with overlaps. Generally, non-overlapping
proposal system can be treated as a degraded case when S0, = D o).
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Figure 1.2: Dense overlapping proposals.
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Proposal refinement. To generate proposals in a temporal window from #, to t; =ty +D ),
we select seed track ids Tr, from the central frame t, = [“%]. Their bounding boxes are
enlarged as the union across the temporal window

(%0, X1, Yo, Y1 i = U({(xo,xl,J’o,Jh)Lj |ty i<ty tryj = tryi}), (1.2)

where k = 1,---, n,. This algorithm is robust through identity switch in the tracking algorithm
as it uses the stable seeds from the central frame. It also ensures the coverage of moving ob-
jects by enlarging the bounding box when it’s successfully tracked. This design is helpful for
efficiency optimization by allowing a large detection stride S;.;. When later applied for activity
recognition, the bounding box can be further enlarged for a fixed rate R, to include spatial
context and compensate for missed tracks.

1.3.3 Proposal Filtering

For now, the proposal generation pipeline applies a frame-wise object detection with slight aid
of tracking information. The motion information of video is not yet explored. To produce high
quality proposals, we apply a proposal filtering algorithm to eliminate the proposals that are
unlikely to contain activities.

Foreground segmentation. For each proposal, a foreground segmentation algorithm is im-
plemented to generate a binary mask for every S,, frames for each video clip. We average the
value of pixel masks in its cube to get its foreground score f;. For proposals generated by ob-
ject type c, those proposals with f; < F. will be filtered out. The threshold F, is determined by
allowing up to P, true proposals to be filtered out.

Label assignment. To determine the above threshold and to train the activity recognition
module, we need to assign labels for each generated proposal according to the ground truth
activity instances. We first convert the annotation of activity instances into the cube format,
denoted as ground truth cubes, by performing dense sampling of duration D,,,, and stride S,,,
within each instance. For each proposal, we estimate the spatial intersection-over-union (IoU)
between it and ground truth cubes in the same temporal window. Then we follow Faster R-
CNN [163] in the assignment process:
* For each ground truth cube, assign it to the proposal with the highest score above Sj,,,.

* For each proposal, assign it with each ground truth cube with score above Sp;g,.

* For each proposal, assign it as negative if all scores are below Sj,,,.
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Shigh and S, are the high and low thresholds. Through this algorithm, each proposal may be
assigned one or more positive labels, a negative label, or nothing. Those assigned nothing are
redundant detections which will not be used in classifier training.

Proposal evaluation. To measure the quality of proposals before and after the filtering, we
need a method for proposal evaluation. This can be achieved by assuming a perfect classifier
in the activity recognition part, so the final metrics reflects the upper bound performance with
current proposals. To do this, we simply use the assigned labels as the classification outputs and
pass through the deduplication algorithm covered later. To further measure other properties of
the generated proposals, we can only pass through a subset of them, such as only those with
spatial IoU against ground truth above 0.5.

1.3.4 Activity Recognition

In this section, we will elaborately introduce our action recognition modules. Given the input
proposal of an activity instance p;, our action recognition model V will give out the confidence
vector ¢;:

V(p) =c ={c,c ..} (1.3)

where n represents the number of target actions, and ¢; € R". Limited by GPU memory size
and temporal length settings of pretrained weights, we need to select t frames out of t| — ¢}
samples from the activity instance. To do this, we strictly followed the sparse-sampling strategy
mentioned in [210] for both training and inference stage. To be specific, the video is evenly
separated into t segments. From each segment, 1 frame will be randomly selected to generate
the sampled clip.

To transform the action recognition modules from previous multi-class task to the realm of
multi-label recognition, we modified the loss function for optimization. Instead of traditional
cross entropy loss, we implemented a weighted binary cross entropy loss (WBCE), in which two
weight parameters are adopted, the activity-wise weight W, = {w!, w?, .., w"} and the positive-
negative weight W, = {w},, wf,, . w;’,}. W, balances the training samples of different activities
and W, balances the positive and negative samples of a specific activity. With the aligned label
sequence of i’ instance represented as Y; = {y/, )7, .. y/'} € R". The calculation of w; is derived

as: )
Wt = S r? (1.4)
‘ Zie[I] Vi

~C

w
WS =nx —aA. (15)
¢ ZCE[TI] W;
And the derivation of w; is:
c Zie[I] 1yf:0

e (1.6)
b Zie[l] Vi

In which, [I] represents all input instances, and [n] represent all target activities. Compared
with vanilla BCE loss, we found wBCE loss can significantly improve the final performance on
the validation set.
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Figure 1.3: Deduplication algorithm for overlapping proposals.

Furthermore, we tried multiple action recognition modules and made late fusion action-
wisely according to the results on the validation set. We found each classifier does show su-
periority on certain actions. Through the feedback from the online leaderboard, such fusion
strategy can improve the final performance with noticeable margins.

1.3.5 Activity Deduplication

Overlapping instances. As the system generates overlapping proposals, it could have dupli-
cate predictions for some of the proposals. This would result in a large amount of false alarms
unless we deduplicate them. Figure 1.3 is a diagram for our deduplication algorithm which
applies to each activity type with all proposals:
1. Split the overlapping cubes of duration D,,,, and stride S, into non-overlapping cubes
of duration S,,,,. An output cube relies on all original cubes in the temporal window,
with an averaged score and an intersected bounding box.

2r2p | groups of non-overlapping

2. Merge the non-overlapping cubes of duration S,,,, back into [?
prop

cubes of duration D,,,,. An output cube is merged from [%J cubes with an averaged

score and the union of bounding boxes.

3. Select the group where the maximum score resides.

The deduplication algorithm performs an interpolation upon the overlapping cubes. Each
group in step 3 contains information from every classification results, maximizing the informa-
tion utilization.

Adjacentinstances. The above deduplication process only transforms overlapping instances
to non-overlapping instances with the same duration. This would be sufficient under the Loos-
ened Setting, where multiple predictions are allowed for each activity. No threshold would
be needed to truncate low-confidence predictions as this happens automatically during the
ground-truth matching process.

However, for the Strict Setting, we need to further merge adjacent cubes into integrate in-
stances. Currently we adopt a simple yet effective algorithm, by simply merging adjacent cubes
where all of them have confidence score above S,,.,,. The merged instance needs to be longer
than L. to be kept in the final output.
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1.4 Experimental Results

1.4.1 Implementation Details

In Argus++, we apply Mask R-CNN [79] with a ResNet-101 [78] backbone from Detectron2 [228]
pre-trained on the Microsoft COCO dataset [131] as the object detector, with Sy, = 8. Only
person, vehicle, and traffic light classes are selected. For the tracking algorithm, we apply the
work in [217] and reuse the region-of-interest feature from the ResNet backbone as in [152, 238].

The proposals are generated with D,,,, = 64 and S,,, = 16. The labels are assigned with
Shigh = 0.5 and Sj,,, = 0. The proposal filter is set with a tolerance of P,,, = 0.05.

For activity classifiers, we adopted multiple state-of-the-art models including R(2+1)D [193],
X3D [60],and TRM [155]. During training, frames are cropped with jittering [210] and enlarged
with R, = 0.13. For X3D and TRM, we trained modules with weights pre-trained on Kinet-
ics [109]. For R(2+1)D modules, we trained modules with weighst pre-trained on IG65M [66].
We fused confidence scores from these models according to their performance on the validation
set.

1.4.2 Evaluation Protocols

To measure the performance, efficiency, and generalizability of Argus++, we evaluate it across a
series of public benchmarks. Argus++ is applied to NIST Activities in Extended Videos (ActEV)
evaluations on MEVA [43] Unknown Facility , MEVA Known Facility, and VIRAT [144] settings
for surveillance activity detection. With slight modifications, it is also tested in the ICCV 2021
ROAD challenge for the action detection task in autonomous driving.

In the NIST evaluations, the metrics [11] are designed in the Loosened Setting, where short-
duration outputs are allowed and spatial alignment is ignored. The idea is that, after processed
by the system, there will still be human reviewers to inspect the activity instances with the
highest confidence scores for further usages. The performance is thus measured by the prob-
ability of miss detection (P,;) of activity instances within a time limit of all positive frames
plus Ty, of negative frames, where Ty, is referred to as time-based false alarm rate. The major
metric, nAUDC@0.2T,, is an integration of Py, on Ty, € [0,0.2].

In the ROAD challenge, the Strict Setting is adopted by using the mean average precision
(mAP) at 3D intersection-over-union (IoU) evaluation metric. This metric does exact bipar-
tite matching between predictions and ground truth instances, with challenging localization
precision requirements.

For metrics in the following tables, | means lower is better and 1 means higher is better. For
each metric, the best value is bolded and the second best is underscored. For ongoing public
evaluations, the result snapshot at 11/01/2021 is presented.

1.4.3 Public Benchmarks

ActEV sequestered-data evaluations. ActEV Sequestered Data Leaderboards (SDL) are plat-
forms where a system is submitted to run on NIST’s evaluation servers. This submission format
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System/Team nAUDC@0.2T¢, | MeanP,,;;@0.02T¢, | Relative Processing Time

Argus++ (Ours) 0.3535 0.5747 0.576
UMD_JHU 0.4232 0.6250 0.345
IBM-Purdue 0.4238 0.6286 0.530
UCF 0.4487 0.5858 0.615
Visym Labs 0.4906 0.6775 0.770
MINDS_JHU 0.6343 0.7791 0.898

Table 1.1: CVPR 2021 ActivityNet challenge ActEV SDL unknown facility evaluation
results.

System/Team nAUDC@0.2Ty, | MeanP,,;;@0.02T, | Relative Processing Time

Argus++ (Ours) 0.1635 0.3424 0.413
UCF 0.2325 0.3793 0.751
UMD 0.2628 0.4544 0.380
IBM-Purdue 0.2817 0.4942 0.631
Visym Labs 0.2835 0.4620 0.721
UMD-Columbia 0.3055 0.4716 0.516
UMCMU 0.3236 0.5297 0.464
Purdue 0.3327 0.5853 0.131
MINDS_JHU 0.4834 0.6649 0.967
BUPT-MCPRL 0.7985 0.9281 0.123

Table 1.2: NIST ActEV’21 SDL known facility evaluation results.

System/Team nAUDC@0.2Ty, | MeanP,,;;@0.02T;, | Relative Processing Time

Argus++ (Ours) 0.3330 0.5438 0.776
UCF 0.3518 0.5372 0.684
IBM-Purdue 0.3533 0.5531 0.575
Visym Labs 0.3762 0.5559 1.027
UMD 0.3898 0.5938 0.515
UMD-Columbia 0.4002 0.5975 0.520
UMCMU 0.4922 0.6861 0.614
Purdue 0.4942 0.7294 0.239
MINDS_JHU 0.6343 0.7791 0.898

Table 1.3: NIST ActEV’21 SDL unknown facility evaluation results.
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System/Team nAUDC@0.2T¢, | Mean P,;;@0.15T, | Mean wP,,;;;@0.15Ry, |

Argus++ (Ours) 0.39607 0.30622 0.81080
BUPT 0.40853 0.32489 0.79798
UCF 0.43059 0.34080 0.86431
M4D 0.84658 0.79410 0.88521
TokyoTech_AIST 0.85159 0.81970 0.94897
Team UEC 0.96405 0.95035 0.95670

Table 1.4: NIST TRECVID 2021 ActEV evaluation results.

System/Team nAUDC@0.2T¢, | Mean P;;@0.15T¢, | Mean wP,,;;;@0.15Ry, |

Argus++ (Ours) 0.42307 0.33241 0.80965
UCF 0.54830 0.50285 0.83621
BUPT-MCPRL 0.55515 0.48779 0.84519
TokyoTech_AIST 0.79753 0.75502 0.87889
CERTH-ITI 0.86576 0.84454 0.88237
Team UEC 0.95168 0.95329 0.98300
Kindai_Kobe 0.96267 0.95204 0.93905

Table 1.5: NIST TRECVID 2020 ActEV evaluation results.

prevents access to the test data and measures the processing time with unified hardware plat-
form [121]. For these evaluations, Argus++ was trained on MEVA, a large-scale surveillance
video dataset with activity annotations of 37 types. We used 1946 videos in its training release
drop 11 as the training set and 257 videos in its KF1 release as validation set. The optimization
target is reaching better performance within 1x real-time.

Table 1.1 shows the published results from CVPR 2021 ActivityNet Challenge ActEV SDL
Unknown Facility evaluation, where Argus++ has around 20% advantage in nAUDC@0.2T¢,
over runner-up system. The test set of unknown facility is captured with a different setting
from MEVA, which challenges the generalization of action detection models. Table 1.2 shows
the ongoing NIST ActEV’21 SDL Known Facility leaderboard, where Argus++ shows over 40%
advantage in nAUDC@0.2T,. The test set of known facility shares a similar distribution with
MEVA, where our system learns well and is getting nearer for real-world usages. Table 1.3
shows the ongoing NIST ActEV’21 SDL Unknown Facility leaderboard continued from Activi-
tyNet, where Argus++ still holds the leading position with over 5% advantage in nAUDC@0.2T,.

ActEV self-reported evaluations. ActEV self-reported evaluations are where only results
are submitted and test data is accessible. This currently includes the annual TRECVID ActEV
evaluations on VIRAT. For TRECVID, we use the official splits of VIRAT for training and vali-
dation.

Table 1.4 and 1.5 shows the leaderboard of 2020 [11, 239] and 2021 [12, 240] NIST TRECVID
ActEV Challenge. In 2020, our systems is 22.8% better in nAUDC@0.2T,, 33.8% better in Mean
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System/Team Action@0.1 T Action@0.2 1 Action@0.51 Average 7

Argus++ (Ours) 28.54 25.63 6.98 20.38
THE IFY 28.15 20.97 6.58 18.57
YAAAHO 26.81 20.40 7.02 18.07
hyj 26.52 20.32 7.05 17.97
3D RetinaNet 25.70 19.40 6.47 17.19
LeeC 13.64 9.89 2.23 8.59

Table 1.6: ICCV 2021 ROAD challenge action detection results.

Priss@0.15T 4, and 3.5% better in Mean-wP,;;;;@0.15R ¢, than the runner-up. Although the other
competitors improved significantly in 2021, our system still holds the first place with noticeable
margins.

ROAD challenge. Different from previous surveillance action detection benchmarks, the
videos of ROAD Challenge[178] are gathered from the point of view of autonomous vehicles.
It contains 122K frames from 22 annotated videos, where each video is 8 minutes long on av-
erage. Totally 7K tubes of individual agents are included and each tube consists on average of
approximately 80 bounding boxes linked over time.

Table 1.6 shows the performance of our system with other competitors. Our system ranks
the first with 20% average mAP. Although the performance is still far from satisfying in this
Strict Setting, it demonstrates the capability of Argus++ in adapting to precise 3D localization
and moving camera view points.

1.4.4 Ablation Study

Coverage of proposal formats. We analyze the coverage of dense spatial-temporal propos-
als and determines the best hyper-parameters for the proposal format. By directly use ground
truth cubes as proposals, we estimate the upper bound performance of both overlapping and
non-overlapping proposal formats on VIRAT validation set. The results are shown in Table
1.7, where non-overlapping proposals shows at least 6.7% systematic errors while overlapping
proposals with duration 64 and stride 16 only has 1.3%.

Performance of proposal filtering. We examine the quality of the proposals with and with-
out the filter, as shown in Table 1.8 and 1.9. With the proposal evaluation procedure introduced
in Section 1.3.3, the proposals are further filtered by IoU with reference and coverage of refer-
ence at levels from 0, 0.1, to 0.9 to calculate partial results.

With the dense cube proposals, the best nAUDC@0.2T¢, we can achieve with a ideal classi-
fier is 0.08, as indicated in the IoU > 0 column. The IoU and reference coverage bounded scores
are used to measure the spatial matching quality of proposals, as the nAUDC@0.2Ty, does not
consider spatial alignments. We can see that even with a condition of IoU > 0.5, our proposal
can achieve up to 0.15, which indicates the spatial preciseness. The proposal filter is also proved
effective, which removed 70% of original proposals without dropping the recall level.
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Duration / Stride 16 32 64 96

32 0.0705 0.1208 - -
64 0.0127 0.0621 0.0673 -
96 0.0275 0.0504 - 0.0688

Table 1.7: Lower bounds of nAUDC@0.2T¢, on VIRAT validation set with different pro-
posal formats. Italic values are non-overlapping proposals while the others are overlapping
proposals. Duration and stride are in the unit of frames.

Name Unfiltered Filtered
Number of Proposals 211271 62831
Positive rate 0.1704 0.5204
Rate of unique label 0.4558 0.4415
Rate of two labels 0.4127 0.4252
Rate of three labels 0.1017 0.1060

Table 1.8: Statistics of proposals on VIRAT validation set.

nAUDC@0.2Ty, IoU Reference Coverage
Threshold Average >0 >0.5 Average >05 >09

Unfiltered Proposals ~ 0.2358  0.0772 0.1518 0.1562  0.1125 0.4211
Filtered Proposals 0.2352  0.0772 0.1469 0.1563  0.1099 0.4280

Table 1.9: Proposal quality metrics on VIRAT validation set.

Proposal Filter nAUDC@0.2Ty, | Processing Time

Enabled 0.4822 0.582
Disabled 0.5176 0.925

Table 1.10: Effect of proposal filter on NIST ActEV’21 SDL unknown facility micro set.
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The effect of the proposal filter is also evaluate on the SDL, as shown in Table 1.10. It not
only reduces processing time from 0.925 to 0.582, but also improves nAUDC@0.2Ty, due to
reduced false alarms.

1.5 Summary

In this chapter, we proposed Argus++, a robust real-time multi-task activity detection system
for analyzing unconstrained video streams. We introduced overlapping spatial-temporal cubes
as an intermediate concept of activity proposals to ensure coverage and completeness of ac-
tivity detection through over-sampling. The proposed system is able to process unconstrained
videos with robust performance across multiple scenarios and real-time effiency on consumer-
level hardware. Extensive experiments on different surveillance and driving scenarios demon-
strated its favorable performance in a series of activity detection benchmarks, including CVPR
ActivityNet ActEV 2021, NIST ActEV SDL UF/KF, TRECVID ActEV 2020/2021, and ICCV ROAD
2021.

Future works are suggested to focus on extending the current system to more applications,
such as action detection in UAV captured videos, first-person human activity understanding, etc.
The proposed system could also be extended to end-to-end frameworks for better performance.
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Chapter 2

Masked Multi-Modal Pre-Training

Overview. Document understanding tasks, in particular, Visually-rich Document Entity Re-
trieval (VDER), have gained significant attention in recent years thanks to their broad appli-
cations in enterprise AL. However, publicly available data have been scarce for these tasks
due to strict privacy constraints and high annotation costs. To make things worse, the non-
overlapping entity spaces from different datasets hinder the knowledge transfer between doc-
ument types. In this chapter, we propose a method to collect massive-scale and weakly labeled
data from the web to benefit the training of VDER models. The collected dataset, named Doc-
umentNet, does not depend on specific document types or entity sets, making it universally
applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning
nearly 400 document types organized in a four-level ontology. Empowered by DocumentNet,
we present a lightweight multi-modal architecture named UniFormer, which can learn a uni-
fied representation from text, layout, and image crops without needing extra visual pretrain-
ing. Experiments on a set of broadly adopted VDER tasks show significant improvements when
DocumentNet is incorporated into the pre-training. With the recent emergence of Large Lan-
guage Models (LLMs), DocumentNet provides a large data source to extend their multi-modal
capabilities for VDER.
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2.1 Motivation

Document understanding is one of the most error-prone and tedious tasks many people have
to handle every day. Advancements in machine learning techniques have made it possible to
automate such tasks. In a typical Visually-rich Document Entity Retrieval (VDER) task, pieces
of information are retrieved from the document based on a set of pre-defined entity types,
known as the schema. For example, “amount”, “date”, and “item name” are major parts of an
invoice schema.

The current setup of VDER tasks presents several unique challenges for acquiring sufficient
training data. First, the availability of raw document images is greatly limited due to privacy
constraints. Real-world documents, such as a driver’s license or a bank statement, often contain
personally identifiable information and are subject to access controls. Second, detailed annota-
tion is costly and typically requires intensive training for experienced human annotators. E.g.,
it takes deep domain knowledge to correctly label different fields in complex tax forms. Fi-
nally, knowledge sharing between various types of documents is constrained by inconsistent
label spaces and contextual logic. For example, the entity sets (i.e., schema) could be mutually
exclusive, or the same entity type could take different semantic meanings in different contexts.

A number of models have been proposed for VDER tasks with various success [8, 70, 99,
118]. To tackle the aforementioned challenges, most prior works initialize from a language
model followed by BERT-style [49] pre-training on document datasets with additional layout
and visual features. However, even the largest dataset currently in use, ie., IIT-CDIP [123]
dataset, has a limited size and only reflects a subset of document types.

In this chapter, we introduce the method of building the DocumentNet dataset, which en-
ables massive-scale pre-training for VDER modeling. DocumentNet is collected over the Inter-
net using a pre-defined ontology, which spans hundreds of document types with a four-level
hierarchy. Experiments demonstrated that DocumentNet is the key to advancing the perfor-
mance on the commonly used FUNSD [104], CORD [146], and RVL-CDIP [123] benchmarks.
More recently, LLMs [7, 145] have shown great potential for VDER tasks given their reasoning
capabilities. DocumentNet provides massive-scale multimodal data to boost the performance
of LLMs for document understanding.

2.2 Prior Work

Tab. 2.1 provides an overview of relevant document datasets. We divide them into three groups
as introduced below.

Single-domain document datasets. Many small document datasets with entity-span anno-
tations have been used for tasks such as entity extraction. They contain less than 100k pages
from a single domain. Newer datasets come with high-quality OCR annotation thanks to the
advantage of relevant tools, while older ones, such as FUNSD [104], often contain OCR errors.
These datasets do not contain sufficient samples for the pre-training of a large model.
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Diverse High-quality

Dataset #Samples?  Ontology Domains OCR Annotation
FUNSD [104] 199 E=3
Kleister-NDA [185] 540 v E=4
VRDU-Ad-buy [219] 641 v E=14
SROIE [100] 973 E=4
CORD [146] 1K E=30
DeepForm [18] 1.1K v E=5
VRDU-Registration [219] 1.9K v E=6
Kleister-Charity [185] 2.7K v E=8
DocVQA [138] 12.8K v
CC-PDF[150] 350K
PubLayNet [258] 358K v B=5
RVL-CDIP [123] 400K v T=16
UCSF-IDL [150] 480K v

IIT-CDIP [123] 11.4M v

ImageNet [47]  1.3Mimages v - - T=1K
ActivityNet [26] 20K videos v - - T=200
DocumentNet-v1 (ours) 9.9M v v v T=398, E=6
DocumentNet-v2 (ours) 30M v v v T=398, E=6

Table 2.1: Comparison between the proposed DocumentNet dataset and existing docu-
ment understanding datasets. Datasets from other areas also built with ontology are listed
in gray. Annotation includes sample type (T), bounding box (B), entity (E), and question (Q),
where the value refers to the number of classes.

Large document datasets. A few larger datasets contain over 100k pages from different
domains. However, they usually do not contain OCR annotations or entity-level labels. IIT-
CDIP [123] has been the largest dataset commonly used for pre-training of document under-
standing models. Although these datasets are large, their image quality and annotation com-
pleteness are often unsatisfactory. To complement them, we collect high-quality document
images from the Internet to build the DocumentNet datasets with rich OCR and entity annota-
tions, and demonstrate their effectiveness in document model pre-training.

Ontology-based datasets. Large labeled datasets are usually collected following an ontol-
ogy. ImageNet [47] for image recognition is built upon the synsets of WordNet [142]. Activi-
tyNet [26] for activity recognition adopts an activity taxonomy with four levels. To the best of
our knowledge, DocumentNet is the first large-scale document dataset built upon a well-defined
ontology.

Pretrained document models. A variety of pretrained document models have emerged, in-
cluding LayoutLM [231], UDoc [70], LayoutLMv2 [230], TILT [150], BROS [92], DocFormer [8],
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TOTAL EXPENSES ~ $165.08

Financial Business Education

Figure 2.1: Exemplar documents of each of the four top-level hierarchies. Images are
downloaded via keyword searching using a commercial search engine. All images are for
demonstration purposes only and do not contain real transactions or personal information.

SelfDoc [127], LayoutLMv3 [99], etc.

2.3 DocumentNet Dataset

Blindly crawling the Web for images may seem easy, but it is not a practical solution since
most images on the Web are not relevant to document types. We need a scalable pipeline to
only select the concerned images. Broadly, this is achievable via a nearest-neighbor search
of relevant keywords in a text-image joint embedding space. First, we design a set of query
keywords, i.e., the document ontology, and encode them into the embedding space of general
Web images. Further, a nearest-neighbor algorithm retrieves the top-K semantically closest
images to each query keyword. Finally, a deduplication step consolidates all retrieved images
across all query keywords. Fig. 2.1 illustrates several exemplar documents retrieved using our
provided keywords.

Ontology creation. Each text string in the ontology list serves as a seed to retrieve the most
relevant images from the general Web image pool. An ideal ontology list should therefore cover
a broad spectrum of query keywords across and within the concerned downstream application
domains. Although algorithmic or generative approaches may exist, we manually curated about
400 document-related query keywords that cover domains of finance, business, personal affairs,
legal affairs, tax, education, etc., as illustrated in Fig. 2.2.

Image retrieval from ontology. To retrieve only the most relevant document images out
of the hundreds of billions of general Web images, we leverage a highly efficient nearest neigh-
bor pipeline by defining the distance metric as the dot product distance between the semantic
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Document

Financial Legal Business Education
General Insurance Tax Military Court Documents General General
Financial Accounts General Family Documents Personal

Employer/Employee
Investment Retirement Partnership Children Agreement
Home ownership General Housing Vehicles
Income Government Benefits Home Ownership Rental
Financial Obligation General Medical
Healthcare Dental
Subscriptions Utility Visual

Figure 2.2: Document ontology tree stub, based on which the proposed DocumentNet
datasets are collected. We create a document ontology with about 400 search keywords hi-
erarchically connected by three intermediate layers.

feature vectors of the image and each of the target query keywords. Here we refer to Graph-
RISE [190] for the semantic image embedding, and all query keywords are encoded into the
same feature space as the images. Empirically, we pick the top 10k nearest neighbors for each
query keyword. Note that the same image might be retrieved via multiple semantically similar
keywords, so a de-duplication step is needed afterwards. We summarize the main pipeline steps
in Fig. 2.3a. Fig. 2.3b shows statistical insights of the retrieved 30M document images with the
mean and standard deviation histogram over each of the query keywords. The majority of the
retrieved images are with mean distance values greater than 0.8 and standard deviations no
more than 0.03, indicating high relevance to the document ontology.

OCR and annotation. The retrieved images are fed into an OCR engine to generate a text
sequence in reading order. We apply a text tagging model to weakly annotate the text seg-
ments of each sequence into 6 classes, including email addresses, mail addresses, prices, dates,
phone numbers, and person names. Albeit noisy, these classification labels provide additional
supervision for pre-training.

Post-processing and open-source tools. We adopt some heuristic-based filtering to im-
prove sample quality. For example, we remove samples where the overall OCR result is poor
due to blurry or noisy images. Some proprietary tools are used for scalable processing dur-
ing the construction of DocumentNet, but open-source alternatives are readily available. E.g.,
CLIP [156] for text-image embedding, Google ScaNN [72] for scalable nearest-neighbor search,
Google Cloud OCR (https://cloud.google.com/vision/docs/ocr),and Google
CloudNLP (https://cloud.google.com/natural-language/docs/reference/
rest/v1/Entity#type) for text tagging.

With all of the above steps, we have obtained a dataset of high-quality document images that
are closely relevant to our query ontology. This dataset contains multiple modalities, including
the image pixels, the OCR characters, the layout coordinates, and the segment tags.
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Figure 2.3: Data collection pipeline and statistics.
Task Target Modality
MMLM Multimodal Masked Language Modeling OCR characters
MCM  Masked Crop Modeling Image pixels
TT Token Tagging Segment tags

Table 2.2: UniFormer pre-training objectives and corresponding target modalities.

2.4 UniFormer Model

In this section, we detail our UniFormer model architecture and setups for pretraining and fine-
tuning for VDER. UniFormer takes advantage of all the modalities available in DocumentNet,
with the pre-training objectives listed in 2.2.

2.4.1 Multimodal Tokenization

Let D € R be a visually-rich document image with height H and width W. We obtain a
sequence of characters by applying OCR on the document image. The characters are accompa-
nied by their bounding box coordinates. Then we perform a multimodal tokenization process
as follows.

With a pre-defined text tokenizer, we first tokenize the character sequence into a sequence
of text tokens c. p represents the 1D position of the tokens ranging from 0 to |c| — 1. For each
token c;, we obtain its bounding box b; = (xo, yo, X1, y1); by taking the union of the bounding
boxes of its characters. We enlarge the bounding box by a context ratio r on each side and
obtain the corresponding visual image crop v; for each token from D.
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Figure 2.4: UniFormer pre-training pipeline. The multimodal tokenization process (left)
outputs tokens with aligned image crops. The UniFormer model (right) learns a unified token
representation with three objectives (top).

2.4.2 UniFormer Architecture

Fig. 2.4 illustrates the model architecture for our proposed UniFormer. UniFormer is built upon
BERT [49] and utilizes its tokenizer and pretrained weights. The input for each token consists
of a text embedding and a 1D position embedding for p.

Following LayoutLM [231], we add 2D position embeddings x,, yo, X1, y1, W, h, where w =
x; — xp and h = y; — y,. These embeddings are used to represent the spatial location of each
token. All the embeddings mentioned above are obtained from trainable lookup tables.

Following LayoutLMv2 [230], UniFormer adopts relative position-aware self-attention lay-
ers by adding biases to the attention scores according to relative 1D locations 2p and relative

: +
2D locations A %%, A Y20,

Image Crop Input To model visual information, we add a crop embedding by linearly pro-
jecting the flattened pixels in the image crop, following ViT [52]. Different from prior works
using either uniform patches [99], regional features [70, 127], or global features [8], our multi-
modal tokenization and linear embedding of image crops has the following advantages:
* It eliminates the separate preprocessing for the visual modality, such as feature extraction
with a pretrained CNN [230] or manually defined patches [99].

* It obtains an aligned partition of the visual information with the text tokens, encouraging
better cross-modal interaction.

* It eliminates the need for separate visual tokens as in [99, 230], resulting in a shorter
token sequence and better efficiency, as shown in Fig. 2.5.

+ It provides a unified joint representation for text and visual modalities in document mod-
eling with semantic-level granularity.
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Figure 2.5: Unaligned (left) vs. aligned (right) visual features. The unaligned visual fea-
tures result in a longer sequence but are usually discarded in downstream tasks. T: Text, I:
Image.
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Figure 2.6: UniFormer finetuning pipeline.

2.4.3 Pretraining

During pretraining, we adopt the following objectives on a UniFormer parameterized by 6. For
each objective, we use a separate head upon the last attention layer. Let p denote the always
available input embeddings, including the 1D and 2D positions.

Multimodal Masked Language Modeling (MMLM) We randomly select 15% [49] of the
tokens, denoted as M, to mask and predict the language modality. In the masked language
input €, 80% of the masked tokens are replaced with a special [ MASK] token, while another
10% are replaced with a random token and the remaining 10% are kept as is. In the masked crop
input p, crops for all masked tokens are replaced with an empty image. The language prediction
is formulated as a multi-class classification problem with the cross-entropy loss as

Lain = E [ Z —log po(c: | [6, 7, p])]. (2.1)
D cieM

Masked Crop Modeling (MCM) We also predict the visual modality by reconstructing the
image crops for the masked tokens in MMLM, in a way similar to MAE [80]. It is formulated as
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a regression problem with a linear layer over flattened pixels. The MCM loss is defined as
Lycu =E [ Z I¥: — Vi||§], (2.2)
D cieEM

where v = f3(¢,V, p]).

Token Tagging (TT) We add an extra pretraining task by predicting the tags t for each token
in an unmasked sequence. The tags are extracted from an external text tagger as described in
Sec. 2.3. Since each token may have multiple tags, it is formulated as a multi-label classification
problem with the binary cross-entropy loss as

Lrr = Ig [ Z —tix log po(tix | [c, v, p])
ik (2.3)
— (1 = tip) log(1 — po(tix | [c, v, P])))],

where k = 1,2, ---, K refers to the K types of tags.

Pretraining Loss The overall pretraining objective is given as

L pretrain = Lyvim + aLoyien + L1, (2.4)

where a, f§ are the corresponding loss weights.

2.4.4 Finetuning

Fig. 2.6 illustrates the pipeline for the finetuning of UniFormer. During finetuning, no tokens
are masked. We adopt the following two tasks in finetuning.

Entity Extraction Entity extraction is formulated as a sequence tagging problem. The ground-
truth entity spans are converted into a sequence of BIO tags e over all tokens. The BIO tagging
is formulated as follows: e is initialized with all © tags which indicates “Other" refering to
background tokens. For each entity span with type 7, start position i and end position j (both
inclusive), we assign

€ = 7']‘3egin, (25)
€i+t1 = .. = €; = ﬁntermediate (26)

The prediction of BIO tags is modeled as a multi-class classification problem with the objective
as

L =E [ ), ~logpolei [ [e.v. pD]. 27)

1

Document Classification We use the embedding of the starting [ CLS ] token for document
classification. The logits are predicted with an MLP head on top of the [ CLS ] embedding. Let
I be the correct class, the objective is

Lpc =E [ ~logps(l | [e,v, p])]. (2.8)
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Pre-training Pre-training FUNSD CORD RVL-CDIP

Model Inputs Data Objectives Entity F11 Entity F17  Accuracy?
BERT T - MLM 60.26 89.68 89.81
LayouttM T +L IIT-CDIP MVLM 78.66 94.72 91.78

UniFormer T+L+C IUT-CDIP MMIM 80.63 95.17 93.47
. IT-CDIP MMLM 82.61 95.91 94.86
UniFormer T+L+C + DocumentNet-v1 MMLM + MCM 83.45 96.08 95.15
© MMLM + MCM + TT  84.18 96.45 95.34

Table 2.3: Ablation studies on three document understanding benchmarks regarding
pretraining datasets, pretraining objectives, and model architectures. Input modalities include
text (T), layout (L), and crop (C). Metrics are entity F1 and classification accuracy x100.

2.5 Experimental Results

We pre-train UniFormer on DocumentNet and evaluate on three document understanding bench-
marks.

2.5.1 Implementation Details

Pre-training. We initialize our UniFormer with BERT weights using the uncased vocabulary.
The models are pre-trained using the Adam optimizer [110]. We adopt a cosine learning rate
schedule with linear warmup during the first 2% steps and a peak learning rate of 10~*. We use
20% of the samples for the token tagging pre-training task. The models are trained for 500K
steps with a batch size of 2048 on 128 TPUv3 devices.

Downstream tasks. We evaluate the performance of pre-trained UniFormer models on three
commonly used benchmarks: entity extraction on FUNSD and CORD, and document classifica-
tion on RVL-CDIP. FUNSD contains 199 documents with 149 for training and 49 for evaluation.
It is labeled with 3 entity types, i.e., header, question, and answer. CORD contains 1000 docu-
ments with 800 for training, 100 for validation, and 100 for testing. It is labeled with 30 entity
types for receipts, such as menu name, price, etc. RVL-CDIP contains 400K documents in 16
classes, with 320K for training, 40K for validation, and 40K for testing.

Finetuning. For entity extraction on FUNSD and CORD, we add a multi-class classification
head on top of all text tokens to perform BIO tagging. We fine-tune with a peak learning rate
of 5% 107°, following a schedule of linear warm-up in the first 10% steps and then linear decay.
Dropout with 0.1 probability is applied in the head layers. UniFormer is fine-tuned for 1000
steps with a batch size of 32 on FUNSD and 256 on CORD. For document classification on RVL-
CDIP, we add a multi-class classification head on top of the [CLS] token. We fine-tune with a
constant learning rate of 10~ for 15000 steps with a batch size of 2048.
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Total Pretrain FUNSD CORD RVL-CDIP

Model Initialization Parameters Data Source Entity F11 Entity F17 Accuracy?
LayoutLM BERT 113M II'T-CDIP 78.66 94.72 91.78
BERT + ResNet-101 160M IIT-CDIP 79.27 - 94.42
UDoc BERT + ResNet-50 272M IIT-CDIP - - 95.05
LayoutLMv2 UniLM + ResNeXt-101 200M II'T-CDIP 82.76 94.95 95.25
RVL-CDIP +
TILT T5 + U-Net 230M UCSF-IDL + - 95.11 95.25
CC-PDF
BROS BERT 110M IIT-CDIP 83.05 95.73 -
DocFormer  LayoutLM + ResNet-50 183M IT-CDIP 83.34 96.33 96.17
SelfDoc BERT + ResNeXt-101 137M RVL-CDIP 83.36 - 92.81
LayoutLMv3* RoBERTa 126M IIT-CDIP - 96.11 95.00
UniFormer BERT 115M IT-CDIP + 84.18 96.45 95.34

DocumentNet-v1

Table 2.4: Comparison with state-of-the-art document pretraining approaches on three docu-
ment understanding benchmarks. * denotes a variant that does not use its proprietary tokenizer
in pre-training. Metrics are entity F1 and classification accuracy x100.

2.5.2 Quantitative Evaluation

Ablation Studies. Table 2.3 lists the ablation results for pre-training data, pre-training objec-
tives, and model design. Compared to LayoutLM, our unified embedding of the visual modality
and MMLM pre-training results in a much stronger baseline. Adding our DocumentNet into
the pre-training leads to a significant performance boost across all three tasks. Further incor-
porating MCM and TT pre-training objectives to fully leverage DocumentNet yields consistent
improvements, where the entity extraction tasks benefit more from TT and the document clas-
sification task gains more from MCM.

Comparisons with state-of-the-art. We compare the performance on the three bench-
marks with state-of-the-art approaches in Table 2.4. As shown, most prior methods use stronger
language or image initialization compared to our lightweight UniFormer, but all of them are
only pre-trained on datasets no larger than IIT-CDIP. Although UniFormer is only using 115M
parameters and BERT initialization, it outperforms all baseline approaches after pre-training
on our DocumentNet dataset, with FUNSD entity F1 84.18%, CORD entity F1 96.45%, and RVL-
CDIP accuracy 95.34%.

2.6 Summary

In this chapter, we proposed a multi-modal method to use massive and noisy web data to benefit
the training of VDER models. Our approach has the benefits of providing a large amount of doc-
ument data with little cost compared to usual data collection processes in the VDER domain.
Our experiments demonstrated significantly boosted performance for document understand-
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ing tasks. There are a number of areas that would warranty extensions or future work. First, a
systematic study on the exact keywords and strategies of collecting such a data that would op-
timize the model outcome is yet to be studied. The methods proposed in this chapter is merely a
starting point for methods along this direction. Secondly, architecture changes that specifically
targets the proposed methods of massive and noisy data collecting remains an open research
question. One observation we had when examining the data is that many of them contains
empty forms while others have filled in content. Models that can explicitly take advantage of
both formats should further boost the performance of the model.
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Part 11

Multi-Modal Latent Spaces
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Part II Overview. While language models commonly function using sub-word tokens as
their processing units, employing the direct equivalent of pixels for visual generative modeling
with transformers presents more difficulties. This challenge stems from the complex, high-
dimensional, and repetitive nature of pixel data, which hinders the scalability of transformers to
high-resolution images or lengthy videos. As a result, the prevailing approach in contemporary
visual generative models involves operating within a learned latent space. This latent space is
intricately connected to the pixel space through a bidirectional mapping. In this part, we explore
the concept of multi-modal latent spaces for generative visual modeling with transformers.

In Chapter 3, we present a spatial-temporal vector-quantization model designed to map a
video into a discrete latent space (i.e. tokenization) defined by a learned codebook. Taking in-
spiration from the achievements of different image tokenization methods, we devise a unique
architecture for this model that incorporates 3D convolutions to effectively model video data
with both spatial and temporal dependencies. As a result of this design, the model achieves sat-
isfying reconstruction fidelity even at significant compression ratios, thereby laying the foun-
dation for the subsequent achievements of generative video transformers.

In Chapter 4, a novel strategy is introduced, which involves the mapping of visual data
into the latent space of a pre-trained LLM. This model achieves its transformation by utilizing
lexical token embeddings from the LLM during the process of vector quantization. This mech-
anism adeptly converts non-linguistic modalities, like images, into a distinct language using
the vocabulary of the LLM. By adopting a hierarchical arrangement of tokens from broad to
intricate, this interpretable visual lexical representation effectively encompasses both semantic
significance and visual intricacies. This holistic approach facilitates visual reconstruction and
empowers the performance of various multi-modal tasks.

In Chapter 5, we delve into an introspective examination of the insights garnered from the
explorations in Chapters 3 and 4, setting the stage for introducing an innovative scalable vi-
sual token representation learning approach. This approach marks a departure from traditional
methods by integrating large vocabularies with a novel lookup-free quantization process and
leveraging scaled causal architectures that facilitate the joint tokenization of images and videos.
The proficiency of this model in visual generation, compression, and understanding appears fa-
vorable against existing designs. Significantly, it presents the first evidence of LLMs surpassing
diffusion models in visual synthesis tasks. Moreover, it pioneers in demonstrating that a visual
tokenizer, specifically tailored for video content generation, can achieve performance on par
with, if not better than, established codecs such as HEVC and VVC.
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Chapter 3

Spatial-Temporal Vector-Quantized
Representation

Overview. Inthis chapter, we unveil an innovative spatial-temporal vector-quantization model
meticulously crafted for the purpose of video tokenization latent representation. Drawing inspi-
ration from the notable accomplishments attained by diverse image tokenization techniques,
we embark on the creation of a distinctive architecture tailored to this model. This architecture
ingeniously integrates 3D convolutions, enabling the model to adeptly capture the intricate
interplay of spatial and temporal dependencies inherent in video data. As a testament to our
innovative approach, the model achieves a level of reconstruction fidelity that stands out even
when operating under significant compression ratios. This achievement not only demonstrates
the efficacy of our spatial-temporal vector-quantization model but also lays a robust foundation
for the subsequent strides made in the realm of generative video transformers. Through this
pivotal chapter, we pave the way for the exciting possibilities that lie ahead in the fusion of
advanced video tokenization and generative transformer techniques.
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3.1 Motivation

Transformers [201] have demonstrated strong modeling capabilities for language [49], where
each sample usually consists of less than 1k text tokens. On the contrary, visual modalities are
in much higher dimensional spaces. For example, a 256x256 RGB image has nearly 200k pixels,
and a 16-frame clip of 128x128 has almost 1M. With super long sequences, the quadratic com-
putation cost and the long-term dependency limit the performance of pixel-space generative
modeling with transformers [37] beyond 64x64.

To achieve feasible generation at higher resolutions and better fidelity, recent generative
image transformers such as DALL-E [160] and others [33, 51, 57, 235] operate in a compressed
discrete latent space produced by variants of Vector-Quantized Variational AutoEncoders (VQ-
VAE) [200]. The VQ-VAE encoder maps an input image into a spatially downsampled feature
map. A vector quantizer (VQ) discretizes the feature map with a learned codebook, followed by
a decoder reconstructing the input image.

Inspired by the successful practice for images, we design a 3D-VQ model to tokenize a video
into a low-dimensional spatial-temporal manifold [63, 232]. Instead of modeling each frame
independently, we introduce spatial-temporal downsampling to achieve higher compression
ratios by exploiting the temporal redundancy while preserving high reconstruction quality.
This way, generative transformers can model longer videos with more compact representation.

The only existing 3D-VQ model before our work is a shallow model from TATS [63]. We
present comprehensive comparisons of the model architectures. Quantitative and qualitative
evaluations show that our deep network design and advanced training strategy produce much
higher visual quality. This successful design fosters the strong video generation results of
MAGVIT [242] presented in Chapter 6.

3.2 MAGVIT 3D-VQ Model

3.2.1 Model Design

Our video VQ autoencoder is built upon the image VQGAN [57]. Let V. € RPFW>3 be a video
clip of T frames. The VQ encoder tokenizes the video as ff : V — z € ZN, where Z is the
codebook. The decoder f;! maps the latent tokens back to video pixels.

The VQ autoencoder is a crucial module as it not only sets a quality bound for the generation
but also determines the token sequence length, hence affecting generation efficiency. Existing
methods apply VQ encoders either on each frame independently (2D-VQ) [74, 116] or on a
supervoxel (3D-VQ) [63, 232]. We propose different designs that facilitate MAGVIT to perform
favorably against other VQ models for video (see Tab. 3.2).

3D architecture. We design a 3D-VQ network architecture to model the temporal dynamics
as follows. The encoder and decoder of VQGAN consist of cascaded residual blocks [78] inter-
leaved by downsampling (average pooling) and upsampling (resizing plus convolution) layers.
We expand all 2D convolutions to 3D convolutions with a temporal axis. As the overall down-
sampling rate is usually different between temporal and spatial dimensions, we use both 3D
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and 2D downsampling layers, where the 3D ones appear in the shallower layers of the encoder.
The decoder mirrors the encoder with 2D upsampling layers in the first few blocks, followed by
3D ones. Note that a token is not only correlated to its corresponding supervoxel but depends
on other patches due to the non-local receptive field.

Inflation and padding. We initialize our 3D-VQ with weights from a 2D-VQ in a match-
ing architecture to transfer learned spatial relationships [29], known as 3D inflation. We use
inflation on small datasets such as UCF-101 [184]. We use a central inflation method for the
convolution layers, where the corresponding 2D kernel fills in the temporally central slice of
a zero-filled 3D kernel. The parameters of the other layers are directly copied. To improve
token consistency for the same content at different locations [63], we replace the same (zero)
padding in the convolution layers with ref 1ect padding, which pads with non-zero values.

Training. We apply the image perceptual loss [57] on each frame. The LeCam regulariza-
tion [194] is added to the GAN loss to improve the training stability. We adopt the discriminator
architecture from StyleGAN [108] and inflate it to 3D. With these components, unlike VQGAN,
our model is trained stably with GAN loss from the beginning.

3.2.2 Architecture Comparison

We design two variants of the MAGVIT 3D-VQ module, i.e., the base (B) with 41M parameters
and the large (L) with 158M parameters, excluding the discriminators.

Fig. 3.1 shows the architectures of the MAGVIT 3D-VQ module and compares it with the 3D-
VQ module in TATS [63] which held the previous state-of-the-art for video generation. Com-
pared with TATS, the major design choices in MAGVIT 3D-VQ are listed below.

* Average pooling, instead of strided convolution, is used for down-sampling.
* Nearest resizing and convolution are used for up-sampling.

* We use spatial down- and up-sampling layers near the latent space and spatial-temporal
down- and up-sampling layers near the pixel space, resulting in mirrored encoder-decoder
architecture.

* A single deeper 3D discriminator is designed rather than two shallow discriminators for
2D and 3D separately.

* We quantize into a much smaller vocabulary of 1,024 as compared to 16,384.

* We use group normalization [227] instead of batch normalization [101] and Swish [159]
activation function instead of SiLU [83].

* We use the LeCAM regularization [194] to improve the training stability and quality.
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Figure 3.1: Comparison of 3D-VQ model architectures between MAGVIT and the TATS [63]. We highlight the blocks with
major differences in gray background and detail their design differences in Section 3.2.2. We train the models to quantize 16-frame
clips of 128x128 resolution into 4 x 16 x 16 tokens. The number of parameters in parentheses are broken down between VQVAE and
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Dataset B L

UCF-101 500 2000
BAIR 400 800
Kinetics-600 45 180
SSv2 135 400
nuScenes 1280 5120
Objectron 1000 2000
Web12M 5 20

Table 3.1: Training epochs of MAGVIT 3D-VQ for each dataset.

3.3 Experimental Results

3.3.1 Implementation Details

We follow the same learning recipe across all datasets, with the only variation in the number of
training epochs. The implementation is available at Here are the training details for the 3D-VQ
model:

* Video: 16 frames, frame stride 1, 128x128 * Learning rate schedule: linear warm up
resolution. (64x64 resolution for BAIR) and cosine decay.
* Base channels: 64 for B, 128 for L. * Optimizer: Adam with f; = 0 and 8, =
* VQVAE channel multipliers: 1, 2, 2, 4. (1, 0.99.
2, 4 for 64x64 resolution). * Generator loss type: Non-saturating.

Discriminator channel multipliers: 2, 4,
4,4, 4. (2,4, 4, 4 for 64x64 resolution)

Latent shape: 4x16x16.
Vocabulary size: 1,024.
Embedding dimension: 256.

Initialization: central inflation from a
2D-VQ trained on ImageNet with this
setup.

Peak learning rate: 107*.

Generator adversarial loss weight: 0.1.
Perceptual loss weight: 0.1.

Discriminator gradient penalty: r1 with
cost 10.

EMA model decay rate: 0.999.
Batch size: 128 for B, 256 for L.

Speed: 0.41 steps/sec on 16 TPU-v2 chips
for B, 0.56 steps/sec on 32 TPU-v4 chips
for L.

Using more hardware resources can speed up the training. We train MAGVIT 3D-VQ models
for each dataset separately. The training epochs for each dataset are listed in Tab. 3.1.

3.3.2 Quantitative Evaluations

We evaluate the design options of our MAGVIT 3D-VQ model. Tab. 3.2 lists the reconstruction
FVD and IS metrics on the UCF-101 training set, which provides an upper bound for generation
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From Scratch ImageNet Initialization

Tokenizer FVD, ISt FVD| ISt FVD| ISt
MaskGIT [33] 2D-VQ 240 809 216  82.6 -
TATS [63] 3D-VQ 162 806 - -

Average Central
MAGVIT 3D-VQ-B (ours) 127 821 103 848 58  87.0
MAGVIT 3D-VQ-L (ours) 45 871 35 883 25 889

Table 3.2: Comparison of tokenizer architectures and initialization methods on UCF-
101 training set reconstruction results. The 2D-VQ compresses by 8x8 spatially and the 3D-VQ
compresses by 4x8x8 spatial-temporally.

From Scratch ImageNet Initialization
PSNRT SSIM?T LPIPS| PSNRt SSIM? LPIPS| PSNRfT SSIMt LPIPS|

MaskGIT 2D 21.4 0.667 0.139 21.5 0.685 0.114 -

VQ Tokenizer

Average Central
MAGVIT 3D-L 21.8 0.690 0.113 21.9 0.697 0.103 22.0 0.701 0.099

Table 3.3: Image quality metrics of different tokenizers on UCF-101 training set recon-
struction.

quality. In addition, we report the image quality metrics (PSNR, SSIM, LPIPS) for the VQGAN
reconstruction in Tab. 3.3. We compare the proposed 3D architecture with existing 2D [33] and
3D [63] VQ architectures. We train the MaskGIT [33] 2D-VQ and our 3D-VQ with the same
protocol and evaluate the official TATS [63] 3D-VQ model. We compare two inflation methods
for our 3D-VQ model, i.e., average [29] and central inflation.

The results show the following. First, 3D-VQ models, despite producing a higher compres-
sion rate, show better video reconstruction quality than 2D-VQ, even with fewer parameters.
Second, the proposed VQ performs favorably against baseline architectures with a similar size
and gets much better with a larger model. Third, ImageNet [47] initialization boosts the per-
formance for 2D and 3D models, where the central inflation outperforms the average inflation.
The results demonstrate the excellent reconstruction fidelity of our tokenizer design.

3.3.3 Qualitative Evaluations

We qualitatively compare the reconstruction quality of MAGVIT 3D-VQ and the baseline mod-
els on UCF-101. In addition, we present MAGVIT’s high-quality reconstruction on example
YouTube videos with more samples at https://magvit.cs.cmu. edu.

Comparison of reconstruction quality. Fig. 3.2 compares the reconstruction quality of the
three VQ tokenizers on the UCF-101, including the 2D-VQ from MaskGIT [33], the 3D-VQ from
TATS [63], and MAGVIT 3D-VQ, where the videos are taken from the UCF-101 training set.
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(d) Real

Figure 3.2: Comparison of tokenizers on UCF-101 training set reconstruction. Videos
are reconstructed at 16 frames 64x64 resolution 25 fps and shown at 12.5 fps, with the ground
truth in (d).
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We obtain the TATS model from their official release at ht tps: //songweige.github.
io/projects/tats/. We train the MaskGIT 2D-VQ and MAGVIT 3D-VQ using the same
protocol on the UCF-101 dataset.

We can see that the MaskGIT 2D-VQ produces a reasonable image quality, but falls short of
frame consistency which causes significant flickering when played as a video (e.g., the curtain
color in the first row and the wall color in the third row). TATS 3D-VQ has a better temporal
consistency but loses details for moving objects (e.g., the woman’s belly in the second row).
In contrast, our 3D VQ produces consistent frames with greater details reconstructed for both
static and moving pixels.

Scalable tokenization. Since the tokenizers are trained in an unsupervised manner, they
exhibit remarkable generalization performances and can be scaled to big data as no labels are
required. To demonstrate this, we train a large MAGVIT 3D-VQ on the large YouTube-8M [1]
dataset while ignoring the labels, and use the model to quantize randomly sampled videos on
YouTube.

Figs. 3.3 and 3.4 show the original and reconstructed videos from YouTube at 240p (240 x
432) resolution with arbitrary lengths (e.g. 4,096 frames). Although the tokenizer is only trained
with 16-frame 128x128 videos, it produces high reconstruction fidelity for high spatial-temporal
resolutions that are unseen in training. Our 3D-VQ model compresses the video by a factor of
4 temporally, by 8x8 spatially, and by 2.4 (24 bits — 10 bits) per element. Our 3D-VQ model
represents a N-frame video as § x30x 54 discrete tokens with a codebook of size 1024, repre-
senting a total compression rate of 614.4. Despite such high compression, the reconstructed
results show stunning details and are almost indistinguishable from the real videos.

3.4 Summary

In this chapter, we introduce the MAGVIT 3D-VQ model, which tokenizes a video into a low-
dimensional spatial-temporal latent representation with high reconstruction quality. Quantita-
tive and qualitative evaluations show the favorable performance of our model compared to pre-
vious best video tokenizers. This successful design presents a compact but comprehensive latent
space for video generation, which fosters the strong video generation results of MAGVIT [242]
presented in Chapter 6.
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Figure 3.4: Our 3D-VQ model produces high reconstruction fidelity with scalable spatial-temporal resolution. For each
group, the top row contains real YouTube videos and the bottom row shows the reconstructed videos from the discrete tokens.
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Chapter 4

Visual Lexical Representation

Overview. In this chapter, a revolutionary approach is presented for the mapping of non-
linguistic modalities, like images, onto the token space of an immutable Large Language Model
(LLM). The innovation is encapsulated in the form of the Semantic Pyramid AutoEncoder (SPAE),
which is designed to learn a multi-modal lexical latent representation for images and videos. By
doing so, it empowers the cross-modal proficiencies of LLMs that have been exclusively trained
on textual data. The core functionality of SPAE lies in its capacity to transmute visual content
into intelligible lexical tokens that are harnessed from the vocabulary of the LLM. These tokens
possess the dual capability of encapsulating both semantic significance and appearance details.
As a result, they not only facilitate visual reconstruction but also serve as catalysts for a range
of diverse multi-modal tasks.
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4.1 Motivation

Large Language Models (LLMs) have made significant advances in solving a wide range of NLP
tasks, while expanding their capabilities beyond language into other modalities. To facilitate
LLMs for such cross-modal tasks, we propose to learn a vector quantizer to map an image, or
some other non-linguistic (“foreign”) modality, to the token space of a frozen LLM.

In this chapter, we introduce Semantic Pyramid AutoEncoder (SPAE) for a multimodal lex-
ical representation for images and videos. SPAE converts between raw pixels and interpretable
lexical tokens (or words) extracted from the language model’s vocabulary. The resulting tokens
capture both the semantic meaning and the fine-grained details needed for visual reconstruc-
tion, effectively translating the visual content into a language comprehensible to the LLM, and
empowering it to perform a wide array of multimodal tasks.

In contrast to the majority of VQ-VAE approaches [200], our encoder maps to an inter-
pretable discrete latent space, i.e., words. As depicted in Fig. 4.1, SPAE tokens have a multi-scale
representation arranged in a pyramid structure. The upper layers of the pyramid comprise
semantic-central concepts, while the lower layers prioritize appearance representations that
captures the fine details for image reconstruction. This design enables us to dynamically adjust
the token length to accommodate various tasks, such as using fewer tokens for understanding
tasks and more tokens for generation tasks.

4.2 Prior Work

Tokenization via vector quantization. VQ-VAE [200] compresses data into a discrete latent
space defined by a codebook via vector quantization. VQGAN [57] enhances the reconstruc-
tion quality with adversarial and perceptual objectives. These discrete latent quantities, often
referred to as tokens, are widely used to learn generative transformer models for image [33, 165],
video [63, 203, 242], image-video [245], and audio [19, 46].0ur SPAE model is built upon the
VQGAN framework and applicable to different modalities.

Tokenization into lexical representations. The codebooks in typical VQGANS are learned
jointly with the encoder and decoder stacks, which are not directly interpretable via natural
languages. LQAE [132] replaces the learned codebook with frozen word embeddings from
BERT [49] to connect with an English vocabulary. However, the LQAE tokens seldom con-
tain semantic concepts in an image, and the reconstruction quality is worse than that with a
learned codebook. Our SPAE quantizes an input sample into semantically related tokens in a
multilingual vocabulary while preserving the high reconstruction quality of a VQGAN for gen-
erative tasks. In addition, SPAE tokens are organized in a multi-layer coarse-to-fine pyramid
for flexible usage in different tasks.

4.3 SPAE: Semantic Pyramid AutoEncoder

Our goal is to model an image, or some other non-linguistic modality (e.g., video or audio), as a
language sequence that LLMs can comprehend. Semantic Pyramid AutoEncoder (SPAE) gener-
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Figure 4.1: Framework of the proposed SPAE model. An image is encoded into a pyramid of
lexical tokens capturing semantic concepts and appearance details necessary for reconstruction.

ates a lexical word sequence with dynamically adjustable length that carries rich semantics and
retains fine details for signal reconstruction. To work with a frozen LLM via in-context learn-
ing, we introduce a progressive in-context denoising method to facilitate image generation. We
use the image modality in this section to introduce our SPAE model in 2D, and later showcase
the results of a 3D variant with the video modality in our experiments.

4.3.1 Model Architecture

Our SPAE model extends the VQ-VAE [200] framework, which comprises an encoder, a quan-
tizer, and a decoder. The CNN encoder maps an image I € R”">3 into continuous embeddings
Z € R Each element z € Z is then passed through the quantizer, which assigns it to the
closest entry in a codebook, resulting in the quantized embedding. Let v/ represent the quan-
tized embeddings for the entire image. The CNN decoder receives Z as input and generates the
reconstructed image I. Below we highlight the design differences in SPAE.

As illustrated in Fig. 4.1, SPAE generates lexical tokens arranged in a pyramid structure,
which contains semantic concepts in the upper layers and appearance with progressively re-
fined details in the lower layers. We introduce a semantic loss to encourage the usage of con-
ceptually relevant tokens.

Frozen language codebook. To generate lexical tokens, we utilize a pretrained LLM code-
book C = {(k,e(k)) | k € T} and freeze it during training, where T is a subset of the LLM
vocabulary. Here, e(-) produces the text embedding for a sub-word k which may be obtained
from any layer of the LLM. Since the codebook is aligned with the language vocabulary, we use
the terms “token” and “word” interchangeably.
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Figure 4.2: Dilation subsampler visualization.

Token pyramid. The SPAE quantizer produces D layers of tokens where the tokens at layer
[ are denoted as k; € T"*!. Prior works use Residual Quantization (RQ) to generate multi-layer
tokens [119, 249]. In these methods, tokens from all layers have uniform shapes and do not carry
specific semantic meanings. In contrast, we propose a pyramid token structure by enforcing the
constraint h; < hjq A w; < wiyg. The pyramid structure is purposefully designed to concentrate
semantics within the upper layers of the pyramid. This design allows for representing semantic
concepts with notably fewer tokens, e.g., as few as five tokens for understanding tasks. The high
token efficiency stems from the pyramid structure, as a conventional layer without pyramid
structures needs a minimum of hw tokens (e.g., 256) to represent the image. Token efficiency
is crucial for in-context learning as it enables the accommodation of more examples within the
context. Fig. 4.2 illustrates the formation of the pyramid with a dilation subsampler P(I), which
selects the positions for quantization at layer [ as

/ /
P() = {(Hi— | = | + 1w~ || +1) | G,j) € (1, h] x [1,w]) n Z2, (4.1)
where b’ = Z—’;, and w = WVLI’ are the downsample ratios.

Streaming average quantization. For each embedding z at position (x, y), we obtain its
discrete tokens k; sequentially from layer 1 to D. At layer [, if (x, y) € P(l), the quantizer assigns
discrete token k; = arg min, . [z, — e(k)[3, where z, is the current layer embedding, calculated
from

71 = 2+ Yy Lieyyeriy(z — e(ky)). (4.2)

The quantized embedding reconstructed with the first / layers is given by the average of the
existing token embeddings as

I
Yie1 Layerme(ki)
l .
Yi=1 Lxy)er(

i<l = (43)

Using the input of Z, from tokens up to layer [, the decoder can progressively reconstruct
the image with dynamic token lengths, resulting in gradually improved quality with refined
appearance details. We term this approach as Streaming Average Quantization (SAQ) due to its

resemblance to computing the average on streaming data, where z;,; = 2z + ﬁe(km),l =
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Figure 4.3: Comparison between RQ and SAQ. We show a 2-layer quantization process in a
2-dimensional space as an example. At layer [, we use blue for the current remainder embed-
dings z;, ,and

Z§=1 1(xy)ep(- Fig. 4.3 compares our proposed SAQ with Residual Quantization (RQ) [119, 249].
RQ is applicable but yields worse results in this context, as revealed by our ablation studies. This
can be attributed to (1) varying scales of embeddings in residual layers, potentially dividing the
codebook into multiple parts, and (2) misalignment in the summation of word embeddings,
which undermines learning semantically meaningful tokens in later layers. At layer 2, the
SAQ remainder embedding z, = 2z — e(k;) is at a more similar scale to z, compared to the
RQ remainder z — e(k;). We find that the scale consistency promotes better utilization of the
frozen language codebook despite a large number of layers being used. Due to the pyramid
structure, quantization in the first few layers may be skipped for those positions not selected
by the dilation subsampler. Considering the scale consistency across quantization layers, the
use of SAQ is more appropriate in this case.

4.3.2 Training Objectives

Semantic loss. We encourage the semantic similarity between the image I and each lexical
token k denoted by s(I, k). During training, we build per-layer candidate token pools as

CD) ={keT|s(Lk) > p, (4.4)

where p; is a threshold. We set p; > p;; to allow deeper layers to have a larger pool of candidate
tokens while sacrificing some semantics.

To define the similarity score, we employ a pretrained CLIP model [156]. In more details,
let f; and fr be a pair of image and text CLIP embedding functions. We precompute the text
feature for each token k € T as

LK) = ﬁ TP £ (p (), (45)

where p is a list of prompt templates, such as "a photo of ...". During training, we
extract the image feature f;(I) and compute the dot-product similarity as s'(I k) = f;(I) - £/ (k).
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The similarity score is then normalized to account for the varying scales across different images.

s’(I k) — min; s'(L, j)

Lk)= . 4.6
s(LK) max; s’(L, j) — min; s’(L, j) (4.6)
We define the semantic loss for the encoder parameters 6, as
exp(—|(z — e(0)|3
Esemantic(ge;l) = E E E -1 p( ”( l ( )”2) (47)

o) s
D] 7 e 8 Ser exp(—lzi — e(OIE)

where we randomly sample semantically similar target codes c for each layer embedding in the
first D’ layers.

Appearance loss. Using an improved objective from [242], the appearance loss is calculated:

Eappearance(ees 6d§ I):”I - i”g + )B 2121 ”Z - Sg(zgl)”% + A['GAN + nﬁPerceptual + (}SELeCAM, (48)

where Loan, Lperceptual, and Li.cay are the VQGAN [63], perceptual [105], and LeCAM [194]
losses. In addition, sg(x) is the stop-gradient operation. The appearance loss is applied to both
the encoder 0, and decoder parameters 6, excluding the frozen codebook embedding.

Overall objective. To stabilize the training and balance between appearance and semantics,

we add a dynamic weight for the semantic guidance loss as w = sg(EZPLT“(S)) The total

training loss excluding the GAN discriminator is

ESPAE(Ge; eq) = IIE Eappearance(ew eq; I) + aWﬁsemantic(ee; I)] . (49)

4.4 Experimental Results

4.4.1 Experimental Settings

Language codebooks. To verify the compatibility with different LLMs, we train two vari-
ants of SPAE, namely SPAEp, i and SPAEgpr. The SPAEp,1\ codebook is taken from the input
embedding layer of a PaLM 2-S checkpoint with a 65k vocabulary of the most frequent sen-
tence pieces. SPAEGpr uses a byte-pair encoding vocabulary with 99k UTF-8 tokens (https:
//github.com/openai/tiktoken), where we obtain the contextual token embed-
dings from OpenAl text-embedding-ada-002 (https://platform.openai.
com/docs/models/embeddings).

Image SPAE. An image SPAE encodes a 128x128 image into 16x16 embeddings. Following
the VQGAN [57] architecture, we use 128 base filters with channel multipliers [1, 2, 2, 4] and
2 residual blocks at each scale, which results in 59M parameters in total. The embeddings
are quantized into a token pyramid of 6 layers where each layer has 2F x 2* tokens and k =
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[0,1,2,3,4,4]. We apply semantic guidance loss to the first five layers, with thresholds of 0.98,
0.95, 0.9, 0.85, and 0.8. The CLIP with a ViT-L/14 [52] vision backbone is used. We use 80
prompt templates from the zero-shot ImageNet classification setup to precompute the CLIP
text embeddings for the vocabulary. In addition, we use the Adam [110] optimizer with loss
weights ¢ = 1,8 = 0.33,A = 0.1, = 0.1,¢ = 10™* and a learning rate of 10™* following a linear
warmup/cooldown and root square decay schedule. Following the prior work [132], SPAE is
trained on the ImageNet ILSVRC2012 [47] dataset. We train with a batch size of 256 for 450k
steps, which takes 1.4k TPUv3-hours.

Image SPAE-8. Inaddition to the primary SPAE model with six pyramid layers, we also train
an SPAE-8 model with eight layers to conduct a more in-depth analysis of the coarse-to-fine
reconstruction process. The two extra layers each contain 16x16 tokens. The semantic loss is
still applied on the first 5 layers as in the primary model.

Video SPAE. We initialize a video SPAE by VQGAN inflation [242] from a pretrained image
SPAE, which encodes 16 frames at 128x128 resolution into 4x16x16 embeddings. A video SPAE
consists of 176M parameters. The pyramid layers contain 1x1x1, 1x2x2, 1x4x4, 2x8x8, 4x16x16,
and 4x16x16 tokens. The video embedding is obtained as the average CLIP embedding for all
frames. The model is trained on the Kinetics-600 [30] dataset which contains 384k videos. We
train with a batch size of 512 for 130k steps, which takes 5.8k TPUv4-hours.

4.4.2 Quantitative Evaluations

We compare the image and video reconstruction quality using the tokens produced by SPAE
and the VQGAN baseline used in state-of-the-art image [33, 34, 126] and video generation [242].
We use FID [85], Inception Score (IS) [172], and LPIPS [254] to compare with the image VQGAN
from MaskGIT [33] on the ImageNet validation set, and FVD [198] to compare the 3D-VQGAN
from MAGVIT [242] on the Kinetics-600 validation set. To quantify the semantics, we compute
the CLIP and relative CLIP scores (Eq. (4.6)), both averaged across all lexical tokens.

Comparison to VQGAN. The results are presented in Tab. 4.1 for image models and in
Tab. 4.3 for video models. Unlike VQGAN tokens, which lack specific semantic meaning, SPAE
tokens demonstrate high semantic CLIP scores, more evident in the lower layers. As the number
of layers increases, more tokens are utilized, resulting in improved reconstruction quality. This
flexibility allows for dynamic adjustment of the token length to accommodate various tasks,
such as using fewer tokens for understanding tasks. While SPAE may have more lossy recon-
struction compared to VQGAN when using a similar number of tokens, this is compensated by
going into deeper layers, as shown in the layer 6 of SPAE in Tab. 4.1. In Fig. 4.4, we show the
training curves of FID, IS, LPIPS, and CLIP score of SPAE and VQGAN. As shown, within 40%
of the training steps, SPAE shows better FID than the final VQGAN checkpoint. The CLIP score
keeps improving as the training proceeds, while the LPIPS saturates quite early. In Tab. 4.2,
we showcase the scalability of our model by training on the ImageNet-21k dataset with 13M
images and list the comparable variant from LDM [165] as a reference.
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# Layers Classification

Model FID] ISt LPIPS| CLIP?

: # Tokens Accuracy?
VOGAN 1: 256 548 119.69 0.13 n/a 19.6
+ frozen codebook 1: 256 744 10139 017  0.1464 19.5
___ +semanticguidance 1:256 517 12441 = 013 = 01518 ¢ 462
+ 2-layer RQ 1: 256 11.94 89.01 0.22 0.1595 56.2
e Ao 22512 605 11393 01> 017 -
1: 256 12.30  93.33 0.21 0.1613 56.6
+ 2layer SAQ 2:512 508 12527 014  0.1595 -
1:1 - - - 0.1879 52.0
2:5 - - - 0.1868 64.2
+ 6-layer pyramid SAQ 3:21 - - - 0.1815 65.1
SPAE (ours) 4: 85 - - - 0.1711 58.5
5: 341 9.49 109.46 0.17 0.1604 46.3
,,,,,,,,,,,,,,,,,,,,,,,,,,, 6:597 441 13303 012 0177 -
no per-layer thresholds 6: 597 433  122.25 0.11 0.1650  59.4 (layer 3)
no dynamic semantic weight 6: 597 9.00 85.14 0.19  0.1847  65.1 (layer 3)
no perceptual loss 6: 597 40.47 3341 0.20  0.1994 69.5 (layer 3)
1:1 - - - 0.2051 -
2:5 - - - 0.2046 -
3: 21 - - - 0.2012 -
4: 85 - - - 0.1896 -

SPAE-§ (ours) 5:341 4342 4978 032 0.1709 -

6: 597 893 116.12 0.18 0.1667 -
7: 853 4.78  135.01 0.13 0.1647 -
8: 1109 3.89 140.55 0.11 0.1634 -

Table 4.1: Comparison of reconstruction quality and semantic relevance for image tok-
enization. We compare SPAE and VQGAN baselines used in state-of-the-art image [33, 34, 126]
generation models with ablation studies on codebook, training objective, quantization method,
and token structure at 128x128 resolution. Classification accuracy is evaluated under the mini-
ImageNet 5-way 1-shot setup (c.f. Section 7.4.1).

# Layers
Method Dataset . # Tokens FID| IS1 LPIPS|
VQGAN (LDM [165]) Openlmages  1: 256 5.15 144.55 -
SPAE (ours) ImageNet-21k 6: 597 3.08 173.79  0.19

Table 4.2: Comparison of reconstruction quality with scalability between SPAE and VQ-
GAN baselines on 256x256 images.
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# Layers Relative

Method e Tokens FVDL CLIPT T

VOGAN 1: 1024 6.79 n/a n/a
1: 1 - 0.2061 0.8425
2:5 - 02056 0.8402
3: 21 - 02032 0.8286

SPAE (ours) 149 - 01896  0.7620
5: 1173 52.28 01670  0.6531
6: 2197 6.35 0.1635 0.6367

Table 4.3: Comparison of reconstruction quality and semantic relevance for video to-
kenization between SPAE and the VQGAN baselines used in state-of-the-art video [242] gen-
eration models.

FID IS
25 130
—— SPAE
VQGAN 120 1
20 1
110 -
100 -
90 -
80
70 -
—— SPAE
60 VQGAN
T T T T T 50 T T T T T
0 100000 200000 300000 400000 0 100000 200000 300000 400000
step step
LPIPS CLIP
0.20 0.21
—— SPAE —— SPAE
0.18 - VQGAN 0.20 -
0.16 0.19 A
0.14 0.18 A
0.12 0.17 1
010 T T T T T 016 T T T T T
0 100000 200000 300000 400000 0 100000 200000 300000 400000
step step

Figure 4.4: Training curves of SPAE in comparison to VQGAN.
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Figure 4.5: Ablation examples with reconstructed image and semantic tokens for models
listed in Tab. 4.1. For non-pyramid tokens, we show a 4x4 crop from the first layer correspond-
ing to the region indicated by the black box. For pyramid tokens, we use the third layer which
consists of 4x4 tokens. We use darker cells to show tokens with higher CLIP similarity to the
original image. For non-English sub-word tokens, we show automatic translation for reference
in italic fonts below the original token.

Ablation studies. The results in Tab. 4.1 and Fig. 4.5 verify the effectiveness of the proposed
designs in SPAE, as evaluated by reconstruction quality (FID, IS, LPIPS) and semantic relevance
(CLIP score, few-shot classification accuracy). We have the following findings. First, simply us-
ing a frozen codebook negatively affects the reconstruction results, but with semantic guidance
it performs comparably with the original VQGAN while producing meaningful lexical words.
Second, RQ hurts reconstruction quality with a frozen codebook. This is different from RQ’s
standard setup [119] where the codebook is learned. Third, SAQ improves both quality and
semantic similarity, where the pyramid enables representation with much fewer tokens. This
allows for accommodating more examples within the fixed and constrained in-context length.
Finally, per-layer semantic thresholds benefit understanding and the dynamic semantic loss
weight helps reconstruction. The perceptual loss leverages a trained network with access to
classification labels, but removing it results in a surprising improvement in classification accu-
racy while greatly hurting the reconstruction.

Token quality with more SPAE layers. The bottom section of Tab. 4.1 shows the per-layer
reconstruction quality and semantic relevance of tokens from the SPAE-8 model in comparison
to the default model. With more token layers, the model gains larger capacity for both semantic
and appearance, where the appearance gets pushed into deeper layers. At layer 1 to 6, SPAE-8
yields consistently higher CLIP scores than SPAE. At the last three layers, SPAE-8 also has better
reconstruction quality than the last two layers of SPAE. These results suggest the potential of
better reconstruction quality and semantic relevance from using more token layers. Fig. 4.6
shows the coarse-to-fine image reconstruction by the last four layers of SPAE-8.
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Original Layer 5 Layer 6 Layer 7 Layer 8

Figure 4.6: Examples of coarse-to-fine image reconstruction by SPAE-8. The top 5 layers
reconstruct a noisy image. The appearance details gradually get refined as more token layers
are aggregated by the streaming average quantization process.
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Figure 4.7: Examples of pyramid image tokenization and reconstruction by a 6-layer
SPAE. We show the raw pyramid or histogram of most frequent tokens for the first four layers,
and reconstructed images from layer 5 and 6. In the pyramid, we use darker cells to show tokens
with higher CLIP similarity to the original image. For non-English sub-word tokens, we show
automatic translation for reference in italic fonts below the original token. Circled tokens are
mentioned in Section 7.4.1.

4.4.3 Qualitative Evaluations.

We visualize the tokens produced by SPAE in Figs. 4.7 and 4.8, where we show the raw pyramid
or histogram of tokens with top frequencies for the first four layers, with reconstructed images
from layer 5 and 6. We have the following findings.

First, the SPAE tokens are organized in a pyramid structure, with every layer comprising
semantically related tokens to the image. The few tokens in the top layers seem to capture
the primary theme of the image. For instance, in Fig. 4.7, the token presso (highlighted
in orange) represents the espresso machine and other tokens like blender refer to related
regions. Layer 3 and Layer 4 reveal additional details about localized objects. For example, the
token Thermo refers to the thermometer in the top-left region, while stove appears in the
bottom-right area. In addition to nouns, related verbs also show up, including pouring,
refill, spill, and brew.

Second, it is worth noting that the CLIP model has an English-only vocabulary. However,
thanks to the multilingual vocabularies and embeddings from the LLM, SPAE’s semantic guid-
ance is able to map to similar concepts in other languages, such as koffie in Dutch and
kaffe in Danish as corresponding terms to the concept of coffee.

Third, similar to RQ tokens [119], SPAE tokens can reconstruct the image with progressively
refined details when more layers, and thus tokens, are utilized. Fig. 4.7 shows Layer 5 begins
to produce a reasonable reconstruction while Layer 6 further enhances the level of detail and
smoothness.

Fig. 4.8 shows full tokenization and reconstruction samples by a 6-layer SPAE from Ima-
geNet validation set. Key concepts are captured in the first few layers, whereas the later layers
focus on the visual appearance. In the coffee machine example, many keywords are present to
describe various aspects from the stove to the thermometer. In the parrot case, a single unified
concept is repeatedly highlighted.
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(b) A single unified concept is repeatedly highlighted.

Figure 4.8: Examples of pyramid image tokenization and reconstruction by a 6-layer
SPAE. For visualization purposes only, we use darker cells to show tokens with higher CLIP
scores regarding the original image. For non-English sub-word tokens, we show automatic
translation for reference in italic fonts below the original token. We show tokens in all six
layers, along with reconstructed images from the last two layers.
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4.5 Summary

In this chapter, we introduce the Semantic Pyramid AutoEncoder (SPAE) to map an image, or
some other non-linguistic modality, to the token space of a frozen LLM. We use SPAE to pro-
duce a multi-scale multi-modal lexical latent representation for images and videos. The resulting
tokens capture both the semantic meaning and the fine-grained details needed for visual recon-
struction, effectively translating the visual content into a language comprehensible to the LLM.
In Chapter 7, we will use SPAE to empower LLMs to perform a wide array of multimodal tasks.
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Chapter 5

Scalable Visual Token Representation

Overview. While Large Language Models (LLMs) are the dominant models for generative
tasks in language, they do not perform as well as diffusion models on image and video gen-
eration. To effectively use LLMs for visual generation, one crucial component is the visual
tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this
chapter, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expres-
sive tokens as multi-modal latent representation for both videos and images using a common
token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion
models on standard image and video generation benchmarks including ImageNet and Kinet-
ics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing
video tokenizer on two more tasks: (1) video compression comparable to the next-generation
video codec (VVC) according to human evaluations, and (2) learning effective representations
for action recognition tasks.
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5.1 Motivation

Large transformer-based language models, commonly referred to as LMs or LLMs, are the de
facto models for natural language generation [7, 145, 191]. Over time, LMs have expanded
their capabilities to generate content in various modalities, asserting their dominance in other
domains like audio [3], speech [167], code generation [128], medical applications [179] and
robotics [262].

LMs are capable of generating images and videos. To do so, the image pixels are mapped
into a sequence of discrete tokens by a visual tokenizer (c.f. Section 5.2). These tokens are then
fed into the LM transformer, as if they were lexical words, for generative modeling. Despite
notable advancements in employing LMs for visual generation [33, 57], LMs still do not perform
as well as diffusion models [165]. For instance, when evaluating on the ImageNet dataset, a gold
standard benchmark for image generation, the best language model [120] underperforms the
diffusion model [62] by a substantial 48% margin (FID 3.41 vs. 1.79 when generating images at
the 256x256 resolution).

Why do language models lag behind diffusion models in visual generation? This chapter
suggests that a primary reason is the lack of a good visual representation, resembling our
natural language system, for effectively modeling the visual world. To substantiate this hy-
pothesis, this chapter shows that, when utilizing a good visual tokenizer, the masked language
model [33, 49, 242] surpasses the state-of-the-art diffusion models in terms of both generation
fidelity and efficiency across image and video benchmarks, given the same training data, com-
parable model size, and training budget. To the best of our knowledge, this provides the first
evidence that language models beat diffusion models on the hallmark ImageNet benchmark.

It is worth emphasizing that our intention is not to assert whether the language model is
superior to others, but to promote the exploration of visual tokenization methods for LLMs.
A fundamental difference of LLMs from other models, such as diffusion models, is that LLMs
utilize a discrete latent format: tokens obtained from a visual tokenizer. We show that the values
of these discrete visual tokens should not be overlooked considering their distinct advantages
as follows.

1. Compatibility with LLMs. The main advantage of a token representation is that it
shares the same form as language tokens, making it straightforward to leverage the opti-
mizations our community has developed over many years for LLMs. This includes faster
training and inference speeds [122, 176], advancements in model infrastructure [45, 54],
learning recipes for model scaling [25, 40], and GPU/TPU optimization, among other in-
novations. Unifying vision and language by the same token space could set the stage
for a true multimodal LLM that can understand, generate, and reason within our visual
environment.

2. Compressed representation. The discrete token may offer a fresh perspective on video
compression. The visual tokens can serve as a new video compression format to reduce
disk storage and bandwidth during internet transfers. Unlike compressed RGB pixels,
these tokens can be fed directly into generative models, bypassing the conventional de-
compression and latent encoding steps. This allows for faster processing in generative
video applications, especially beneficial in edge computing cases.
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3. Visual understanding benefits. Prior research has shown that the discrete tokens are
valuable as a pre-training target in self-supervised representation learning, as discussed
in BEiT [14] and BEVT [211]. Additionally, research finds that using tokens as the model
inputs improves the robustness and generalization [137].

In this chapter, we introduce MAGVIT-v2, a video tokenizer designed to map videos (and
images) into compact discrete tokens. Our model is built on the state-of-the-art video tokenizer,
MAGVIT [242], within the VQ-VAE framework [200]. We propose two new techniques. First, a
novel lookup-free quantization method enables the learning of a large vocabulary that is able
to improve generation quality of the language model. Second, through extensive empirical
analyses, we have identified modifications to the tokenizer that not only enhance generation
quality but also enable the tokenization of both images and videos using a shared vocabulary.

We empirically demonstrate that our model outperforms the previously top-performing
video tokenizer, MAGVIT, in three key areas. First, our model significantly improves the gen-
eration quality of MAGVIT, establishing the state of the art on the common image and video
benchmarks. Second, user studies indicate that its compression quality exceeds that of MAGVIT
and the current video compression standard, HEVC [186]. Moreover, it is on par with the next-
generation video codec, VVC [24]. Finally, we show that, compared to MAGVIT, our new tokens
are stronger for video understanding tasks across two setups and three datasets. The main con-
tributions of this chapter are:

* A new video tokenizer that outperforms the previously best-performing video tokenizer

in three areas: visual generation, video compression, and action recognition.

* A novel lookup-free quantization approach that enables improving the visual generation
quality of language models by learning a large vocabulary.

* To the best of our knowledge, the first evidence suggesting that a language model can
outperform diffusion models on ImageNet when provided with the same training data,
an equivalent model size, and a similar training budget.

* A video compressor with better quality than HEVC and VVC, at similar bit rates, ac-
cording to user studies. To our knowledge, this is the first successful attempt of a visual
tokenizer designed for video generation to achieve comparable results to standard codecs.

5.2 Background

Language Model (LM) for visual generation. LMs have been extended to generate images
and videos. A visual tokenizer f is used to first map visual inputs into a sequence of discrete
tokens. A video V € R"™">3 (or image when T = 1) is tokenized into a discrete representation
X = f(V) e {1,2,--,K }T'XH/XW/, where K is the codebook (vocabulary) size of the visual tok-
enizer. X is flattened into a 1D token sequence obtained using raster scan ordering and then
fed into an LM transformer for generative modeling.

Two types of LMs are commonly used for visual generation. The Autoregressive LM (AR-
LM) includes ImageGPT [37], DALL-E [160], Parti [235], etc. An AR-LM predicts the next token
given the previous tokens along with additional conditioning information c using a categorical
distribution for py(x; | x;; ¢). During inference, AR-LMs use the standard autoregressive de-
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coding over the tokens. Finally, the tokens are converted back to pixels by a decoder associated
with the visual tokenizer.

The Masked LM (MLM) is another type of language model for visual generation, such as:
MaskGIT [33], MAGVIT [242], Phenaki [203], and MUSE [34], among others. An MLM is
trained using a masked token objective [49], where some tokens in the sequence are randomly
masked and need to be predicted given the observed tokens. Let m € {0, 1}" be a random binary
sequence where m"1 € [0,n — 1]. The MLM learns py(x; | {x; : m; = 1,Vj}; c) for all i where
m; = 0. To generate a video or image during inference, the MLM uses the non-autoregressive
decoding algorithms for images and videos [33, 242]. The decoding starts with a fully masked
sequence, which is iteratively filled by repeating two steps: (1) sample the whole sequence %X’
from py given the non-masked tokens from the previous step, (2) re-mask the |A(t)-n] tokens in
%@ with the lowest probability, following a decreasing masking ratio schedule A(t), according
to timestamp ¢.

Denoising Diffusion Models (DDM). DDMs [181, 183] are regarded as the state-of-the-art
in visual generation due to their high-quality image [50, 50, 88, 169] and video generation [88,
90, 177]. For instance, DDPM [87] learns a denoising process parameterized as conditional
Gaussian distributions over image pixels. Recently, diffusion models and language models have
displayed a significant overlap, where DDMs diffuse over latents rather than raw pixels. These
latents are obtained using models similar to the visual tokenizer used by LMs. In fact, the
very first latent in diffusion, proposed by [165], is derived from a visual tokenizer. Binary
latents for image modeling are also used in [216], where the diffusion process is parameterized
with Bernoulli distributions. Later studies have identified advantages in substituting the U-
Net [166] denoising backbone with a Transformer [102, 147] or a hybrid of both [94], making
the distinctions between diffusion and language models in visual generation more blurred. Yet,
a fundamental difference between DDMs and LMs lies in the latent format, i.e., continuous vs.
discrete. We have discussed the benefits of having discrete tokens in Section 5.1 and will show
that the proposed tokenizer improves in these aspects.

Visual tokenization. Visual tokenization plays an essential role in mapping pixels into a
discrete representation suitable for generative modeling. VQ-VAE [200] is a cornerstone work
in image tokenization. A VQ-VAE model consists of a convolutional neural network (CNN) en-
coder, a vector-quantization (VQ) bottleneck, and a CNN decoder. Given a video V € RPHFW>3,
the VQ-VAE’s encoder E produces latent embeddings Z = E(V) € R"*#*"*d_Each embedding
vector z € R? in Z is then passed through the vector quantizer g, which assigns it to the closest
entry ¢ € R? in the learned codebook embedding C € RX*:

q(z) = ¢;, where i = argmin|z — ¢;]s. (5.1)
je{1,2,+ K}

To get discrete tokens, we drop the embedding dimension and represent Z by its indices X €
{1,2,,K }T/XH/XW’. For decoding, embeddings of all image tokens are given as input to the
decoder D to reconstruct the input V = D(2). Following VQ-VAE, VQGAN [57] introduces an
adversarial loss and feature-level perceptual losses to enhance the image quality.
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Video tokenization is more challenging since it requires modeling the visual dynamics
within the compressed spatial-temporal latent space. Early studies on video tokenization treat
frames as independent images with no temporal compression [74, 225]. Later research [63, 232,
242] integrates 3D CNNs to tokenize spatial-temporal volumes. The state of the art in video
tokenization is MAGVIT [242], which introduces a better 3D architecture, an inflation tech-
nique for initialization using image pre-training, and robust training losses. With MAGVIT, the
LMs achieve leading generation quality across multiple video benchmarks. However, MAGVIT
struggles to tokenize images and often results in noticeable flickering in longer videos. Beyond
the CNN-based models discussed above, additional models have been proposed. ViT-VQGAN
[234] introduces transformer blocks as a substitute for CNNs for image tokenization. C-ViViT
[203] further extends this idea for video tokenization. Despite these advances in vector quan-
tization (VQ), the codebook learned by previous VQ models is relatively small (e.g., 8k) due
to the difficulty in improving the generation quality with larger vocabularies. In contrast, our
tokenizer can induce a large vocabulary (e.g., 262k) that can be effectively modeled by an LM,
leading to enhanced image and video generation quality.

Text-to-{image, video}. Text-to-image and text-to-video generation has garnered signifi-
cant rapid advancements using both language models [34, 246] and diffusion models [16, 64,
88, 161, 177]. Although diffusion models, such as Midjourney, are considered the top perform-
ers in these tasks, it is unclear whether their advantage stems from the model, data, or some
other unidentified factors. Indeed, it is challenging to scientifically compare these text-to-image
models as they are trained on varied datasets, with some even being proprietary data, under
inconsistent training conditions. To facilitate a fairer comparison, this chapter prioritizes using
the ImageNet and Kinetics benchmarks.

5.3 MAGVIT-v2 Video Tokenizer

We introduce a new video tokenizer designed to map the spatial-temporal dynamics from a vi-
sual scene into compact discrete tokens suitable for language models. Compared with image
generation, video generation still faces substantial challenges in generating consistent and re-
alistic motion. We are interested in exploring the capabilities of language models in tackling
this unsolved challenge. Therefore, we focus on a video tokenizer that can effectively represent
video for generative modeling. Our approach builds upon the state-of-the-art video tokenizer,
MAGVIT, as detailed in [242]. This section highlights two new designs: a lookup-free quantizer
and a collection of enhancements to the tokenizer model.

5.3.1 Lookup-Free Quantizer

Although the community has made great progress in developing VQ-VAEs, the relationship
between improvements in the reconstruction quality and subsequent generation quality is still
not well understood. A common misconception is that improving reconstruction equates to
improving the generation of the language model. For example, enlarging the vocabulary can
improve reconstruction quality. However, such improvement only extends to generation when
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Figure 5.1: Reconstruction and generation quality curves in FID on ImageNet when scaling
the tokenizer’s vocabulary size with Vector Quantization (VQ) and Lookup-Free Quantization
(LFQ). Comparison is done at 128x128 resolution using an MLM with 306-372M parameters.

the vocabulary size is small, and a very large vocabulary can actually hurt the performance of
the language model.

As illustrated by the dashed curves in Fig. 5.1, the reconstruction FID, indicated by the right
y-axis (wWhere a lower value is better), improves as the vocabulary size (the x-axis) increases.
The orange solid curve in Fig. 5.1 represents the LM’s generation quality (the left y-axis). The
generation FID initially improves but deteriorates for larger vocabulary. This may shed light on
why the vocabulary size of most language models for visual generation is around 1-8k [57, 203],
which is significantly smaller than the size of natural language vocabulary, i.e. over 200k.

A simple trick for training a larger codebook involves decreasing the code embedding di-
mension when increasing the vocabulary size [234]. This trick captures the intuition of limiting
the representational capacity of individual tokens, which in turn facilitates learning over the
distribution of a large vocabulary.

Lookup-Free Quantization (LFQ). Motivated by the above observation, we reduce the VQ-
VAE codebook’s embedding dimension to zero. Formally, the codebook C € R¥* is replaced
with an integer set C where |C| = K. Recall that in VQ-VAE models, the quantizer must look
up all K d-dimensional embeddings in the codebook, where d is typically 256, when computing
the closest codebook entry to the encoder output. This new design eliminates the need for such
embedding lookup entirely hence we call it lookup-free quantization (LFQ). We found that LFQ
can grow the vocabulary size in a way benefiting the generation quality of language models. As
shown by the blue curves in Fig. 5.1, both reconstruction and generation consistently improves
as the vocabulary size increases — a property not observed in current VQ-VAE methods.
While various LFQ methods are available, this chapter discusses a straightforward vari-
ant that assumes independent codebook dimensions and binary latents. Specifically, the la-
tent space of LFQ is decomposed as the Cartesian product of single-dimensional variables, as
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C= >¢ng X.C.. Given a feature vector z € R°&X each dimension of the quantized representation
q(z) is obtained from:

q(z;) = C;j, where j = argmin |z; — Cyx|, (5.2)
k
where C;; is the j-th value in C;. With C; = {—1,1}, the argmin can be computed by the sign
function as
q(z;) = sign(z;) = —1{z; < 0} + 1{z; > 0}. (5.3)

With LFQ, the token index for q(z) is given by:

log, K log, K

i—1
Index(z) = Z arg min ||z; — Cix H |Cy| = Z 27114z > 0}, (5.4)
k b=0

i=1 i=1

where |Cy| = 1 sets the virtual basis.
We add an entropy penalty during training to encourage codebook utilization:

£entropy = E[H(Q(Z))] - H[E(Q(Z))] (55)

This penalty is inspired by a similar loss used in image VQGAN model [33], which is also
found in entropy-based clustering [103]. In LFQ, given the independence among dimensions,
we rewrite H(q(z)) = Zzozng H(q(z;)) . The H[E(gq(z))] term can be approximated with sub-
groups of dimensions for K > 2'® where direct estimation is memory bound.

We note that there are various other variants of LFQ, e.g., opting for the multivariant over
the binary codebook C; or employing other quantization techniques such as [4]. As the first
to introduce this concept, we focus on the simplest form with independent binary dimensions,
which shows promising improvements. Other LFQ methods merit further research.

In addition to the entropy penalty (Eq. (5.5)), an LFQ-based tokenizer is trained using the
standard combination of reconstruction, GAN, perceptual, and commitment losses [57], exclud-
ing the inapplicable codebook loss. Following [242], we use LeCAM regularization [194] for
improved stability.

5.3.2 Visual Tokenizer Model Improvement

Joint image-video tokenization. A desirable feature of visual tokenization is the capability
to tokenize images and videos using a shared codebook. However, the MAGVIT tokenizer,
which utilizes the 3D CNN, faces challenges in tokenizing images due to the temporal receptive
field.

To build a joint image-video tokenizer, a new design is needed. We begin our discussion
by revisiting an existing method C-ViViT [203]. As depicted in Fig. 5.2a, C-ViViT employs full
spatial transformer blocks combined with causal temporal transformer blocks. This approach
performs reasonably well but has two drawbacks. First, unlike CNNs, the positional embeddings
makes it difficult to tokenize spatial resolutions that were not seen during training. Second,
empirically we found that 3D CNNs perform better than spatial transformer and produce tokens
with better spatial causality of the corresponding patch.
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Figure 5.2: Causal tokenizer architecture comparison. The decoders, which are omitted
from the figure, employ an architecture that is symmetric to the encoder.

To tackle these drawbacks, we explore two plausible designs. Fig. 5.2b combines C-ViViT
and MAGVIT. Assuming a temporal compression ratio of 4, a 3D CNN processes blocks of 4
frames followed by a causal transformer. In Fig. 5.2c, we use the temporally causal 3D convolu-
tion to replace the regular 3D CNN. Specifically, the temporal padding scheme for a regular 3D
convolution layer with kernel size (k;, k, k,,) includes [k‘T_lJ frames before and [%J frames after
the input frames. In contrast, a causal 3D convolution layer pads with k; — 1 frames before the
input and nothing after, so that the output for each frame only depends on the previous frames.
In consequence, the first frame is always independent of other frames, allowing the model to
tokenize single images.

Temporal convolutional subsampling with stride s is sufficient for sx down-sampling by
mapping 1 + s x t frames into 1 + ¢. After a regular sx up-sampling, we drop the first s — 1
resulting frames, which maps 1 + ¢ frames into 1 + s x t and allows for the tokenization of a
single image. Tab. 5.7a empirically compares the designs in Fig. 5.2, and we find that the causal
3D CNN performs the best.

Architecture modifications. In addition to using causal 3D CNN layers, we made several
other architectural modifications to improve upon the MAGVIT model. First, we change the
encoder downsamplers from average pooling into strided convolutions to leverage learned ker-
nels, and replace the decoder upsamplers from nearest resizing followed by convolution with
a depth-to-space operator. Second, we defer the temporal downsampling from the first few
encoder blocks to the last ones. In addition, the downsampling layer in the discriminator now
utilizes 3D blur pooling [253] to encourage shift invariance. Finally, we add one adaptive group
normalization layer before the residual blocks at each resolution in the decoder to pass in the
quantized latents as the control signal following StyleGAN [108]. Tabs. 5.7b and 5.7c empirically
verify these designs.
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Figure 5.3: Image reconstruction samples with different tokenizers. We compare the VQ-
GAN used in MaskGIT [33] with two of our models trained on ImageNet and web images [39].
Original images are by Eric TERRADE and Barth Bailey on Unsplash.

Token factorization for efficient prediction. The output tokens can be fed into language
models to generate videos. To assist smaller transformers predicting in a large vocabulary,
we can factorize the LFQ token’s latent space into equal subspaces. For instance, rather than
predicting using a codebook of size 2'®, we can predict in two concatenated codebooks, each
of size 2°. We embed each subspace token separately and use their embedding summation as
the token embedding for the transformer input. We find it beneficial to use weight tying [151],
a common technique in language modeling, which involves sharing the weights between the
embedding and softmax layers. For the output layer with a factorized vocabulary, we use the
embedding matrix for each subspace to obtain logits with seperate prediction heads.

5.4 Experimental Results

This section empirically verifies the proposed tokenizer across three distinct tasks: video and
image generation, video compression, and action recognition. Fig. 5.3 visually compares the
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reconstruction quality of our tokenizer with prior works. More qualitative samples are shown
at https://magvit.cs.cmu.edu/v2.

5.4.1 Experimental Setups

Datasets. We use Kinetics-600 (K600) [30] and UCF-101 [184] for video generation exper-
iments, along with ImageNet [47] for image generaton. In addition, MCL-JCV [208] is used
as the testbed for video compression, with Kinetics-400 (K400) [109] and SSv2 [68] for video
understanding.

Implementation details. We follow the tokenizer training setting and hyperparameters
in [242], unless stated otherwise. LFQ is used, which eliminates the codebook embedding,
to increase the default codebook size to K = 2'®. The weight of Lentropy follows an annealing
schedule with a 3x higher starting point and linearly decays to a fixed value of 0.1 within 2k
steps.

Fig. 5.4 illustrates the architecture of our proposed MAGVIT-v2. We provide detailed train-
ing hyperparameters for our models as listed below:

* Video input: 17 frames, frame stride 1, 128 x 128 resolution.
* Base channels: 128.

* VQVAE channel multipliers: 1, 2, 2, 4.

* Discriminator channel multipliers: 2,4, 4, 4, 4.

* Number of residual blocks: 4.

* Latent shape: 5 x 16 x 16.

* Vocabulary size: 28,

* Initialization: central inflation from a 2D model trained on ImageNet with this setup.
* Entropy loss weight: 0.1.

* Entropy loss annealing steps: 2000.

* Entropy loss annealing factor: 3.

* Reconstruction loss weight: 5.0.

* Generator loss type: Non-saturating.

* Generator adversarial loss weight: 0.1.

* Discriminator gradient penalty: r1 with cost 10.

* Perceptual loss weight: 0.1.

+ Commitment loss weight: 0.25.

+ LeCAM weight: 0.001.

* Peak learning rate: 107*.

* Learning rate schedule: linear warm up and cosine decay.

* Optimizer: Adam with ; = 0 and S, = 0.99.
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Type Method K600 FVD| UCFFVD] #Params #Steps
GAN TrIVD-GAN-FP [136]  25.7:07 1
Diffusion Video Diffusion [90] 16.2+03 1.1B 256
Diffusion __ RIN[102] _ _________ 08 411IM 1000
AR-LM + VQ TATS [63] 332418 321M 1024
MLM + VQ  Phenaki [203] 36.4:02 227M 48
MLM +VQ  MAGVIT [242] 9.9+03 762 306M 12
MLM + LFQ  non-causal baseline 11.6+06 307M 12
5.2+02 12
MLM + LFQ  MAGVIT-v2 (ours) A3.01 8.3 307M 94

Table 5.1: Video generation results: frame prediction on Kinetics-600 and class-conditional
generation on UCF-101. We adopt the evaluation protocol of MAGVIT.

* EMA model decay rate: 0.999.
* Batch size: 256.

5.4.2 Visual Generation

The masked language model (MLM) [49] is used in image and video generation. To verify the
tokenizer, we employ the same MLM transformers in MAGVIT [242]. We select the MLM due
to its competitive performance on benchmark datasets [126, 242]. As we use a smaller MLM
(~300M parameters) with a large codebook (2'® =262K), the token factorization as discussed in
Section 5.3.2 is applied using two heads with each predicting from a codebook of size 2°.

Video generation. We consider two standard video benchmarks, UCF-101 for class-conditional
generation and K600 for frame prediction with 5-frame condition. FVD [198] is used as our pri-
mary evaluation metric.

We inflate an image tokenizer trained at 128x128 for video modeling. Different from the
inflation in [242], we fill in the temporally last slice to correspond to the causal padding scheme.
In addition, we disable the inflation for the discriminator and train it from scratch for better
stability. We train the causal video tokenizer on Kinetics-600 training set for 190 epochs with
batch size 256. This tokenizer is also used in subsequent evaluations of video compression and
action recognition.

With the causal tokenizer producing 5x16x16 tokens for a 17x128x128 clip, the first 2x16x16
tokens are provided as the condition of the first 5 frames, per the standard setup of Kinetics-
600 frame prediction benchmark. We train the MLM transformer following [242] with token
factorization for 360 epochs with batch size 256. The model is sampled with a cosine schedule
using temperature 32.

Tab. 5.1 shows that our model surpasses all prior arts in both benchmarks. Specifically, it
outperforms the previous best model MAGVIT by a large margin, while using the same MLM
transformer backbone. In addition, it significantly outperforms the non-causal baseline on
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Figure 5.5: Frame prediction samples on Kinetics-600.

w/o guidance w/ guidance

Type Method FID, 1S} FID, IS} #Params #Steps
GAN StyleGAN-XL [174] 241 267.8  168M 1
Diff. + VAE* DiT-XL/2 [147] 12.03 1053 3.04 2408 675M 250
Diffusion ADM+Upsample [50] 9.96 121.8 3.85 221.7 731M 2000
Diffusion RIN [102] 3.95 216.0 320M 1000
Diffusion simple diffusion [94]  3.54 2053 3.02 248.7 2B 512
Diffusion VDM++ [111] 299 2322 265 278.1 2B 512
MLM +VQ MaskGIT [33] 732 1560 227M 12
MLM + VQ  DPC+Upsample [126] 3.62  249.4 619M 72
4.61 1924 12
MLM + LFQ MAGVIT-v2 (ours) 307 2131 191 324.3 307M 64

Table 5.2: Image generation results: class-conditional generation on ImageNet 512x512.
Guidance indicates the classifier-free diffusion guidance [86]. * indicates usage of extra training
data. We adopt the evaluation protocol and implementation of ADM.

frame prediction, highlighting the contribution of the causal tokenizer. These results demon-
strate the essential role of a good visual tokenizer in enabling LMs to generate high-quality
videos. Fig. 5.5 shows qualitative samples from the model.

Image generation on ImageNet. We evaluate MAGVIT-v2 on image generation under the
standard ImageNet class-conditional setting. We present results for resolution 512x512 and
256x256. FID [85] and Inception Score (IS) [172] are used as evaluation metrics.

We set up two image tokenizers to downsample by 16x and 32x, where they are used for
generation at 256x256 and 512x512, respectively. In both cases, an image is represented as 16x16
tokens. We train them on the ImageNet training set for 270 epochs using a batch size of 256,
both with 256x256 images. With this tokenizer we train a Masked Language Model following
[242], using the token factorization described in Section 5.3.2. We train for 1080 epochs in
accordance with the prior best model MDT [62], with batch size 1024 for better efficiency. For
preprocessing and data augmentation, we randomly crop 80-100% of an image while keeping
the aspect ratio, followed by random horizontal flipping. The class label is dropped for 10% of

75



w/o guidance w/ guidance

Type Method FID, ISt FID| ISt # Params Steps
GAN BigGAN-deep [21] 6.95 1714 160M

GAN StyleGAN-XL [174] 230 2651  166M
Diff. + VAE* LDM-4[165] 10.56 103.5 3.60 247.7  400M 250
Diff. + VAE* DiT-XL/2 [147] 9.62 1215 227 278.2 675M 250
Diff. + BAE Binary latent diffusion [216] 8.21 1623 172M 64
Diffusion ADM-+Upsample [50] 749 1275 394 2158  608M 2000
Diff. + VAE* MDT [62] 6.23 143.0 1.79 283.0 676M 250
Diff. + VAE* MaskDiT [257] 5.69 178.0 2.28 276.6 736M 40
Diffusion CDM [89] 488 158.7 8100
Diffusion  RIN [102] 342 182.0 410M 1000
Diffusion simple diffusion [94] 277 211.8 244 2563 2B 512
Diffusion VDM++ [111] 2.40 2253 212 267.7 2B 512
AR-LM +VQ VQGAN [57] 1578 783 14B 256
MLM + VQ  MaskGIT [33] 6.18 182.1 227TM 8
MLM + VQ  Token-Critic [125] 4.69 1745 368M 36
MLM + VQ  Contextual RQ-Transformer [120] 3.41 224.6 1.4B 72
MLM + VQ DPC [126] 445 2448 454M 180
MLM + LFQ MAGVIT-v2 (ours) 3.65 200.5 1.78 3194 307M 64

Table 5.3: Image generation results: class-conditional generation on ImageNet 256x256.
Guidance indicates the classifier-free diffusion guidance [86]. * indicates usage of extra training
data. We adopt the evaluation protocol and implementation of ADM.

the training batches to enable classifier-free guidance [86]. For unguided generation, we use
temperature 30 for 512x512 and 15 for 256x256 in the non-autoregressive decoding. For guided
generation, we adopt the guidance schedule from [62] with temperature scaling [126], where
we use guidance scale 25 with temperature 15.

As shown in Tabs. 5.2 and 5.3, our model surpasses the best performing diffusion models
both in sampling quality (FID and IS) and inference-time efficiency (sampling steps). It is worth
noting that all the models compared are trained using the same ImageNet training data, with
a comparable model size and training budget. Therefore, the performance primarily evaluates
the model’s capabilities. The masked language model, equipped with our tokenizer, exhibits
a notable improvement in FID over the best diffusion model baseline at 512x512 (FID=1.91 vs.
2.65, 28%]). While this margin narrows at 256x256 resolution, the MLM uses a 50% reduced
model size and needs much fewer decoding steps (e.g., 64 vs. 250) to get the image generation
quality. Qualitative samples in comparison with other models are shown in Fig. 5.6.
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Figure 5.6: Class-conditional generation samples on ImageNet 512x512. We compare
with each of the previous works with a random sample from the same image class.

5.4.3 Video Compression

We conduct a subjective rater study to assess the compression quality of MAGVIT-v2. The
study is conducted on the 30 videos of the MCL-JCV dataset, resized to a resolution of 640x360.
Sixteen raters are engaged, each providing responses to an average of roughly 800 pairwise-
preference questions.

To rate the quality of the different methods, we use a two-alternative forced choice rating
methodology [59]. As this methodology produces a sequence of binary decisions, we calcu-
late Elo scores [56] based on pairwise preferences to quantify the relative visual quality be-
tween the models. The study was conducted on the 30 videos of the MCL-JCV dataset [208],
scaled down to a resolution of 640x360 pixels. Sixteen raters are engaged, each providing re-
sponses to an average of roughly 800 pairwise-preference questions. The questions are pre-
sented with an interface that parallels the one used for the Challenge on Learned Image Com-
pression (http://compression.cc/), extended to comparing videos, as shown in Fig. 5.7.
Raters are instructed to compare the two videos and are not allowed to pause the videos.

We calculate Elo scores [56] based on pairwise preferences to quantify the relative visual
quality between the models. The study compares our model with MAGVIT as well as the current
video compression standard HEVC (H.265) video codec [186] and the next-generation codec
VVC (H.266) [24]. As shown in Fig. 5.8, raters prefer our model to the compared methods at
multiple bit rates.

We also compare the compression quality using common distortion metrics (LPIPS, PSNR,
and MS-SSIM). Tab. 5.4 compares at 0.0384 bpp, the bit rate of MAGVIT, with full curves in
Fig. 5.9. The results show that our model outperforms MAGVIT on all metrics, and it outper-
forms all methods on LPIPS, a metric which correlates more closely with subjective quality
assessments. At equal bit rates, standard codecs may render local details more accurately than
neural models but also introduce block artifacts, detrimental to perceptual quality yet not cap-
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Figure 5.7: Rating interface for subjective compression evaluation.
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Figure 5.8: Video compression rater study.
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Figure 5.9: Video compression metrics, supplementary to Tab. 5.4.
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Method LPIPS| PSNRt MS-SSIM?T

HEVC [186] 0.199  30.10 0.943
VVC [24] 0.153 32.65  0.966
MAGVIT [242] 0.144  23.70 0.846

MAGVIT-v2 (ours) 0.104  26.18 0.894

Table 5.4: Video compression metrics.

Token as transformer’s: Output Input

Tokenizer SSv2  SSv2 K400 K600
3D VQ-VAE 64.13  41.27 44.44 45.67
MAGVIT [242] 67.22 5734 72.29 74.65
MAGVIT-v2 (ours) 67.38 62.40 75.34 77.93
Raw pixel 64.83 63.08 76.13 78.92

HoG descriptor [220] 65.86 n/a n/a n/a

Table 5.5: Video action recognition performance (classification accuracy? x100).

tured by PSNR and MS-SSIM [4]. Despite promising results with TPUs, further research is
needed to adapt our model to run efficiently on CPUs like standard codecs.

5.4.4 Video Understanding

In this subsection, we assess the tokenizer’s capability to learn a video understanding model
for action recognition. Two setups are examined: (1) using tokens as prediction targets for the
transformer’s output, and (2) using tokens as the input to the transformer. For the former setup,
we use a similar architecture following the BEVT [211] pre-training. For the tokens as inputs,
to work with the ViViT backbone [9], we detokenize the tokens to pixels before feeding them
to frozen ViViT transformers trained on raw pixels.

Tokens as prediction targets. BEiT [14] and BEVT [211] class of models pretrain visual
encoders on pixel inputs by predicting tokens as targets in a masked-modeling framework, and
demonstrate state-of-the-art downstream results. We use a simplified BEVT pre-training setup
to test the effectiveness of our video tokens as targets for masked modeling. The main difference
is that we drop the image-stream from pre-training and only use the video stream and for this
reason, we also drop the multiple decoders completely and adopt an encoder-only architecture
similar to BEiT. Detailed pre-training and fine-tuning setup is presented in Tab. 5.6.

Tokens as inputs. We show that we can re-use video understanding models trained on pixels
using our video tokens as input, with very minimal performance drop. For this experiment, we
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Config

SSv2 Pre-Training

SSv2 Fine-tuning

inputs

input size

targets

encoder

decoder

masking

masking ratio

mask temporal length
batch size

training epochs

ViT sequence length
optimization
optimizer

optimizer momentum
layer decay

weight decay
learning rate schedule
warmup epochs

data augmentations
random horizontal flip
label smoothing
mixup

cutmix

droppath

dropout

random color augmentation

pixels

16 x 224 x 224 x 3
tokens

ViT-B

linear
block-tube [211]
0.75

16

1024

800

8 x 16 x 16

AdamW

0.9

0.75

0.05

cosine decay
40

true
0.1
none
none
0.0
0.1
false

pixels

16 x 224 x 224 x 3
classes
ViT-B
linear
none

0.0

0

512

50

8 x 16 x 16

AdamW

0.9

0.75

0.05

cosine decay
5

false
0.1
0.8
1.0
0.1
0.0
false

Table 5.6: Experimental configurations with tokens as targets.

80

train a factorized variant of the ViViT model [9] on pixels, and evaluate it on de-tokenized
pixels from our model. We use the same hyper-parameters as used in [9] with a Base sized
model operating on 32 frames of inputs at 224p resolution. For the Kinetics-600 experiment, we
use the same hyper-parameters as the Kinetics-400 experiments.

Tab. 5.5 shows that MAGVIT-v2 outperforms the previous best MAGVIT in these evalua-
tions. Specifically, when using the decoded tokens as input, the performance approaches that
of the model trained with ground-truth pixels using the same ViViT backbone. While these
numbers are still worse than the state-of-the-art in action recognition, they represent solid im-
provements credited to the new tokenizer.



5.4.5 Ablation Study

In Fig. 5.1, we have ablated LFQ vs. VQ and the vocabulary size. In Tab. 5.7, we validate the key
designs proposed in Section 5.3.2. Specifically, Tab. 5.7a compares the architecture illustrated
in Fig. 5.2; Tab. 5.7b and Tab. 5.7c verify the LFQ and other improvements on ImageNet and
UCF-101, respectively.

Tab. 5.7d verifies the entropy penalty L,,,, introduced in Eq. (5.5), which plays an impor-
tant role under the LFQ setup to achieve better reconstruction and better codebook utilization.
When using binary latents, certain LFQ dimensions may become dead if the dataset is not com-
plexed enough for the large vocabulary size. In such cases, Lenopy is beneficial to ensure the
activation of all bits, which enforces a discrete uniform prior in the latent space. Multi-variate
latents are less likely to have dead dimensions, since fewer dimensions are used at the same vo-
cabulary size. A potential alternative to L,y is applying normalization before quantization,
such that the continuous latents are centered around 0. The specific choice of normalization is
left as future work.

5.5 Summary

We introduce MAGVIT-v2, a novel video tokenizer that exploits lookup-free quantization along
with architectural advancements to tokenize images and video with a shared vocabulary. The
experiments show that our tokenizer outperforms the previously leading video tokenizer across
three areas: visual generation, video compression, and action recognition in videos. Our results
suggest that a good visual tokenizer is key for enabling language models to excel in image and
video generation. These results demonstrate the great capabilities of LMs in visual generation,
and advocate for further exploration of advanced visual tokenization methods as multi-modal
latent representation designed for LLMs.
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#Params FID| FVDJ]

MAGVIT 39M n/a 107.15
C-ViviT 90M 28.02 437.54
C-ViViT + MAGVIT 67M 13.52 316.70

MAGVIT-v2: Causal 3D CNN 58M 7.06 96.33

(a) Causal architectures on UCF-101. FID is calculated on the first frame.

FID| LPIPS|

MAGVIT 2.65 0.1292
+LFQ 248  0.1182
+ large vocabulary 1.34  0.0821
+ up/downsampler 1.21  0.0790
+ deeper model 1.20  0.0686

+ adaptive normalization 1.15 0.0685

(b) Image tokenization on ImageNet 128x128.

FvVD| LPIPS|

MAGVIT 24.55 0.0988
+ LFQ & large vocabulary 16.12  0.0694
+ up/downsampler 15.37  0.0678
+ late temporal downsample 11.11  0.0653
+ deeper model 8.90  0.0542
+ 3D blur pooling 8.62 0.0537

(c) Video tokenization on UCF-101.

Lentropy L1 L2| UtilizationT Entropy?

0.174 0.052 0.219 3.12
v/ 0.147 0.039 1.000 7.18

(d) Entropy penalty on CIFAR10 with a 28 LFQ vocabulary.

Table 5.7: Ablation study verifying key design choices.
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Part 111

Multi-Task Generative Models
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Part III Overview. Harnessing the acquired high-fidelity representations detailed in Part II,
we possess the capacity to construct latent generative models that adeptly perceive, compre-
hend, and replicate the intricacies of the world. Within this section, our concentration is di-
rected toward formulating techniques for data modeling and shaping task structures. Notably,
we present methodologies tailored to facilitate multi-task learning using a solitary model.

In Chapter 6, we unveil a multi-task video generation model, leveraging the capabilities of
masked generative transformers. By utilizing the spatial-temporal vector-quantized representa-
tion detailed in Chapter 3, videos are conceptualized as sequences of visual tokens within the
latent space. To enrich the landscape of multi-task learning, an effective embedding technique
for masked video token modeling is introduced. Remarkably, a single model, with no alter-
ations, supports an array of conditional video generation tasks, encompassing scenarios where
input involves a subset of pixels or an embedding. This model not only exhibits an adaptabil-
ity spectrum across diverse tasks but also attains a favorable level of video generation quality,
alongside an efficient sampling process.

In Chapter 7, we delve into the realm of generating video, image, and text through a frozen
Large Language Model (LLM), fortified by the visual lexical representation introduced in Chap-
ter 4. Our approach introduces a progressive in-context learning methodology, empowering
static LLMs to proficiently undertake both generation and understanding tasks spanning non-
linguistic domains, including images and videos. Remarkably, even without any updates to
the LLM’s parameters, it showcases prowess in image and video tasks such as classification,
captioning, visual question answering, text-to-image, and frame prediction.

In Chapter 8, our exploration advances as we develop scalable generative multi-modal trans-
formers from the ground up, utilizing the scalable representation conceptualized in Chapter 5.
This development employs modality-specific discrete tokenization to cohesively integrate text,
images, videos, and audio within a decoder-only, transformer-based framework akin to LLMs.
By pretraining this model on a broad array of multi-modal generative tasks using the established
LLM training methodologies, we endow the model with robust capabilities for multi-task video
generation. Notably, this model represents a pioneering achievement in its ability to generate
high-quality videos, complete with corresponding audio, based on a wide range of input signals.
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Chapter 6

Masked Generative Video Transformer

Overview. Inthis chapter, we introduce the MAsked Generative VIdeo Transformer (MAGVIT)
to tackle various video synthesis tasks with a single model. With the 3D tokenizer introduced
in Chapter 3, we propose an embedding method for masked video token modeling to facilitate
multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency,
and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against
state-of-the-art approaches and establishes the best-published FVD on three video generation
benchmarks, including the challenging Kinetics-600. (ii)) MAGVIT outperforms existing meth-
ods in inference time by two orders of magnitude against diffusion models and by 60x against
autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and
generalizes across videos from different visual domains. The source code and trained models
are released to the publicat https://magvit.cs.cmu. edu.
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6.1 Motivation

Recent years have witnessed significant advances in image and video content creation based
on learning frameworks ranging from generative adversarial networks (GANs) [42, 136, 170,
196, 206], diffusion models [71, 90, 95, 165, 205], to vision transformers [143, 158, 222]. In-
spired by the recent success of generative image transformers such as DALL-E [160] and other
approaches [33, 51, 57, 235], we propose an efficient and effective video generation model by
leveraging masked token modeling and multi-task learning.

We introduce the MAsked Generative VIdeo Transformer (MAGVIT) for multi-task video
generation. Specifically, we build and train a single MAGVIT model to perform a variety of
diverse video generation tasks and demonstrate the model’s efficiency, effectiveness, and flexi-
bility against state-of-the-art approaches. Fig. 6.1(a) shows the quality metrics of MAGVIT on
a few benchmarks with efficiency comparisons in (b), and generated examples under differ-
ent task setups such as frame prediction/interpolation, out/in-painting, and class conditional
generation in (c).

MAGVIT models a video as a sequence of visual tokens in the latent space and learns to
predict masked tokens with BERT [49]. We adopt the 3D quantization model introduced in
Chapter 3 and propose an effective masked token modeling (MTM) scheme for multi-task video
generation. Unlike conventional MTM in image understanding [213] or image/video synthe-
sis [33, 74, 77], we present an embedding method to model a video condition using a multivariate
mask and show its efficacy in training.

We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of
MAGVIT against state-of-the-art approaches. Specifically, we show that MAGVIT performs
favorably on two video generation tasks across three benchmark datasets, including UCF-
101 [184], BAIR Robot Pushing [55, 198], and Kinetics-600 [30]. For the class-conditional gen-
eration task on UCF-101, MAGVIT reduces state-of-the-art FVD [198] from 332 [63] to 76
({77%). For the frame prediction task, MAGVIT performs best in terms of FVD on BAIR (84
[95] > 62, | 26%) and Kinetics-600 (16 [90] —9.9, | 38%).

Aside from the visual quality, MAGVIT’s video synthesis is highly efficient. For instance,
MAGVIT generates a 16-frame 128x128 video clip in 12 steps, which takes 0.25 seconds on a
single TPUv4i [106] device. On a V100 GPU, a base variant of MAGVIT runs at 37 frame-per-
second (fps) at 128x128 resolution. When compared at the same resolution, MAGVIT is two
orders of magnitude faster than the video diffusion model [90]. In addition, MAGVIT is 60
times faster than the autoregressive video transformer [63] and 4-16 times more efficient than
the contemporary non-autoregressive video transformer [74].

We show that MAGVIT is flexible and robust for multiple video generation tasks with a sin-
gle trained model, including frame interpolation, class-conditional frame prediction, inpainting,
and outpainting, etc. In addition, MAGVIT learns to synthesize videos with complex scenes and
motion contents from diverse and distinct visual domains, including actions with objects [68],
autonomous driving [27], and object-centric videos from multiple views [5].

The main contributions of this chapter are:

* To the best of our knowledge, we present the first masked multi-task transformer for

efficient video generation and manipulation. We show that a trained model can perform
ten different tasks at inference time.
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Figure 6.1: Overview of the video generation quality, efficiency, and flexibility of the
proposed MAGVIT model. (a) MAGVIT achieves the state-of-the-art FVD [198] and Incep-
tion Score (IS) [171] on two video generation tasks and three benchmarks, in comparison with
prior best diffusion models (RaMViD [95], Video Diffusion [90]) and autoregressive models
(CCVS [116], TATS [63], NUWA [225]). (b) It is two orders of magnitude faster than diffusion
models and 60x faster than autoregressive models. (c) A single MAGVIT model accommodates
different generation tasks, ranging from class-conditional generation to dynamic inpainting of

a moving object.
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* We propose an effective embedding method with diverse masks for numerous video gen-
eration tasks.

* We show that MAGVIT achieves the best-published fidelity on three widely-used bench-
marks, including UCF-101, BAIR Robot Pushing, and Kinetics-600 datasets.

6.2 Prior Work

GAN-based approaches. Early success in video synthesis has been made by GAN models [2,
21, 22, 42, 76, 107, 170, 180, 189, 196, 206, 247]. Training instability and lack of generation
diversity [33] are known issues of GAN models.

Autoregressive transformers. Inspired by the success of GPT [25], autoregressive trans-
formers have been adapted for image [37, 51,57, 160, 235] and video generation [13, 93, 222, 225].
A focus for video is autoregressive modeling of visual dynamics. Studies have switched from
modeling the raw pixels [37, 199] to the discrete codes in a latent space [158, 232]. The state-of-
the-art model TATS [63] uses two hierarchical transformers to reduce the computation for long
video generation, with tokens learned by a 3D-VQGAN [57]. Unlike prior works, we introduce
a non-autoregressive transformer with higher efficiency and flexibility.

Non-autoregressive transformers. Concurrently, a few methods use non-autoregressive
transformers for image synthesis [33, 125, 182, 187, 256]. Section 6.3 reviews a state-of-the-art
model called MaskGIT [33]. Compared with these approaches [74, 77], we present an embed-
ding mask to model multi-task video conditions with better quality.

Diffusion models. Diffusion models have recently received much attention for image syn-
thesis. For example, the state-of-the-art video diffusion model [90] extends the image denoising
diffusion model [10, 87, 181, 183, 197] by incorporating 3D U-Net [41] architectures and joint
training on both images and videos. Despite its high-quality, sampling speed is a bottleneck
hindering the application of diffusion models in video synthesis. We show a different solution
to train a highly-efficient model that offers compelling quality.

Multi-task video synthesis. Multi-task video synthesis [77, 143, 225] is yet to be well-
studied. Transframer [143] is the closest to our work, which adopts an image-level represen-
tation for autoregressive modeling of tasks based on frame prediction. We present an efficient
non-autoregressive multi-task transformer, and verify the quality and efficiency on ten video
generation tasks.

Text-to-video. All of our models are trained only on public benchmarks, except the Web
video model. We leave the text-to-video task as future work. As shown in recent works [88,
177, 203], training such models requires large, and sometimes non-public, datasets of paired
texts and images.
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6.3 Preliminaries: Masked Image Synthesis

The proposed video generation framework is based on a two-stage image synthesis process [57,
160] with non-autoregressive transformers [33, 125]. In the first stage, an image is quantized
and flattened into a sequence of discrete tokens by a Vector-Quantized (VQ) auto-encoder [57,
200, 234]. In the second stage, masked token modeling (MTM) is used to train a transformer
model [33, 71] on the tokens. Let I € R®"3 be an image and z € ZV denote the corresponding
token sequence of length N.

We take MaskGIT [33] as an example. In the second stage, it applies a binary mask m; €
{x —x,x— [MASK]} to each token to build a corrupted sequence z = m(z). Condition inputs,
such as class labels, are incorporated as the prefix tokens c. A BERT [49] parameterized by 6
is learned to predict the masked tokens in the input sequence [c,z], where [-,-] concatenates
the sequences. The objective is to minimize the cross-entropy between the predicted and the
ground-truth token at each masked position:

Loa(zO)= B | Y, —logpi(z|lez))] (6.1)

M=PU L~ [MASK]

During training, MaskGIT randomly samples m from a prior distribution p;- where the mask
ratio follows a cosine scheduling function y(-) [33]. Specifically, it first uniformly samples a per-
token mask score s; ~ U'(0, 1) to form a sequence denoted as s. Then it samples r ~ U'(0,1)
and computes a cut-off threshold s* as the [y(r)N]-th smallest element in s. Finally, a mask m
is created such that m;(x) = [MASK] if s; < s* and m;(x) = x otherwise.

For inference, the non-autoregressive decoding method [67, 69, 114] is used to synthesize
an image [33, 125, 256]. For example, MaskGIT generates an image in K=12 steps [33] from a
blank canvas with all visual tokens masked out. At each step, it predicts all tokens in parallel
while retaining tokens with the highest prediction scores. The remaining tokens are masked
and predicted in the next iteration until all tokens are generated. Similar to the training stage,
the mask ratio is computed by the schedule function y, but with a deterministic input as y(),
where t is the current step.

6.4 MAGVIT: Masked Generative Video Transformer

Our goal is to design a multi-task video generation model with high quality and inference ef-
ficiency. We propose MAsked Generative VIdeo Transformer (MAGVIT), a vision transformer
framework that leverages masked token modeling and multi-task learning. MAGVIT generates
a video from task-specific condition inputs, such as a frame, a partially-observed video volume,
or a class identifier.

The framework consists of two stages. First, we learn a 3D vector-quantized (VQ) autoen-
coder to quantize a video into discrete tokens, as introduced in Chapter 3. In the second stage,
we learn a video transformer by multi-task masked token modeling.

Fig. 6.2 illustrates the training in the second stage. At each training step, we sample one
of the tasks with its prompt token, obtain a task-specific conditional mask, and optimize the
transformer to predict all target tokens given masked inputs. During inference, we adapt the
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Figure 6.2: MAGVIT pipeline overview. The 3D-VQ encoder quantizes a video into discrete tokens, while the 3D-VQ decoder
maps them back to the pixel space. We sample one of the tasks at each training step and build its condition inputs by cropping and
padding the raw video, where green denotes valid pixels and white is padding. We quantize the condition inputs with the 3D-VQ
encoder and select the non-padding part as condition tokens. The masked token sequence combines , [MASK]
tokens, and the target tokens, with a task prompt and a class token as the prefix. The bidirectional transformer learns to predict
the target tokens through three objectives: , predicting masked tokens, and reconstructing target tokens.
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non-autoregressive decoding method to generate tokens conditionally on the task-specific in-
puts, which will be detailed in Algorithm 1.

6.4.1 Multi-Task Masked Token Modeling

In MAGVIT, we adopt various masking schemes to facilitate learning for video generation tasks
with different conditions. The conditions can be a spatial region for inpainting/outpainting or
a few frames for frame prediction/interpolation. We refer to these partially-observed video
conditions as interior conditions.

We argue that it is suboptimal to directly unmask the tokens corresponding to the region of
the interior condition [33]. As discussed in Section 3.2.1, the non-local receptive field of the tok-
enizer can leak the ground-truth information into the unmasked tokens, leading to problematic
non-causal masking and poor generalization.

We propose a method, COnditional Masked Modeling by Interior Tokens (or COMMIT for
short), to embed interior conditions inside the corrupted visual tokens.

Training. Each training example includes a video V and the optional class annotation c. The
target visual tokens come from the 3D-VQ as z = f7(V). At each step, we sample a task prompt
p, obtain the task-specific interior condition pixels, pad it into V with the same shape as V, and
get the condition tokens . Section 6.4.2 lists the padding functions for each task.

At a sampled mark ratio, we randomly replace target tokens z;, with either 1) the condi-
tion token 7, if the corresponding supervoxel of z; contains condition pixels; or 2) the special
[MASK] token, otherwise. Formally, we compute the multivariate conditional mask m(- | z)
as

if s; < s* A ~ispad(z;)
m(z; | z) = { [MASK] ifs; < s* Aispad(z) (6:2)

Z; lf S; > S*

where s; and s* are the per-token mask score and the cut-off score introduced in Section 6.3.
ispad(z;) returns whether the corresponding supervoxel of z; in V only contains padding.

Eq. (6.2) indicates that COMMIT embeds interior conditions as corrupted visual tokens into
the multivariate mask m, which follows a new distribution p,, instead of the prior p- for
binary masks. With the corrupted token sequence z = m(z | z) as input, the multi-task training
objective is

LV:O)=E E | Y ~logpz|lp.cz])]. (63)

p,V M~Pu ;

We can decompose the loss in Eq. (6.3) into three parts according to Eq. (6.2): L,eqine refines the
task-specific condition tokens, L,sc predicts masked tokens , and L,..,ns reconstructs target
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Algorithm 1 Non-autoregressive Decoding by COMMIT
Input: prefix p and c, condition z, steps K, temperature T
Output: predicted visual tokens z

:5=0,s"=1,2z=0"

: fort <~ 0,1,--,K—1do

: zZ < m(z|zs,s*)

1

2

3

4 zi ~ po(z; | [p, ¢, z]), Vi where s; < s*

5: si < po(zi | [p,c,z]), Vi where s; < s*

6 si<— s +T(1— %) Gumbel(0, 1), Vi where s; < 1
7 s* < The [y(%)N ]-th smallest value of s

8: s; < 1, Vi where s; > s*

9: end for

A

10: return z = [Z1, 2, -, ZN]

tokens. Let € = [p, ¢, z] for simplicity,

N
> —logpe(zi | [p.c.z)= )Y, —logpe(zi|© + ), —logpe(z |
i=1 Zi=%; Z=[MASK]

Predict masked tokens £ a6k (6 4)

+ Z —log pe(z; | ©)

Z‘:Zi

N J

Reconstruct target tokens Lecons

While L .5k is the same as the MTM loss in Eq. (6.1) and L,cons SOmetimes is used as a regularizer
(e.g., in NLP tasks), L cfine is @ new component introduced by COMMIT.

The COMMIT method facilitates multi-task video generation in three aspects. First, it pro-
vides a correct causal masking for all interior conditions. Second, it produces a fixed-length
sequence for different conditions of arbitrary regional volume, improving training and mem-
ory efficiency since no padding tokens are needed. Third, it achieves state-of-the-art multi-task
video generation results (see Tab. 6.8).

Inference. We use a non-autoregressive decoding method to generate video tokens from in-
put conditions in K steps (e.g., 12). Each decoding step follows the COMMIT masking in Eq. (6.2)
with a gradually reduced mask ratio. Algorithm 1 outlines the inference procedure.

Fig. 6.3 compares the non-autoregressive image decoding [33] and our video decoding pro-
cedure. Different from the MTM decoding in [33] which performs denoising from all [MASK],
COMMIT decoding starts from a multivariate mask that embeds the . Guided
by this mask, Algorithm 1 performs a conditional transition process toward the output tokens
by replacing a portion of newly generated tokens at each step. In the end, all tokens are pre-
dicted where the interior condition tokens get refined.
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Figure 6.3: Comparison between MTM decoding for image [33] and COMMIT decod-
ing for video. We show the output tokens and image/video at each decoding step ¢, with a
central outpainting example for COMMIT on the left and a frame prediction example on the
right. Unlike the MTM denoising decoding from all [ MASK |, COMMIT performs a conditional
generation process toward the output tokens while gradually replacing the

. Videos and tokens are temporally down-sampled and stacked for visualization.

6.4.2 Video Generation Tasks

We employ a total of ten tasks for multi-task video generation. Each task is characterized by a
few adjustable settings such as interior condition shape, padding function, and optionally prefix
condition. Fig. 6.4 illustrates the interior condition regions for each task under the above setup.
Given a video of shape T x H x W, we define the tasks as following:

* Frame Prediction (FP)

* Interior condition: ¢ frames at the beginning; ¢ = 1.
* Padding: replicate the last given frame.

* Frame Interpolation (FI)

* Interior condition: ¢; frames at the beginning and t, frames at the end; t; = 1,1, = 1.
* Padding: linear interpolate between the last given frame at the beginning and the
first given frame at the end.

* Central Outpainting (OPC)

* Interior condition: a rectangle at the center with height h and width w; h = 0.5H,
w = 0.5W.
* Padding: pad the nearest pixel for each location (edge padding).

* Vertical Outpainting (OPV)

* Interior condition: a centered vertical strip with width w; w = 0.5W.
* Padding: edge padding.
* Horizontal Outpainting (OPH)
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Figure 6.4: Interior condition regions for each task, where green denotes valid pixels
and white pixels denote the task-specific paddings discussed in Section 6.4.2. The tasks are
Frame Prediction (FP), Frame Interpolation (FI), Central Outpainting (OPC), Vertical Outpaint-
ing (OPV), Horizontal Outpainting (OPH), Dynamic Outpainting (OPD), Central Inpainting
(IPC), Dynamic Inpainting (IPD), Class-conditional Generation (CG), and Class-conditional
Frame Prediction (CFP).

* Interior condition: a centered horizontal strip with height h; h = 0.5H.
* Padding: edge padding.
* Dynamic Outpainting (OPD)
* Interior condition: a moving vertical strip with width w; w = 0.5W.
* Direction of movement: left to right.
* Padding: zero padding.
* Central Inpainting (IPC)

* Interior condition: everything but a rectangle at the center with height h and width
w; h =05H, w=0.5W.
* Padding: zero padding.
* Dynamic Inpainting (IPD)
* Interior condition: everything but a vertically centered moving rectangle with height
h and width w; h = 0.5H, w = 0.5W.
* Direction of movement: left to right.
* Padding: zero padding.
* Class-conditional Generation (CG)
* Prefix condition: class label.
* Class-conditional Frame Prediction (CFP)

* Prefix condition: class label.
* Interior condition: ¢ frames at the beginning; t = 1.
* Padding: replicate the last given frame.
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Model Param. #heads #layers Hidden size MLP dim

MAGVIT-B 87M 12 12 768 3072
MAGVIT-L 305M 16 24 1024 4096
MAGVIT-H 634 M 16 32 1280 5120

Table 6.1: Transformer architecture configurations used in MAGVIT.

6.5 Experimental Results

We conduct extensive experiments to demonstrate the video generation quality (Section 6.5.2),
efficiency (Section 6.5.3), and flexibility for multi-task generation (Section 6.5.4). We show a
few generation results here, and refer to the web page https://magvit.cs.cmu.edu
for more examples.

6.5.1 Experimental Setups

Datasets. We evaluate the single-task video generation performance of MAGVIT on three
standard benchmarks, i.e., class-conditional generation on UCF-101 [184] and frame prediction
on BAIR Robot Pushing [55, 198] (1-frame condition) and Kinetics-600 [30] (5-frame condition).
For multi-task video generation, we quantitatively evaluate MAGVIT on BAIR and SSv2 [68]
on 8-10 tasks. Furthermore, to evaluate model generalizability, we train models with the same
learning recipe on three additional video datasets: nuScenes [27], Objectron [5], and 12M Web
videos.

Evaluation metrics. The FVD [198] is used as the primary evaluation metric. We follow
the official implementation in extracting video features with an I3D model trained on Kinetics-
400 [29] (https://github.com/google-research/google-research/tree/
master/frechet_video_distance). We report Inception Score (IS) [171] on the
UCF-101 dataset which is calculated with a C3D [192] model trained on UCF-101 (https:
//github.com/pfnet-research/tgan2). We further include image quality met-
rics: PSNR, SSIM [218] and LPIPS [254] (computed by the VGG features) on the BAIR dataset.

Model configurations. We train MAGVIT to generate 16-frame videos at 128x128 resolu-
tion, except for BAIR at 64x64. The proposed 3D-VQ model quantizes a video into 4x16x16 vi-
sual tokens, where the visual codebook size is 1024. We use the BERT transformer [49] adapted
from the Flaxformer implementation (https://github.com/google/flaxformer)
to model the token sequence, which includes 1 task prompt, 1 class token, and 1024 visual to-
kens. Following the transformer configurations in ViT [52], we use two variants of transform-
ers, i.e., base (B) with 87M parameters and large (L) with 306M in all our experiments. Tab. 6.1
lists the detailed configurations for each variant. A huge (H) transformer is only used to train
on the large Web video dataset and generate demo videos. We train both stages with the Adam
optimizer [110] in JAX/Flax [20, 82] on TPUs. Section 6.5.6 details training configurations.
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6.5.2 Single-Task Video Generation

Class-conditional generation. The model is given a class identifier in this task to generate
the full video. Tab. 6.2 shows a detailed comparison with the previously published results on the
UCF-101 [184] class-conditional video generation benchmark, where the numbers are quoted
from the cited papers. Note that CogVideo [93] and Make-A-Video [177] are pretrained on
additional 5-10M videos before finetuning on UCF-101, where Make-A-Video further uses a text-
image prior trained on a billion text-image pairs. The remaining models, including MAGVIT,
are only trained on 9.5K training videos of UCF-101, or 13.3K training and testing videos of
UCF-101 for those marked with *. Fig. 6.5 compares the generated videos to baseline models.
We can see that CCVS+StyleGAN [116] gets a decent single-frame quality, but yields little or no
motion. TATS [63] generates some motion but with artifacts. In contrast, our model produces
higher-quality frames with substantial motion.

Frame prediction. The model is given a single or a few frames to generate future frames.
In Tab. 6.3, we compare MAGVIT against highly-competitive baselines. MAGVIT surpasses
the previous state-of-the-art FVD on BAIR by a large margin (84 — 62). Inspired by [198], a
“debiased” FVD is also reported in the parentheses to overcome the small validation set. See
more discussion in Section 6.5.6. In Tab. 6.4, it demonstrates better image quality.

On the large dataset of Kinetics-600, it establishes a new state-of-the-art result, improving
the previous best FVD in [90] from 16.2 to 9.9 by a relative 39% improvement. The above results
verify MAGVIT’s compelling generation quality, including on the large Kinetics dataset. Fig. 6.6
and Fig. 6.7 below provide visual comparisons to the baseline methods on BAIR and Kinetics-
600, respectively.

6.5.3 Inference-Time Generation Efficiency

Video generation efficiency is an important metric in many applications. We conduct experi-
ments to validate that MAGVIT offers top speed in video generation. Fig. 6.8 shows the process-
ing time for each frame on a single V100 GPU at different resolutions. We compare MAGVIT-
B with an autoregressive transformer of the same size and a diffusion-based model [90]. At
128x128 resolution, MAGVIT-B runs at 37 frames-per-second (fps). When running on a single
TPUv4i [106], MAGVIT-B runs at 190 fps and MAGVIT-L runs at 65 fps.

Fig. 6.8 compares the sequence lengths and inference steps of these models. Diffusion mod-
els [90] typically require 256-1000 diffusion steps with a 3D U-Net [41]. Autoregressive models,
such as TATS [63], decode visual tokens sequentially, which runs 60 times slower than MAGVIT
at 128x128. Compared to the recent non-autoregressive model MaskViT [74], MAGVIT is 4 to
16 times faster due to more efficient decoding on shorter sequences.

6.5.4 Multi-task Video Generation

To demonstrate the flexibility in multi-task video synthesis, we train a single MAGVIT model to
perform eight tasks on BAIR or ten tasks on SSv2. We do not intend to compare with dedicated
models trained on these tasks but to demonstrate a generic model for video synthesis.
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Method Video Class FVD] ISt
VGAN][206] v - 8.31+0.09
TGAN[170] - 11.85+0.07
MoCoGAN*[196] v - 12.420.07
ProgressiveVGAN(2] v - 14.560.05
TGAN[170] v - 15.830.18
RaMViD[95] - 21.71x021
LDVD-GAN[107] - 22.91+0.19
StyleGAN-V**[180] - 23.94:0.73
VideoGPT[232] - 24.69+030
TGANv2[171] v 120928 28.87-0.467
MoCoGAN-HD*[189] 838 32.36
DIGAN([247] 655+22  29.71:053
DIGAN*[247] 577+21  32.70+035
DVD-GAN*[42] v - 32.97+170
Video Diffusion**[90] - 57.00+0.62
TATS[63] 420+18  57.63+0.24
CCVS+StyleGAN*[116] 386+15  24.47-013
Make-A-Video*[177] v 367 33.00
TATS[63] v 332418 79.28+038
CogVideo*[93] . /s /626 5046
Make-A-Video™[177] v v 81 82.55
MAGVIT-B-CG (ours) v 1592 83.55:0.14
MAGVIT-L-CG (ours) v 76:2  89.27:0.15

Table 6.2: Generation performance on the UCF-101 dataset. Methods in gray are pretrained
on additional large video data. Methods with v in the Class column are class-conditional, while
the others are unconditional. Methods marked with * use custom resolutions, while the others
are at 128x128. Methods marked with * additionally used the test set in training.
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(a) CCVS+StyleGAN [116

(c) MAGVIT-L-CG (ours)

Figure 6.5: Comparison of class-conditional generation samples on UCF-101. 16-frame
videos are generated at 128x128 resolution 25 fps and shown at 12.5 fps. Samples for [63, 116] are

obtained from their official release (https://songweige.github.io/projects/
tats/).
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Method K600 FVD| BAIRFVD]

LVT[158] 224.7 1263
Video Transformer[222] 170.04+5.0 94,
CogVideo*[93] 109.2 -
DVD-GAN-FP[42] 69.1+12 110
CCVS[116] 55.0+10 99.2
Phenaki[203] 36.4+02 97
VideoGPT[232] - 103
TrIVD-GAN-FP[136] 25.7+07 103
Transframer[143] 254 100
MaskViT[74] - 94
FitVid[13] - 94
MCVD[205] - 90
NUWA[225] - 87
RaMViD[95] 16.5 84
Video Diffusion[90] 16.2+03 -
MAGVIT-B-FP (ours) 24.5:00 76+0.1 (47+0.1)
MAGVIT-L-FP (ours) 9.9:03 62:0.1 (31+02)

Table 6.3: Frame prediction performance on the BAIR and Kinetics-600 datasets. - marks
that the value is unavailable in their paper or incomparable to others. The FVD in parentheses
uses a debiased evaluation protocol on BAIR detailed in Section 6.5.6. Methods marked with *
is pretrained on additional large video data.

Method FVD, PSNRf SSIM? LPIPS|
CCVS[116] 99 - 0.729 -
MCVD[205] 90 169  0.780 -

MAGVIT-L-FP (ours) 62 19.3 0.787  0.123

Table 6.4: Image quality metrics on BAIR frame prediction.

Method Task  Avgl FP FI. OpC OPV OPH OPD IPC IPD

MAGVIT-B-UNC Single | 150.6 740 71.4 119.0 46.7 559 389.3 145.0 303.2
MAGVIT-B-FP Single | 201.1 47.7 56.2 247.1 1185 1427 3663 357.3 2727

MAGVIT-B-MT Multi | 328 472 360 281 290 278 321 311 31.0
MAGVIT-L-MT Multi | 22.8 314 264 213 212 195 209 213 203

Table 6.5: Multi-task generation performance on BAIR evaluated by FVD. Gray values
denote unseen tasks during training.
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(b) MAGVIT-L-FP (ours)

Figure 6.6: Comparison of frame prediction samples on BAIR unseen evaluation
set. 16-frame videos are generated at 64x64 resolution 10 fps given the first frame as con-
dition and shown at 5 fps where condition frames are marked in orange. Samples for
[95] are obtained from their official release (https://sites.google.com/view/
video-diffusion-prediction). As shown, the clips produced by MAGVIT main-
taining a better visual consistency and spatial-temporal dynamics.
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(a) RaMViD [95] at 64x64 resolution, condition information is unavailable.
s At IRl IR 2™ F R "ol E O gl b 2R -

(b) MAGVIT-L-FP (ours) at 128x128 resolution, condition frames are marked in orange.

Figure 6.7: Comparison of frame prediction samples on Kinetics-600 unseen evalu-
ation set. 16-frame videos are generated at 25 fps given 5-frame condition. Samples for
[95] are obtained from their official release (https://sites.google.com/view/
video-diffusion-prediction). As shown, given the conditioned frames, MAGVIT
generates plausible actions with greater details.
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Method Task SSv2-Avg| FP FI OpPC OPV OPH OPD IPC [IPD CG CFP
MAGVIT-B-UNC Single 258.8 278.8 91.0 675 273 36.2 7115 3193 669.8 107.7 279.0

MAGVIT-B-FP  Single 402.9 59.3 76.2 2132 81.2 863 6327 343.1 697.9 1780.0 59.3
MAGVIT-B-MT  Multi 43.4 715 38.0 388 233 261 334 233 253 94.7 59.3
MAGVIT-L-MT  Multi 27.3 33.8 250 211 168 17.0 235 135 15.0 79.1 28.5
Masked pixel - - 94% 87% 75% 50% 50% 50% 25% 25% 100%  94%
Masked token - - 75% 50% 75% 50% 50% 50% 25% 25% 100%  75%

Table 6.6: Multi-task generation performance on Something-Something-V2 evaluated by FVD. Gray values denote unseen
tasks during training. The bottom two rows list the proportions of masked pixels and tokens for each task.

Method | nuScenes-FP = Objectron-FI A Web12M-MT8 FP FI OPC OPV OPH OPD IPC IPD

MAGVIT-B 29.3 - 33.0 849 339 344 215 221 260 20.7 204
MAGVIT-L 20.6 26.7 21.6 455 309 199 153 145 20.2 12.0 147

Table 6.7: Multi-task generation performance on NuScenes, Objectron, and Web videos evaluated by FVD.
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Figure 6.8: Inference-time generation efficiency comparison. The average runtime for
generating one frame is measured at different resolutions. The colored bars show the time
breakdown between the 3D-VQ and the transformer. The embedded table compares the criti-
cal factors of inference efficiency for different methods at 16-frame 128x128, except for Video
Diffusion [90] at 64x64.

Eight tasks on BAIR. We perform a multi-task evaluation on BAIR with eight self-supervised
tasks. Tab. 6.5 lists the “debiased” FVD for each task, where the third column computes the
average. We compare the multi-task models (MT) with two single-task baselines trained on
unconditional generation (UNC) and frame prediction (FP).

As shown in Tab. 6.5, the multi-task models achieve better fidelity across all tasks. Single-
task models perform considerably worse on the tasks unseen in training (gray values in Tab. 6.5),
especially on the tasks that differ more from the training task. Compared to the single-task
models in their training task, MT performs better with a small gain on FP with the same model
size.

Ten tasks on SSv2. We evaluate on the large-scale SSv2 dataset, where MAGVIT needs to
synthesize 174 basic actions with everyday objects. We evaluate a total of ten tasks, with two of
them using class labels (CG and CFP), as shown in Tab. 6.6. We observe a pattern consistent with
BAIR: multi-task models achieve better average FVD across all tasks. Fig. 6.9 shows examples
of generated videos for each task. The above results substantiate model generalization trained
with the proposed multi-task objective.

Results on nuScenes, Objectron, and 12M Web Videos. Tab. 6.7 shows the generation
performance on three additional datasets, i.e., nuScenes [27], Objectron [5], and Web12M which
contains 12 million videos we collected from the web. We evaluate our model on the frame
prediction task on nuScenes, the frame interpolation task on Objectron, and the 8-task suite
on the Web videos. Fig. 6.10 shows examples of generated videos for each task. The results
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Method Seq. Length FPFVD| MT8FVD]

Latent masking in MaskGIT [33] 1024 74 151
Prefix condition 1024-1792 55 -
L onask 388 143
COMMIT mas
(ours) L oask + Lrecons 1024 51 53
f'mask + [/recons + [/reﬁne 48 33

Table 6.8: Comparison of conditional masked token modeling on BAIR frame prediction
(FP) and eight-task (MT8) benchmarks. - indicates we were not able to train to convergence.

Decoding Method Tokenizer Type Param. Seq. Len.| #Steps| FVD|

oD-VQ  NAR 53M+87M 4096 12 222(177)
MaskGIT [33] 3D-VQ  NAR 41M+87M 1024 12 122 (74)
MaskViT [74] 2D-VQ  NAR 53M+189M 409 8 04"
AR 3DVQ AR 41IM+87M 1024 1024 91 (56)
MAGVIT (ours) 3D-VQ NAR 41M+87M 1024 12 76 (48)

Table 6.9: Comparison of decoding methods on BAIR frame prediction benchmark. The
number of parameters is broken down as VQ + Transformer. NAR is non-autoregressive and
AR is autoregressive. FVD and debiased FVD (in parentheses) are reported. * marks the quoted
number from their paper.

substantiate the generalization performance of MAGVIT on videos from distinct visual domains
and the multi-task learning recipe on large-scale data.

6.5.5 Ablation Study

Conditional MTM. We demonstrate the efficacy of COMMIT by comparing it with conven-
tional MTM methods, including the latent masking in MaskGIT for image synthesis [33] and the
commonly-used prefix condition that prepends cropped condition tokens to the input sequence.

Tab. 6.8 compares these methods on the BAIR dataset where the same 3D-VQ tokenizer is
used in all approaches. As discussed in Section 6.4.1, latent masking in [33], which directly un-
masks tokens of the condition region at inference time, leads to poor generalization, especially
for the multi-task setup. Prefix condition produces a long sequence of variable length, making
it less tractable for multi-task learning. In contrast, COMMIT yields a fixed-length sequence
and better generalizability for both single- and multi-task setups.

Training losses. The bottom section of Tab. 6.8 shows the contribution of the training loss
components in Eq. (6.4).
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Figure 6.9: Multi-task generation results for the model only trained on the Something-
Something-V2 dataset [68]. The conditions used to generate the shown videos are taken from
the Something-Something-V2 evaluation videos.
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Frame Prediction

Web

Frame Interpolation

Central Outpainting

Figure 6.10: Multi-task generation results for three models trained on nuScenes [27], Objec-
tron [5], and 12M Web videos, respectively. The conditions used to generate the shown videos
are taken from the evaluation set.
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Dataset B L

UCF-101 2000 2000
BAIR 400 800
BAIR-MT 1200 1600
Kinetics-600 180 360
SSv2 720 1440
nuScenes 2560 10240
Objectron 1000 2000
Web12M 10 20

Table 6.10: Training epochs of MAGVIT transformer for each dataset.

Decoding methods. Tab. 6.9 compares Algorithm 1 with existing autoregressive (AR) and
non-autoregressive (NAR) decoding methods. We consider two NAR baselines, i.e., MaskGIT [33]
for image and MaskViT [74] for video synthesis. We use the same 3D-VQ tokenizer for MaskGIT,
AR, and MAGVIT. As shown, the proposed decoding algorithm produces the best quality with
the 3D-VQ and has a 4x shorter sequence than the 2D-VQ. While the AR transformer obtains a
reasonable FVD, it takes over 85x more steps at inference time.

6.5.6 Implementation Details

Training. MAGVIT is trained in two stages where we first train the 3D-VQ tokenizer as de-
tailed in Chapter 3 and then train the transformer with a frozen tokenizer. We follow the same
learning recipe across all datasets, with the only variation in the number of training epochs.
Here are the training details for the second stage:

* Sequence length: 1026. B2 = 0.96.
* Hidden dropout rate: 0.1. * Weight decay 0.045.
* Attention dropout rate: 0.1. * Label smoothing: 10~*.
* Mask rate schedule: cosine. * Max gradient norm: 1.
* Peak learning rate: 107*. * Batch size: 256.
* Learning rate schedule: linear warm up * Speed:
and cosine decay. 1.24 steps/sec on 16 TPU-v2 chips for B,
- Optimizer: Adam with f; = 0.9 and 2.70 steps/sec on 32 TPU-v4 chips for L.

Using more hardware resources can speed up the training. We train MAGVIT models for
each dataset separately. The training epochs for each dataset are listed in Tab. 6.10.

Sampling protocols. We follow the sampling protocols from previous works [42, 63] when
eveluating on the standard benchmarks, i.e. UCF-101, BAIR, and Kinetics-600. We sample 16-
frame clips from each dataset without replacement to form the real distribution in FVD and
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extract condition inputs from them to feed to the model. We continuously run through all the
samples required (e.g., 40,000 for UCF-101) with a single data loader and compute the mean
and standard deviation for 4 folds. When evaluating on other datasets, due to the lack of prior
works, we adapt the above protocol based on the dataset size to ensure sample diversity.
For our MAGVIT model, we use the following COMMIT decoding hyperparameters by de-
fault: cosine schedule, 12 steps, temperature 4.5. Below are detailed setups for each dataset:
+ UCF-101:
* Dataset: 9.5K videos for training, 101 classes.
* Number of samples: 10,000x4.
* Resolution: 128x128.
* Real distribution: random clips from the training videos.
* BAIR:
* Dataset: 43K videos for training and 256 videos for evaluation.
* Number of samples: 25,600x4.
* Resolution: 64x64.
* Real distribution: the first 16-frame clip from each evaluation video.
* COMMIT decoding: exponential schedule, temperature 400.
* Kinetics-600:
* Dataset: 384K videos for training and 29K videos for evaluation.
* Number of samples: 50,000x4.
* Generation resolution: 128x128.
* Evaluation resolution: 64x64, via central crop and bilinear resize.
* Real distribution: 6 sampled clips (2 temporal windows and 3 spatial crops) from each eval-
uation video.
* COMMIT decoding: uniform schedule, temperature 7.5.
« SSv2:
* Dataset: 169K videos for training and 24K videos for evaluation, 174 classes.
* Number of samples: 50,000x4.
* Resolution: 128x128.
* Real distribution for the CG task: random clips from the training videos.
* Real distribution for the other tasks: 2 sampled clips (2 temporal windows and central crop)
from each evaluation video.
* nuScenes:
* Dataset: 5.4K videos for training and 0.6K videos for evaluation, front camera only, 32
frames per video.
* Number of samples: 50,000x4.
* Resolution: 128x128.
* Real distribution: 48 sampled clips (16 temporal windows and 3 spatial crops) from each
evaluation video.
* Objectron:
* Dataset: 14.4K videos for training and 3.6K videos for evaluation.
* Number of samples: 50,000x4.
* Resolution: 128x128.
* Real distribution: 5 sampled clips (5 temporal windows and central crop) from each evalu-
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ation video.
+ Web12M:
* Dataset: ~12M videos for training and 26K videos for evaluation.
* Number of samples: 50,000x4.
* Resolution: 128x128.
* Real distribution: randomly sampled clips from evaluation videos.

6.6 Summary

In this chapter, we propose MAGVIT, a generic and efficient mask-based video generation
model. We use the high-quality 3D-VQ tokenizer from Chapter 3 to quantize a video and de-
sign COMMIT for multi-task conditional masked token modeling. We conduct extensive ex-
periments to demonstrate the video generation quality, efficiency, and flexibility for multi-task
generation. Notably, MAGVIT establishes a new state-of-the-art quality for class conditional
generation on UCF-101 and frame prediction on BAIR Robot Pushing and Kinetics-600 datasets.
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Chapter 7

Generative Modality Infusion Into
Frozen Large Language Models

Overview. Large Language Models (LLMs) have made significant advances in solving a wide
range of NLP tasks, while expanding their capabilities beyond language into other modalities.
However, little success has been made in the generation of another modality with an LLM
itself. In this chapter, we adopt the SPAE representation proposed in Chapter 4 for enabling
frozen LLMs to perform multi-modal multi-task understanding and generation involving non-
linguistic modalities such as images or videos. Our approach is validated through in-context
learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image understanding
and generation tasks. Our method marks the first successful attempt to enable a frozen LLM to
generate image content while surpassing state-of-the-art performance in image understanding
tasks, under the same setting, by over 25%.
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7.1 Motivation

Large language models (LLMs) empowered by Transformers [201] have achieved remarkable
progress in addressing a broad spectrum of Natural Language Processing (NLP) tasks [7, 25, 40,
145]. With the continuous increases in model size and training data, LLMs are gradually becom-
ing more versatile and agnostic to specific tasks, unlocking new capabilities in solving complex
Al tasks [221], like question answering, code generation, reasoning, mathematics problem-
solving, and understanding humor, among various other applications [7, 145].

LLMs capture rich conceptual knowledge about the world in their lexical embeddings. This
raises a question: if provided with the appropriate visual representations as input, are frozen
LLMs capable of solving tasks in visual modalities? Very recently, there have been notable ad-
vancements in extending the capabilities of frozen LLMs to tackle image understanding and
retrieval tasks [112, 132]. However, generating a different modality using a frozen LLM that
has not been explicitly trained on that modality has proven to be challenging and has had little
success.

To facilitate LLMs for such cross-modal tasks, we propose to learn a vector quantizer to map
an image, or some other non-linguistic (“foreign”) modality, to the token space of a frozen LLM.
This effectively translates the image into a language that the LLM can comprehend, enabling us
to leverage the generative abilities of the LLM to perform image understanding and generation
tasks without having to train on image-text pairs. Specifically, our new approach is that, given
an image prompt, convert it to a token space with our learned encoder, use the LLM to generate
suitable lexical tokens, and convert back to pixel space with our learned decoder.

We verify the plausibility of our approach in an extreme setting of in-context learning [25],
without any parameter updates to the LLM. Our SPAE model is trained standalone, without
backpropagating through any language model. We evaluate our approach on image under-
standing tasks including image classification, image captioning, and visual question answer-
ing. We showcase a promising direction to image generation with LLMs by utilizing in-context
denoising techniques. Our method is LLM-agnostic and has been tested with PaLM 2 [7] and
GPT-3.5 [145], suggesting compatibility with arbitrary LLMs.

The main contributions of this work are summarized as follows:

* This is the first successful method, to the best of our knowledge, that uses a frozen

language model, trained solely on language tokens, to directly generate image content
through in-context learning.

* We propose a new progressive prompting method that facilitates in-context generation
of long cross-modal sequences.

* We evaluate our method on visual understanding and generation tasks, and notably, our
approach outperforms the best-published few-shot image classification accuracy [132] by
an absolute 25% under the same in-context setting.

7.2 Prior Work

Multimodal generation with LLMs. Advances have been made to expand the capabilities of
LLMs beyond language. For example, Visual ChatGPT [226] uses ChatGPT to generate prompts
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and executes multimodal tasks through another model, e.g., generating image from text prompts
by Stable Diffusion [165]. FROMAGe [112] feeds CLIP [160] embeddings to OPT [255] for image
understanding and retrieval. However, it requires backpropagation through the LLM and does
not support image synthesis. This work enables a standalone frozen LLM to understand and
generate other modalities which are unseen in training.

Few-shot learning with LLMs. In-context learning [7, 25, 40] facilitates LLMs for few-shot
learning via the text interface without parameter updates. This approach is commonly em-
ployed to assess the performance of LLMs on numerous NLP benchmarks, e.g., classification
and question answering [207], mathematical reasoning [124], and code generation [233], which
yields competitive results to their fine-tuned counterparts. However, existing few-shot vision-
language understanding and generation frameworks [6, 112] still require LLM parameter up-
dates. In contrast, our work inherits the in-context learning ability from frozen LLMs.

7.3 Progressive In-Context Decoding with LLMs

While our method is more effective when backpropagating through LLMs by prompt [122] or
adapter tuning [96, 98], this chapter focuses on verifying the plausibility in an extreme setting
of in-context learning [25]. We demonstrate that LLMs are capable of performing new tasks in
foreign modalities without any parameter updates. Specifically, a set of K examples {(u’, v))}X |
are fed to the LLM to learn a new task and answer a query u with

v~ Prov( | 85 {(u’, v)IE). (7.1)

Sampling v by a single-pass autoregressive decoding is suboptimal due to the distributional
shift in the representation and the presence of exceptionally long sequences, e.g., an image is
quantized into over 500 tokens. To this end, we use a progressive decoding method.

7.3.1 Method Formulation

Progressive generation. We generalize Eq. (7.1) into a multi-pass process, where the LLM
learns to generate one segment of the target sequence at a time. The segment generated from
the t-th pass is

¥~ P | [0 Yo L {([u', vi L vDRS), (7.2)

where [, -] indicates concatenation. ¢’ controls the length of previous segments to condition on,
with two common cases: (1) a progressive autoregressive (PAR) process with t’ = t, where each
decoded segment conditions on all previously decoded ones; (2) a progressive non-autoregressive
(PNAR) process with ¢/ = 0 to sample each segment independently, which greatly reduces the
sequence length requirement for the LLM. In practice, we use PAR to generate the first few
token layers given task-specific conditions, followed by PNAR to generate the remaining token
layers conditioned on the previous layers in an unconditional latent refinement process.
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Output

Figure 7.1: An example of in-context denoising. The context comprises images randomly
corrupted in the token space, gradually ranging from 50% to 20%.

In-context denoising. The learning capacity of an in-context setup is far from sufficient for
the entirety of a foreign modality M. So far, there have been no successful attempts in the
literature demonstrating that a frozen LLM can generate image content. For low-resolution
images, LLMs can produce images directly using in-context learning, as will be demonstrated
with 32x32 MNIST images [48]. For higher resolutions, the context length restricts the number
of examples. For instance, a context window of 8k tokens can only hold less than a dozen
128x128 images. Therefore, we operate in a denoising subspace to synthesis beyond 32x32
resolution. Take the image-to-image task in Fig. 7.1 as an example. The provided context are
images randomly corrupted in the token space by e(-;r), where the corruption ratio r follows a
cosine schedule [33].

(u',v') ~ (e(T(mask(I));ri),e(T(I);ri)),I eM (7.3)

where 7 (-) represents the SPAE tokenizer and M is a small set of raw images. mask(-) zeros out
pixels of the real image to create the condition image, such as masking out the bottom half for
out-painting. The query u is always sampled from M without noise €. To ensure the generation
is not simply copying the context, we enforce a minimal corruption rate of 20% such that no
identical image from the context matches the real target image.

7.3.2 LLM Prompting

To generate prompts, we utilize SPAE from Chapter 4 to quantize an image, or another non-
linguistic modality, into a pyramid of lexical tokens. Subsequently, we flatten the tokens by
concatenating them layer-by-layer, following a raster scan, and resulting in a 1-D string. This
string, representing the image, is referred to as the SPAE string in the following prompts.

We use task-specific prompt templates to facilitate answer generation with LLMs. The LLM
output is always parsed by removing leading and trailing whitespace or newline characters.

Image classification with GPT 3.5. We use the same prompt template as LQAE [132] to
interact with GPT 3.5. For a 2-way 1-shot classification between class lion and vase, the prompt
is

For each of the following input output pairs, output is one of
[‘lion’, ‘vase’]
HH#
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Input: <SPAE string from a lion image>
Output: lion

HH#

Input: <SPAE string from a vase image>
Output: wvase

HHH#

Input: <SPAE string from the query image>
Output:

We use greedy decoding to get a maximum of 7 tokens from GPT 3.5.

Image classification with PaLM 2.
PaLM 2. The prompt looks like

We use the original minilmageNet [204] format with

Answer with "lion" or "vase".
<SPAE string from a lion image>

This is a lion

<SPAE string from a vase image>
This is a vase

<SPAE string from the query image>
what is this? # Only used in 5-way 3/5-shot setups
This is a

We use greedy decoding to get a maximum of 4 tokens from PaLM 2.
Image captioning. We use greedy decoding to get a maximum of 20 tokens before the first

newline character with the following prompt:
Generate a caption sentence based on words describing an image.

Q: <SPAE string from image 1>
A: <Caption for image 1>
Q: <SPAE string from image 2>
A: <Caption for image 2>

Q: <SPAE string
A:

from the query image>

Visual question answering. We use greedy decoding to get a maximum of 4 tokens before
the first newline character with the prompt template as

Answer with a single word.
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C:
Q:
A.

<SPAE string from image 1>
<Question for image 1>
<Answer for image 1>

<SPAE string from image 2>
<Question for image 2>
<Answer for image 2>

<SPAE string from the query image>
<Question for the query image>

Image/video generation with AR decoding. For image or video generation tasks, the con-
dition can be a text string or an SPAE string of a condition image. Suppose we use AR decoding
with a stride of 4 tokens. At the 4th step, the prompt looks like

Learn a new language and predict the 4 tokens following the examples.

C:

Q:
A:

<condition for image 1>
<SPAE string (token 1-12) for image 1>
<SPAE string (token 13-16) for image 1>

:<condition for image 2>
:<SPAE string (token 1-12) for image 2>
:<SPAE string (token 13-16) for image 2>

:<condition for the query>
Q:
A:

<SPAE string (token 1-12) for the generated image from previous steps>

We use PalLM 2 to generate 8 predicted sequences for the next 4 tokens, starting with a tem-
perature T, = 0. We use the sentence piece [115] tokenizer to tokenize the output string. If all
predictions are shorter than 4 tokens, we retry the LLM prediction with a higher temperature.
At the i-th retry, the temperature is given by

L=y Z 2/ (7.4)

where ¢/ = 0.01 is used.

Image/video generation with NAR decoding. We use NAR decoding to generate SPAE
layer 6 conditioned on layer 1-5. With a stride of 16, the prompt at the 3rd step looks like

Predict the outputs following the examples.

Q:
A:

<SPAE string from layer 1-5 for image 1>
<SPAE string from layer 6 (token 33-48) for image 1>
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Figure 7.2: Few-shot classification accuracy on mini-ImageNet using different SPAEp,; \ lay-
ers.

Q:<SPAE string from layer 1-5 for image 2>
A:<SPAE string from layer 6 (token 33-48) for image 2>

Q:<SPAE string from layer 1-5 for the generated image from AR decoding>
A:

We use PaLM 2 to generate 8 predicted sequences for the next 16 tokens. If the sentence piece
parsing fails, we retry with the same temperature schedule as in AR decoding.

7.4 Experimental Results

LLM setups. The PaLM 2-L API [7] is used for in-context learning with SPAEp,; . For a fair
comparison with prior works [132], we use SPAEgpr with the GPT 3.5 text-davinci-003
API (https://platform.openai.com/docs/models/gpt-3-5).

MNIST SPAE. In addition to the models introduced in Chapter 4, we train another SPAE
on the MNIST [48] dataset with the same architecture setup. We pad the handwritten digit
images from 28x28 to 32x32 pixels, which are then encoded into 4x4 embeddings. Each image
is represented by 37 tokens organized in four layers, with sizes of 1x1, 2x2, 4x4, and 4x4. We
replace the CLIP image embedding with the CLIP text embedding of the label for the semantic
loss. The model is trained for 10k steps with a batch size of 256. For in-context generation, AR
decoding with a stride of 4 is used to produce all 37 tokens.

7.4.1 Main Evaluation

Few-shot image classification. We evaluate the in-context image understanding capability
with a frozen LLM on the mini-ImageNet [204] few-shot classification benchmark. A set of
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Task Induction v v v/ v v/ v

Method # Layers  Inner Shots 1 1 3 5 1 1 1 Avg
: # Tokens Repeats 0 0 0 0
2-Way Classification
Frozen [195] - 1.7 337 66 66 63 65 63.7 513
LQAE [132] 1: 256 GPT 3.5 1.5 352 682 698 685 687 659 5397
SPAEgpr (ours) 2:5 GPT 3.5 53 772 844 860 794 772 771 69.51
SPAEpy (ours) 1:1 PalM2  34.8 772 812 803 740 732 715 7031
SPAEp, v (ours) 2 PalM 2 322 840 835 884 85.1 836 824 7774
SPAEp, v (ours)  3: 21 PalLM 2 279 84.8 925 92.6 848 85.2 854 79.03
SPAEp,\ (ours) 4: 85 PalM 2 228 81.1 914 904 82.6 843 847 76.76
SPAEp, v (ours)  5: 341 PalM 2 21.2 774 880 791 848 740 76.1 7151
SPAEp,1\ (ours)  6: 597 PalLM 2 21.8 738 708 624 648 621 586 59.19
SPAESSIomt 2: 5 PaLM 2 248 798 845 837 808 785 784 7293
SPAESSIomt 3: 21 PaLM 2 214 814 892 879 826 817 80.6 7498
5-Way Classification

Frozen [195] - 0.9 145 347 338 338 333 328 26.26
LQAE [132] 1: 256 GPT 3.5 1 157 359 365 319 364 459 29.04
SPAEgpr (ours) 2:5 GPT 3.5 43 630 634 606 619 621 62.1 5391
SPAEpy (ours) 1:1 PaLM2  26.8 520 509 49.9 519 484 479 4683
SPAEp, v (Ours)  2: PalLM 2 23.6 642 680 699 634 620 602 58.76
SPAEp, v (ours)  3: 21 PalLM 2 20.2 65.1 73.7 743 664 67.0 663 61.86
SPAEp, v (ours) 4: 85 PalM 2 16.1 585 67.2 691 640 664 67.4 58.39
SPAEp, v (ours)  5: 341 PalLM 2 12.1 463 559 672 433 463 - -
SPAEp, .\ (ours)  6: 597 PaLM 2 121 357 - - - - - -

Table 7.1: Few-shot classification accuracy on the mini-ImageNet benchmarks. SPAEgpr
and SPAEp,\ are trained using different vocabularies and embedding sources, with different
prompt templates for in-context learning. They show the broad compatibility of SPAE but are
not for a comparison between the LLMs. The best performance with GPT is in italics while the
overall best is in bold. - means value unavailable due to an infeasible sequence length.

Method Inner Shots 1 3 5

Frozen [195] 7.8 10.1 105
SPAEp,1 (ours) PalLM 2 14.3 159 15.1

Table 7.2: Few-shot VQA performance on Real-Fast-VQA.
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tokenized images and class labels are fed to the language model as context for classification of
a new image. Following [132, 195], we evaluate 14 settings controlled by four factors regarding
the content of each test case: (1) task induction: whether including a preamble to specify the
output space; (2) number of ways: the number of categories; (3) number of inner shots: the
number of unique examples for each category; (4) number of repeats: the number of times that
each unique example is repeated.

We compare SPAE with the state-of-the-art methods Frozen [195] and LQAE [132]. As
shown in Tab. 7.1, SPAEgpt consistently outperforms LQAE, both using the same GPT 3.5 model
and in-context format, while using only 2% of its tokens. Fig. 7.2 shows the performance trend
when using different number of SPAEp,; \ layers across six settings with task induction and 0 re-
peats. SPAEp,;\ with 3 layers achieves the best performance which balances between sufficient
semantics and an image sequence length that is optimal for LLM in-context learning. Overall,
SPAEp,1\ yields +25% and +32% average accuracy improvement over the state-of-the-art on
the 2-way and 5-way benchmarks in Tab. 7.1.

Few-shot visual question answering. Tab. 7.2 provides quantitative results on the visual
question answering (VQA) task. We compare with the baseline Frozen [195] method on the Real-
Fast-VQA [195] benchmark for few-shot learning. As shown, SPAE consistently outperforms
Frozen. Unlike Frozen, SPAE training does not require backpropagation through the LLM.

7.4.2 Qualitative Studies

This section explores the capability of a frozen PaLM 2, trained solely on language tokens, in
performing multimodal tasks using in-context learning. We adopt a two-stage decoding process
for image generation. In stage one, we use AR decoding to produce the first 5 SPAE layers
with task-specific conditions. Stage two is a task-agnostic NAR decoding process for layer 6
conditioned on the first 5 layers.

Image to text and VQA. We examine two tasks involving visual-text reasoning (1) im-
age captioning on COCO [131] captions; and (2) visual question answering (VQA) on COCO-
QA [162]. For both tasks, we provide 10 unique training examples as prompts. In the case of
VQA, 10 different answers are presented to form a 10-way 1-shot setup.

We compare SPAE to a baseline model trained with the same frozen language codebook but
without the proposed semantic guidance or pyramid SAQ. As shown in Fig. 7.3, when fed with
baseline tokens, the LLM randomly hallucinates a caption or guesses an answer simply based
on the question. Similar hallucination can happen if we only use the first two layers of SPAE or
five words to represent an image, as it provides insufficient context for captioning. Reasonable
captions start to appear with 4 layers or 85 words representing an image, while complex scenes
may still need the full 6 layers of 597 words.

LLM generating MNIST images. Fig. 7.4 shows a few image generation examples on the
MNIST [48] dataset. The frozen LLM learns about handwritten digit images through 50 con-
text samples tokenized by SPAE trained on MNIST. Each sample consists of a preamble "an
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Baseline: A man in a suit standing in front of a white wall.

SPAE L1: A man in a red jacket and black pants standing on a snowy
mountain.

SPAE L2: A man in a red jacket skiing down a snowy mountain.
SPAE L3: A man skiing down a snowy mountain.

SPAE L4: A person skiing down a snowy mountain.

SPAE L5: A person skiing down a mountain.

SPAE L6: A person skiing down a mountain.

Baseline: A group of people are standing in a field.
SPAE L1: A group of people are standing in a room.
SPAE L2: A kitchen with a stove, sink, and refrigerator.
SPAE L3: A kitchen with a stove, sink, and refrigerator.
SPAE L4: A kitchen with a stove, sink, and refrigerator.
SPAE L5: A kitchen with a stove, sink, and cabinets.
SPAE L6: A kitchen with a sink, stove, and refrigerator.

Baseline: A man and a woman are sitting on a bench in a park.

SPAE L1: A man is holding a baby in his arms.

SPAE L2: A group of people are standing in a line.

SPAE L3: A group of people in costumes at a Halloween party.

SPAE L4: A group of people are dressed up in costumes for Halloween.
SPAE L5: a group of people dressed in costumes at a party

SPAE L6: a table with a bowl of fruit and a vase of flowers

Baseline: A man is standing on a rock in the middle of a river.
SPAE L1: A man is standing on a rock in the middle of a river.
SPAE L2: A man is wearing a coat and a hat.

SPAE L3: A man is holding a small dog.

SPAE L4: A teddy bear is sitting on a bed.

SPAE L5: A teddy bear is sitting on a bed.

SPAE L6: A teddy bear is sitting on a bed.

SPAE: A pizza with SPAE: A man in a suit and SPAE: A train is Q: what is the young boy Q: what bear walking Q: how many different wines Q: how many computer
pepperoni and cheese tie standing next to a stopped at a riding in the empty parking lot  through tall grass are lined up in glasses on an screens are displayed
on a white plate. woman in a wedding dress.  station. A: Baseline: bike A: Baseline: siberian outdoor table with one image

SPAE: skateboard SPAE: grizzly A: SPAE: 5 A: SPAE: 3

Figure 7.3: Qualitative samples of image-to-text generation: image captioning and VQA. We compare between different layers
of SPAE (L1-L6) and a baseline model without semantic guidance or pyramid SAQ.
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Figure 7.4: Examples of text-to-image generation on MNIST using the frozen PaLM 2
model. We use SPAE to tokenize 50 handwritten images as the context and ask PaLM 2, an
LLM trained solely on text tokens, to answer complex queries that require generating digit
images through SPAE as the output. To achieve this, we use SPAE to convert the image into
lexical tokens and construct prompts. Then, we ask PaLM 2 to generate suitable answers for
the prompts. Finally, we convert the answer tokens back into the pixel space and display them
in the figure. Note that the generated digit images do not appear identical to any of the samples
provided in the context.

image of k" and the lexical tokens representing an image of digit k. Then we can ask the
LLM to answer questions with digit images. Specifically, with a query of "an image of
147", we can use progressive AR decoding with the LLM to produce a token sequence that can
be decoded into an image of 8 by SPAE. We test with complex questions requiring mathematical
reasoning or common sense knowledge, and the LLM is able to respond correctly. In addition,
the generated digit images appear different from all context samples. This demonstrates the
cross-modal reasoning capability enabled by SPAE and a frozen LLM, with images generated
over the text-only interface.

Conditional image interpolation. To the best of our knowledge, there have been no suc-
cessful attempts that demonstrate generic image generation capability using a frozen LLM. To
this end, we define a very simple setup to explore the interpolation capability of LLM, where
the conditions are integers from 1 to 9. The target images are created with different pixel-space
transformations:

* Brightness: [+0.8, 0.6, £0.4, +0.2].

* Contrast: [+0.8,+0.6, +0.4, +0.2].
+ Saturation: [+£0.4, +0.3, +0.2, +0.1].

- Color (RGB): [(0.6,1.4,1),(0.7,1.3,1),(0.8,1.2,1),(0.9,1.1, 1),
(1.1,0.9,1),(1.2,0.8,1),(1.3,0.7, 1), (1.4, 0.6, 1)]
Overflow pixels are clipped to [0,255]. As shown in Fig. 7.6, images 1-4 and 6-9 are fed as
context to produce image 5, where the model interpolates the variable property. Fig. 7.5 shows
generated samples at 256x256 resolution under the same setup.
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Context Generation Context

Figure 7.5: Examples of conditional image interpolation at 256x256 resolution. The LLM
is provided with eight condition images for the interpolation following the setup in Fig. 7.6.
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Figure 7.6: Examples of conditional image interpolation of different image transforma-
tions.

Conditional image denoising. We also define a denoising setup to explore the capability
of LLMs. The conditional image denoising tasks include image outpainting, deblur, inpainting,
location translation, rotation, etc. Note that, in order to generate images for each task, we
utilize 10 pairs of noisy examples with corruption rates ranging from 50% to 20%, as discussed
in Section 7.3.1. We use PAR decoding to produce the first 5 token layers with task-specific
conditions, followed by task-agnostic PNAR decoding to fill in layer 6.

The bottom rows of Fig. 7.7 compare the output quality from different decoding strides with
the same set of context examples. Single-step decoding with infinity stride fails to produce a
reasonable image, which validates the proposed progressive generation approach. In Fig. 7.8,
we qualitatively compare SPAE with baseline methods VQGAN and LQAE using the same in-
context denoising procedure. As shown, VQGAN fails to produce reasonable images, in part
because many words in the LLM output are out of its vocabulary. LQAE only produces vague
object contours but cannot recover any visual details. On the contrary, SPAE can generate rea-
sonable images. Fig. 7.9 visualizes the input pairs for the conditional image denoising samples
in Fig. 7.8, with more examples in Fig. 7.10.
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Stage 1: AR
Layer 1-5
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Outpainting
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Layer 6
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Figure 7.7: Examples of conditional image denoising. We compare different decoding
strides for both stages. Yellow and blue boxes indicate the selected results. The LLM is pro-
vided with ten pairs of noisy examples shown at the top half. Multiple different outputs can be
obtained from the same set of context samples.

VQGAN LQAE SPAE

Figure 7.8: Comparison on conditional image denoising with different tokenizers. All
models use the same decoding setup with the same ten pairs of prompt images from Figs. 7.7
and 7.9.
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(c) Deblur from a gaussian filter.

Figure 7.9: Examples of conditional image denoising. All input samples for the in-context
learning are presented for the examples in Fig. 7.8.
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Figure 7.10: Examples of conditional image denoising,.

126



Condition

Stage 1: AR
Layer 1-5
Task-specific

Stage 2: NAR
Layer 6
Task-agnostic

Generation
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Corruption: 50% 20%
A dog with a long, curly coat of fur.

A small dog with a big smile.
A small dog with long hair looks up at the camera.

Figure 7.11: Examples of multi-modal outputs from the LLM.

Multimodal outputs. Fig. 7.11 shows a task requiring a single LLM to output both image
and text, where it first inpaints the center region of an image using in-context denoising and
then creates multiple captions for the output image.

Image-to-video denoising. Fig. 7.12 shows an image-to-video example with the frame pre-
diction task using progressive in-context denoising. The input is one frame tokenized by the
image SPAE, while the output is a 16-frame clip tokenized by the video SPAE. We follow the
same two-stage procedure as conditional image denoising, with more steps in each stage to
account for the longer sequence. Due to the sequence length limit, only four samples can be fit
into the context, which limits LLM’s performance for this task.

7.5 Summary

Our work unveils the untapped potential of frozen Large Language Models (LLMs) in tackling
multi-modal multi-task understanding and generation involving images and videos, without
requiring explicit training on these modalities. This is achieved with the new method, SPAE
from Chapter 4, which converts between visual content and lexical tokens of variable length,
imbued with rich semantic meaning. Our findings show the great potential of harnessing the
vast knowledge and reasoning capabilities of LLMs in the field of computer vision, transcending
the limitations of language-only tasks.

Limitations. The capability of in-context learning is significantly constrained by the accept-
able sequence length. Although our results suggest the plausibility of image generation, the
quality and diversity is still far from the recent text-to-image models trained on paired image
and text data.

Broader impact. We showcase the untapped potential of frozen Large Language Models
(LLMs) in multimodal understanding and generation tasks involving images and videos, with-
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Figure 7.12: Examples of image-to-video denoising: frame prediction. We follow the same two-stage generation procedure as
in conditional image denoising tasks. Due to the sequence length limit, only four samples can be fit into the context. The generated
video clip appear visually different from the context samples, especially around the reflections of the bowl.
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out requiring explicit training on these modalities. As an initial research proof-of-concept, we
focus on in-context learning, which has limitations in learning context and constrained ca-
pabilities. Consequently, there is still a substantial gap to the recent specialized models for
text-to-image (e.g., Stable Diffusion) or image-to-text that have been specifically trained using
billions of text-image pairs.

The potential impact of our research lies in its influence on future studies, specifically in the
area of interacting with pretrained LLMs to enhance their understanding and generation capa-
bilities in the visual modality. For instance, our work can be extended to explore finetuning or
adapter tuning of LLMs on large-scale text-image datasets. Future research in these directions
may implicate ethical issues around fairness and transparency, which need to be carefully con-
sidered beyond the quality measurements employed here. We have found that the generated
tokens occasionally include slang terms or words that create inappropriate connotations related
to the subject depicted in the image or video. Such concerns must be thoroughly considered
and effectively addressed prior to deploying this method in real-world applications.
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Chapter 8

Scalable Generative Multi-Modal
Transformer

Overview. Leveraging the representation we have built in Chapter 5, we present VideoPoet, a
model for synthesizing high-quality videos from a large variety of conditioning signals. VideoPoet
employs a decoder-only transformer architecture that enables multi-task generation of multi-
modal outputs - including videos, images, and audio. The training protocol follows that of
Large Language Models (LLMs), consisting of two stages: Pretraining and task-specific adap-
tation. During pretraining, VideoPoet incorporates a mixture of multi-modal generative objec-
tives within an autoregressive Transformer framework. The pretrained LLM serves as a foun-
dation that is adapted to a range of video generation tasks. We present results demonstrating
the model’s state-of-the-art capabilities in zero-shot video generation, specifically highlight-
ing the generation of high-fidelity motions. Project page: http://sites.research.
google/videopoet/.
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8.1 Motivation

Recently, there has been a surge of generative video models capable of a variety of video cre-
ation tasks. These include text-to-video [177, 251], image-to-video [248], video-to-video styl-
ization [32, 38, 205], and video editing [31, 65, 212] among other video applications. Most
existing models employ diffusion-based methods for video generation. These video models
typically start with a pretrained image model, such as Stable Diffusion [149, 165], that produces
high-fidelity images for individual frames, and then fine-tune the model to improve temporal
consistency across video frames.

While Large Language Models (LLMs) are commonly used as foundation models across vari-
ous modalities including language [25], code [128, 145], audio [167], speech [3], and robotics [53,
262], the diffusion model remains the predominant approach for video generation. Although
early research has demonstrated the effectiveness of LLMs in text-to-image generation, e.g.,
DALL-E [161], Parti [235] and CogView [51], and text-to-video, e.g., CogVideo [93], language
models have not reached a level of quality on par with video diffusion models in tasks like text-
to-video generation as shown in previous studies [143, 203]. In contrast to training exclusively
for text-to-video tasks, the generative model of LLMs in the language domain emphasizes a
large pretraining stage to learn a foundation [17] by examining pretraining tasks that extend
beyond text-to-video generation.

A notable advantage of employing LLMs in video generation lies in the ease of integrating
existing LLM frameworks. This integration allows for reusing LLM infrastructure and lever-
ages the optimizations our community has developed over many years for LLMs, including
optimizations in learning recipes for model scaling [25, 40], training and inference infrastruc-
ture [54], hardware, among other advancements. This couples with their flexibility in encoding
many diverse tasks in the same model [157], which stands in contrast to most diffusion models
where architectural changes and adapter modules are the dominant approach used to adapt the
model to more diverse tasks [252].

In this chapter, we exploit language models for video generation, following the canonical
training protocols of LLMs in the language domain. We introduce VideoPoet, a language model
for video generation. VideoPoet employs a decoder-only LLM architecture [7, 145] that ad-
mits image, video, and audio modalities as discrete tokens, each produced by their respective
tokenizer.

The training process of VideoPoet consists of two stages: (1) pretraining and (2) task-
adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal pretraining
objectives within an autoregressive transformer framework. After pretraining, the model func-
tions as a versatile multi-task video generation model such as text-to-video, image-to-video,
video editing and video-to-video stylization. These capabilities are inherently integrated into a
single LLM, rather than relying on a separate generative model controlled by text prompts [188].
During subsequent task-adaptation, the pretrained model can be further fine-tuned either to
enhance its generation quality on the training tasks or to perform new tasks.

Experiments show VideoPoet’s state-of-the-art capabilities in generating videos with large
and high-fidelity motions. Through the powerful capabilities of the transformer architecture,
VideoPoet can be straightforwardly trained on a multi-task, multimodal generative objective,
allowing for generating consistent and realistic motion driven by text or other prompts. Fur-
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thermore, VideoPoet can synthesize coherent long videos of up to 10 seconds by autoregres-
sively extending the content, conditioned on the last second of the generated video.

We also demonstrate that VideoPoet is capable of zero-shot video generation. We use the
term “zero-shot video generation” as VideoPoet processes new text, image, or video inputs
that diverge from the training data distribution. Furthermore, VideoPoet handles new tasks
not included in its training. For example, VideoPoet is able to perform new editing tasks by
sequentially chaining training tasks together. The main contributions of this work are:

* A method for training a Large Language Model (LLM) specifically for video generation

tasks, utilizing tokenized video data that incorporates both text-paired and unpaired video
data.

+ Evaluations and demonstrations to highlight VideoPoet’s competitive and state-of-the-art
performance, especially in generating realistic and interesting videos with motion.

8.2 Prior Work

Video diffusion models. Recently, numerous video generation methods use diffusion-based
methods for text-to-video [15, 16, 64, 81, 88, 177, 209, 214, 215, 250, 251, 251, 260] and video-
to-video editing [38, 58, 61, 129]. As video diffusion models are usually derived from text-
to-image diffusion models [160, 169], additional tasks and modalities are added via inference
tricks [140], architectural changes [58, 129] and adapter layers [73, 252]. Although these models
are composable after training, they are not trained end-to-end in a unified framework. Our
multitask pretraining strategy in a single model improves performance and provides zero-shot
video generation capabilities.

Language models for video and image generation. Video language models are typically
derived from the general family of transformer-based language models [157, 201] that easily
combine multiple tasks in pretraining and demonstrate powerful zero-shot capabilities. Image
generation language models can generate images autoregressively [235] or via masked pre-
diction [33, 34]. Both families have been extended to text-to-video [93, 97, 203, 232] using
paired data. While other text-to-video work with transformers only leverages video-text pairs
for training, we also leverage unpaired videos (without text) and the same video for different
tasks. Since video language models can flexibly incorporate numerous tasks [143, 242], includ-
ing video-to-video, we extend this family of work to text- and multimodal-conditioned tasks in
this work with a synergistic pretraining strategy across various tasks.

Pretraining task designin LLMs. Aslanguage models can easily incorporate multiple train-
ing tasks, task selection is an important area of research. GPT-3 [25] and PaLM [40] demonstrate
that training LLMs on diverse tasks leads to positive scaling effects on zero- and few-shot tasks.
Other approaches show that masking approaches are a valuable learning target [91, 242, 245].
As the model size grows, training data must grow as well [91] to maintain similar performance.
Our pretraining strategy enables using the same video for multiple training tasks even without
paired text. This design facilitates training on a large quantity of video-only examples, thereby
decreasing the demand for video-text pairs.
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8.3 VideoPoet Model Design

We propose an effective method for video generation and related tasks from different input
signals by leveraging large language models. Our model consists of modality-specific tokenizers
and a language model backbone (Fig. 8.2). The tokenizers map input data - i.e. image pixels,
video frames, and audio waveforms — into discrete tokens in a unified vocabulary. The visual
and audio tokens are flattened into a sequence of integers. Next, the LLM accepts these tokens as
input along with text embeddings, and is responsible for generative multi-task and multimodal
modeling. As illustrated in Fig. 8.2, VideoPoet conditions on text embeddings, visual tokens,
and audio tokens, and autoregressively predicts visual and audio tokens.

8.3.1 Tokenization

We employ the MAGVIT-v2 [245] tokenizer introduced in Chapter 5 for joint image and video
tokenization, and the SoundStream [249] tokenizer for audio. Visual and audio vocabularies are
concatenated into a unified vocabulary. The text modality is represented by embeddings.

Image and video tokenizer. Visual tokenizer is key to generating high-quality video con-
tent, often determining the upper limit of achievable video generation quality [245]. After an-
alyzing existing tokenizers [57, 203, 242, 243], we choose the MAGVIT-v2 [245] tokenizer due
to its performance in visual quality and high compression capabilities, which effectively re-
duce the sequence length required by the LLM, thereby facilitating more efficient and effective
learning. Specifically, a video clip is encoded and quantized into a sequence of integers, with a
decoder mapping them back to the pixel space. MAGVIT-v2 tokenizes 17-frame 2.125-second
128x128 resolution videos sampled at 8 fps to produce a latent shape of (5, 16, 16), which is then
flattened into 1280 tokens, with a vocabulary size of 2'5. We also tokenize videos into a portrait
aspect ratio at 128x224 resolution, producing a latent shape of (5, 28, 16), or 2240 tokens.

We enforce causal temporal dependency, which facilitates the generation of longer videos.
To jointly represent images and videos, we encode the initial frame of a video or a static image
into tokens with a consistent shape of (1, 16, 16). We use the COMMIT [242] encoding scheme
to tokenize the inpainting and outpainting tasks.

Audio tokenizer. We tokenize audio clips with a pretrained SoundStream [249] tokenizer.
We embed 2.125 seconds of audio to produce 106 latent frames with a residual vector quantizer
(RVQ) of four levels. To improve audio generation performance, we transpose the clip before
flattening so that the model predicts the full audio clip at each RVQ granularity level before
moving on to the finer grained levels. Finally, each RVQ level has a disjoint vocabulary with
each level containing 1,024 codes. This results in a combined audio vocabulary size of 4,096
codes.

Text embedding as input. Pretrained text representations, in general, outperform training
our model by learning text tokens from scratch. We use pretrained language embeddings from
a frozen T5 XL encoder [157]. For tasks with text guidance, such as text-to-video, T5 XL em-
beddings are projected into the transformer’s embedding space with a linear layer.
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8.3.2 Language Model Backbone

After converting the image, video, and audio modalities into discrete tokens within a shared
vocabulary, we can directly leverage a language model to generate videos and audios in the
token space. We use a prefix language model with a decoder-only architecture as the backbone.
By constructing different patterns of input tokens to output tokens during training, we can
control the tasks the model is able to perform as explained in Section 8.3.3.

8.3.3 Task Prompt Design

We design a pretraining task mixture, each with a defined prefix input and output. The model
conditions on the prefix, applying the loss solely to the output. Fig. 8.2 shows a typical input-
output sequence layout. For each task, the input sequence may include three types of values:
text embeddings (T5), visual tokens (MAGVIT-v2), and audio tokens (SoundStream). The model
outputs two types of tokens: visual and audio tokens. To facilitate training, VideoPoet em-
ploys special tokens, as listed in Tab. 8.3. In the following, we describe key designs for the task
prompts.

Pretraining tasks. We consider the following tasks:

* Unconditioned video generation: Generate video frames without conditioning on an in-
put.

* Text-to-video (T2V): Generate video from a text prompt.

* Video future prediction (FP): Given an input video of variable length, predict future
frames.

+ Image-to-video (I12V): Given the first frame of a video as an input image, predict the future
frames.

* Video inpainting/outpainting (Painting): Given a masked video, predict the video with
the masked contents filled in.

* Video stylization: Given text, optical flow, and depth, predict the video frames (Sec-
tion 8.3.3).

* Audio-to-video: Given an input audio waveform, predict the corresponding video.
* Video-to-audio: Given an input video, predict the corresponding audio waveform.
* Audio-video continuation (AVCont): given an input frame and its audio, predict the rest

of the video and audio.

To indicate the type of task, we condition on the <t ask> token, which has a unique value
for each unique output. We note that not all input variations need a new <task>; the model
adapts to different context signals for identical outputs. For instance, text-to-video, image-to-
video, and unconditioned video generation share the same <task>. If a modality is absent in
a task, related input/output tokens and special tokens are excluded, shortening the sequence.
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Representing an image as a video. In text-to-image pretraining, we omit the <eos> and
<eov_o0> tokens from the input sequence, enabling continuous token generation for inference
of longer videos. This approach blurs the boundary between video and image generation tasks,
enhancing cross-modality information sharing. This design leads to the prediction of higher-
quality initial frames and reduces errors and artifacts in subsequent frames.

Video token format. We generate video tokens at two resolutions, 128x128 and 128x224,
each available in two lengths: 17 frames and 41 frames, both encoded at 8 frames per second.
Special conditioning tokens are used to signal the desired resolutions and durations for video
generation. Images are a special case of a 1-frame video, which we tokenize at 128x128 resolu-
tion.

8.3.4 Training Strategy

We find that sampling from image and video datasets uniformly across time can lead to sub-
optimal results, as training on images can enhance the model’s understanding of objects but
does not capture any motions that are represented in video data. Thus, we devise a two-stage
pretraining strategy, where we augment our sampling weights to sample image data 90% of the
time and video data 10% of the time for the first 25% iterations of training. We then switch to
training on video 90% and image 10% for the remaining iterations.

We fine-tune our pretrained model for enhanced performance on specific tasks or for new
task adaptation, such as text-to-video and image-to-video tasks, using a high-quality data sub-
set. This results in improved generation quality, consistent with [259], and addresses decoding
collapse issues, characterized by repetitive token predictions. Such fine-tuning not only diver-
sifies outputs but also allows for a higher classifier-free guidance scale [86], boosting overall
quality.

8.4 Experimental Results

8.4.1 Experimental Setup

Training tasks. We train the model on a mixture of pretraining tasks as detailed in Sec-
tion 8.3.3. We finetune a model on a high-quality training subset for text-to-video evaluations,
as discussed in Section 8.3.4. Unless explicitly stated, we do not finetune on specific tasks for
evaluations.

Datasets. We train on a total of 1B image-text pairs and ~270M videos (~100M with paired
text, of which ~50M are used for high-quality finetuning, and ~170M with paired audio) from
the public internet and other sources, i.e. around 2 trillion tokens across all modalities. The
data has been filtered to remove egregious content and sampled to improve contextual and
demographic diversity.
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Evaluation protocol. We employ a zero-shot generation evaluation protocol, as the model
has not been trained on the training data of target benchmarks. Specifically, the evaluation
benchmark includes two text-to-video generation datasets, MSR-VTT [229] and UCF-101 [184],
as well as the frame prediction task on Kinetics 600 (K600) [30], in which the first 5 frames
are provided as the condition to predict the next 11 frames. We also include inpainting and
outpainting tasks [242] on Something-Something V2 (SSv2) [68].

We adopt widely used metrics such as Fréchet Video Distance (FVD) [198], CLIP similarity
score [224], and Inception Score (IS) [171] for evaluation. Note that the specific metrics and
evaluation methods vary across different datasets. Detailed information on these variations
can be found in Section 8.4.6.

8.4.2 Pretraining Task Analysis

We investigate the learning capabilities of different combinations of pretraining tasks using a
model with 300 million parameters. All task combinations are trained using a learning rate of
107 for the same number of steps (300k) with a batch size of 1024.

For the analysis of pretraining tasks, we consider text-to-video (T2V), text-to-image (T2I),
and four self-supervised learning (SSL) tasks: frame prediction (FP), central inpainting and
central outpainting (Painting) [242] and audio-video continuation (AVCont) where the model
is provided with the first frame and its corresponding audio to predict the subsequent 16 frames
and matching audio. For each video task, we uniformly select 20% of training samples from a
random subset of 50 million videos. For the text-to-image task, we randomly sample 50 million
text-image pairs from our training dataset. For tasks involving audio, our sampling is exclusive
to videos that contain an audio track.

The evaluation results are presented in Tab. 8.1. We assess a model across the four tasks
within the zero-shot evaluation benchmark: the T2V task on MSR-VTT [229] and UCF 101 [184],
FP on K600 [30], and the Painting tasks on SSv2 [68]. In these experiments, we employ a single
model to perform all the tasks. The model is not trained on the training data of these evaluation
datasets, and thus it is a zero-shot evaluation.

The top rows of Tab. 8.1 depict each pretraining task configuration of the 300 million pa-
rameter model, which are comparable in their setups. Our evaluation benchmarks span diverse
visual domains, posing a challenge to achieving consistent improvement across all of them.
Nevertheless, incorporating all pretraining tasks results in the best overall performance, on av-
erage, across all evaluated tasks. Additionally, the significant disparity observed in the “SSL”
row suggests the limitations of self-supervised training and underscores the necessity for text-
paired data during training. The last row, “ALL (8B)”, is the model with 8 billion parameters,
trained on the pretraining tasks as discussed in Section 8.3.4 and utilized significantly more
compute.

8.4.3 Model Scaling and Performance

To analyze model performance versus model scale, we use a subset of the training set without
text-paired data and a slightly different task prompt design. We evaluate the video generation
quality using FVD [198] and audio generation quality using the Fréchet Audio Distance (FAD),
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Pretraining Tasks

Zero-shot Evaluation Benchmark

Method T2V FP Inpainting Outpainting
T2I T2V Uncond FP Painting AVCont | MSR-VIT UCF101 K600 SSv2 SSv2
CLIPSIMt FVD| FVD| FVD | FVD |
T2V v 0.244 822 759 2,333 2,310
T2V+I v v 0.247 1,025 794 2,118 1,916
SSL v v/ v/ v 0.226 1,742 700 1,093 1,500
NO T2I v v/ v/ v/ v 0.235 1,008 755 95 389
ALL v/ v/ v/ v/ v/ v/ 0.240 1,085 729 127 636
CALL(8B) v v oo ool 0305 355 687 47 13.76

Table 8.1: Pretraining task analysis on 300M models. The top rows list models with 300M parameters, trained on a subset of
the data, and are comparable to each other. The last row shows an 8B model trained on the entire dataset. T2I (text-to-image), T2V
(text-to-video), FP (frame prediction), Painting (inpainting/outpainting), Uncond (unconditional generation), AVCont (audio-

video continuation), and SSL (self-supervised learning).
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which uses the VGGish model as the embedding function [84]. Both FVD and FAD metrics are
calculated using a held-out subset of 25 thousand videos.

Fig. 8.3 shows that as the model size grows and the amount of training data increases, per-
formance improves across visual and audiovisual tasks. After obtaining the above results, we
retrain our 1B and 8B models using the task design and text-paired training data discussed in
Section 8.3.4.

N Audio to Video I Frame Prediction WM Audio/Video Continuation . .
BN Video to Audio WM Audio/Video Continuation
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Figure 8.3: Effects of model and data scale on video and audio generation quality. The
performance, depicted on a log-log scale, improves significantly when we scale up the model
and training data. Language models with 300 million, 1 billion, and 8 billion parameters are
trained on datasets comprising 10, 37, and 58 billion visual and audio tokens, respectively.

Qualitative comparison of 1B and 8B models. We show a qualitative comparison of the
1B and 8B pretrained models. In Figure 8.4, we show outputs of 1B and 8B parameter models
on the same prompts. Four frames from the best video output of each model in a batch of four
text-to-video samples were selected to represent the model. In the first row, the 1B model is
unstable with large changes to the subject over time and misses elements from the complex
prompt. This prompt was originally used for scaling comparisons in [235], and compared to a
dedicated image-only model, our model does not preserve text as well given the training data
used. In the second row, we use a simpler text task and show that the 8B model can represent
a single letter clearly, but the 1B model still produces artifacts. In the third row, we show that
the 8B model learns spatial positioning such as the river being in front of the astronaut and
horse. In the fourth row, we show that the 8B parameter model learned a stop motion style to
have items disappear “one by one" and can follow a complicated layout from a long prompt. In
contrast, the 1B model includes all of the nouns, but is unstable over time and does not follow
the layout indicated in the prompt. In the bottom row, we show that the 8B model understands
counts of objects in that it displays a full bouquet (though 12 roses are not explicitly in frame)
and smooth consistent motion as opposed to the 5 roses and distorting objects produced by
the 1B model. Overall, scaling the model improves temporal consistency, prompt fidelity, and
motion dynamics while adding capabilities for limited text rendering, spatial understanding,
and counting.

141



{ 4 \
prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses
standing on the grass in front of the Sydney Opera House holding a sign on the chest that
says Welcome Friends!

prompt: A kangaroo holding a sign with the letter A on it

A
|

prompt: A photo of an astronaut riding a horse in the forest. There is a river in front of them
with water lilies

prompt: A zoomed out map of the United States made out of sushi. It is on a table next to a

glass of red wine. Pieces of sushi disappear one by one

Figure 8.4: A comparison between 1B (left) and 8B (right) parameter models on the same
prompt and settings.

. o ..
prompt: Rotating around a vase holding a dozen roses
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Model MSR-VTT UCF-101
CLIPSIM FVD FVD IS

CogVideo (EN) [93] 0.2631 1294 702 2527
MagicVideo [260] - 998 655 -
Video LDM [16] 0.2929 - 551  33.45
ModelScopeT2V [209] 0.2930 550 - -
InternVid [215] 0.2951 - 617 21.04
VideoFactory [214] 0.3005 - 410 -
Make-A-Video [177] 0.3049 - 367 33.00
Show-1 [251] 0.3072 538 394 3542
VideoPoet (Pretrain) 0.3049 213 355 38.44

VideoPoet (Task adapt) 0.3123 - - -

Table 8.2: Comparison on zero-shot text-to-video benchmarks.

8.4.4 Comparison with the State-of-the-Art

Text-to-Video (T2V). Tab. 8.2 shows zero-shot text-to-video evaluation results on the com-
mon MSR-VTT [229] and UCF-101 [184] datasets. Our model performs favorably in terms of
CLIP similarity and FVD scores on MSR-VTT and UCF-101. The pretrained foundation model
already achieves competitive performance on all metrics. After finetuned on high-quality sub-
set of text-video pairs, VideoPoet achieves even better CLIPSIM on MSR-VTT. More details on
the evaluation settings can be found in Section 8.4.6.

Human Evaluations with Text-to-Video (T2V). We analyze VideoPoet using human raters
and compare with other recent models: Show-1 [251], VideoCrafter [36], Phenaki [203], Pika [148],
and Gen2 [168]. Show-1, VideoCrafter, Pika, and Runway are video diffusion models while
Phenaki is a token-based model using masked token modeling [33]. We ran the most up-to-
date model versions as of January 2024.

We first develop a unified evaluation prompt bank consisting of prompts from a variety of
categories and styles. Our prompts are sourced from published prompt sets (e.g., Show-1, Video
LDM [16]). We select the prompts prior to generating videos and fix these choices after initial
selection. We also select preferentially for prompts that contain an explicit mention of motion
so that the evaluation would not be biased for models that generate high quality videos that are
almost still (e.g., “person jumping off of a chair” over “person standing on a chair”).

For this user study we use the fine-tuned version of VideoPoet as discussed in Section 8.3.4
and compare against alternative models in a side-by-side fashion for each prompt. Raters are
shown videos generated by two models at a time (in randomized order so as to not bias raters).
Not all methods generate videos at the same size or aspect ratio, and we resize each video
to a fixed area while maintaining its original aspect ratio. Raters are then asked to compare
the videos along 5 dimensions and for each dimension to report which video is better. The 5
dimensions are: (1) text fidelity (which video follows the text prompt most faithfully), (2) video
quality, (3) motion “interestingness”, (4) motion realism, and (5) temporal consistency. Raters
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VideoPoet preferred Other model preferred
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Figure 8.5: Human evaluation results on text-to-video (T2V) generation. Green and pink

bars represent the proportion of trials where VideoPoet was preferred over or less preferred to
an alternative, respectively.

144



Figure 8.5: 10-Second long video generation example. By predicting 1-second video seg-
ments from an initial 1-second clip, VideoPoet can iteratively generate videos of extended
lengths.

are required to go through a collection of training examples for each of these 5 dimensions
before they begin.

Our findings are summarized in Fig. 8.5, where green and pink bars represent the proportion
of trials where VideoPoet was preferred or less preferred over an alternative, respectively. In
summary, VideoPoet outperforms all baseline models along almost all of the dimensions and
achieves its most significant wins along the motion categories.

8.4.5 LLM’s Diverse Capabilities in Video Generation

This subsection presents several capabilities we discover from the pretrained VideoPoet, shed-
ding light on the LLM’s promising potential in video generation. By combining the flexibility
of our autoregressive language model to perform diverse tasks such as extending video in time,
inpainting, outpainting, and stylization, VideoPoet accomplishes multiple tasks in a unified
model.

Coherent long video generation and image-to-video. A benefit of an decoder-based lan-
guage model is that it pairs well with autoregressively extending generation in time. We present
two different variants: Generating longer videos (Fig. 8.5) and converting images to videos. En-
coding the first frame independently allows us to convert any image into the initial frame of
a video without padding. Subsequent frames are generated by predicting remaining tokens,
transforming the image into a video as shown in Fig. 8.6".

This results in the capability to generate videos longer than 10 seconds or to allow users
to iteratively extend video clips based on previously generated video, and produces temporally

'For image-to-video examples we source images from Wikimedia Commons:
https://commons.wikimedia.org/wiki/Main_Page
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Animated from historical photo

Animated from painting

Figure 8.6: Examples of videos animated from still images plus text prompts tailored to
each initial image.

146



consistent videos without significant distortion. Such capabilities are rarely observed in con-
temporary diffusion models.

Zero-shot video editing and task chaining. With the multi-task pretraining, VideoPoet
exhibits task generalization that can be chained together to perform novel tasks. We show the
model can apply image-to-video animation followed by video-to-video stylization in Fig. 8.7.
Fig. 8.8 shows another example applying video-to-video outpainting, followed by editing them
with additional video-to-video effects. At each stage, the quality of the output is sufficient
to remain in-distribution (i.e. teacher forcing) for the next stage without noticeable artifacts.
These capabilities can be attributed to our multimodal task design within an LLM transformer
framework that allows for modeling multimodal content using a single transformer architecture
over a unified vocabulary.

3D structure, camera motion, visual styles. Even though we do not add specific training
data or losses to encourage 3D consistency, our model can rotate around objects and predict
reasonable visualizations of the backside of objects. Additionally, with only a small proportion
of input videos and texts describing camera motion, our model can use short text prompts to
apply a range of camera motions to image-to-video and text-to-video generations (see Fig. 8.9).

8.4.6 Additional Implementation Details

Training settings. The unified vocabulary is constructed as follows: the initial 256 codes are
reserved for special tokens and task prompts. Table 8.3 lists some examples of special tokens.
Subsequently, the next 262,144 codes are allocated for image and video tokenization. This is fol-
lowed by 4,096 audio codes. We also include a small text vocabulary of English words. Overall,
this produces a total vocabulary size of approximately 300,000.

Since the first frame is tokenized separately, MAGVIT-v2 allows images to be represented
in the same vocabulary as video. In addition to being more compact, images provide many
learnable characteristics that are not typically represented in videos, such as strong visual styles
(e.g., art paintings), objects which are infrequently seen in video, rich captions, and significantly
more text-image paired training data. When training on images, we resize the images to 128x128
which are then tokenized to a latent shape of (1, 16, 16), or 256 tokens. We scale the MAGVIT-
v2 model’s size and train it on the datasets discussed in Section 8.4.1. The training follows
two steps: image training, inflation [245] and video training. Due to images requiring fewer
tokens, we can include roughly 5x more images per batch than videos, i.e. 256 image tokens
vs. 1280 video tokens. We use up to a maximum of 64 text tokens for all of our experiments.
For the <res> token, the resolution is only specified for 128x224 output, 128x128 resolution
is assumed otherwise.

The video-to-video tasks use the COMMIT encoding [242] to obtain the tokens for the tasks
such as inpainting and outpainting. Text is encoded as T5 XL embeddings [157] and are inserted
into reserved sequence positions right after the <bot _1i> token as shown in Figure 8.2.
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Stylized video
Prompt: An oil painting of a snowman with a red hat opening their mouth to yawn

Figure 8.7: Example of zero-shot video editing via task chaining (text conditioned image-
to-video and stylization)
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Stylized Video
Prompt: A gingerbread and candy train on a
track

Figure 8.8: Example of zero-shot video editing via task chaining (outpainting and styliza-
tion) — the original video is first outpainted and then stylized via a text prompt.

Camera Motion: Arc shot

Camera Motion: FPV drone shot

Figure 8.9: Examples of directed camera movement from the same initial frame.
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Special Token Usage

<bos> Beginning of sequence

<task> Task to perform for this sequence
<bot_i>  Beginning of the text input.
<eot_1i>  End of the text input.
<bov_1i>  Beginning of the visual input.
<eov_1i>  End of the video input.
<boa_i>  Beginning of the audio input.
<eoa_1i>  End of the audio input.

<source> The source of the video to generate.

<res> Output resolution for the video.
<bov_o>  Beginning of the video output.
<eov_o>  End of the video output.
<boa_o0>  Beginning of the audio output.
<eoa_o>  End of the audio output.

<eos> End of the entire sequence.

Table 8.3: List of representative special tokens used in training and inference.

Zero-shot text-to-video evaluation settings. We report the details of our zero-shot text-
to-video settings here. We note that some details are missing in previous papers and different
papers use different settings. Hence, we provide all the details and hope this evaluation setting
can serve as a standard text-to-video generation benchmark. Our results are reported on the
8B model and we adopt classifier-free guidance [86]. All metrics are evaluated on generated
videos containing 16 frames with a resolution of 256x256. We first generate videos of 128x128
resolution and then resize to 256x256 via bicubic upsampling.

Zero-shot MSR-VTT. For CLIP score, we used all 59,794 captions from the MSR-VTT test set.
We use CLIP ViT-B/16 model following Phenaki [203]. We note that some papers use other
CLIP models, e.g., VideoLDM [16] uses ViT-B/32. Our CLIP score evaluated on the ViT-B/32
backbone for MSR-VTT is 30.01. For the FVD metric, to evaluate on a wide range of captions
as well as to be comparable with previous papers that evaluate on 2,048 videos, we evaluate on
the first 40,960 captions in the MSR-VTT test set. More specifically, we report the FVD metrics
on 2048 videos with 20 repeats. The FVD real features are extracted from 2,048 videos sampled
from the MSR-VTT test set. We sample the central 16 frames of each real video, without any
temporal downsampling, i.e., we use the original fps in the MSR-VTT dataset (30 fps as reported
in [229]). The FVD is evaluated with an I3D model trained on Kinetics-400.

Zero-shot UCF-101. Following VDM [90], we sample 10,000 videos from the UCF-101 test
set and use their categories as the text prompts to generate 10,000 videos. We use the class
text prompts provided in PYoCo [64] to represent the 101 categories. To compute the FVD real
features, we sample 10K videos from the training set, following TGAN2 [171]. We sample the
central 16 frames for each real video , without any temporal downsampling, i.e., we use the
original fps in the UCF-101 dataset (25 fps as reported in [184]). The FVD metric is evaluated
with an I3D model trained on Kinetics-400 and the IS metric is evaluated with a C3D model
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trained on UCF-101.

Self-supervised tasks evaluation settings. Self-supervised learning tasks include frame
prediction on K600 with 5 frames as condition, as well as inpainting and outpainting on SSv2.
FVD [198] is used as the primary metric, calculated with 16 frames at 128x128 resolution. We
follow MAGVIT [242] in evaluating these tasks against the respective real distribution, using
50000x4 samples for K600 and 50000 samples for SSv2.

8.5 Summary

VideoPoet demonstrates the potential of a large language model that is trained on discrete
visual, text and audio tokens, in generating videos of compelling state-of-the-art quality. A
particular strength of our model lies in its ability to generate high-fidelity, large, and complex
motions. Our large language model formulation benefits from training across a variety of multi-
modal tasks with a unified architecture and vocabulary. Consequently, the pretrained model
is adept at multi-task video creation, and serves as a foundation for a diverse variety of video
generation related capabilities, including multiple forms of editing.

Limitations. Despite VideoPoet demonstrating highly competitive performance of LLMs rel-
ative to state-of-the-art models, certain limitations are still observed. For example, the RGB
frame reconstruction from compressed and quantized tokens place an upper bound on the gen-
erative model’s visual fidelity. Second, the per-frame aesthetic biases in static scenes does not
match the best baseline. This difference is largely due to a choice of training data, where we fo-
cus our training on more natural aesthetics and excluded some sources containing copyrighted
images, such as LAION [175], which is commonly used in other work. Finally, small objects and
fine-grained details, especially when coupled with significant motions, remains difficult within
the token-based modeling.
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Conclusion

Summary

This thesis has explored the development of multi-task models for generating videos and other
modalities under diverse conditions, as well as for understanding and compression applications.
Throughout this research, we have demonstrated the effectiveness of integrating multiple tasks,
crafting high-fidelity latent representations, and generating multiple modalities.

Initial work on separate multi-task and multi-modal setups with pixel-space models has
revealed potential, but also demonstrated the constraints imposed by fixed label spaces and
specialized architectures. This has underscored the importance of pursuing more flexible and
adaptable designs.

Seeking compact and informative representations of high-dimensional visual data, we have
developed spatial-temporal video tokenizers that have maintained remarkable fidelity. We have
introduced a novel method for bidirectional mapping between visual observations and inter-
pretable linguistic concepts. Additionally, we have created a scalable visual token representa-
tion that has proven beneficial across generation, compression, and understanding tasks. These
advancements have marked early instances of language models outperforming diffusion mod-
els in visual synthesis and a video tokenizer exceeding the performance of industry-standard
codecs.

Building upon these multi-modal latent spaces, we have investigated the design of multi-
task generative models. Our masked multi-task transformer has demonstrated favorable per-
formance in video generation across quality, efficiency, and flexibility. We have successfully
enabled a language model, trained exclusively on text, to generate images and videos. Finally,
we have constructed a scalable multi-modal generative transformer trained from scratch, capa-
ble of generating videos and audio under various conditions. This model has notably generated
high-fidelity videos with corresponding audio in a zero-shot setting.

Contributions

We briefly summarize our contributions organized by these included publications:

+ Chapter 1: [241] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G. Hauptmann.
Argus++: Robust Real-Time Activity Detection for Unconstrained Video Streams with Over-
lapping Cube Proposals.

In WACV 2022 HADCV Workshop.
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* We propose Argus++, a real-time activity detection system for unconstrained video
streams, which is robust across different scenarios.

* We introduce overlapping spatial-temporal cubes as the core concept of activity
proposals to ensure coverage and completeness of activity detection through over-
sampling.

* The proposed system has achieved outstanding performance in a large series of ac-
tivity detection benchmarks, including CVPR ActivityNet ActEV 2021, NIST ActEV
SDL UF/KF, TRECVID ActEV 2020/2021, and ICCV ROAD 2021.

* Chapter 2: [244] Lijun Yu, Jin Miao, Xiaoyu Sun, Jiayi Chen, Alexander G. Hauptmann,
Hanjun Dai, and Wei Wei.
DocumentNet: Bridging the Data Gap in Document Pre-Training.
In EMNLP 2023 Industry Track.

* We propose a pretraining-finetuning paradigm with lightweight UniFormer models
and three objectives for unified token representation.

= Extensive experiments on VDER tasks demonstrate the favorable performance of
UniFormer pretrained on DocumentNet compared to the commonly used IIT-CDIP.

+ Chapters 3 and 6: [242] Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang,
Huiwen Chang, Alexander G. Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa and
Lu Jiang.

MAGVIT: Masked Generative Video Transformer.
In CVPR 2023 as a Highlight paper.

* To the best of our knowledge, we present the first masked multi-task transformer
for efficient video generation and manipulation. We show that a trained model can
perform ten different tasks at inference time.

* We propose an effective embedding method with diverse masks for numerous video
generation tasks.

* We show that MAGVIT achieves the best-published fidelity on three widely-used
benchmarks, including UCF-101, BAIR Robot Pushing, and Kinetics-600 datasets.

* Chapters 4 and 7: [243] Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang
Macherey, Yanping Huang, David A. Ross, Irfan Essa, Yonatan Bisk, Ming-Hsuan Yang,
Kevin Murphy, Alexander G. Hauptmann, Lu Jiang.

SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs.
In NeurIPS 2023 as a Spotlight paper.

* This is the first successful method, to the best of our knowledge, that uses a frozen
language model, trained solely on language tokens, to directly generate image con-
tent through in-context learning.

* We propose a new progressive prompting method that facilitates in-context gener-
ation of long cross-modal sequences.

* We evaluate our method on visual understanding and generation tasks, and no-
tably, our approach outperforms the best-published few-shot image classification
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accuracy [132] by an absolute 25% under the same in-context setting.

* Chapter 5: [245] Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk
Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann,
Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A. Ross, and Lu Jiang.

Language Model Beats Diffusion — Tokenizer is Key to Visual Generation.
To appear in ICLR 2024.

* A new video tokenizer that outperforms the previously best-performing video tok-
enizer in three areas: visual generation, video compression, and action recognition.

* A novel lookup-free quantization approach that enables improving the visual gen-
eration quality of language models by learning a large vocabulary.

* To the best of our knowledge, the first evidence suggesting that a language model
can outperform diffusion models on ImageNet when provided with the same train-
ing data, an equivalent model size, and a similar training budget.

* A video compressor with better quality than HEVC and VVC, at similar bit rates,
according to user studies. To our knowledge, this is the first successful attempt of
a visual tokenizer designed for video generation to achieve comparable results to
standard codecs.

* Chapter 8: [113] Dan Kondratyuk®, Lijun Yu*, Xiuye Gu*, José Lezama®, Jonathan Huang",
Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Kr-
ishna Somandepalli, Hassan Akbari, Yair Alon, Yong Cheng, Josh Dillon, Agrim Gupta,
Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, Mikhail Sirotenko,
Kihyuk Sohn, Xuan Yang, Hartwig Adam, Ming-Hsuan Yang, Irfan Essa, Huisheng Wang,
David A. Ross, Bryan Seybold*, and Lu Jiang*. * indicates equal contribution.

VideoPoet: A Large Language Model for Zero-Shot Video Generation.
To appear in ICML 2024.
In this large collaborative effort, my contribution primarily includes

* A method for training a Large Language Model (LLM) specifically for video gener-
ation tasks utilizing tokenized video frames and corresponding audio.

* A preliminary study on the scaling behavior of VideoPoet on audio-visual genera-
tion tasks.

In addition, we have the following publications referenced:

* [236] Lijun Yu, Dawei Zhang, Xiangqun Chen, and Alexander G Hauptmann.
Traffic Danger Recognition With Surveillance Cameras Without Training Data.
In AVSS 2018.

+ [237] Lijun Yu, Peng Chen, Wenhe Liu, Guoliang Kang, and Alexander G Hauptmann.
Training-Free Monocular 3D Event Detection System for Traffic Surveillance.
In Big Data 2019.

+ [239] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G Hauptmann.
CMU Informedia at TRECVID 2020: Activity Detection with Dense Spatio-Temporal Propos-
als.
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In TRECVID 2020.

* [152] Yijun Qian*, Lijun Yu*, Wenhe Liu, and Alexander G Hauptmann. * indicates equal
contribution.
ELECTRICITY: An Efficient Multi-Camera Vehicle Tracking System for Intelligent City.
In CVPRW 2020.

+ [238] Lijun Yu, Qianyu Feng, Yijun Qian, Wenhe Liu, and Alexander G Hauptmann.
Zero-VIRUS: Zero-shot Vehicle Route Understanding System for Intelligent Transportation.
In CVPRW 2020.

* [240] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G Hauptmann.
CMU Informedia at TRECVID 2021: Activity Detection with Argus++.
In TRECVID 2021.

+ [154] Yijun Qian, Lijun Yu, Wenhe Liu, and Alexander G Hauptmann.
Rethinking Zero-Shot Action Recognition: Learning from Latent Atomic Actions.
In ECCV 2022.

+ [187] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai.
Score-based Continuous-time Discrete Diffusion Models.
In ICLR 2022.

+ [141] Jackson Michaels, Juncheng Li, Laura Yao, Lijun Yu, Zach Wood-Doughty, and
Florian Metze.
Audio-Journey: Open Domain Latent Diffusion Based Text-to-Audio Generation.
In ICASSP 2024.

* [75] Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa,
Lu Jiang, and José Lezama.
Photorealistic Video Generation with Diffusion Models.
In submission to ECCV 2024.

During the course, we have given these invited talks:
* Traffic Danger Recognition With Surveillance Cameras Without Training Data.
» JCCV Demo, Oct 2019.
* TRECVID, Nov 2019.

* Argus++: Real-Time Activity Detection in Unknown Facilities with Dense Spatio-Temporal
Proposals.

* WACV HADCYV, Jan 2021.
* CVPR ActivityNet, Jun 2021.
* ArgusRoad: Road Activity Detection with Connectionist Spatio-Temporal Proposals.
* JCCV ROAD, Oct 2021.
+ Language Model Beats Diffusion: Tokenizer is Key to Visual Generation.
* Hong Kong University of Science and Technology, Jan 2024.
* Institute of Computing Technology, Chinese Academy of Sciences, Jan 2024.
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* Baidu, Jan 2024.

* New York University, Feb 2024.

* ByteDance, Feb 2024.

* Peking University Alumni Association of Nothern California, Mar 2024.
* Kunlun Tech, Mar 2024.

* California Institute of Technology, Mar 2024.

= Adobe, Apr 2024.

* Hong Kong Shanghai Al Forum, Apr 2024.

We have won the first place at the following international challenges:
+ TRECVID ActEV, 2019 & 2020.

CVPR Al City: City-Scale Multi-Camera Vehicle Tracking, 2020.

MediaEval Sports Video: Stroke Classification, 2021.

WACV ActEV SDL Unknown Facility, 2021.

CVPR ActivityNet: Kinetics-700, 2021.

ICCV ROAD: Action Detection, 2021.

CVPR ActivityNet: ActEV, 2021 & 2022.

Applications

The technologies developed within this thesis hold the potential of revolutionizing multiple
sectors, offering applications that stretch from creative content creation to enhancing commu-
nication and predictive simulations.

One of the most immediate applications lies in the realm of digital content creation. For
movie makers and vloggers, the ability to generate high-fidelity videos with corresponding au-
dio on demand could streamline the production process, reducing the need for extensive filming
schedules and potentially lowering production costs. Filmmakers could leverage these models
to create realistic scenes or backgrounds without the logistical challenges of on-location shoots,
while vloggers might use them to enhance their content with high-quality visuals created from
textual descriptions, making their production process more efficient and creative.

In the sphere of social media and digital platforms, these technologies could pioneer a new
era of content discovery and engagement. By replacing traditional recommendation systems
with automated content generation based on user preferences and interaction history, platforms
akin to Instagram could offer an endless stream of personalized, generated content. This could
not only enhance user engagement through highly customized experiences but also address
some of the challenges associated with content moderation by generating safer, tailored content
that adheres to platform guidelines.

Another impactful application is in communication, specifically in translating sign language
into text or speech and vice versa in real time. This could dramatically improve the accessibil-
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ity of digital content for the deaf and hard-of-hearing community, making information more
inclusive and fostering a more connected world. The ability of these models to understand
and generate video content opens the door to real-time sign language interpretation services,
which could be integrated into video conferencing platforms, educational content, and public
broadcasting.

Furthermore, the implications for scientific research and predictive modeling are profound.
In weather forecasting, these technologies could enhance the accuracy of predictions by gen-
erating and analyzing complex weather patterns from vast datasets, potentially offering more
reliable forecasts that could aid in disaster preparedness and climate research. In the realm
of physics, the ability to simulate intricate systems through generated visual content could
advance our understanding of phenomena that are challenging to observe directly, such as sub-
atomic particle interactions or astronomical events.

These applications merely scratch the surface of what is possible with the advancements
presented in this thesis. As these technologies continue to evolve, they will likely uncover
new opportunities and challenges, pushing the boundaries of creativity, communication, and
scientific exploration.

Limitations and Future Work

Limitations. While the advancements discussed in this thesis represent significant progress
in the field of artificial intelligence, particularly in video generation, they are not without limi-
tations.
* Imperfect realism: Models may struggle to perfectly reproduce subtle details and emo-
tional nuances, hindering use in applications demanding absolute realism (e.g., film, VR).

* Controllability: Generated output may not always perfectly match complex or specific
conditions in the input text. This limits use in fields requiring precise visual representa-
tion.

* Resolution and length: Current technology could struggle with high-resolution or long-
duration videos, impeding use in industries reliant on detailed, lengthy visualizations.

* Efficiency and cost: The amount of compute required by current method remains infeasi-
ble to generate large-scale media content, e.g., the daily uploaded amount to YouTube.

* Data bias: Biases in training data can perpetuate harmful stereotypes or lack of diversity
within the generated content.

Disccusion. Beyond the approaches presented in this thesis, the relevant literature involves
latent diffusion transformer [147], which has been promoted by the very recent release of
Sora [23] for minute-long full-HD high-quality video generation. Concurrently, we have also
worked on diffusion transformers in W.A.L.T [75] through a collaborative effort, utilizing the
MAGVIT-v2 tokenizer. It remains challenging to compare our models with the proprietary Sora
side-by-side especially due to its undisclosed training compute and dataset, which are estimated
to be orders of magnitude larger.
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Through the MAGVIT series, VideoPoet, and W.A.L.T, we have studied video generation
with masked, autoregressive, and diffusion transformers. While it is beyond the scope of this
thesis, a conceptual comparison between them appears valuable for further study.

* Latent model: All of these transformer models operate in a compressed latent space, where
the encoder compresses and the decoder decompresses. This is partly due to the high-
dimensional nature of videos and the compute cost of transformers. As we have demon-
strated in this thesis, crafting high-quality latent representation is crucial for video gener-
ation. Our MAGVIT-v2 tokenizer is widely applicable for these generative transformers.

* Architecture: All of these transformers share a similar architecture for sequence model-
ing, with different input and output layers to adapt for discrete or continuous latents,
according to the chosen objective. The overall training is agnostic to architecture details,
where efficiency optimizations such as windowed attention or even state-space models

could be adopted.

* Continuous vs. discrete space: Autoregressive transformers and masked transformers pre-
dict discrete variables, whereas diffusion models predict continuous variables. Equivalent
information can be stored in either discrete or continuous representations, where prelim-
inary MAGVIT-v2 experiments show 4 LFQ bits are roughly equal to one VAE channel.
Discrete tokenizers are usually more challenging to train than continuous versions due
to the non-differentiable quantization layer and the strict bandwidth. Comparing to the
regression of a continuous variable with Gaussian prior, or even simpler regression of the
added noise, categorical prediction of a uniform discrete variable is more challenging for
the model, but may also lead to better scalability.

* Decoding: To produce an output of x € R", diffusion decoding is factorized along an extra
axis with t levels of noise, where conditional independence between the elements of x
can be assumed given a previous prediction. On the other hand, autoregressive decoding
is factorized along the axis of n, where the joint distribution is enforced by sampling one
position at a time. Masked decoding can be viewed as a discrete diffusion process with
absorbing noise [10], where independent samples are drawn for the positions decoded at
the same step. An n-step decoding is the price that autoregressive models pay to sample
from the exact joint distribution. Diffusion models approximate the joint distribution
through the denoising of independent Gaussian noises, where the approximation gets
more precise as t — n. One nice property of diffusion decoding is that it can correct or
refine the previous decoded sample, while autoregressive cannot.

* Inference efficiency: Despite taking n steps, the theoretical compute cost of autoregressive
decoding is equivalent to just one decoding step of diffusion or masked models. How-
ever, token-by-token autoregressive decoding is usually memory-bound by the KV-cache
on modern hardware, decaying the actual performance. On the other hand, diffusion
decoding is compute-bound since it runs multiple full forward passes without caching.

* Training efficiency: Autoregressive transformer has the best training efficiency among
these models, as one forward pass can cover the entire decoding trajectory thanks to the
causal attention mask. Diffusion and masked transformers usually sample a random noise
ratio for each forward pass, which corresponds to one decoding step.
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Causality: Diffusion and masked transformers adopt bidirectional attention for full de-
pendency, whereas autoregressive models only allow the prediction to depend on the
past. While enforcing a raster-scan order for spatial autoregressive modeling may not be
the optimal solution, temporal causality remains critical for long generation and streamed
generation in interactive setups.

Unification: Autoregressive video generation models such as VideoPoet can be easily uni-
fied with existing LLM approaches and benefit from the relevant optimizations, which is
one of the top advantages of this approach. It remains challenging to unify diffusion and
LLM into one model.

Suggestions. As technologies evolve, future approaches are likely to appear differently from
what we have presented in this thesis. However, a few suggestions from our experiences might
remain helpful for a longer period of time than the methodologies themselves.

Transformers are never designed to produce a large amount of data. Even with an opti-
mistic estimation of 10M sequence length with 2%° vocabulary size, the model can only
produce 25MB data. This is still far from an hour-long full-HD video which can be several
gigabytes. Therefore, either a new architecture or a highly-compressed latent is required.

Hardware-software co-design could play an important role for new techniques to be de-
ployed at scale. For example, hardware accelerators for video codecs could be a potential
solution to improve generation efficiency by 100x. In addition, the coarse-to-fine setup
in discrete cosine transformation could be a better order than the raster scan.

Modality unification is worth exploring where one model should be able to jointly learn
the generation of multiple modalities. There is a huge space to search for the optimal
learning recipe which should take care of the inter-modal interaction and also enable
post-training addition of new modalities at minimal costs.

Realtime interactive video generation, if made possible, could be applied to a wide array
of scenarios, including gaming, story telling, software UI, world simulator, etc. This could
become the next major milestone in the history of computer software.

Embodied intelligence could benefit from neural simulators and end-to-end controller with
visual world knowledge, both enabled via generative video learning. As LLMs become
widely deployed, robotics might be a great direction for next-generation PhD students.

Foundation models should learn from raw signals like video and audio rather than the
distilled human knowledge from text. The endless sources for these raw signals could
enable better scalability than exhausted text data. Models can be pretrained without text
and just aligned with text for human interaction. This sets up a better stage to enable the
discovery of new rules of the universe without restrictions from human prior.
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