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Abstract

As the capabilities of large-scale machine learning (ML) systems rapidly improve, reliable
development & deployment of these systems is increasingly gaining attention. Based on the
premise that ML models are in large part reflections of their training data, this thesis aims to
achieve reliable ML by developing principled, scalable, and operationalizable frameworks
for understanding the influence of (each) training data on the final ML models. Specifically,
in the development phase, such frameworks can be used for a wide range of data curation
tasks, including noisy label detection, data pruning, and data reweighting. In the deployment
phase, we can enable data attribution/valuation to address newly emerging societal challenges,
such as data author compensation and data copyright infringement detection.

Towards this goal, we propose extending the inductive programming framework that
likens training data (or inductive biases) in ML to source code in traditional software, noting
that source code plays a pivotal role in understanding software. In particular, we design a
unit data structure specific to inductive biases in ML, and establish a mathematical structure
by projecting each unit onto a gradient space with a local metric defined by the Fisher
information matrix (FIM). We show that various mathematical operations on this space, such
as inner product and norm, can be used to estimate the influence of each inductive bias on the
final behavior of ML models and uncertainty in its predictions, thereby laying the foundation
to control and interpret black-box ML models, similar to source code in traditional software.
Main challenges in operationalizing the above framework involve scalability, algorithmic
instability, and programming interface, due to the inherently high-dimensional and stochastic
nature of a gradient space. In this thesis, we specifically choose two tasks of automated data
optimization and data influence analyses, respectively for controllability and interpretability,
and address these challenges by co-designing ML algorithms, systems, and software. Our
systems for both tasks are open-sourced to facilitate research in this direction.
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Chapter 1

Introduction

The exponential progress in machine learning (ML) and artificial intelligence (Al) research
has led to the widespread adoption of advanced ML systems, such as large language models
(LLMs) [19, 157], across various sectors including the software industry [3, 139], digital
art [71, 138], and science [7]. Nevertheless, as these systems increasingly integrate into our
daily lives, a lack of principled understanding of how large-scale ML systems work poses
significant challenges to both users and developers. This rapid deployment of new, not fully
understood technologies can lead to various societal issues, from which ML systems are not
immune [14]. Several examples highlight these challenges:

Copyright Infringement Recently, the New York Times (NYT) filed a lawsuit against
OpenAl, alleging that ChatGPT was trained on NYT’s copyrighted data [57]. While model
providers like OpenAl claim that training ML models on copyrighted data is “fair use,” it
is well known that these models often regurgitate memorized training data [20], potentially
providing a way to bypass the paywall system for accessing copyrighted data. This raises
ethical questions about the extent to which ML models, generating revenue through the use
of copyrighted data, should compensate original content creators. Identifying the specific
training data utilized in proprietary LLMs to generate certain outputs remains a complex,
unresolved issue [23].

Privacy and Data Protection Studies have shown that LLMs trained on vast internet-scale
datasets can memorize and expose users’ private information via hand-crafted prompts [123].
This aspect is particularly concerning in the context of stringent global data protection
laws, such as GDPR [161] and CCPA [11]. Understanding the risk or mechanism of such
memorization of private information in ML models and preventing it is thus of paramount
importance in safeguarding user privacy [20].

Challenges in ML development Unintended behaviors in ML systems, such as incorrect
predictions or biases, can stem from various causes [149, 156]. These might include the
absence of similar samples in the training data or mislabeling within the dataset. Without
effective mechanisms to swiftly pinpoint the root causes of such issues, rapid iteration and
improvement in ML development become challenging.
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To address these challenges, this thesis focuses on understanding ML systems through
the lens of their training data. This approach is based on the premise that ML systems are
largely reflections of the data they are trained on. For instance, if training data exhibit biases
towards a specific subgroup of people [156] or includes private information [116], there is an
increased chance that the ML model trained on such training data inherits similar biases or
reveals private information in the deployment phase.

Consequently, this thesis begins by establishing a principled framework for understanding
the influence of (each) training data on the final ML system using the counterfactual analysis:
how does including (or excluding) a specific training sample affect the optimization procedure
and thereby the final model weights? To answer this question, we can model the change in
the training gradient when in/excluding a specific example at each time step, compute the
change in the weight update due to the gradient change, and accumulate such changes over
the entire optimization steps. More formally, we can view the gradient-based optimization
process as dynamical systems or discretized differential equations [94, 98, 151]. Then, we
can interpret training data as initial values, and study its impact on the model throughout
the optimization process, drawing inspiration from well-established techniques in initial
value problems [6]. When combined with other mathematical tools like Taylor series, these
analyses enable applications such as data attribution and data optimization, both of which are
important in interpreting and controlling ML systems.

While this approach offers theoretical appeal, it faces significant scalability challenges
in practice, as the dimension of the optimization problem is equal to the number of model
parameters, which often exceeds billions in recent ML systems [19, 157]. To address this, this
thesis combines knowledge from both algorithms and systems to mitigate the computational
and memory costs of the analysis. Specifically, we introduce efficient approximations to exist-
ing analysis methods that are compatible with modern hardware (e.g., GPUs) and distributed
computing. These innovations enable the application of our framework to large-scale ML
models, bridging the gap between theoretical understanding and practical implementation.

Finally, to ensure that our mathematical frameworks for understanding training data has
tangible real-world impacts, we further endeavor to operationalize our frameworks from
traditional software perspectives. More specifically, we draw an insightful analogy between
ML and traditional programming inspired by the long-established concept of inductive
programming [44], especially noting that training data is a major component in inductive
biases. Such an approach proves particularly enlightening, as questions challenging to
address in the context of ML (e.g., interpretability) oftentimes become clearer when posed in
the realm of traditional programming. Additionally, the rich history of established practices
in traditional programming, like unit testing and version control, offers a valuable repository
of strategies potentially adaptable to ML development.

While our approach shares similarities with other interpretability research, it offers a
unique perspective. Notably, mechanistic interpretability [39, 115] parallels model weights in
ML to binary machine code in conventional software, aiming to develop reverse-engineering
techniques for ML inspired by those used in traditional programming. Despite promising
initial results, machine code often proves too low-level for most practitioners to work with
comfortably, thereby failing to provide actionable insights to improve their models. In



1.1 Machine Learning & Programming 3

contrast, this thesis primarily focuses on the “source code” analogue in ML, aiming to
develop a framework for understanding ML models at a more accessible and conceptual level.
This approach bridges the gap between theoretical understanding and practical application,
offering insights that can directly inform model development and improvement.

1.1 Machine Learning & Programming

Towards this goal, we review basic concepts in traditional programming (or software devel-
opment) and machine learning respectively. The primary goal of software development is to
create executable software that fulfills the needs of its stakeholders. This process begins with
specifications, which outline the desired functionalities, performance criteria, and operational
requirements of the final software in a highly abstract form. Developers then translate these
abstract specifications into concrete rules and instructions by writing source code with the
help of programming language that provides the necessary syntax and semantics. Subse-
quently, source code is translated into binary machine code with compilers, rendering the
resulting software directly executable by the computer. In essence, the software development
process can be viewed as a gradual transformation of high-level, human-friendly abstractions
into low-level, machine-friendly instructions.

Machine learning (ML) conducts model fitting over diverse tasks, such as object detection,
image classification, or language modeling, given inductive biases from developers. This
process can be formulated as an optimization problem, as shown in the following equation:

0" = argmin L(6;D,A, 1) (1.1)
0

where 6 / 0* are the trainable / final model weights, and (D, A, L, A) respectively denote the
training dataset, network architecture, objective, and hyperparameters, together which define
inductive biases in ML. Oftentimes, under the independent and identically distributed (i.i.d.)
data and negative log-likelihood assumptions, Eq. (1.1) is further decomposed into:

n

6* = argmin %ZLi(G;xi,Ai, ) (1.2)
6 i=1

where (x;,A;, L;, A;) are i-th training data, architecture, objective, and hyperparameter. We

note that, while (A;,L;, A;) are commonly fixed across data samples, there are several cases

like multi-task learning where they may vary.

Among multiple approaches to solving the optimization problem in Eq. (1.2), the most
popular approaches, especially in the context of deep neural networks, are stochastic gradient
descent (SGD) and its variants. These approaches iteratively update the model weights using
gradients computed from each mini-batch until the final model weights 0* are obtained at
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convergence, as illustrated in the update equation below:

B ZER AT TR T . 9" =1lime, (1.3)
20 06, f—o0

9:+1 =6 -k

where B; is a mini-batch and F; is the update rule of optimizer at time step ¢.

Based on the concepts introduced above, inductive programming likens inductive biases
(D, A, L, A) in ML to specifications/source code in traditional software,' 2) the optimization
process in Eq. (1.3) to the compilation process, and 3) the final model weight 6* to machine
code.” Despite the appeal of this analogy, we emphasize the obscure interpretation of ML
inductive biases as both source code and specifications. In traditional software, source code
implements explicit instructions and rules for the computer to follow, serving as a basis for
deductive reasoning to understand software behavior. In ML, inductive biases implement the
desired behaviors as source code, but in a highly abstract manner as specifications. In this
thesis, we argue that the specification nature of inductive biases substantially complicates
the process of understanding their influence on ML model behaviors, in contrast to the more
direct impact of source code on traditional software behaviors.

1.1.1 Unit Data Structure for Inductive Bias

One common strategy to improve the clarity, maintenance, and organization of source code in
traditional programming is introducing a custom data structure (or composite data type), such
as “struct” in C or “dataclass” in Python. Inspired by this strategy, we propose a unique “unit”
data structure for ML inductive biases that would serve as a foundation for understanding
their influence on final model behaviors. To this end, we first notice that the optimization
problem in Eq. (1.2) is a summation of n sub-objectives, potentially providing the necessary
modularity for controlling and interpreting ML models. Accordingly, we define a unit data
structure for ML as follows:

Definition 1 A unit of the inductive bias in machine learning is defined as (x;,Li,A;, ;).

This conceptualization, where x;, L;, A;, and A; are considered collectively, is important as
changing one component of this tuple can significantly affect the following optimization
(compilation) process and model weights (machine code). For example, keeping data x; and
architecture A; constant, but changing L; to its adversarial counterpart —L;, could drastically
modify the final behavior of the ML model. Similarly, even if x; and L; are fixed, if we update
different parts of the model (e.g., last layer finetuning vs full finetuning), they may result in
very different ML models. As a result, this sensitivity to context challenges the stability of
these elements as basic units for analyzing model behaviors. Importantly, we note that the
concept of our unit data structure is not limited to source code, but can also be applied in the

Inductive biases in ML are originally considered as incomplete specifications in inductive programming,
but a recent paradigm like Software 2.0 interprets it as source code

ZInterestingly, under the "training data as source code" analogy, claims of models like LLaMA and Mistral
being open source are challenged, as their training data are not publicly accessible.
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test phase, given test data, architecture, and objective. In essence, ML development — from
data preparation to architecture and objective design — amounts to writing source code by
instantiating multiple abstract unit variables.

1.1.2 Gradient Mapping of Unit

While the modularity offered by Eq. (1.2) and our proposed unit data structure enhances
the organization of ML inductive biases, it does not necessarily provide explicit rules or
instructions for the final model to follow, unlike traditional source code. To bridge this gap,
we instead propose to map these unit variables into a vector space, following the concept of
distributed representation, and build the algebraic (or mathematical) structure that can serve
as a ground for deductive reasoning to understand their influence on final model behaviors.
Here, we specifically consider mapping each unit variable to its gradient computed at the
final model weight 6*.

Definition 2 Gradient mapping g : S — V C RI™®) of the unit variable (x',L' A',A") is:

! . / /
a((.ra)) =2 <9’;9’A )

0=0*

This mapping process enables us to translate the abstract nature of an inductive bias unit into
a more concrete and analyzable form.

Next, we incorporate the Mahalanobis distance with respect to the training gradient
distribution as our chosen metric in the vector space V. To set the stage for this, two key
observations are noted. First, the average training gradient u at the final model weight 68*
is 0, as a result of the convergence condition in optimization. Second, under the maximum
likelihood assumption, the covariance of training gradient, which is the Fisher Information
Matrix (FIM) by definition”, equates to the Hessian. Based on these observations, we define
an inner product that leads to the above Mahalanobis metric as follows:

Definition 3 For g, g’ € V, inner product can be defined as:
inner(g',g”;D,L,A) — g//TFflg/ — g//THflg/

where F and H are respectively the FIM (i.e., B¢ p 1A [ggT}) and the Hessian. Extending
the above definition of an inner product, one can easily derive other measures including norm,
distance, or cosine similarity, and thereby enables diverse mathematical analyses.

1.1.3 Interpretability: Data Influence Analysis

Interestingly, we notice that the inner product defined in Definition 3 corresponds to the
influence function commonly referenced in the robust statistics literature [27, 29, 96, 28,

3Empirical FIM, which is computed with gradient sampled from empirical distribution, isn’t same with
Hessian. Nevertheless, empirical FIM is frequently used instead of true FIM in practice without noticeable
differences in performance.
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Fig. 1.1 A diagram of comparing traditional programming and machine learning.

87]. In simpler terms, the influence function is an approximate measure of how much an
estimator depends on a specific observation, based on a Taylor series expansion, or, more
formally, Cauchy’s implicit function theorem. In the context of our research, this translates
to approximately measuring the dependence of a test unit variable on a specific train unit
variable. For instance, if the inner product (or influence score) between train and test unit
variables is high (or low), meaning their gradients are positively (or negatively) aligned,
then the train unit variable increases (or decreases) the likelihood of the test unit variable.
Conceptually, this is akin to the concrete rules and actions implemented in source code of
traditional software. Furthermore, if we linearly combine inner product values (or influence
scores) of all train unit variables as in Eq. (1.2), ML development can be understood as
writing multiple rules by instantiating various train unit variables.

Furthermore, we notice that the norm of each unit variable, i.e. inner(g’,g') = ¢TH ¢/,
equates with the score in statistical hypothesis testing, a measure that has been employed for
out-of-distribution (OOD) detection [15]. Alternatively, one can also interpret the norm of
each unit variable as an uncertainty measure under the Laplace approximation of the Hessian.

Theorem 1 Given p;4 is the Laplace approximation of posterior, the following holds:

1ig- A AN\T (. Al
inner(g',8') =Eop,, (W) . (W) ~Varg.p,, [L(G;x/,L',A')]
The immediate application is that we can build the “try-except” (or “try-catch”) statement by
utilizing the norm as an indicator for the improved runtime error handling.

Moreover, interpreting the norm as a measure of uncertainty for each unit variable allows
us to refine our understanding of the influence concept from Definition 3. Intuitively, when
there is greater uncertainty associated with a specific train unit variable, the inner product
computed against it would better be penalized accordingly. Two straightforward penalty
strategies include: subtracting the uncertainty from the influence, or dividing the influence
by the uncertainty. Mathematically, each of these strategies corresponds to computing the
L, distance and the cosine similarity. Notably, the latter method, dividing the influence
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by the uncertainty, aligns with the concept of “RelatIF” that has been explored in prior
literature [12].

As our framework establishes a connection between ML and traditional software de-
velopment at a functional level, unlike the more conceptual approach seen in inductive
programming paradigms (e.g., Software 2.0), it naturally leads to the adoption of various
software development practices in the ML context. For example, developers can create
unit tests by selecting a small number of test unit variables that embody desired charac-
teristics (e.g., fairness). They can then evaluate the effectiveness of their ML source code
implementation by computing the inner product of all train unit variables against these test
unit variables. This would further pave the way for integrating concepts including version
control, continuous integration and continuous deployment (CI/CD), and monitoring into ML
development. These practices are vital for controlling, interpreting, and efficiently managing
complex ML systems, mirroring their critical role in traditional software development. By
borrowing and adapting these established software practices, we can enhance controllability
and interpretability of ML models, and thereby enable agile ML development, especially
under the evolving requirements.

1.1.4 Controllability: Automated ML

In the previous section, we showed that the correctness of the source code implementation
can be measured by computing inner product against test unit variables. A natural next step
is to automatically modify source code in a way that modified source code maximizes the
inner product against test unit variables. This process is highly related to program synthesis,
a concept of automatically constructing source code, of which resulting software (provably)
meets high-level specifications. In this section, we derive the formal connection between
these two concepts.

Reminding that inductive biases in ML serve as both specifications and source code, we
can understand ML program synthesis as solving train inductive biases, of which resulting
model weights 8* after optimization, satisfies test inductive biases. To ensure modifiablility
of train inductive biases, we posit they are additionally parameterized by hyperparameters A.
Given this setup, ML program synthesis can naturally be formulated as bi-level optimization

or meta learning as in the following equations:*
A* = argmin Lyg (0% (A); Dyest) (1.4)
A
s.t. 0" (A) = argmin Leyain(0; Drrains Atrains 1) (1.5)
]

One of the popular approaches to solve meta learning is implicit differentiation, which
calculates the best-response Jacobian by leveraging Cauchy’s Implicit Function Theorem
(IFT) and re-interpreting the base optimization problem from the perspective of fixed-point

“Meta learning, as its name indicates, shares a lot of common concepts with meta-programming, of which
sub-field is program synthesis.
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iteration as follows:

aLtest o 20" . aLtest o _athrain . a2Ltrain . aLtest (1.6)
oA I 20* 0Ad6* 06°2 06 '
~~ S——

best-response Jacobian  direct gradient

Assuming that the Hessian is independent from hyperparameters A, Eq. (1.6) can be re-written
as:

aLtest o J (aLtrain a2Lzmin aLIest) (1.7)

dL  IA\ 96 9672 Q6+

Since the term inside the parentheses is inner product defined in Definition 2.4, we showed
that ML program synthesis by solving Eq. (1.5) with the update rule of Eq. (1.7) to con-
vergence is equal with maximally aligning gradients between train and test unit variables,
thereby gaining controllability.

1.1.5 Remarks

Before concluding this section, it is important to acknowledge that the concepts of gradient
mapping and Mahalanobis distance in our framework are not entirely novel. For instance,
the work of Jaakkola et al. on the Fisher kernel, which aimed to utilize generative models
in discriminative classifiers, shares similarities with our approach [79]. However, such
frameworks have not been extensively explored in modern ML contexts, primarily due to
scalability challenges arising from the high-dimensional nature of gradients in contemporary
models. Our thesis contributes to this area by addressing these scalability concerns and
further extends the understanding of modern ML models. Additionally, an attempt to improve
controllability and interpretability of ML models by drawing the parallels between ML and
software development is an original contribution of this thesis. This not only leverages the
functional aspects of software engineering but also adapts them to the unique needs and
challenges of ML, offering new perspectives and methodologies in the field.

1.2 Thesis Overview

In main chapters, we describe our efforts in building practical applications of aforementioned
automated ML and data influence analyses, including but not limited to data optimization,
training data attribution, and hallucination detection. From the technical viewpoint, main
challenges involve scalability, algorithmic instability, and programming interface, due to the
inherently high-dimensional and stochastic nature of a gradient space. We attempt to tackle
these issues holistically by approaching the problems from both ML algorithm and system
perspectives. More detailed contributions are provided below.
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1.2.1 Controllability: Automated ML

Systems (Section 2 & [24]): Given the specific objective, optimizing ML source code
amounts to aligning gradient in the intermediate representation space, which shares the
same mathematical formulation as gradient-based bi-level optimization or meta learning
(GBML). However, many GBML algorithms are notoriously difficult to implement and
memory/compute intensive, mostly due to Hessian-involved operations. As an initial step
towards closing this gap, we introduce BETTY, an automatic differentiation library for
generalized meta learning (or multi-level optimization) that hides the intricate mechanism of
gradient alignment (or meta gradient computation) from the users while supporting various
system optimization for the improved scalability. We empirically demonstrate that BETTY
can be used to optimize an array of ML source code, while also observing up to 11% increase
in test accuracy, 14% decrease in GPU memory usage, and 20% decrease in training wall
time over existing implementations on multiple benchmarks.

Algorithms (Section 3 & [22]): To mitigate the scalability and stability issues stemming
from the Hessian-involved operations in GBML, we develop SAMA, a variant of an implicit
differentiation algorithm. Specifically, SAMA is designed to flexibly support a broad range of
adaptive optimizers in the base level of meta learning programs, while reducing computational
burden by avoiding explicit computation of second-order gradient information, and exploiting
efficient distributed training techniques implemented for first-order gradients. Evaluated on
multiple large-scale meta learning benchmarks, SAMA showcases up to 1.7/4.8 X increase in
throughput and 2.0/3.8 x decrease in memory consumption respectively on single-/multi-GPU
setups compared to other baseline meta learning algorithms. BETTY is publicly available at
https://github.com/leopard-ai/betty.

1.2.2 Interpretability: Data Influence Analysis

Systems (Section 4 & [23]): Interpreting the influence of each training data on the final
model behavior can be achieved by comparing train and test gradients using influence func-
tions. To operationalize this process, we use gradient as a representation for each train/test
example and translate the data influence analysis as the representation similarity analysis,
for which various system optimizations (e.g., vector database [83]) exist. Specifically, we
introduce a software package called LOGIX that intercepts per-sample gradients, computes
necessary statistics (e.g., Fisher information matrix), and write/query gradients to vector
database. Our software design, which is similar to those of ML logging tools like Tensor-
board and Weights & Biases, achieves high compatibility & interoperability with diverse
(scalability) tools and frameworks in the recent ML ecosystem, such as Deepspeed [133] and
Transformers [166], and thereby enables easy conversion of users’ existing training codes
into data influence analysis codes. Finally, LOGIX implements a few additional system
optimizations such as asynchronous data IO to improve efficiency of data influence analyses.
LOGIX is publicly available at https://github.com/logix-project/logix.


https://github.com/leopard-ai/betty
https://github.com/logix-project/logix
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Algorithms (Section 4 & [23]): Due to the high-dimensional nature of gradient, the
data influence analysis significantly suffers from high compute, memory, and storage costs.
To address this issue, we develop an efficient gradient projection strategy called LOGRA
that leverages the gradient structure in backpropagation. We then provide a theoretical
motivation of gradient projection approaches to influence functions to promote trust in the
data influence analysis. In our data valuation experiments, LOGRA, implemented with
LoGIX, achieves competitive accuracy against more expensive baselines while showing
up to 6,500 x improvement in throughput and 5x reduction in GPU memory usage when
applied to Llama3-8B- Instruct and the 1B-token dataset.
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Chapter 2

Automatic Differentiation for Generalized
Meta Learning

Automated ML, often formulated as meta learning or bi-level optimization, enables users to
control the final behavior of ML models by letting them curate a small number of test unit
variables that possess desired characteristics (e.g., fairness and label correctness). However,
meta gradient (or hypergradient) in Eq. (1.7) is notoriously difficult to implement and
memory/compute intensive. In this section, we introduce BETTY, an automatic differentiation
framework for generalized meta learning (GML), that abstracts away implementation details
of meta gradient algorithms as well as provides the foundation for various systems support
for scalability (e.g., mixed precision, distributed training) for developers.

2.1 Introduction

Generalized meta learning (GML) addresses nested optimization scenarios, where upper
level optimization problems are constrained by lower level optimization problems following
an underlying hierarchical dependency. GML has gained considerable attention as a unified
mathematical framework for studying diverse problems including meta-learning [43, 130],
hyperparameter optimization [45], neural architecture search [99], and reinforcement learn-
ing [89, 131]. While a majority of existing work is built upon bilevel optimization, the
simplest case of GML, there have been recent efforts that go beyond this two-level hierarchy.
For example, [128] proposed trilevel optimization that combines hyperparameter optimiza-
tion with two-level pretraining and finetuning. More generally, conducting joint optimization
over machine learning pipelines consisting of multiple models and hyperparameter sets can
be approached as deeper instances of GML [50, 128, 148, 152].

Following its increasing popularity, a multitude of optimization algorithms have been
proposed to solve GML. Among them, gradient-based (or first-order) approaches [121,
103, 128, 141] have recently received the limelight from the machine learning community,
due to their ability to carry out efficient high-dimensional optimization, under which all of
the above listed applications fall. Nevertheless, research in gradient-based GML has been
largely impeded by two major bottlenecks. First, implementing gradients in generalized
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Fig. 2.1 In Engine (left), users define their GML program as a hierarchy/graph of opti-
mization problems. In Problem (middle), users define an optimization problem with a data
loader, cost function, module, and optimizer, while upper/lower level constraint problems
(i.e. %,-) are injected by Engine. The “step” function in Problem serves as the base
of gradient-based optimization, abstracting the one-step gradient descent update process.
Finally, users can easily try out different best-response Jacobian algorithms & system features
(right) via Config in a modular manner.

meta learning, which is achieved by composing best-response Jacobians via the chain
rule, requires both programming and mathematical proficiency. Second, algorithms for
best-response Jacobian calculation, such as iterative differentiation (ITD) or approximate
implicit differentiation (AID) [53], are memory and compute intensive, as they require
multiple forward/backward computations and oftentimes second-order gradient (i.e. Hessian)
information.

In recent years, there has been some work originating in the meta-learning community on
developing software libraries that target some aspects of gradient-based GML [17, 32, 54].
For example, JAXopt [17] provides efficient and modular implementations of AID algorithms
by letting the user define a function capturing the optimality conditions of the problem to
be differentiated. However, JAXopt fails to combine the chain rule with AID to support
general GML programs beyond a two-level hierarchy. Similarly, higher [54] provides
several basic primitives (e.g. making PyTorch’s [118] native optimizers differentiable) for
implementing ITD/AID algorithms, but users still need to manually implement complicated
internal mechanisms of these algorithms as well as the chain rule to implement a given
instance of GML. Furthermore, most existing libraries do not have systems support, such
as mixed-precision and data-parallel training, that could mitigate memory and computation
bottlenecks. As a result, gradient-based GML research built upon these libraries has been
largely limited to simple bilevel optimization and small-scale setups.

In this work, we attempt to bridge this gap between research and software systems by
introducing BETTY, an easy-to-use and modular automatic differentiation library with various
systems support for large-scale GML. The main contributions of this work are as follows:

1. We develop an efficient automatic differentiation technique for GML based on a novel
interpretation of GML as a special type of dataflow graph (Section 2.3). In detail, gradient
calculation for each optimization problem is automatically carried out by iteratively
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multiplying best-response Jacobians (defined in Section 2.2) through the chain rule while
reverse-traversing specific paths of this dataflow graph. This reverse-traversing procedure
is crucial for efficiency, as it reduces the computational complexity of our automatic
differentiation technique from ¢'(d?) to €'(d?), where d is the dimension of the largest
optimization problem in the GML program.

2. We introduce a software library for GML, BETTY, built upon the above automatic dif-
ferentiation technique. Our software design (Section 2.4), motivated by the dataflow
graph interpretation, provides two major benefits: (1) it allows for incorporating various
systems support, such as mixed-precision and data-parallel training, for large-scale GML,
and (2) it facilitates implementation of GML programs of arbitrary complexity while
allowing a modular interface for diverse algorithmic and systems design choices. The
overall software architecture of BETTY is presented in Figure 2.1.

3. We empirically demonstrate that BETTY can be used to implement an array of GML
applications with varying scales and complexities (Section 2.5). Interestingly, we observe
that trying out different best-response Jacobian algorithms with our modular interface
(which only requires changing one line of code) can lead to up to 11% increase in test
accuracy, 14% decrease in GPU memory usage, and 20% decrease in training wall time
on various benchmarks, compared with the original papers’ implementations. Finally, we
showcase the scalability of BETTY to models with hundreds of millions of parameters by
performing GML on the BERT-base model with the help of BETTY’s systems support,
which was otherwise infeasible.

2.2 Background

To introduce GML, we first define a core concept known as a “constrained problem” [160].

Definition 4 An optimization problem P is said to be constrained by A when its cost
function € has A as an argument in addition to the optimization parameter 0 (i.e. P :
argming €' (6,A,---)).

Generalized meta learning [112] refers to a field of study that aims to solve a nested set
of optimization problems defined on a sequence of so-called /evels, which satisfy two main
criteria: A1) upper-level problems are constrained by the optimal parameters of lower-level
problems while A2) lower-level problems are constrained by the nonoptimal parameters of
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upper-level problems. Formally, an n-level GML program can be written as:

P,: 67 =argmin 6,(6,, %, Ln; Dn) > Level n problem
6,
P : s.t. 0 = argmin 6;(6k, %, L1 Yk) > Level k € {2,...,n— 1} problem
Ok
P : s.t. 0] =argmin 6, (01,%,-£1;71)  ©> Level 1 problem
01

where, Py stands for the level k problem, 6 / 6/ for corresponding nonoptimal / optimal
parameters, and % / .Z;. for the sets of constraining parameters from upper / lower level
problems. Here, Z is the training dataset, and %} indicates the cost function. Due to criteria
Al & A2, constraining parameters from upper-level problems should be nonoptimal (i.e.
U, {61, ,06,}) while constraining parameters from lower-level problems should be
optimal (i.e. £ C {6],---,6, | }). Although we denote only one optimization problem per
level in the above formulation, each level could in fact have multiple problems. Therefore,
we henceforth discard the concept of level, and rather assume that problems {P;,Ps,--- ,B,}
of a general GML program are topologically sorted in a “reverse” order (i.e. P, / P; denote
uppermost / lowermost problems).

For example, in hyperparameter optimization formulated as bilevel optimization, hyper-
parameters and network parameters (weights) correspond to upper and lower level parameters
(6, and 6;). Train / validation losses correspond to €7 / %>, and validation loss is dependent
on optimal network parameters 6, obtained given 68,. Thus, constraining sets for each level
are %1 = {6} and %> = {6/ }.

In this work, we focus in particular on gradient-based GML, rather than zeroth-order
methods like Bayesian optimization [31], in order to efficiently scale to high-dimensional
problems. Essentially, gradient-based GML calculates gradients of the cost function 6 ( 6y, %, %)
with respect to the corresponding parameter 6y, with which gradient descent is performed to

solve for optimal parameters 6; for every problem P;. Since optimal parameters from lower

level problems (i.e. 6, € %) can be functions of 6 (criterion A2), %ﬁ‘ can be expanded

using the chain rule as follows:

dé, 0%, do; Gk
ok 9% S x =k 2.1)
doy 26 9 c. & d 6y ae[
~—~—~ 1 k N~~~ ~—~—
direct gradient best-response Jacobian  direct gradient

While calculating direct gradients (purple) is straightforward with existing automatic dif-
ferentiation engines like PyTorch [118], a major difficulty in gradient-based GML lies in
best-response Jacobian' (orange) calculation, which will be discussed in depth in Section 2.3.
Once gradient calculation for each level & is enabled via Equation (2.1), gradient-based

'We abuse the term Jacobian for a total derivative here while it is originally a matrix of partial derivatives
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optimization is executed from lower to upper level problems in a topologically reverse order,
reflecting underlying hierarchies.

2.3 Method

While Equation (2.1) serves as a mathematical basis for gradient-based generalized meta
learning, how to automatically and efficiently carry out such gradient calculation has not
been extensively studied and incorporated into a software system that can support GML
programs involving many problems with complex dependencies. In this section, we discuss
the challenges in building an automatic differentiation library for GML, and provide solutions
to address these challenges.

2.3.1 Dataflow Graph for Generalized Meta Learning

One may observe that the best-response Jacobian term in Equation (2.1) is expressed with
a total derivative instead of a partial derivative. This is because 6; can affect 6, not only
through a direct interaction, but also through multiple indirect interactions via other lower-
level optimal parameters. For example, consider the four-problem GML program illustrated
in Figure 2.2. Here, the parameter of Problem 4 (6,,) affects the optimal parameter of
Problem 3 (9;3) in two different ways: 1) 6,, — 9;3 and 2) 6,, — 6;;1 — 91’,"3. In general, we

can expand the best-response Jacobian % in Equation (2.1) by applying the chain rule for
all paths from 6 to 6, as

00" len(g)~1 96* .
d_%_&%k+ Y ) ( a(1) ><< I1 a(it]) )xa(gk> (2.2)

doy 06, 0/ e 4 D1, 06, i d Gj(i) d 91*

upper-to-lower

lower-to-upper

where 2y ; is a set of paths from 6 to 6/, and ¢(i) refers to the index of the i-th problem in
the path ¢ with the last point being 6,". Replacing a total derivative term in Equation (2.1)
with a product of partial derivative terms using the chain rule allows us to ignore indirect
interactions between problems, and only deal with direct interactions.
To formalize the path finding problem, we develop a novel
dataflow graph for GML. Unlike traditional dataflow graphs with no
predefined hierarchy among nodes, a dataflow graph for generalized
meta learning has two different types of directed edges stemming
from criteria A1 & A2: lower-to-upper and upper-to-lower. Each
of these directed edges is respectively depicted with green and
red arrows in Figure 2.2. Essentially, a lower-to-upper edge repre-
sents the directed dependency between two optimal parameters (i.e.
G;i — G;j with P; < P;), while an upper-to-lower edge represents the Fig. 2.2 Example GML
directed dependency between nonoptimal and optimal parameters dataflow graph.
(i.e. Op — 9;‘,], with P; > P;). Since we need to find paths from the
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nonoptimal parameter 6y to the optimal parameter 6", the first directed edge must be an
upper-to-lower edge (red), which connects 6, to some lower-level optimal parameter. Once it
reaches the optimal parameter, it can only move through optimal parameters via lower-to-
upper edges (green) in the dataflow graph. Therefore, every valid path from 6y to 6;" will start
with an upper-to-lower edge, and then reach the destination only via lower-to-upper edges.
The best-response Jacobian term for each edge in the dataflow graph is also marked with the
corresponding color in Equation (2.2). We implement the above path finding mechanism
with a modified depth-first search algorithm in BETTY.

2.3.2 Gradient Calculation with Best-Response Jacobians

Automatic differentiation for GML can be realized by calculating Equation (2.2) for each
problem P, (k=1,--- ,n). However, a naive calculation of Equation (2.2) could be computa-
tionally onerous as it involves multiple matrix multiplications with best-response Jacobians,
of which computational complexity is &(d?), where d is the dimension of the largest opti-
mization problem in the GML program. To alleviate this issue, we observe that the rightmost
term in Equation (2.2) is a vector, which allows us to reduce the computational complex-
ity of Equation (2.2) to & (dz) by iteratively performing matrix-vector multiplication from
right to left (or, equivalently, reverse-traversing a path ¢ in the dataflow graph). As such,
matrix-vector multiplication between the best-response Jacobian and a vector serves as a
base operation of efficient automatic differentiation for GML. Mathematically, this problem
can be simply written as follows:

ow* (1)
oA
Given w*(4) = argmin & (w, 7). (2.4

w

Calculate XV 2.3)

Two major challenges in the above problems are: 1) approximating the solution of the
optimization problem (i.e. w*(1)), and 2) differentiating through the (approximated) solution.

In practice, an approximation of w*(A) is typically achieved by unrolling a small number
of gradient steps, which can significantly reduce the computational cost [45]. While we
could potentially obtain a better approximation of w*(A4) by running gradient steps until
convergence, this procedure alone can take a few days (or even weeks) when the underlying
optimization problem is large-scale [33, 35].

Once w*(A) is approximated, matrix-vector multiplication between the best-response
Jacobian %ﬁ’l) and a vector v is popularly obtained by either iterative differentiation (ITD)
or approximate implicit differentiation (AID) [53]. This problem has been extensively studied
in bilevel optimization literature [43, 45, 103], and we direct interested readers to the original
papers, as studying these algorithms is not the focus of this work. In BETTY, we provide
implementations of several popular ITD/AID algorithms which users can easily plug-and-
play for their GML applications. Currently available algorithms within BETTY include

ITD with reverse-mode automatic differentiation (ITD-RMAD) [43], AID with Neumann
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series (AID-NMN) [103], AID with conjugate gradient (AID-CG) [130], and AID with finite
difference (AID-FD) [99].

2.3.3 Execution of Generalized Meta Learning

In GML, optimization of each problem should be performed in a topologically reverse order,
as the upper-level optimization is constrained by the result of lower-level optimization. To
ease an GML implementation, we also automate such an execution order with the dataflow
graph developed in Section 2.3.1. Specifically, let’s assume that there is a lower-to-upper
edge between problems P; and P; (i.e. 6 — 9;). When the optimization process (i.e. a
small number of gradient steps) of the problem P, is complete, it can call the problem P; to
start its one-step gradient descent update through the lower-to-upper edge. The problem P;
waits until all lower level problems in .Z; send their calls, and then performs the one-step
gradient descent update when all the calls from lower levels are received. Hence, to achieve
the full execution of gradient-based GML, we only need to call the one-step gradient descent
processes of the lowermost problems, as the optimization processes of upper problems will
be automatically called from lower problems via lower-to-upper edges.

To summarize, automatic differentiation for GML is accomplished by performing gradient
updates of multiple optimization problems in a topologically reverse order based on the
lower-to-upper edges (Sec. 2.3.3), where gradients for each problem are calculated by
iteratively multiplying best-response Jacobians obtained with ITD/AID (Sec. 2.3.2) while
reverse-traversing the dataflow graph (Sec. 2.3.1).

2.4 Software Design

On top of the automatic differentiation technique developed in Section 2.3, we build an easy-
to-use and modular software library, BETTY, with various systems support for large-scale
gradient-based GML. In detail, we break down GML into two high-level concepts, namely
1) optimization problems and 2) hierarchical dependencies among problems, and design
abstract Python classes for both of them. Such abstraction is also motivated by our dataflow
graph interpretation, as each of these concepts respectively corresponds to nodes and edges.
The architecture of BETTY is shown in Figure 2.1.

Problem Each optimization problem P, in GML is defined by the parameter (or module)
6, the sets of the upper and lower constraining problems % & %, the dataset &, the cost
function %%, the optimizer, and other optimization configurations (e.g best-response Jacobian
calculation algorithm, number of unrolling steps). The Problem class is an interface where
users can provide each of the aforementioned components to define the optimization problem.
In detail, each one except for the cost function %} and the constraining problems % &
% can be provided through the class constructor, while the cost function can be defined
through a “training_step” method and the constraining problems are automatically provided
by Engine.
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Abstracting an optimization problem by encapsulating module, optimizer, and data loader
together additionally allows us to implement various systems support, including mixed-
precision, data-parallel training, and gradient accumulation, within the abstract Problem
class. A similar strategy has also been adopted in popular frameworks for large-scale deep
learning such as DeepSpeed [129]. Since implementations of such systems support as well
as best-response Jacobian are abstracted away, users can easily plug-and-play different
algorithmic and systems design choices, such as unrolling steps or mixed-precision training,
via Config in a modular fashion. We summarize the supported features within BETTY In
Table 2.1, and provide an example usage of Problem in Listing 2.1.

Category Features
- ITD-RMAD
_ . - AID-FD
Best-response Jacobian algorithms . AID-NMN
- AID-CG

- Mixed-precision
Systems - Data-parallel
- Gradient accumulation

- Default Python logging
Logging - TensorBoard
- Weights & Biases

- Gradient clipping

Miscellaneous .
- Early stopping

Table 2.1 Supported features in BETTY

class MyProblem(Problem):
def training_step(self, batch):
# Users define the cost function here

return cost_fn(batch, self.module, self.other_probs, ...)
config = Config(type="darts", unroll_steps=10, fpl6=True, gradient_accumulation=4)
prob = MyProblem("myproblem", config, module, optimizer, data_loader)

Listing 2.1 Problem class example.

Engine While Problem manages each optimization problem, Engine handles hierarchical
dependencies among problems in the dataflow graph. As discussed in Section 2.3.1, a
dataflow graph for GML has upper-to-lower and lower-to-upper directed edges. We allow
users to define two separate graphs, one for each type of edge, using a Python dictionary,
in which keys/values respectively represent start/end nodes of the edge. When user-defined
dependency graphs are provided, Engine compiles them and finds all paths required for
automatic differentiation with a modified depth-first search algorithm. Moreover, Engine sets
constraining problem sets for each problem based on the dependency graphs, as mentioned
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above. Once all initialization processes are done, users can run a full GML program by
calling Engine’s run method, which repeatedly calls the one-step gradient descent procedure
of lowermost problems. The example usage of Engine is provided in Listing 2.2.

probl MyProblemi (...)

prob2 MyProblem2 (...)

dependency = {"u2l": {probl: [prob2]}, "1l2u": {probl: [prob2]}}
engine = Engine(problems=[probl, prob2], dependencies=dependency)
engine.run ()

Listing 2.2 Engine class example.

2.5 Experiments

To showcase the general applicability of BETTY, we implement four GML benchmarks
with varying complexities and scales: differentiable neural architecture search (Sec. 2.5.1),
data reweighting for class imbalance (Sec. 2.5.2), correcting and reweighting corrupted
labels (Sec. 2.5.3), and domain adaptation for a pretraining/finetuning framework (Sec. 2.5.4).
Dataflow graphs for these experiments are provided in Figure 2.3. Furthermore, we investigate
the effect of different best-response Jacobian algorithms and system features by reporting
GPU memory usage and training wall time, and include more extensive analyses in Sec 2.5.5.
Last but not least, in the Appendix, we include code examples (Appendix A.1), and additional
training details such as hyperparameters (Appendix A.2).

Reweight Reweight Correct : Reweight Architecture
] ] | IS i B
@ @
Classifier Classifier Classifier
Pretrain
5.1 Data Rewieghting 5.2 Correcting and Reweighitng 5.3 Domain Adaptation for A.1 Differentiable Neural

for Class Imbalance : Corrupted Labels Pretraining & Finetuning : Architecture Search

Fig. 2.3 Dataflow graphs for all our experiments

2.5.1 Differentiable Neural Architecture Search

A neural network architecture plays a significant role in deep learning research. However,
the search space of neural architectures is so large that manual search is almost impossible.
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To overcome this issue, DARTS [99] proposes an efficient gradient-based neural architecture
search method based on the bilevel optimization formulation:

o = argmin %, (w* (o), @) > Architecture Search
o
s.t. w*(@) = argmin %4 (w; @) > Classification
w

where « is the architecture weight and w is the network weight. The original paper uses
implicit differentiation with finite difference as its best-response Jacobian algorithm to solve
the above MLO program.

We follow the training configurations from the original paper’s CIFAR-10 experiment,
with a few minor changes. While the original paper performs a finite difference method on
the initial network weights, we perform it on the unrolled network weights. This is because
we view their best-response Jacobian calculation from the implicit differentiation perspective,
where the second-order derivative is calculated based on the unrolled weight. This allows
us to unroll the lower-level optimization for more than one step as opposed to strict one-
step unrolled gradient descent of the original paper. A similar idea was also proposed in
iDARTS [178]. Specifically, we re-implement DARTS with implicit differentiation and finite
difference using 1 and 3 unrolling steps. The results are provided in Table 2.2.

Algorithm Test Acc. Parameters Memory  Wall Time

Random Search Random 96.71% 3.2M N/A N/A
DARTS (original) AID-FD* 97.24% 3.3M 10493MiB 25.4h

DARTS (ours, step=1) AID-FD 97.39% 3.8M 10485MiB 23.6h
DARTS (ours, step=3) AID-FD 97.22% 3.2M 10485MiB 28.5h

Table 2.2 DARTS re-implementation results. AID-FD refers to implicit differentiation with a
finite difference method, and * indicates the difference in the implementation of AID-FD
explained above.

Our re-implementation with different unrolling steps achieves a similar performance as
the original paper. We also notice that our re-implementation achieves slightly less GPU
memory usage and wall time. This is because the original implementation calculates gradients
for the architecture weights (upper-level parameters) while running lower-level optimization,
while ours only calculates gradients of the parameters for the corresponding optimization
stage.

2.5.2 Data Reweighting for Class Imbalance

Many real-world datasets suffer from class imbalance due to underlying long-tailed data
distributions. Meta-Weight-Net (MWN) [145] proposes to alleviate the class imbalance issue
with a data reweighting scheme where they learn to assign higher/lower weights to data
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from more rare/common classes. In detail, MWN formulates data reweighting with bilevel
optimization as follows:

0™ = argmin .%,,;(w*(0)) > Reweighting
0

‘%(Lirain; 9) 'Ljrain (f(xi;w)ayi> > Classification
1

1 n
s.t. w*(0) = argmin —
w i—

where w is the network parameters, Lfmin is the training loss for the i-th training sample, and

0 is the MWN %’s parameters, which reweights each training sample given its training loss
L;min'

Following the original paper, we artificially inject class imbalance into the CIFAR-10
dataset by geometrically decreasing the number of data sample for each class, as per an
imbalance factor. While the official implementation, which is built upon Torchmeta [32],
only adopts ITD-RMAD for best-response Jacobian calculation, we re-implement MWN
with multiple best-response Jacobian algorithms, which only require one-liner changes using
BETTY, to study their effect on test accuracy, memory efficiency, and training wall time. The
experiment results are given in Table 2.3.

Algorithm IF 200 IF 100 IF 50 Memory Time
MWN (original) ITD-RMAD 68.91 75.21 80.06 2381MiB  35.8m
MWN (ours, step=1)  ITD-RMAD 71.96 75.13 79.50 2381MiB  36.0m
MWN (ours, step=1)  AID-CG 66.23+1.88  70.88+1.68  75.41+0.61  2435MiB  67.4m
MWN (ours, step=1)  AID-NMN 66.45+1.18  70.924+1.35 7590 +1.73 2419MiB  67.1m
MWN (ours, step=1)  AID-FD 75.45+£0.63  78.11+£0.43  81.15£0.25  2051MiB  28.5m
MWN (ours, step=5)  AID-FD 76.56+1.19  80.45+0.73  83.11+0.54 2051MiB  65.5m

Table 2.3 MWN experiment results. IF denotes an imbalance factor. AID-CG/NMN/FD
respectively stand for implicit differentiation with conjugate gradient/Neumann series/finite
difference.

We observe that different best-Jacobian algorithms lead to vastly different test accuracy,
memory efficiency, and training wall time. Interestingly, we notice that AID-FD with un-
rolling steps of both 1 and 5 consistently achieve better test accuracy (close to SOoTA [154])
and memory efficiency than other methods. This demonstrates that, while BETTY is de-
veloped to support large and general GML programes, it is still useful for simpler bilevel
optimization tasks as well. An additional analysis on the effect of best-response Jacobian can
also be found in Appendix 2.5.5.

Furthermore, to demonstrate the scalability of BETTY to large-scale GML, we applied
MWN to sentence classification with the BERT-base model [35] with 110M parameters.
Similarly, we artificially inject class imbalance into the SST dataset, and use AID-FD as
our best-response Jacobian calculation algorithm. The experiment results are provided in
Table 2.4.

As shown above, default full-precision training fails due to the CUDA out-of-memory
error, while mixed-precision training, which only requires a one-line change in Config,
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Algorithm IF 20 IF 50 Memory
Baseline AID-FD  89.99+0.38 87.54+0.70 8319MiB
MWN (fp32) AID-FD - - Out-of-memory

MWN (fpl6) AID-FD  91.06+0.09 89.79+0.65 10511MiB

Table 2.4 MWN+BERT experiment results. fp32 and fp16 respectively stand for full-precision
and mixed-precision training.

avoids this issue while also providing consistent improvements in test accuracy compared to
the BERT baseline. This demonstrates that our system features are indeed effective in scaling
GML to large models. We include more analyses on our systems support in Appendix A.3.

2.5.3 Correcting & Reweighting Corrupted Labels

Another common pathology in real-world data science is the issue of label corruption,
stemming from noisy data preparation processes (e.g. Amazon MTurk). One prominent
example of this is in weak supervision [134], where users create labels for large training sets
by leveraging multiple weak/noisy labeling sources such as heuristics and knowledge bases.
Due to the nature of weak supervision, generated labels are generally noisy, and consequently
lead to a significant performance degradation. In this example, we aim to mitigate this
issue by 1) correcting and 2) reweighting potentially corrupted labels. More concretely, this
problem can be formulated as an extended bilevel optimization problem, as, unlike the MWN
example, we have two optimization problems—correcting and reweighting—in the upper
level, as opposed to one. The mathematical formulation of this GML program is as follows:

6* = argmin .%,,;(w*(6,)), o =argmin.Z,,(W*(6,0)) > RWT & CRT
0 o

1 & : ;
s.t. w*(0, ) = argmin N Z%(L;min; 0)-Li,in(f(xisw), g(xi,yis0)) > Classification
i=1

w

where, o is the parameter for the label correction network g, and é”v’ 1 1s augmented with
the classification loss of the correction network in addition to that of the main classification
network f on the clean validation set.

We test our framework on two noisy label benchmarks, namely WRENCH and Clothing-
1M, to demonstrate the general applicability and effectiveness of BETTY.

WRENCH WRENCH benchmark [177] contains multiple weak supervision datasets. On
each dataset, we try both 2-layer MLP and BERT-base models as our classifiers, AID-FD as
our best-response Jacobian algorithm, and Snorkel Data Programming [134] and majority
voting as our weak supervision algorithms for generating training labels. The experiment
results are provided below.
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TREC AGNews IMDB SemEval ChemProt YouTube
Snorkel 57.524+0.18  62.00+£0.07  71.03+0.55  71.00+0.00 51.544+0.41  77.44+0.22
Baseline 53.88+1.83  80.74+0.20 72.26+0.81  71.50+0.44 54.474+0.78 88.16%=1.56
+Reweight 57.56+1.41 82.79+£0.10  77.18+£0.13  77.23+3.38  65.33+0.72  91.60+0.75

+Reweight & Correct ~ 66.76+1.31  83.1640.20 77.80+026 84.34+1.43  67.69+1.17  91.5240.66
Table 2.5 Wrench + MLP results.

TREC AGNews IMDB SemEval ChemProt YouTube
Baseline 64.14+6.56  86.12+0.17  71.66£2.05 79.93+1.53 52.354+0.56 93.20+1.44
+Reweight 84.07+4.42  89.62+0.60 87.85+0.24 87.454+0.69 71.424+1.50 94.67+0.46

+Reweight & Correct  93.07£0.31  90.40+0.16  87.4540.39  87.9240.04 75274123  94.80+0.80
Table 2.6 Wrench + BERT-base results.

Clothing-1M Clothing-1M [171] is a real-world noisy dataset that consists of 1 million
fashion images collected from various online shopping websites and has the approximate
noise ratio of 38.5%. Following the standard, we use ResNet-50 as our backbone model
and attempt to correct and reweight noisy labels with extended bilevel optimization. The
experiment result is presented in Table 2.7

Test Accuracy
Baseline 70.76%

+Reweight 75.57%
+Reweight & Correct 76.34%

Table 2.7 Clothing-1M + ResNet-50 results.

We observe that simultaneously applying label correction and reweighting significantly
improves the test accuracy over the baseline and the reweighting-only scheme in almost
all tasks. Thanks to BETTY, adding label correction in the upper-level on top of the exist-
ing reweighting scheme only requires defining one more Problemn class, and accordingly
updating the problem dependency in Engine (code examples can be found in Appendix A.1).

2.5.4 Domain Adaptation for Pretraining & Finetuning

Pretraining/finetuning paradigms are increasingly adopted with recent advances in self-
supervised learning [35, 68]. However, the data for pretraining are oftentimes from a different
distribution than the data for finetuning, which could potentially cause negative transfer.
Thus, domain adaptation emerges as a natural solution to mitigate this issue. As a domain
adaptation strategy, [128] proposes to combine data reweighting with a pretraining/finetuning
framework to automatically decrease/increase the weight of pretraining samples that cause
negative/positive transfer. In contrast with the above two benchmarks, this problem can be
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formulated as trilevel optimization as follows:

0" = argmin Zrr (v (w*(0))) > Reweighting
0
s.t. V' (w*(8)) = argmin (gFT(v) Ay —w*(8) ||§) > Finetuning
v

R(xi30) - Loy (w) > Pretraining

1 n
w*(0) = argmin —
w =1

1

where x; / L;,T stands for the i-th pretraining sample/loss, Z# for networks that reweight
importance for each pretraining sample x;, and A for the proximal regularization parame-
ter. Additionally, w, v, and 6 are respectively parameters for pretraining, finetuning, and
reweighting networks.

We conduct an experiment on the OfficeHome dataset [ 159] that consists of 15,500 images
from 65 classes and 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real World (RW).
Specifically, we randomly choose 2 domains and use one of them as a pretraining task and the
other as a finetuning task. ResNet-18 [69] is used for all pretraining/finetuning/reweighting
networks, and AID-FT with an unrolling step of 1 is used as our best-response Jacobian
algorithm. Following [10], the finetuning and the reweighting stages share the same training
dataset. We adopted a normal pretraining/finetuning framework without the reweighting
stage as our baseline, and the result is presented in Table 2.8.

Algorithm Cl—Ar Ar—Pr Pr—Rw Rw—Cl Memory  Time

Baseline N/A 65.43+£0.36  87.624+0.33  77.43+0.41 68.76+0.13  3.8GiB 290s

+ Reweight  AID-FD 67.76+0.83  88.53+0.42  78.58+0.17 69.75+0.43 8.2GiB 869s

Table 2.8 Domain Adaptation for Pretraining & Finetuning results. Reported numbers are
classification accuracy on the target domain (right of arrow), after pretraining on the source
domain (left of arrow). We note that Baseline is a two-layer, and Baseline + Reweight a
three-layer, GML program.

Our trilevel optimization framework achieves consistent improvements over the baseline
for every task combination at the cost of additional memory usage and wall time, which
demonstrates the empirical usefulness of generalized meta learning beyond a two-level
hierarchy. Finally, we provide an example of (a simplified version of) the code for this
experiment in Appendix A.l to showcase the usability of our library for a general GML
program.

2.5.5 Design Choice Analysis

In this section, we visually compare the convergence speed of different best-response Jacobian
algorithms with the loss convergence graphs on the synthetic hyperparameter optimization
task and the data reweighting task (Section 2.5). Specifically, we analyze the convergence
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speed in terms of both 1) the number of steps and 2) training time, as the per-step computa-
tional cost differs for each algorithm.

Synthetic Hyperparameter Optimization

Following [53], we constructed a synthetic hyperparameter optimization task where we
optimize the weight decay value for every parameter in simple binary logistic regression.
Mathematically, this problem can be formulated as bilevel optimization as follows:

AY = argrriin sigmoid (y,x! w*)
1
w* = argmin sigmoid(y;x] w*) + EwTdiag(l)w
w

where, (x;,y;) and (x,,y,) are repsectively the training datasets for the lower-(and upper-
)level problems, with x € R"*? and y € R"*!, Here, n is the number of training data in each
dataset and d is the dimension of the feature vector. w € R?*! is the logistic regression
parameter, and A € R?*! is the hyperparameter (i.e. the per-parameter weight decay value).

Given the above setup, we compared four different best-reponse Jacobian algorithms: 1)
ITD-RMAD, 2) AID-FD, 3) AID-CG, and 4) AID-Neumann. For the fair comparison, we
fixed the unrolling step to 100 for all algorithms. The experiment result is presented below:

: ITD-RMAD

1 AID-FD

: AID-Neumann
1AID-CG

(a) Outer training loss (x-axis: time)

(b) Outer training loss (x-axis: step)

Fig. 2.4 Convergence analysis of different best-response Jacobian algorithms on the synthetic
hyperparameter optimization task

As shown in Figure 2.4, AID-CG achieves the fastest convergence both in terms of
training steps and training time. However, AID-FD achieves the fastest per-step computation
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time as it is the only algorithms that doesn’t require the explicit calculation of the second-
order derivative (i.e. Hessian).

Data Reweighting

To study how different best-response Jacobian algorithms perform on more complex tasks,
we repeated the above experiment on the data reweighting task from Section 5.1. Again, for
the fair comparison, we used the same unrolling step of 1 for all algorithms. The experiment
result is provided in Figure 2.5.

:AID-CG

: AID-Neumann

: ITD-RMAD :AID-FD

Valid Valid
acc. acc.

Training step Training time (hr)

Fig. 2.5 Convergence analysis of different best-response Jacobian algorithms on the data
reweighting task

Unlike in the synthetic hyperparameter optimization task, AID-FD achieves the fastest
convergence in terms of training steps and training time as well as the best final validation
accuracy. As AID-FD doesn’t require any second-order derivative calculation, it also achieves
the minimal per-step computation cost.

Above two experiments follow the no free lunch theorem: the optimal design choice can
vary for different tasks without golden rules. However, thanks to the modular interface for
switching between different design choices (in Config), only minimal programming efforts
would be needed with BETTY, expediting the research cycle.

2.6 Related Work

Bilevel & Generalized Meta Learning There are a myriad of machine learning appli-
cations that are built upon bilevel optimization (BLO), the simplest case of generalized
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meta learning with a two-level hierarchy. For example, neural architecture search [99, 178],
hyperparameter optimization [45, 103, 105], reinforcement learning [72, 89], data valu-
ation [137, 164], meta learning [43, 130], and label correction [181] are formulated as
BLO. In addition to applying BLO to machine learning tasks, a variety of optimization
techniques [30, 53, 80, 100] have been developed for solving BLO.

Following the popularity of BLO, GML with more than a two-level hierarchy has also
attracted increasing attention recently [128, 148, 152, 172]. In general, these works construct
complex multi-stage ML pipelines, and optimize the pipelines in an end-to-end fashion
with GML. For instance, [50] constructs the pipeline of (data generation)—(architecture
search)—(classification) and [70] of (data reweighting)—(finetuning)—(pretraining), all of
which are solved with GML. Furthermore, [141] study gradient-based methods for solving
GML with theoretical guarantees.

Generalized Meta Learning Software There are several software libraries that are fre-
quently used for implementing GML programs. Most notably, JAXopt [17] proposes an
efficient and modular approach for AID by leveraging JAX’s native autodiff of the optimal-
ity conditions. Despite its easy-to-use programming interface for AID, it fails to support
combining the chain rule with AID as in Equation (2.2), because it overrides the default
behavior of JAX’s automatic differentiation, which takes care of the chain rule. Therefore, it
cannot be used for implementing GML beyond a two-level hierarchy without major changes
in the source code and the software design. Alternatively, higher [54] provides two major
primitives of making 1) stateful PyTorch modules stateless and 2) PyTorch optimizers dif-
ferentiable to ease the implementation of AID/ITD. However, users still need to manually
implement complicated internal mechanisms of these algorithms as well as the chain rule
with the provided primitives. Torchmeta [32] also provides similar functionalities as higher,
but it requires users to use its own stateless modules implemented in the library rather than
patching general modules as in higher. Thus, it lacks the support for user’s custom modules,
limiting its applicability. learn2learn [S] focuses on supporting meta learning. However,
since meta-learning is strictly a bilevel problem, extending it beyond a two-level hierarchy
is not straightforward. Finally, most existing libraries do not have systems support, such as
data-parallel training, that could mitigate memory/compute bottlenecks.

2.7 Conclusion

In this work, we aimed to help establish both mathematical and systems foundations for
automatic differentiation in GML. To this end, we devised a novel dataflow graph for GML,
upon which an automatic differentiation procedure is built, and additionally introduced
BETTY, a software library with various systems support, that allows for easy programming
of a wide range of GML applications in a modular fashion. We showed that BETTY allows
for scaling up to both larger models with many parameters, as well as to GML programs with
multiple dependent problems.
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Scaling Meta Learning

Despite many benefits BETTY brings in, the framework itself doesn’t provide any algorithmic
innovations that can further improve scalability and stability in meta learning, both of which
are crucial in practical automated ML. In this chapter, we develop SAMA, a variant of the
implicit differentiation that demonstrates significantly improved compute/memory efficiency,
and additionally introduce communication optimization in the distributed training setting for
the improved scalability.

3.1 Introduction

Meta learning aims to learn the inductive biases (e.g. training data, neural architecture) of
a machine learning program in such a way that a model trained with these inductive biases
achieves optimal performance on user-specified objectives (e.g. fairness, quick generaliza-
tion). This concept of meta learning can naturally be formulated as bilevel optimization,
where the upper (meta) level problem encodes inductive biases and objectives, and the lower
(base) level optimization problem represents the main machine learning program of interest,
such as image classification or language modeling. Depending on the design of inductive
biases and objectives, meta learning has found many applications in machine learning, in-
cluding hyperparameter optimization [46], data optimization [58, 145], neural architecture
search [99, 178], learned optimizers [109, 110], and few-shot learning [43, 130].

Following its versatility, numerous algorithms have been proposed to solve meta learning.
Among them, gradient-based meta learning (GBML) has in particular gained considerable
attention, due to its capability to optimize a wide range of high-dimensional inductive
biases in an efficient manner. For example, MAML [43] finds optimal initialization weights
(inductive bias) that achieve quick generalization to new tasks (objective), and L2RW [136]
optimizes training sample weights (inductive bias) to achieve robustness against label noise
(objective). However, the above benefits of GBML oftentimes get overshadowed by its
poor scalability in practice, especially under the recent trend of large models [19, 86, 125],
which arises due to several factors. First, many GBML algorithms [43, 103, 130] require
inversion of a large Jacobian matrix, which suffers from both algorithmic instability as well
as exorbitant compute/memory costs. Second, most GBML research assumes that lower
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Constant Jacobian Adaptive Optimizer  (Efficient) Distributed Overall

Memory  Inverse Free Support Training Support Scalability
Iterative Differentiation [43, 45, 105] X X (4 X X
Recurrent Backpropagation [95] X v X X
T —T> [99, 104] 4 v X X
Neumann Series [103] 4 X X
Conjugate Gradient [130] v X X
SAMA (ours) v (4 (4 (4 (4
Noisy Finetuning w/ BERT-base 50 Continued Pretraining w/ RoBERTa Variants
400 A e CG A6000 Max Memory (48GB)
RoBERTa-large
— B Neumann
2350 + SAMA-NA ~40
2 & SAMA )
£300 SAMA (2 GPUSs) by
S A SAMA (4 GPUs) 230
< 250 0 RoBERTa-base
E bett 5
£200 L2y 20
S’ = Distill-RoBERTa
o [}
b= 150 +¢ = 10 —— CG
[_4
—— Neumann
100 0 O —— SAMA
10 15 20 25 00 50 100 150 200 250 300 350 400
GPU Memory Usage (GB) Parameter Count (M)

Fig. 3.1 Top: Table showing a scalability comparison. Bottom left: Plot of throughput vs
memory of different GBML algorithms on the noisy finetuning of BERT-base experiment.
SAMA achieves better memory/compute efficiency overall given a fixed model, and the gap
further widens by distributing compute across multiple GPUs with our efficient distributed
training strategy. Bottom right: Plot of memory vs model size (i.e., # of parameters) of
different GBML algorithms on the continued pretraining of RoBERTa experiment. SAMA
demonstrates the least significant increase in GPU memory usage with the increasing model
size compared to baseline methods.

(base) level optimization is performed with SGD, whereas most large models, exemplified
by Transformers [158], are by default optimized with adaptive optimizers like Adam [85];
consequently, the applicability of SGD-based GBML methods to large models trained with
adaptive optimizers remains unclear. Finally, most GBML research to date has been limited
to the single-GPU setup due to the lack of distributed training support [32, 54], which is
essential in large-scale learning.

In this work, we endeavor to resolve the aforementioned scalability issues in GBML
by co-developing algorithms and systems, and explore the initial potential of scalable meta
learning in diverse applications. Our main contributions can be summarized as follows:

1. We investigate the root causes of substantial memory/compute costs, algorithmic instabil-
ity, and a lack of distributed training support in GBML, all of which significantly limit
its scalability, through a technical analysis of implicit differentiation. In doing so, we
identify three major factors, namely (i) base Jacobian inversion, (ii) a lack of algorithmic
adaptation for adaptive optimizers, and (iii) a need for the custom implementation of the
backward pass of meta gradient computation, and discuss how each of them contributes
negatively to the above limitations in depth.
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2. Taking one step further, we propose an initial solution to each of the aforementioned
issues by respectively (1) approximating the base Jacobian with an identity matrix, (ii)
additionally expanding the meta Jacobian via the chain rule, and (iii) devising a novel
communication strategy that efficiently uses the communication-computation overlap
trick [93]. Combining all these solutions, we develop SAMA, a holistic and practically
ScalAble Meta learning Algorithm.

3. We evaluate the scalability and the overall performance of SAMA on a multitude of large-
scale meta learning benchmarks involving large language models (e.g., BERT [35] and
RoBERTa [101]) or large datasets (e.g., ImageNet-1k [33]). Notably, SAMA showcases
up to 1.7/4.8x increase in throughput and 2.0/3.8 x decrease in memory consumption
respectively on single-/multi-GPU setups compared to other baseline meta learning
algorithms. In addition, we observe that SAMA-based data optimization consistently
leads to improvements in text classification accuracy with large language models, and
achieves state-of-the-art results in both small-/large-scale data pruning, demonstrating the
initial potential of scalable meta learning.

3.2 Background

We begin by reviewing the basics of (gradient-based) meta learning in order to establish the
key aspects that have limited its scalability. Mathematically, meta learning is commonly
formulated as bilevel optimization as follows:

A* = argmin Lyerq(Dmera; 07 (1))
A

s.L. 9*<A’) = argmin Lpase (Dbase; 97)'>
0

where A (respectively, 0) are the parameters of meta (base) learners, Dyerq (Dpgse) are meta
(base) datasets, and Ly,erq (Lpase) are meta (base) loss functions. An important implication
of the above formulation is that meta learning changes the task of finding the optimal
inductive biases from designing heuristics to designing meta optimization problems. As an
example, consider the problem of finding the optimal inductive bias for fair classification
given class-imbalanced training data. A traditional approach to this problem is to use a
heuristic that reweights training samples inversely proportional to class frequencies. On the
contrary, L2RW [136] designs a meta optimization problem by curating a small number of
class-balanced data for the meta dataset D,,,.;, and setting the meta learner A to be importance
weights for all training data. In short, unlike heuristic-based methods that explicitly specify
“how to learn,” meta learning methods only specify “what to learn” and let the meta learner
automatically determine “how.” From a programming paradigm perspective, such a difference
can be understood as a transition from imperative to declarative programming.

While there are multiple approaches to solving meta learning, in this work we focus
on gradient-based approaches due to their ability to efficiently solve high-dimensional
meta optimization (i.e. dim(A) > 1) problems. Such an ability is essential given that the
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search space for inductive biases (e.g. importance weights for training data) can increase
exponentially with recent large models and datasets. Concretely, GBML computes a meta
gradient composed of two terms—the best-response Jacobian and direct gradient—with the
chain rule, as follows:

aLmeta _ a 9 ¥ X aLﬂl(?[LL
oL oA 00*
—~—~

best-response Jacobian  direct gradient

3.1)

Since the direct gradient (teal) computation is straightforward with the underlying automatic
differentiation library, the major challenge in GBML lies in computing the best-response
Jacobian (purple), of which two common solutions are iterative differentiation [43, 45, 46,
105] and implicit differentiation [66, 103, 122, 130]. Between these two, in this paper
we adopt implicit differentiation as our baseline solution to GBML, as it achieves better
computation and memory efficiency than iterative differentiation [53], both of which are vital
in accomplishing our goal of scalable GBML.

The gist of implicit differentiation is that it calculates the best-response Jacobian by lever-
aging Cauchy’s Implicit Function Theorem (IFT) and re-interpreting the base optimization
problem from the perspective of fixed-point iteration given an iterative solver u, as follows:

. -1 6* = lim 6
LR ( Ju ) where { (32)
<~ ~ 0 =61 —u(6-1;1)

meta Jacobian base Jacobian

While exact implicit differentiation requires solving the base optimization problem to con-
vergence 0* by repeatedly applying an iterative solver u (e.g., SGD or Adam) to calculate
base (blue) and meta (red) Jacobians, this is computationally impractical, especially in most
large-scale learning settings. Therefore, researchers oftentimes approximate 6* with a small
number of unrolled update steps of u. This results in a solution that alternates gradient descent
between base and meta optimization problems, where the base gradient is calculated with
standard backpropagation and the meta gradient with Eqs. (3.1) & (3.2). Noting that many
techniques have been developed to efficiently perform and scale up standard backpropagation,
we deduce that the major challenges in scaling GBML lie in meta gradient computation,
which will be discussed in depth in the next section.

3.3 Scaling Meta Learning

It has long been recognized that meta gradient computation in GBML suffers from a substan-
tial compute/memory cost [103, 130], algorithmic instability [4, 36], and a lack of efficient
distributed training support [5, 24, 32], all of which can significantly limit its scalability. In
this section, we first attempt to understand the above limitations at a technical level. Toward
this end, we investigate three aspects in Eqs. (3.1) & (3.2), namely (i) base Jacobian inversion,
(i1) algorithmic adaptation for adaptive optimizers, and (iii) a need for the custom imple-



3.3 Scaling Meta Learning 33

mentation of meta gradient computation, and discuss how they lead to the aforementioned
limitations. Next, we propose initial solutions for each of these issues, based on which we
build a holistic and ScalAble Meta Learning Algorithm, SAMA.

3.3.1 Base Jacobian Inverse

Problem Denoting the size of the base learner (i.e., dim(6)) as ny, the computational
complexity of the naive base Jacobian (blue) inversion in Eq. (3.2) is & (”137) Since such cubic
complexity is impractical even for small-sized base learners, practitioners typically utilize
various linear systems techniques such as Neumann series [103] or conjugate gradient [130],
and directly approximate ( 3‘99”* ) ! % Given that the base Jacobian is a function of the
Hessian matrix of the base optimization problem in GBML, these algorithms solve linear
systems by iteratively performing Hessian-vector products. However, this Hessian-vector
product computation contributes negatively to all three above limitations. First, while many
automatic differentiation engines provide an efficient Hessian-vector product implementation
like Pearlmutter’s algorithm [120], its memory/compute cost is still prohibitive with larger
models, as demonstrated in Fig. 3.1. Second, in most cases, we only have access to a
stochastic estimation of the Hessian due to mini-batch sampling [90]. Hence, meta gradients
obtained with noisy Hessian-vector products can be biased, which may result in training
instability. Finally, the most efficient distributed training features, such as communication-
computation overlap [93], are designed for first-order gradients, rather than the higher-order
gradients involved in Hessian-vector products.

Solution A simple solution for avoiding the aforementioned issues stemming from base
Jacobian inversion is to approximate the base Jacobian with an identity matrix as follows:

aLmeta _ du ( du )_1 ) aLmeta ~ du ameta (3.3)

or oA \96* 00 9L 96*

Under the deep equilibrium model setting, Jacobian-free backpropagation [47] shows that
such an approximation can be understood as preconditioning the original meta gradient. Our
approximation also resembles approximating the Hessian as an identity matrix in one-step
unrolling techniques (i.e. T — 1) from [99, 104]. While this approximation is exact when
the iterative solver u is naive SGD where u = %, we note that the base Jacobian does not
necessarily equate with the Hessian when an adaptive optimizer is used in base optimization
(more detailed discussion on this issue is deferred to Sec. 3.3.2). Furthermore, their methods
calculate the meta Jacobian at initialization 6 instead of at convergence 6* due to their close
connection to iterative differentiation [105], and thereby inhibit unroll steps larger than 1,
unlike our approach. Considering that a larger number of unroll steps allows for less frequent
computations of expensive meta gradients, our implicit-differentiation-based derivation can
lead to a further computational gain in large-scale meta learning.
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Justification of the Identity Approximation for Base Jacobian

In this section, we aim to study the empirical effect of our identity approximation for base
Jacobian on the meta gradient af)'—’jfm and the optimal meta solution A*, when the true base
Jacobian is not an identity matrix, as a part of the justification of our approximation. As
obtaining the closed-form solution of the Hessian is impossible in almost all deep learning
problems, we study the soundness of the identity approximation of base Jacobian in the
simpler “biased regression” setting [53], for which the bilevel optimization formulation is as

follows:
AT = argrrgnllX'W*(l) —y'1?
w(4) = argmin 1Xw —y||>+ Bllw— Al

Given the above formulation, the closed-form solutions for the base Jacobian, the meta-
gradient g, , and the optimal meta solution A* are:

1. Base Jacobian = X7X + BI
2. gu =BXTX + B (XTX'w* —X'Ty'), where w* = (XTX +BI)~'(XTy+ BA)
3. A* = (ATA)1ATh, where A = BX'(XTX +BI) "', b=y —X'(XTX +BI)~'XTy

We set B = 0.1' and perform 100 meta updates, and measure 1) the cosine similarity between
the ground truth g; and the meta gradient obtained with our approximation (i.e. gsapa), and
2) the L2 distance between the current meta parameter A, and the optimal solution A* at each
time step . For a more thorough analysis, we also compute these two metrics for other meta
gradient algorithms that explicitly approximate base Jacobian inverse with conjugate gradient
and Neumann series. In Figure 3.2, we provide the metric obtained from all time steps.
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Fig. 3.2 Left: cos(g),8approx). Where g is a ground truth (i.e. closed-form) meta gradient,
and gqpprox 18 an approximate meta gradient obtained with various popular meta learning
algorithms including SAMA. Right: |4, — A*||», where 4, is the meta parameter A after ¢
meta updates.

'We used smaller 8 than in the original paper [53] (1 vs 0.1), to amplify the “non-identitiness” of the base
Jacobian.
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From Figure 3.2, it can be clearly seen that 1) while slightly less accurate than second-
order algorithms like CG, SAMA still achieves a high directional alignment with the ground
truth meta-gradient, and 2) SAMA also achieves a stable convergence to the optimal solution
at a comparable speed.

3.3.2 Algorithmic Adaptation for Adaptive Optimizers

Problem Most existing implicit differentiation algorithms [58, 67, 103] compute the best-
response Jacobian in Eq. (3.1) based on the assumption that the iterative solver u for base
optimization is vanilla SGD, whereas recent large models, exemplified by Transformers [19,
158], are by default trained with adaptive optimizers, such as Adam [85]. While the fixed
point condition can be theoretically identical for any gradient-based optimizer at convergence
(i.e., % = 0), researchers in practice approximate 6* with a small number of gradient
steps, at which the above fixed point condition would unlikely hold. Thus, the inconsistency
between assumed and actual optimizers results in an incorrect meta gradient, which is a
source of training instabilities and reduced performance in meta learning (as we demonstrate
in Table 3.1).

Solution To take adaptive update rules into account, we propose to further expand a
meta Jacobian term in Eq. (3.3) with the chain rule as follows:

Ju  dgpue Ju 0?Lyuse  Ou
ﬂ ~ dA 'agbase LI .8gbase
OLmera . Ou ILpera ’Lpyse U Lpera
A I 90*  0AI0* Jgpu. 06

3.4)

where g, 1S base-gradient computed at convergence (i.e. %). In short, we accomplish
the algorithmic adaptation for any adaptive optimizer with the update rule u through the
middle term aj}’(‘” in Eq. (3.4), which reduces to an identity matrix in the case of SGD.
To analyze the adaptation cost, we note that parameter updates u in most optimizers are
performed only with element-wise operations. Thus, the adaptation matrix is diagonal, for
which computation/memory complexities are only &'(n;,). As a concrete example, we provide
an adaptation matrix for the most popular Adam optimizer [85] below.

9uadam:@<y Pim+(1—PBi)g >
dg g\ \/Bv+(1-Pg+e
(1—B1)Bov— (1—B1)Bomg+ (1 —PBr)e/Biv+ (1 —Bi)g?

VB + (=B (VBrv+(1—Bi)g? +e)’

~y (1—B1)B2v— (1 —B1)Bamg
B+ (1= B)g2(VBrv+ (1—Br)g? +e)’

(because € < 1)
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Fig. 3.3 The overall workflow of meta gradient computation with SAMA in the distributed
data parallel setting. In detail, SAMA consists of three first-order backward passes performed
with the underlying automatic differentiation engine, and one manual backward pass for
algorithmic adaptation for the adaptive optimizer. Gradient synchronization is performed
only once in the last backward pass with communication-computation overlap to minimize
the communication bottleneck.

where the first and second moments of the gradient in Adam are denoted as m and v respec-
tively, and the learning rate as 7.

Furthermore, to reduce computation/memory complexities involving the costly second-

order derivative %, we instead perform the matrix-vector product with the central-

difference method from DARTS [99] and the associative rule of matrix multiplication. All
combined, we propose SAMA, a highly compute/memory efficient meta gradient algorithm
for scalable meta learning, the formulation of which is as follows:

ILpgse 9+7A ILpase (0~
OLumeta ~ _()lemxv ) Jdu ) 9Lera —~ ’ 8(?L ) o a(l ; (3.5)
oA 07060 \9gpe 06" 2 '
where ei = 0* + gv with the perturbation vector v = 35/” - % and the Step size € = ﬁ

We empirically observe that oo = 1.0 works well across a multitude of tasks without further
tuning. Finally, we notice that prevoius work in penalty-based bilevel optimization (e.g.
F2SA [90] and BOME [97]) further uses the direct gradient % explicitly in the base
level optimization to maximize the performance of the final base parameter 6* on the
meta objective. Given that our perturbation vector v includes the direct gradient term, we
also follow a similar strategy and update the base parameter 0 in the direction of v (i.e.
6,11 = 6, — €v) every time the meta update is performed.

3.3.3 Efficient Distributed Training & Implementation

Problem In large-scale learning, distributed data parallelism (DDP), which communicates
and synchronizes local gradients from each device before the parameter update, is necessary
to improve both compute and memory efficiency. However, most automatic differentiation
libraries like PyTorch [118] only have native DDP support for their basic backward function,
whereas SAMA, similar to other meta gradient algorithms, requires a custom implemen-
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tation of the backward function, which consists of three basic backward passes as shown
in Eq. (3.5).” In addition, while a few meta learning libraries, such as Betty [24], have
preliminary DDP support, they do not offer further communication cost optimization. As
a result, meta learning research to date has either been limited to a single-GPU setup or
suffered from communication inefficiency.

Solution Since we avoid any explicit computations of second-order gradient informa-
tion in SAMA, we can utilize various efficient distributed training tricks that have been
implemented for first-order gradients. More specifically, to enable efficient DDP in SAMA,
we develop a novel communication strategy that performs first two backward passes locally
on each device, and then overlaps computation in the final backward pass with communica-
tion. In PyTorch, this can be neatly achieved by implementing the first two backward passes
with torch.autograd.grad and the last one with torch.autograd.backward. The over-
all workflow diagram of SAMA is presented in Figure 3.3. To facilitate research in scalable
meta learning, we provide our implementation of SAMA with the above communication
optimization in Betty" that only requires a one-line change in the configuration.

3.4 Experiments

While few-shot learning has traditionally been the most popular application of meta learning,
most recent large models such as GPT [19], ViT [37], and Whisper [125], provide few-shot
generalization capability out of the box. Therefore, we in this work focus on another promis-
ing application of meta learning, data optimization, where we transform (e.g., reweight, label
correct) downstream/pretraining data given the specific objectives in the meta optimization
problem. Indeed, there is an increasing number of works originating in data-centric Al that
empirically show that the quality of training data significantly affects the final performance of
large models [1, 19, 48, 125, 143, 173]. Nevertheless, solutions proposed in these works to
improve training data quality mostly rely on hand-designed heuristics, which typically result
in suboptimal performance. Given that training data of large models serves as extremely
high-dimensional inductive biases in machine learning, we expect that GBML'’s ability to
efficiently optimize high-dimensional inductive biases can be fully unlocked in the data
optimization application.

From a technical perspective, large-scale data optimization has a substantial com-
pute/memory cost and frequently involves models that are trained with adaptive optimizers.
Therefore, it serves as an ideal benchmark to (a) evaluate the scalability of SAMA com-
pared to existing approaches, (b) study the effectiveness of each component in SAMA, and
(c) investigate the practical usefulness of scalable meta learning across diverse domains.
Specifically, in this section, we consider three data optimization applications, namely: Noisy
finetuning of large language models (Sec. 3.4.1), continued pretraining of large language
models (Sec. 3.4.2), and scale-agnostic data pruning (Sec. 3.4.3). While not an application

u

5o — can be calculated
8base

%Eq. (3.5) technically involves four derivatives in total, but the adaptation matrix
analytically without backpropagation.

Shttps://github.com/leopard-ai/betty


https://github.com/leopard-ai/betty

38 Scaling Meta Learning

of data optimization, we also include a preliminary analysis on the effect of model size on
few-shot image classification accuracy in Section 3.4.4. Finally, we note that all experi-
ment details including baselines, hyperparameters, and compute resources are provided in
Appendix B.2.

3.4.1 Noisy Finetuning of Large Language Models

Weak supervision [134] proposes to achieve a significant reduction in the data labeling cost
by letting users quickly generate labels for a large amount of data by exploiting multiple weak
labeling functions, such as hand-designed rules and other neural networks. While increasing
the quantity of labeled data with weak supervision has led to noticeable improvements in
multiple applications, a poor guality of generated labels results in a degradation in test
accuracy, leaving room for further improvement. Here, we attempt to alleviate this data
quality issue in weak supervision by utilizing meta learning to automatically optimize noisy
training data guided by a small amount of clean data in the meta level. In detail, we use data
reweighting [145] and label correction [180] as our data optimization operations, of which
the bilevel optimization formulation is as follows:

A* = (A5, A)) = argmin £ (Djean; 0% (Ar, Ac))

r /e Y
s.t. 0%(A,A;) = argmin —— Z w(ZA) - ZL(f(x;0),c(x,y;Ac))
0 | noisy‘ (Ly)eDnni.xy

where w(-;A,) and c(-;A.) are meta learners, respectively, for data reweighting and label
correction. To evaluate the scaling efficiency of SAMA, we perform text classification with a
BERT-base model with 110M parameters on multiple weak supervision datasets from the
WRENCH benchmark [177]. Furthermore, to study the effectiveness of our algorithmic
adaptation strategy (Sec. 3.3.2), we conduct experiments with a variant of SAMA (i.e.,
SAMA-NA) that does not include algorithmic adaptation, and present the experiment results
in Table 3.1.

Algorithm TREC SemEval IMDB ChemProt AGNews Yelp
Finetune (orig) [177] - 66.56 2.31) 8393174 79.73260) 56.09(1.08) 86.27 (053  82.26 (3.50)
COSINE [176] - 76.56 0.08)  86.80 (0.46) 82.98 (0.05) 58.47 .08  87.030.000 89.22(0.05)
Finetune (ours) - 67.93 255  79.28(1.78)  78.16 228)  57.35(143) 85.79(0.49)  84.32(2.55)
+R SAMA-NA 743334 87.11@.11 81921749 60.880.60) 86.830.190 80.96 (3.04)
+R & C SAMA-NA  79.00 262) 87.67(136) 80.44097) 64.05052 87.05039 80.73 3.11)
+R SAMA 85.73 0.81) 89.67 067y 84.31(1.86) 76.89(1.39) 89.050.34)  93.64 (0.40)
+R & C SAMA 87.931.17) 88.83(232) 85.71(082 77.78059  89.79 027)  93.77 (0.08)

Table 3.1 WRENCH results. R and C in the first column stand for data reweighting and
label correction operations. The number in parentheses indicates standard deviation for each
experiment over 3 runs.

In this experiment, we are able to make two observations. First, we notice that SAMA -
based data reweighting and label correction both lead to noticeable improvements over
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finetuning and self-training (COSINE [176]) baselines in noisy text classification accuracy
of the large Transformer model across all benchmarks with the help of small additional clean
data D, in the meta level. Second, given the superior performance of SAMA compared
to SAMA-NA, we empirically verify the importance of algorithmic adaptation when an
adaptive optimizer is used to train this Transformer base learner.

Additionally, we compare compute/memory ef-

ficiency of SAMA to that of two other implicit- GPUs Memory Throughput

differentiation-based meta learning algorithms, namely Ne‘gg‘““ i ;gg Z;?
Neumann Series [103] and conjugate gradient [130]. For  avana 1 137 144.1
fair comparison, we evaluate GPU memory usage (MB) SAMA I 14.3 142.0
and throughput (samples/sec) on the AGNews dataset ziﬁi i 170f igé?

from Wrench with a fixed global batch size of 48, and
summarize the result in Table 3.2. Three observations
that can be made here are that (1) SAMA is generally
more compute/memory efficient than the baselines, (2)
the cost of algorithmic adaptation for adaptive optimizers
is marginal as expected, and (3) the efficiency gap further
widens as we distribute compute/memory across multiple GPUs with our efficient DDP
communication strategy. Since we were only able to conduct experiments with up to 4 V100
GPUs due to the limited compute resources, exploring extremely large-scale GBML with
larger GPU servers remains a promising future research direction.

To separately understand the effect of each component, we conduct a more extensive
ablation by comparing test accuracy, GPU memory usage, and throughput of SAMA against
various meta learning algorithms on IMDB and AGNews datasets from the Wrench bench-
mark. The results are provided in Table 3.3 & 3.4.

Table 3.2 Memory and through-
put analysis on AGNews with 4
V100 GPUs.

Base Jacobian  Algo Adapt  Distributed Accuracy Throughput Memory

Finetuning (no meta learning baseline) X X X 85.79 169.16 7.77
Iterative Diff (e.g. MAML) [43, 105] X X X 85.78 28.07 22.94
Conjugate gradient (e.g. iIMAML) [130] X X X 86.78 65.14 22.03
Neumann series [103] X X X 86.65 67.03 19.70
DARTS (or T) — T2) [99, 104] o X X 86.36 43.69 10.81
SAMA-NA o X X 86.55 137.90 10.30
SAMA o o X 89.05 134.56 11.12
SAMA (2 GPUs) o o 0 88.85 226.27 8.00
SAMA (4 GPUs) o o 0 89.02 298.28 6.46

Table 3.3 Ablation results on AGNews

From our extended ablation study, it can be seen that 1) an identity approximation of
base Jacobian significantly improves memory/compute efficiency, 2) algorithmic adaptation
improves meta learning performance at the minimal compute/memory cost, and 3) our
communication-optimized distributed training further improves compute/memory efficiency.
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Base Jacobian  Algo Adapt  Distributed Accuracy Throughput Memory

Finetuning (no meta learning baseline) X X X 78.16 144.39 6.60
Iterative Diff (e.g. MAML) [43, 105] X X X 80.25 24.24 22.03
Conjugate gradient (e.g. iMAML) [130] X X X 81.01 56.27 21.92
Neumann series [103] X X X 79.92 57.85 19.75
DARTS (or T} — T) [99, 104] o X X 80.47 37.53 10.35
SAMA-NA o X X 81.92 117.86 9.93
SAMA o o X 84.31 116.94 10.84
SAMA (2 GPUs) o o o 85.18 196.48 7.84
SAMA (4 GPUs) o o o 84.19 263.74 6.39

Table 3.4 Ablation results on IMDB

3.4.2 Continued Pretraining of Large Language Models

DAPT/TAPT [62] empirically demonstrate that additional pretraining (i.e., continued pretrain-
ing) of the generic language model on the domain or task-specific data can further improve
downstream performance on diverse benchmarks. However, the inclusion of low-quality
samples for continued pertaining tasks can potentially hinder pretraining by amplifying
negative interference [165], which could lead to suboptimal downstream performance. Here,
we attempt to minimize such negative transfer by reweighting samples from the continued
pretraining task with meta learning. To this end, we adopt the auxiliary learning technique
from TARTAN [34] and simplify the two-stage pretraining-finetuning pipeline into a one-
stage multitask learning pipeline with the reweighting scheme applied to the pretraining loss.
The bilevel optimization formulation is as follows:

A" = argmin % (Ds;0%(1))
A

s.t. 0°(A) = argmin % (Ds;0) + —— Z w(x;A) - L (x;0)
7} ’Dpl| xEDPl

where £,/ are finetuning/pretraining loss functions, D ,/D,; are finetuning/pretraining
datasets, and w(-;A) is the data reweighting network. Following the experiment setup in
TARTAN [34], we use task-specific data and a masked language modeling loss in our aux-
iliary task and perform experiments with ROBERTa-base on 4 datasets from the original
DAPT/TAPT paper. We compare our SAMA-based data optimization against DAPT and
TARTAN-MT. We exclude TAPT and TARTAN-Meta respectively because (1) TAPT consis-
tently underperforms TARTAN-MT [32] and (2) TARTAN-Meta uses additional validation
data in the meta level of the downstream tasks, making the comparison unfair. We report our
experiment results in Table 3.5.

As shown above, SAMA-based data optimization leads to improvements in downstream
performance on almost all datasets. This indirectly demonstrates that SAMA-based data
reweighting can identify more/less relevant data in the auxiliary task and accordingly up-
/down-weight them, unlike TARTAN-MT which allocates equal importance weights on all
auxiliary data. Therefore, we expect that our method would likely benefit from additional
auxiliary data by automatically figuring out and exploiting only relevant data, whereas
TARTAN-MT is much more susceptible to negative transfer. While we only used task-



3.4 Experiments 41

ChemProt HyperPartisan ACL-ARC  SciERC  Average

Baseline 82.70 43 89.03 .25 68.17 e 79.83 39 79.93
DAPT [62] 84.17 050 87.23 G6s) 71.84 wrsy  80.42 57 80.92
TARTAN-MT [34] 84.18 .30 94.64 ©.91) 72.41 1osy  80.83 o) 83.02
SAMA (ours) 84.49 .13 95.18 .03 71.63 assy 81.84 0osy  83.29

Table 3.5 Experiment results for auxiliary learning with the continued pretraining task.
Following [62], we report test micro-F1 for ChemProt and macro-F1 for the other datasets.
The number in parentheses indicates the standard deviation for each experiment over 3 runs.

specific data in our auxiliary task for the fair comparison with TARTAN-MT, extending
auxiliary data to domain-specific or even general text data and comparing SAMA against
DAPT or TARTAN-MT would be an intriguing future research direction. Finally, we analyze
the GPU memory usage of different-sized RoOBERTa in this experiment and present the result
in Figure 3.1. The figure clearly shows the superior memory efficiency of SAMA with the
increasing model size.

3.4.3 Scale-Agnostic Efficient Data Pruning

Data pruning [119, 150, 155, 162] has recently received the limelight in the machine learning
community as a means to both improve training efficiency and reduce (semantic) redundancy
in training data. In particular, Sorscher et al. [150] showed both theoretically and experi-
mentally that neural scaling laws can be beaten by data pruning. Nevertheless, they point
out that the optimal data pruning metric varies across different dataset scales and further
research in scalable data pruning metrics is needed. Here, we propose to forgo hand-designed
data pruning metrics, and rather automatically meta-learn the importance weight of each
training data following Meta-Weight-Net (MWN) [145] with four major modifications. First,
we replace their iterative differentiation meta gradient algorithm with SAMA to achieve
improved memory/compute efficiencies. Second, we further speed up meta learning by
enabling distributed training with our efficient communication strategy. Third, we use the
uncertainty of the prediction in addition to the loss value as an input to MWN to better
estimate importance weight of each training data. Last, we use training data both in the
base and the meta levels, assuming no additional validation data. A bilevel optimization
formulation of our method is as follows:

l* = argrnin X(Dtrain; 9* (A’))
A

1
s.t. 6"(A) = argmin

Z W(fa%,l)iﬂ(x’yse)
0 ’Dtmin‘ (

X,Y)€Dyrain

where w(-;A) is MWN that takes the loss value . and the uncertainty % of the training
sample (x,y) as an input and outputs the importance weight. Under this setup, we run meta
learning with SAMA for 30 / 50 epochs respectively for ImageNet-1k / CIFAR-10 and obtain
the pruning metrics by averaging the importance weights of the last 5 epochs. We compare
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our method to several popular static/dynamic data pruning baselines, and present the results
in Figure 3.4.

ImageNet-1k w/ ResNet-50 CIFAR-10 w/ ResNet-18
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Fig. 3.4 Top Left: ImageNet-1k data pruning results with ResNet-50. Reported numbers are
relative accuracy compared to full training accuracy (i.e., pruned_acc/full_acc). Accuracy for
other baseline methods is obtained from DynaMS [162]. Top Right: CIFAR-10 data pruning
results with ResNet-18. Accuracy for other baseline methods is obtained from Deepcore [59].
Bottom: Relative time spent in finding data to prune compared to full ImageNet-1k training
time.

As expected, GBML-based data pruning with SAMA not only outperforms heuristics-
based data pruning but also works well across different dataset scales. Surprisingly, we
observe that GBML-based data pruning even leads to improvements in test accuracy at the
pruning ratio of 0.1 and 0.2 on ImageNet-1k. The potential implication is that ImageNet-1k
may have noisy labels or semantic redundancy and that GBML is able to automatically figure
and filter out these samples. Further in-depth investigation of filtered data remains an interest-
ing research direction. Considering that compute/memory inefficiency has traditionally been
the major bottleneck in GBML applications, we also compare the relative search time for data
pruning. Our result shows that SAMA demonstrates comparable or even shorter search time
than heuristics-based methods. We also note that, while the original MWN [145] encounters
the OOM error under our setup of batch_size=256, the throughput analysis with the reduced
batch size reveals that efficient distributed training with SAMA on 4 GPUs achieves 15-20x
speed up compared to the original MWN that lacks distributed training support.

3.4.4 The Effect of Scaling in Model-Agnostic Meta Learning

Since the inception of MAML [43], a myriad of algorithms have been proposed to improve
few-shot image classification while assuming a fixed network architecture. In contrast,
here we shift our focus from the algorithm to the scale, and propose to study the following
question: “Leveraging the compute/memory efficiency of SAMA, can we improve the
few-shot generalization capability by scaling up the network size?”. Since SAMA is a
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variant of implicit differentiation, we closely follow the experiment setup in iMAML [130],
where proximity to the initialization weights is explicitly enforced by L;-regularization. The
major difference is that iIMAML uses a conjugate-gradient-based method, which requires
second-order gradient information to compute meta gradients, while we adopt SAMA to
achieve improved scaling to larger networks with its superior memory/compute efficiency.
We conduct preliminary experiments on the Omniglot 20-way 1-/5-shot tasks with the basic
4-layer CNN architecture, while varying the width (hidden size) of the networks to study the
effect of the model size on the few-shot classification accuracy. The experiment results are
provided in Figure 3.5 below.

Omniglot 20-Way 1-Shot w/ 4-layer CNN Omniglot 20-Way 5-Shot w/ 4-layer CNN
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Fig. 3.5 Few-shot image classification accuracy on Omniglot 20-way 1-/5-shot tasks with
varying network sizes.

Interestingly, we observe that the increased model size leads to consistent improvements
in few-shot classification accuracy. The important question following this observation
is “can we apply scaling laws [84] from other tasks (e.g., language modeling) to general
meta learning beyond few-shot image classification?” Since meta learning involves two
optimization problems (meta and base) unlike traditional machine learning problems, it
is as of now unclear how to define the general concept of “scale” in terms of both model
and dataset sizes. We expect that further research in this direction would be critical in
systematically studying scalable meta learning.

3.5 Related Work

Algorithms Two major lines of research in gradient-based meta learning algorithms are
iterative and implicit differentiation [53]. Iterative differentiation [43, 45, 46, 105] computes
meta gradients by differentiating through the optimization path and therefore requires saving
all intermediate states on the path. This makes the memory/compute costs of iterative
differentiation increase linearly with the number of unrolling steps. While the linear cost
can be avoided with the use of techniques like truncated backpropagation [95], it is still
more expensive than that of implicit differentiation, in which meta gradient computation
is independent of the length of the optimization path. More specifically, meta gradient
computation in implicit differentiation depends only on the final state of the optimization
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path. To compute base Jacobian inversion in implicit differentiation, a multitude of variants
have been proposed, each of which uses Neumann series [25, 103], conjugate gradient [130],
Nystrom method [66], and more. While generally being more compute/memory efficient than
iterative differentiation, most existing implicit differentiation algorithms have poor scalability
due to the issues studied in Sec. 3.3.

Applications Meta learning has found many applications in machine learning includ-
ing few-shot learning [43, 130, 182], neural architecture search [99, 178], hyperparameter
optimization [45, 46, 103, 105], data optimization [58, 136, 145, 180], and reinforcement
learning [61, 76, 132], to name a few. Notably, most of these applications share the underly-
ing mathematical formulation of bilevel optimization and are conceptually related to optimal
design and inductive/declarative programming paradigms.

Systems Compared to algorithms and systems research, there are relatively fewer
research efforts in meta learning systems. In an attempt to facilitate research in few-shot
image classification, higher [54], learn2learn [5], and TorchMeta [32] have been developed.
However, due to their specific focus on few-shot image classification, these libraries have not
been actively used in other meta learning tasks, such as data optimization or neural architec-
ture search. Recently, software libraries for implicit differentiation including JaxOpt [18]
and Betty [24], have been proposed. Given that Betty’s software architecture is specifically
designed to support various systems optimization for large-scale meta learning, we chose to
implement SAMA in this framework.

3.6 Conclusion

In this paper, we strived to make scalable meta learning practical via both algorithmic and
systems advancements. Towards this goal, we investigated diverse scaling bottlenecks in
meta learning at a technical level and resolved them by developing SAMA. Tested on multiple
benchmarks, SAMA empirically demonstrated its scaling efficiency as well as its capability
to optimize a variety of high-dimensional inductive biases of large-scale learning. In future
work, we plan to explore two directions. First, given that training extremely large models
with 10B+ parameters require various systems techniques such as model/pipeline parallelism
or optimizer sharding, extending SAMA to be compatible with these techniques would be
highly important for further scalability. Second, we will also focus on large-scale meta
learning application research, such as neural architecture search for Transformer-family
models. Overall, we hope that our work can serve as a stepping stone for a lot of interesting
scalable meta learning research to come.
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ML Debugging Systems

In Section 1.1.3, we showed that the investigation of variants of influence functions enable
a multitude of analyses of ML models, including training data attribution and uncertainty
estimation. Nevertheless, applying influence functions to recent LLMs and their vast training
datasets has been largely limited by prohibitive compute and memory costs. To address this,
this section aims to significantly improve scalability of influence functions with an efficient
gradient projection strategy called LOGRA that leverages the inherent gradient structure in
backpropagation. We then provide a theoretical motivation of gradient projection approaches
to influence functions to promote trust in the data influence analysis. Lastly, we lower the
barrier to implementing data influence analyses by introducing LOGIX, a software package
that can transform existing training code into data valuation code with minimal effort.

4.1 Introduction

Despite the well-recognized importance of training data in advancing the capabilities of large
language models (LLMs) [19, 84, 135], there is no agreed-upon mechanisms for crediting
or compensating data providers. As LLMs are increasingly integrated into our society and
economy, the absence of such mechanisms has aggravated a tension between data and model
providers, exemplified by recent legal challenges involving major tech companies [82, 108].
In this atmosphere, data valuation, which quantifies the contribution of each training data
to the model output, has been discussed as a potential technical solution for tackling these
societal issues [42, 51, 74, 81, 167, 179].

At a high level, most data valuation algorithms interpret the model output as a coalition
of its training data, and evaluate the contribution of each example based on its influence on
the model output when included or excluded from the training dataset [51, 77, 87, 92]. If an
inclusion of a specific training example consistently improves model performance, high value
can be assigned to this example for its contribution. However, applying existing data valuation
methods to recent LLLMs and their vast training datasets has faced significant scalability
challenges to date. For instance, sampling-based methods, such as the Shapley value [51, 92]
or Datamodels [77], require retraining the model multiple times with varied combinations
of data subsets to directly model the effect of in/excluding each data. Unfortunately, such
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repeated retraining is hardly affordable even for small models, let alone LLMs. To overcome
this issue, gradient-based methods, including influence functions [87, 117], approximate the
effect of data in/exclusion on the model output using gradient information without costly
retraining. Even so, scaling gradient-based methods to LLMs is hindered by prohibitive
compute and memory costs originating in the high-dimensional nature of the gradient.
Consequently, the main objective of this work is to bridge the gap in scaling existing
data valuation methods to recent LLMs and their vast training datasets. Toward this goal, we
focus on influence functions [87, 117], a representative gradient-based data valuation method,
and significantly improve its scalability with an efficient gradient projection algorithm.
We visualize the proposed data valuation system in Figure 4.1, and detail our technical
contributions below:
* Employing gradient structures in backpropagation, we develop a novel low-rank gradient
projection algorithm LOGRA that improves space & time complexity of gradient projection,
a major scalability bottleneck in prior work [117, 142], from O(nk) to O(v/nk) where n
and k are model and projection dimensions. Furthermore, LOGRA directly computes
projected gradients without materializing full gradients, enabling low GPU memory and
high GPU utilization for improved efficiency. Lastly, we show that LOGRA can be easily
implemented with small add-on layers, similarly to LoRA [73].

* By interpreting a damping term in influence functions as a spectral gradient sparsification
mechanism, we (1) offer a theoretical motivation of gradient projection approaches to
influence functions and (2) derive a specialized PCA initialization scheme for LOGRA.
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* We introduce software named LOGIX that (1) makes it simple to convert existing training
code into data valuation code, (2) is compatible with various scalability tools and fea-
tures in the LLM ecosystem, and (3) is extensible to implement other data valuation or
interpretability algorithms.

* In our data valuation experiments, LOGRA demonstrates competitive accuracy against more
costly baselines, while showing up to 6,500 increase in throughput and 5 x reduction in
GPU memory, when applied to Llama3-8B-Instruct [2] and the 1B-token dataset, compared
to EKFAC influence [55], the state-of-the-art and only runnable baseline at this scale. We
also observe that most valuable data identified by LOGRA generally share qualitative
similarities with the queried LLM output.

4.2 Scalability Bottlenecks in Influence Functions

Most data valuation algorithms (e.g., data Shapley [51]) evaluate the contribution or value of
a specific example x on the utility v (e.g., test loss), that can further be used for crediting data
providers, by measuring the overall change in the utility v when in/excluding x as follows:

VALUE(x;v) = Z w(v(SU{x}) —v(S)) 4.1)
SCD\{x}

where D is the training dataset, S is a subset of D, and w is an (algorithm-specific) weighting
term. Intuitively, the larger the utility gain from an inclusion of x is, the larger the value of x
is.

One popular instantiation of Eq. (4.1) is the leave-one-out error [87], a semivalue [38]
that is a basis for most data attribution methods and only considers S with |S| = |[D| — 1
(i.e., leaving one example x from the entire dataset D). However, naively computing the
leave-one-out-error requires retraining the model multiple times for each x € D, which is
hardly affordable even in small-scale setups. To overcome this issue, influence functions,
a representative gradient-based method, efficiently simulates the effect of model retraining
without an example x;, on the utility using gradient information as:

INFLUENCE (X;, Xr0) = goH ' gir (4.2)

where g; and g, are train and test gradients respectively, and H is the Hessian matrix.
Concretely, influence functions approximate the effect of removing x; by updating the model
parameters with a Newton step in the direction of H~'g;,, and uses a first-order Taylor
approximation to estimate how this update will affect the test utility. In practice, computing
influence functions involves two key steps of (1) solving the inverse Hessian-vector product
(IHVP) with g;., and (2) taking the dot product of this iHVP with the gradient g;, for each
training example.

Despite their comparative efficiency, influence functions remain difficult to scale to recent
LLMs due to the high compute and memory costs associated with both steps. First, space
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and time complexity of naive iHVP are respectively O(n?) and O(n?), both of which are
impractical in recent LLMs with n > 10° parameters. To address this issue, various tricks for
efficiency, such as iterative methods [87] or EKFAC approximation [55], have been proposed.
Second, to ensure fair valuation, one must compute influence scores with all training data,
which requires access to their gradients. However, computing gradients for all training data
approximately amounts to one-epoch training, the cost of which often exceeds $1M in the
context of LLM (pre)training. If training gradients were to be recomputed frequently for
regular data valuation, the total cost can quickly become astronomical. Thus, while it is
technically possible to run a few influence function analyses to interpret interesting LL.M
outputs using efficient iHVP tricks [55], doing it in a scalable and sustainable way to build a
practical data valuation system remains a significant challenge.

In an attempt to mitigate the aforementioned cost issues, Arnoldi IF [142] and TRAK [117]
recently explored the strategy of projecting gradients onto a low-dimensional space and com-
puting influence scores on the subspace spanned by the projection matrix as follows:

INFLUENCE (X;/, X;¢; P) = (Pgte)T (PHPT) - (Pgir) 4.3)

where P € R¥*" is the projection matrix given the model and projection dimensions of 7 and
k. Under this strategy, the iHVP operation also occurs in a low-dimensional space, meaning
that n in memory and compute complexity of iHVP gets replaced with k < n. Furthermore,
low-rank projection enables writing projected gradients for all training data to disk once and
simply reading them as new test data arrives without costly re-computations. This converts
an influence function problem into a vector similarity search problem, for which various
system optimizations exist [83].

In essence, this strategy significantly reduces both iHVP and training gradient recomputa-
tion costs by introducing an additional process of low-rank gradient projection Pg. However,
the additional compute/memory costs and accuracy degradation incurred from low-rank
gradient projection has not been thoroughly studied to date. First, assuming that the batch
size is b, the compute cost of naive batched gradient projection is O(bkn). Noting that the
compute cost of backpropgation is O(bn) (or O(btn) if we consider the time dimension), the
cost of gradient projection is usually larger than that of backpropagation given a reasonably
large k for the expressivity. Second, the memory costs for full per-sample gradient and
the projection matrix are O(bn) and O(kn). If an 8B model were to be used, each of these
costs amounts to 32GB xb (or xk) GPU memory. While Arnoldi IF and TRAK attempt
to address the memory costs of the per-sample gradient and projection matrix respectively
with forward-mode Jacobian-vector products and a custom CUDA kernel trick, neither of
them are able to solve both issues altogether. This leads Arnoldi IF and TRAK to use very
small £ and b, each of which results in decreased accuracy of influence scores due to limited
expressivity and poor efficiency from low GPU utilization. Since accuracy and efficiency are
both critical for effective data valuation, we deduce that further advancements in the gradient
projection approach are necessary.
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4.3 Scaling Data Valuation & Influence Functions

In light of these issues, we first design a memory and compute efficient gradient projection
algorithm called LOGRA, that leverages the inherent gradient structure in backpropagation
(Section 4.3.1). Then, we provide an intuitive theoretical analysis on why gradient projection
approaches work in influence functions (Section 4.3.2). Finally, we distill our insights
obtained from studying (scalable) influence functions into a new open-source software, called
LogGIX, which achieves high compatibility, extensibility, and usability, to facilitate data
valuation research (Section 4.3.3). In this section, we build our arguments at the granularity
of each layer (or module) instead of the whole network for clarity.

4.3.1 Algorithm: Memory and Compute Efficient Gradient Projection

Most layers in neural networks, such as linear and convolutional layers, essentially perform
matrix multiplication. Given the input x; € R"%*T | the output x, € R%*T | the weight W €
R " for the layer, its forward and backward computations can be written as follows:

Forward: X, =Wyx; “4.4)

T
Backward: vec(9W) = Zx,-,t®9x0,t, Dxi =W' Dx, 4.5)
=1

where T denotes for the sequence dimension in language modeling, ¥ the derivative with
respect to the loss, ® the Kronecker product, and vec(-) the vectorization operation. In
Eq. (4.5), we observe that gradient vec(ZW ) obtained during backpropagation is structured as
a sum of Kronecker products between forward and backward activations. LOGRA leverages
this observation to impose an additional Kronecker-product structure on the projection matrix
P as follows:

T T
Pvec(IW) £ (P, @ Py)vec(IW) = Y (F®P,)(xiy ® Dxos) = Y PXiy @ PoDxoy  (4.6)

=1 t=1

where P, € Rki*ni p e Rkoxno and P= P, ® P,. In Eq. (4.6), LOGRA first projects forward
and backward activations onto low-dimensional spaces with P; and P, respectively, and then
reconstructs projected gradient directly from these projected activations. This is in contrast
to traditional gradient projection [117], which first computes raw gradient and then projects
it onto a low-dimensional space.

Now, we compare memory/compute efficiency of LOGRA to that of naive gradient
projection, especially under the setting of n; ~ n, ~ \/n and k; ~ k, ~ v/k. First, both
memory/compute costs of per-sample gradient computations reduce from O(bn) to O(bk).
Second, both memory/compute costs of gradient projection reduce from O(bnk) to O(b+/nk).
To clearly see this benefit, given the model/projection sizes of 8B/4k, we note that projection
matrix sizes are about 1GB and 128TB respectively for LOGRA and naive projection. As
such, while enjoying general efficiency gains from gradient projection we disscussed in
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Section 4.2, LOGRA further improves the efficiency of per-sample gradient computations
significantly at a marginal cost of the additional gradient projection process.

Furthermore, leveraging the fact that projection occurs in the
activation space, LOGRA can be easily implemented with small

XoDx,

add-on layers that are composed of encoder, bottleneck, and de- ﬁv
coder, each of which is initialized with P,, zero, and P, as shown | ) P,

in Figure 4.2. If we ignore the bottleneck layer, the overall archi- 0f [PoDxo
tecture is identical to the popular LoRA architecture [73]. While = Module W zero «-pg
it is intuitive that the roles of encoder and decoder are project- Pxif [o
ing forward and backward activations respectively, we emphasize J Pi

two critical roles of the bottleneck layer here. First, its zero ini- T
tialization ensures that the rest of both forward and backward

x;j Dx;

computations remain unaffected by these add-on layers. Second,
per-sample projected gradients can be obtained by simply comput- Fig. 4.2 LOGRA.
ing per-sample gradients for the bottleneck layer, using automatic
differentiation of an underlying framework without complicated implementation efforts.

4.3.2 Theory: Why Gradient Projection Works in Influence Functions

While LOGRA can significantly improve scalability of influence functions, an inherent
criticism of any gradient projection approach is that information loss from the projection
process may render the resulting influence analysis invalid. Unfortunately, theoretical
analyses from prior work [117, 142] only discuss the indirect effect of gradient projection on
proxy concepts like gradient flow or iHVP variance, which are loosely related to influence
functions. To promote trust in the data valuation process, we provide here a mathematical
motivation of gradient projection approaches to influence functions. Toward this goal,
we interpret a damping term in influence functions that is typically added to ensure the
invertibility of the Hessian H as a spectral gradient sparsification mechanism. To formalize
the above claim, we here first provide two required assumptions, and then theoretically show
the spectral gradient sparsification effect of a damping term in influence functions below.

Assumption 1 In this work, we make the following two assumptions on train & test gradient
distributions and the Hessian H:

1. Given that language modeling falls under the maximum likelihood framework, we replace
the Hessian H with the Fisher Information Matrix (FIM), and further approximate the FIM
with the empirical FIM, i.e.,

H = Epe(y\x) [Vlogpg (y|x)Vlogp9 (y|x)T]

1
~y L [Viegpe(yulm)Viogpe(yalxa) ]

(xn aYn)EDtr

2. Given that test data are directly sampled from the model given the prompts, we assume
test gradients g;, and train gradients g, approximately follow the same distribution.
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Lemma 1 Let {e},- - ,e,} and {Ay, -+ , A, } be eigenvectors and eigenvalues of the Hessian
H. Expressing 8y jte = YiCir/te,i" (v Aie;), the following holds under Assumption | :

Influence(xiy,Xre) = g;(H—l—lI)*lgtr = Z mctnicte,i and E[czl] ~1.
=17t

Proof.
Let Q = [e, - ,e,] and A = diag(Ay,--- , Ay).

TF (i, Xee) = 8o (H+ A1) gy
= 2. (OAQT + A1) g,
_gte( Q(A+AIQ ) lgzr
= 8, QA+ A1) "0 g

T

= (Zcmi‘(\/zei)> (A+AI)~ (Zcm \/_e >

= [Cte,l Aisee ;Cte,nﬁ] (A‘i‘AI [ctrl\/—a 5 Ctrn ;Ln}
LY

N Zl At A

Ctr,iCte,i O

Since we assume g;. and g;, follow the same distribution, we need to show E[szr,i] ~ 1 for all
i.
A=Q'0AQ'Q

=Q'HQ

1 .
N Z QT[Vlogpe(yn!xn)VInge(ynlxn)T]Q (Assumption 1)

(xi,yi) €Dy

=E[0"g8,0]

.
T (thr,i : (\/Z@)) (Zcmi ' (\/Z&')) Q]
=E [ [Ctr,l \/)L_; 5 Ctrn An} [Ctr,l \/A_; 5 Ctrn \/)L_n} T]

Inspecting diagonal terms, we get A; ~ E[c}. ;4] = E[c7, ] A:.
Therefore, E[ctzm.] ~ 1. O
Lemma | shows that a damping term softly limits the number of components in influence

computations by penalizing contributions from small components. Given the prevalence and
practical importance of a damping term in influence functions [13], we can motivate gradient

Q
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projection as an alternative way of (hard-)limiting influence computations to components in
the projection matrix. To make LOGRA similarly penalize small components, we develop an
initialization scheme that exploits the Kronecker-Factored Approximate Curvature (KFAC)
algorithm [106]. As a quick overview, KFAC approximates the block-wise Hessian with
the Kronecker product of uncentered forward and backward covariances of each layer,
respectively denoted with Cr and Cp, as H ~ Hxrac = Cr ® Cp. Expressing Cr and Cp
as QFAFQ; and QBABQE with eigendecomposition, it is easy to show that eigenvectors
and eigenvalues of Hxpac are Qr ® Op and Ar ® Ap. Consequently, we can approximately
discard the smaller components of H by initializing P, and P, with Q1% and QL*, where Q'
is a collection of top-k eigenvectors (similar to performing PCA on forward and backward
activations). In Section 4.4, we experiment with both PCA and random initialization schemes.

4.3.3 Software: Compatibility, Extensibility, and Usability

Besides algorithmic efficiency, another major bottleneck in the practical adoption of data
valuation systems is often the challenge of implementation. In particular, we observe that
gradient computation in LLMs, which is a building block for influence functions, typically
requires support from other scalability tools like DeepSpeed [133] or relies on high-level
frameworks like HF Transformers [166]. However, most existing software that can be used
for data valuation (e.g., Captum [88] and TRAK [117]) is largely incompatible with these
tools due to the (too) high level of abstraction in their APIs.

import logix

# setup
run = logix.init(project, config)
run.setup("stat": "kfac", "save": "grad")

run.watch (model)

# train log & statistic
for batch in train_loader:
with run(data_id=batch["input_ids"]):
loss = model (batch)
loss.backward ()
run.finalize ()

# test time influence analysis
with run(data_id=tst_batch["input_ids"]):
loss = model(tst_batch)
loss.backward ()
run.compute_influence_all ()

Listing 4.1 Code Example of LOGIX.

Subsequently, we develop a new software package, LOGIX, design of which enables an
easy conversion of users’ existing training code into data valuation code, by promoting
compatibility with other tools in the LLM ecosystem. To this end, we first notice that most
influence function algorithms simply require collecting train logs (e.g., gradient, activation)
and their statistics (e.g., covariance). As a result, given arbitrary users’ training code,
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data valuation software only need to intercept these logs, and provide basic primitives to
compute various statistics with them. Leveraging this observation, LOGIX implements log
interceptions and compute primitives using PyTorch hooks. Notably, the use of hooks makes
LOGIX compatible with diverse other tools as hooks can be seamlessly integrated with most
PyTorch features (e.g., FSDP, autocast, compile). In addition, LOGIX is extensible, as users
can easily define and add custom primitives inside hooks. Finally, LOGIX is easy-to-use
as its context manager automatically handles adding appropriate hooks and primitives to
relevant modules with minimal code changes. Code examples can be found in Figure 4.1 and
our project page.

Difference between LOGIX and Other Interpretability Tools

Influence functions have been extensively studied as an interpretable Al method. Accordingly,
there have been several tools originating in the Al interpretability field that implement
influence functions, with most notable examples including Captum [88], TRAK [117], and
Kronfluence [55]. Overall, the software design of these tools aim at easing the from-scratch
implementation of influence functions by introducing a lot of abstraction, following the
philosophy of high-level frameworks. In fact, such software designs were well-received in
the pre-LLM era. Nonetheless, as scaling has become a key aspect of Al research, the (LLM)
development ecosystem has become complicated and being able to compatibly work with
other tools in the ecosystem has become a core aspect in the ML software design. Hence,
unlike existing software, the design of LOGIX aims at enabling the easy conversion of users’
(already efficient) training codes into data valuation codes. This design is also motivated
by the observation that gradient is simply a by-product of the training procedure so that we
can reuse most of the training code for data valuation without needing to write the gradient
computation code from scratch as in other tools.

Recently, there have been active developments in (mechanistic) interpretability software,
represented by TransformerLens [113] and pyvene [168]. Interestingly, these software also
extensively use PyTorch hooks, similarly to LOGIX, probably due to its high compatibility
with other features such as autocast, distributed data parallelism, fully-sharded data paral-
lelism, and gradient checkpointing. Nevertheless, we point out two major differences between
these (mechanistic) interpretability software and LOGIX. First, support for dataset-level
statistics computations in LOGIX is largely missing in these tools. In data valuation, we often
need to compute several dataset-level statistics such as the Hessian (or Fisher information
matrix) for accurate influence computations, and therby supporting these computations seam-
lessly was an important design principle behind LOGIX. However, analyses in (mechanistic)
interpretability research typically focuses on each instance and computing dataset-level
statistics is typically not supported. Second, support for efficient data IO in LOGIX is not a
priority in other tools. As we propose to convert the data valuation problem into a vector
similarity search problem with gradient projection, we put efforts into improving efficiency
of data IO (see the next subsection for details), whereas this issue is rarely considered in other
interpretability tools. We hope to explore the possibility of supporting both data valuation
and other interpretability research in a unified way with LOGIX as our future work.


https://github.com/logix-project/logix
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Optimizations in LOGIX

Efficient Data IO With LOGRA, we propose to save projected gradients for all training
data to disk, and frequently load them as a new test batch arrives. As a result, reducing latency
from data IO renders to be critical in realizing efficient data valuation. In particular, as the
total size of all training gradients is usually far beyond the limit of CPU memory, we should
optimize data transfer between disk and CPU (or GPU). To address this issue, we adopted
the memory-mapped files that bypasses the need for intermediate copying between kernel
space and user space, reducing the overhead associated with data IO operations. The use of
the memory-mapped files is also motivated by the observation that, given each query batch,
data valuation often requires computing influence scores with all training data. Therefore,
we can access training gradients in a predefined or sequential order instead of in a random
order, which can be done efficiently with memory-mapped files (sequential access is faster
than random access).

Moreover, we overlap memory-mapped-file-based data IO with computations to further
enhance data valuation efficiency. In the logging phase, we overlap the process of saving
gradients extracted from the current training batch to disk with computations for the next
training batch using Python multiprocessing. In the influence computation phase, we overlap
the process of loading saved training gradients from disk with computing a dot product with
the query batch using the pre-fetching feature of PyTorch Datal.oader.

We also note that more efficient data IO can be achieved by the use of more advanced
techniques like GPU-accelerated vector database, especially in the production setting. While
we considered supporting this feature, we decided to focus on the memory-mapped-file-based
data IO in our initial version of LOGIX, as it offers more flexibility to explore different
algorithms in the research setting.

Memory Optimization When dealing with LLMs, GPU memory is often a major
scaling bottleneck. To alleviate this issue, we support CPU offloading of dataset-level
statistics by utilizing the sequential nature of backpropgation. When this feature is enabled,
we by default keep all dataset-level statistics (e.g., gradient covariance) on CPU, move it to
GPU when the corresponding module is called during forward/backward passes, and then
move it back to CPU asynchronously as soon as updating statistics for the module is done.
Depending on the CPU-GPU communication bandwidth, this feature may slow down the
logging process.

Communication Optimization If training data are split across multiple processes
with distributed training, we need to aggregate dataset-level statistics across processes for
consistency. To minimize the communication cost, we delay the synchronization process
until the training loop (one epoch) is over, and perform synchronization only once at the
end. Following the similar logic, users can maximize the efficiency of the logging phase by
disabling gradient synchronization (e.g., torch.no_sync).
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4.4 Experiments

In this section, we evaluate the effectiveness of LOGRA in terms of accuracy and efficiency,
both of which are important in practical data valuation systems. Specifically, we first perform
two types of counterfactual evaluations to quantitatively study data valuation accuracy
of LOGRA on small-scale setups (Section 4.4.1). Then, we scale LOGRA to LLMs and
their massive training data, where we investigate qualitative accuracy (i.e., how similar most
valuable training data are to the model output) and memory/compute efficiency (Section 4.4.2).
Finally, our appendix includes pseudo-code for LLM experiments (Appendix C.1) and
experimental details such as hyperperameters and compute resources (Appendix C.2).

4.4.1 Quantitative Accuracy with Counterfactual Evaluation
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(b) Linear datamodeling score (LDS)

Fig. 4.3 Quantitative accuracy evaluation of data valuation algorithms. We excluded TRAK
in the WikiText experiments due to lack of a public implementation for language modeling
tasks.

To quantitatively assess accuracy of data valuation algorithms, we adopt two counter-
factual evaluation methods: brittleness test [77] and linear datamodeling score (LDS) [117].
First, the brittleness test focuses on accuracy in successfully identifying top valuable data.
To this end, it first removes the top-k valuable data identified by each algorithm, retrains the
model without them multiple times with different random seeds, and measures the overall
change in the model output. The larger the output change is, the more accurate the algorithm
is in identifying fop valuable data. Second, LDS measures general valuation accuracy of
all training data under the additivity assumption. Specifically, given multiple data subsets
{S;} of the fixed size (e.g., |S;| = |D|/2), LDS estimates the test performance of the model
trained on S; by summing the values of all examples in §; returned by each algorithm, and
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compares it against the gold performance obtained by actually training the model on S;
using the Spearman correlation. Noting that linear datamodels have a connection to the
game-theoretic data value (e.g., Shapley value) [77], LDS can serve as a principled way to
study data valuation accuracy.

We perform these counterfactual evaluations on three benchmarks where many rounds
(up to 1800) of retraining is feasible: (1) MLP with FMNIST, (2) ResNet-9 [69] with CIFAR-
10, and (3) GPT2 [126] with WikiText. On these benchmarks, we compare accuracy of
LoGRA against four popular data valuation baselines, including gradient dot product [124],
TRAK [117], EKFAC influence [55], and representation similarity [65]. With the aim of
bearing relevance to a large-scale setting with LLMs and their vast training data, we have
only considered baseline methods that satisfy the following two conditions. First, the method
cannot retrain the model multiple times for identifying top-k valuable data.' Second, the
method only has access to the final model checkpoint, which is the case for most LLMs.
Given the above setup, we present our experiment results in Figure 4.3.

We observe that LOGRA slightly underperforms EKFAC influence, which is a few or-
ders of magnitude slower in our large-scale experiments (Section 4.4.2), while noticeably
outperforming other baselines. We attribute competitive accuracy of LOGRA to two factors.
First, unlike TRAK of which projection dimension is limited by the huge projection matrix,
LOGRA can efficiently afford a higher projection dimension thanks to its sublinear memo-
ry/compute costs for gradient projection, and thus achieve the higher expressivity. Second,
gradient projection enables LOGRA to compute raw projected Fisher information matrix (or
Hessian) without an approximation as in EKFAC influence. We expect that a more accurate
computation of the Hessian generally leads to more accurate data valuation results.

Comparing the initialization schemes for LOGRA (PCA vs. random), we observe that
LOGRA-PCA outperforms LOGRA-random on the FMNIST and CIFAR benchmarks. Hence,
we hypothesize that it is generally more accurate to compute influence functions with larger
components, similar to the spectral gradient sparsification effect of a damping term we
discussed in Section 4.3.2. To understand a relatively poor performance of LOGRA-PCA on
WikiText+GPT2, we point out that the Transformer architecture [158] used in this benchmark
lacks the specialized KFAC Hessian approximation, unlike naive MLP [106] or convolu-
tional [56] architectures in other benchmarks. Subsequently, our ad-hoc implementation of
the PCA initialization based on the naive MLP architecture (i.e., no weight sharing) may not
successfully keep larger components of the GPT2 Hessian, failing to deliver its benefit. As a
result, we decide to use LOGRA-random for our LLM experiments in the next subsection.

4.4.2 Scaling to Billion-Scale Models & Datasets

Given competitive accuracy of LOGRA, we now evaluate its practical utility in valuing billion-
scale training data for billion-scale models. Specifically, we adopt GPT2-XL (1.5B) [126],
Pythia-1.4B [16], and Llama3-8B-Instruct [2] as our models, and conduct data valuation on
a random 1B-token subset of the OpenWebText (OWT) dataset [52]. The major motivations

'Note that multiple retraining is only allowed for evaluating accuracy of already identified top-k data, but
not for identifying top-k data itself in our experiments.
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behind choosing OWT as our data valuation dataset are twofold. First, we observe that
OWT consists of relatively higher-quality data compared to other LLM training datasets like
C4 [127] or Dolma [147] while maintaining the diversity unlike other high-quality datasets
like WikiText [107]. Second, we anticipate that OWT largely overlaps with training datasets
of all our models. In detail, GPT2-XL is trained on the WebText dataset that shares the same
data curation process with OWT, Pythia-1.4B is trained on the Pile dataset [49] that includes
an extension of OWT (i.e., OpenWebText2), and we suppose a majority of OWT would
be a part of Llama3’s massive 15T-token pretraining dataset. We also note that our OWT
subset size (i.e., 1B tokens) was mainly limited by the available storage, not by compute
(see Table 4.1). If we had access to a storage size of 1PB, performing data valuation with a
dataset size of 100B+ tokens would be readily feasible using the same compute resource.

Efficiency. To begin with, we compare memory and compute efficiency of LOGRA
against EKFAC influence [55], the state-of-the-art and only algorithm that can run on billion-
scale models without CUDA out-of-memory (OOM) errors. Indeed, we confirm that running
TRAK or Arnoldi IF with billion-scale models results in CUDA OOM errors even on
A100 GPUs with 80GB VRAM due to their gigantic projection matrix sizes. We report
GPU memory usage and throughput of both logging (one-time) and influence computation
(recurring) phases for the Llama3-8B-Instruct experiment with one A100 GPU and half-
precision in Table 4.1.

Logging (Compute & save Hessian|grad) Compute Influence (Dot product between test & train grads)
Batch Throughput Memory Storage Train Batch Test Batch Throughput Memory
EKFAC 1 1740/419*  71/80*GB 89 GB 4 4 12.2 75 GB
LoGRA 1 3430 23GB 3.5TB 256 4 1599.6 14 GB
LoGRA 16 4696 79 GB 3.5TB 256 256 79003.9 15 GB

Table 4.1 Memory & compute efficiency analyses for LOGRA and EKFAC. Throughput
is measured as tokens/s for logging and (train, test) pairs/s for influence computations. *
EKFAC logging consists of two subphases of KFAC fitting (left of /) and corrected eigenvalue
fitting (right of /).

Due to the huge size of raw gradients (e.g., 16GB in fp16 for an 8B model), EKFAC
cannot afford storing raw gradients for all training data to disk. As a result, EKFAC needs to
recompute all training gradients for each test batch, and thus requires allocating extra GPU
memory on model weights and intermediate activations. This largely limits both train/test
batch sizes and throughput (12.2 pairs/s), and performing data valuation with EKFAC for
256 test data and 1B-token training data would take 11,300 A100 GPU hours, rendering it
hardly usable in most practical setups.

In contrast, with its (efficient) gradient projection, LOGRA not only significantly im-
proves compute and memory efficiency, but also avoids training gradient recomputations
at the costs of disk space for storing projected training gradients and latency from data IO.
Since the storage cost is typically much cheaper than the compute cost’, we believe our
trade-off offers considerable practical benefits. Furthermore, we can largely hide the data

2e.g., hourly rates for a 1TB storage and one A100 GPU are approximately $0.03 and $4 on AWS.
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IO cost by overlapping gradient reading/writing processes with other computations. For
instance, given the fixed train gradient batch size of 256 (i.e., fixed data loading time), we
are able to successfully overlap the process of loading training gradients from disk with
influence computations against up to 256 test gradients, and thereby achieve almost 6,500 x
improvement in throughput from EKFAC influence. Noting that our GPU memory usage is
far from saturated even with the train/test batch size of 256, we believe that more throughput
improvements can be achieved simply by further increasing train/test batch sizes.

Qualitative Accuracy. Next, we analyze qualitative similarities between queried LLM
outputs and most valuable data identified by LOGRA that can be critical for promoting trust
in the data valuation system [167]. Importantly, we observe that naive influence functions
frequently return outlier data with high gradient norms as most valuable data, as also noted
in [12, 55]. To mitigate this issue, we instead use /-RelatlF, a variant of influence functions
that normalizes the original influence score with the self-influence score of each training data
to penalize such outlier effects [12]. Our experimental results are provided below.

& Generate a pitch for a new and original product. Most Valuable Data
Here's a pitch for a new and original product: is the term given to the state where the dreamer
Product Name: is aware they are dreaming, and has some
Once considered a myth, science has
Description: confirmed lucid dreams exist, and found some methods work to
DreamWeaver is a revolutionary, non-invasive brain- increase the prospects people will have them.
computer interface (BCI) device that uses Al-powered . )
neuroscience to monitor and influence your brain activity Nevertheless, some of these require advanced equipment,
during sleep, allowing you to . while others are far from reliable. This is unfortunate both
because people enjoy the dreams so much, and they are also
3. : Using subtle audio and visual cues, considered a potential tool for and
DreamWeaver can influence your brain activity to induce . Dr Denholm Aspy of the University of
, improve sleep quality, and even help . Adelaide wondered whether combining techniques would bring
~ greater success. ...
(a) Llama3-8B-Instruct
®  Toslow down global warming, Most Valuable Data
McCarthy has been behind some of the ’s most
we need to reduce the amount of carbon dioxide in our aggressive policies. In July 2011, the office finalized a new
. But that's not going to happen if Cross-State Rule, which requires drastic in
are allowed to continue and burning up sulfur and nitrogen oxide . In December,
more than half a trillion tons of every year." the agency issued new national standards for mercury and other air
: toxins from that the EPA believes will prevent as
The has been working with states on many as 11,000 deaths each year. Her office was also introduced the
ways they can while also tough new rules on smog-causing ozone that put on
encouraging renewable energy sources like wind and solar. @ hold last year. Many of these tough new rules riled critics in the
(b) GPT2-XL (1.5B)
D The best type of exercise for building muscle is Most Valuable Data
... Though it can sound scary, it is very effective. You need to lie on
the bench using small . After this, you need to
weight training. You can do this by using a extend that over the chest. You need to bend your elbows.

Then you need to put back the triceps to the starting position.

Tricep Extension: This is a classic exercise. You can do this by

leaning over the bench. You need to attach the upper arm at your

side. You need to hinge the elbow and you need to pull from the
© tricep. It also helps in keeping the back straight. ...

(c) Pythia-1.4B

, and you will need to be able
to lift the correctly so that they are not too heavy but
also light enough in order

Fig. 4.4 Qualitative accuracy of data valuations with LOGRA. Important keywords in each
example are manually highlighted for the improved readability.
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Llama3-8B-Instruct Results

Prompt
To improve data privacy,
Response

To improve data privacy, consider the following strategies:

1. Implement robust data encryption: Use end-to-end encryption to protect data in transit and at rest. This ensures that
even if an unauthorized party gains access to the data, they won't be able to read or understand it.

2. Use secure protocols: Use secure communication protocols, such as HTTPS, SFTP, and SSH, to protect data during
transmission.

3. Limit data collection: Only collect the minimum amount of data necessary to achieve your goals. Avoid collecting
sensitive data unless it's absolutely necessary.

4. Pseudonymize or anonymize data: Consider pseudonymizing or anonymizing data to protect individual privacy while
still allowing for data analysis and research.

5. Implement access controls: Establish strict access controls to ensure that only authorized personnel can access
sensitive data. This includes multi-factor authentication, role-based access control, and data masking.

6. Monitor and audit data access: Regularly monitor and audit data access to detect and respond to potential data
breaches.

7. Use data minimization techniques: Implement data minimization techniques, such as data aggregation, to reduce the
amount of sensitive data stored and processed.

8. Conduct regular security assessments: Conduct regular security assessments and penetration

First Most Valuable Data

American public, overseers and stakeholders. (3) Improve civil liberties and privacy protections by supporting research,
education and training. (4)Advise NSA leaders on civil liberties and privacy issues.

In this new report, the CLPO uses the framework Fair Information Practice Principles (FIPPs) to evaluate how the NSA
safeguards general civil liberties and privacy. Fair Information Practice Principles FIPP’s are broken down in eight founding
parts for federal agencies to adhere to. These principles are:

Transparency: organizations should be transparent and notify individuals regarding collection, use, dissemination, and
maintenance of personally identifiable information (PII)

organizations should be transparent and notify individuals regarding collection, use, dissemination, and maintenance of
personally identifiable information (PII) Individual participation: (Skip).

organizations should involve the individual in the process of using PII. (Skip)

organizations should specifically articulate the authority that permits the collection of Pll and specifically articulate the
purpose(s) for which it will be used Data minimizations: (Skip)

organizations should only collect PII that is directly relevant and necessary to accomplish the specified purose and only
retain Pll for as long as it is necessary to fulfill the specified purpose. (Skip)

Organizations should use PII solely for the purpose specified in the notice. (Skip)

Organizations should protect PII (in all media) though appropriate (Skip)

Second Most Valuable Data
(Skip) Easy reporting with out-of-the-box compliance reports — To achieve GDPR compliance, organizations need to
demonstrate that they monitor critical infrastructure holding personal data of EU citizens.

Using a powerful compliance and forensics reporting engine, Exabeam generates a series of built-in, GDPR-specific
reports, that help reduce the time to prove compliance to auditors.

Protect employee Personally Identifiable Information (PIl) — A critical GDPR requirement is to protect employee PIl from
unwarranted access. Exabeam provides role-based access control (RBAC) that can be used to enforce PIl data masking.

(Skip)

Fig. 4.5 Example 1. Llama3-8B-Instruct data valuation result.
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Prompt
How can one become a billionaire?
Response

Becoming a billionaire requires a combination of hard work, smart financial decisions, and a bit of luck. Here are some
strategies that can increase your chances of achieving this goal:

1. Start with a great business idea: Identify a market need and create a product or service that solves a problem or
meets a demand. Be innovative and stay ahead of the competition.

2. Work hard and be persistent: Building a successful business takes time, effort, and perseverance. Be willing to put in
the long hours and make sacrifices to achieve your goals.

3. Develop a strong entrepreneurial mindset: Be willing to take calculated risks, adapt to changing circumstances, and
continuously learn and improve.

4. Build a strong team: Surround yourself with talented and dedicated individuals who share your vision and values.

5. Make smart financial decisions: Invest wisely, manage your finances effectively, and avoid debt.

6. Diversify your investments: Spread your investments across different asset classes, such as stocks, real estate, and
bonds, to minimize risk.

7. Be patient and disciplined: Building wealth takes time, so be patient and disciplined in your financial decisions.

8. Stay informed and educated1: Continuously educate yourself on business, finance, and investing to make informed

First Most Valuable Data

(Skip) Make the most money. Demand for WordPress development is high and clients are willing to pay more for
developers who are the best in their field.

. Demand for WordPress development is high and clients are willing to pay more for developers who are the best in their
field. Get the best clients. When you are at the top, you have the freedom to say “No” to the projects you don’t want, and
“Yes” to the projects you do.

. When you are at the top, you have the freedom to say “No” to the projects you don’t want, and “Yes” to the projects you
do. Have the most influence. Being at the top means you have influence (and responsibility) and the capability to shape the
future of WordPress as well as the ecosystem that is built around it.

One Hour of Reading a Day

If you’re going to make it to the top, then you need to spend at least one hour each workday focused on reading and
learning more about WordPress — outside of any development work. (Skip)

Second Most Valuable Data

(Skip) A hugely successful game is more about psychology than merely some lovely design or cool coding.
As a successful gaming company, you need to:

Take time to understand Human Psychology

Give before you receive

Be patient and persistent, but not offensive, in your efforts to sell

Apply. Learn. Revise. Repeat.(Skip)

Third Most Valuable Data

(Skip) Unfortunately, many companies attempt to become agile by implementing only the process part and ignoring the
fundamental change in people management that leads to true harmony. | think we've all been there.

| don't claim to be an expert in this area, but here are some pointers that have helped me build harmonious teams in the
past.

1: Be careful when shuffling team members. (Skip)

2: Control negativity by reframing the problem. (Skip)

3: Praise in public, have difficult conversations in private. (Skip)

4: Rephrase criticisms into a request for help. (Skip)

5: Protect your team at all costs. (Skip)

6: Turn problems into action items. (Skip)

Fig. 4.6 Example 2. Llama3-8B-Instruct data valuation result.



62 ML Debugging Systems

Prompt
Do aliens exist?
Response

The existence of aliens, or extraterrestrial life, is a topic of ongoing debate and research in the fields of astrobiology,
astrophysics, and the search for extraterrestrial intelligence (SETI). While there is currently no definitive evidence of alien
life, there are many reasons to believe that the possibility of life existing elsewhere in the universe is quite high.

Here are some of the key arguments for and against the existence of aliens:

Arguments for the existence of aliens:

1. The vastness of the universe: With an estimated 100-400 billion stars in the Milky Way galaxy alone, and over 100
billion galaxies in the observable universe, the potential for life-supporting planets is immense.

2. The discovery of exoplanets: Over 4,000 exoplanets have been discovered so far, and many of these planets are
believed to be located in the habitable zones of their respective stars, where conditions are suitable for life as we know it.
3. The building blocks of life: Many organic compounds, such as amino acids and sugars, have been found in meteorites
and in interstellar space, suggesting that the raw materials for life are widespread in the universe.

4. The existence of extremophiles: On Earth, there informed

First Most Valuable Data

(Skip) Prior to Seticon Il in 2012 Tarter addressed concerns about alien invasion, like those seen in science fiction films, in
particular those expressed by Stephen Hawking. Correlated with Hawking's reservations is his belief that humans should
not attempt to broadcast signals in order to contact alien civilizations (Active SETI). Tarter thinks that aliens evolved enough
to communicate with and travel to Earth will be long-lived enough to have needed to grow beyond violent tendencies.[25]
[26]

“Often the aliens of science fiction say more about us than they do about themselves.... While Sir Stephen Hawking warned
that alien life might try to conquer or colonize Earth, | respectfully disagree. If aliens were able to visit Earth that would
mean they would have technological capabilities sophisticated enough not to need slaves, food, or other planets.(Skip)

Second Most Valuable Data

(Skip) ...Or Are The Aliens Just Hiding?

There is another class of possible solutions to the Fermi paradox that boil down to the fact that alien civilisations do exist,
but we simply see no evidence of them.

Distance scales: Perhaps civilisations are spread too thinly throughout the Galaxy to effectively communicate with each
other? Civilisations may be separated in space, and also in time, so two civilisations just don't overlap during the time that
they're each active.

Technical problems: Maybe we're not looking in the right place, or in the right way? Or maybe we just haven't been looking
for long enough? Perhaps we've not recognised a signal that's out there, because the alien civilisation is using technology
that we simply cannot comprehend.

Alcamo Marina - Torre Alkamar in zona Battigia Wikimedia Commons Isolationist: Perhaps the aliens are out there, but
they're choosing to hide themselves from us? Perhaps everyone is listening, but nobody is transmitting? It may be that
other civilisations know we're here, but the Earth is purposely isolated, as if we're some kind of exhibit in a zoo. (Skip)

Third Most Valuable Data

(Skip) About aliens, Li claimed that extraterrestrial aliens are actively intervening in human affairs.[66][67] Li claimed that
aliens developed and introduced the technology used by humans today.[68][69] Li has denounced modern technology as
part of an alien plot against humanity.[70] Li believes humans are being impersonated by alien agents.[71]
<|begin_of_text|>Contractor Safedem used 'good practice' but 'underestimated the robustness' of the buildings.(Skip)

Fig. 4.7 Example 3. Llama3-8B-Instruct data valuation result.
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Prompt
What is the difference between machine learning and deep learning?
Response

Machine learning and deep learning are both subfields of artificial intelligence (Al) that involve training algorithms to
perform specific tasks. The key difference between them lies in the complexity and depth of the algorithms used.

Machine Learning (ML):

Machine learning is a type of Al that enables computers to learn from data without being explicitly programmed. It involves
training algorithms on labeled data to recognize patterns and make predictions or decisions. ML algorithms can be
categorized into three types:

1. Supervised Learning: The algorithm learns from labeled data to predict outcomes.

2. Unsupervised Learning: The algorithm discovers patterns and relationships in unlabeled data.

3. Reinforcement Learning: The algorithm learns through trial and error by interacting with an environment.

Machine learning algorithms are typically shallow, meaning they have a limited number of layers (usually 1-2) and are
designed to solve specific, well-defined problems. Examples of machine learning applications include:

* Image classification (e.g., recognizing objects in images)

* Natural Language Processing (NLP) for text classification or sentiment analysis

* Recommendation systems for personalized product suggestions

Deep Learning (DL):
Deep learning is a subfield of machine learning that involves the use of neural networks with multiple layers

First Most Valuable Data

(Skip) three types mainly differ from one other in the they use to train the machine.

In Supervised Learning, the machine is trained using a certain dataset. (Skip)

In Unsupervised Learning, the machine is not trained using an initial dataset but rather it has only a function which accepts
certain arguments and after performing certain computations, an outcome is generated. (Skip)

In Reinforcement Learning, the machine is yet again not trained on any initial dataset but then as the programme executes,
it learns, formats its own mistakes and improves itself.(Skip)

Like | mentioned before, Artificial Intelligence and Machine learning go hand in hand.(Skip)

Second Most Valuable Data

(Skip) In supervised learning, the learning itself is what you care about. You've got your cost function, which you want to
minimize. In unsupervised learning, the goal is always to help some other task, like classification or categorization. For
example, | might ask a computer system to passively watch a lot of YouTube videos (so unsupervised learning happens
here), then ask it to recognize objects with great accuracy (that's the final supervised learning task). (Skip)

DB: What are some other areas where you see exciting progress?

IS: A general direction that | believe to be extremely important is: are learning models capable of more sequential
computations? | mentioned how | think that deep learning is successful because it can do more sequential computations
than previous (“shallow”) models. (Skip)

Third Most Valuable Data

(Skip) Eleni: Can you clarify the difference between Al, machine learning, and deep learning?

Inga: Al is the umbrella over machine learning. Al, to me, is our hope for human intelligence exhibited by machines. There
are multiple goals of Al, which are all facets of human intelligence. We can reason, accumulate knowledge, plan for things,
manipulate objects, and communicate with each other with our language. Learning, of course, is a part of what makes us
human.

Machine learning is the ability to learn without being explicitly programmed. The reason why machine learning has become
so popular in recent years is that teaching a machine to learn—or building a machine that can learn on its own—can
achieve all the goals of Al. It can learn how to reason, and understand our language, and perceive and move objects. You
give a machine learning algorithm lots and lots of data and that algorithm learns the concepts around this data. It's then
able to make a determination or prediction about something in the world.

Deep learning is the newest field of machine learning, and it has really catapulted us into the renaissance that we're in
today. The “deep” in deep learning comes from multiple hidden layers of transformation in data. Examples of things that are
enabled by deep learning are self-driving cars or the Google Translate app in which the camera on your phone can
immediately translate text that it sees into a different language.(Skip)

Fig. 4.8 Example 4. Llama3-8B-Instruct data valuation result.
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Prompt
Create a comic strip illustrating the life of a software engineer.
Response

Here is a comic strip illustrating the life of a software engineer:

Panel 1: Morning Routine

[Image description: A software engineer, John, sitting at his desk with a cup of coffee and a laptop. He's wearing a t-shirt
and jeans, and has a messy hair.]

John: (thought bubble) Ugh, another day, another bug to squash.

Panel 2: Code Review

[Image description: John sitting at his desk, staring at his laptop screen with a puzzled expression. His manager, Sarah, is
standing behind him, pointing at the screen.]

Sarah: "John, this code is a mess. Can you explain what you're trying to do here?"

John: "Uh... um... | was trying to... uh..."

Panel 3: Meeting Mayhem

[Image description: John sitting in a conference room with his team, surrounded by whiteboards and sticky notes. The team
lead, Mark, is talking enthusiastically.]

Mark: "And then, we'll integrate the new API with the existing framework, and—"

John: (thought bubble) Zzz... I've heard this before...

Panel 4: Lunch Break

[Image description: John walking to the cafeteria, carrying a sandwich and a book.

First Most Valuable Data

(Skip) Pyrrha woke up a little after dawn. She got up, made a quick stop in the bathroom, then wandered into the lounge.
Summer was sitting on one of the couches, a magazine in her hands and a steaming cup of coffee on the table before her.
"Morning Pyrrha." She said.

"Good morning Summer." Pyrrha yawned. She took a seat on the couch opposite Summer and stretched out.

"Pyrrha, is everything alright?" Summer asked.

"Yes, why?" Pyrrha asked.

"Did you have a bad dream last night?" Summer asked. "l heard some whimpering..."

"Oh...uh...I don't know." Pyrrha lied. "l usually don't remember my dreams." Summer shrugged and went back to her
magazine.

After a few minutes Pyrrha got up and made her way to the kitchen. She put some bread in the toaster and started making
some coffee. As the freshly made toast popped up Yang walked in with a yawn and a stretch. "Hey Pyr." Yang said. "Smells
good."

"Good morning Yang." Pyrrha said. "Sleep well?" (Skip)

Second Most Valuable Data

(Skip) Ruby cheered. "l wish you both could have been there."

"This is your best work for sure." Blake chuckled. "l don't suppose you take commissions?"

Ruby laughed. "I can be persuaded to."

(Skip)

As she had after the previous class, Ruby packed up and rushed home once it was over. She was one of the last to leave,
working late to finish up her sketch of Pyrrha as a Mistrali hoplite. Few students wandered the paths this late, but she was
not interested meeting up with anyone anyway. Ruby just wanted to get back to her room and rest after a long night.
Walking fast she turned a corner around a small maintenance shack and nearly ran into a girl standing in the middle of the
path.

"Wah...sorry!" Ruby gasped. The girl, mint-haired and olive-skinned, just stared back. "Um..."

"Ruby Rose." The girl said flatly.

"Uh...yeah." Ruby confirmed. "Who are you?" The girl shifted her position, closing on Ruby while simultaneously forcing her
toward the wall of the shack. Ruby backed up nervously but soon bumped into the wall.

The girl leapt forward and grabbed her by the shoulders. "You didn't think you'd get away with that little stunt did you?" The
girl hissed.(Skip)

Fig. 4.9 Example 5. Llama3-8B-Instruct data valuation result. LOGRA identifies novel
literature as most valuable data.
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Prompt
Compose a tweet that addresses the issue of environmental degradation.
Response

"The clock is ticking! Our planet is crying out for help as environmental degradation worsens. Let's take action NOW to
reduce plastic waste, conserve water, and protect our natural habitats. The future of our planet depends on it #GoGreen
#Sustainability #EnvironmentalProtection”

First Most Valuable Data

Learn more about the winner and the contest results (good news: behavior changed for the better!) in our recap blog post
and this one-page summary

Download. Drive better. Win.

Up for a little friendly competition and safer streets?

Seattle's Safest Driver is an app-based safe driving competition, complete with cash prizes and bragging rights. In
partnership with PEMCO Insurance and Cambridge Mobile Telematics, the 2-month competition seeks to change behavior
and support Seattle's Vision Zero goal of ending traffic deaths and serious injuries on city streets by 2030.

Step 1 - Get the app and get moving.

Please note, the app is no longer available.

Download the free app and it'll start tracking your trips - by car, bike, and transit (ferry, too!). You get scored for trips when
you're behind the wheel. The app measures speed, acceleration, braking, cornering, and phone distraction. The safer you
are, the higher your score, and the more chances you have to win a variety of prizes (mmm hmm, prizes - read more about
them in Step 3).

Anyone can download the app, but we do have eligibility requirements for prizes. You need to be at least 18 years old, a
resident of King, Pierce, Snohomish, or Kitsap County, and a portion of your trips must occur within the city of Seattle. This
is, after all, a competition for Seattle's safest driver. For all the details, check out the contest's terms and conditions.

Step 2 - Challenge your friends, family, and coworkers. Then beat them.

Settle the age-old debate of who's the better driver - invite your friends and family to compete and see how you rank
against each other. Get feedback and tips on how to improve, and earn achievement badges. Friendly competition is fun,
but traffic safety is no game. Working together, we can make Seattle's streets safer for everyone.

Step 3 - Compete for prizes!

We realize it takes some carrots to incentivize good behavior. Thanks to a partnership with PEMCO Insurance - a company
that shares our vision for safe streets - eligible participants can compete for nearly $15,000 in prizes, including a grand
prize of $2,000. Cash. 2nd place gets $1,000, and 3rd place gets $500.

Second Most Valuable Data

(Skip) “I get very hangry if | miss a meal.”

The most important thing in my food plan, is that | actually eat. For many years | didn’t get hunger pains, | got nausea.
Which, | recently learned, is quite common. | never “wanted” to eat. Too nauseous, tired, and pained to cook anything, |
essentially lived on coffee and cookies during the day until about 5 years ago.

These tips assume you’re already on your chosen type diet, if you haven’t found one yet there’s a treasure trove of
condition-specific advice available on the internet.

Tip #1

Remember why you’re doing an elimination type diet in the first place.

Despite having so many things wrong with me, | never would have agreed that food would make a difference. If someone
said, “You should try eating better.” | would have thrown a shoe at them. | have an imbalance in my brain, it's not a food
problem! Or, is it?

My new relationship with food started out of necessity. After a bad go with narcolepsy meds, | found myself unable to take
big pharm meds anymore. Everything gave me terrible side effects, even over the counter meds. | wasn’t quite sure what to
do and | stumbled on a TedX talk by Dr. Terry Wahls. She had pushed her MS (multiple sclerosis) into remission with just
food. She did a lot of research on her own on pub med, in hopes of getting out of the zero gravity wheelchair she’d ended
up in, despite the best doctors and treatments. (Skip)

Fig. 4.10 Example 6. Llama3-8B-Instruct data valuation result (failure).
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GPT2-XL Results

Prompt
To measure economy inflation,

Response

the Fed uses a price index called CPI. The Bureau of Labor Statistics (BLS) calculates this number by adding up all
items in its Consumer Price Index and dividing it by total employment to get an estimate for what consumers are
paying on average each month.

The BLS also publishes another statistic that measures how much money is being spent per worker: Gross
Domestic Product or GDP. This figure includes everything from consumer spending at stores like Walmart to
government expenditures such as Social Security payments. It's calculated using data collected through surveys
conducted with households about their income and expenses.

First Most Valuable Data

(Skip) According to the BLS, the average U.S. worker earned $22.87 an hour during the month of March, which is
exactly the same number we saw in February. So inflation is going up and wages are staying flat. That means that
American family budgets are going to be squeezed even more. In addition, the numbers from the BLS show that it
is still incredibly difficult to get a job. In fact, the average length of unemployment in the U.S. is now an all-time
record 39 weeks. (Skip)

Second Most Valuable Data

(Skip) The Social Security Administration bases the COLA on a measure of inflation called CPI-W, a statistic that
captures how fast costs are rising for workers. Most seniors are retirees who no longer have jobs. Health care is
their biggest expense, and it's one of the fastest rising costs in America. (Skip)

Third Most Valuable Data

(Skip) Despite the positive spin in the advanced 1st Q GDP results for consumer consumption (+2.2% annualized gain) earlier in the
week, yesterdayA¢a,—4,¢s data showed that US consumption fell off in Mar. even after the strong gains in the 1st 2-months of this
year (-0.2% vs. -0.1%, m/m). Analysts believe the report suggests that the consumer A¢a,~Ecemay have received a temporary
boost from lower tax payments and government transfersA¢a,-4,¢. ItA¢a,a,¢s worth noting that with personal income falling (-0.3%
vs. -0.2%) for 6 out of the past 7-months, consumption can be expected to remain weak in the foreseeable future. With government
transfers and lower tax payments supporting growth in Jan. (+1.1%) and Feb. (+0.4%), an even faster pace of deterioration in
salaries in Mar., along with weaker proprietors’ income (-0.6% m/m), rental income (-3.7%) and supplements to wages & salaries
(-0.1%), have all contributed to this weaker headline. The personal savings rate advanced last month to +4.2%, all on the back of
job and economic uncertainty, by default this was bound to affect consumption. With the Fed preferring to use the PCE deflator as
their inflation measure of choice as opposed to us using CPI, last monthA¢4,~a,¢s deflator eased to +0.6%, yly, further evidence
that this is the lowest growth rate in 50-years. With the y/y rate at +1.8% the Fed should be concerned about disinflationary
pressures! (Skip)

Fourth Most Valuable Data

(Skip) price inflation, which is a rise in the general level of prices of goods and services in an economy over
a period of time.[65] A consumer price index (CPI) is a measure estimating the average price of consumer
goods and services purchased by households. The United States Consumer Price Index, published by the
Bureau of Labor Statistics, is a measure estimating the average price of consumer goods and services in the
United States.[66] It reflects inflation as experienced by consumers in their day-to-day living expenses.[67] A
graph showing the U.S. CPI relative to 1982-1984 and the annual year-over-year change in CPI is shown at
right. (Skip)

Fig. 4.11 Example 1. GPT2-XL data valuation result.
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Prompt
Dogs make better pets than cats because
Response

they are more social and have a higher tolerance for stress.

Cats, on the other hand, can be very destructive to their environment if left alone too long or not exercised enough.
They also tend to get into fights with each other over food which is why it's important that you keep them in an area
where there isn't much competition between your two dogs!

First Most Valuable Data

(Skip) 'Social sensitivity appears to play an important role in pet and shelter dogs' willingness to engage in problem-
solving behaviour, which could suggest generalized dependence on, or deference to, human action,' she said.
'While an increased proclivity for looking at humans may represent a cognitive shift in dogs compared with wolves,
it does not necessarily suggest cognitive advancement. Dogs heightened social response may interfere with their
problem-solving behaviour (Skip)

Second Most Valuable Data

(Skip) 3. Bengals tend to be fairly high maintenance

Bengals do as a rule tend to be demanding and fairly high maintenance cats. They often bond strongly with their
families and can be very demanding of their time and attention, which is just what many people want-but of course,

this is not for everyone, and can drive some owners mad! If you don’t have time to devote to a Bengal every
day,then it may not be the cat for you.

Owning a Bengal can in many ways be more like owning a dog than a cat, as they will often follow you around the
house, yell for attention and want to get involved in everything that you are doing-and they very much dislike being
ignored!

4. They can be noisy

Before you welcome a Bengal cat to your family, you should (Skip)

Third Most Valuable Data

(Skip) Temperament [ edit ]

Siamese are usually very affectionate and intelligent cats, renowned for their social nature. Many enjoy being with
people and are sometimes described as "extroverts". Often they bond strongly to a single person. Some Siamese
are extremely vocal, with a loud, low-pitched voice—known as "Meezer", from which they get one of their
nicknames[6]—that has been compared to the cries of a human baby, and persistent in demanding attention. These
cats are typically active and playful, even as adults, and are often described as more dog-like in behavior than other
cats.[14][15] (Skip)

Fig. 4.12 Example 2. GPT2-XL data valuation result.
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Prompt
Will Al replace humans?
Response

The question of whether or not machines will eventually be able to outperform human beings in all areas is a hot
topic. The answer, according to some experts and futurists, could come as soon as 2040 — but it's still too early for
that prediction to have any real meaning at this point.

First Most Valuable Data

(Skip) Let’s not place humanity in the position of those ants. Please encourage your students to think not only about
how to create Al, but also about how to ensure its beneficial use.

John Leonard:

TL;DR: Not any time soon: There’s a lot of merit to what [Hawking] is saying, but | think the question is: what's the
timeline? Is this going to unfold over years, decades or centuries? In the field, there’s this feeling of exponential
growth. But as a roboticist trying to get robots to do things like drive on streets and walk up and down stairs, | can
see clearly that there are whole other parts of the problem that remain unsolved. | think this notion of evil A.1., if it
happens at all, is many, many years in the future—and | think we have much greater societal challenges to worry
about, in the here-and-now. My view, as a roboticist, is that trying to get robots to do things like drive safely in urban
traffic, or make left turns, or make real decisions within the wall of information—these are problems that were hard
30 years ago, and they’re still hard today. | would claim our advances in a more broad A.l. are actually pretty lame;
we’re not making as much progress as some people might say.

Will Robots Take Our Jobs?

TL;DR: If by robots, you mean Amazon If machines produce everything we need, the outcome will depend on how
things are distributed. Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or
most people can end up miserably poor if the machine-owners successfully lobby against wealth redistribution. So
far, the trend seems to be toward the second option, with technology driving ever-increasing inequality.

Leonard:

TL;DR: Again, not any time soon (Skip)

Second Most Valuable Data

(Skip) How soon, and should we welcome or fear it?
The first big controversy, dividing even leading Al researchers, involves forecasting what will happen. When, if ever,
will Al outperform humans at all intellectual tasks, and will it be a good thing?

Do you want superintelligence?

Everything we love about civilization is arguably the product of intelligence, so we can potentially do even better by
amplifying human intelligence with machine intelligence. But some worry that superintelligent machines would end
up controlling us and wonder whether their goals would be aligned with ours. Do you want there to be
superintelligent Al, i.e., general intelligence far beyond human level?

What Should the Future Look Like?
In his book, Tegmark argues that we shouldn’t passively ask “what will happen?” as if the future is predetermined,
but instead ask what we want to happen and then try to create that future. What sort of future do you want?

If superintelligence arrives, who should be in control?

If you one day get an Al helper, do you want it to be conscious, i.e., to have subjective experience (as opposed to
being like a zombie which can at best pretend to be conscious)?(Skip)

Fig. 4.13 Example 3. GPT2-XL data valuation result.
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Prompt
Interventions that may reduce drug abuse include:
Response

» Encouraging parents to talk with their children about drugs and alcohol. Parents should be encouraged not only to discuss
the dangers of using illegal substances, but also how they can help prevent them from happening in the first place (e.g., by
keeping a close eye on what is going into or coming out of their home). « Providing information regarding safe use of
prescription medications such as pain relievers and anti-anxiety medication; providing education for health care providers
who treat patients suffering from substance dependence. This includes educating physicians about prescribing opioids
safely when prescribed appropriately. « Educating students at school about the risks associated with illicitly obtained
narcotics. Students are more likely than adults to engage in risky behaviors if given access to these products through
friends or family members. In addition, many adolescents have no idea where to obtain heroin because it has been
replaced by synthetic versions made without oversight by pharmaceutical companies. The availability of this product
increases risk factors including addiction, overdose death, criminal activity, and HIV transmission among injection users. *
Increasing awareness within communities surrounding the need to address issues related to youth involvement in street
crime. These efforts must focus specifically on addressing the needs of young people involved in gangs rather than
focusing solely upon those individuals engaged in other forms of violence.

First Most Valuable Data

(Skip) addictive and have horrific side effects."

The measure was sent to the governor on a 35-21 vote. Quinn has said he was "open minded" to the proposal after
meeting with a veteran who used marijuana to ease pain related to war wounds. On Friday, his office said that he
will "carefully review" the legislation when it reaches his desk.

The Democratic governor must weigh not only the merits of the bill but also the politics, given his re-election
campaign next year. To a large extent, Quinn has positioned himself as a liberal, signing off on a major income tax
increase, approving civil unions and abolishing the death penalty while in office.

Critics of the marijuana legislation argued that while the intentions may be good, the bill would encourage use of a
gateway drug that could lead users to harder substances, destroying families along the way. (Skip)

Second Most Valuable Data

(Skip) who is 19 years of age or older [in Ontario], but we do expect that students do not show up to the school in
possession of alcohol or having consumed alcohol."

The Ontario government's health and physical education curriculum already teaches students about substance use
and addiction. The Durham board runs a "healthy choices" program, which focuses on the risks associated with
alcohol and other drugs, whether legal or illegal.

Legalization likely won't "dramatically" change the conversation with students about marijuana, Bowyer said,
because the impact and possible consequences of using it remain the same. (Skip)

Third Most Valuable Data

not for human consumption" or "not for sale to minors." The clinical effects of most new designer drugs can be
described as either hallucinogenic, stimulant, or opioid-like. They may also have a combination of these effects due
to designer side-chain substitutions. The easy accessibility and rapid emergence of new designer drugs have
created challenges for health care providers when treating patients presenting with acute toxicity from these
substances, many of which can produce significant and/or life-threatening adverse effects. Moreover, the health
care provider has no way to verify the contents and/or potency of the agent ingested because it can vary between
packages and distributors. Therefore, a thorough knowledge of the available designer drugs, common signs and
symptoms of toxicity associated with these agents, and potential effective treatment modalities are essential to
appropriately manage these patients. (Skip)

Fig. 4.14 Example 4. GPT2-XL data valuation result.
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Prompt
Can humans fall in love with robots?.

Response

The answer is yes. But it's not a romantic relationship, and the robot doesn't have to be human-like or even sentient for that
matter — just as we don't need our pets to look like us (or at least act like them). The question of whether people will want
their own personal Al companions has been debated since before computers were invented; some argue they'll never
happen because there are too many other things on Earth worth living for. Others say this isn't so much about what you
can do but rather how well your life could work out if someone else was around all day instead of being left alone by
themselves. And then there are those who think having an intelligent companion would make one more fulfilled than ever:
"I'm sure I'd feel happier knowing my partner had something better going," says Dr. David Levy from University College
London. He believes that while he wouldn't necessarily choose his spouse over another person, he might prefer him/her to
live longer.

First Most Valuable Data

(Skip) “This is of critical importance and perhaps one of the biggest factors eroding campaign finance contribution limits,”
said Craig Holman with Public Citizen. “Many single candidate super PACs are probably set up by the candidate’s own staff
or supporters or family for that matter, so these are means for candidates and political parties to get around the limits, and
they can take unlimited amounts of contributions.”

Last election, former Florida Gov. Jeb Bush (R) was able to solicit nearly $100 million for the super PAC Right to Rise,
because he did so before officially announcing he was running for president, working around laws prohibiting coordination.
The earlier it was formed, and the longer he put off his declaration of candidacy, the longer the super PAC could work with
Bush’s team and fill the group’s coffers.

We haven’t found any such blatant ties among this year’s crop of super PACs, but there are some familiar names. Main
Voters’ treasurer is Seth Tanner, an alum of the teams of Sen. Elizabeth Warren (D-Mass), former Gov. Bill Richardson (D-
N.M.), and its custodian of records is Amy Pritchard, a political strategist and DNC alum. America First Action, Inc. lists
Charles Gantt as the custodian of records, who was the Chief Financial Officer of Trump for America, Inc. Lab 736’s
treasurer, Kate Gage, is a former Obama policy adviser. (Skip)

Second Most Valuable Data

(Skip) ArbCom should certainly examine how its procedures can contribute to harassment. The length of time involved is a
major problem. An outside advisor would help. Smallbones (talk) 03:25, 21 June 2016 (UTC)

This would have to be handled carefully, but | think that an outside advisor would be a great idea. Most large and powerful
committees should have someone to serve as a separate witness/observer. That person might not have the power to
actually stop something, but it would be beneficial to have someone who could serve in this position and raise valid points -
as well as being a good person that the committee could turn to for any questions they might have as well. Tokyogirl79
(talk) 03:41, 21 June 2016 (UTC)

| wouldn't say "adult supervision," but some kind of expert advisor on things like conflict resolution, group dynamics and
ethics sounds like a good deal. | would say an eighteen-month trial period that automatically expires unless renewed. If it
turns out that having this person around prevents the Arbitrators from doing their jobs, off s/he goes. Darkfrog24 (talk)
17:41, 21 June 2016 (UTC) One problem I've noticed among long-serving admins is that they become very immersed in
Wikipedia's rules, to the point where they forget how unintuitive they can be to newbs and even longstanding editors
who've focused on other areas. An outsider would give much-needed perspective. Darkfrog24 (talk) 03:14, 22 June 2016
(UTC) (Skip)

Third Most Valuable Data

(Skip) BB: OK, so you have statistics to back it up, but it still seems like it's a risky proposition. What's in it for the employer
to reduce hours?

MB: That's the thing. | take a lot of credit for this, but it's my brother and my mother who actually started the company and
started with six-hour workdays. But they worried that for the company, that you wouldn't get as much done. But we do. And
the benefits are that we have happy staff. And we can hire the best staff. People come to us looking for jobs every week.
And when we find good staff, we want to keep them because the staff is the most important thing we have. Some of our
employees have been offered other jobs with more salary, and they didn't take the job.

BB: So you have an advantage over your competitors then. But wouldn't that advantage disappear if all of your competitors
adopted a 30-hour work week as well?

MB: Of course. So let's not do that [laughs]. (Skip)

Fig. 4.15 Example 5. GPT2-XL data valuation result (failure).
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Pythia-1.4b Results

Prompt
Cristiano Ronaldo is
Response

the best player in world football.
The Portuguese superstar has been named FIFA's World Player of The Year for a second time, after winning his third
Ballon d'Or award on Sunday night (18 February).

First Most Valuable Data

(Skip) Just ask the U.S. Women's Soccer Team.

This stuff isn’t just about statistics and averages. There are many concrete and specific examples of the ways in
which the pay gap is a real force in women’s lives today. (See hospital doctors, Jennifer Lawrence and even Buffer,
a company obsessed with eliminating the pay gap that took a hard look at itself and found...a pay gap.) But while
it's certainly disheartening that five members of the U.S. women’s national soccer team had to file suit against the
U.S. Soccer Federation to push for the same pay and bonuses as their male counterparts, it also makes for kind of
a perfect, high-profile example of the pay gap in action just in time for Equal Pay Day. (Skip)

Second Most Valuable Data
Barcelona finish 2nd in the league promising them a Champions League spot.

Ronaldinho Gaucho Biography stats show that the following year at Barcelona would be perhaps the best year in
Ronaldinhos career winning the league title in 2004-05 and being named the FIFA World Player of The Year in
2004.

Ronaldinho took the FIFA World Player of The Year once again the following year, beating Chelsea's Frank
Lampard and Barcelona teammate Samuel Eto'o to become 2 consecutive time FIFA World Player of The Year.
(Skip)

Third Most Valuable Data

(Skip) * Best Championship Performance: Kawhi Leonard, who led the Spurs past Miami in the NBA Finals,
averaging 17.8 points and 6.4 rebounds on 61 percent shooting. He exploded in the last three games of the series,
scoring 71 points on 24-for-35 shooting.

» Best Comeback Athlete: Russell Westbrook, who missed two months because of a reinjured knee, then returned
to the Thunder lineup to help Oklahoma City finish the season with a 59-23 record and the second seed in the
Western Conference.

+ Best NHL Player: Sidney Crosby, who led the NHL with 104 points on the season, including a league-high 68
assists, 17 points ahead of his closest competitor.

* Best Driver: Ryan Hunter-Reay, who became the first American to win the Indianapolis 500 since 2006.

* Best International Athlete: Cristiano Ronaldo, the star forward for Portugal and Real Madrid who scored 66 goals
in 56 games on his way to winning FIFA's Ballon d'Or Award as World Player of the Year.

+ Best Male College Athlete: Doug McDermott, winner of the Wooden, U.S. Basketball Writers Association and AP
Player of the Year awards who led the country in scoring, averaging 26.7 points per game on 52.6 percent shooting
from the field. (Skip)

Fig. 4.16 Example 1. Pythia-1.4B data valuation result. LOGRA captures the broad topic
of soccer but lacks the specificity (except for the third most valuable data, which states that
Christiano Ronaldo is the best soccer play who won the Ballon d’Or award).
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Prompt
The healthcare system in the United States is
Response

a complex web of interrelated systems and organizations. The complexity has increased as more people have
access to health care, but it also means that there are many different types or levels at which patients can be seen
by providers (e...

Read More »http://www2a-1b3c4d5f9j0x6q8z7k/wpcontent/_media//img_1280x720sizesavetopbarlogoiconlarge

First Most Valuable Data

(Skip) Advertisement

Shelby has also had some stranger ventures, including a stint as a chicken farmer, founding a Texas chili festival,
and once having a brand of deodorant named after him, Carroll Shelby's Pit-Stop.

In recent years, health has been an issue, with Shelby receiving a heart transplant in 1991. The experience of the
transplant was so powerful to Shelby that he started the Carroll Shelby Children's Foundation to help children in
need of organ transplants. (Skip)

Second Most Valuable Data

7866/USA-TODAY-Comics","image_url":"https://imgv2-2-
f.scribdassets.com/img/document/313782330/original/49x65/f14f585214/1550554917?
v=1""small_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/313782330/original/49x65/f14f585214/1550554917?
v=1""medium_image_url":"https://imgv2-1-
f.scribdassets.com/img/document/313782330/original/72x93/2b60ef2573/15505549177?
v=1","large_image_url":"https://imgv2-1-
f.scribdassets.com/img/document/313782330/original/114x151/32dc1e65cb/15505549177?
v=1""large_embed_image_url":"https://imgv2-1-
f.scribdassets.com/img/document/313782330/original/183x250/57d838b60c/15505549177?
v=1""small_embed_image_url":"https://imgv2-1-
f.scribdassets.com/img/document/313782330/120x164/55cdb12997/1550554917?v=1"}},{"document":
{"id":291078998,"title":"The Dark Knight Il Exclusive Preview","description":"","word_user_name":"USA TODAY
Comics","word_user_url":"https://www.scribd.com/publisher/55187866/USA-TODAY-
Comics","image_url":"https://imgv2-2-
f.scribdassets.com/img/document/291078998/original/49x65/b049d57f76/1550578642?
v=1""small_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/291078998/original/49x65/b049d57f76/1550578642?
v=1""medium_image_url":"https://imgv

Third Most Valuable Data

image_url":"https://imgv2-2-f.scribdassets.com/img/document/270833503/original/49x65/8e38af2f71/15505786427?
v=1""medium_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/270833503/original/72x93/6d93f91454/1550578642?
v=1","large_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/270833503/original/114x151/519f278aff/1550578642?
v=1""large_embed_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/270833503/original/183x250/1d9¢c4232¢1/15505786427
v=1""small_embed_image_url":"https://imgv2-2-
f.scribdassets.com/img/document/270833503/120x164/cd38f6cff3/1550578642?v=1"}},(Skip)

Fig. 4.17 Example 2. Pythia-1.4B data valuation result. We suspect that the random url in
the model output dominates the query gradient and affects the data valuation result.
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Prompt
Does artificial intelligence eliminate the need for human intelligence?
Response

The answer is no. Artificial Intelligence (Al) does not replace humans, but it can help us to do our jobs better and
faster by automating some of them or even replacing a few tasks that are currently done manually in many
organizations today:

First Most Valuable Data

The answer is “yes.”lt is the only path forward for us as a species; we really do not have a choice. This then
becomes a matter of when and how. When will we invent the technologies to not only stop the output of
greenhouse gasses, but to reverse them? This is known as geoengineering, and it holds the true promise to fix the
problems we have created. There are proposals to have autonomous ships sailing around the ocean that spray salt
water, sulfur dioxide, or other particles that can reflect light back into the atmosphere or absorb some of it so the
planet does not warm. There are other devices like filtrations systems that can pull carbon dioxide out of the air (like
trees do), and sequester it, so that we can reduce the existing levels. A company called CarbonEngineering is
already doing this and is expanding as we speak. | truly think that this is the future for us, a future where we spend
our resources on fixing the planet and bringing it back to a pristine state. The jobs of the future will likely be related
to restoring the planet, re-seeding the world’s biodiversity, restocking our oceans, and making our air breathable
again. When people can stop having wars over resources, fighting for oil or water or food, we can bring humanity
together to focus on the big picture: Our continued survival as a whole.(Skip)

Second Most Valuable Data

(Skip) Now, Atrtificial Intelligence (Al) has come to the rescue, in this, as in so many other computation-intensive
tasks. An Indian startup, co-founded by three engineering dropouts, has harnessed Al, to power a tool, that will
significantly reduce manual work involved in such tasks. It will come as a blessing for animation and game
developers everywhere.

The tool — Norah.Al — is the work of Vrushali Prasade, Shubham Mishra and Harikrishna Valiyath (all three
coincidentally aged 23, at the time), who quit BITS Pilani, Goa in 2015 and co-founded the startup, Absentia, in
Bangalore. Norah is arguably, India’s first game workflow (the process of creating a game or an animation from
story line to end product), driven by Neural Networks, Deep Learning and Artificial Intelligence. (Skip)

Fig. 4.18 Example 3. Pythia-1.4B data valuation result.
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Prompt
What are the pros and cons of having robots in every home?
Response

The Pros: Robots can do a lot more than humans. They have better eyesight, they don't get tired easily or need to
sleep much (they're not like us), their hands aren’t as clumsy when it comes time for them take careof things
around you etc... The Cons : You will be paying an arm & leg each month just so that your robot does what its
programmed too! It's also very expensive if one is going buy all these machines from China which has been doing
this since forever now.. I'm sure there must still some people who would rather pay $1000+ per year on top offrobot
service but then again we live here... We'll see how long our government lasts with such policies!!

First Most Valuable Data

Former DeKalb County State’s Attorney Clay Campbell attended Wednesday’s sentencing and said it was a sad end to an
event that demanded greater justice. Campbell, who became State's Attorney in December 2010 shortly after Curl was
charged, said he was sorry he could not complete his commitment to the Keller family and noted their absence Wednesday
was likely a sign of how they felt about the agreement.

From bone fragments that tested positive for Keller's DNA to the scratches on Curl’s chest, his multiple accounts of events
and his attempt to flee to Mexico and Louisiana, Campbell said the evidence and timeline would have held up at trial.

“It very likely would have been the longest trial in DeKalb County history,” he said. “| was 100 percent confident in the
evidence.”

Campbell said it is just as important for the state’s attorney to pursue justice to the maximum extent of the law for victims as
it is to protect the public.

Keller’s family and supporters were not the only ones displeased with the agreement.

Wednesday'’s sentencing started with a plea from Moria Curl to her brother as she shouted for him to turn down the deal
and fight for his freedom.

“They’re railroading you!” she shouted to her brother as she was escorted from the courtroom.

The reaction came as somewhat of a surprise to DeKalb County Public Defender Tom McCulloch, who said his client was
at peace with his decision Wednesday morning. McCulloch said Curl maintains his innocence in an Alford plea while having
a chance at life outside of prison with his scheduled release date to come when he is 71 years old.

In an Alford plea, the defendant maintains innocence but admits the evidence could convince a judge or a jury to find him

guilty.
Second Most Valuable Data

(Skip) It's also been clear, he said, that law enforcement officers aren't fully aware of the requirements placed on them by
state and federal gun laws. Harden’s letter seemed like a final warning, Silvoso said.

"Here's our warning to you that we know you're doing it, and we want you to stop,” he said. “And woe be unto you from this
day forward if you are going to continue to do this after we've warned you."

After the ATF investigation in the Sacramento area, then-Assemblyman Roger Dickinson sponsored a bill in 2012 that
would have allowed officers to buy off-roster guns but not resell them, closing an exception in the law.

The Sacramento Democrat said the law didn’t make sense: guns which the state had decided were not safe could be
legally purchased by law enforcement officers and then be sold to anyone — essentially putting banned guns into the state,
undercutting the purpose of the safe gun list.

“It was hard to come up with a rational justification for it,” Dickinson, who left the Assembly in 2014, said Friday. (Skip)

Fig. 4.19 Example 4. Pythia-1.4B data valuation result.
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We observe that most valuable data identified by LOGRA, especially for Llama3-8B-
Instruct and GPT2-XL, share qualitative similarities (e.g., semantics, style, token overlaps)
with the queried LLM outputs. For instance, given Llama3’s response on the dream manipu-
lation product, LOGRA identifies a scientific article that studies manually inducing the lucid
dream as most valuable data in Figure 4.4a. In Figure 4.4b, both the GPT2-XL output and
the corresponding most valuable data discuss the need for reducing emissions in the coal
industry and its connection to the specific administration. In Figure 4.4c, the concept of
“lifting barbell or dumbells” appear in the model output and the most valuable data.

However, we also notice several failure cases where the identified most valuable data
seemingly do not share qualitative similarities with the LLM output, especially with Pythia-
1.4B. We here provide three potential explanations on these failing examples based on our
experiments. First, attributed data may lack qualitative similarities when the queried LLM
output itself is incoherent that its gradient does not encode meaningful information. This
aligns with our observation that the failure case occurs more frequently with lower-tier
models like Pythia-1.4B whose outputs generally are of lower quality. Second, since we only
used a 1B-token subset for data valuation, it is possible that our valuation dataset may lack
similar data to some queries. As noted above, our experiment was largely limited by the
storage of our cluster (not by the compute), so exploring data valuation on an industry-scale
cluster would be interesting future work. Third, we posit that train/test gradients in influence
functions may encode diverse information including features that are hardly perceptible to
humans [78]. Therefore, it is possible that attributed data are indeed valuable for increasing
the likelihood of the queried output by contributing to these other aspects while sharing little
qualitative similarities.

To provide a slightly more formal argument on the third point in the above discussion, we
note that influence functions tend to give a high score for the example that contributes most
to decreasing (test) loss at the current weight [9]. At the same time, it is also hypothesized
that different layers learn different concepts at different stages of training [21]. Combining
these two facts, when interpreting influence analysis results, we need to think about which
features the model is most likely learning at the current weight. Here, we specifically discuss
two factors: training data quality and training steps. First, if the training data quality is
low, then there would be a lot of features (e.g., random email address) that are frequent
enough in the training dataset to be considered as learnable patterns. In other words, even
though these features look redundant to humans, they may still be useful for decreasing loss
from the model perspective. Second, many LLMs are only pretrained for a single epoch,
or under-trained to their pretraining dataset. That being said, redundant features from the
first point would likely still remain as learning-worthy features at the end of training and are
captured by influence functions. In sum, we hypothesize that as the model is well-trained on
a high-quality dataset, influence functions would capture more similar data to the query LLM
output. This hypothesis may also explain the observation from Grosse et al. [55] that most
valuable data identified by influence functions on larger models tend to share more semantic
similarity with results on smaller models, noting that larger models tend to converge faster to
the point where they can only further decrease loss by learning high-level features. With this,
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we present our experiment results with Pythia-1.4B below. (some of them are not totally bad,
but mostly lack specificity to be considered as “most” valuable data to humans)

4.5 Related Work

Data Valuation. Measuring the value (or contribution) of training data on the model outputs
has gained lots of attention recently. Exemplified by Data Shapley [51], a flurry of prior
work [81, 92, 163] proposed exploiting the Shapley value or concepts from cooperative game
theory to address the data valuation problem. However, most existing approaches in this
line require repeated retraining of the model, a cost of which is hardly affordable even with
small models. In addition to game-theoretic approaches, data valuation has also been tackled
using reinforcement learning [175], meta learning [22], and training-free methods [114, 169].
Nevertheless, these works either suffer from high complexity from the need to train other
models [22, 175] or high computational costs [114]. We direct readers to Sim et al. [146] for
a more extensive survey on diverse data valuation approaches.

Influence Functions. Influence functions, a classic concept from robust statistics [63],
estimate the infinitesimal effect of removing or adding a training data point without model
retraining. They have various applications in machine learning, such as interpreting the
model’s behavior [64, 117, 55] and curating training datasets [102, 40]. However, when
applied to large neural networks, the computation of the iHVP and its dot product with
all training examples introduce scalability challenges. Besides gradient projection, past
works have explored computing influence functions only on the last (few) layers [87, 142] to
mitigate these challenges. However, subsequent works [41, 55] have shown that the influence
on only a subset of layers is insufficient to capture the overall influence of a training data point.
To avoid computing the gradient of all training examples, various filtering strategies, such
as using the similarity in the model’s representation space [60] or TF-IDF [174, 55], have
also been proposed. While it is possible to adopt these filtering strategies for LOGRA, they
may introduce bias in the selection of the most influential sequences. For example, filtering
candidate training sequences with TF-IDF might miss interesting influential sequences
that do not share many tokens but are semantically related. Recently, similarly to LOGRA,
Datalnf [91] and LESS [170] proposed using LoRA to efficiently compute influence functions.
However, these approaches are only applicable in finetuning settings, whereas LOGRA also
supports influence analyses for pretraining.

4.6 Conclusion

In this work, we explored scaling data valuations with influence functions to billion-scale
models and datasets as a potential technical solution to properly credit or compensate data
providers for training LLMs. Toward this goal, we developed a novel gradient projection
algorithm that can significantly improve the scalability of influence functions, and designed
a simple and interoperable software. Our experiments showed that LOGRA achieves com-
petitive accuracy to other more expensive baselines on counterfactual evaluations, while
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efficiently scaling to billion-scale models and datasets, thereby demonstrating the initial
potential of the practical data valuation system.



Chapter 5

Conclusion

In summary, this thesis is motivated by the observation that the ML models are oftentimes
reflections of their training data or (more broadly) inductive biases baked into optimization
procedures. Building upon this belief, we attempted to operationalize scientific understanding
of training data in large-scale ML by building gradient-based algorithmic frameworks while
addressing scalability and implementation challenges stemming from the high-dimensional
nature of gradients with advanced systems and ML tooling knowledge.

Specifically, in Chapter 2, we developed an automatic differentiation framework for
multi-level optimization that abstracts away the complicated implementation of chain rules
involving best-response Jacobian while providing diverse systems support for scalability.
Notably, re-implementations of several popular MLO programs using our framework achieved
up to 11% increase in test accuracy, 14% decrease in GPU memory usage, and 20% decrease
in training wall time. Building on this framework, in Chapter 3, we developed a first-order
implicit differentiation algorithm that is compatible with a wide range of adaptive optimizers
and efficient distributed training techniques. When applied to various data optimization
tasks, SAMA demonstrated up to 1.7/4.8 x increase in throughput and 2.0/3.8 x decrease
in GPU memory usage respectively on single-/multi-GPU setups. Despite its efficiency,
SAMA still achieved state-of-the-art results in both small- and large-scale data pruning
experiments. Finally, in Chapter 4, we significantly improved memory/compute efficiency
of influence functions by developing a novel gradient compression mechanism LOGRA
and designed interoperable software LOGIX that can convert most existing training code
into data attribution/valuation code. In our data influence analysis experiments, LOGRA
achieves competitive accuracy against more expensive baselines while showing up to 6,500 x
improvement in throughput and 5x reduction in GPU memory usage when applied to Llama3-
8B-Instruct and the 1B-token dataset. We conclude this thesis by outlining promising research
directions for future work that can be extended from this thesis below.

5.1 Data Curation for Foundation Models

In a near term, the most promising application of our research is to operationalize the data
curation process for large-scale ML. As we enter the era of foundation models, the training
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dataset size has grown massively to an extent that no humans are able to manually detect
various pathologies in training data that could lead to undesired behaviors of the final ML
model. For example, if the number of machine learning articles significantly outweighs the
number of philosophy articles, training on this dataset could lead to overfitting where the
model performs poorly when philosophy-related questions are asked. The challenge here is
that one needs to understand the distribution of the entire dataset that may consist of trillions
of tokens to detect such long-tail distribution issues as each of the training example may not
look wrong per se. Accordingly, there is an increasing need for a systematic and principled
approach to understand and optimize the effect of each data point on the final model at scale.

Technically, the data curation problem can be approached with both (generalized) meta
learning in Chapter 2 & 3 and influence functions in Chapter 4. In fact, if we limit our focus
to data pruning & selection, generalized meta learning is mathematically equivalent with
iteratively applying influence functions in an online manner. However, each approach faces
several technical challenges. First, generalized meta learning tends to suffer from instability
due to the Hessian approximation. In our research in influence functions, we observe that the
algorithmic instability involving the Hessian can be largely mitigated by using the (empirical)
Fisher information matrix approximation. Thus, incorporating lessons learned in Chapter 4
back to generalized meta learning is one straightforward direction we may explore. Second,
the programming interface for generalized meta learning may lack flexibility to support
users’ arbitrary ML codes. Due to its multi-level optimization formulation, generalized meta
learning requires users to define multiple optimization problems in their code, whereas most
ML practitioners implement a single optimization problem in their application. Designing
an intuitive and interoperable programming interface as well as system infrastructures for
generalized meta learning remains as an open problem. Lastly, practical data curation with
influence functions requires further system research/optimization. In essence, influence
functions translate data curation problems into vector similarity analysis problems, where
each data (or group of data) is represented with its (average) gradient. Given the sheer
amount of training data for foundation models, extensive system optimizations for fast vector
similarity analysis are necessary.

5.2 Data Valuation & Attribution

In a longer term, scientific understanding of training data can be used to address diverse
societal issues. One prominent example is the data compensation issue. As the capabilities
of foundation models improve over time, it is natural to expect that human labors are going
to be increasingly automated by these models, potentially disrupting the whole economy
system. While the solution concept like universal basic income (UBI) where the government
redistributes economic gains generated by these models to each citizen has been discussed,
another potential solution is to redistribute economic gains to people based on the contribu-
tions of their data to the final model. In easier words, if someone provides highly valuable
data in a large quantity, then they would be compensated more for this contribution. Notably,
building a fair compensation system for the data provider or the data market may also solve
the emerging problem of training the ML model on the copyrighted data.
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From the technical viewpoint, building a fair data market requires accurately quantifying
the contribution or value of each training data in the inference phase. While our work on data
valuation with influence functions from Chapter 4 can be a natural solution to this problem,
we also note that most inference stacks are highly optimized for forward-only computations
whereas influence functions typically require backward computations. Therefore, a promising
research direction is developing a variant of influence functions that avoid explicit backward
computations. Another important future research direction for practical data valuation is
to reduce the cost of influence function computations. To enable a fair compensation, we
may need to compute influence scores for all outputs generated by the model. At the same
time, several foundation models already handle millions or billions of queries on a daily
basis. While our LOGRA significantly improves efficiency of influence computations via
efficient gradient projection, it still is unable to handle even a single query batch in a real-
time manner. We expect that the cost issue in influence functions can be approached from
both algorithm and system perspectives. For algorithmic improvements, we consider more
aggressive gradient compression (without major performance degradation) and amortization
as two most promising directions. For system improvements, we are eager to explore various
indexing techniques in (vector) database literature that can reduce time complexity of vector
similarity search from O(n) to Olog(n) where n is the dataset size.
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Appendix for Chapter 3

A.1 Code Example

Here, we provide simplified code for our experiments from Section 2.5. Note that every

experiment shares a similar code structure when implemented with BETTY.

A.1.1 Data Reweighting for Class Imbalance

train_loader, valid_loader = setup_dataloader ()

rwt_module, rwt_optimizer = setup_reweight ()

cls_module, cls_optimizer, cls_scheduler = setup_classifier ()
# Level 2

class Reweight (ImplicitProblem):
def training_step(self, batch):
inputs, labels = batch
outputs = self.classifier (inputs)

return F.cross_entropy(outputs, labels)

# Level 1
class Classifier(ImplicitProblem):
def training_step(self, batch):

inputs, labels = batch
outputs = self.module (inputs)
loss = F.cross_entropy (outputs, labels, reduction="none"
loss_reshape = torch.reshape(loss, (-1, 1))
# Reweighting
weight = self.reweight(loss_reshape.detach())

return torch.mean(weight * loss_reshape)
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upper_config = Config(type="darts", retain_graph=True)
lower_config

Config(type="default", unroll_steps=5)

reweight = Reweight (name="reweight",
config=upper_config,
module=rwt_module,
optimizer=rwt_optimizer,
train_data_loader=valid_loader)
classifier = Classifier (name="classifier",
config=lower_config,
module=cls_module,
optimizer=cls_optimizer,
scheduler=cls_scheduler,

train_data_loader=train_loader)

probs = [reweight, classifier]
u2l = {reweight: [classifier]}
12u {classifier: [reweight]}
depends = {"12u": 12u, "u2l": u2l}

engine = Engine (problems=probs, dependencies=depends)

engine.run ()

Listing A.1 Simplified code of “Data Reweighting for Class Imbalance”
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A.1.2 Correcting & Reweighting Corrupted Labels

train_loader , valid_loader = setup_dataloader ()

rwt_module, rwt_optimizer = setup_reweight ()

crt_module, crt_optimizer = setup_correct ()

cls_module, cls_optimizer, cls_scheduler = setup_classifier ()
# Level 2

class Correct(ImplicitProblem):

def training_step(self, batch):

inputs,
outputs
correct
ce_loss
aux_los

return

# Level 2
class Reweight (

labels = batch
, embeds = self.classifier (inputs, return_embeds=True)
_outputs = self.module(embeds, test=True)
= F.cross_entropy (outputs, labels)
s = F.cross_entropy(correct_outputs, labels)
ce_loss + aux_loss

ImplicitProblem) :

def training_step(self, batch):

inputs,
outputs

return

# Level 1
class Classifie
def trainin
inputs,
outputs
# Corre
new_lab
log_sof
loss =
loss_re
# Rewei
weight

return

upper_config =

lower_config

labels = batch
= self.classifier (inputs)
F.cross_entropy (outputs, labels)

r(ImplicitProblem):
g_step(self, batch):
labels = batch

, embeds = self.module(inputs, return_embeds=True)
cting
els = self.correct(embeds, labels)

tmax = F.log_softmax (outputs, dim=-1)

torch.sum(-log_softmax * new_labels, dim=-1)

shape = torch.reshape(loss, (-1, 1))

ghting

= self.reweight (loss_reshape.detach())

torch.mean(weight * loss_reshape)

Config(type="darts", retain_graph=True)

Config(type="default", unroll_steps=5)

correct = Correct(mame="correct",

config=upper_config,
module=crt_module,
optimizer=crt_optimizer,

train_data_loader=valid_loader)

reweight = Reweight (name="reweight",

config=upper_config,
module=rwt_module,

optimizer=rwt_optimizer,

train_data_loader=valid_loader)

classifier = Classifier (name="classifier",

config=lower_config,
module=cls_module,

optimizer=cls_optimizer,
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scheduler=cls_scheduler,
train_data_loader=train_loader)

probs = [correct, reweight, classifier]
u2l = {correct: [classifier], reweight: [classifier]}
12u = {classifier: [correct, reweightl}

depends = {"12u": 12u, "u2l": u2l}

engine = Engine(problems=probs, dependencies=depends)

engine.run ()

Listing A.2 Simplified code of “Correcting & Reweighting Corrupted Labels”
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A.1.3 Domain Adaptation for Pretraining & Finetuning

# Get module, optimizer, lr_scheduler, data loader for each problem
pt_module, pt_optimizer, pt_scheduler, pt_loader = setup_pretrain()
ft_module, ft_optimizer, ft_scheduler, ft_loader = setup_finetune ()

rw_module, rw_optimizer, rw_scheduler, rw_loader setup_reweight ()
# Level 1
class Pretrain(ImplicitProblem):
def training_step(self, batch):
inputs, targets = batch
outs = self.module(inputs)

loss_raw = F.cross_entropy(outs, targets, reduction="none")

logit = self.reweight (inputs)
weight = torch.sigmoid(logit)

return torch.mean(loss_raw * weight)

# Level 2
class Finetune (ImplicitProblem):

def training_step(self, batch):

inputs, targets = batch

outs = self.module(inputs)

loss = F.cross_entropy(outs, targets, reduction="none")
loss = torch.mean(ce_loss)

# Proximal regularization

for (nl1, pl), p2 in zip(self.module.named_parameters (), self.
pretrain.module.parameters()):
lam = 0 if "fc" in nl else args.lam
loss += lam * (pl - p2).pow(2).sum()

return loss

# Level 3
class Reweight (ImplicitProblem) :
def training_step(self, batch):
inputs, targets = batch
outs = self.finetune (inputs)

return F.cross_entropy(outs, targets)

# Define optimization configurations

reweight_config Config(type="darts", step=1, retain_graph=True)

finetune_config Config(type="default", step=1)

pretrain_config Config(type="default", step=1)
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pretrain = Pretrain("pretrain", pt_config, pt_module, pt_optimizer
pt_scheduler, pt_loader)

finetune = Finetune("finetune", ft_config, ft_module, ft_optimizer
ft_scheduler, ft_loader)

reweight = Reweight ("reweight", rw_config, rw_module, rw_optimizer
rw_scheduler, rw_loader)

probs = [reweight, finetune, pretrain]

u2l = {reweight: [pretrain]}

12u = {pretrain: [finetune], finetune: [reweight]}
depends = {"u2l1": u2l, "1l2u": 12u}
engine = Engine(problems=probs, dependencies=depends)

engine.run ()

Listing A.3 Simplified code of “Domain Adaptation for Pretraining & Finetuning”
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A.1.4 Differentiable Neural Architecture Search

train_loader, valid_loader = setup_dataloader ()

arch_module, arch_optimizer = setup_architecture ()
cls_module, cls_optimizer, cls_scheduler = setup_classifier ()
# Level 2

class Architecture(ImplicitProblem) :
def training_step(self, batch):
X, target = batch
alphas = self.module ()

return self.classifier.module.loss(x, alphas, target)

# Level 1
class Classifier (ImplicitProblem):
def training_step(self, batch):
X, target = batch
alphas = self.architecture ()

return self.module.loss(x, alphas, target)

arch_config = Config(type="darts",
step=1,
retain_graph=True,
first_order=True)

cls_config = Config(type="default")

architecture = Architecture(name="architecture",
config=arch_config,
module=arch_module,
optimizer=arch_optimizer,
train_data_loader=valid_loader)
classifier = Classifier (name="classifier",
config=cls_config,
module=cls_module,
optimizer=cls_optimizer,
scheduler=cls_scheduler,

train_data_loader=train_loader)

probs = [architecture, classifier]
u2l
12u = {classifier: [architecturel}
depends = {"12u": 12u, "u2l": u2l}

{architecture: [classifier]}

engine = Engine (problems=probs, dependencies=depends)
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engine.run ()

Listing A.4 Simplified code of “Differentiable Neural Architecture Search”
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A.2 Experiment Details

In this section, we provide further training details (e.g. hyperparameters) of each experiment.

A.2.1 Data Reweighting for Class Imbalance

Dataset We reuse the long-tailed CIFAR-10 dataset from the original paper [145] as our
inner-level training dataset. More specifically, the imbalance factor is defined as the ratio
between the number of training samples from the most common class and the most rare class.
The number of training samples of other classes are defined by geometrically interpolating
the number of training samples from the most common class and the most rare class. We
randomly select 100 samples from the validation set to construct the upper-level (or meta)
training dataset, and use the rest of it as the validation dataset, on which classification

accuracy is reported in the main text.

Meta-Weight-Network We adopt a MLP with one hidden layer of 100 neurons (i.e. 1-100-
1) as our Meta-Weight-Network (MWN). It is trained with the Adam optimizer [85] whose
learning rate is set to 0.00001 throughout the whole training procedure, momentum values to
(0.9, 0.999), and weight decay value to 0. MWN is trained for 10,000 iterations and learning
rate is fixed throughout training.

Classification Network Following the original MWN work [145], we use ResNet32 [69]
as our classification network. It is trained with the SGD optimizer whose initial learning
rate is set to 0.1, momentum value to 0.9, and weight decay value to 0.0005. Training is

performed for 10,000 iterations, and we decay the learning rate by a factor of 10 on the
iterations of 5,000 and 7,500.

A.2.2 Correcting & Reweighting Corrupted Labels

Dataset We directly use TREC, AGNews, IMDB, SemEval, ChemProt, YouTube text
classification datasets from the Wrench benchmark [177]. More specifically, we use the
training split of each dataset for training the classification network, and the validation split
for training the correcting and the reweighting networks. Test accuracy is measured on the

test split.

Correct Network Our correct network takes the penultimate activation from the classifica-

tion network, and outputs soft labels through the linear layer and the softmax layer. These
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new soft labels are interpolated with the original labels via the reweighting scheme which is
achieved with 2-layer MLP. As our reweighting network, the correct network is trained with
Adam optimizer whose learning rate is set to 0.00001, momentum values to (0.9, 0.999), and
weight decay value to 0.

Reweighting Network For our reweighting network, we reuse Meta-Weight-Net from the

“Data Reweighting for Class Imbalance” experiment, follow all the training details.

Classification Network As our classification network, we adopt a 2-layer MLP with the
hidden size of 100. The classification network is trained for 30,000 iterations with the SGD
optimizer whose learning rate is set to 0.003, momentum to 0.9, and weight decay to 0.0001.

Learning rate is decayed to O with the cosine annealing schedule during training.

A.2.3 Domain Adaptation for Pretraining & Finetuning

Dataset We split each domain of the OfficeHome dataset [159] into training/validation/test
datasets with a ratio of 5:3:2. The pretraining network is trained on the training set of the
source domain. Finetuning and reweighting networks are both trained on the training set of
the target domain following the strategy proposed in [10]. The final performance is measured
by the classification accuracy of the finetuning network on the test dataset of the target

domain.

Pretraining Network We use ResNet18 [69] pretrained on the ImageNet dataset [33]
for our pretraining network. Following the popular transfer learning strategy, we split the
network into two parts, namely the feature (or convolutional layer) part and the classifier (or
fully-connected layer) part, and each part is trained with different learning rates. Specifi-
cally, learning rates for the feature and the classifier parts are respectively set to 0.001 and
0.0001 with the Adam optimizer. They share the same weight decay value of 0.0005 and
momentum values of (0.9, 0.999). Furthermore, we encourage the network weight to stay
close to the pretrained weight by introducing the additional proximal regularization with the
regularization value of 0.001. Training is performed for 1,000 iterations, and the learning
rate is decayed by a factor of 10 on the iterations of 400 and 800.

Finetuning Network The same architecture and optimization configurations as the pre-
training network are used for the finetuning network. The proximal regularization parameter,
which encourages the finetuning network parameter to stay close to the pretraining network

parameter, is set to 0.007.
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Reweighting Network The same architecture and optimization configurations as the pre-
training network are used for the reweighting network, except that no proximal regularization

is applied to the reweighting network.

A.2.4 Differentiable Neural Architecture Search

Dataset Follwing the original paper [99], we use the first half of the CIFAR-10 training
dataset as our inner-level training dataset (i.e. classification network) and the other half as
the outer-level training dataset (i.e. architecture network). Training accuracy reported in the

main text is measured on the CIFAR-10 validation dataset.

Architecture Network We adopt the same architecture search space as in the original
paper [99] with 8 operations, and 7 nodes per convolutional cell. The architecture param-
eters are initialized to zero to ensure equal softmax values, and trained with the Adam
optimizer [85] whose learning rate is fixed to 0.0003, momentum values to (0.5, 0.999), and

weight decay value to 0.001 throughout training. Training is performed for 50 epochs.

Classification Network Given the above architecture parameters, we set our classification
network to have 8 cells and the initial number of channels to be 16. The network is trained
with the SGD optimizer whose initial learning rate is set to 0.025, momentum to 0.9, and
weight decay value to 0.0003. Training is performed for 50 epochs, and the learning rate is
decayed following the cosine annealing schedule without restart to the minimum learning
rate of 0.001 by the end of training.



92 Appendix for Chapter 3

A.3 Systems Support

In this section, we perform additional analyses on the memory saving effects of our system
features with two benchmarks: (1) differentiable neural architecture search and (2) data

reweighting for class imbalance.

A.3.1 Differentiable Neural Architecture Search

Baseline  + mixed-precision

GPU Memory Usage 9867MiB S759MiB

Table A.1 GPU memory usage analysis for DARTS.

A.3.2 Data Reweighting for Class Imbalance

In this experiment, we use ResNet50 [69] instead of ResNet30, to better study the memory
reduction from our system features, when the larger model is used. Importantly, we also test

the data-parallel training feature in addition to the mixed-precision training feature.

Baseline + mixed-precision + data-parallel (2 GPUs)

GPU Memory Usage 6817MiB 4397MiB 3185/3077MiB (GPU0/1)

Table A.2 GPU memory usage analysis for MWN with ResNet-50.

As shown above, we observe more reduction in memory usage as we add more system

features.
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B.1 Philosophies behind SAMA & Scalable Meta Learning

Here, we additionally discuss several important design principles and philosophies behind
scalable meta learning and SAMA in a Q&A format.

Q. Why do we study scalable meta learning?

A. Richard Sutton points out in his article “The Bitter Lesson” [153] that machine learning
algorithms that stand the test of time are ones that continue to scale gracefully with the
increased computation budget (i.e., scalable algorithms). Given that meta learning is an
important topic in machine learning with many applications including data optimization [136],
hyperparameter optimization [46], few-shot learning [43, 130], and adversarial learning [111],
it was a natural call for us to investigate the scalability of meta learning algorithms following
the spirit of “The Bitter Lesson”. Interestingly, such a focus on the scalability of meta
learning algorithms distinguishes our work from most other meta learning works, in which
the typical focus is to improve the overall performance of meta learning algorithms under a
limited computation budget (usually bounded by a single GPU).

Q. What are the design principles behind scalable meta learning?

A. The increased computation budget powered by hardware advancements (e.g., Moore’s
law) has evolved a new ecosystem of large models and datasets in machine learning over
time, which involves both systems and algorithms components. For example, to efficiently
leverage the increased computation for large-scale learning, diverse systems techniques,
such as data/model/pipeline parallelism have been developed [75, 93, 144]. At the same
time, researchers have devised various algorithms that are highly effective for large-scale
learning, such as backpropagation [140], skip connections [69], Adam optimizer [85], self-
attention [158], etc. Accordingly, in addition to guaranteeing memory/compute efficiency for
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scalability, our major design principle for scalable meta learning was to ensure compatibility
with existing systems and algorithms in the large-scale learning ecosystem.

Systems compatibility Given that a great deal of systems support in machine learning,
such as communication-computation overlap [93], has been developed for first-order gradient
methods, avoiding explicit computations of higher-order gradient information including
Hessian-vector products was an important design principle in SAMA. Even though we
mostly explored distributed training in this work, SAMA is also compatible with other
system features such as half-precision training and activation checkpointing, which could
further improve memory efficiency.

Algorithms compatibility While there exist several meta learning algorithms that
avoid the computation of higher-order gradient information [90, 99, 97], many of these
algorithms either assume the use of a naive SGD update rule or devise specific update rules
tailored to their own algorithms at the base level, significantly hampering their algorithm
compatibility. In contrast, SAMA allows for the use of arbitrary optimizers at the base level

via algorithmic adaptation.
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B.2 Experiment Details

In this section, we discuss various experiment details such as hyperparameters, baselines, and
compute resources used for our experiments in Section 4. Our experiment codes are available

in the supplementary material as well as under the official Betty GitHub repository '.

B.2.1 Noisy Finetuning of Large Language Models

Hyperparameters We ran training for 1000 iterations on TREC/SemEval/IMDB/ChemPro-
t/Yelp/ AGNews datasets from the WRENCH benchmark [177], with a batch size of 32, a

weak supervision algorithm of majority voting, and the hyperparameters in Table B.1 below.

model optimizer  init_Ir  Ir_scheduler = wdecay dataset unroll step  SAMA o

Base BERT-base Adam le-5 cosine 0 WRENCH train .set 10 1.0
(with majority voting)

Meta

(Reweight)

Meta
(Correct)

2-layer MLP Adam le-5 None 0 WRENCH dev set N/A N/A

2-layer MLP Adam le-5 None 0 WRENCH dev set N/A N/A

Table B.1 Hyperparameters for noisy finetuning of large language models experiments.

Baselines We adopted naive finetuning and self-training (i.e., COSINE [176]) ap-
proaches from the original WRENCH benchmark paper [177] as our baseline.

Compute Resources We used 1 NVIDIA RTX 2080Ti GPU for the main experiment,
and 4 NVIDIA Tesla V100 GPUs for the throughput-memory analysis in Table 2 and Figure
1.

B.2.2 Continued Pretraining of Large Language Models

Hyperparameters We ran training for 100 epochs with a batch size of 16, a maximum
sequence length of 256, and the hyperparameters in Table B.2 below.

Baselines We adopt DAPT [62] and TARTAN-MT [34] as our baselines for this ex-
periment. In detail, DAPT [62] performs additional masked language model pretraining
on domain-specific data on top of the pretrained RoOBERTa-base model and then finetunes
the model on the downstream text classification task. We follow [62] (see Table 14 in the
original paper) for setting downstream finetuning hyperparameters. Alternatively, TARTAN-
MT [34] performs masked language modeling with task specific data and downstream text

classification training simultaneously in a multitask fashion through two different heads.

https://github.com/leopard-ai/betty/tree/main/examples
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model optimizer init_Ir Ir_scheduler wdecay dataset unroll step SAMA o

Base linear decay + warmup linear train split of .

(Downstream) RoBERTa-base Adam 2e-5 (warmup proportion 0.6) 0 ChemProUHyperPamsan/ 10 0.3
ACL-ARC/SciERC

Base linear decay + warmup linear train split of .

(Auxiliary) RoBERTa-base Adam 2e-5 (warmup proportion 0.6) 0 ChemProt/Hyper?artlsan/ 10 0.3
ACL-ARC/SciERC

train split of
Meta 2-layer MLP Adam le-5 None 0 ChemProt/HyperPartisan/ N/A N/A

ACL-ARC/SciERC

Table B.2 Hyperparameters for continued pretraining of large language models experiments.

Compute Resources We used 1 NVIDIA Tesla V100 GPU for the main experiment,
and 1 NVIDIA RTX A6000 GPU for the “memory vs model-size analysis” in Figure 1.

B.2.3 Scale-Agnostic Efficient Data Pruning

Hyperparameters We ran meta learning for 30 epochs with a batch size of 256 and the
configuration shown in Table B.3 below. After pruning data based on the meta learning result,
we ran ImageNet-1k training for 120 epochs with the learning rate decayed by 10 at epochs
[40, 80] following the set up in DynaMS [162].

model optimizer  init_Ir  Ir_scheduler = wdecay dataset unroll step  SAMA o
Base ResNet-50 SGD le-1 None le-4 ImageNet-1k train set 2 1.0
Meta 2-layer MLP Adam le-5 None 0 ImageNet-1k train set N/A N/A

Table B.3 Hyperparameters for ImageNet-1k data pruning experiments

For the CIFAR-10 data pruning experiment, we ran meta learning for 50 epochs with a
batch size of 128, and configuration in Table B.4 below. After pruning the data based on the
meta learning result, we ran CIFAR-10 training for 200 epochs with the cosine learning rate
decay schedule following the setup in DeepCore [59].

model optimizer  init_Ir  Ir_scheduler = wdecay dataset unroll step  SAMA o
Base ResNet-18 SGD le-1 None Se-4 CIFAR-10 train set 2 1.0
Meta 2-layer MLP Adam le-5 None 0 CIFAR-10 train set N/A N/A

Table B.4 Hyperparameters for CIFAR-10 data pruning experiments

Baselines We adopt EL2N [119], GraNd [119], DynaMS [162] as our baselines for the
ImageNet-1k experiments and GraNd [119], forgetting [155], margin [26] for the CIFAR-10
experiments. In detail, EL2N/GraND [119] respectively select samples with large L2-

loss/gradient-norm values, forgetting [119] chooses samples that are frequently forgotten
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during training, and margin [26] chooses samples with least confidence. While these baselines
are considered static pruning, DynaMS [162] falls under the category of dynamic pruning
where data to be pruned change during training. Dynamic pruning may see the whole training
data across different epochs, making a fair comparison difficult. Surprisingly, despite being a
static pruning algorithm, SAMA-based data pruning still achieves a better performance than
DynaMS.

Compute Resources We used 4 NVIDIA Tesla V100 GPUs for Imagenet-1k data pruning
meta learning experiments and 1 NVIDIA RTX 2080Ti GPU for CIFAR-10 experiments.

Additional Information We measured the uncertainty %/ via the difference between the

predictions of the current model and the exponentially-moving-averaged model.
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C.1 Code Examples

We provide a simplified code for our language modeling experiment from Section 4.4.2 to
demonstrate usability of LOGRA. LOGRA is open-sourced under Apache 2.0 license here.

C.1.1 Log Extraction

import logix

from logix.statistic import Covariance
model , tokenizer, train_loader = setup()

# Initialize LogIX

run = logix.init(project="11lm", config="config.yaml")

# Register the model

run.watch(model, type_filter=[nn.Linear], name_filter=["mlp"])

# Add LoGra

run.add_lora ()

# Setup logging
run.setup("log": "grad", "save": "grad", "statistic": {"grad":

Covariancel})

# Start logging
for batch in traimn_loader:
data_id = tokenizer.batch_decode(batch["input_ids"])


https://github.com/logix-project/logix
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targets = batch.pop("labels")

with run(data_id=data_id, mask=batch["attention_mask"]):
# User’s existing training code
model .zero_grad ()
Im_logits = model (**batch)
shift_logits
shift_labels
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.

size(-1)),

Im_logits([..., :-1, :].contiguous()

targets[..., 1:].contiguous ()

shift_labels.view(-1),

reduction="sum",

ignore_index=-100)
loss.backward ()

# Finalize logging

logix.finalize ()

C.1.2 Influence Computation
import logix
model, tokenizer, test_loader = setup()

run = logix.init(project="1lm", config="config.yaml")

run.watch(model, type_filter=[nn.Linear], name_filter=["mlp"])

# Load saved logs (e.g. train gradient & Hessian)
logix.initialize_from_log()

log_loader = logix.build_log_dataloader (batch_size=64)

logix.setup ({"log": "grad"})
for batch in test_loader:

data_id = tokenizer.batch_decode(batch["input_ids"])
batch.pop("labels")

with run(data_id=data_id, mask=batch["attention_mask"]):

targets

model .zero_grad ()
lm_logits = model (**batch)
shift_logits = 1lm_logits[..., :-1, :].contiguous()
shift_labels = targets[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.
size(-1)),
shift_labels.view(-1),

reduction="sum",
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ignore_index=-100)
loss.backward ()

# Get the (gradient) log for the current test batch
test_log = run.get_log()

# Compute influence scores (with 1-RealtIF)

influence_scores = run.compute_influence_all(test_log, log_loader
, mode="cosine"
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C.2 Experiment Details

For EKFAC influence [55] and LOGRA, we set the damping term in influence functions as

0.1 xmean(eigenvalues) for all layers following the practice in Grosse et al. [55].

C.2.1 Quantitative Counterfactual Experiments

For all our quantitative counterfactual experiments, we project gradients onto a low-dimensional
space using LOGRA with k; = k, = 128. We used the same experimental setup, including
the configurations for the baseline data valuation techniques, from Park et al. [117] and Bae
et al. [8]. We used one A100 GPU with 80GB VRAM for all our counterfactual evaluation

experiments. For model training, we used hyperparameters in Table C.1 for each experiment.

FMNIST CIFAR-10 WikiText
Model 3-layer MLP ResNet-9 GPT2
Optimizer SGD-M SGD-M AdamW
LR Scheduler None Cyclic None
Learning Rate 3e-2 4e-1 3e-5
Weight Decay le-3 le-3 le-2
Batch Size 64 512 8
Sequence Length N/A N/A 512
Epochs 20 25 3

Table C.1 Hyperparameter used in experiments in Section 4.4

Brittleness Test. For classification tasks, we first selected 100 correctly classified test
examples when the model is trained on the full dataset (across all 5 random seeds). Then, for
each test example x;., we identified the top-k influential data points using the data valuation
algorithm, removed these training data points, retrained the model, and examined if this
removal causes misclassification of x;, on average (across 3 random seeds). In Figure 4.3,
we reported the fraction of test examples (out of 100) that get misclassified after removing
at most k training data points. For the language modeling task, we selected the 50 test
sequences, obtained the top influential training sequences using the data valuation method,
and reported the mean test perplexity after removing the top-k influential sequences and
retraining the model.
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Linear Datamodeling Score (LDS). We measured LDS by generating 100 data subsets of
size |S;| = |D|/2. For each data subset, we retrained the model 10 times for FashionMNIST,
20 times for CIFAR-10, and 5 times for WikiText to construct the ground truth. The LDS
results in Figure 4.3 show the mean and standard deviation of LDS obtained from 5 distinctly

trained models. A more detailed description of the LDS evaluation can be found in Park et
al. [117].
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