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Abstract

While Deep Neural Networks (DNNs) have advanced the state-of-the-art in machine perception
by leaps and bounds, their sensitivity to subtle input perturbations that humans are invariant to has
raised questions about their reliability in real-world settings. Perhaps the most pernicious and
alarming of these perturbations are adversarial perturbations, which can drastically and arbitrarily
change the outputs of DNNs, while remaining imperceptible (or barely perceptible) to humans.
Algorithms for generating adversarial perturbations are known as adversarial attacks.

Existing methods of making DNNs robust to adversarial perturbations, generally require train-
ing on adversarially perturbed or noisy data. While this approach successfully produces DNNs
robust to the adversarial attacks used to generate perturbations during training, it does not gen-
eralize to other, unseen, types of attacks. Consequently, to obtain models that exhibit a more
generalized robustness to a variety of adversarial attacks one would need to ensure that all such
attacks are sufficiently represented in the training data. This objective is highly inefficient at best,
or impossible, at worst, given that adversarial attacks are constantly evolving and the boundaries
of human perception are not fully known.

Given the pitfalls of seeking robustness via training, in this thesis, we work towards models
that are naturally more robust to a variety of adversarial attacks without having been trained on
perturbed data. To this end, we seek to discover principles, or priors, for DNNs that endow
them with enhanced robustness to adversarial perturbations. As these priors induce adversarial
robustness without requiring training on perturbed data, we expect them to yield models robust to
various perturbations and attack algorithms.

Concretely, we study two categories of robustness priors in this thesis: structure and biological.
We define structural robustness priors as design elements of DNNs that are conducive to adversar-
ial robustness. Biological priors, on the other hand, are mechanisms and constraints related to the
robustness of biological perception and cognition but are not usually represented in DNNs. Since
adversarial perturbations are rooted in the difference between biological perception and DNNs, we
expect that integrating biological priors into DNNs would better align their behavior with biologi-
cal perception and consequently cause them to exhibit robustness to adversarial perturbations, and
perhaps even various other noises that biological perception is robust to.

We approach the study of structural robustness priors from two directions, namely statistical,
and empirical. In the former, we take the view that by virtue of being highly overparameterized
modern DNNs may encode spurious features, and show that pruning away neurons that encode
such spurious features improves robustness to adversarial attacks. In the empirical approach, we
estimate the probability with which gradient descent, from a random initialization, arrives at a
model that is both robust and accurate. Our experiments on simple problems, like XOR or MNIST,
reveal that certain design elements increase the odds of finding robust models while others decrease
these odds.

In our study of biological priors, we consider sensory and cognitive priors. Sensory priors re-
late to the constraints present in sensor organs that emphasize or de-emphasize certain aspects of
the stimuli. In the domain of vision, one such prior is foveation due to which only the region around
the fixation point is sensed at maximum fidelity. We integrate foveation in DNNs and demonstrate



that it significantly improves their robustness to adversarial attacks, as well as non-adversarial per-
turbations. Similarly, examples biological priors in audition are simultaneous frequency masking
and lateral suppression due to which the perceived level of a frequency is influenced by the levels
of other adjacent frequencies. We integrate these phenomena into speech recognition DNNs and
observe that their robustness to adversarial attacks, as well as other corruptions, is greatly enhanced
while their accuracy is minimally impacted.

Cognitive priors, on the other hand, relate to the computations performed in the brain. In this
connection, we have explored the role of inflexible inter-neuron correlations and shown that con-
straining the inter-neuron correlations makes DNNs more robust to adversarial and non-adversarial
perturbations. We have also simulated feedback connections, that are ubiquitous in the brain, in
DNNs and shown that doing so improves adversarial robustness.

To reliably evaluate the improvements we achieve and compare them with prior work, we need
standardized robustness benchmarks. While such benchmarks have been developed for vision
tasks, they do not exist for other modalities such as audio. To fill this gap, we have developed a
comprehensive robustness benchmark for speech models called Speech Robust Bench (SRB). SRB
is composed of 114 challenging speech recognition scenarios covering the range of corruptions that
ASR models may encounter when deployed in the wild.
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Chapter 1

Introduction

1.1 Motivation
Deep Neural Networks (DNNs) are exceptionally adept at many computer vision tasks and have
emerged as one of the best models of the biological neurons involved in visual object recognition
[Yamins et al., 2014, Cadieu et al., 2014]. However, their lack of robustness to subtle image
perturbations that humans are largely invariant to Szegedy et al. [2014], Geirhos et al. [2018b],
Dodge and Karam [2017] has raised questions about their reliability in real-world scenarios. Of
these perturbations, perhaps the most pernicious are adversarial perturbations, which are specially
crafted distortions that can change the response of DNNs when added to their inputs [Szegedy et al.,
2014, Ilyas et al., 2019] but are either imperceptible to humans or perceptually irrelevant enough to
be ignored by them. Algorithms for generating adversarial perturbations are known as adversarial
attacks.

The dominant approach for making DNNs robust to adversarial attacks involves exposing them
to adversarially perturbed images [Madry et al., 2018b, Wong et al., 2019a, Zhang et al., 2019]
(adversarial training) or random noise [Cohen et al., 2019a, Fischer et al., 2020, Carlini et al., 2022]
during training. While this approach is highly effective in making DNNs robust to the types of
adversarial attacks used during training, the robustness often does not generalize to other, unseen,
types of attacks. [Joos et al., 2022, Sharma and Chen, 2017, Schott et al., 2018]. For example, given
that most adversarial attacks generate ℓp norm bounded perturbations, the complementary regions
between the norm balls for different values of p leave allow adversaries operating on a different p
than one used during training to successfully attack the DNN [Joos et al., 2022]. Furthermore, there
are other classes of adversarial attacks, such as patch attacks [Xu et al., 2023, Sharma et al., 2022],
transformation-based attacks [Xiao et al., 2018, Kang et al., 2019, Laidlaw and Feizi, 2019], and
attacks that exploit the null spaces of human perception [Qin et al., 2019, Laidlaw et al., 2021],
that are not subsumed by ℓp norm bounds, and against which DNNs trained with ℓp bounded
perturbations confer limited robustness [Laidlaw et al., 2021, Hsiung et al., 2023]. Consequently,
under this paradigm of robustness via training, to obtain a model with generalized robustness to
all the myriad types of adversarial attacks one would need to simulate them all during training,
a task which may prove to be prohibitively expensive. Given the lack of generalizability, even
if one were able to do that, the robustness achieved by the model would likely be limited to the
existing adversarial attacks, and the extent to which it would generalize to other attacks would
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remain uncertain. Given this context, we present our thesis statement below.

1.2 Thesis Statement
The goal of this thesis is to discover principles, or priors, that enhance the adversarial robustness
of DNNs without explicitly training on adversarially perturbed data. Particularly, we consider two
types of priors: (1) Structural priors and, (2) biological priors.

Structural priors are the design elements of DNNs that are conducive to adversarial robustness.
These can include the width and depth of the DNN, the choice of activation and normalization
functions, and regularization methods. Since prior work demonstrates that by training on per-
turbed data, the same DNN can learn an adversarial robust boundary, we hypothesize that perhaps
modifications to certain structural elements may bias the model towards such a boundary without
explicitly training.

Biological priors, on the other hand, are mechanisms and constraints considered to contribute
to the robustness of biological perception. Since adversarial attacks, by definition, exist due to
differences between biological perception and DNNs, we expect that integrating biological priors
into DNNs would make them better aligned with biological perception, which, in turn, would make
them more robust to adversarial perturbations.

In order that we may accurately evaluate the progress we make and compare our methods with
prior work, we also develop standardized robustness benchmarks. Specifically, we address the
lack of a standardized robustness benchmark for speech tasks by developing one that evaluates
robustness to a variety of transforms, including adversarial attacks.

In a word, in this thesis, we identify several structural and biological priors that make DNNs
trained, only on natural data, more robust to a variety of adversarial attacks, and standardized ro-
bustness benchmark for speech DNNs. Further details about the priors we identified are presented
in the subsequent sections.

1.3 Structural Priors
As mentioned above, structural priors are the design elements of DNNs that are conducive to ad-
versarial robustness. In this thesis, we approach the study of structural robustness priors from
the following two directions. In the first approach, we take the view that adversarial attacks exist
because DNNs are sensitive to spurious features, such as high-frequency components Wang et al.
[2020] and texture Geirhos et al. [2018a], and we seek to reduce their sensitivity to these features by
pruning away substructures within the network that encode these features. In the second approach,
we empirically determine the extent to which various DNN design choices, such as width, depth,
activation function, and regularization, bias the model toward learning robust decision boundaries.
To this end, we estimate the probability with which gradient descent, starting from random initial-
ization, can converge to a solution corresponding to an adversarially robust decision boundary. We
present further details about each of these approaches below.
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1.3.1 Pruning Spurious Substructures for Robustness
It has been observed that DNNs utilize spurious features to make their predictions Ilyas et al.
[2019]. Examples of such spurious features are high-frequency components Wang et al. [2020]
and texture Geirhos et al. [2018a]. These features are somewhat correlated with the true labels,
either coincidentally or due to sampling biases in the training data, however, they are often mean-
ingless for humans Wang et al. [2020]. Therefore an adversary can craft adversarial perturbations
that modify these spurious features and induce miscalssifications in the DNN, while remaining
imperceptible or irrelevant to humans Geirhos et al. [2018a]. We seek to mitigate the DNN’s re-
liance on spurious features by pruning away substructures of DNNs that encode them. In this
connection, we leverage the interpretation of neurons in a DNN as being feature detectors, to draw
an equivalence between neurons and the features themselves. Since removing the detector for a
feature effectively removes the influence of that feature from the DNN, if we identify and prune
away neurons that encode spurious features, we will have effectively removed the influence of the
spurious features from the DNN. To this end we develop a technique that identifies spurious neu-
rons using various metrics, such as colinearilty, the magnitude of derivative (w.r.t the loss), and
mutual information with the true label, and prunes them away. We demonstrate that post-pruning
the DNNs become more robust to adversarial attacks, even surpassing adversarial training in cases
when the test time adversarial perturbations were larger than the ones during training.

1.3.2 Influence of DNN Design on Odds of Finding Robust Boundary
The fact that a DNN exhibits almost no robustness to adversarial attacks when trained on clean
data but becomes highly robust when it is trained on adversarially perturbed data indicates that it is
capable of learning both robust and non-robust decision boundaries. We hypothesize that similar
to how training on adversarially perturbed data biases the optimization towards robust solutions,
certain structural elements of the DNN may do the same, and serve as structural robustness priors.
We develop a framework to identify these structural robustness priors by modifying the structural
elements of a DNN, and approximating the probability that gradient descent, starting from ran-
dom initialization, can converge to a solution corresponding to an adversarially robust decision
boundary. Our experiments on simple problems, like XOR or MNIST, reveal that certain design
elements, like larger width and dropout, increase the odds of finding robust decision boundaries
while others, like larger depth and batch normalization, decrease these odds.

1.4 Biological Priors
As mentioned above, we consider biological priors to be mechanisms and constraints considered
to contribute to the robustness of biological perception. Adversarial attacks, by definition, exist
due to differences between biological perception and DNNs, because they sample the space of
perturbations that human perception is invariant to but DNNs are highly sensitive to. Therefore,
we posit that integrating biological priors into DNNs would make them better aligned with bio-
logical perception, thereby reducing the space of adversarial perturbations and thus making the
DNNs more robust to adversarial perturbations. Since human perception is robust to a wide vari-
ety of perturbations that DNNs are often confuse by, we expect that integrating biological priors
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into DNNs would make them robust to various other noises (apart from adversarial attacks) that
human perception is robust to. Indeed there is evidence indicating a positive correlation between
biological alignment and adversarial robustness Dapello et al. [2020], Harrington and Deza [2021].
Moreover, a small but growing body of work Paiton et al. [2020], Bai et al. [2021], Dapello et al.
[2020], Jonnalagadda et al. [2022], Luo et al. [2015], Gant et al. [2021], Vuyyuru et al. [2020] has
shown that integrating biological mechanisms into DNNs improves their robustness to adversarial
attacks, as well as non adversarial perturbations. In this thesis we build upon this body of work by
considering biological priors that have not been studied as yet. Specifically, we consider two types
of biological priors, namely sensory and cognitive.

1.4.1 Sensory Priors
We define sensory priors as the constraints imposed by the biological sensory organs that empha-
size and de-emphasize certain characteristics of the incoming stimuli. In the domain of vision,
we study foveation as sensory robustness prior. Foveation is the phenomenon that causes only
the central 1% of the visual field to be sensed with maximum fidelity [Kolb, 2005, Stewart et al.,
2020], while the rest of it lacks sharpness and color saturations Hansen et al. [2009]. This is unlike
DNN, which view the entire image in full fidelity. We hypothesize that the experience of viewing
the world at multiple levels of fidelity, perhaps even at the same instant, causes human vision to be
invariant to low-level features, such as textures, and high-frequency patterns, that can be exploited
by adversarial attacks. To test this hypothesis, we develop R-Blur (short for Retina Blur), which
simulates foveation by blurring the image and reducing its color saturation adaptively based on the
distance from a given fixation point. We find that models augmented with R-Blur retain most of
the high classification accuracy of the base ResNet while being more robust to both adversarial
and non-adversarial image corruptions, and that the adversarial robustness achieved by R-Blur is
certifiable using the approach from Cohen et al. [2019a].

We extend our work on sensory priors to the auditory domain by studying the impact of bio-
logically plausible feature extraction methods on the adversarial robustness of speech processing
models. While there is significant literature on biologically derived acoustic features [Feather et al.,
2019, Kim and Stern, 2016], modern speech processing systems generally operate on either the raw
waveform [Baevski et al., 2020] or the log mel spectrogram [Radford et al., 2023]. While the use
of the Mel filterbank does impart a degree of biological plausibility to the log Mel spectrogram,
it does not represent several processes that occur in the cochlea and the auditory nerve, includ-
ing filtering, more realistic non-linearity, lateral suppression and cross/auto-correlation [Stern and
Morgan, 2012]. Adversarial attacks are known to exploit these discrepancies between DNNs and
biological perception to generate perturbations that compromise DNNs but remain imperceptible.
For example, lateral suppression induces simultaneous frequency masking in humans Stern and
Morgan [2012] whereby the perceptual thresholds of the frequencies near a loud frequency are
increased. However, since frequency masking does not occur in DNNs the attack proposed by Qin
et al. [2019] was able to add fairly large magnitude noise in frequencies adjacent to loud frequen-
cies and change the responses of speech recognition models, while remaining largely undetectable
by humans. We investigate the impact, vis-a-vis robustness to adversarial and non-adversarial per-
turbations, of various biologically derived audio/speech feature extraction methods. In addition to
evaluating existing features like log-Mel features, cochleagrams and Power Normalized Cepstral
Coefficients (PNCC) Kim and Stern [2016], we have developed and evaluated novel features that
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simulate simultaneous frequency masking and lateral suppression. We find that log Mel features,
despite being the feature of choice in state-of-the-art speech recognition models, is among the least
robust features we evaluated. We also observe that our proposed features are highly robust to ad-
versarial attacks and non-adversarial noise, while having accuracy similar to or better than log Mel
features.

1.4.2 Cognitive Priors
We define cognitive priors as mechanisms and constraints that influence how the sensory infor-
mation is processed to generate perception. In this connection, we simulate the phenomenon of
inflexible inter-neuron correlations observed in mammalian brains Hennig et al. [2021] in DNNs.
It has been observed that the spiking activity of biological neurons in the same brain region tends
to be correlated Hennig et al. [2021], Sadtler et al. [2014] and, the structure of this correlation
tends to persist over long periods of time even if it limits performance and learning Golub et al.
[2018]. In contrast, the activations of DNN neurons in the same layer are conditionally indepen-
dent of each other given the outputs of the previous layer, and thus are not constrained in this way.
This makes it possible for an adversary to induce arbitrary activation patterns Paiton et al. [2020],
including those that lead to misclassification. Our experimental results demonstrate that adding
this constraint does improve robustness of image and speech classification DNNs to adversarial
attacks and non-adversarial perturbations.

Another cognitive mechanism that we study is recurrent connectivity in the biological brain.
Most modern DNNs, particularly those that are commonly employed for computer vision appli-
cations, process the input in a feed-forward manner – each neuron in a layer receives inputs only
from neurons in the previous layer(s). On the other hand, in the primate visual system, the neurons
are connected in a highly recurrent manner – neurons may receive inputs from neurons either the
same, any preceding or any succeeding visual area [Bullier et al., 2001, Briggs, 2020]. This recur-
rent processing has been linked to the ability of primates to perform accurate object recognition
under distortions such as crowding and occlusions [Spoerer et al., 2017]. We extend this body of
work by integrating recurrent circuits between neurons in the same layer (lateral recurrence), as
well as between neurons from different layers (feed-back recurrence). We train these models on
image classification tasks, with the additional objective of in-painting randomly placed occlusions.
Experimental results show that doing so results in improved adversarial robustness.

1.5 Audio Robustness Benchmark
We have developed an audio robustness benchmark for the purpose of evaluating a DNN’s ro-
bustness to adversarial and non-adversarial perturbations. While such benchmarks exist for vision
tasks Hendrycks and Dietterich [2019], they do not for audio and speech tasks. Currently, different
studies take different views of robustness and consequently evaluate it using different methods.
For example, Hsu et al. [2021b], Likhomanenko et al. [2020] somewhat equate robustness with
domain transfer, and evaluate robustness by computing the error rate of Automatic Speech Recog-
nition (ASR) on a variety of datsets. This approach however is very coarse, and does not provide
fine-grained information on what types of perturbations do the DNNs struggle against. On the
other hand, Radford et al. [2023] also evaluates on room impulse responses, and environmental
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and white noise. While better than the former approach, this method still does not encompass the
variety of perturbations that humans are robust to and does not include adversarial attacks. To
remedy this situation we develop a comprehensive audio robustness benchmark comprising over
100 challenging speech recognition scenarios that models are likely to encounter in the real-world.

1.6 Conclusion
In this thesis, we work towards DNNs that are robust to a variety of adversarial attacks by iden-
tifying principles, or priors, that can endow DNNs with robustness to adversarial attacks, without
training them on adversarially perturbed data. In this connection, we have studied priors over the
design elements and the structure of DNNs (structural priors) as well as priors derived from bio-
logical perception (biological priors) that seek to simulate biological mechanisms and constraints
considered to be conducive to robustness. The contributions of our work are summarized as fol-
lows:

• We have developed a technique for removing the influence of spurious features from DNNs
by pruning neurons that encode them, and demonstrated that it improves the adversarial
robustness of DNNs, even surpassing adversarial training in cases where the test and training
adversarial attacks differ. (Chapter 3)

• We have devised a framework for empirically estimating the probability that gradient de-
scent, starting from random initialization, can converge to an adversarially robust decision
boundary. We use this framework to identify the structural priors that increase this probabil-
ity and consequently induce adversarial robustness in DNNs. (Chapter 4)

• We have created an image filter, R-Blur that simulates foveation via adaptive Gaussian blur-
ring, and color desaturation. We demonstrate that models augmented with R-Blur retain
most of the high classification accuracy of the base DNN while being more robust to both
adversarial and non-adversarial image corruptions. (Chapter 5)

• We simulate the phenomenon of inflexible inter-neuron correlations observed in mammalian
brains in DNNs, and show that doing so improves robustness to adversarial and non-adversarial
perturbations. (Chapter 6)

• We introduce recurrent feedback connections in DNNs and demonstrate that adversarial ro-
bustness of the DNN is improved when these connections are optimized to reconstruct the
input. (Chapter 7)

• We evaluate the impact of existing biologically plausible audio feature extraction methods,
such as chochleagrams, as well our novel methods for simulating the phenomenon of fre-
quency masking, and lateral suppression, on the adversarial robustness of speech recognition
systems. (Chapter 8)

• Finally, we develop a comprehensive audio robustness benchmark comprising a variety chal-
lenging speech recognition scenarios that simulate real-world conditions that we would like
the DNNs to be robust to. (Chapter 9)
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The outcomes of our studies indicate that we can endow DNNs with a degree of generalized adver-
sarial robustness by incorporating certain robustness priors related to the architecture and feature
representations of the DNN, and without training them on a variety of adversarial attacks. This
represents a step taken towards developing models that retain accuracy in the face of a variety of
adversarial attacks and thus can be safely and reliably deployed in real-world settings. Our studies
also reveal that deriving these priors from biology is a promising direction, and one that allows us to
leverage the optimizations performed by evolution over millennia that have endowed humans and
other primates with robust perception. The fact that integrating biological priors indeed endows
DNNs with generalizable robustness indicates that doing so bridges some of the gaps between
DNNs and biological perception, at least so far as robustness is concerned. In a word, these results
provide evidence that there are more practical and scalable alternatives to the dominant approach
of seeking robustness via training, and that DNNs with high accuracy and generalized adversarial
robustness are, in fact, within reach. We envision that future research directions stemming from
our work will further expand the body of structural and biological robustness-enhancing priors as
well as discover other types of priors, particularly those related to the optimization algorithms used
to learn DNN parameters.
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Chapter 2

Background and Related Work

In this chapter, we scope our work and present the most closely related work. Work on DNN
robustness falls in the following main categories: 1) Adversarial Attacks, 2) Defenses against
adversarial attacks, and 3) Techniques for measuring robustness. Our work primarily falls under the
second category, but we also provide robustness benchmarks for speech which aids in measuring
robustness and thus falls under the third category. We discuss some of the related work in each of
the aforementioned categories belowand position our thesis in this broad plethora of work.

2.1 Adversarial Attacks Against DNNs
Adversarial perturbations are perturbations that can change the response of DNNs when added
to their inputs but are either imperceptible to humans or perceptually and semantically irrelevant
enough to be ignored by them. Formally, adversarial perturbations for a given DNN, Φ, and a given
input x, with ground truth label yx, form the set

Padv = {δ|δ ∈ Ix ∧ Φ(x+ δ) ̸= Φ(x)} (2.1)

where Ix is the set of perturbations of x that are imperceptible or semantically irrelevant. It is
generally assumed that Φ(x) = yx because otherwise the competence of the DNN is suspect and
evidence of pathological behavior is less concerning.

Algorithms for generating adversarial perturbations are known as adversarial attacks. Usually,
adversarial attacks solve the following optimization problem to generate an adversarial perturba-
tion δ ∈ Padv [Szegedy et al., 2014, Goodfellow et al., 2014, Madry et al., 2018b]:

δx = argmax
δ∈Ix
L(Φ(x+ δ), yx), (2.2)

where L computes some metric of divergence. This type of attack is untargeted, where the pur-
pose of the attacker is simply to cause a misclassification and is analogous to a denial-of-service
attack. Alternatively, attacks can also be designed to cause targeted misclassification by solving
the following optimization problem:

δx = argmin
δ∈Ix
L(Φ(x+ δ), yt), (2.3)
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where yt is the target label that the attacker wants x to be classified as. The various adversarial
attacks proposed over the years generally differ in their choice of optimization technique and their
characterization of Ix.

Adversarial attacks have leveraged various optimization techniques over the years. The choice
of optimization technique is, to an extent, determined by the level of knowledge about the target
DNN the attacker is assumed to have (i.e. the threat model). Attacks that assume full knowledge
of the target model’s architecture and weights(white-box threat model) often use gradient-based
optimization techniques, such as Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(L-BFGS) [Szegedy et al., 2014], Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014],
and Projected Gradient Descent (PGD) [Madry et al., 2018b], to optimize δ (or parameters of
a function that generates δ [Laidlaw et al., 2021]). If it is assumed attacker does not have any
knowledge of the target DNN’s architecture and only have query access to it (black-box threat
model), adversarial attacks resort gradient-free optimization methods [Wang et al., 2022a] like
random search [Andriushchenko et al., 2020, * et al., 2018], Mote-Carlo Tree Search [Wicker
et al., 2018], finite-differences [Chen et al., 2017, Zhao et al., 2020] and evolutionary search Vo
et al. [2022]. Black-box attacks, naturally, generally succeed less often than white-box attacks,
and tend to involve querying the target DNN a very large number of times [Andriushchenko et al.,
2020, Chen et al., 2020a], which can make them inefficient or even infeasible in certain cases.

Scenarios between white and black box threat models (grey-box threat model) also exist, when
the attacker does not have access to the target model’s parameters but may have some information
about the target DNN’s architecture, and training setup. In such situations the attacker may be able
to avoid the pitfalls of black-box attacks by leveraging the transferability of adversarial attacks
[Papernot et al., 2016]. To do this the attacker can use white-box attacks to generate adversarial
perturbations that succeed on a proxy DNN and apply them to the inputs of the target DNN.

The other key element of adversarial attacks is how Ix is characterized. Several methods have
been proposed over the years to characterize Ix such that it approximates the boundaries of human
perception, which themselves are not precisely known. Some attacks limit the region to which the
attack can perturb by specifying the shape, area, or objects to which the perturbation may be added
Sharma et al. [2022]. Other attacks have used DNN-based approximations of human perception
Qin et al. [2019], Laidlaw et al. [2021] or sophisticated distance metrics like Wasserstein distance
[Wong et al., 2019b, Wu et al., 2020] to constrain δ. However, by far the most popular approach
has been to use ℓp norm bounds to limit the size of the perturbations [Goodfellow et al., 2014,
Madry et al., 2018b]. Each of these approximations yields different distributions of perturbations,
therefore, models that are robust to one type of perturbation may not be robust to others Kang et al.
[2019], Laidlaw et al. [2021].

2.1.1 Attack Algorithms
In the following sections we provide details about adversarial attacks that we have extensively used
in this thesis.

Projected Gradient Descent (PGD) Attacks

Madry et al. [2018b] proposed an attack that used PGD as the optimization technique to solve
equation 2.2 (or 2.3) and generate adversarial perturbations. PGD is an iterative algorithm, which
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performs the two operations in each iteration: first, a gradient ascent step updates δx, and then a
projection operator, ΠIx (.), projects Ix onto Ix. Formally, these steps can be written as follows:

δx ← δx + η∇δxL(x+ δx, yx) (gradient ascent), (2.4)

δx ← ΠIx (δx) (projection) (2.5)

Several improvements to the original PGD attack have been proposed to improve its effective-
ness. These include the addition of momentum [Dong et al., 2018], multiple restarts [Uesato et al.,
2018], and adaptive step sizes [Croce and Hein, 2020c].

AutoAttack

AutoAttack Croce and Hein [2020c] is an ensemble of 4 adversarial attacks: untargeted and tar-
geted Auto PGD (APGD) Croce and Hein [2020c], targeted Fast Adaptive Boundary (FAB) attack
[Croce and Hein, 2020b], and untargeted Square attack [Andriushchenko et al., 2020]. APGD is
a refinement of the PGD attack which adds momentum to the gradient updates and adaptively re-
duces (halves) the step size (η in equation 2.4) if there is no improvement in the attack objective.
The FAB attack finds the smallest perturbation (under ℓp-norm constraints) that causes misclassifi-
cation, and the Square attack is black-box attack that uses random search to perturb square regions
of random widths at random locations until the input is misclassified. Ensembling attacks with di-
verse objectives and optimization techniques yields an attack that is stronger than its components,
and thus gives a more accurate picture of the DNN’s robustness. Furthermore, it is known that the
presence of non-differentiable components in DNNs can render gradient-based attacks ineffective
[Athalye et al., 2018a], but gradient free attacks may still be able to succeed. Therefore, the in-
clusion of the black-box Square attacks ensures that the robustness of such models is accurately
measured.

2.2 Defenses Against Adversarial Attacks
A variety of methods have been proposed over the years to defend DNNs against adversarial at-
tacks. In the following we discuss four categories of defenses against adversarial attacks that
represent the majority of the prior work Akhtar et al. [2021], namely detection, input transforma-
tions, certified defenses, and adversarial training. To these we add two categories of defenses that
are most relevant to our work, namely defenses that integrate structural and biological priors into
DNNs to enhance their robustness.

Adversarial training, which is perhaps the most successful class of adversarial defenses, trains
models on adversarially perturbed data generated by backpropagating gradients from the loss to
the input during each training step. Madry et al. [2018b] formalized adversarial training as the
following min-max optimization problem:

Φrobust = argmin
Φ

E(x,yx)

[
arg max

δx∈Ix
L(Φ(x+ δx), yx)

]
, (2.6)

where the inner optimization is performed by the PGD attack, and the outer optimization is per-
formed by stochastic gradient descent. Practically this amounts to running a few iterations of PGD
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update on each training batch δx such that the loss is increased, before using SGD on the final loss
value to update the parameters. Several refinements of Madry et al. [2018b]’s approach have been
proposed to increase its effectiveness and efficiency Zhang et al. [2019], Rebuffi et al. [2021], Bai
et al. [2021], Wong et al. [2019a]. The key shortcoming of this approach is that it fails to general-
ize to unseen attacks, i.e. attacks that use different optimization methods or approximations of Ix
[Akhtar et al., 2021, Song et al., 2019, Geirhos et al., 2019, Maini et al., 2020]. We would like to
point out that some studies have proposed to improve the generalizability of adversarially trained
models by applying multiple types of adversarial attacks during training Maini et al. [2020]. We
believe that this approach does not solve the fundamental problem because it still yields models
that are robust to the attacks used during training and does not generalize to unseen attacks.

Certified defenses Cohen et al. [2019a], Fischer et al. [2020], Kumar and Goldstein [2021],
Li et al. [2019] are a class of defenses that also provide provable guarantees of the form: with
probability 1−α, the model’s output will not change by perturbation of size at most ϵ. A common
technique used by certified defenses is randomized smoothing Cohen et al. [2019a], Salman et al.
[2020], Cao and Gong [2017] which perturbs the input by multiple randomized perturbations (with
a known distribution) and aggregates the models predictions over them. Since the distribution of
the perturbations is precisely known, theoretical guarantees of the aforementioned form can be
obtained. Other techniques used by certified defenses include regularization [Croce and Hein,
2020a], and convex relaxation Wong and Kolter [2018]. The theoretical guarantees make certified
defenses attractive in security-critical applications where it is useful to quantify the risk. However,
computing these guarantees requires the exact nature of the perturbations to be known and the
proofs have to be redone for each type of perturbation. This makes this type of defense infeasible
for defending against diverse and unseen perturbations. Nevertheless, we use the certification
procedures that this body of work proposes to verify the robustness of the defenses proposed in
this thesis on known perturbation types.

Input transformation based defenses seek to thwart adversarial attacks by applying trans-
forms to the input during inference. Earlier works [Guo et al., 2017] used simple transforms like
JPEG compression, bit-depth reduction, total variance minimization, and image quilting. However,
such defenses were shown to be weak because they relied on the non-differentiability of transforms
to render gradient-based attacks ineffective, and thus could be bypassed by gradient-free attacks,
as well as more advanced gradient based attacks Athalye et al. [2018a]. Recent works apply a mul-
titude of random transformations to the image [Raff et al., 2019]. While the transforms themselves
are rather simple, their number, order and parameters are randomized. This procedure does not
make the DNN itself more robust, and it has been shown that increasing the number of optimiza-
tion steps of PGD-based attacks and/or using techniques like Expectation-over-Transformations
(EoT) Athalye et al. [2018b] can marginalize out the randomness and allow adversarial attacks
to succeed. Such marginalization techniques, however, impose significant computational costs
Sitawarin et al. [2022] and thus the defense can still be considered feasible against resource con-
strained adversaries.

Detection base defenses, like Metzen et al. [2017], add additional modules to the DNN to
detect the presence of adversarial perturbations. Inputs flagged as adversarial may be rejected or
processed by a different pathway than benign inputs. This class of defenses has fallen out of favor
in the community Akhtar et al. [2021] because they do not solve the core problem that DNNs are
sensitive to imperceptible and irrelevant perturbations.

To summarize, the aforementioned categories of adversarial defenses have significantly im-
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proved the robustness of DNNs to existing adversarial attacks, allowing DNNs to retain signif-
icantly more prediction accuracy than undefended models Madry et al. [2018b], Cohen et al.
[2019a], however, defenses in these categories do not generalize across existing perturbations
types, let alone unseen ones. The development of defenses that robustly generalize is a grow-
ing field of research. Given that the work presented in this thesis also fall within this field, in
the following we review prior work on robust generalization, with a focus on works that study
structural and biological robustness priors.

Structural modifications that improve robustness have been explored in prior work, however,
many of these works seek to improve the effectiveness of adversarial training by making structural
modifications [Akhtar et al., 2021, Huang et al., 2023]. Guo et al. [2020] uses neural architecture
search, guided by performance on adversarial attacks to design DNNs. Guo et al. [2018] propose
robustness guided DNN pruning. Huang et al. [2021] conduct an empirical study on the impact of
DNN depth and width on the effectiveness of adversarial training. While these approaches are re-
lated our work on structural robustness priors in so far as they also seek robust DNN architectures,
and the removal of DNN components that enable adversarial attacks, they differ fundamental from
our approach because we seek structural priors that enhance the robustness of DNNs trained only
on natural data. Furthermore, since adversarial perturbations are part of the loop in these methods,
they share the pittfalls of adversarial training vis-a-vis generalization and efficiency.

Prior work has also explored methods of discovering structural robustness priors are methods
that do not involve adversarial perturbations during training. Fu et al. [2021] shows that sub-
networks within randomly initialized networks exist that exhibit adversarial robustness on par with
adversarially trained DNNs. Wang et al. [2018] frame the problem of adversarial robustness as
arising from an over-specified input space whose true rank is much lower than its dimensional-
ity, which gives rise to spurious correlations. They posit that compressing and quantizing the
input will reduce the over-specification and improve robustness. Other methods propose to add
regularizations, such as bit-plane consistency [Addepalli et al., 2020], Jacobian-based GAN-like
regularization [Chan et al., 2019], and gradient phase and magnitude regularization [Dabouei et al.,
2020]. Some works Feather et al. [2023], Wang et al. [2020] have tried to modify the receptive
fields of the convolution kernels to improve robustness.

Perhaps more relevant to our work are studies that systematically evaluate the impact on ro-
bustness of various attributes of DNNs, such as width, depth, normalization and initialization.
Several papers Loo et al. [2022], Patane et al. [2022], Bubeck and Sellke [2021], Zhu et al. [2022]
have sought to determine the impact of DNN width on adversarial robustness using neural tangent
kernels, which are analogous to infinite width DNNs. Benz et al. [2021] discovered that batch
normalization leads to reduced adversarial robustness due to the mismatch of the mean and vari-
ance statistics of natural and adversarially perturbed data. Zhu et al. [2022] conduct a systematic
analysis of the relationship between perturbation stability of DNNs and their width, depth, and
initializations, and provide theoretical results showing that increasing width also increases robust-
ness, while increasing depth may improve robustness or cause it to deteriorate depending on the
parameter initialization. The study of Zhu et al. [2022] complements our work on discovering
structural priors ([REF SEC]), however, while the theoretical analysis in this study is limited to
certain types of elements of DNNs, our empirical technique is not limited in this way and can be
used to discover a wider range of structural priors for robustness.

Several biological defenses have been proposed over the years. These defenses involve inte-
grating computational analogs of biological processes that are absent from common DNNs. The
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resulting models are made more robust to adversarially perturbed data, and have been shown to
better approximate the responses of biological neurons Dapello et al. [2020]. Most relevant to
our work are approaches related to foveation, lateral and top-down recurrence, and early stages of
audition. We present prior work related to each of these below.

Foveation refers to the phenomenon of biological vision that causes the fidelity of the image
to be maximal close to the point of fixation, and lower in regions further away from it. In an early
work, Luo et al. [2015] investigates the impact of foveation on adversarial robustness. They imple-
ment foveation by cropping the salient region of the image at inference time and show reduction
in attack success rates. This work has several shortcomings. Firstly, the biological plausibility of
this method is questionable because it does not simulate the degradation of visual acuity in the
periphery of the visual field, rather it discards the periphery entirely. Secondly, it crops the image
after applying the adversarial attack, which means that the attack does not take into account the
cropping, which is akin to obfuscating the gradients, and hence any reported improvements in ro-
bustness are suspect. A later work Vuyyuru et al. [2020] (Retina Warp) avoids the aforementioned
pitfalls and simulates foveation via non-uniform sampling (regions further away from the fixation
points are sampled less densely). Since this method is fully differentiable and highly biologically
plausible, we compare against it in this thesis. Some recent works Jonnalagadda et al. [2022], Gant
et al. [2021] apply foveation in the latent feature space (the intermediate feature maps generated
by a CNN). These works implement foveation by changing the receptive field sizes of the convolu-
tional kernels based on the distance to the fixation. Since they operate on the latent feature space,
rather than image pixels, their methods not directly comparable to our work in Chapter 5.

While Biologically derived acoustic features [Feather et al., 2019, Kim and Stern, 2016,
Slaney, 1988, Lyon, 1984, Ghitza, 1986, Seneff, 1988, Hermansky et al., 1991] have indeed been
extensively studied in prior works, they are not widely used in modern speech processing systems,
which generally operate on either the raw waveform [Baevski et al., 2020] or the log mel spectro-
gram [Radford et al., 2023]. While the use of the Mel filterbank does impart a degree of biological
plausibility to the log Mel spectrogram, it does not represent several processes that occur in the
cochlea and the auditory nerve, including filtering, more realistic non-linearity, lateral suppression
and cross/auto-correlation [Stern and Morgan, 2012]. Prior research has shown that while more
bio-plausible feature extraction methods[Stern and Morgan, 2012, Lenk et al., 2023] do not usu-
ally improve speech recognition performance on clean speech, they do improve performance on
degraded and noisy speech, however, their impact against adversarial perturbations is yet to be
fully evaluated.

Recurrence is known to be prevalent in the human and, in general, animal brain [Bullier et al.,
2001, Briggs, 2020], and has been linked to the robustness of both audio Stern and Morgan [2012]
and visual Spoerer et al. [2017], Wyatte et al. [2014] perception. In contrast, most DNNs used for
perceptual tasks, particularly image-based ones, are predominantly feed-forward. While Recurrent
Neural Networks (RNN) are widely used in speech recognition, they add recurrent circuits between
groups of neurons in the same layer (analogous to brain regions). Meanwhile, recurrent circuits
in the brain also connect neurons from different regions, resulting in feed-back circuits carrying
information from areas of higher-level processing to those of lower-level processing. Markov
et al. [2014] posits that feedforward DNNs can model human visual perception immediately after
(< 200 ms) the onset of the stimulus, because when the stimulus is presented for an extremely
short duration, humans tend to make similar errors as DNNs. In the case of auditory perception,
feed-back circuits orginating in higher-processing areas go all the way back to the cochlea, which
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leads to amplification of lower amplitude signals, and compression of the dynamic range Stern and
Morgan [2012].

Given the relationship between robust perception and recurrence, several approaches have been
proposed to integrate recurrence into DNNs. One of the most well known of these is known as the
predictive coding hypothesis Rao and Ballard [1999], which posits that recurrent connections are
involved in a form of Bayesian optimization in which the feed-forward activations are optimized
to be maximally predictive of the observed stimulus. Paiton et al. [2020] analyzed the dynamics of
predictive coding to show that it has the effect of pushing the hidden representations of the DNN
to prototypical representations, thus limiting the ability of an adversarial attack to induce arbitrary
representations. Choksi et al. [2021] and Huang et al. [2020] propose methods for integrating
predictive coding in DNNs and demonstrate improved robustness to adversarial attacks and other
corruptions. Our work on constraining the inter-neuron correlations (Chapter 6) can be seen as a
special case of predictive coding in which the activations of the neurons are not only optimized to
be predictive od the input, but also to respect a fixed inter-neuron correlation matrix that is learned
during training.

There is a body of literature on applying recurrent DNN architectures that departs from the pre-
dictive coding hypothesis and seek to train recurrent models without specific constraints. Schwarzschild
et al. [2021] and Bansal et al. [2022] developed recurrent models maze solving DNNs that have
the ability to dynamically adjust their analysis depending on the complexity of the task, and even
to correct for corruptions. Kubilius et al. [2018] demonstrate that adding recurrence to image
recognition DNNs improves their correspondence to biological neurons. These prior works mostly
added lateral recurrence, i.e. recurrence between neurons in the same layer (or block). Our work
on integrating recurrent connections to DNNs extends this body of work by introducing feed-back
connections.

2.3 Robustness Evaluation
Prior work has developed guidelines and benchmarks for accurately evaluating the robustness of
DNNs and reliably tracking progress by enabling fair comparisons between methods. In the do-
main of vision, the following works have proposed guidelines and benchmarks. Carlini et al. [2019]
provide guidelines on how to reliably measure the adversarial robustness of DNNs. Croce et al.
[2020] propose an adversarial robustness benchmark and leaderboard based on AutoAttack Croce
and Hein [2020c]. Hendrycks and Dietterich [2019], Hendrycks et al. [2021a] and Hendrycks and
Dietterich [2019] propose benchmarks and metrics for measuring the robustness of image recog-
nition models to non-adversarial perturbations. In the domain of audio and speech processing
however there is considerably less prior work on robustness benchmarks. To measure adversarial
robustness of speech recognition models Olivier and Raj [2022b] developed a library contain-
ing implementations of a variety of adversarial attacks, which they applied to a number of recent
speech recognition models and presented the results. While this work is indeed a very good starting
point, it is not, nor does it claim to be, a benchmark insofar as it does not propose a particular evalu-
ation methodology. The measurement of non-adversarial robustness in prior work has been done in
a non-standardized way with each paper defining and measuring robustness differently. A common
definition seems to equate robustness with domain transfer Likhomanenko et al. [2020], Radford
et al. [2023], Hsu et al. [2021b]. Practically this means evaluating on a variety of datasets, under
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the assumption that these datasets sufficiently represent the real world diversity. This approach has
two major shortcomings: (1) the assumption that commonly available datasets would accurately
reflect real world diversity may not be true, and (2) this evaluation methodology does not provide
fine-grained results about the strengths and weaknesses of DNNs; for example, Likhomanenko
et al. [2020] shows word error rates for 3 settings: clean, noisy, and extreme, for each dataset. It is
not readily discernible exactly what types of perturbations the model has issues with. Our work on
the audio robustness benchmark aims to fill this gap in prior work.
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Structural Robustness Priors
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Chapter 3

Towards Adversarial Robustness via
Compact Feature Representations

3.1 Problem and Motivation
Adversarial attacks exist, in large part, because DNNs are overly sensitive to spurious features
Ilyas et al. [2019], such as high-frequency components Wang et al. [2020] and texture Geirhos
et al. [2018a]. These features are somewhat correlated with the true labels, either coincidentally
or due to sampling biases in the training data, however, they are often semantically unrelated to
the ground truth, and meaningless for humans Wang et al. [2020]. Therefore an adversary can
craft adversarial perturbations that modify these spurious features and induce misclassifications in
DNNs, while remaining invisible or irrelevant to humans Geirhos et al. [2018a]. Hence, reducing
the model’s reliance on superfluous features can make it more robust to adversarial perturbations.

In this thesis, we propose a method to remove the influence of superfluous features from the
model. The cornerstone of our approach is the observation that each neuron in the hidden layers
of a neural network is a feature detector for the subsequent subnetwork. Based on this observa-
tion, we can drawn an equivalence between neurons and features, which implies that to remove
the influence of a superfluous feature we must remove the neuron that detects it. To identify such
neurons we decompose the features learned by a neural network into two components: the redun-
dant information that is already encoded by other features, and the novel information encode by
this feature. Based on this decomposition we select neurons that provide the maximum amount of
novel information about the target output and discard neurons that encode redundant or irrelevant
information. We modify a neuron pruning technique called LRE-AMC Shah et al. [2021] to use
our neuron selection criterion and remove superfluous neurons from several well known image
recognition models. We discuss the technical details of our approach below.

3.2 Technical Overview

3.2.1 Redundant Features Allow Adversarial Attacks
Central to our study is the observation from Wang et al. [2018] that an overspecified input is a
necessary condition for the existence of adversarial examples for Machine Learning (ML) models.
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Figure 3.1: a) The example decision boundary. b) A minimal network that models it. The blue, or-
ange and green connections represent weights of +1,-1, and 0. The numbers in the circles represent
the biases. (Image credits Shah and Raj [2020])

ML models operating on over-specified inputs need to be able to model the target function for a
larger number of input patterns compared to ML models operating on minimally specified inputs.
For example, a model can learn the function y = x1XORx2 with just four training patterns.
However, if the input to the model is overspecified by adding an additional variable, x3, it would
need to see eight input patterns to learn that the value of x3 has no impact on the output y. If some
input patterns were not available to the model during training (as is usually the case), the model
would need to choose, from an exponential number (in the number of missing patterns) of possible
assignments, one assignment of y to associate with the missing patterns.

If the model learns an incorrect assignment of y it would be possible for an adversary to change
the output of the model by modifying x3.

We can consider x1, x2 and x3 to be features, and thus, to make models more robust we would
want them to use the smallest set of features that can be used to correctly compute the target
function, i.e. the Minimal Sufficient Statistic (MSS).

3.2.2 Neurons Are Features in a Deep Neural Network
In a DNN neurons in each layer compute features from the layer’s input so the number of features
computed in a layer is equal to the number of neurons in that layer (assuming distinct and non-zero
activations). These features then become inputs for the downstream network. To illustrate this,
consider the simple decision boundaries presented in Figure 3.1(a) that are modeled perfectly by
the handcrafted network with threshold activations in Figure 3.1(b). The eight neurons in the first
layer are feature detectors for the eight boundaries. Each neuron indicates on which side of the
respective boundary the input point lies. The two neurons in the second layer determine if the
input point is located within each of the two squares using the features derived from the input in
the first layer. Likewise, the output neuron in the final layer is a linear classifier that operates on
the features computed by the second layer.

Given the equivalence between features and neurons, if a layer has too few neurons, the input
to the downstream subnetwork would be under-specified causing the model to perform poorly. If
the layer has too many neurons the input to the downstream network is overspecified making it
vulnerable to adversarial attacks. In the subsequent section we will present a method for reducing
the number of superfluous neurons (features) in the model, and thereby reducing the adversary’s
attack surface and making the model more robust.

22



3.2.3 Identifying Non-Spurious Features
Suppose that the model (or a layer in the model) computes the feature set F = {f1, ..., fn}. Let
F−i = F \ {fi}. Each feature fi ∈ F can be decomposed into two components as

fi = ηi + δi (3.1)

where the ηi is predictable from the other features in F i.e. ηi = ϕi(F−i), while δi is the residual
information carried by the feature. In our current implementation we take ϕi to be a linear function.
The details of this estimation are presented in 3.3.1.

Based on this decomposition we can define the “usefulness” of a feature (for a given task) as the
amount of residual information it carries about the target output. In information theoretic terms,
the usefulness of fi can be quantified as, I(δi;Y ), the mutual information between the residual,
δi, and the target output Y . Computing mutual information for random variables with unknown
distributions is challenging so we approximate it. While there may be others, in this paper we
explore two methods to perform this approximation:

1. Estimating the effect of removing δi from fi on the loss function using a first-order taylor
approximation around fi as

∆Li
(δi) = −L′

i(fi)δi (3.2)

where Li(fi) represents the loss when feature i is fi.

This provides an efficient method for computing ∆Li
because apart from δi, all the other

required information is already computed during forward and back-propagation steps.

2. Estimating a lower bound on mutual information using MINE Belghazi et al. [2018]. MINE
is a neural model that computes the neural information measure, IΘ(X,Z) ≤ I(X,Z). We
estimate the non-spurious information encoded by a feature as IΘ(δi, Y ).

After having identified the neurons that compute spurous feature, we proceed to remove them
using Annealed Model Contraction with Lossless Redundancy Elimination (LRE-AMC) Shah
et al. [2021].

We have chosen LRE-AMC because its neuron selection criteria is closely related to the one we
proposed above except that it prunes away neurons with the smallest values of δi, whereas we use
the mutual information between δi and the target output Y . This similarity greatly simplifies the
implementation of our proposed neuron selection criteria from 3.2.3, especially of equation 3.2. In
the next section we briefly describe LRE-AMC and provide further details about our modifications.

3.3 Removing Spurious Features Using Annealed Model Con-
traction

3.3.1 Annealed Model Contraction with Lossless Redundancy Elimination
(LRE-AMC)

LRE-AMC Shah et al. [2021], Shah and Raj [2020], iteratively removes neurons from each layer
and fine-tunes the compressed model using a knowledge distillation objective Hinton et al. [2015].
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During pruning, LRE-AMC prioritizes the removal of neurons whose post-activation outputs are
(almost) linearly predictable from the outputs of the other neurons in the same layer.

To identify linearly predictable neurons in layer l, LRE finds a transformation matrix, A(l), that
approximates an identity map over z(l), the non-linear activations of neurons in layer l. To exclude
the trivial solution A(l) = I , the diagonal components of A are contstrained to be zero. Formally
A(l) is defined as

A(l) = min
A
Ez(l)=f1:l(x)|x∼D

∥∥∥z(l)TA(l) − z(l)
∥∥∥2

2
s.t diag(A) = 0 (3.3)

The columns of A(l) contain the coefficients that best predict the corresponding component of z(l)

as a linear combination of the all the other components. We can use A to estimate η(l)i as η(l)i ≈
z(l)

T
A

(l)
.i and δ(l)i as δ(l)i ≈ z

(l)
i − ηi. Neurons whose post-activation output is linearly predictable,

i.e. |δi| is small, can be safely removed since they are not contributing useful information to the
model.

After each round of pruning the model is fine-tuned using the following objective

L =(1− α)H
(
σ
(z
τ

)
, σ

(v
τ

))
+ αH (ytrue, σ (v)) (3.4)

whereH represents the cross-entropy, z and v are the logits from the unpruned and pruned models,
respectively, σ is the softmax function and, τ and α, respectively, control the temperature of the
distribution and the relative contributions of the two loss terms.

3.3.2 Modifying LRE-AMC for Removing Spurious Features
We incorporate the measures of spuriousness from 3.2.3 into LRE-AMC by modifying the scoring
function it uses to select neurons for pruning. To compute the gradient based measure of spurious-
ness we scale δi by the empirical estimate of L′

i(fi) such that the score for the neurons in layer l is
computed as

δ(l) ⊙Ez(l)=f1:l(x)|x∼D∇z(l)L(η(l)) (3.5)

where η(l) and δ(l) are vectors containing the ηis and δis corresponding to z
(l)
i s in z(l), and ⊙ is

the elementwise product of vectors. Here we compute L with α = 1 in equation 3.4. On the other
hand, the mutual information based measure of spuriousness, IΘ(δi, Y ), is directly computed using
MINE. Apart from the scoring function, we do not modify any other aspect of LRE-AMC.

3.4 Key Results
In our experiments, we assume the worst-case whitebox threat model in which the adversary has
complete access to the targeted model including the gradients for all the parameters. The adversary
searches for adversarial examples in ℓ∞ and ℓ2 balls of various radii, denoted by ε, around the input
using Projected Gradient Descent (PGD) Madry et al. [2017] on the cross-entropy loss. We used
the implementation of PGD from Advertoch Ding et al. [2019] in our experiments.

We used CIFAR10Krizhevsky et al. and MNIST LeCun et al. [2010] datasets to train and
evaluate several well-know deep learning models. Specifically, we trained VGG-16Simonyan and
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Method −∆P Acccln E[Accrob]
Accrob w/ ∥ε∥∞ Accrob w/ ∥ε∥2
4 8 16 0.5 1.0 2.0

VGG16-CIFAR10
None 0.0 90.3 1.3 1.4 0.0 0.0 4.0 1.8 0.6

None-AT 0.0 74.9 31.6 57.1 37.1 8.6 53.2 27.6 3.5
None-GS 0.0 82.9 20.6 43.5 13.8 0.8 47.6 16.6 1.0
TD-LG 87.7 85.6 17.7 20.0 17.4 13.3 20.6 19.3 15.8
TD-V 84.6 87.7 9.7 11.2 9.3 5.7 11.5 9.9 6.8

RR-MI 98.3 85.7 9.5 11.8 9.2 7.0 12.4 9.5 7.1
GL-MI 72.6 88.6 9.3 10.6 8.8 5.6 12.5 11.0 7.3

AlexNet-CIFAR10
None 0.0 77.5 2.8 8.9 0.3 0.08 7.23 0.2 0.06
TD-V 97.7 74.6 18.6 23.7 17.0 14.3 25.0 17.3 14.5
RR-V 97.3 73.8 18.5 19.7 19.3 17.8 19.3 18.3 15.7

TD-LG 98.3 72.3 11.1 14.6 10.1 9.5 13.2 9.8 9.2
TD-MI 98.3 72.2 5.9 10.2 4.2 3.2 9.5 4.3 3.7

−∆P Acccln E[Accrob]
Accrob w ∥ε∥∞ Accrob w ∥ε∥2

0.2 0.3 0.4 2.0 3.0 4.0
LeNet-MNIST

None 0.0 99.1 4.0 1.2 0.0 0.0 18.0 3.97 1.0
TD-MI 86.8 95.7 12.4 13.1 12.1 10.2 14.9 12.7 11.5
TD-LG 93.9 96.2 3.9 6.3 4.5 2.8 6.3 2.8 0.8
RR-MI 96.5 96.0 3.9 3.1 1.1 0.3 10.0 5.7 3.1

Table 3.1: The table presents the reduction in the number of parameters (−∆P ), the accuracy
of the model on clean data (Acccln), the average accuracy of our CIFAR10 and MNIST models
on adversarially perturbed data (Accrob w/ ∥ε∥∞), and the accuracy of the model adversarially
perturbed data for various perturbation sizes (Accrob w/ ∥ε∥). The method follows the format
[compression scheme]-[criteria].

Zisserman [2014] and AlexNetKrizhevsky et al. [2012] on CIFAR10 and LeNet LeCun et al. [1998]
on MNIST. We trained the models from random initialization to convergence on the clean dataset
using stochastic gradient descent, with a learning rate of 0.1 and ℓ2 regularization weight of 0.005.
During training 20% of the training data is used for validation, and if the validation accuracy does
not improve for more than 5 epochs the learning rate is halved. The adversary performs 100 steps
of PGD over ℓp balls. On CIFAR10 the adversary explored ℓ∞ balls of ε ∈

{
4

255
, 8
255
, 16
255

}
and ℓ2

balls of ε ∈ {0.5, 1.0, 2.0} with steps size ε
4
. In experiments on MNIST the adversary explored ℓ∞

balls of ε ∈ {0.2, 0.3, 0.4} and ℓ2 balls of ε ∈ {2.0, 3.0, 4.0} with steps size ε
40

.
We configured LRE-AMC hyperparameters to be τ = 4 and λ = 0.75. During the fine-tuning

steps the Adam optimizer with learning rate 0.0001 and ℓ2 regularization weight of 0.0001 are used.
We experiment with three schemes of applying LRE-AMC to the model, namely Top-Down (TD),
Round Robin (RR) and Global (GL). In TD we move up the model, starting from the penuiltimate
layer, shrinking each layer maximally using LRE-AMC as long as the accuracy remains above a
threshold, t. In RR, we repeatedly loop through the layers, starting from the top. In every iteration
we apply LRE-AMC once to each layer and we repeat until no more neurons can be removed
without degrading the model’s accuracy beyond a threshold, t. In GL we score neurons from all
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the layers in the network using the equations from 3.3.1 and use LRE-AMC to remove a fraction
of the highest scoring neurons. In all cases, we configure LRE-AMC to remove up to 25% of the
neurons from a layer (for TD and RR) or the whole network (for GL) in each pruning step. We
conducted experiments with t ∈ {0.05, 0.03, 0.01, 0.0}. We run experiments with three scoring
methods, specifically, the method from Shah et al. [2021] (V), the score based on the derivative of
the loss described in equation 3.5 (LG) and the mutual information metric described in 3.2.3 (MI).
We present our most salient results, in terms of the average accuracy on adversarial data, in Table.
3.1.
Our approach improves robustness to white-box attacks. We see that removing spurious neu-
rons from the network using our approach greatly improves the model’s robustness to ℓ∞ and
ℓ2 bounded attacks, especially in the case of VGG16-CIFAR10 where using the gradient based
selection criteria improved the average accuracy of the model, on perturbed data by more than
16% (absolute) compared to the standard model and by 8% compared to the model compressed
with LRE-AMC. We observe similar improvements on LeNet-MNIST and AlexNet-CIFAR10. On
AlexNet-CIFAR10 vanilla LRE-AMC outperforms our selection criteria. In fact, AlexNet with
TD-V provides the best robust accuracy in all our experiments.

Comparison with Other Defenses: We applied two highly successful defences, namely adversar-
ial training (AT) with PGD Madry et al. [2017] and gaussian smoothing (GS) Cohen et al. [2019b]
to a baseline VGG16-CIFAR10. The results are presented in Table 3.1 as None-AT and None-GS.
We performed AT using 7 PGD steps of size 2

255
with ∥ε∥∞ ≤

8
255

. For GS we sampled noise from
N (0, 0.25I). We note that for small values of ∥ε∥ AT and GS defences make VGG16 significantly
more robust than models pruned with our technique, however for larger values the accuracy of
these models precipitously decreases. At ∥ε∥∞ = 16 and ∥ε∥2 = 2.0 our TD-LG model has an
accuracy that is 4.7% and 12.3% greater than the AT model. In addition to being more robust at
higher noise levels, the TD-LG model also achieves 9.7% greater accuracy on clean data than the
AT model.

It appears that the defenses like AT and GS do not generalize very well to perturbations outside
the ℓp ball they are trained with. We posit that a reason for this is that they do not explicitly evaluate
the features being learned, and thus, it is possible that they retain some spurious features that
adversaries with larger perturbation budgets can easily exploit. Furthermore, it is very important to
note that, unlike the other methods, our models were trained on clean images only. The fact that our
models were able to resist strong high-perturbation attacks without ever seeing out-of-distribution
data suggests that the latter is not as strong of a requirement that existing studies have made it out
to be. In fact, our results seem to suggest that techniques that rely minimally on perturbed training
data can generalize better to different attack methods and configurations.
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Chapter 4

Uncovering the Robustness Potential of
Neural Architectures by Measuring the
Probability of High Adversarial Accuracy

4.1 Problem and Motivation
Investigation into the nature of adversarial perturbations have suggested that ML models learn
some features that are semantically irrelevant for humans but are sufficiently correlated with target
output that by learning them the model can effectively minimize the training loss . These type
of features have been called “non-robust features” because if the data was modified in such a
way that only the non-robust features were perturbed, then to a human observer it would appear
semantically identical to the original data, but it would appear different to a ML model that relies
on these non-robust features. Conversely, features that are semantically relevant for humans can
be called “robust features” because if they are perturbed the data will appear semantically different
from the original data to a human. It follows that the non-robust features can exploited to generate
adversarial perturbations and thus a model is robust to adversarial perturbations to the extent that
it makes predictions based on robust features.

Broadly speaking there are two methods of training a ML model to learn a particular feature (or
a particular class of features). The first method is to sample the training dataset such that without
learning the desired feature the model will not be able to make accurate predictions. This approach
will be successful to the extent that the training data represents the distribution of the desired
feature and the model has sufficient capacity to learn the feature. Adversarial training [Madry
et al., 2018a] uses this method by training the model on adversarially perturbed data instead of
the original data. The second method is to introduce an inductive bias, which is usually based on
domain knowledge, into the model itself or in its training algorithm that encourages it to learn the
desired feature. For example, based on the knowledge that high-frequency components of images
are not very relevant to visual perception (if they are even perceptible) Wang et al. [2019] showed
that by smoothing the convolutional filter weights the robustness of a convolutional neural network
may be improved. These two methods are not mutually exclusive and are often employed together,
with the expectation that adding the inductive bias might reduce the amount of training data and
the size of the model required.
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In this thesis, we show empirically that common components and hyperparameter settings of
Deep Neural Networks (DNNs) behave as inductive biases vis a vis the adversarial robustness of
the DNN. We observe that if a DNN having sufficient capacity to model the robust boundary is
trained to achieve high accuracy on clean data, it will, with a certain probability, also be robust –
we refer to this probability as the Natural Robustness Potential(NRP) of the model. To estimate
the NRP for a given DNN architecture and hyperparameter setting we train several DNNs, each
having the same architecture and hyperparameters but different (random) parameter initialization
and compute the NRP as the ratio of the number of models that achieved high accuracy on clean
and perturbed data, and the number of models that achieved high accuracy on clean data, but not
necessarily on the perturbed data.

We observe that manipulating common DNN design choices can influence the NRP of the
resulting model. For instance, increasing the number of neurons or convolutional filters in each
layer or adding shortcut connection increases the NRP of the model, while increasing the number
of layers or adding batch normalization reduces the NRP of the model. Furthermore, we find that
these observations generalize across datasets and models of different complexities – the trends
observed in Multi-Layered Perceptron (MLP) models trained on a 2D toy task of computing a real
valued XOR, can also be observed in MLPs and CNNs trained on the much more complex MNIST
dataset. Changes in NRP induced by modeling choices are not chance occurrences or artifacts of
the simple training data and small models, but rather indicate that certain DNN design choices in
fact improve the likelihood of finding robust models independent of the training task and model
complexity.

4.2 Technical Overview
To illustrate the phenomenon of accidental robustness we consider deep neural networks trained
to approximate a real-valued variant of the XOR function. The Boolean XOR function (BXOR)
is a binary operator (usually denoted x1 ⊕ x2) that takes Boolean inputs and outputs True if and
only if one of the inputs is True and the other is False. The function can also be extended to an
arbitrary number of inputs by using the base case BXOR(x1) = x1 and the following recursive
rule for n ≥ 2:

BXOR(x1, .., xn) = BXOR(x1, .., xi)⊕ BXOR(xi+1, .., xn)

Unlike the case of, for example, functions defined over natural images, the BXOR domain spans
the entire input space. Therefore while on image classification there is for each input a region
of input space in which the pixel values may change semantics of the input remain unchanged;
in the case of the Boolean XOR any perturbation changes the input in a semantically meaningful
way. Due to this property, the Boolean XOR function does not permit adversarial perturbations as
defined in this work. To get around this limitation, in this paper we use a real-valued variant of the
XOR function (RXOR), which defined as RXOR(x1) = sign(x1) and for n ≥ 2:

RXOR(x1, .., xn) = RXOR(x1, .., xi) ̸= RXOR(xi+1, .., xn)

where xi ∈ [−1, 1]. It is easy to see that this formulation of the XOR function permits perturbations
that do not change the input in semantically meaningful ways. For instance, if xj ̸=i are fixed,
changing xi from 1 to ϵ > 0 does not change the value of RXOR(x1, .., xi, ..., xn).
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Figure 4.1: 2D RXOR dataset illustration. The yellow section is the adversarial region, i.e. in our
framework set difference between the test data support and the training data support.

The domain of RXOR contains infinitely many elements, therefore it is impossible to train a
model on the entire input domain. Moreover, since the training set of the model is a finite sample
from an infinite set, a non robust solution is necessarily permitted. This is because any finite sample
from [−1, 1]n will necessarily produce a region around the decision boundary (the standard bases
of Rn) from which no points are sampled; due to which multiple solutions are made possible of
which only one is the true one. This is shown in Figure 4.1 where the yellow region around the
axes represents the unsampled region. For example, if in the training data |xi| ≥ ϵ > 0 then a valid
solution, given this training data, might consider 0 < xi < ϵ to have sign -1, that is the decision
boundary is drawn at the edge of the yellow region. If this happens then an adversary might be able
to perturb xi just enough that 0 < xi < ϵ and cause a mis-classification. One could indeed argue
that the input with the perturbed xi is not part of the training data distribution and is an example of
an off-distribution adversarial input.

Based on the preceding discussion, we can define an adversarially robust model as a model
that can make highly accurate predictions even when test data is not in the support of the training
data distribution. Figure 4.1 illustrates an example of training and testing data distributions which
differ as mentioned above. The yellow region is in the support of the test data but not of the training
data. As a result the set of valid solutions i.e. those that achieve high accuracy on the training data
but not necessarily on the test data, is a superset of the set of robust solutions, i.e. those that
achieve high accuracy on the test data. If the prediction accuracy on the training data is the sole
metric, the optimization procedure will not be able to identify the robust solution from amongst
the valid solutions and hence will converge to the solution that is most accessible from the point
of initialization. It follows that the probability with which a trained model will be adversarially
robust is equal to the probability that a randomly initialized model is close to a robust solution. In
the subsequent sections we first describe a monte carlo sampling based method for estimating the
probability that a randomly initialized model will converge to a robust solution, then we present
and analyse the estimates obtained by applying this method to various models trained to compute
RXOR. In our analysis we aim to isolate trends that can be used to inform modeling choices that
would facilitate the training of robust models.
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4.2.1 Methodology
To estimate the probability of arriving at a robust solution we use a monte carlo sampling based
approach, which is as follows. We begin by selecting an architecture for our neural network and
initializing the parameters of the network by uniformly sampling a point from a p dimensional L2
norm ball, where p is the number of parameters of the network. The radius of the norm ball is
chosen such that valid and robust solutions are possible within it. Next we use Stochastic Gradient
Descent (SGD) to optimize the parameters to minimize the prediction error on a training dataset.
In this step we perform only a small number of SGD updates because we only want to search for
a solution in the vicinity of the random initialization. This is to ensure that we are visiting a wide
range of solutions, in the case that SGD tends to end on a specific minimum given enough time.
The distribution of the training data resembles Figure 4.1 in that points are sampled uniformly from
([−1,−ϵ] ∪ [ϵ, 1])n, where n is the number of inputs to RXOR and ϵ is the width of the unsampled
region around the axes. Concretely, we sample data sets Xϵ1 ...Xϵk for ϵ0 < ... < ϵk, such that
Xϵj = {s ⊙ x|x ∈ Rn, xi ∼ U [ϵj, 1], s ∈ {−1, 1}n, P (si = −1) = P (si = +1) = 0.5}, where
⊙ represents element-wise multiplication. We then train the model on one of the data sets, say
Xϵj , and evaluate its accuracy on all of them. Note that the support of the test sets Xϵi<j

includes a
region that is not in the support of the training set. Based on the definition of robustness presented
in the previous section, if a model trained on the training set is able to make perfect predictions
on the testing set, we will consider it to be robust. More specifically, we will refer to a model that
achieves 100% accuracy on Xϵi as being ϵi-robust. Of course, all models that are trained on Xϵi

will be ϵ-robust for ϵ ≥ ϵi but only some of them might be robust for ϵ ≤ ϵi.
For each value of ϵj , we repeat the above procedure N times to obtain N models that had

different random initialization and have been trained and evaluated on different samplings of the
training set Xϵj and Xϵ1 ...Xϵk , respectively. Next we create a set of valid solutions for each ϵj ,
denoted by Vϵj , containing models that were trained on Xϵj achieved 100% accuracy. We also
create, for each ϵj , sets of robust solutions, Rϵj ,ϵ1 , ...,Rϵj ,ϵk , corresponding to different levels of
robustness and containing models that achieve 100% accuracy on Xϵ1 , ...,Xϵk , respectively. Using
these sets we estimate the following probabilities:

• P (robust|ϵi, ϵj) ≈
|Rϵj ,ϵi |
|Vϵj |

– the probability of (quasi) randomly arriving at an ϵi-robust.

• P (valid|j) ≈ |Vϵj |
N

– the probability of arriving at a valid solution by training on Xϵj

• P ∗(robust|ϵi, ϵj) ≈
|Vϵi |
|Vϵj |

– the oracle probability of robustness. This is the upper bound of

P (robust|ϵi, ϵj) that is achieved if Vϵi<j
⊂ Vϵj , i.e. all the solutions achievable by training

on Xϵi are recovered by training on Xϵj

4.2.2 Influence of hyperparameters on accurate and robust classifiers
Given an numberm we define Fa1,a2,...,am as the set of n-hidden-layer binary neural classifiers, that
have a1 neurons on the first hidden layer, a2 on the second, etc. The final layer always has one
neuron for binary classification. When there is no ambiguity on f , we name hi,j the j th neuron of
the ith layer. We name h′i,j the pre-activation neuron (which is an affine function).
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h2 x, y −1,−1 −1, 1 1,−1 1, 1
h1,1 0 1 1 1

AND h1,1 1 1 1 0
f(= XOR) 0 1 1 0

h1,1 0 1 0 0
OR h1,1 0 0 1 0

f = (XOR) 0 1 1 0

Table 4.1: The necessary truth tables of h1,1 and h1,2 when h2 is either an AND gate or an OR gate

We can establish the existence or non-existence of valid solutions on Xϵ for certain values of ϵ,
n, m, ai and certain activation functions.

Proposition 4.1. For n = 2, with threshold activations, F2,2 contains a classifier that is valid on
Xϵ for all 0 < ϵ < 1.

Proof. We exhibit an fr ∈ F2,2. We set:

• h1,1 = (x1 ≥ 0) , h1,2 = (x2 ≥ 0)

• h2,1 = h1,1 ∧ h1,2 = (h1,1 + h1,2 − 2 ≥ 0)

• h2,2 = ¬h1,1 ∧ ¬h1,2 = (−h1,1 − h1,2 ≥ 0)

• h3,1 = h2,1 ∨ h2,2 = (h2,1 + h2,2 − 1 ≥ 0)

In other words h1 turns the RXOR problem into the traditional BXOR problem, which the two-
layer network h2, h3 can classically solve. Since h1 sends (x1, x2) onto the associated vertex
(±1,±1), any point in Xϵ with 0 < ϵ < 1 is correctly classified by fr.

It is obvious that any Fa1,a2,...,am with m ≥ 2 and ai also contain classifier fr, since layers can
easily ignore some neurons or compute the identity function. On the other hand, results change if
we drop one layer.

Proposition 4.2. For n = 2, with threshold activations, given 0 < ϵ1 <
2
3

and 2
3
< ϵ2 < 1, F2

contains a valid classifier on Xϵ1 but not on Xϵ2

Proof. In F2 the same h1 as above cannot lead to a valid classifier: the first layer must project
the dataset onto a linearly separable dataset, which binary XOR isn’t. In fact, the only non-trivial
gates h2 can modelize are AND (a+ b ≥ 2) or OR (a+ b ≥ 1), applied to the literals (¬)h1,1 and
(¬)h1,2. Without loss of generality we can assume that h2 = h1,1 ∨ h1,2 or h2 = h1,1 ∧ h1,2.

f must correctly classify vertices (±1,±1). We can therefore reverse engineer the truth tables
of h1,1 and h1,2 on each vertex, depending on what h2 does.

• If h2 is AND then we must have h1,j(−1, 1) = h1,j(1,−1) = 1 for j ∈ {1, 2}. For at
least one j we have h1,j(−1,−1) = 0: we assume it is j = 1. By affinity h′1,1(1, 1) =
h′1,1(−1, 1)+h′1,1(1,−1)−h′1,1(−1,−1) ≥ 0 as it is the sum of three positive terms: therefore
h1,1(1, 1) = 1. For at least one j we have h1,j(1, 1) = 0: it must be is j = 2. Similarly we
can infer that h1,2(−1,−1) = 1. We write these truth tables in Table 4.1.
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• If h2 is OR, we can apply a similar reasoning and figure out the truth tables of h1,1 and h1,2,
which we also report in Table 4.1.

We note that the h′1,j must keep a constant sign over each connected component of Xϵ (regions
[−1, ϵ − 1] × [−1, ϵ − 1], [−1, ϵ − 1] × [1 − ϵ, 1], etc.), as any permissible change of activation
for a single hidden neuron changes the final output. Respectively, if these conditions and the truth
tables above are met for h1,1 and h1,2 then f is valid. In the h2-OR case, writing

h1,1(x, y) = ax+ by ≥ 1

the conditions on h1,1 are equivalent to the following system of inequations:
−a− (1− ϵ)b < 1

(1− ϵ)a+ b < 1

−(1− ϵ)a+ (1− ϵ)b ≥ 1

The existence of a solution depending on ϵ can be solved easily using linear programming. We
find that the (a, b) satisfying the equality case for the first two inequations are a == 1

ϵ
, b = 1

ϵ
. On

this corner point inequation 3 becomes

2− 2ϵ

ϵ
≥ 1

Therefore F2 contains a valid solution on Xϵ iff ϵ < 2
3
.

To an extent, a similar reasoning could be repeated with Fk for k > 2. However if that width
k becomes extremely large, it is possible for the network to become arbitrarily close to fr. This
is because arbitrarily wide two-layer networks are universal approximators. Although we did not
derive it, we expect that the maximal value of ϵ would slowly increase from 2

3
to 1 when increasing

the width.
These very wide networks aside, two layer networks are insufficient to achieve robust clas-

sification on XOR with threshold activations. This changes when picking the ReLU activation
ReLU(x) = x+:

Proposition 4.3. For n = 2, with ReLU activations, F3 contains a classifier that is valid on Xϵ for
all 0 < ϵ < 1.

Proof. It can be verified that with

h1,1 = x+1 , h1,2 = x+2 , h1,3 = (x1 + x2)
+

h2,1 = (h1,1 + h1,2 − h1,3 ≥ 0)

then f = fr

The key difference with threshold cases is the continuity of ReLU. It makes it possible for a
first-layer pre-activation neuron to change sign within a connected component like [−1, ϵ − 1] ×
[1− ϵ, 1], as h′1,3 does, while having a valid classifier.
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4.3 Experimental Setup
In our experiments we use Multi-Layered Perceptrons (MLP) without biases. We removed the
bias parameter because it is not required to compute RXOR and removing it reduces the parameter
count, which in turn reduces the memory and computation requirements of our experiments. We
ran experiments with various model architectures in order to observe the impact of width, depth
and activation functions on the probability of arriving at a robust solution. We set the radius of the
L2 norm ball from which the initial values of the parameters are sampled to 25. We optimize the
initial parameters by performing 20 updates using SGD with Nesterov momentum of 0.9.

To train and test the models we create datasets Xϵ , as described in the previous section, for
ϵ ∈ E = {0.4, 0.3, 0.2, 0.1, 0.05} with each data set having 1000 points. We denote these 2D
datasets as X 2

ϵ for ϵ ∈ E . We train each model architecture on each of the datasets separately but
we evaluate each trained model on all of the datasets. This allows us to determine what fraction
of models trained on X d

0.4, also achieve 100% accuracy on X d
0.1. We will refer to such models as

being ϵ-robust for ϵ = 0.1. Of course, all models that are trained on X d
ϵi

will be ϵ-robust for ϵ ≥ ϵi
but only some of them might be robust for ϵ ≤ ϵi.

To estimate the P (robust|i, j) we perform N = 25000 trainings. In each training training and
testing sets, and the initial parameters of the model are sampled randomly from their respective
distributions.

4.4 Experimental Results

4.4.1 Model Architecture Notation
In this section we adopt the following notation to refer to the model architecture. We use “MLP-
w1_..._wL-fa” to refer to a MLP with L layers having widths w1, ..., wL and activation function fa.
In the case dropout Srivastava et al. [2014] (with probability p) or batch norm Ioffe and Szegedy
[2015] is used, the notation is changed to “MLP-w1_..._wL-faDropoutp” or “MLP-w1_..._wL-
faBN”, respectively. If skip connections Srivastava et al. [2015] are introduced that connect layer
i1 to i2, i2 to i3 and so on, then the notation becomes “MLP-w1_..._wL-fa-wSkip_i1 > ... > ik”.
The notation used for CNNs is “CNN-n1 × h1 × w1 × f1 − s1_..._wLn1 × h1 × w1 × f1 − s1-fa”
where hi and wi are the height and width of the convolutional kernel, fi is the number of filters,
si is the stride of the kernel and ni is the number of consecutive layers that have the configuration
h1×w1× f1− s1. For example, Conv-1x7x7x32-3_2x7x7x16-3-ReLU represents a model with 3
layers, the first of which has a kernel of size 7x7, stride 3 and 32 filters while the remaining layers
have the same kernel size and stride, but 16 filters instead of 32.

4.4.2 Probability of Robustness of Minimal Models
Here we present results from experiments conducted on minimal models i.e. having the number of
parameters that are necessary and sufficient for solving RXOR. The minimal model for 2D inputs
consists of 1 hidden layer with 3 ReLU units as discussed in section 4.2.2.

Figure 4.2 shows how P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj) vary as the training and testing
data margins, ϵj and ϵi respectively, are varied for 2D data. We see that for a fixed ϵj , both
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Figure 4.2: P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj) curves for different values of ϵi (Test Data Mar-
gin) and ϵj(Train Data Margin) for the minimal model for 2D RXOR.

P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj) decreases rapidly as ϵi is decreased to values less than ϵj .

However, P (robust|ϵi, ϵj) falls faster than P ∗(robust|ϵi, ϵj) and as a result as ϵi decreases,
Vϵi\Vϵj

Vϵi

i.e. the proportion of valid solutions for Xϵi that are recovered by training on Xϵj , also decreases.
Stated another way, for a given ϵj , as ϵi is decreased not only does the number of possible ϵi-robust
solution decreases but the ability of the training mechanism to actually find these solutions dimin-
ishes. This indicates that perhaps better training and sampling methods might improve the odds of
arriving at ϵi-robust solution, while keeping ϵj fixed. On the other hand, we note that for a given ϵi
both P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj) increase as ϵj is decreased, which implies that regardless
of the value of ϵi, reducing ϵj can improve the odds of finding an ϵi-robust model.

4.4.3 Influence of Modeling Choices on Probability of Robustness
In this section we present experimental results that show the influence different modeling choices
have on P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj). The modeling choices we consider here are the
width of the network i.e. number of units in each layer, depth of the network i.e. the number of
layers, the activation function, the dropout probability, is batch normalization used or not, and are
skip connections used or not. To improve the clarity of presentation, in the remainder of this section
we do not show the curves for P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj) but, instead, we summarize the
curve for each training margin (ϵj) by computing the area under it and presenting it as a bar chart
in Figure ??. For a given ϵj , we denote the area under the P (robust|ϵi, ϵj) and P ∗(robust|ϵi, ϵj)
curves as AUCϵj and AUC∗

ϵj
respectively.

Width

Figure 4.3a shows AUCϵj and AUC∗
ϵj

for models consisting of one hidden layer containing 3, 6
and 9 ReLU units and trained on 2D data. We note that as the width of the network is increased
P (robust|ϵi, ϵj) also increases, albeit at a decreasing rate. Nevertheless, the impact of increasing
the number of units from 3 to 6 is substantial – AUCϵj almost double and P (robust|0.05, 0.4)
increases from almost 0% to 3% and P (robust|0.1, 0.4) increases from 0.5% to 12%. These im-
provements take randomly achieving ϵ-robustness for small ϵ from being near impossible to being
reasonably probable – one can expect to find a 0.9-robust model for every 9 models trained onX0.4.

Turning our attention to AUC∗
ϵj

, we note that AUC∗
ϵj

, and consequently P ∗(robust|ϵi, ϵj), in-
creases very rapidly as width is increased. We also note that improvement in P ∗(robust|ϵi, ϵj)
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outstrips the improvement in P (robust|ϵi, ϵj), and this gap only grows as the width of the network
increases. This indicates that while wide models can find a large number of solutions when trained
on Xϵi for small ϵi, they are unable to recover most of them when they are trained on Xϵj>ϵi .

Depth

Figure 4.3b shows AUCϵj and AUC∗
ϵj

for four models, namely, MLP-6-ReLU, MLP-3_3-ReLU,
MLP-9-ReLU and MLP-3_3_3-ReLU (see Section 4.4.1). Note that the first two and the last two
models have the same number of parameters, 18 and 27 respectively, so differences in P (robust|ϵi, ϵj)
are attributable to a change in depth of the model. We observe that among models with the same
number of parameters but different depths, the shallower models have higher AUCϵj and AUC∗

ϵj

than the deeper models, indicating that both valid and robust solutions are a more difficult to find
for the latter models. Furthermore, we note that the impact of increasing the number of parameters
from 18 to 27 depends on whether the additional parameters increased the width of the network
or its depth. As noted in Figure 4.3a and again in Figure 4.3b, if the width is increased we see
an appreciable increase in AUCϵj , however, if depth is increased the change in AUCϵj is hardly
noticeable. Finally, we observe that increasing the depth of the model does cause AUC∗

ϵj
to in-

crease. This indicates that the additional parameters indeed enhance the ability of the model to
find solutions for small testing margins, ϵi, but only if the training margin, ϵj , is close to ϵi.

The above experiments indicate that to improve the odds of finding robust solutions the width
of the model must be increased and the depth decrease, however, if for some reason the depth
can not be decreased one may ask the question which layer should be widened? If resources are
plentiful then one may simply widen all the layers, but in case of resource paucity then one may
want to know which layers, if widened, lead to the most improvement in the odds of achieving
robustness. To investigate this question we use three layer models trained on 2D. The base model
contains three ReLU units in each layer. We generate three wider models from the base model by
increasing the width of each layer, one by one, by a factor of two. The AUCϵj and AUC∗

ϵj
for these

models data are shown in Figure 4.3c. We note that in most cases, increasing the width of the first
layer seems to improve AUCϵj and AUC∗

ϵj
.

Activation Function

To determine the impact of the activation function on the probability of arriving at robust solution
we take the widest model architectures from 4.4.3, set the activation function to one of ReLU, Tanh
or Sigmoid, and compute AUCϵj and AUC∗

ϵj
. We also add biases to these models because for some

of the activation functions the models can not learn RXOR without affine computations. Figure
4.3d shows that for all ϵj , AUCϵj and AUC∗

ϵj
are maximal when ReLU activations are used.

Batch Normalization

To observe the effect of batch normalization, we take MLP-9-ReLU and add a batch normalization
layer after the linear layer and before the ReLU to obtain MLP-9-ReLUBN. Figure 4.3e shows
AUCϵj and AUC∗

ϵj
for the two models. We observe that the addition of batch normalization has

reduced both AUCϵj and AUC∗
ϵj

meaning that the introduction of batch normalization has made
both robust and valid solutions less accessible. This observation conflicts with our expectation
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since batch normalization is known to improve accuracy if training and testing data are identically
distributed, but, perhaps this effect is due to simplistic nature of the RXOR problem. However,
it is in line with our expectation and existing literature ? that batch normalization reduces the
likelihood of finding a robust solution.

Dropout

To observe the effect of dropout, we take MLP-9-ReLU and apply dropout with probability p after
the linear layer and before the ReLU to obtain MLP-9-ReLUDropoutp, where p ∈ {0.3, 0.6}.
From Figure 4.3f we see that the addition of dropout with p = 0.3 increases AUCϵj but reduces
AUC∗

ϵj
. This indicates that regularization provided dropout prevents the training algorithm from

fitting the decision boundary too close to the training data. Increasing p to 0.6, however, leads to
a reduction in both AUCϵj and AUC∗

ϵj
, which indicates that this level of regularization diminishes

the model’s capacity to model the data.

Skip Connections

To test the impact of skip connections we take a two layer model with 9 ReLU units in each
layer (MLP-9_9-ReLU), and add a skip connection from the output of the first layer to the output
of the second layer (MLP-9_9-ReLU-wSkip_1>2). Our expectation is that the addition of skip
connections would increase the likelihood of finding robust models compared to MLP-9_9-ReLU
because the training algorithm can set the weights and biases in the second layer to zero and
recover a single layer model with 9 hidden units, which, based on the above results, should be
more robust than a two layer model. Looking at Figure 4.3g we note that it is indeed the case that
skip connections improve AUCϵj and, to a lesser extent, AUC∗

ϵj
.

To summarize, the experimental results presented above have yielded the following insights:
(1) wider models are likely to be more robust than narrower models, (2) deeper models are likely
to be less robust than shallower models, (3) increasing the width of the earlier layers improves the
odds of robustness, and (4) the activation function that maximizes the odds of robustness depends
on the function being modeled. These insights together suggest that the odds of robustness may be
improved by first finding the minimal architecture for the task, ideally in terms of the number of
parameters since that may involve selecting the best activation function but if that is not possible
than in terms of the number of layers, and then widening this architecture as much as possible.

4.5 Generalization to More Complex Data and Models
In Section 4.4 we considered simple models (MLPs) trained on a very simple dataset (2D RXOR),
however, the datasets and models used in practice are much more complex. If the general trends
relating different modeling choices to the robustness potential that are observed on the simple mod-
els and datasets generalize to more complex ones, then we can use them as rules-of-thumb when
training models for practical tasks. In order to verify if the trends from 4.4 hold when more com-
plex datasets and models are used, we repeat the experiments using larger MLPs and Convolutional
Neural Networks (CNNs) trained on the MNIST dataset LeCun et al. [2010]. The methodology
for the experiments is similar to the one presented in 4.2.1 with the following changes:
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(e) (f) (g)

Figure 4.3: The influence of various modeling choices on P (robust|ϵi, ϵj) as measured by AUCϵj

and AUC∗
ϵj

for MLPs trained on 2D RXOR data. Subfigure (a) shows the areas for single layer
MLPs with increasing width, (b) shows the areas for MLPs with increasing depth, (c) shows the
effect of widening different layers in a 3 layer MLP, (d) shows the effect of changing the activation
function, (e) shows the impact of adding batch normalization, (f) shows the impact of adding
dropout and (g) shows the impact of adding skip connections in a 2 layer MLP.

1. The notion of the margin used in 4.2.1 is not applicable to the natural image classification
task and needs to be modified because, unlike the RXOR problem, the decision boundaries
are unknown. Therefore, instead of considering a margin of width ϵ around the decision
boundary beyond which all data lies we consider a margin around the datapoint. This cor-
responds to a hypercube having sides of length 2ϵ to be specific, around each input in the
dataset from which we sample training and testing datapoints. To sample hypercube effi-
ciently we run Projected Gradient Descent (PGD) Madry et al. [2018a] for a fixed num-
ber of steps to find data points within the 2ϵ hypercube that are not correctly classified
by the model. This change necessitates redefining the data sets as Xϵ := {x + δ|δ =
argmaxδ:∥δ∥∞≤ϵ L(f(x + δ), y)}. where x is an image from the dataset, y is the true label
of the image, f is the model and L is a loss function that indicates how close the prediction,
f(x + δ) is to y. If no point is found within the hypercube for which the model makes an
erroneous prediction we conclude that the model is ϵ-robust. Due to this change in the re-
mainder of this section we use the training margin, ϵj , and testing margin, ϵi, to refer to the
margin around the data point and not around the decision boundary.

2. In practice, however, the condition that every point in the hypercube must be classified cor-
rectly is unrealistic because currently 100% accuracy is not achievable on these datasets even
for ϵ = 0. Therefore, We relax the definitions of valid and robust solutions such that a valid
solution is one that achieves accuracy at least τv on the training data, and a robust solution
is one that achieves accuracy at least τr on the testing data. All the experimental results that
follow have been obtained with τv = τr = 0.85.

3. We increase the number of SGD updates performed on randomly sampled parameters. This
is done because the natural image classification task is more complex, training accurate
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models requires more iterations.

4.5.1 Experimental Results
Trends in MLPs

While MLPs are generally not used in computer vision tasks, we include them in our evaluation
in order to maintain a degree of similarity with earlier experiments that would allow us to gauge
the impact of increased the data complexity and dimensionality on the robustness potential of the
models.

Figure 4.4 shows the AUCϵj and AUC∗
ϵj

for different modelling choices. We see that the rela-
tionship between different modeling choices and, AUCϵj and AUC∗

ϵj
, that we observed in models

trained on 2D RXOR has carried over to models trained on the much more complex MNIST data.
Specifically, we see that the likelihood of finding a solution that generalizes to smaller ϵi, i.e. an
ϵi-robust solution for ϵi > ϵj , is increased by increasing the width of the model, particularly of the
earlier layers, applying dropout with appropriate probability and introducing skip connections. On
the other hand, increasing the depth of the network and applying batch normalization reduces the
likelihood of finding an ϵi-robust solution.

While the general trends remain consistent between models trained on 2D RXOR and MNIST,
there are some differences that are worth noting. Firstly, in the case of 2D RXOR models that
used the ReLU activation performed better (see Section 4.4.3) whereas we see from Figure 4.4d
that MLPs with Sigmoid units improve the robustness potential of the models trained on MNIST.
This observation prevents us from making any claims about the relationship between robustness
potential and activation function, rather we posit that certain activation functions are better suited
to certain models and dataset. Secondly, we note from Figure 4.4e that adding batch normaliza-
tion to a model increases AUC∗

ϵj
but decreases AUCϵj . This observation is consistent with our

expectation and existing literature since it is common to use batch normalization to increase the
classification accuracy Ioffe and Szegedy [2015] and a recent study ? has shown that batch normal-
ization is detrimental to adversarial robustness because the normalization parameters are ill suited
for perturbed data.

Trends in Convolutional Neural Networks

Having verified that the relationship between modeling choices and robustness potential transcends
data complexity, we run experiments to determine if this relationship is maintained when the com-
plexity of the model is increased. To this end, instead of using MLPs, the experimental results
presented in this section use CNNs. At each layer of a CNN the output is computed by diving the
input (or the output of the previous layer) into segments and applying a single layer MLP to each
input segment. Therefore the modeling choices that apply to MLPs also apply to CNNs. Note that
the number of convolutional filters represents the width of the model. In addition to the modeling
choices common between CNNs and MLPs, there are some CNN specific modeling choices related
to how the input is to be segmented. In practice segmentation is performed via sliding a window
over the spatio-temporal dimensions of input and the modeler may choose the size of the window
and the stride by which the window is moved in each step. Based on the sizes of the window

38



(a) (b) (c) (d)

(e) (f) (g)

Figure 4.4: The influence of various modeling choices on P (robust|ϵi, ϵj) as measured by AUCϵj

and AUC∗
ϵj

for MLPs trained on MNIST. Subfigure (a) shows the areas for single layer MLPs
with increasing width, (b) shows the areas for MLPs with increasing depth, (c) shows the effect of
widening different layers in a 3 layer MLP, (d) shows the effect of changing the activation function,
(e) shows the impact of adding batch normalization, (f) shows the impact of adding dropout and
(g) shows the impact of adding skip connections in a 2 layer MLP.

and stride in the previous layers, we can determine for a layer its receptive field, i.e. the effective
window size for the layer with respect to the input to the model.

Figure 4.5 shows the AUCϵj and AUC∗
ϵj

for different modelling choices. Considering the
choices that are common between MLPs and CNNs first, we note that the general trend observed
in Sections 4.4 and 4.5.1 are present here as well with one exception that is increasing the width
of the middle layer and the last layer yields higher AUCϵj and AUC∗

ϵj
than increasing the width of

the first layer (see Figure 4.5c), with the middle layer yielding the highest AUCϵj . We hypothesize
that this difference arises because unlike the MLP, the CNN processes segments of the input. The
receptive field of the CNN increases at deeper layers so the additional width is more useful when
the model is processing a larger part of the input.

Turning our attention to modeling choices specific to CNNs, namely the size of the receptive
field (Figure 4.5h) and the stride (Figure 4.5i), we note that models that have a larger receptive
fields and smaller strides tend to have greater robustness potential than those with smaller receptive
field and larger strides, respectively. Changing the receptive field and the stride can change the total
number of model parameter so we slightly modified the width of the network such that the total
number of parameters in the models being compared remained similar. This change of width does
not confound the results the widest model is not the one with the highest AUCϵj and AUC∗

ϵj
in

Figures 4.5h and 4.5i.
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Figure 4.5: The influence of various modeling choices on P (robust|ϵi, ϵj) as measured by AUCϵj

and AUC∗
ϵj

for CNNs trained on MNIST. Subfigure (a) shows the areas for single layer CNN
with increasing number of filter, (b) shows the areas for CNNs with increasing depth, (c) shows
the effect of widening different layers in a 3 layer CNN, (d) shows the effect of changing the
activation function, (e) shows the impact of adding batch normalization, (f) shows the impact of
adding dropout, (g) shows the impact of adding skip connections in a 2 layer CNN, (H) shows the
impact of increasing the size of the convolutional kernel, and (I) shows the impact of increasing
the stride of the convolutional kernel.
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Part II

Biological Robustness Priors
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Chapter 5

Training on Foveated Images Improves
Robustness to Adversarial Attacks

5.1 Problem and Motivation
Deep Neural Networks (DNNs) are exceptionally adept at many computer vision tasks and have
emerged as one of the best models of the biological neurons involved in visual object recognition
Yamins et al. [2014], Cadieu et al. [2014]. However, their lack of robustness to subtle image per-
turbations that humans are largely invariant Szegedy et al. [2014], Geirhos et al. [2018b], Dodge
and Karam [2017] to has raised questions about their reliability in real-world scenarios. Of these
perturbations, perhaps the most alarming are adversarial attacks, which are specially crafted dis-
tortions that can change the response of DNNs when added to their inputs Szegedy et al. [2014],
Ilyas et al. [2019] but are either imperceptible to humans or perceptually irrelevant enough to be
ignored by them.

While several defenses have been proposed over the years to defend DNNs against adversarial
attacks, only a few of them have sought inspiration from biological perception, which, perhaps
axiomatically, is one of the most robust perceptual systems in existence. Instead, most methods
seek to teach DNNs to be robust to adversarial attacks by exposing them to adversarially perturbed
images Madry et al. [2018b], Wong et al. [2019a], Zhang et al. [2019] or random noise Cohen et al.
[2019a], Fischer et al. [2020], Carlini et al. [2022] during training. While this approach is highly
effective in making DNNs robust to the types of perturbations used during training, the robustness
often does not generalize to other types of perturbations Joos et al. [2022], Sharma and Chen
[2017], Schott et al. [2018]. In contrast, biologically-inspired defenses seek to make DNNs robust
by integrating into them biological mechanisms that would bring their behavior more in line with
human/animal vision Paiton et al. [2020], Bai et al. [2021], Dapello et al. [2020], Jonnalagadda
et al. [2022], Luo et al. [2015], Gant et al. [2021], Vuyyuru et al. [2020]. As these defenses do
not require DNNs to be trained on any particular type of perturbation, they yield models that, like
humans, are robust to a variety of perturbations Dapello et al. [2020] in addition to adversarial
attacks. For this reason, and in light of the evidence indicating a positive correlation between
biological alignment and adversarial robustness Dapello et al. [2020], Harrington and Deza [2021],
we believe biologically inspired defenses are more promising in the long run.

Following this line of inquiry, we investigate the contribution of low-fidelity visual sensing that
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Figure 5.1: R-Blur adds Gaussian noise to image (a) with the fixation point (red dot) to obtain
(b). It then creates a colored and a grayscaled copy of the image and applies adaptive Gaussian
blurring to them to obtain the low-fidelity images (c) and (d), where the numbers indicate the
standard deviation of the Gaussian kernel applied in the region bounded by the boxes. The blurred
color and gray images are combined in a pixel-wise weighted combination to obtain the final image
(e), where the weights of the colored and gray pixels are a function of their respective estimated
acuity values (see 5.2.2).

occurs in peripheral vision to the robustness of human/animal vision. Unlike DNNs, which sense
visual stimuli at maximum fidelity at every point in their visual field, humans sense most of their
visual field in low fidelity, i.e without fine-grained contrast Stewart et al. [2020] and color informa-
tion Hansen et al. [2009]. In adults with fully developed vision, only a small region (less than 1%
by area) of the visual field around the point of fixation Kolb [2005] can be sensed with high fidelity.
In the remainder of the visual field (the periphery), the fidelity of the sensed stimuli decreases ex-
ponentially with distance from the fixation point Dragoi and Tsuchitani [2020]. This phenomenon
is called “foveation”. Despite this limitation, humans can accurately categorize objects that appear
in the visual periphery into high-level classes Ramezani et al. [2019]. Meanwhile, the presence
of a small amount of noise or blurring can decimate the accuracy of an otherwise accurate DNN.
Therefore, we hypothesize that the experience of viewing the world at multiple levels of fidelity,
perhaps even at the same instant, causes human vision to be invariant to low-level features, such as
textures, and high-frequency patterns, that can be exploited by adversarial attacks.

In this thesis, we propose R-Blur (short for Retina Blur), which simulates foveation by blurring
the image and reducing its color saturation adaptively based on the distance from a given fixation
point. This causes regions further away from the fixation point to appear more blurry and less
vividly colored than those closer to it. Similar to how the retina preprocesses the visual stimuli
before it reaches the visual cortex, we use R-Blur to preprocess the input before it reaches the
DNN.

5.2 R-Blur Overview
To simulate the loss in contrast and color sensitivity of human perception with increasing eccen-
tricity, we propose R-Blur, an adaptive Gaussian blurring, and color desaturation technique. The
operations performed by R-Blur, given an image and fixation point, are shown in Figure 5.1. First,
R-Blur adds Gaussian noise to the image to simulate stochastic firing rates of biological photore-
ceptors Croner et al. [1993]. It then creates color and grayscale copies of the image and estimates
the acuity of color and grayscale vision at each pixel location, using distributions that approximate
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the relationship between distance from the fixation point (eccentricity) and visual acuity levels
in humans. R-Blur then applies adaptive Gaussian blurring to both image copies such that the
standard deviation of the Gaussian kernel at each pixel in the color and the grayscale image is a
function of the estimated color and grayscale acuity at that pixel. Finally, R-Blur combines the two
blurred images in a pixel-wise weighted combination in which the weights of the colored and gray
pixels are a function of their respective estimated acuity values. Below we describe some of the
more involved operations in detail.

5.2.1 Eccentricity Computation
The distance of a pixel location from the fixation point, i.e. its eccentricity, determines the stan-
dard deviation of the Gaussian kernel applied to it and the combination weight of the color and
gray images at this location. While eccentricity is typically measured radially, in this paper we
use a different distance metric that produces un-rotated square level sets. This property allows
us to efficiently extract regions having the same eccentricity by simply slicing the image tensor.
Concretely, we compute the eccentricity of the pixel at location (xp, yp) as

exp,yp =
max(|xp − xf |, |yp − yf |)

WV

, (5.1)

where (xf , yf ) and WV represent the fixation point and the width of the visual field, i.e. the rect-
angular region over which R-Blur operates and defines the maximum image size that is expected
by R-Blur. We normalize by WV to make the exp,yp invariant to the size of the visual field.

5.2.2 Visual Acuity Estimation
We compute the visual acuity at each pixel location based on its eccentricity. The biological retina
contains two types of photoreceptors. The first type, called cones, are color sensitive and give rise
to high-fidelity visual perception at the fovea, while the second type, called rods, are sensitive to
only illumination but not color and give rise to low-fidelity vision in the periphery. We devise
the following two sampling distributions, DR(ex,y) and DC(ex,y), to model the acuity of color and
grayscale vision, arising from the cones and rods at each pixel location, (x, y).

D(e;σ, α) = max [λ(e; 0, σ), γ(e; 0, ασ)] (5.2)
DC(e;σC , α) = D(e;σC , α) (5.3)

DR(e;σR, α, pmax) = pmax(1−D(e;σR, α)), (5.4)

where λ(.;µ, σ) and γ(.;µ, σ) are the PDFs of the Laplace and Cauchy distribution with location
and scale parameters µ and σ, and α is a parameter used to control the width of the distribution.
We set σC = 0.12, σR = 0.09, α = 2.5 and pmax = 0.12. We choose the above equations and
their parameters to approximate the curves of photopic and scotopic visual acuity from Dragoi
and Tsuchitani [2020]. The resulting acuity estimates are shown in Figure 5.2b. Unfortunately,
the measured photopic and scotopic acuity curves from Dragoi and Tsuchitani [2020] cannot be
reproduced here due to copyright reasons, however, they can be viewed at https://nba.uth.tmc.edu/
neuroscience/m/s2/chapter14.html (see Figure 14.3).
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(a) unquantized (b) quantized

Figure 5.2: Estimated visual acu-
ity of sharp and colorful, photopic,
and gray and blurry, scotopic, vi-
sion using equations 5.3 and 5.4

Figure 5.3: Illustration of increasing the viewing distance (left
to right). As the viewing distance is increased, more of the
image is brought into focus. We used vd = 3 during inference.

5.2.3 Quantizing the Visual Acuity Estimate
In the form stated above, we would need to create and apply as many Gaussian kernels as the
distance between the fixation point and the farthest vertex of the visual field. This number can be
quite large as the size of the image increases and will drastically increase the per-image computa-
tion time. To mitigate this issue we quantize the estimated acuity values. As a result, the locations
to which the same kernel is applied no longer constitute a single pixel perimeter but become a
much wider region (see Figure 5.1 (c) and (d)), which allows us to apply the Gaussian kernel in
these regions very efficiently using optimized implementations of the convolution operator.

To create a quantized eccentricity-acuity mapping, we do the following. We first list all the
color and gray acuity values possible in the visual field by assuming a fixation point at (0, 0), com-
puting eccentricity values e0,y for y ∈ [0,WV ] and the corresponding values ofDR = {DR(e0,y)|y ∈
[0,WV ]} and DC = {DC(e0,y)|y ∈ [0,WV ]}. We then compute and store the histograms, HR and
HC , from DR and DC , respectively. To further reduce the number of kernels we need to apply and
increase the size of the region each of them is applied to, we merge the bins containing less than τ
elements in each histogram with the adjacent bin to their left. After that, given an image to process,
we will compute the color and gray visual acuity for each pixel, determine in which bin it falls in
HR and HC , and assign it the average value of that bin.

5.2.4 Changing the Viewing Distance
Increasing the viewing distance can be beneficial as it allows the viewer to gather a more global
view of the visual scene and facilitates object recognition. To increase the viewing distance we
drop the k lowest acuity bins and shift the pixels assigned to them k bins ahead such that the
pixels that were in bins 1 through k − 1 are now assigned to bin 1. Figure 5.3 shows the change
in the viewing distance as the value of k increases from 0 to 5. Formally, given the quantized
DC(ex,y) and DR(ex,y), let D = [d1, ..., dn] represent the value assigned to each bin and Pi be the
pixel locations assigned to the ith bin, with P1 and Pn corresponding to points with the lowest and
highest eccentricity, respectively. To increase the viewing distance, we merge bins 1 through k
such that D′ = [d1, ..., dn−k] and the corresponding pixels are P ′

1 = [P1, ..., Pk] and Pi>1 = Pk+1.
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5.2.5 Blurring and Color Desaturation
We map the estimated visual acuity at each pixel location, (xp, yp), to the standard deviation of
the Gaussian kernel that will be applied at that location as σ(xp,yp) = βWV (1 − D(ex,y)), where
β is constant to control the standard deviation and is set to β = 0.05 in this paper, and D = DC

for pixels in the colored image and D = DR for pixels in the grayscaled image. We then apply
Gaussian kernels of the corresponding standard deviation to each pixel in the colored and grayscale
image to obtain an adaptively blurred copy of each, which we combine in a pixel-wise weighted
combination to obtain the final image. The weight of each colored and gray pixel is given by the
normalized color and gray acuity, respectively, at that pixel. Formally, the pixel at (xp, yp) in the
final image has value

vf(xp,yp)
=
vc(xp,yp)

DC(ex,y;σC , α) + vg(xp,yp)
DR(ex,y;σC , α)

DC(ex,y;σC , α) +DR(ex,y;σC , α)
, (5.5)

vc(xp,yp)
and vg(xp,yp)

are the pixel value at (xp, yp) in the blurred color and gray images respec-
tively.

5.3 Key Results
Datasets: We use natural image datasets, namely CIFAR-10 Krizhevsky et al., Imagenet ILSVRC
2012 Russakovsky et al. [2015], Ecoset Mehrer et al. [2021] and a 10-class subset of Ecoset
(Ecoset-10). Ecoset contains around 1.4M images, mostly obtained from ImageNet database Deng
et al. [2009] (not the ILSVRC dataset), that are organized into 565 basic object classes. The
classes in Ecoset correspond to commonly used nouns that refer to concrete objects. To cre-
ate Ecoset-10, we select 10 classes from Ecoset that have the highest number of images. The
training/validation/test splits of Ecoset-10 and Ecoset are 48K/859/1K, and 1.4M/28K/28K re-
spectively. For most experiments with Ecoset and Imagenet, we use 1130, and 2000 test images,
with an equal number of images per class. During training, we use random horizontal flipping and
padding + random cropping, as well as AutoAugment Cubuk et al. [2018] for CIFAR-10 and Ran-
dAugment for Ecoset and Imagenet. All Ecoset and Imagenet images were resized and cropped to
224 × 224. We applied these augmentations to all the models we trained – those with biological
and non-biological defenses, as well as the baseline models.

Model Architectures: For CIFAR-10 we use a Wide-Resnet Zagoruyko and Komodakis [2016]
model with 22 convolutional layers and a widening factor of 4, and for Ecoset and Imagenet we use
XResNet-18 from fastai Howard and Gugger [2020] with a widening factor of 2. Moving forward,
we will refer to both these models as ResNet and indicate only the training/evaluation datasets
from which the exact architecture may be inferred.

R-Blur improves robustness to white-box attacks. We evaluate robustness by measuring the
accuracy of models under Auto-PGD (APGD)Croce and Hein [2020c] attack, which is a state-
of-the-art white-box adversarial attack. To determine if R-Blur improves robustness, we compare
R-Blur to two baselines under the APGD attack: (1) an unmodified ResNet trained on clean data
(ResNet), and (2) a ResNet which applies five affine transformations 1 to the input image and

1We apply rotation, translation, and shearing, with their parameters sampled from [−8.6◦, 8.6◦], [−49, 49] and
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Figure 5.4: Comparison of accuracy on various datasets (a-d) under adversarial attacks of several
ℓ2 (top) and ℓ∞ (bottom) norms between R-Blur (green) and two baseline methods: RandAffine
(orange) and ResNet (blue). The dashed lines indicate accuracy on clean images. R-Blur models
consistently achieve higher accuracy than baseline methods on all datasets, and adversarial pertur-
bation sizes.

averages the logits (RandAffine). We observe that R-Blur is significantly more robust than the un-
modified ResNet and RandAffine models, consistently achieving higher accuracy than the two on
all datasets and against all perturbation types and sizes, while largely retaining accuracy on clean
data (Figure 5.4). Particularly, on larger datasets – Ecoset and Imagenet, even the smallest amount
of adversarial perturbation (∥δ∥∞ = 0.002, ∥δ∥2 = 0.5) is enough to drive the accuracy of the
baselines to ∼10%, while R-Blur still is able to achieve 35-44% accuracy. As the perturbation is
increased to ∥δ∥∞ = 0.004 and ∥δ∥2 = 1.0, the accuracy of the baselines goes to 0%, while R-Blur
achieves 18-22%.

R-Blur improves accuracy on common (non-adversarial) corruptions. Adversarial perturba-
tions constitute only a small subset of perturbations that human vision is invariant to, therefore
we evaluate R-Blur on a set of common image corruptions Hendrycks and Dietterich [2019] that
humans are largely invariant to but DNNs are not. We sample 2 images/class from Imagenet and
5 images/class from Ecoset. Then we apply 17 2 common corruptions proposed in Hendrycks
and Dietterich [2019] at 5 different severity levels to generate 85 corrupted versions of each im-
age. This yields corrupted versions of Imagenet and Ecoset containing 170K and 240K images,
respectively.

Figure 5.5 shows the accuracy of the models on corrupted Ecoset and Imagenet. Here we also
compare against an adversarially trained model (AT) trained with ∥δ∥∞ = 0.008 using the method
of Wong et al. [2019a]. We see that at severity greater than 1 R-Blur consistently achieves the high-
est accuracy. Furthermore, we also note that R-Blur, and VOneBlock consistently achieve higher
accuracy than AT , which supports our hypothesis that the robustness of biologically motivated
methods, and particularly R-Blur, is more general than non-biological defenses, like AT . In fact,
the accuracy of AT on common corruptions is generally lesser than or at par with the accuracy of
the unmodified ResNet, indicating that the robustness of AT does not generalize well.

[−8.6◦, 8.6◦] respectively. The ranges are chosen to match the ranges used in RandAugment. The random seed is
fixed during evaluation to prevent interference with adversarial attack generation.

2We exclude Gaussian blur and Gaussian noise since they are similar to the transformations done by R-Blur.
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Figure 5.5: The accuracy of the models on Imagenet and Ecoset under the common corruptions
from Hendrycks and Dietterich [2019] at various severity levels. We see that R-Blur generally
achieves the highest accuracy.

R-Blur alignment with human perception. We use the metamer test proposed by Feather et al.
[2019] to determine the extent to which R-Blur and standard ResNet models are aligned with
human perception. Specifically, the metamer test seeks to determine whether the latent representa-
tions of a DNN are invariant to the same visual features that human visual perception is invariant
to. Metamers are stimuli that appear indistinguishable to humans under certain conditions. In
the context of this test, metamers are defined as inputs that induce the same (or similar) latent
representations in the DNN.

To conduct the metamer test, Feather et al. [2019] generate metamers for a set of images and ask
human subjects to classify the metamers. If the humans are able to correctly classify the metamers,
the types of transformations that the model’s latent representations are invariant to are similar to
those that human perception is invariant to as well, and thus the model is a good approximation of
human perception. The metamers are generated by using gradient descent to optimize a randomly
initialized input tensor such that it induces the same latent representation(s) in the DNN as a given
natural image. Formally, the following optimization problem is solved to obtain the metamer,
mϕ(x), for a given image, x and a DNN, ϕ:

mϕ(x) = argmin
m
∥fϕ(x)− fϕ(m)∥2 , (5.6)

where fϕ represents the function that maps an input image to the latent representation of a DNN,
ϕ.
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Chapter 6

Fixed Inter-Neuron Covariability Induces
Adversarial Robustness

6.1 Problem and Motivation
As discussed before, integrating mechanisms of biological perception into DNNs, improve their
robustness. An aspect of human perception that is not well represented in DNNs is the inflexible
inter-neuron covariability structure of biological neurons. It has been observed that the spiking
activity of biological neurons tends to be correlated Hennig et al. [2021], Sadtler et al. [2014]
and, the structure of this correlation tends to persist over long periods of time even if it limits per-
formance and learning Golub et al. [2018]. In contrast, the activations of DNN neurons are not
constrained in this way, making it possible to induce arbitrary activation patterns by adding pertur-
bations that activate only specific neurons Paiton et al. [2020]. This allows an adversary to induce
activation patterns that lead to misclassifications. Indeed, our experiments in this paper show that
adversarial perturbations cause the inter-neuron correlations to change significantly. Therefore, we
hypothesize that constraining the inter-neuron correlation in DNNs may improve their robustness.
Integrating this constraint into DNNs is not straightforward, because, unlike biological neurons,
neurons in a DNN do not produce stochastic spike trains, rather they output a deterministic real
number. So, how can we simulate correlated spiking in a system that is neither stochastic nor
produces spiking activity? To solve this issue, we consider the outputs of the artificial neuron as
the frequency of an underlying spike train Hennig et al. [2021]. If the spiking activity of a group
of neurons is correlated, the frequency of their spikes may also be correlated. Therefore, we use
spiking frequency as a proxy for the spikes trains. Since the spiking frequency is represented in a
DNN by the outputs of the neurons, we impose a fixed covariability structure on the latter.

To simulate a fixed inter-neuron covariability pattern, we develop the Self-Consistent Activa-
tion (SCA) layer, which comprises of neurons whose activations are consistent with each other
as they conform to a fixed covariability pattern. The SCA layer first computes the feed-forward
activations for the neurons based on the input, and then iteratively optimizes these activations to
make them conform to a fixed, but learned covariability pattern.
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6.2 Covariability of DNN Activations
We hypothesize that the inflexible covariability structure of neuronal activations that is observed
in the animal brain contributes to the robustness of biological vision. As a preliminary step, we
determine if there is a relationship between the inflexibility of the correlation matrix of a DNN’s
activations, which we consider a proxy of its covariability structure, and its robustness to adversar-
ial perturbations. To this end, we analyse the correlation structure between the neural activations
of a DNN in response to data which is perturbed with perturbations of different sizes. First, we
train two 5-layer MLP models on FMNIST, one on clean data and the other via adversarial train-
ing. Then, we compute the correlation between the activations of the penultimate layer in response
to clean and adversarially perturbed images. We use Rϵ to refer to the correlation matrix pro-
duced by data perturbed by perturbations of ℓ∞ norm ϵ. We quantify the overall change in the
correlation structure as ∥R0 −Rϵ∥F , where ∥·∥F is the Frobenius norm and plot this quantity for
several values of ϵ in Figure 6.1a. The correlation structure of the adversarially trained MLP is
much more invariant to adversarial perturbations compared to the correlation structure of the MLP
trained on clean data. It is only after the size of the perturbation becomes very large does the cor-
relation structure of the adversarially trained model begins to change significantly. To verify that
the change in the norm is not caused due to a small number of neurons, we compute the absolute
change in the correlation of each neuron pair due to the addition of adversarial perturbations of size
0.1, and plot the cumulative frequency curve shown in Figure 6.1b. We see that the curve for the
adversarially trained model is significantly shifted to the left of the curve for the model trained on
clean data indicating that the correlation between most, if not all, pairs of neurons has not changed
significantly.

From these observations we can infer that the invariance of the inter-neuron covariability struc-
ture, across different perturbations of the input, is related to the adversarial robustness of the model.
If this relationship is causal, then constraining the inter-neuron covariability structure should in-
duce adversarial robustness. To validate this, we design a neural network layer that explicitly
optimizes its activations to make them conform to a fixed covariability structure. We then include
this layer in a DNN model and evaluate its robustness against state-of-the-art adversarial attacks.

6.3 Self-Consistent Activation Layer
We have developed the Self-Consistent Activation (SCA) layer to simulate an inflexible inter-
neuron covariability structure. At a high-level, the SCA layer computes its output as SCA(x) = gC(ax)
where x ∈ Rdx is the input, ax = f(x) ∈ Rda is the feed-forward activation vector, and gC(ax)
is the projection of ax onto C, the subspace comprised of the vectors that respect the learned co-
variance structure. If we consider covariability to be a linear relationship, like covariance, then gC
would simply be a linear projection. However, to allow for more complex inter-neuron interaction,
in this paper we have decided to adopt the following non-linear form for gC:

argmin
ax

∥ax − ϕ(Wgax + bg)∥22 + λ ∥x−Whax − bh∥22 , (6.1)

where ϕ = ReLU , Wg ∈ Rda×da , Wh ∈ Rdx×da , bg ∈ Rda and bh ∈ Rdx . The first term
represents the distance between the activation and its projection onto C, while the second term
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(a) (b)

Figure 6.1: (a) The Frobenius norm of the change in the correlation matrix of the activations of
neurons in the penultimate layer of a MLP trained on clean (ST) and adversarially perturbed (AT)
FMNIST images when adversarial perturbations of different sizes are added to the input; (b) CDF
of the change in correlation between neuron pairs when adversarial perturbation of ℓ∞ norm 0.1 is
added.

represents the information about x that is not carried by ax. The latter is added as a regularizer
to prevent degenerate solutions, like ax = 0, in which ax carries no information about x, and λ
is a scalar that controls the strength of the regularization. We set the diagonal of Wg to zero to
prevent it from becoming the identity matrix and we perform the minimization using batch gradient
descent. The exact sequence of operations performed by the SCA layer is shown in Algorithm 1.

Algorithm 1: SCA Layer

1: u← f(x)
2: for t : 1→ T do
3: ax ← ϕ(u)
4: J ← ∥ax − ϕ(Wgax + bg)∥22 + λ ∥x−Whax − bh∥22
5: u← ax − η∇axJ
6: end for
7: ax ← ϕ(u)

6.4 Evaluation

6.4.1 Experimental Setup
Datasets: We evaluate the performance of SCA layers on image and audio classification tasks.
For image classification we use the MNIST LeCun et al. [2010] and Fashion MNIST (FMNIST)
Xiao et al. [2017] datasets, which contain 60K 28 × 28 black-and-white images of handwritten
digits and 10 types of apparel, respectively. From both MNIST and FMNIST, we use 45K im-
ages for training, 5K for evaluation, and 10K for testing. For the audio classification task we the
SpeechCommands dataset Warden [2018], which contains around 100K 1 second, 16KHz record-
ings of humans vocalizing 35 commands. We use 84K recordings for training, 10K recordings for
validation, and 9.6K recordings for testing.
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Figure 6.2: Schematics of the MLP and SCA models. L.s are affine projections with the super-
scripts representing the output dimension. The output dimension of L2 is set to 384 in MLPs
trained on MNIST and FMNIST, and to 2048 in MLPs trained on SpeechCommands. ϕ = ReLU ,
σ = dropout ◦ ϕ, J is the loss from eq. (6.1).

(a) MNIST (b) FMNIST (c) SpeechCommands

Figure 6.3: The Frobenius norm of the change in the correlation matrix of the penultimate layer
activations from the SCA model and MLP due to the addition of adversarial perturbations of dif-
ferent ℓ∞ norms.

Data Preprocessing: For the image datasets, we flatten the image into a vector, which is then
normalized by subtracting 0.5 and then dividing by 0.5. The audio data is preprocessed by first
downsampling to 8KHz. Then 128 Mel-Frequency Cepstral Coefficients (MFCCs) are computed
from a log mel spectrogram having 512 FFT points computed over a 64 ms sliding window with a
stride of 32ms. By retaining only the first 16 MFCCs we obtain a 16×251 matrix for each 1s audio
recording. The matrix is then flattened, and normalized by subtracting -0.96 and then dividing by
9.2 (the mean and standard deviation computed over the validation set).
Models: We compare the performance of models containing SCA layers (SCA model) to MLP
models having comparable architectures and number of parameters. The schematics of these mod-
els are shown in Figure 6.2. The SCA model performs T = 16 optimization steps. The probability
of dropout is set to 0.2 for all models. The models are optimized using the Adam optimizer using
a learning rate of 0.001 and a batch size of 256 for up to 100 epochs. The learning rate is halved
if the loss on the validation set does not decrease for 5 epochs, and if it does not decrease for 20
epochs the training is stopped early. All the results presented below are averaged over 5 trials with
different random seeds.

6.4.2 Results
Analysis of Activation Covariability Structure To verify that SCA layers increase the invariance
of the inter-neuron correlation structure, we analyse the correlation between the activations of the
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Non-Adv Adv Perturb Sizes (ℓ∞)
Dataset Model Clean Perturb 0.05 0.1 0.125 0.15

MNIST
MLP 98.4 83.6 90.0 52.6 28.2 12.8
SCA 97.9 85.1 88.1 54.8 32.3 15.7

FMNIST
MLP 88.7 75.9 39.2 7.7 3.1 1.0
SCA 89.4 76.4 46.9 12.7 6.1 2.8

Adv Perturb Sizes (ℓ∞)
5e-5 1e-4 2.5e-4 5e-4

Speech MLP 81.4 52.0 23.2 9.1 1.1 0.2
Commands SCA 80.1 47.8 27.9 15.3 3.0 0.5

Table 6.1: The accuracy achieved by the SCA models and the baseline MLPs under adversarial
and non-adversarial perturbations.

penultimate layer using the method introduced in 6.2. Specifically, we compute the correlation
matrix Rϵ from the activations of the penultimate layer of the SCA model and MLP in response to
1000 data samples. These samples are perturbed by adversarial perturbations of ℓ∞ norm ϵ. We
compute Rϵ for each dataset using several values of ϵ. For each dataset and ϵ we then compute
∥R0 −Rϵ∥F to represent the overall change in the correlation structure due to the addition of
adversarial perturbation of size ϵ. Figure 6.3 shows this quantity for the SCA model and MLP
on each dataset. In every case the correlation structure of the SCA model changes more slowly
than the MLP, and thus is more invariant to adversarial perturbation. This result shows that the
SCA layer indeed produces the intended effect of constraining the covariability structure of neural
activations.
Robustness of Models Trained on Clean Data

We evaluate the robustness of the SCA models by training them on clean data and computing
their classification accuracy on adversarially and non-adversarially perturbed data. We compute
adversarial perturbations of various ℓ∞ norms using AutoAttack Croce and Hein [2020c], an en-
semble of white- and black-box adversarial attacks. For non-adversarial perturbations, we use
a set of common image and audio transforms at 4 levels of severity. The set of image pertur-
bations includes Gaussian (σ ∈ {2−3, 20}) and Uniform ({[0, b

10
]|b ∈ [1, 4]}) noise, Gaussian

blur (σ ∈ [1, 4]), rotation ([21, 24] deg) and random occlusion ({12.5%, 25%, 50%, 75%}). The
set of audio perturbations includes Gaussian, Uniform, and environmental noise (SNRs∈ [21, 24]
dB), Room Impulse Response (RIR), speed manipulation (×{1.75, 1.5, 1.25, 0.75}) and pitch shift
(steps∈ [1, 4]). We use the isotropic RIR from Ko et al. [2017] and environmental noise from
Reddy et al. [2019].

Table 6.1 shows that SCA model is significantly more robust than the MLP. Most notably we see
that the SCA model is more robust than the MLP to state-of-the-art adversarial attacks of various
strengths. On average, the SCA model improves accuracy by 4.4%, 3.2%, and 1.8% absolute
(93%, 105%, and 10% relative), compared to the MLP model on FMNIST, SpeechCommands
and MNIST, respectively. Moreover, the SCA layer also makes the image classification models
more robust to non-adversarial perturbations. While we do not show the breakdown here, the SCA
models achieve higher accuracy on all types of non-adversarial image perturbations. However, the
accuracy of the SCA model is lower than the MLP against non-adversarial audio perturbations.
Further investigating this is part of future work. The above results clearly show that SCA layers
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are much more robust to adversarial attacks than layers of perceptrons, and that their robustness is
not limited to a particular type of data but generalizes across data complexity and modality.
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Chapter 7

Adding Lateral and Top-Down Recurrence

7.1 Problem and Motivation
Another cognitive mechanism that we study is recurrent connectivity in the biological brain. Most
modern DNNs, particularly those that are commonly employed for computer vision applications,
process the input in a feed-forward manner – each neuron in a layer receives inputs only from
neurons in the previous layer(s). On the other hand, in the primate visual system, the neurons are
connected in a highly recurrent manner – neurons may receive inputs from neurons either the same,
any preceding or any succeeding visual area [Bullier et al., 2001, Briggs, 2020]. This recurrent
processing has been linked to the ability of primates to perform accurate object recognition under
distortions such as crowding and occlusions [Spoerer et al., 2017]. While Kubilius et al. [2018]
have proposed to simulate biologically plausible recurrence in DNNs, their work is limited to
feeding the output of a DNN layer or module back into itself. We extend this body of work by
integrating recurrent circuits between neurons in the same layer (lateral recurrence), as well as
between neurons from different layers (feed-back recurrence).

7.2 Introducing Recurrence in CNNs

7.2.1 Overview
We introduce lateral and feedback recurrence into strictly feed-forward Convolutional Neural Net-
works (CNNs). The lateral connections feed the output of an intermediate convolution layer back
to itself, while the feed-back connections feed the outputs of later layers to the earlier ones. The
architecture of the resulting DNN is illustrated in Figure 7.1. The processing performed by the
feed-forward pathways of the original CNN remains unchanged, however, due to the addition of
lateral and feed-back pathways, the inputs to the intermediate convolution layers are modified by
the outputs of succeeding layers as well as its own from the past. To perform the recurrent com-
putations, we unroll the loops introduced by the recurrent connections for a fixed number of time
steps, as shown in 7.1B. At each time step the model receives the original input image. We provide
details of the processing performed by our model below.
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Figure 7.1: The DNN architecture after adding lateral and feed-back recurrence to a CNN (panel
A). To perform the recurrent computations we unroll the loops present in the architecture for a
fixed number of time-steps. This results in the computation graph illustrated in panel B.

7.2.2 Architectural Details
A conventional feed-forward CNN is a cascade of convolution (cross-correlation) and pooling
operations, interleaved by non-linear activations, followed by a linear classifier. Formally, this can
be written as

Ff (x) = C(z(L)) s.t z(l) = σ
(
ϕ(l)(z(l−1))

)
, z(0) = x, (7.1)

where x is the input image, σ is the non-linear activation function, and ϕ(l) represent convolutional
(and pooling) layer l.

In contrast, our proposed recurrent CNN architecture, after being unrolled through time, per-
forms the following computation

Fr(x) = C(z(L,T )) s.t z(l,t) = σ
(
ϕ(l)(σ

(
z(l−1,t) + z̃(l,t−1) + z̃(l+1,t−1))

))
, z(0,t) = x, z(l,0) = 0,

(7.2)
where z(l,t) represents the feature map produced by layer l at time t. Here z(l−1,t) represents the
feed-forward signal arising from the output of the preceding layer, z̃(l,t−1) represents the lateral
signal arising from the output of layer l at the previous time step, and z̃(l+1,t−1) represent the feed-
back signal, arising from the succeeding layer at the previous time step. The lateral and feedback
signals are computed as follows:

z̃(l,t−1) = ψ(l)(z(l,t−1)) z̃(l+1,t−1) = ψ(l+1)(z(l+1,t−1)), (7.3)

where ψ represent the transposed convolution layers that linearly project and upsample the feature
maps such that the spatial dimensions of z(l−1,t), z̃(l,t−1) and z̃(l+1,t−1) match. Like the conventional
CNN, our proposed model can be trained using backpropagation with standard loss functions.
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Chapter 8

Biologically Inspired Speech Recognition

8.1 Problem and Motivation
Given that we achieved encouraging results from integrating visual sensory and cognitive biolog-
ical priors in DNNs, we propose to extend this approach to the auditory domain as well. Specif-
ically, we seek to integrate biologically plausible feature extraction and processing within Auto-
matic Speech Recognition (ASR) DNNs. It has been found, albeit in relatively simple settings, that
using more biologically plausible features results in more robust ASR Stern and Morgan [2012].
However, to the best of our knowledge, the robustness, especially to adversarial attacks, of such
features has not been studied in conjunction with modern ASR models trained on large and diverse
speech data. To fill this gap, we study the impact on transcription accuracy and robustness of using
acoustic features that are more biologically plausible than those commonly used for ASR (i.e. Log
Mel Spectrogram).

8.2 Biologically Plausible Speech Features
In this Section, we describe the acoustic features that we consider in this study. An overview of
the computations involved in these features is presented in Figure 8.1. We only consider spectral
features and thus the initial processing for all the features involves computing the audio signal’s
Short-Time Fourier Transform (STFT). Thereafter, the processing for each feature varies as ex-
plained below.

8.2.1 Features From Prior Works
Log Spectrogram (LogSpec) is obtained by applying the log nonlinearity to the STFT.

Log Mel-Spectrogram (LogMelSpec) is obtained by applying the Mel filterbank to the STFT
followed by the log nonlinearity.

Mel Frequency Cepstral Coefficients (MFCC) are computed by applying the Discrete Cosine
Transform (DCT) to the LogMelSpec.

Gammatone Spectrogram (GammSpec) is obtained by applying the normalized gammatone
filterbank to the STFT followed by the cube root nonlinearity. Each filter is normalized such that
its coefficients sum to 1. Fig. 8.2 shows a sample GammSpec.
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Figure 8.1: Overview of acoustic feature computation. Novel features in bold.

Power Normalized Coefficients (PNC) Kim and Stern [2016] combine temporal masking,
weight smoothing, and time-frequency normalization to achieve more robust ASR, and are com-
puted as follows. First, the audio signal is pre-emphasized (coeff.=0.97), and the magnitude-
squared spectrum is computed via STFT. Then a squared normalized gammatone filterbank, i.e. the
filterbank coefficients are squared, and divided by the sum (after squaring), is applied to the spec-
trum to obtain the short-time spectral power, P [m, l], where m and l represent frame and channel
indices. The medium-time power is also computed as Q[m, l] = 1

2M+1

∑M
i=−M P [m + i, l]. Next,

asymmetric noise suppression is applied to Q to obtain Qle. The difference between Q and Qle is
computed and half-wave linear rectified. This is followed by temporal masking, which is the phe-
nomenon that causes an audio signal to become imperceptible if it is temporally adjacent to a louder
signal. To simulate temporal masking, first the online peak power, Qp[m, l], is computed as a run-
ning maximum over Q0. Then the masked signal, R[m, l] = Q0[m, l] if Q0[m, l] ≥ λtQp[m− 1, l]
else µtQp[m − 1, l], where λt = 0.85 and µt = 2 in Kim and Stern [2016]. Next, spectral weight
smoothing and mean power normalization are applied. Finally, a rate-level non-linearity (raise to
power 1/15) is applied.

Power Normalized Cepstral Coefficients (PNC) Kim and Stern [2016] are computed by ap-
ply the DCT to PNC features.

8.2.2 Novel Features
Frequency Masked Spectrogram (FreqMask) simulates simultaneous frequency masking, which
is the phenomenon that a loud frequency (the masker) can mask adjacent quieter frequencies ren-
dering them inaudible Lin et al. [2015].

We start with a STFT spectrogram, compute the masking threshold for all frequencies at each
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Figure 8.2: Gammatone (GammSpec), Difference-of-Gammatone (DoGSpec) and Frequency
Masked Gammatone (GammFreqMask) spectrograms.

time step, and zero the energy in frequencies with level below the masking threshold. We use
the method from Lin et al. [2015], Qin et al. [2019] to estimate the masking threshold as follows.
First, the log-magnitude power spectral density (PSD) is computed for each STFT frame, x, and

frequency bin, k, as px(k) = 10 log10

∣∣∣ sx(k)N

∣∣∣2, where sx(k) is the spectral magnitude in STFT bin
k of frame x, and N is the window size (in samples) used to compute the STFT.

The PSD is then normalized to have a maximum sound pressure level (SPL) of 96 dB, this is
referred to as the normalized PSD, p̄x(k) = 96−maxk{px(k)}+px(k). Next, the normalized PSD
is smoothed by its neighbors: p̄mx (k) = 10 log10

[
10

p̄x(k−1)
10 + 10

p̄x(k)
10 + 10

p̄x(k+1)
10

]
We then compute the masking threshold induced by the masker frequency fi on frequency fj

as: T [b(i), b(j)] = p̄mx (b(i)) + ∆m[b(i)] + SF[b(i), b(j)], where

• b(i) is the bark scale of frequency fi1,

• ∆m[b(i)] = −6.025− 0.275b(i),

• G(b(i)) = −27 + 0.37max{p̄mx (b(i))− 40, 0},

• ∆bij = b(i)− b(j) and

• SF[b(i), b(j)] = 27∆bij if ∆bij > 0 else G(b(i)) ·∆bij

Finally, for each frequency, fj , we can compute the global masking threshold by combining
T [b(i), b(j)] for all i as

θx(j) = 10 log1 0

[
10ATH(j)/10 +

∑
i

10T [b(i),b(j)]/10

]
, (8.1)

where ATH2 is the minimum PSD a frequency must have to be perceptible in quiet. Frequency
masking is applied to the spectrogram by setting the spectral magnitude to zero at frame x and
frequency bin j if p̄mx (j) < θx(j). Finally, Cube root nonlinearity is applied.

1frequency to bark: b(f) = 13 arctan (0.00076f) + 3.5 arctan (f/7500).
2ATH(f) = 3.64

(
10−3f

)−0.8 − 6.5e−0.6(10−3f−3.3)2 + 10−15f4
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Frequency Masked Gammatone Spectrogram (GammFreqMask) applies FreqMask to Gamm-
Spec (before the nonlinearity). Fig. 8.2 shows a sample GammFreqMask.

Difference of Gammatone Spectrogram (DoGSpec) simulates lateral suppression, the phe-
nomenon that the response to a frequency may be suppressed if adjacent frequencies are present in
the signal Stern and Morgan [2012], even if the intensity of the latter is below the threshold of hear-
ing. While lateral suppression has been simulated in several cochlear models in prior work Lyon
[1984], Slaney [1988], these models are not amenable to be used in modern DNN-based systems
because they tend to be computationally intensive and rather slow. As a result, lateral suppression
is largely missing from modern ASR systems. To fill this gap we have developed the DoGSpec
feature for incorporating lateral suppression into DNNs.
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Figure 8.3: DoG Filter

The key component in DoGSpec is the DoG filter-
bank, which is constructed as follows. First, two nor-
malized gammatone filterbanks, G1 and Gα, are created
such that the bandwidths of the filters in G1 are scaled
α to obtain the filters in Gα. Next, the correspond-
ing filters in the two filterbanks are subtracted to obtain
Gd[i, j] = G1[i, j] − Gα[i, j]. The filters are normalized
by dividing the coefficients by the sum of the positive co-
efficients to ensure the excitatory components sum to 1,
i.e. Ḡd[i, j] = Gd[i,j]∑F−1

j′=0
max(Gd[i,j′],0)

. G1, Gα and Ḡd are

shown in Figure 8.3. Note that the DoG filter has nega-
tive coefficients on the frequencies adjacent to the center
frequency and, thus, any energy in those frequencies will
suppress the response of the filter. Given an input audio signal, the DoGSpec is computed by ap-
plying pre-emphasis, then the DoG filterbank and finally a cube-root non-linearity. Fig. 8.2 shows
a sample DoGSpec.

8.3 Evaluation Setup
To evaluate the robustness and accuracy of the features described above, we train various ASR
models with these features on diverse datasets and then evaluate them on clean and noisy data. The
details of the evaluation setup are as follows.

8.3.1 Train Datasets
We train models on three datasets, namely LibriSpeech Panayotov et al. [2015], TEDLIUM Her-
nandez et al. [2018], and the Spanish subset of Multilingual LibriSpeech (MLS-es) Pratap et al.
[2020]. LibriSpeech and MLS-es contains read speech from audio books in English and Spanish,
respectively, while TEDLIUM contains spontaneous English speech from recorded TED talks. We
use the full 960 hour and 452 hour training sets of LibriSpeech and TEDLIUM, respectively, for
training. For MLS-es, we use the 917 hour train set from Huggingface.
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8.3.2 Models
We use recipes from SpeechBrain Ravanelli et al. [2021] to train 13M parameter Conformer Gulati
et al. [2020] and 104M parameter Branchformer Peng et al. [2022] ASR models. The LibriSpeech
and MLS-es models use a 5k subword unigram tokenizers trained, while the TEDLIUM models
use a 500 BPE tokenizer. The models trained on LibriSpeech also contain a transformer LM for
re-scoring during decoding. During robustness evaluation, all models use beam size 10 without
LM rescoring.

The original recipes use LogMelSpec features so we minimally modify the recipes to incorpo-
rate the various features from §??. Since we set the number of filters to 80 for all filterbank-based
features, we only change the compute_feature field in the recipe YAML while the down-
stream model remains unchanged. For LogSpec and FreqMask however, we do need to change the
input size of the transformer because these features do not use filterbanks.

8.3.3 Evaluation Setup
Methodology and Data

We evaluate the models’ accuracy on the training dataset’s official test subsets. To evaluate robust-
ness we use Speech Robust Bench (SRB) Shah et al. [2025], a recently released robustness bench-
mark for ASR models. SRB contains multi-lingual speech with more than 100 types of noises and
distortions. At a high-level, the distortions in SRB fall into 5 categories: inter-personal communi-
cation (drawn from CHiME Barker et al. [2017] and AMI Kraaij et al. [2005] corpora), environ-
mental effects (environmental noise from ESC-50, MS-SNSD, MUSAN and WHAM) and room
impulse responses from Kinoshita et al. [2013]), digital augmentations (white noise, special ef-
fects, audio processing operations like resampling, gain and filtering), speech variations (accented
speech from CommonVoice Ardila et al. [2019], and text-to-speech using YourTTS Casanova et al.
[2021]), and adversarial attack (SNR-bounded untargeted PGD Madry et al. [2018a]). The PGD
attack perturbs the audio to maximize the transcription loss (CTC or NLL) while keeping the SNR
above a specified lower bound. We also evaluate the models on the targeted “imperceptible” attack
Qin et al. [2019], which unlike PGD, generates the minimal (but unbounded) perturbation that
causes the model to output a specified target string response to the input audio. This attack exploits
frequency masking to add noise in the spectral regions that are likely to be masked by human hear-
ing, and, thus, is a good test for FreqMask and DoGSpec. Since this attack is very computationally
expensive, we evaluate only LibriSpeech models against it using 10 utterances from LibriSpeech
test-clean.

Metrics

To measure accuracy we use Word Error Rate (WER). To measure robustness we use WER Degra-
dation (WERD) and Normalized WERD (NWERD) Shah et al. [2025]. WERD is computed as the
difference between the model’s WER on the clean test subset of its training dataset and its WER on
the noisy testing data. NWERD is computed by dividing WERD by a measure of speech quality,
specifically DNSMOS Reddy et al. [2020] and/or PESQ Rix et al. [2001], such that errors on less
distorted utterances are penalized more than errors on more distorted utterances. This is done be-
cause a robust model should not compromise accuracy on cleaner utterances, which represent the
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Dataset/
Model

Feature Test-
clean
(bs=1)

Test-
clean
(wLM,
bs=66)

Test-
other
(wLM,
bs=66)

LibriSpeech/
Conformer

LogMelSpec 5.25 2.53 6.04
DoGSpec 5.27 2.50 6.17
FreqMask 5.71 2.72 7.85
GammFreqMask 5.02 2.46 6.32
GammSpec 4.65 2.29 5.62
LogSpec 4.66 2.30 5.82
MFCC 8.31 3.23 9.44
PNCC 8.35 3.42 9.44
PNC 5.69 2.50 6.70

LibriSpeech/
Branchformer

LogMelSpec 3.66 2.01 4.78
DoGSpec 3.12 2.11 5.21
GammSpec 3.11 2.07 5.25

Test
(bs=1)

Test
(bs=66)

TEDLIUM/
Branchformer

LogMelSpec 15.07 7.52
DoGSpec 16.70 8.21
GammSpec 15.86 8.06

MLS-es/
Branchformer

LogMelSpec 6.20 6.11
DoGSpec 6.43 6.19

Table 8.1: The WER of ASR models with different features on the original test sets of LibriSpeech,
TEDLIUM and MLS-es. bs is the beam size and wLM indicates rescoring with an LM

average use case while improving accuracy on severely distorted utterances. To evaluate robust-
ness against the targeted imperceptible adversarial attack Qin et al. [2019], we compute the WER
between the target phrase and the predicted transcript. Since the attack is unbounded, we also con-
sider the Signal-to-Noise Ratio (SNR) of the perturbation because it can potentially transform the
input audio into an utterance of the target string. We consider a model to be robust to this attack if
either the WER is high or the SNR is low.

8.4 Results

8.4.1 Accuracy on Clean Utterances
Table 8.1 shows the WER of the various models and features on the unmodified test subsets of
LibriSpeech, TEDLIUM and MLS-es. We observe that despite being default features of choice in
modern ASR systems including models like Whisper Radford et al. [2023] and Canary Elena Ras-
torgueva LogMelSpec is outperformed by GammSpec on all datasets. Interestingly, LogSpec per-
forms similar to GammSpec even though it has 5 times the dimensionality, which indicates that
GammSpec retains most of the relevant information present in the raw spectrogram. The effec-
tiveness of the gammatone filterbank is further evidenced by the fact that GammFreqMask has
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Model Feature SNR WER

Branchformer
DoGSpec 13.60 11.03
LogMelSpec 25.10 5.15

Conformer

DoGSpec 8.60 0.00
FreqMask 10.80 19.12
GammFreqMask 10.10 7.35
GammSpec 15.20 13.24
LogMelSpec 21.30 6.62
LogSpec 15.00 3.68
PNC 13.40 8.09

Table 8.2: The WER between the prediction and target phrase for the various models and features
and the SNR of the adversarially perturbed audio.

much lower WER than FreqMask. Furthermore, while we expected FreqMask, GammFreqMask
and DoGSpec to degrade WER because they discard some spectral information, we note that the
degradation is minimal if any. In fact, on LibriSpeech test-clean both DoGSpec and GammFreq-
Mask outperform LogMelSpec under beam-search decoding. On TEDLIUM and MLS-es, how-
ever, DoGSpec has slightly higher WER than LogMelSpec. As we shall see in the following
sections, what DoGSpec lacks in accuracy, it makes up for in robustness.

8.4.2 Robustness to Adversarial Attacks
We consider two adversarial attacks in our evaluation: the untargetted PGD attack and targeted
“imperceptible” attack. The PGD attack perturbs the audio to maximize the transcription loss
(CTC or NLL) while keeping the SNR above a specified level. We use WERD. The targeted
attack generates the minimal perturbation that causes the model to output a specified target string
response to the input audio.

Figure 8.4 shows the WERD of the features and models against the PGD attack under different
SNR bounds. We exclude PNCC and MFCC from this analysis because they achieved very high
WERs on clean data. We observe that DoGSpec achieves the lowest WERD across all SNR bounds,
followed by LogSpec. Meanwhile, LogMelSpec performs the worst. Interestingly, FreqMask,
GammFreqMask, PNC and GammSpec perform similarly, and have much greater WERD than
DoGSpec and LogSpec. Turning to Table 8.2, we see that attacks on DoGSpec have the lowest
SNR. Under these SNR values, the “imperceptible” attack is going to be very perceptible and
will likely significantly impact speech intelligibility, thus violating the basic requirements of an
effective adversarial attack. GammFreqMask and FreqMask also have fairly low SNR values, and
FreqMask also has high WER. These results show that our proposed features significantly improve
robustness to targeted attacks. Meanwhile, LogMelSpec performs the worst a margin allowing
the attack to achieve a low WER with 21.3 dB SNR, which may well be imperceptible, or barely
perceptible. We are surprised to observe that PNC, despite being specifically designed to counteract
noise, did not perform very well against adversarial attacks.
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Dataset Model Feature NWERD WERD

LibriSpeech

Branchformer
DoGSpec 0.273 16.93
GammSpec 0.266 17.37
LogMelSpec 0.266 16.54

Conformer

DoGSpec 0.35 21.03
FreqMask 0.45 26.75
GammFreqMask 0.36 22.21
GammSpec 0.33 20.02
LogMelSpec 0.37 23.73
LogSpec 0.36 21.93
MFCC 0.58 33.84
PNC 0.38 22.84
PNCC 0.54 30.99

TEDLIUM Branchformer
DoGSpec 0.53 30.72
GammSpec 0.48 29.42
LogMelSpec 0.49 28.89

MLS-es Branchformer
DoGSpec 0.71 28.44
LogMelSpec 0.59 25.59

Table 8.3: WERD and NWERD on the SRB benchmark.
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8.4.3 Robustness to Non-Adversarial Noise
We evaluate the models on non-adversarial noisy speech recordings from the SRB benchmark and
present aggregated values for NWERD and WERD in Table 8.3. We see that for the conformer
models trained on LibriSpeech and branchformer trained on TEDLIUM,GammSpec achieves the
lowest NWERD, while the NWERD of DoGSpec is slightly higher than LogMelSpec. Interest-
ingly, PNC has one of the highest NWERD which indicates that the noise reduction mechanisms
included in it do not generalize to diverse types of corruptions.
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Part III

Robustness Evaluation
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Chapter 9

Robustness Benchmark For Speech
Recognition Models

9.1 Problem and Motivation
As novel ML models continue to be developed and deployed at an ever-increasing rate, it has
become crucial to ensure their robustness to challenging real-world scenarios, where corruptions
arising from a myriad of sources, including the environment, sensing apparatus, and even ma-
licious actors are present. To this end, prior works have developed comprehensive robustness
benchmarks, particularly for vision [Hendrycks and Dietterich, 2019, Hendrycks et al., 2021a,b,
Croce et al., 2020] and natural language processing models [Wang et al., 2021a, 2022b], that eval-
uate a model’s performance under a variety of challenging scenarios. These benchmarks have
proven to be invaluable to the advancement of research into more robust models because (1) they
unify robustness evaluations, thus enabling meaningful comparisons across models and allowing
progress to be accurately tracked, and (2) they make it easier for researchers to comprehensively
evaluate the robustness of their models by aggregating a diverse and representative set of scenarios,
and methods of simulating them, in a single benchmark.

While several robustness benchmark datasets exist for Automatic Speech Recognition (ASR)
models [Barker et al., 2017, Kraaij et al., 2005, Wichern et al., 2019, Reddy et al., 2020, Cosentino
et al., 2020, Hershey et al., 2016, Chen et al., 2020b, Snyder et al., 2015, Kinoshita et al., 2013, Ko
et al., 2017, Nakamura et al., 2000, Jeub et al., 2009], none of the currently existing ones are in any
sense comprehensive, because each benchmark measures the model’s robustness w.r.t. to one or
a few specific types of corruptions or scenarios, which puts the onus on model developers to find
and collect all the relevant benchmarks to evaluate their model comprehensively. This has often
resulted in model developers evaluating their models on disparate benchmarks [Radford et al.,
2023, Wen et al., 2016, Chen et al., 2022, Likhomanenko et al., 2020], which makes it hard to
reliably compare performance and robustness across models. Recently, Huggingface Open ASR
Leaderboard [Srivastav et al., 2023] has sought to unify ASR model evaluations by developing
a benchmark consisting of several real-world speech datasets. Although evaluating models on
exclusively natural data may accurately reflect average case real-world performance, it is generally
not informative about the specific types of corruptions the models are weak against, because the
noise sources present in these datasets are not controlled or even fully known. For example, the
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crowdsourced recordings in Common Voice [Ardila et al., 2019] contain a variety of distortions
including sensor noise from low-quality equipment, background noise, and mispronunciation by
non-native speakers. Furthermore, digital perturbations like special effects, computer-generated
speech, and adversarial examples, that may be prevalent in digital content are largely overlooked
by existing benchmarks.

We have developed Speech Robust Bench (SRB), a benchmark for comprehensively
evaluating the robustness of ASR models to input perturbations and corruptions. SRB is designed
to address the aforementioned major shortcomings of existing ASR robustness benchmarks, i.e.,
that (1) they are often specialized and thus are not individually comprehensive, (2) even taken to-
gether, they overlook important challenging scenarios, like special effects and adversarial attacks,
and (3) may not reveal the specific weaknesses of the models. SRB addresses these shortcomings
by evaluating ASR models under a comprehensive set of challenging scenarios, using recordings
that are either are recorded under specific scenarios, and thus are inherently “noisy”, or recordings
that are digitally perturbed to simulate the various scenarios. SRB uses real recordings of accented
speech and inter-personal conversations to evaluate robustness to articulatory and lexical variabil-
ity. We take care to ensure that the recordings are clean and do not have any other corruption that
may confound the results. To digitally simulate challenging scenarios, we curate a large compre-
hensive bank of 114 perturbations that represent common distortions arising from the environment,
recording equipment, special effects, computer-generated speech, and adversarial attacks that are
often overlooked by existing benchmarks.

To facilitate out-of-the-box robustness evaluations for the community, we have publicly re-
leased a large dataset 1 containing perturbed versions of LibriSpeech [Panayotov et al., 2015]
test-clean, Spanish, and French and German test sets of Multilingual LibriSpeech [Pratap et al.,
2020], as well as accented speech from common voice, and segemented near- and far-field audios
from CHiME-6 [Reddy et al., 2020] and AMI[Kraaij et al., 2005]. We also release our code2 with
clear documentation to enable reproducibility and extensibility.

9.2 Robustness Benchmark For Speech Recognition Models

Figure 9.1: An illustration of the processes in-
volved in using our benchmark to evaluate the
robustness of ASR models.

Speech Robust Bench (SRB) evaluates
the robustness of ASR models by a three-step
process consisting of (1) scenario simulation,
(2) transcription, and (3) metrics computation,
as shown in Fig. 9.1: first, various challeng-
ing speech recognition scenarios are simulated
by applying a large bank of synthetic perturba-
tions to clean speech datasets (§ 9.2.1), as well
as by using inherently noisy speech datasets
with limited and known sources of real noise
and variations that are difficult to simulate. Next, the perturbed recordings, the original
clean recordings, and the recordings with inherent noise are transcribed using the target ASR
model. Finally, the predicted and reference transcripts are compared, and the accuracy and

1data: https://huggingface.co/datasets/mshah1/speech_robust_bench_public
2code:https://github.com/ahmedshah1494/speech_robust_bench

68

https://huggingface.co/datasets/mshah1/speech_robust_bench_public
https://github.com/ahmedshah1494/speech_robust_bench


robustness of each model in each setting is captured with various metrics (§ 9.2.2). To
account for the differences in the level of difficulty between scenarios, we also estimate
speech quality scores using appropriate models and use them to calculate normalized metrics.

9.2.1 Scenario Simulation

Figure 9.2: Taxonomy of scenarios currently rep-
resented in SRB. Scenarios in dashed boxes have
real-world recordings, while scenarios in solid
boxes are simulated by digitally adding perturba-
tions.

The various speech recognition scenarios sim-
ulated by SRB are taxonomized in Fig. 9.2, and
can be divided into six high-level categories,
namely (1) clean speech, (2) social gather-
ings, (3) speech variations, (4) environmental
effects, (5) digital augmentations, and (6) ad-
versarial attacks. The scenarios are described
briefly below, while more details are given in
Appendix 11.1.

(1) Clean speech: SRB uses clean speech
for two purposes: to benchmark the baseline
accuracy of ASR models, and to simulate var-
ious challenging scenarios by perturbing it. Clean speech is drawn from Librispeech [Panayotov
et al., 2015] test-clean, TEDLIUM [Hernandez et al., 2018] release 3 test and MultiLingual Lib-
riSpeech (MLS) [Pratap et al., 2020] test. LibriSpeech contains professional recordings of English
audio books. Meanwhile, TEDLIUM contains professional recordings of English TED talks and
provides lexical and phonetic diversity which LibriSpeech may lack. To increase the applicability
of SRB to non-English and multi-lingual models we also include Spanish speech from MLS, which
contains professionally recorded audio books in several languages.

(2) Social Gatherings: The ability to transcribe speech from semi-formal or informal settings,
as well as far-field audio is useful for models used in meeting rooms, smart homes, and even
subtitle generation, thus SRB includes English speech from dinner parties and meetings recorded
by (2.1) near- and (2.2) far-field mics from CHiME-6 [Barker et al., 2017] and AMI [Kraaij et al.,
2005].

(3) Speech Variations: ASR models must remain accurate under variations in pronunciation
and prosody to serve diverse speakers. We therefore include (3.1) clean accented speech3 from
English and Spanish subsets of Common Voice 17 (CV17, Ardila et al. 2019) in SRB. To pro-
vide additional prosodic variability and to represent the increasing pervasiveness of generative AI,
we also include synthetic speech generated by YourTTS [Casanova et al., 2022] (English) and
Bark Suno [b] (Spanish) from transcripts of the three clean datasets from scenario (1) in the voices
of English and Spanish speakers from VCTK [Yamagishi et al., 2019] and Bark Speaker Library
(v2, Suno a), respectively.

The following scenarios involve synthetic perturbation of all three clean datasets from scenario
(1).

(4) Environmental Effects: While noisy real speech datasets like CommonVoice [Ardila et al.,
2019] and Switchboard [Godfrey et al., 1992] exist, the noise in them is not controlled or even
known. Thus in SRB, we perturb clean speech to simulate (4.1) environmental noise, and (4.2)

3Accent annotations (excluding US English), and a DNSMOS score ≥ 3.4 [Reddy et al., 2020].
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spatial acoustics. Concretely, we add real environmental noise from ESC-50 [Piczak, 2015], MS-
SNSD [Reddy et al., 2019], MUSAN [Snyder et al., 2015] and WHAM! [Wichern et al., 2019] at
Signal-to-Noise Ratios (SNR) of 10, 20, 30 and 40 dB. To simulate spatial acoustics, we add echo
via SoX4 and simulate Room Impulse Response (RIR) via convolution with real and simulated
RIRs from Ko et al. [2017].

(5) Digital Augmentations: Digital media often undergoes processing and contains special
effects, which are therefore included in SRB. Specifically, we include standard audio processing
operations like amplitude gain, resampling, lowpass, and highpass filtering, (2.2) special effects
like bass gain, treble gain, tempo increase, tempo decrease, speed increase, speed decrease, pitch
increase, pitch decrease, chorus, tremolo, and phaser, and (2.3) Gaussian white noise.

(6) Adversarial Attacks: Models used in high-stakes settings are prime targets for adversaries
and thus must resist attempts to compromise their accuracy. We use two types of adversarial attacks
in SRB: (2.1) utterance-specific and (2.2) utterance-agnostic attacks. The utterance-specific attack
searches for a perturbation δ, for a given speech recording x, such that a given model maximally
mistranscribes it. To find δ, we follow Madry et al. [2018b] and use projected gradient descent
to solve maxδ:SNR(δ,x)≤ϵ L(M(x), y∗), where L is a differentiable loss function, like CTC-Loss,
between the model’s output M(x) and the true transcript y∗, with ϵ ∈ [10, 40]. The utterance-
agnostic attack is similar to the utterance-specific attack, except δ is optimized over a held-out set,
X dev, instead of each test utterance. This represents a more realistic scenario where an attacker
tries to mount a denial-of-service attack against an ASR model by introducing utterance-agnostic
perturbation at some point in the transcription pipeline. We use the method of Neekhara et al.
[2019] to find δ : Ex∈X devSNR(δ, x) ≤ ϵ ∈ [10, 40] such that CER({x + δ|x ∈ X dev}) > τ (see
Alg. 2), where X dev is the dev split of LibriSpeech, TEDLIUM and MLS.

Note of Extensibility and Usage: We have released our source code with instructions for
reconstructing the data in SRB, and reproducing the results of this paper ( § ??). SRB can easily be
extended to other languages and speech datasets using the provided scripts for extracting accented
speech from any language in CV17, and for simulating scenarios 3.2-6 on any speech recording or
dataset.

We have also publicly released the data for all the above scenarios, except adversarial attacks
and perturbed TEDLIUM recordings, on Huggingface Hub (see footnote 1). We made these ex-
ceptions because TEDLIUM’s license prohibits the distribution of derivatives, and the adversarial
attacks must be computed separately for each target ASR model. To the extent possible, we en-
courage users to evaluate their models on the publicly released data to ensure reproducibility.

9.2.2 Metrics
SRB measures the utility of the model with the widely used Word Error Rate. WER is computed
as the word-level edit distance between the reference and the predicted transcripts, normalized by
the length of the reference (see Appendix 11.2 for formal definitions). To measure the robustness
of the model under challenging scenarios, we use WER Degradation (WERD), computed as
WER(Xs) −WER(X ), where X and Xs are datasets containing clean speech and speech from
scenario s, respectively. For scenarios (1)-(3.1) (see § 9.2.1), Xs is an inherently noisy dataset,

4Available from https://sourceforge.net/projects/sox/.
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and X will be LibriSpeech for English and Multi-Lingual LibriSpeech for Spanish. For scenarios
(3.2)-(6), X is a clean dataset, and Xs is a perturbed version of X .

When aggregating metrics (WER/WERD) over multiple scenarios, we follow the practice
of Hendrycks and Dietterich [2019] and divide the metric by a measure of difficulty, i.e., by the
(estimated) speech quality degradation. This adds weight to errors on “easy” scenarios (less qual-
ity degradation) and underweights errors on “harder” scenarios (more quality degradation) when
computing averages. We refer to the difficulty normalized versions of WER/WERD as Normal-
ized WER/WERD (NWER/NWERD). We estimate speech quality using DNSMOS [Reddy et al.,
2019] and PESQ[Rix et al., 2001, Miao Wang and ananda seelan, 2022], which are models of hu-
man judgments of speech quality and predict Mean Opinion Scores (MOS, Rec 2018). PESQ uses
various signal processing methods to predict MOS, while DNSMOS uses DNNs to do the same.
To compute speech quality degradation we compute PESQ and DNSMOS for each clean and noisy
recording multiplied by -1 (lower values indicate less degradation). Since we are only interested in
the relative degradation between scenarios, we normalize the scores to have mean 50 and standard
deviation 25.

Note on usage: We use NWERD for non-adversarial scenarios (1-5) but WERD for adver-
sarial attacks because adversarial attacks are model-specific and thus DNSMOS/PESQ scores for
adversarially perturbed audio will be different for each model, which will lead to a different nor-
malization during NWERD computation and make comparisons difficult.

9.3 Results
We evaluate several recent ASR DNNs (§9.3.1) using SRB and analyze the results to uncover fine-
grained differences in their robustness in various challenging scenarios. We further extend our
analysis by measuring ASR model robustness for various sub-groups, namely English speech and
non-English (Spanish) speech, and male and female speakers. Prior works [Liu et al., 2022, Veliche
and Fung, 2023] observe that there is a disparity in transcription quality between subgroups. Our
analysis augments these observations by showing that inter-group disparities in robustness may
also exist, thus demonstrating the utility of SRB in the broader field of trustworthy AI.

9.3.1 Models
For English, we evaluate Whisper [Radford et al., 2023] large-v2, base, medium, small, and tiny
(wsp-{lg,bs,md,sm,tn}), Wav2Vec-2.0 [Baevski et al., 2020] base, large, self-trained large [Xu
et al., 2021], and Robust Wav2Vec [Likhomanenko et al., 2020] (w2v2-{bs,lg,lg-slf,lg-rob}), Hu-
BERT [Hsu et al., 2021a] large and XL (hubt-{lg,xl}), Nvidia Canary [NVIDIA] (cnry-1b), Nvidia
Parakeet RNN-T and CTC [NVIDIA] with 0.6B and 1.1B parameters (prkt-rnnt-{0.6,1.1}b, prkt-
ctc-{0.6,1.1}b), MMS [Pratap et al., 2020] (mms-1b), Speech-T5 [Ao et al., 2022] (spch-t5),
DeepSpeech [Amodei et al., 2016] (ds), and Speechbrain [Ravanelli et al., 2024] models with
Conformer encoders, and transformer and RNN-T decoders. For Spanish speech, we evaluate
mono-lingual Wav2Vec base Spanish [Wang et al., 2021b] (w2v2-bs-es), Wav2Vec XLSR Span-
ish [Conneau et al., 2020] (w2v2-lg-es), wsp-{lg,bs,tn}, and mms-1b. We used the Huggingface
implementations where available, except ds (https://github.com/SeanNaren/deepspeech.pytorch).
More details about the models are in Table 11.4.
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clean accent audio
proc

noise
(env)

noise
(white)

sFX social
(FF)

social
(NF)

spatial synth
speech

AVG Adv
(UA)

Adv
(US)

AVG

Lang Model (WER) (NWERD) (WERD)

EN

prkt-rnnt-1.1b 5.9 11.6 8.7 4.2 1.6 6.4 48.3 39.8 11.8 3.0 15.0 10.9 69.1 40.0
cnry-1b 6.0 13.9 18.2 4.4 2.7 15.0 45.7 36.7 15.3 5.7 17.5 14.8 61.7 38.3
prkt-ctc-1.1b 6.0 16.9 10.3 4.2 3.2 9.6 44.6 35.0 13.5 5.9 15.9 8.4 71.2 39.8
w2v2-lg-slf 7.7 41.0 30.7 13.1 17.6 20.3 69.5 67.6 26.3 15.2 33.5 7.0 41.0 24.0
wsp-md 7.9 12.4 27.8 2.8 3.3 3.5 41.8 35.5 5.2 6.1 15.4 3.7 56.6 30.1
wsp-lg 8.0 11.2 12.7 3.1 2.9 2.8 40.9 34.9 4.5 4.4 13.0 6.2 53.6 29.9
hubt-xl 8.4 38.9 29.1 15.5 16.2 20.8 69.5 71.2 26.4 13.5 33.5 13.9 36.8 25.3
wsp-bs 9.6 30.1 88.8 8.7 9.6 22.5 63.9 47.8 17.9 12.6 33.6 2.7 88.5 45.6
w2v2-lg 9.7 60.6 39.5 19.0 26.0 24.1 77.3 79.9 37.3 17.7 42.4 16.6 31.1 23.8

ES
cnry-1b 3.2 699.9 21.7 17.4 7.6 30.5 - - 36.3 28.6 120.3 26.1 84.3 55.2
wsp-lg 5.8 6.8 19.4 12.3 5.5 9.2 - - 5.5 24.6 11.9 13.7 65.0 39.4
w2v2-lg-es 6.8 31.6 31.8 30.1 20.5 40.7 - - 89.0 104.1 49.7 33.9 71.0 52.4
wsp-bs 14.8 62.0 133.2 43.1 25.8 60.4 - - 58.1 87.8 67.2 19.5 159.5 89.5
mms-1b 15.7 26.3 27.9 32.7 9.3 43.3 - - 47.3 49.9 33.8 7.4 53.8 30.6
w2v2-bs-es 25.7 45.6 55.9 44.9 25.0 58.4 - - 103.3 152.7 69.4 10.0 33.8 21.9

Table 9.1: The utility and robustness of selected English and Spanish models (see Table 11.6 for
more results). Utility is measured by WER of the models on clean speech. Robustness is measured
by the NWERD on non-adversarially perturbed speech and WERD on adversarially perturbed
speech. Adv (UA) refers to utterance agnostic attacks, while Adv (US) refers to utterance specific
ones. The metrics are averaged over all datasets, perturbations, and severities in each category.

9.3.2 Robustness of ASR Models
Table 9.1 presents the utility and robustness of a subset of English and Spanish ASR models under
non-adversarial and adversarial scenarios. The subset was selected to exclude small and/or less
accurate models. The results of the excluded models, however, are used in § 9.3.3.

Robustness in Non-Adversarial Scenarios

English Models:In terms of average NWERD, we observe that wsp-lg emerges as the most robust
model for non-adversarial scenarios, followed by prkt-rnnt-1.1b and wsp-md. Interestingly, cnry-
1b, which is the top model on the Open ASR Leaderboard (OAL, Srivastav et al. 2023), ranks 5th
on SRB. This result highlights the fact that SRB provides a more rigorous assessment of a model’s
robustness than existing benchmarks like OAL. We also see that SRB reveals subtle weaknesses
and strengths of various models.

For instance, we see that wsp-lg and wsp-md are significantly more robust to special effects
(sFX) and spatial acoustics than other models, including cnry-1b.

Figure 9.3: WERD of cnry-1b, wsp-
md and wsp-lg on perturbations in the
spatial acoustics and special effects cat-
egories.

To identify the specific types of sFX and spatial acous-
tic perturbations against which cnry-1b lacks robustness,
we plot the WERD on each perturbation within these cat-
egories (Fig. 9.3) we find that cnry-1b is much more sen-
sitive than its peers to echo, real room impulse responses,
and speed and pitch modifications. This analysis demon-
strates that SRB can evaluate the robustness of ASR mod-
els at multiple granularities and can pinpoint the weak-
nesses of a given model. Detailed results can be found
in Figs. 11.2 and 11.4 in the appendix. Given that no
data augmentation, other than SpecAugment [Park et al.,
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2019], was used to train Whisper [Radford et al., 2023],
this indicates that Whisper was trained on data that may
have included digital media like music or movie sound-
tracks, and speech recorded in diverse acoustic environ-
ments – settings that may not be sufficiently represented in public data sources. Curating such
diverse datasets is a promising direction for future work.

We also note that despite being pre-trained on 60K hours of speech, Wav2Vec and Hubert
models severely lack robustness. Particularly concerning is their weak performance on accented
speech, social scenarios and spatial acoustics, which models are very likely to encounter in the real
world.

Takeaways: (1) Despite topping the Open ASR Leaderboard, cnry-1b is significantly less ro-
bust than wsp-lg, which is ranked 10 on OAL. cnry-1b particularly lacks robustness to special
effects and spatial acoustics. (2) Wav2Vec variants struggle against accented speech and social
settings, thus, may not be suitable when users have diverse accents.

Spanish Models:We observe that wsp-lg is the most robust model against non-adversarial
perturbations by some margin. We notice that all models, except wsp-lg, struggle against accented
speech and yield high NWERS. cnry-1b is particularly, weak against accented speech with an
NWERD of 700% (WERD=205%). Apart from accented speech, cnry-1b is quite robust on all
other categories of non-adversarial perturbations. mms-1b is also fairly robust and, unlike other
models, its NWERD does not vary erratically from one category to another.

Robustness in Adversarial Scenarios

English models:We observe that w2v2-lg achieves the lowest WERD and thus is the most ro-
bust model against utterance-specific adversarial attacks. Interestingly, while Wav2Vec models
exhibited mediocre robustness to non-adversarial perturbations, they are more robust to utterance-
specific attacks, than Whisper, Canary, and Parakeet, which were the most robust on non-adversarial
perturbations. We also note from Fig. 11.1 (in Appendix) that most Wav2Vec models are consid-
erably more robust to attacks against TEDLIUM than against LibriSpeech, and the opposite is true
for whisper and Canary models. Under utterance-agnostic attacks, the most robust models are
mms-1b, wsp-bs, and wsp-sm. It is interesting to note that the smaller variants of Whisper limit
the generalizability across utterances of the adversarial perturbations to a greater extent than their
larger counterparts.

Takeaway: Wav2Vec models are most robust to adversarial attacks; Models that are most
robust to non-adversarial perturbations, are mediocre against adversarial perturbations; Canary
and Parakeet models are highly vulnerable to utterance specific attacks.

Spanish models:On Spanish, w2v2-bs-es is the most adversarially robust model. Generally,
we observe that Wav2Vec models exhibit better robustness than Whisper and Canary under both
utterance-agnostic and utterance-specific perturbations. This is similar to the trends observed in
English speech (Fig. 11.1c). Detailed results can be found in Fig. 11.3 in the appendix.

Takeaway: General trends similar to English but WERD is higher when Spanish speech is
attacked.
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9.3.3 Correlates of Robustness
To glean insights that can inform future work, we have conducted the following analysis to model
attributes that yield robust models. Specifically, we examine the impact of model size, architecture
and accuracy, as well as training dataset size on robustness.

To determine if the prevailing practice of training DNNs with more parameters on larger
datasets is yielding improvements in robustness, we use robust linear regression to fit a line to
WERD vs. number of model parameters/size of the training data for the candidate models in
Figs. 9.5a and 9.5b, respectively. Increasing model size is correlated with improved robustness
(lower WERD).

Figure 9.4: NWERD lineplot with non-
adversarial and adversarial perturba-
tions, three families of models.

To further isolate the impact of the model size we plot
the NWERD of models from the same family in Fig. 9.4,
which have similar architectures and training datasets.
We note that larger models are more robust in the Whis-
per, Parakeet and Wav2Vec-2.0 families, but, surpris-
ingly, not in the HuBert family.

Next, we consider the model architectures. The archi-
tectures of the models used in this paper can be divided
in to three categories: sequence-to-sequence (seq2seq)
models like Whisper and Canary, encoder only mod-
els trained with CTC loss [Graves et al., 2006] like the
Wav2Vec family, and RNN-T models which are capable
of streaming such as some variants of Parakeet. From Fig. 9.5e we see that in terms of non adver-
sarial robustness RNN-T models outperform seq2seq and CTC models, but in terms of adversarial
robustness CTC models achieve the lowest WERD.

We also measure the robustness-utility trade-off by plotting WERD and NWERD for adversar-
ial and non-adversarial perturbations, respectively, against WER on clean data in Figs. 9.5c and
9.5d. We observe that in both cases the relationship is positive, i.e. more accurate models tend to
be more robust, however, the relationship between WERD on adversarial perturbations and clean
WER is much weaker.

Finally, we measure the impact of training data size and, find that increasing training data
appears to have only a minor influence on robustness (Fig. 9.5b).

Takeaway: (1) Larger models tend to be more robust, while smaller models, even if they are
trained on large datasets, are less robust. This runs somewhat counter to the prevailing wisdom
[Radford et al., 2023, Likhomanenko et al., 2020]. (2) CTC models are more robust than seq2seq
models to adversarial attack, but less robust than seq2seq and RNN-T models on non-adversarial
perturbations. (3) Utility and robustness are positively correlated, but correlation is weaker for
adversarial robustness.

9.3.4 Disparity in Robustness Across Population Sub-Groups
In the preceding analysis, we considered robustness aggregated over the entire population (i.e., dataset).
However, populations are generally not homogeneous, and, thus, the robustness of the model may
differ on various population sub-groups. Prior works have commonly analyzed sub-group fairness
of ASR models by comparing the overall WER for each sub-group on a benchmark dataset [Koe-
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(a) (b) (c) (d)

(e)

Figure 9.5: (a & b) WERD for all models with robust regression fitted line on non-adversarial
(blue) and adversarial (orange) perturbations, plotted against (a) number of parameters, and (b)
hours of training data. (c % d) WERD and NWER on adversarial and non-adversarial perturbations
are plotted against WER to illustrate the robustness-utility trade off. Pareto optimal points are
highlighted. (e) Boxplot of WERD for models having various architectures.

necke et al., 2020]. It is possible that models that are fair on average, may not be fair under certain
conditions. In the following, we use SRB to uncover and analyze the disparities in the models’
robustness across four sub-groups: English and Spanish speech, and male and female speakers.
We find that disparities indeed exist, with multi-lingual models generally being more robust for
English than Spanish (Fig. 9.6), and most models being less robust for females than males.

Disparity in Robustness Across Languages in Multi-Lingual Models

Figure 9.6: Comparing the robust-
ness of multi-lingual on English
(solid) and Spanish (hatched).

We compare the robustness exhibited by multi-lingual mod-
els, wsp-lg, wsp-bs, cnry-1b and mms-1b on English and
Spanish. The WERD of these models on both languages
is presented in Fig. 9.6. We observe that Whisper models
achieve lower WERD on English speech than on Spanish on
almost all perturbation categories, while cnry-1b and mms-
1b achieve similar WERD on some categories. We also note
that the difference in WERD on some common perturbation
categories, like environmental noise, and spatial acoustics, is
much greater for wsp-lg than for cnry-1b.

Takeaway: Multilingual models are more robust on En-
glish than Spanish; cnry-1b and wsp-lg most robust on both
languages; adversarial robustness results follow the same
trend as English.
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Figure 9.7: Log WER Ratio for various TEDLIUM, LibriSpeech, Common Voice (CV) and AMI,
and Spanish Multilingual Librispeech (MLS (ES)). WERs are averaged across severity levels and
individual augmentations within each category before computing the Log WER Ratio.

Disparity in Robustness Across Genders

To measure the disparity in transcription quality across genders (males/females), we compute the
log of the ratio of the WERs of the ASR model on female and male speakers. We call this measure
the Log WER Ratio (LWERR). A positive value of LWERR indicates that the model is biased
against females and a negative value indicates that the model is biased against males.

The LWERR for each dataset is shown in Fig. 9.7. We note that, on average, the models
are biased against females on LibriSpeech and Spanish Multilingual Librispeech (MLS-ES), and
against males on TEDLIUM, Common Voice and AMI. The bias is most prominent in MLS-ES,
where cnry-1b seems to be yielding the highest disparities among genders. We also note that
adversarial perturbations cause the WER of wsp-lg to increase significantly more for females than
males in LibriSpeech. This is interesting because adversarial perturbations do not target a specific
part of the spectrum and thus should not impact one gender more than the other.

Takeaway: Models are more robust for males on some datasets, and females on other datasets
suggesting that used data require further examination; adversarial attacks increase WER of Whis-
per variants for females more than males; multilingual models, particularly cnry-1b, are more
biased against females when transcribing Spanish.
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Chapter 10

Conclusion

In this thesis, we work towards DNNs that are robust to a variety of adversarial attacks by iden-
tifying principles, or priors, that can endow DNNs with robustness to adversarial attacks, without
training them on adversarially perturbed data. In this connection, we have studied priors over the
design elements and the structure of DNNs (structural priors) as well as priors derived from bio-
logical perception (biological priors) that seek to simulate biological mechanisms and constraints
considered to be conducive to robustness.

The outcomes of our studies indicate that we can endow DNNs with a degree of generalized
adversarial robustness by incorporating certain robustness priors related to the architecture and fea-
ture representations of the DNN, and without training them on a variety of adversarial attacks. This
represents a step taken towards developing models that retain accuracy in the face of a variety of
adversarial attacks and thus can be safely and reliably deployed in real-world settings. Our studies
also reveal that deriving these priors from biology is a promising direction, and one that allows us to
leverage the optimizations performed by evolution over millennia that have endowed humans and
other primates with robust perception. The fact that integrating biological priors indeed endows
DNNs with generalizable robustness indicates that doing so bridges some of the gaps between
DNNs and biological perception, at least so far as robustness is concerned. In a word, these results
provide evidence that there are more practical and scalable alternatives to the dominant approach
of seeking robustness via training, and that DNNs with high accuracy and generalized adversarial
robustness are, in fact, within reach. We envision that future research directions stemming from
our work will further expand the body of structural and biological robustness-enhancing priors as
well as discover other types of priors, particularly those related to the optimization algorithms used
to learn DNN parameters.
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Chapter 11

Robustness Benchmark For Speech
Recognition Models

11.1 Perturbation Generation/Application Procedure
Below, we provide further details the perturbations that make up Speech Robust Bench.
Table 11.1 shows the parameters for each perturbation and Table 11.2 shows the normalized DNS-
MOS and PESQ scores for each perturbation.

Gaussian Noise: A noise vector of the same length as the audio signal is sample from a
standard normal distribution, scaled such that its magnitude corresponds to a specific SNR, and
then added to the audio signal. We use torchaudio.function.add_noise to add the
noise to the speech at a given SNR.

Environmental Noise: We use the recordings of environmental noises from the test/eval sub-
sets of ESC-50 [Piczak, 2015], MS-SNSD [Reddy et al., 2019], MUSAN [Snyder et al., 2015] and
WHAM [Wichern et al., 2019]. We create a separate perturbed version of the clean data using each
of these noise datasets. To do so, for each test utterance we sample a random environmental noise
and add it to the audio signal at the specified SNR. We clip the noise if it is longer than the speech,
and repeat it if it is shorter than the speech. We use torchaudio.function.add_noise to
add the noise to the speech at a given SNR.

Room Impulse Response: The simulated and real RIRs from [Ko et al., 2017] are applied
to clean recordings. As a measure of intensity, RT60 is estimated for the simulated RIRs using
Sabine’s formula with the room dimensions and absorption coefficient provided in the dataset. For
the real RIRs, we compute the SRMR [Santos and Falk, 2014] using the implementation from
https://github.com/aliutkus/speechmetrics/tree/master. The severity is defined in increasing RT60s
for the synthetic RIRs, and decreasing SRMR for the real RIRs. Table 11.1 shows the average
RT60/SRMS in each severity level. During evaluation, a random RIR having the given severity
level is sampled for each test recording.
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Category Perturbation Sev 1 Sev 2 Sev 3 Sev 4

Gaussian Noise 30 dB 20 dB 10 dB 0 dB

Environment
Environmental Noise 30 dB 20 dB 10 dB 0 dB
Music 30 dB 20 dB 10 dB 0 dB
Crosstalk 30 dB 20 dB 10 dB 0 dB

Spatial Acoustics
RIR 0.27s 0.58s 0.99s 1.33s
Real RIR 9.1 7.1 4.1 1.8
Echo (delay) 125 ms 250 ms 500 ms 1000 ms

Special Effects

Bass (gain) 20 30 40 50
Treble (gain) 10 23 36 50
Phaser (decay) 0.3 s 0.5 s 0.7 s 0.9 s
tempo-up 1.25x 1.5x 1.75x 2x
tempo-down 0.875x 0.75 0.625x 0.5x
Speed-up 1.25x 1.5x 1.75x 2x
Slow-down 0.875x 0.75 0.625x 0.5x
Pitch Step-up 0.25 oct 0.5 oct 0.75 oct 1 oct
Pitch Step-down 0.25 oct 0.5 oct 0.75 oct 1 oct
Chorus (delay) 30 50 70 90
tremolo (depth) 50 66 83 100

Audio Processing

Resampling 0.75x 0.5x 0.25x 0.125x
Gain (factor) 10x 20x 30x 40x
Low-pass filter 4 kHz 2833 kHz 1666 kHz 500 kHz
High-pass filter 500 kHz 1333 kHz 2166 kHz 3000 kHz

Adversarial
PGD Attack 40 dB 30 dB 20 dB 10dB
Utterance Agnostic Attack 40 dB 30 dB 20 dB 10dB

Table 11.1: The parameters defining the various severity levels of the perturbations used in the
proposed benchmark.

Resampling, Speed, Pitch, and Gain Perturbations: The resampling speed, pitch, and gain
perturbations were applied using the Resample Speed, PitchShift and Vol transforms
from torchaudio.

Other special effects: These effects are applied via SoX filters of the same name. We used
torchaudio.sox_effects.apply_effects_tensor to apply these filters to the audio.
The args for each filter are as follows:

• echo 0.8 0.9 <delay> 0.3

• phaser 0.6 0.8 3 <decay> 2 "-t"

• Tempo <factor> 30

• sinc <lo-freq>
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Metric→ AVG normalized DNSMOS normalized PESQ
Scenario

clean 23.1 23.1
accent (en) 33.1 33.1
accent (es) 29.3 29.3
social (chime, FF) 102.2 102.2
social (ami, FF) 85.9 85.9
social (chime, NF) 80.1 80.1
social (ami, NF) 37.3 37.3

Augmentation/Severity 1 2 3 4 1 2 3 4 1 2 3 4

bass 19.1 23.9 36.0 56.4 23.9 28.9 39.6 58.4 11.4 14.3 30.3 54.6
chorus 40.1 49.3 55.5 57.0 31.3 41.3 48.7 49.9 63.8 71.2 74.3 75.8
crosstalk 22.9 38.9 53.1 59.9 24.7 33.1 38.2 41.0 22.2 46.1 70.1 81.6
echo 54.9 54.2 53.6 51.4 40.6 37.8 37.6 36.5 71.3 72.7 71.7 67.9
env noise (MS-SNSD) 51.4 62.4 77.0 89.6 53.5 61.0 74.6 93.5 39.6 58.7 76.7 84.2
env noise (ESC50) 26.7 41.7 58.4 73.8 39.2 45.3 55.0 73.2 20.0 43.1 66.0 79.8
env noise (MUSAN) 24.9 43.0 63.0 76.4 26.3 38.7 57.1 73.1 24.8 48.7 70.4 81.0
env noise (WHAM) 23.0 46.2 74.2 93.3 23.7 41.2 72.3 101.7 23.1 52.0 76.6 85.4
gain 50.8 69.9 77.6 81.8 46.7 67.8 78.3 84.6 61.3 76.0 80.0 81.7
gaussian noise 53.2 76.6 91.7 82.7 72.1 89.5 103.8 119.6 42.1 69.2 83.0 66.0
highpass 40.9 56.2 68.5 78.5 35.8 45.1 66.7 83.0 46.1 68.3 71.6 74.9
lowpass 33.8 37.9 51.6 79.1 48.9 48.4 64.3 100.1 20.3 29.2 40.4 58.4
music 22.9 43.8 66.7 79.9 26.9 43.0 64.0 78.6 20.0 45.3 70.1 81.9
phaser 15.6 32.9 60.7 80.6 22.8 36.2 59.8 78.6 10.6 31.9 63.6 83.5
pitch down 61.8 68.2 63.8 84.4 39.6 50.9 67.3 82.8 85.9 86.5 68.1 86.7
pitch up 58.9 62.1 65.2 66.0 33.7 39.6 45.7 47.5 85.9 86.4 86.5 86.4
real rir 39.4 54.6 69.9 85.3 35.7 46.5 61.7 89.2 43.1 62.7 78.0 81.4
resample 14.9 28.0 49.9 64.2 25.2 43.7 63.3 77.4 6.7 18.0 38.1 52.5
rir 51.1 64.0 69.3 68.9 42.0 58.1 66.2 66.5 65.0 74.6 78.1 78.1
slowdown 51.4 57.8 65.2 74.0 18.9 31.2 45.3 68.6 85.9 86.1 86.0 86.3
speedup 52.2 59.6 67.2 73.8 23.1 37.6 52.6 65.5 83.7 83.6 83.3 83.0
tempo down 49.4 52.6 55.3 51.2 19.8 23.0 28.2 36.7 81.4 84.7 85.3 85.6
tempo up 51.0 57.9 64.1 70.6 25.7 36.1 47.8 60.1 79.0 82.2 82.4 82.4
treble 12.4 22.4 41.6 63.6 20.8 31.2 44.8 62.3 2.1 12.1 42.2 72.5
tremolo 17.7 29.9 60.2 100.2 24.5 38.8 73.9 113.7 9.6 17.6 36.9 75.6
synthetic (es, Bark) 30.7 - - - 30.7 - - - - - - -
synthetic (en, yourTTS) 50.3 - - - 17.1 - - - 83.6 - - -

Table 11.2: Normalized DNSMOS and PESQ score for each perturbation.

• sinc 0-<hi-freq>

• tremolo 20 <depth>
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Name Subset Hours Utterances Speakers Male/Female

LibriSpeech test-clean 5.4 2620 40 20/20
TEDLIUM 3 test 3.76 1155 16 10/6
Multi-Lingual LibriSpeech (es) test 10 2385 20 10/10
CHiME-6 eval 5.25 13000 8 -
AMI test 7.35 13168 16 8/8

ESC-50 - 2.78 2000 - -
MUSAN - 108.5 2016 - -
WHAM! noise-test 9 3000 - -
MS-SNSD noise-test 0.7 51 - -

Table 11.3: Distributional statistics of speech (top) and noise (bottom) datasets used in SRB.

• treble <gain>

• bass <gain>

• chorus 0.9 0.9 <delay> 0.4 0.25 2 -t {<delay>+10} 0.3 0.4 2 -s

Voice Conversion We use use YourTTS [Casanova et al., 2022] from Coqui.ai1 to synthesize
audio from textual transcripts in a given speaker’s style. The transcripts from the test clean subset
of LibriSpeech are used. The target speakers are drawn from the VCTK corpus [Yamagishi et al.,
2019], which contains accented speech from 12 accents. For each transcript a random speaker is
chosen to synthesize the audio.

Crosstalk and Music We use crosstalk and music audios from MUSAN [Snyder et al., 2015].
We use torchaudio.function.add_noise to add the noise to the speech at a given SNR.

Accents We select a subset of audios from the test set of Common Voice 17. The selected
audios satisfied the following criteria: (1) the speaker’s accent must be present in the metadata,
(2) the accent must not be American, (3) should be clean. The last criterion is satisfied if the
DNSMOS [Reddy et al., 2020] score of the recording is at least 3.4. The resulting subset contains
640 recordings. The most popular accent in this set is South Asian (India, Pakistan, Sri Lanka)
(2̃5%), followed by British English (2̃5%).

Inter-Personal Communications We CHiME-6 [Barker et al., 2017] and AMI [Kraaij et al.,
2005] to obtain recordings of people in social scenarios (dinner party and meetings). In both these
datasets, the speakers are recorded through lapel microphone and a room microphone resulting in
near and far field recordings. We use both types of recordings and show separate results for them.
We remove recordings that contain less than three words since they are often fillers.

1https://github.com/coqui-ai/TTS
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Uttarance Specific Adversarial Attack: The utterance specific adversarial perturbations are
computed using the untargeted PGD adversarial attack implemented in robust_speech pack-
age [Olivier and Raj, 2022a]. The attack is computed as follows. First, the maximum possible
L2 norm of the noise is determined by solving the equation for SNR for the norm of the noise as
follows.

SNR = 20 log10

(
||x||2
||δ||2

)
(11.1)

ϵSNR = ||δ||2 = 10−
SNR
20 ||x||2, (11.2)

where δ is the noise, x is the audio signal and SNR is the upper bound on the SNR in the final
signal. Then, we follow the approach of [Madry et al., 2018b] and optimize δ using Projected
Gradient Descent (PGD) to maximize the divergence between the true and predicted transcriptions.
Formally stated, the attack performs the following optimization:

δ = max
δ̂:∥δ̂∥

2
≤ϵSNR

LM(x+ δ̂, y), (11.3)

where LM is the loss function used to train the ASR model, M , such as CTCLoss or NLLLoss.

Utterance Agnostic Adversarial Attack: We use the method of [Neekhara et al., 2019],
as implemented in robust_speech package [Olivier and Raj, 2022a], to compute utterance
agnostic adversarial perturbations. The main difference between the universal attack and the PGD
attack is that the latter computes a perturbation vector for each input, whereas the former computes
a single perturbation that is expected to successfully attack any input to the model.

Formally, given a ASR model, M , and a development speech dataset, X dev let X dev
δ = {x +

δ|x ∈ X dev} be the same dataset under additive perturbation δ, and letM(X dev) andM(X dev
δ be the

transcripts predicted by M for X dev and X dev
δ . The utterance agnostic attack uses PGD to optimize

δ such that ∥δ∥∞ ≤ ϵ and the Character-Error Rate (CER) (see § 11.2) between M(X dev) and
M(X dev

δ ) is at least t, i.e. CERM(X dev
δ ,M(X dev)) ≥ t (using the notation from § 11.2). Similar to

the utterance-specific attack, the value of ϵ is determined by the maximum allowable SNR using
eq.(11.2), except that ℓ∞ norms are used instead of ℓ2 norms. The full algorithm is described in
Algorith 2.

Once we compute the perturbation we add it to the test audios (X test) at the specified SNR using
torchaudio.function.add_noise. For LibriSpeech, we use 500 utterances from test-dev
as X dev and test-clean as X dev. For TEDLIUM, we use the full dev and test sets as X dev and X test.
For Multi-Lingual LibriSpeech, we use 500 utterances from the dev set in the relevant language as
X dev and the full test set of the same language as X test.

11.2 Additional definitions
Word Error Rate: As noted in the main text, we use word error rate (WER) as a basic

measure for quantifying performance of the models. Following the common practice from ASR
literature, the WER is computed as the word-level edit distance between the reference and the
predicted transcripts, normalized by the length of the reference. The edit distance is computed as
the total number of word substitutions, deletions, and additions required to transform the reference
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Algorithm 2: Utterance Agnostic Attack Algorithm

Require: Speech data X dev and , ASR model M and its loss function, LM (e.g. CTCLoss, NLL-
Loss, etc.), allowed SNR s, learning rate, α, max epochs emax, max iterations per sample imax,
target attack success rate, tsr, target Character-Error Rate (CER) (see § 11.2), tcer
procedure CER(a, b)

return EditDistance(a, b)/len(b) ▷ a and b are character sequences
end procedure
procedure SUCCESSRATE(X )

return
∑

x∈X I[CER(M(x+ v),M(x)) > tcer]
end procedure
procedure SNRTONORM(x, SNR)

return 10−
SNR
20 ||x||∞

end procedure
ϵ←

∑
x∈X dev SNRToNorm(x, s)/|X dev|

v ← 0
e← 0
while SuccessRate < tsr and e < emax do

for (x, y) ∈ X dev do ▷ x is the audio, y is the transcript
i← 0
r ← 0
while CER(M(x+ v + r),M(x)) > tcer and i < imax do

∆r ← αsign(∇r0.5 ∥r∥2 − LM(x+ v + r, y))
r ← clipϵ{r −∆r + v} − v
i← i+ 1

end while
v ← clipϵ{r + v}

end for
e← e+ 1

end while
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transcript into the predicted transcript. We remove all punctuation from both the reference and
predicted transcripts, and convert to lower case before computing WER.

When WER is computed over multiple pairs of predicted and reference transcripts, it is com-
mon practice to sum the number of substitutions, deletions, and additions for all the pairs, and
divide by the sum of the lengths of the reference transcripts. Formally, this can be written as:

WERM(X ,R) := 100

∑
x∈X ,r∈RED(M(x), r)∑

r∈R |r|
%, (11.4)

where ED computes the edit distance.
The Character Error Rate (CER) can also be defined similarly, by using the character-level edit

distance in the above equation.
For quantifying differences between (binary) genders, we measure the disparity in prediction

accuracy across males and females by the Log WER Ratio (LWERR). Formally,

LWERR := log2
WERM(Xf ,Rf )

WERM(Xm,Rm)
, (11.5)

where the (Xf ,Rf ) and (Xm,Rm) represent the subsets of utterances by females and males re-
spectively.

Fairness through robustness: In this work, we use SRB to conduct a fairness assessment
based on robustness disparities across population subgroups (English vs. Spanish speech; male vs.
female speakers). Most of the state of the art quantifies fairness in terms of predictive performance
disparities. This occurs in the domain of fairness in ASR systems [Liu et al., 2022, Veliche and
Fung, 2023, Koenecke et al., 2020] and similar prevalence is found in other domains [Julia Angwin,
Solans Noguero et al., 2023]. However, previous work in the domain of ASR also considered
robustness disparities as an alternative fairness notion [Nanda et al., 2021].

Moreover, we argue that considering the dimension of robustness could give better sense of the
expected disparities that could be observed when deployed in the wild, in the presence of diverse
noisy conditions.

11.3 Models
Table 11.4 provides a summary of the models used in our evaluations. The model names corre-
spond to the names of their pretrained checkpoints in the Huggingface library (https://huggingface.
co/models). The abbreviations of these names are in the parentheses after them. Some of the unilin-
gual models are pre-trained on multilingual data but are fine-tuned on only one language and thus
can not transcribe any other language. Multilingual models have been pre-trained and fine-tuned on
multiple languages so the same DNN can transcribe several languages. The WER of multilingual
models is presented as English/Spanish.

11.4 Fine Grained Analyses
The following figures present fine-grained analyses of robustness. These figures may be referenced
by the main text but were not included in the main body in the interest of space. Figure 11.1
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(a) (b) (c)

(d) (e) (f)

Figure 11.1: The accuracy and robustness of English (top) and Spanish (bottom) ASR models on
clean and perturbed data. Accuracy is measured by WER of the models on clean speech (a &
d). Robustness is measured by the NWERD on non-adversarially perturbed speech (b & e) and
WERD on adversarially perturbed speech (c & f). The markers indicate the dataset in (a & c), and
the perturbation category in (b & e). The x axes are in ascending order of the values on the y axes.

provides an overview of the accuracy and robustness of the various models. Figures 11.2, and
11.3 present the breakdown by perturbation of the robustness of models on English and Spanish,
respectively. Figure 11.4 presents a breakdown of robustness by severity.

11.5 Compute Resources
The experiments were performed on the Bridges-2 cluster at the Pittsburgh Supercomputing Center.
This cluster contains 200 32G and 16G Nvidia V-100, which were used for these experiments.

11.6 Dataset Licenses
The licenses of each of the considered datasets are described in Table 11.5.
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Figure 11.2: NWERD of English models on different augmentations, averaged over all severities.
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Figure 11.3: NWERD of Spanish models on different augmentations, averaged over all severities.
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Figure 11.4: NWERD on English data as the severity of the augmentation is increased.

(a) (b)

Figure 11.5: Log WER Ratio between male and female speakers from Librispeech (English) (a)
and Spanish Multilingual Librispeech (b).

category clean accent audio proc noise (env) noise (white) sFX social (FF) social (NF) spatial synth speech AVG Adv (UA) Adv (US) AVG
lang dataset model (abrv) WER NWERD WERD

du MLS-DU

cnry-1b 4.0 - 15.5 5.3 6.0 12.4 - - 12.2 - 10.3 - - -
wsp-lg 7.3 - 14.3 2.6 6.5 4.1 - - 5.3 - 6.6 - - -
mms-1b 14.6 - 21.6 8.1 12.0 14.3 - - 18.9 - 15.0 - - -
wsp-bs 20.4 - 93.8 14.0 26.3 34.5 - - 24.7 - 38.6 - - -

en

LibriSpeech

prkt-rnnt-1.1b 1.6 - 5.1 2.6 1.8 3.7 - - 8.0 3.0 4.0 - - -
cnry-1b 1.7 - 12.3 3.0 2.7 12.7 - - 9.3 4.2 7.4 7.7 61.7 34.7
prkt-rnnt-0.6b 1.8 - 11.2 3.4 3.0 6.0 - - 9.4 3.8 6.1 - - -
w2v2-lg-slf 1.8 - 16.9 9.2 17.1 12.4 - - 14.4 5.5 12.6 12.5 58.0 35.2
prkt-ctc-0.6b 2.0 - 10.9 3.5 3.4 7.3 - - 10.4 4.7 6.7 - - -
prkt-ctc-1.1b 2.0 - 6.2 3.0 3.3 6.4 - - 9.1 4.4 5.4 - - -
hubt-xl 2.1 - 18.2 11.1 16.3 13.3 - - 14.7 5.5 13.2 26.7 54.4 40.5
hubt-lg 2.1 - 11.6 9.0 9.1 12.3 - - 15.0 6.5 10.6 34.9 50.0 42.5
sb-cnfmr 2.6 - 9.4 11.0 15.2 11.3 - - 19.0 7.4 12.2 - - -
w2v2-lg-rob 2.6 - 18.1 10.2 15.1 15.4 - - 16.9 5.9 13.6 45.8 61.0 53.4
sb-cnfmr-rnnt 2.7 - 15.7 9.8 17.2 9.6 - - 20.4 8.4 13.5 - - -
w2v2-lg 3.0 - 24.7 14.4 28.2 15.8 - - 21.8 8.6 18.9 29.0 44.3 36.6
w2v2-bs 3.7 - 30.6 18.9 36.4 20.3 - - 26.9 9.6 23.8 29.5 53.6 41.5
wsp-md 3.9 - 19.1 2.4 3.3 2.1 - - 3.8 5.3 6.0 1.7 51.9 26.8
wsp-lg 3.9 - 6.9 2.0 3.5 1.6 - - 3.0 4.0 3.5 3.4 43.6 23.5
wsp-sm.en 4.0 - 34.9 6.9 - 6.0 - - 3.9 6.2 11.6 - - -
wsp-md.en 4.1 - 16.0 4.9 - 2.8 - - 0.9 4.8 5.9 - - -
wsp-sm 4.3 - 27.9 4.0 5.4 4.5 - - 6.5 7.0 9.2 8.3 71.1 39.7
wsp-bs.en 5.1 - 48.0 12.4 - 17.9 - - 11.2 8.1 19.5 - - -
wsp-bs 5.9 - 63.6 6.6 11.0 14.8 - - 14.5 8.5 19.8 3.6 96.7 50.2
wsp-tn.en 6.4 - 57.2 8.6 14.0 25.8 - - 17.1 9.2 22.0 9.4 90.2 49.8
spch-t5 7.2 - 32.6 49.8 26.2 27.3 - - 67.9 64.3 44.7 52.4 106.4 79.4
sbcrdnn 7.2 - - 11.5 33.9 - - - - - 22.7 - - -
wsp-tn 8.2 - 68.4 13.8 17.4 26.1 - - 21.8 9.9 26.2 22.5 - 22.5
ds 15.1 - 37.9 26.2 28.9 32.0 - - 46.2 18.0 31.5 - 62.9 62.9
mms-1b 15.4 - 16.3 5.5 7.0 11.1 - - 11.9 8.9 10.1 6.2 44.6 25.4

TEDLIUM

cnry-1b 10.2 - 15.3 3.1 2.9 10.6 - - 11.7 1.5 7.5 21.9 - 21.9
wsp-md 12.0 - 22.9 1.7 3.5 3.1 - - 4.3 0.8 6.1 5.7 61.3 33.5
wsp-lg 12.1 - 12.5 2.5 2.6 2.3 - - 4.0 0.4 4.0 9.0 63.6 36.3
wsp-sm 12.3 - 32.0 2.3 4.9 6.1 - - 5.6 1.6 8.8 2.2 69.8 36.0
wsp-bs 13.3 - 67.6 5.8 8.8 19.2 - - 8.7 4.1 19.0 1.7 80.3 41.0
w2v2-lg-slf 13.5 - 27.6 9.5 19.3 17.2 - - 18.8 9.9 17.0 1.5 24.0 12.8
wsp-tn.en 13.7 - 50.9 7.2 10.9 29.3 - - 12.9 2.8 19.0 51.7 90.7 71.2
wsp-tn 14.4 - 59.7 11.5 15.8 29.9 - - 16.2 4.3 22.9 1.3 110.9 56.1
hubt-lg 14.7 - 19.9 9.2 12.1 16.2 - - 17.5 9.1 14.0 0.7 13.9 7.3
hubt-xl 14.7 - 24.6 11.1 17.3 16.9 - - 18.2 8.2 16.0 1.2 19.1 10.2
w2v2-lg-rob 15.2 - 24.4 8.7 15.7 18.7 - - 19.4 9.2 16.0 1.0 17.9 9.4
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w2v2-lg 16.5 - 31.2 12.9 24.7 18.8 - - 25.5 9.2 20.4 4.2 17.9 11.0
w2v2-bs 18.8 - 37.0 16.5 30.0 23.3 - - 32.6 9.5 24.8 7.1 19.9 13.5
mms-1b 30.2 - 19.0 6.2 7.3 12.1 - - 11.5 0.0 9.4 0.0 53.1 26.6
spch-t5 37.0 - 48.8 31.8 15.2 27.5 - - 48.1 21.7 32.2 31.8 90.6 61.2
ds 38.0 - 40.1 16.1 24.3 30.0 - - 48.7 7.3 27.8 15.3 51.5 33.4

ami

cnry-1b - - - - - - 31.7 13.9 - - 22.8 - - -
hubt-lg - - - - - - 51.0 27.7 - - 39.4 - - -
hubt-xl - - - - - - 51.1 27.6 - - 39.4 - - -
mms-1b - - - - - - 71.2 55.2 - - 63.2 - - -
prkt-ctc-0.6b - - - - - - 34.5 14.5 - - 24.5 - - -
prkt-ctc-1.1b - - - - - - 31.6 13.6 - - 22.6 - - -
prkt-rnnt-0.6b - - - - - - 37.0 16.7 - - 26.9 - - -
prkt-rnnt-1.1b - - - - - - 35.9 17.0 - - 26.4 - - -
sb-cnfmr - - - - - - 63.0 35.4 - - 49.2 - - -
sb-cnfmr-rnnt - - - - - - 58.6 31.6 - - 45.1 - - -
sbcrdnn - - - - - - 91.2 - - - 91.2 - - -
spch-t5 - - - - - - 304.3 221.9 - - 263.1 - - -
w2v2-bs - - - - - - 66.0 32.9 - - 49.4 - - -
w2v2-lg - - - - - - 59.6 30.8 - - 45.2 - - -
w2v2-lg-rob - - - - - - 51.1 24.7 - - 37.9 - - -
w2v2-lg-slf - - - - - - 50.6 26.2 - - 38.4 - - -
wsp-bs - - - - - - 39.5 19.1 - - 29.3 - - -
wsp-lg - - - - - - 29.3 15.9 - - 22.6 - - -
wsp-md - - - - - - 29.2 15.8 - - 22.5 - - -
wsp-sm - - - - - - 31.4 17.0 - - 24.2 - - -
wsp-tn - - - - - - 48.9 21.2 - - 35.0 - - -
wsp-tn.en - - - - - - 41.7 19.5 - - 30.6 - - -

chime

cnry-1b - - - - - - 55.6 28.8 - - 42.2 - - -
ds - - - - - - 90.6 84.0 - - 87.3 - - -
hubt-lg - - - - - - 82.1 55.2 - - 68.7 - - -
hubt-xl - - - - - - 81.1 54.6 - - 67.8 - - -
mms-1b - - - - - - 126.7 98.8 - - 112.7 - - -
prkt-ctc-0.6b - - - - - - 56.6 27.4 - - 42.0 - - -
prkt-ctc-1.1b - - - - - - 53.4 26.7 - - 40.0 - - -
prkt-rnnt-0.6b - - - - - - 60.5 28.3 - - 44.4 - - -
prkt-rnnt-1.1b - - - - - - 55.9 27.3 - - 41.6 - - -
sb-cnfmr - - - - - - 92.5 74.2 - - 83.3 - - -
sb-cnfmr-rnnt - - - - - - 84.3 60.5 - - 72.4 - - -
sbcrdnn - - - - - - 92.9 87.3 - - 90.1 - - -
spch-t5 - - - - - - 527.7 388.7 - - 458.2 - - -
w2v2-bs - - - - - - 88.7 64.6 - - 76.7 - - -
w2v2-lg - - - - - - 86.9 61.7 - - 74.3 - - -
w2v2-lg-rob - - - - - - 83.4 52.3 - - 67.8 - - -
w2v2-lg-slf - - - - - - 81.6 52.0 - - 66.8 - - -
wsp-bs - - - - - - 83.4 35.5 - - 59.4 - - -
wsp-lg - - - - - - 48.6 21.6 - - 35.1 - - -
wsp-md - - - - - - 50.6 22.8 - - 36.7 - - -
wsp-sm - - - - - - 59.2 24.9 - - 42.1 - - -
wsp-tn - - - - - - 98.6 46.3 - - 72.4 - - -
wsp-tn.en - - - - - - 80.4 35.2 - - 57.8 - - -

CV

cnry-1b - 4.6 - - - - - - - - 4.6 - - -
ds - 93.4 - - - - - - - - 93.4 - - -
hubt-lg - 14.1 - - - - - - - - 14.1 - - -
hubt-xl - 12.9 - - - - - - - - 12.9 - - -
mms-1b - 18.1 - - - - - - - - 18.1 - - -
prkt-ctc-0.6b - 5.8 - - - - - - - - 5.8 - - -
prkt-ctc-1.1b - 5.6 - - - - - - - - 5.6 - - -
prkt-rnnt-0.6b - 5.1 - - - - - - - - 5.1 - - -
prkt-rnnt-1.1b - 3.8 - - - - - - - - 3.8 - - -
sb-cnfmr - 20.3 - - - - - - - - 20.3 - - -
sb-cnfmr-rnnt - 19.1 - - - - - - - - 19.1 - - -
sbcrdnn - 44.8 - - - - - - - - 44.8 - - -
spch-t5 - 89.7 - - - - - - - - 89.7 - - -
w2v2-bs - 25.4 - - - - - - - - 25.4 - - -
w2v2-lg - 20.0 - - - - - - - - 20.0 - - -
w2v2-lg-rob - 13.9 - - - - - - - - 13.9 - - -
w2v2-lg-slf - 13.5 - - - - - - - - 13.5 - - -
wsp-bs - 10.0 - - - - - - - - 10.0 - - -
wsp-lg - 3.7 - - - - - - - - 3.7 - - -
wsp-md - 4.1 - - - - - - - - 4.1 - - -
wsp-sm - 6.5 - - - - - - - - 6.5 - - -
wsp-tn - 13.9 - - - - - - - - 13.9 - - -
wsp-tn.en - 12.7 - - - - - - - - 12.7 - - -

es

MLS-ES

cnry-1b 3.2 - 16.4 9.6 8.2 16.0 - - 10.9 - 12.2 26.1 84.3 55.2
wsp-lg 5.8 - 14.1 7.4 5.9 4.0 - - 2.0 - 6.7 13.7 65.0 39.4
w2v2-lg-es 6.8 - 21.2 14.7 22.1 19.0 - - 26.3 - 20.6 33.9 71.0 52.4
wsp-bs 14.8 - 90.9 22.7 27.3 32.5 - - 18.0 - 38.3 19.5 159.5 89.5
mms-1b 15.7 - 18.5 19.7 37.1 20.0 - - 14.9 - 22.0 7.4 53.8 30.6
wsp-tn 23.3 - 124.3 45.0 52.3 57.9 - - 41.8 - 64.3 43.1 269.9 156.5
w2v2-bs-es 25.7 - 32.4 20.4 24.2 24.1 - - 32.4 - 26.7 10.0 33.8 21.9

CV:es

cnry-1b - 205.0 - - - - - - - - 205.0 - - -
mms-1b - 7.7 - - - - - - - - 7.7 - - -
w2v2-bs-es - 13.3 - - - - - - - - 13.3 - - -
w2v2-lg-es - 9.3 - - - - - - - - 9.3 - - -
wsp-bs - 18.2 - - - - - - - - 18.2 - - -
wsp-lg - 2.0 - - - - - - - - 2.0 - - -
wsp-tn - 30.6 - - - - - - - - 30.6 - - -

fr MLS-FR

cnry-1b 6.1 - 15.2 5.2 7.3 13.0 - - 10.0 - 10.1 - - -
wsp-lg 7.7 - 15.5 3.5 8.3 5.6 - - 5.7 - 7.7 - - -
mms-1b 23.6 - 21.0 6.9 12.5 12.9 - - 15.6 - 13.8 - - -
wsp-bs 26.0 - 124.8 16.7 44.4 47.9 - - 25.9 - 51.9 - - -
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Table 11.6: Accuracy and robustness of ASR models on all datasets
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Lang Model Abrv. Params (M) Data (hrs) WER

EN

canary-1b [NVIDIA] cnry-1b 1,000.0 85,000 6.0
parakeet-ctc-0.6b [NVIDIA] prkt-ctc-0.6b 600.0 64,000.0 6.1
parakeet-ctc-1.1b [NVIDIA] prkt-ctc-1.1b 1,100.0 64,000.0 6.0
parakeet-rnnt-0.6b [NVIDIA] prkt-rnnt-0.6b 600.0 64,000.0 6.0
parakeet-rnnt-1.1b [NVIDIA] prkt-rnnt-1.1b 1,100.0 64,000.0 5.9
deepspeech[Amodei et al., 2016] ds 86.0 960 26.5
hubert-large-ls960-ft[Hsu et al., 2021a] hubt-lg 317.0 60,000 8.4
hubert-xlarge-ls960-ft[Hsu et al., 2021a] hubt-xl 964.0 60,000 8.4
mms-1b-fl102 [Pratap et al., 2023] mms-1b 964.6 55,000 22.8
speecht5 asr[Ao et al., 2022] spch-t5 154.6 960 22.1
wav2vec2-base-960h [Baevski et al., 2020] w2v2-bs 95.0 960 11.3
wav2vec2-large-960h [Baevski et al., 2020] w2v2-lg 317.0 960 9.7
wav2vec2-large-960h-lv60-self [Xu et al., 2021] w2v2-lg-slf 317.0 60,000 7.7
wav2vec2-large-robust-ft-libri-960h [Hsu et al., 2021b] w2v2-lg-rob 317.0 63,000 8.9
whisper-base [Radford et al., 2023] wsp-bs 74.0 680,000 9.6
whisper-base.en [Radford et al., 2023] wsp-bs.en 74.0 563,000 5.1
whisper-large-v2 [Radford et al., 2023] wsp-lg 1,550.0 680,000 8.0
whisper-medium [Radford et al., 2023] wsp-md 769.0 680,000 7.9
whisper-medium.en [Radford et al., 2023] wsp-md.en 769.0 563,000 4.1
whisper-small [Radford et al., 2023] wsp-sm 244.0 680,000 8.3
whisper-small.en [Radford et al., 2023] wsp-sm.en 244.0 563,000 4.0
whisper-tiny [Radford et al., 2023] wsp-tn 39.0 680,000 11.3
whisper-tiny.en [Radford et al., 2023] wsp-tn.en 39.0 563,000 10.1

ES

canary-1b [NVIDIA] cnry-1b 1,000.0 85,000 3.2
mms-1b-fl102 [Pratap et al., 2023] mms-1b 964.6 55,000 15.7
wav2vec2-base-10k-voxpopuli-ft-es [Wang et al., 2021b] w2v2-bs-es 94.4 10,116 25.7
wav2vec2-large-xlsr-53-spanish [Conneau et al., 2020] w2v2-lg-es 315.4 54,350 6.8
whisper-base [Radford et al., 2023] wsp-bs 74.0 680,000 14.8
whisper-large-v2 [Radford et al., 2023] wsp-lg 1,550.0 680,000 5.8
whisper-tiny [Radford et al., 2023] wsp-tn 39.0 680,000 23.3

Table 11.4: Models used in our evaluations.

Dataset License

LibriSpeech CC-BY-4.0
Multilingual Librispeech CC BY 4.0
TEDLIUM CC-BY-NC-ND 3.0
AMI CC-BY-4.0
Common Voice CC0-1.0
CHiME CC BY-SA 4.0

Table 11.5: Licenses of each of the considered datasets in SRB
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