
Solving Real-World Tasks with AI Agents

Shuyan Zhou

CMU-LTI-24-014

July 25, 2024

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15123

Thesis Committee:

Graham Neubig (Chair) Carnegie Mellon University
Daniel Fried Carnegie Mellon University
Tom Mitchell Carnegie Mellon University

Yoav Artzi Cornell University

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2024 Shuyan Zhou

Keywords: artificial intelligence, autonomous agents, digital automation, web navigation,
code generation

To my family, for their unwavering support and unconditional love.

iii

Abstract

For years, my dream has been to create autonomous AI agents to handle tedious procedural
tasks (e.g., arranging conference travel), freeing me to focus on creative endeavors. Modern AI
models, especially large language models (LLMs) like ChatGPT, have brought us closer to this
goal. But has my dream already come true? This thesis spans AI agent research from 2020 to
2024, acknowledging LLMs as a crucial yet early step in the broaderAI agent applications. While
LLMs show promise in well-defined tasks (e.g., drafting emails), they struggle with procedural
tasks requiring agents to comprehend and apply how-to knowledge during dynamic interactions.
Current LLMs are inconsistent in complex procedural tasks. This thesis aims to create AI agents
to perform procedural tasks with accuracy, robustness, and trust in an ever-evolving environment

and is centered around three key pillars.

First, we study the evaluation of AI agents to systematically understand agent be-

havior. There was a lack of benchmarks that mimic real-world complexity, emulate diverse
and complex human tasks, and support dynamic interactions to perform systematic evalua-
tions. This led to evaluations that are only partially representative of real-world scenarios.
We create a comprehensive benchmark on performing interactive web-based tasks (e.g., book
a hotel room near Pittsburgh airport online) that meets these criteria and developed more ro-
bust evaluation metrics. Our works reveal the deficiencies of LLM-powered agents in realistic
interactive tasks and offer an accessible environment to advance the field.

Second, we augment the expressiveness of AI agents with a more versatile “lan-

guage” for agents. Beyond knowledge, humans demonstrate versatility in procedural tasks:
we break tasks into smaller sub-tasks, leverage past experiences, use tools, etc. Represent-
ing this versatility is challenging with unstructured text. We design a new formalization that
equates task-solving to writing Python programs. The inherent expressiveness and structured
nature of programs enable AI agents to more accurately and explicitly represent complex pro-
cesses (e.g., planning sub-tasks → composing nested functions, recalling memory → reusing
functions). This new formalization enhances LLMs in reasoning about and performing proce-
dural tasks, significantly improving task execution accuracy.

Finally, we develop resources and design innovative methodologies to enable agents

to adapt to unfamiliar tasks. It is particularly challenging for LLMs to handle information
that is not included or included sparsely in their training corpora. Hence, LLMs can bene-
fit from access to external knowledge. We investigate how to make human-authored external
knowledge (e.g., manuals) comprehensible to AI agents by enriching such knowledge with de-

iv

tailed breakdowns of sub-tasks. We also propose new mechanisms of knowledge-augmented
execution via retrieval, which allows the agents to perform challenging tasks by referring to
external knowledge and via data synthesis. Both approaches circumvent the reliance on exact
demonstrations.

v

Acknowledgments

In 2018, I felt somewhat daunted at the thought of pursuing a Ph.D. People had told me about
many frightening aspects — stress, endless deadlines, a lack of work-life balance, etc. Looking
back, I suppose I did experience some of these challenges, but perhaps only to a minimal extent.
My Ph.D. journey was filled with joy and happiness.

The biggest shoutout goes to my advisor Graham Neubig. I first knew Graham during
my senior year while watching his 11-747 Neural Networks for NLP course on YouTube. I
have immense respect for him — he always provides comprehensive answers to any questions
students ask, and I appreciated the way he delivered the course material. When I first met
Graham in person at a multilingual reading group over the summer, I was excited, like a fan. I
could not have imagined that I would one dayworkwith him. I am grateful to Graham for giving
me tremendous freedom and support in exploring the topics I am passionate about. One piece
of work in this thesis was rejected five times; it was Graham’s encouragement and support that
kept me from giving up. Even after six years, I still feel there is so much to learn from Graham,
from being an excellent researcher to being an amazing advisor. He is my lifelong role model.

I am honored to have had Daniel Fried, Tom Mitchell, and Yoav Artzi on my thesis commit-
tee. Their research has significantly influenced my work at various stages. Yoav’s tutorial on
“Semantic Parsing with CCG” sparked my fascination with semantic parsing, which eventually
led to my interest in code generation and AI agents. Exploring Tom’s early work inspired my
study of computer agents. Our discussions have been particularly enriching, often leaving me
pondering his thought-provoking questions for weeks. I am fortunate to have collaborated with
Daniel on several projects; his insights have been invaluable to my progress. Their constructive
feedback has been instrumental in shaping this thesis.

I have been incredibly lucky to work with Shruti Rijhwani, Pengcheng Yin, and Uri Alon
during my junior years, They were inspiring role models, showing me how to craft compelling
research problems, design and execute solid experiments, and effectively communicate the find-
ings. Their enthusiasm and expertisemade a lasting impact onmy approach to research. I would
like to thank Chin-Yew Lin, Jing Liu, Jin-Ge Yao, and Feng Nie for guiding me as I began my
research journey at Microsoft Research Asia in 2017. Their support was invaluable in helping
me establish a strong foundation in research. I also want to express my gratitude to Kaushik
Chakrabarti and Alex Polozov for being my mentors during my internship at Microsoft, and X.
Their mentorship sharpened my research skills.

The work in this thesis would not have been possible without my collaborators. I am deeply

vi

grateful to my co-leads: Frank Xu, who inspired me to become a full-stack researcher; Li Zhang,
who demonstrated excellent project management skills; and AmanMadaan and Luyu Gao, who
consistently brought fresh perspectives to research. I also extend my thanks to Yonatan Bisk,
Chris Callison-Burch, Zhengbao Jiang, Zhiruo Wang, Pengfei Liu, Hao Zhu, Xuhui Zhou, JY
Koh, and John Wieting for their insightful discussions across various projects. Additionally, I
have had the privilege of mentoring several junior students, Grace Cuenca, Robert Lo, Abishek
Sridhar, and Tianyue Ou. Seeing them build their projects from zero to one has been a key
reason I am determined to pursue an academic career.

I am incredibly proud to be a member of NeuLab. Special thanks to Mengzhou Xia for the
Insanity workouts we did together during the pandemic, which helped me lose 14 pounds; to
Chunting Zhou for our countless discussions about research, life, and all sorts of random top-
ics; to Patrick Fernandes and Vijay Viswanathan for hosting amazing house parties; to Zhiruo
Wang and Lindia Tjuatja for being the best officemates; and to Amanda Bertsch, Emmy Liu,
Simran Khanuja, Anjali Kantharuban, Lucio Dery, Junjie Hu, Junxian He, Hiroaki Hayashi,
Cindy Wang, Kayo Yin, Alex Shypula, Zecong Hu, Junpei Zhou, Xinyu Wang for all the fun
events. Also, thanks to Jia Yu and Zhili Feng for the wonderful meals we shared. To all my LTI
and RI friends, my life would be completely different without you all.

I am deeply grateful to my family. My parents, Xiaoling Cai, and Daoqi Zhou, provide
me with unconditional love and support. The guidance and encouragement from my sister,
Hongwei Zhou, and brother-in-law, Feng Wu during my junior high school years opened my
eyes to the incredible world beyond the small town where I grew up.

Finally, I would like to thank my partner, Xianyi Cheng. She has been my best friend,
therapist, gym coach, and so much more since I was 19. From her, I have learnt to be more
relaxed, to be present, to be kind. She makes me a better person.

vii

viii

Contents

1 Introduction 1

1.1 Problem Scope . 1
1.2 Challenges of Creating Autonomous AI Agents . 2
1.3 Contributions Overview . 4

2 Background 7

2.1 Evaluation of AI Agents . 7
2.2 The “Language” in Procedural Tasks . 8
2.3 Learning without Extensive Human Annotations 10

I Realistic Environment for AI Agent Evaluation 13

3 Realistic Web Environment for Building Autonomous AI Agents 15

3.1 Overview . 15
3.2 Web App as an Environment for Autonomous Agents 17
3.3 Benchmark Suite of Web-based Tasks . 21
3.4 Baseline Web Agents . 26
3.5 Results . 27
3.6 Comparison with Other Agent Benchmarks . 29

II More Versatile“Language” for AI Agents 31

4 Representing Procedures as Programs 33

4.1 Overview . 33
4.2 Contrast to Previous Formalisms . 35

ix

4.3 Task: Controlling Situated Agents . 36
4.4 Representing Procedures as Programs . 36
4.5 Hierarchical Modular Networks . 38
4.6 Instantiations . 39
4.7 Experiments . 43

5 Few-shot ProgramWriting for Broader Reasoning Tasks 49

5.1 Overview . 49
5.2 Background: Few-shot Prompting . 51
5.3 Program-aided Language Models . 51
5.4 Experimental Setup . 53
5.5 Results . 56
5.6 Analysis . 59

III Knowledge Base of Hierarchical Procedures 63

6 Discovering Hierarchies of Procedures from Semi-structured Web Data 65

6.1 Overview . 65
6.2 Problem Formulation . 67
6.3 Hierarchy Discovery Model . 68
6.4 Automatic Step Prediction Evaluation . 70
6.5 Manual Step Prediction Evaluation . 72
6.6 Application to Video Retrieval . 73
6.7 Decomposition Analysis . 76

IV New Knowledge Acquisition without Direct Demonstrations 79

7 Generating Code with Unseen Usages by Retrieving the Docs 81

7.1 Overview . 81
7.2 Code Generation by Reading the Docs . 83
7.3 Practical Instantiations of DocPrompting . 85
7.4 Experimental Setup . 86
7.5 Results . 88
7.6 Analysis . 92

x

8 Turning Indirect Knowledge into Direct Demonstrations at Scale 95

8.1 Overview . 95
8.2 Problem Formulation . 97
8.3 Scalable Demonstration Synthesis for Digital Agents 98
8.4 Data Statistics . 102
8.5 Experimental Setup . 103
8.6 Results . 104
8.7 Analysis . 105
8.8 Ablation . 106
8.9 Case Study . 107

9 Conclusion and Future Work 111

9.1 Open Problems and Future Directions . 112

A Appendix for Chapter 3 147

A.1 Website Implementation . 147
A.2 Environment Delivery and Reset . 148
A.3 User Roles Simulation . 149
A.4 Intent Distribution . 149
A.5 Human Performance . 149
A.6 Experiment Configurations . 150
A.7 Prompt for fuzzy_match . 151
A.8 The Accuracy of Fuzzy Match Function . 151
A.9 The Prompts of the Baseline Web Agents . 152
A.10 Additional Error Analysis . 156

B Appendix for Chapter 8 159

B.1 Trajectory Representation . 159
B.2 Prompt to Filter wikiHow Articles . 159
B.3 Prompt to Generate Demonstrations from Tutorials 160
B.4 Example Synthetic Demonstration from Tutorials from a wikiHow Article 163
B.5 Prompt to Generate Direct Demonstrations from Random Observations 164
B.6 Example Generated Trajectories from Random Observation 168
B.7 Data Selection from Random Observations in ClueWeb 172
B.8 Training Settings . 173

xi

xii

Chapter 1

Introduction

Machines such as computers and robots can significantly improve the lives of human beings
by performing tasks on behalf of humans. Natural language (NL) serves as a vital form of com-
munication in human beings’ lives and thus presents itself as a potential principle interaction
protocol with machines. We study controlling AI agents through natural language. In this con-
text, AI agents are expected to interact with an external environment and autonomously execute
the specified tasks with minimal human intervention. 1

1.1 Problem Scope

While many works consider AI agents more broadly as systems that perform tasks over mul-
tiple turns (e.g., multi-hop question answering), this thesis focuses on tasks that possess the
following characteristics.

Let’s denote an action space as A, an action sequence as a = [a1, a2, ..., an] where ai ∈ A,
an NL intent u, the likelihood of an action sequence a given an intent u estimated from a rea-
sonable parametric model as p(a∣u). First, the task is associated with an external environment
E with state space §. Any valid action in the action space can result in the state change in
the environment defined by the environment dynamic function f(s, a) → s′. Second, the ac-
tion space is enormous and semantically meaningful. Tasks such as vision-language navigation
(VLN) with a limited set of actions (e.g., move forward/backward) or controlling the velocities
and angles of the motors of a robot arm in a continuous space are not considered. Third, the
length of an execution trace (∣a∣) is substantial, which can roughly indicate the complexity of

1Throughout the thesis, we use “controlling AI agents” and “NL command and control” interchangeably.

1

the task. Therefore, tasks such as visual question answering and reference games, which usu-
ally consume a short action sequence, are not taken into account. Fourth, there is a diverse set
of trajectories to achieve the desired objective in u, thus exhibiting a high entropy of a. For
instance, one can purchase a flight ticket either online or by contacting the airline companies.
Finally, for the task of interest, the extra information i that is helpful to the task completion is
not specific to a particular instance; in other words, when log p(a∣u, i) − log p(a∣u) > 0, i can
be seen as generic information pertinent to the task, instead of to the environment configura-
tion. To illustrate, in VLN, having knowledge of the layout of a room would be helpful when
navigating the room; however, this information is only germane to that exact room. On the
contrary, when performing household tasks, the knowledge of “preheating the oven” is generic
to many cooking tasks.

1.2 Challenges of Creating Autonomous AI Agents

One key challenge in creating AI agents capable of accomplishing arbitrary tasks is rooted in
the abstractness and ambiguity of NL while the required underlying procedural knowledge is
concrete and broad. A concise NL intent could practically express arbitrarily complex requests.
For example, a short intent of “prepare my conference travel” may consist of complicated proce-
dures such as “book the flight tickets”, “book the hotel”, “registration”, and others. Each of these
procedures, in turn, needs to be broken down into further finer-grained procedures. Therefore,
there can be a huge semantic gap between the NL intent and the concrete executions.

Existing Benchmarks Inadequately Reflect the Complexities of RealWorld Although
we repeatedly highlight the complexities of everyday procedures and note that the structures of
procedural knowledge are ubiquitous in daily human life, most existing agent benchmarks do
not feature such complex procedures. Although there can be hierarchies embedded in vision-
language navigation tasks [6], game playing through reading documentation [205] or through
NL communication [75, 157] and mobile phone navigation [97], the hierarchies are shallow at
best, or the occasional complex ones are limited in their breadth. This is potentially due to their
emphasis on research questions regarding object grounding, spatial relations, interactions, and
others, and therefore, they focus less on procedure hierarchies. On the other hand, benchmarks
that generate examples programmatically [59, 153] often lack realistic and diverse conditional
branching in their procedures, as opposed to real-world scenarios, where the same outcome
may be achieved through a variety of means depending on the prevailing conditions. Finally,

2

for those tasks that are more procedurally complex [46, 75, 132], embodied experiments are
non-trivial due to the challenge of setting up the embodied environments of the same com-
plexity and a lack of automatic evaluation metrics for task completeness. Others [52, 87] are
in gaming environments where domain-specific knowledge, rather than general commonsense
knowledge, is required to perform the tasks.

Current AI Agents’ “Language” is Restricted While the effective predictions of agents are
the atomic actions within the action space, there are intermediate predictions—such as the ra-
tionale behind issuing an action—that link these atomic actions together. Currently, these inter-
mediate predictions are predominantly expressed in the unstructured text (e.g., “let’s think step-
by-step, <. . . the reason>, so the next action I will take is <. . . the predicted atomic action>”). The
use of unstructured text has become especially prevalent with the rise of large language models
(LLMs) due to their proficiency in text generation. However, free-form text has limited expres-
siveness for representing the versatility required for solving procedural tasks. First, generating
unstructured text confines the reasoning and solving within the model, while LLMs are not nec-
essarily the best option for the solving steps. For instance, the task of “calculate the spending
in online shopping last week” requires adding up multiple orders, a task at which LLMs often
struggle [95, 207]. Other solving steps involve accessing real-time data, which any model alone
cannot accomplish by default. Second, while procedural tasks possess rich structure, expressing
such structure in the text is unnatural, thus limiting the benefits of leveraging these structures.
One key feature of procedures is their hierarchies, where a high-level task can be decomposed
into multiple lower-level procedures. Due to this hierarchy, a procedure becomes reusable (or
composable)—a single procedure can be combined with different procedures to achieve different
higher-level goals. For example, “learning to use a computer” can be a sub-procedure of both
“book a flight ticket online” and “book a hotel room online”. Reusing existing procedures can
enhance the efficiency and robustness of AI agents [8, 39, 44, 48, 59, 158, 188, 193]. However,
reusing knowledge in free-form text is challenging unless it involves verbatim repetition. When
task variations require revisions in some components, "reusing" the knowledge can become in-
creasingly complex, eventually becoming as complex as generating the procedure from scratch.
Many works propose alternative notations or domain-specific languages [11, 35, 144, 190], but
these new notations may be less common in large pretraining corpora, thus losing the benefit
from large-scale pretraining. Alternatively, the notation might be too domain-specific, sacrific-
ing generalizability to broader tasks.

3

Existing Learning Mechanisms are Largely Annotation-driven The success of LLMs
hinges on two key factors: large-scale pretraining and the extensive collection of human demon-
strations for instruction finetuning and reinforcement learning from human feedback (RLHF).
While AI agents can greatly benefit from similar pretraining, human demonstrations in di-
alogues typically have a different task distribution. They often assume a static context and
fail to consider important aspects of agent tasks such as environmental dynamics and action
impacts. Consequently, the benefits of leveraging these human demonstrations are limited.
Moreover, collecting data for agentic tasks is often expensive and time-consuming. Annotators
usually need to follow natural language instructions and act out the entire trajectory as if they
were the agent [97, 132, 153, 157, inter alia]. This process is not only labor-intensive but also
limited in scope. For instance, demonstrating a task like canceling a PayPal order requires an
actual PayPal account with a legitimate subscription history. Without extensive data collection,
models struggle to generalize to unseen intents or environments [153]. These limitations make
it challenging to scale AI agents to real-world scenarios where long-tail requests and diverse
environmental configurations are common.

1.3 Contributions Overview

This thesis aims at developing intelligent AI agents that are generalizable towards a variety

of tasks and data-efficient. More specifically, how could an agent learn to perform a complex
task without exact tedious demonstrations from humans? For example, how does an agent
learn that the preparation of a conference travel will eventually consist of keyboard strikes and
mouse clicks (e.g., for flight booking), phone calls (e.g., for hotel check-in) and others? The
key philosophy of this thesis is that such knowledge exists in the open web in the form of
natural language descriptions. Therefore, if an agent is capable of knowledge acquisition and its
application, it could learn the executions of unseen tasks by referring to both past experiences
as well as web knowledge. The development of an open-domain-knowledge-augmented agent
is underpinned by five key pillars.

Part I Realistic Environment for AI Agent Evaluation First, to bridge the gap in agent
evaluation, we built an environment for AI agents that is highly realistic and reproducible.
Specifically, we focus on agents that perform tasks on the web and create an environment with
fully functional websites from four common domains: e-commerce, social forum discussions,
collaborative software development, and content management. Our environment is enriched

4

with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-
like task-solving. Building upon our environment, we release a set of benchmark tasks focusing
on evaluating the functional correctness of task completions. The tasks in our benchmark are
diverse, long-horizon, and designed to emulate tasks that humans routinely perform on the
internet. We experiment with several baseline agents, integrating recent techniques such as
reasoning before acting. The results demonstrate that solving complex tasks is challenging:
sthe performance of strong models such as GPT-4-based agent is significantly lower than the
human performance. These results highlight the need for further development of robust agents,
that current state-of-the-art LLMs are far from perfect performance in these real-life tasks, and
that WebArena can be used to measure such progress.

Part II More Versatile“Language” for AI Agents Further, we propose an alternative "lan-
guage" for AI agents. We opted to make use of the programs in a high-level programming lan-
guage (e.g., Python) to represent procedures owing to natural compatibility between programs
and procedures. Programs are flexible in encoding hierarchies (through nested functions), con-
ditions (through control flow), and the ability to call other modules (through API calls). We
name this formalism as "Procedures as Programs", or PaP in short. Moreover, PaP is compre-
hensible and curatable, which allows for fast creation of seed demonstrations and development
on various tasks. Finally, the ubiquitous code corpus has been incorporated in the training of
large language models (LLMs). PaP could effectively elicit the knowledge in an LLM and ben-
efit agents with an LLM as the backbone model. We instantiate PaP in 15 benchmarks ranging
from controlling a robot to perform household tasks and embodied question answering (QA)
to mathematical reasoning and symbolic reasoning. PaP demonstrates strong generalization to
unseen tasks while being more data-efficient.

Part III Knowledge Base of Hierarchical Procedures Third, we create an open-domain
hierarchical knowledge base (H-KB) that stores the procedures in a hierarchical fashion. That
is, a procedure is represented as a tree where the children nodes are the decomposed lower-level
steps (in text) of their parent node. A procedure tree can have arbitrary depth depending on
how concrete a human would like to write about a procedure. While a human user might issue
an abstract NL intent corresponding to a node towards the root of a procedure tree, an agent
could leverage our H-KB to roll out concrete executions by traversing the tree. We evaluate
our KB both intrinsically on the quality of hierarchies and extrinsically on modeling concrete
executions. While our H-KB encodes more accurate hierarchical knowledge than strong base-

5

lines, the extrinsic evaluation suggests that expressing a procedure with our H-KB is closer to
the concrete executions demonstrated in videos. This provides evidence that our KB can bridge
the high-level instructions and the low-level executions of procedures.

Part IV New Knowledge Acquisition without Direct Demonstrations Finally, we an-
swer the question of how to further advance an AI agent’s capabilities without relying on the
massive collection of direct human demonstrations. Taking inspiration from humans, who of-
ten search for and read information online to solve tasks that they are not initially capable of,
we propose two approaches to mimic human behaviors, with a focus on textual knowledge that
explains how-to perform tasks. First, we propose to retrieve knowledge prior to the task perfor-
mance. We exemplify our approach DocPrompting on the natural language to code generation
task, in which code documentation is a key source of knowledge. DocPrompting first retrieves
the relevant documentation pieces given an NL intent and then generates code based on the NL
intent and the retrieved documentation. DocPrompting is general: it can be applied to any
programming language and is agnostic to the underlying neural model. We demonstrate that
DocPrompting consistently improves NL-to-code models. Second, we propose to derive hy-
pothetical execution trajectories from plain textual knowledge. When humans read how-to
articles, they often engage in mental simulation of the described scenarios. By leveraging the
language processing and coding capabilities of LLMs, we can transform how-to articles on web
navigation tasks into direct demonstrations. Our finetuned model demonstrates strong perfor-
mance on web-based tasks compared to other models of similar size. In addition, while such
synthetic demonstrations is only 3% the cost of human demonstrations, we show that the syn-
thetic demonstrations can be more effective than a similar number of human demonstrations.

6

Chapter 2

Background

This section reviews three main topics in AI agent research that are highly relevant to this
thesis.

2.1 Evaluation of AI Agents

One key aspect of AI agent evaluation is the evaluation of task success, which typically falls
into three categories.

The first category is reference-based evaluation, which compares human annotations
with agent executions [46, 97, 103, 138, 151, 178]. For instance, Deng et al. [46] collects demon-
strations of web-based tasks and uses them as ground-truth references. The evaluation com-
pares a model’s predictions with these demonstrations at both the step and task levels. At the
step level, the evaluation compares the action type (e.g., click) and the action argument (e.g.,
the location of an element) with the annotation. Task-level success is determined by combined
success at the step level. All comparisons are conducted at the string level, so reference-based
evaluation can falsely penalize alternative solutions. Collecting multiple references can allevi-
ate this issue; however, the possible solution space may not be covered by just a few examples.
For instance, a smart search input box may require only one or two keywords to trigger the
correct search, but there can be many keyword options. Ultimately, smart AI agents do not
necessarily need to follow human problem-solving patterns due to their silicon nature. For ex-
ample, an agent that memorizes the full URL of useful websites does not need to perform any
navigation or filtering selections.

The second category is outcome-based evaluationwithin executable environments. These
environments range from simulated household environments [153], simple web pages [151,

7

182], to sandbox real-world web applications [82, 212]. Outcome-based evaluation assesses
whether a task is truly completed by using verifiers that examine key aspects post-execution.
These verifiers are either defined by templates, such as whether the selected product falls into
certain categories [153, 182], or annotated by humans, such as whether certain contents are
typed into the targeted fields [82, 212]. Outcome-based evaluation mirrors the trend in evaluat-
ing model-generated programs. Chen et al. [30] observed that the functional correctness of pro-
grams does not necessarily correlate with the surface-form similarity measured by reference-
based evaluation, as small changes in programs can significantly alter their semantics. Never-
theless, outcome-based evaluation can be labor-intensive. It requires significant human effort
and sometimes extensive expertise.

To address these limitations, manyworks investigate the third category,model-based eval-

uation, which leverages neural models, especially large language models, for task completion
judgment. For example, Pan et al. [125] and He et al. [66] explore using vision-language models
to determine whether a trajectory successfully fulfills a given task. Pan et al. [125] demonstrates
that strong models such as GPT-4V achieve high accuracy in judging task success, especially
when supplemented by auxiliary information such as observation captions. The development
of model-based evaluation is particularly interesting not only because it does not rely on exten-
sive human annotations but also because the developedmetric can be used as a reward model or
automatic feedback module that assists agent task completions (e.g., reject sampling) [16, 125].
Undoubtedly, the evaluation of AI agents goes beyond task success to include task completion
efficiency [126, 153] and overall human preference [51], among others.

The benchmark described in Chapter 3 primarily utilizes outcome-based evaluation due to
its novel setup and the necessity of establishing ground-truth annotation for future research
efforts. Our benchmark also incorporates model-based evaluation in a portion of examples to
accommodate alternative answers.

2.2 The “Language” in Procedural Tasks

Primitive actions are the lowest-level actions that can be directly executed in an environment.
In the current research, the most common primitive actions are defined as application pro-
gramming interfaces (APIs) that have various effects on the digital environment (e.g., an API to
simulate a mouse click) or on embodied machines (e.g., an API to control the velocity of a robot
arm).

Existing works aim to design domain-specific languages tailored to different tasks, defin-

8

ing primitive actions. Early works manually designed non-executable meaning representations
(MRs) such as lambda calculus [11, 12] and variable-free logic [40]. Due to the sparse pres-
ence of these meaning representations on the Internet, LLMs may lack sufficient knowledge
of them, causing the generation of such MRs to lose the benefits of large-scale pretraining.
Later works utilize more powerful languages such as SQL, which can effectively query large-
scale databases [188, 189, 204], and spreadsheet languages that can manipulate spreadsheet
tables [35, 175, 187]. Although these pre-existing languages avoid hand-engineering, they are
limited to tasks where the environment containing the required contents (e.g., a database with
student information) already exists. Overall, domain-specific languages lack generalizability.

While primitive actions are pre-defined, agents have the flexibility to determine the interme-
diate steps leading to these actions. These intermediate steps, along with the primitive actions,
form a broader language. The most common intermediate steps are rationales written in

natural language (CoT) that explain why a primitive action should be issued [100, 170, 183].
While incorporating CoT into a task can improve performance, it does not extend a model
beyond the natural language reasoning regime. Indeed, natural language reasoning is limited.
LLMs are known to perform poorly in tasks such as arithmetic [95, 207], and they are inherently
incapable of many tasks, such as accessing real-time information. Some approaches attempt to
augment LLMs’ capabilities by instructing them to use a more general language—high-level
programming languages such as Python. Programs natively have the ability to call tools via
APIs and execute dynamically through interpreters or compilers. LLMs can thus offload tasks
they are not proficient into these tools, while their sole responsibility remains natural language
reasoning [14, 33, 112]. Speaking programming languages can effectively extend text-based
LLMs to multimodal without further training [62, 149]. Additionally, functions can serve as
long-term memory, which, once constructed, can be reused easily [163].

Programming languages are not only suitable for describing the procedure of performing
tasks; many works find that writing down declarative knowledge1 in program format is ben-
eficial. Madaan et al. [108] propose describing structured commonsense knowledge (e.g., entity
state changes over time) with built-in concepts in programs (e.g., a class and its properties) to fa-
cilitate more accurate commonsense reasoning [199]. Given their versatility in both procedural
and declarative knowledge, programming languages show promise as the unified comprehen-
sive language for diverse real-world tasks.

The superior performance of writing programs for non-coding tasks has inspired many in-

1The knowledge about facts

9

depth studies. Zhang et al. [198] find that simply changing the format from natural language to
programs yields mixed results for various tasks. For instance, text summarization does not ben-
efit from the program format, while conference resolution does. Kim and Schuster [81] observe
that coding-proficient models, extensively trained on coding corpora and tasks, demonstrate
more accurate entity state tracking capabilities. Finally, models pretrained exclusively on code
corpora in the initial stage show improved performance in mathematical reasoning compared
to general natural language pretraining.

Chapter 4 presents a proof-of-concept demonstrating the benefit of representing procedures
as programs, with human-in-the-loop for constructing and revising these programs. Chapter 5
introduces our approach that leverages LLMs to automatically write programs for broader rea-
soning tasks. In Chapter 8, we show that LLMs benefit from finetuning with trajectories in
program format, compared to natural language CoT.

2.3 Learning without Extensive Human Annotations

Teaching models to perform new tasks without extensive human annotations is a long-standing
interest in machine learning and deep learning communities, and AI agents are no exception.
Unlike classical machine learning problems where the context is often static (e.g., an image or
a dialogue), agents interacting with dynamic environments not only incur additional costs and
efforts to set up environments (e.g., setting up multiple parallel environments to collect data),
but also increase the curse of dimensionality, where the possible combination of states grows
exponentially with the number of time steps. To alleviate the reliance on human annotations,
existing works investigate the source of knowledge and learning algorithms.

Text-based knowledge is extensively studied due to its abundance and coverage across
various domains. This knowledge includes environmental dynamics that describe the effects of
actions in different states [21, 22, 116, 205]. Text can also convey knowledge in fine granularity.
For instance, documentation of APIs often includes detailed explanations of individual argu-
ments. This is beneficial for compositionality (hence alleviating the curse of dimensionality),
as multiple pieces of information can be freely combined instead of enumerating all possible
combinations as in demonstrations.

The most straightforward way to use text-based knowledge is through continuous pre-

training with vanilla next-token prediction loss [64]. This strategy can gradually adapt a gen-
eral model to specific domains [1]. However, Jiang et al. [77] argue that simple continued pre-
training has limited effects compared to finetuning on more task-aware data constructed from

10

the corpus. Hence, existing works also explore other approaches to utilize these resources. The
first approach is to use the resources through retrieval, where the knowledge is presented as
additional input to assist task completions. Additionally, manyworks perform data synthesize

from the resources [27, 177]. For example, Xu et al. [177] use code documentation to synthesize
additional NL-code pairs for code generation. Finally, we can leverage text knowledge as ad-
ditional input to construct more accurate functions such as transition functions or reward
functions in reinforcement learning [21, 22, 116, 205].

While natural language is versatile for conveying various types of information, it is not
necessarily the most efficient channel for certain types, particularly low-level behaviors. For
example, describing how to knead dough using only natural language can be cumbersome. Con-
sequently, some knowledge is absent in text-based resources and requires input from other

modalities. Fan et al. [52] train a reward model based on a video and caption parallel corpus,
while Baker et al. [17] learn low-level keyboard and mouse controls for Minecraft from videos.
Such learning from Internet-scale videos resembles research on learning from demonstrations
in robotics [60, 109].

Besides learning from existing knowledge created by humans, research also explores learn-
ing from existing experiences to reduce reliance on additional human annotations. Here, ex-
isting experiences are loosely defined as episodes performed by the same agent in the past or
datasets created in the same environment. Simply training the model on trajectories consist-
ing of state and expected actions is data-hungry. Hence, works explore augmenting existing

experiences with additional information. Chen et al. [28] and Yin et al. [184] add LLM-
generated chain-of-thought reasoning and planning to execution trajectories. Fu et al. [54] and
Sarch et al. [148] ask (multimodal) LLMs to summarize useful knowledge, such as environment
dynamics and workflows, from existing experiences and dynamically provide the summarized
knowledge in new examples. The assumption in this thread is that generating such information
is easier than performing the task itself. Additionally, existing works study relabeling of ex-

isting experiences to effectively use failed examples. This includes adding task descriptions
to arbitrary trajectories with LLMs [9, 115].

Chapter 6 discusses the limitation that text-based procedural knowledge lacks hierarchical
structures. Consequently, how-to knowledge of the same task at different levels of granularity
may be dispersed across various sources, resulting in inefficiency when consuming data. We
proposed an approach to link such isolated knowledge together. Furthermore, Chapter 7 and
Chapter 8 explore utilizing human-authored knowledge through retrieval and data synthesis.

11

12

Part I

Realistic Environment for AI Agent

Evaluation

13

Chapter 3

Realistic Web Environment for Building

Autonomous AI Agents

To fully leverage the power of autonomous agents, it is crucial to understand their behavior
within an environment that is both authentic and reproducible. This will allow measurement of
the ability of agents on tasks that human users care about in a fair and consistent manner. In this
section, we present our work on building the first comprehensive benchmark with real-world
complexities, reliable evaluationmetrics and easily extensibility for AI agent development. This
work first appears in:

• Shuyan Zhou*, Frank F. Xu*, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, TianyueOu, Yonatan Bisk, Daniel Fried, Uri Alon, andGrahamNeubig. Webarena:
A realistic web environment for building autonomous agents. In International Conference

on Learning Representations (ICLR), Vienna, Austria, 2024

3.1 Overview

Current environments for evaluate agents tend to over-simplify real-world situations. As a
result, the functionality of many environments is a limited version of their real-world coun-
terparts, leading to a lack of task diversity [5, 59, 113, 151, 153, 154, 182]. In addition, these
simplifications often lower the complexity of tasks as compared to their execution in the real
world [132, 153, 182]. Finally, some environments are presented as a static resource [46, 151]
where agents are confined to accessing only those states that were previously cached during
data collection, thus limiting the breadth and diversity of exploration. For evaluation, many en-

15

Tell me how much I spent on
food purchase in March 2023

15

WebArena Environment

”

”

“

“ Create a ‘NolanFans' repo,
listing Nolan's Oscar-winning
films in a README file

Action

Feedback

AI Agent

Tool Sites Knowledge resources

Web applications from popular domains

check_repo
check_readme
check_answer

Functional
Success

Functional
Failure

Figure 3.1: WebArena is a standalone, self-hostable web environment for building autonomous
agents. WebArena creates websites from four popular categories with functionality and data
mimicking their real-world equivalents. To emulate human problem-solving, WebArena also
embeds tools and knowledge resources as independent websites. WebArena introduces a
benchmark on interpreting high-level realistic natural language command to concrete web-
based interactions. We provide validators to programmatically validate the functional correct-
ness of each task.

vironments focus on comparing the textual surface form of the predicted action sequences with
reference action sequences, disregarding the functional correctness of the executions and pos-
sible alternative solutions [46, 75, 97, 132, 178]. These limitations often result in a discrepancy
between simulated environments and the real world, and can potentially impact the generaliz-
ability of AI agents to successfully understand, adapt, and operate within complex real-world
situations.

We introduce WebArena, a realistic and reproducible web environment designed to facili-
tate the development of autonomous agents capable of executing tasks (§3.2). An overview of
WebArena is in Figure 3.1. Our environment comprises four fully operational, self-hosted web
applications, each representing a distinct domain prevalent on the internet: online shopping,
discussion forums, collaborative development, and business content management. Further-
more, WebArena incorporates several utility tools, such as map, calculator, and scratchpad, to
best support possible human-like task executions. Lastly, WebArena is complemented by an
extensive collection of documentation and knowledge bases that vary from general resources
like English Wikipedia to more domain-specific references, such as manuals for using the in-
tegrated development tool [52]. The content populating these websites is extracted from their
real-world counterparts, preserving the authenticity of the content served on each platform.
We deliver the hosting services using Docker containers with gym-APIs [23], ensuring both

16

the usability and the reproducibility of WebArena.

Along with WebArena, we release a ready-to-use benchmark with 812 long-horizon web-
based tasks (§3.3). Each task is described as a high-level natural language intent, emulating
the abstract language usage patterns typically employed by humans [19]. Two example intents
are shown in the upper left of Figure 3.1. We focus on evaluating the functional correctness of
these tasks, i.e., does the result of the execution actually achieve the desired goal (§3.3.2). For
instance, to evaluate the example in Figure 3.2, our evaluation method verifies the concrete
contents in the designated repository. This evaluation is not only more reliable [31, 168, 203]
than comparing the textual surface-form action sequences [46, 132] but also accommodate a
range of potential valid paths to achieve the same goal, which is a ubiquitous phenomenon in
sufficiently complex tasks.

We use this benchmark to evaluate several agents that can followNL command and perform
web-based tasks (§3.4). These agents are implemented in a few-shot in-context learning fashion
with powerful large language models (LLMs) such as GPT-4 and PALM-2. Experiment results
show that the best GPT-4 agent performance is somewhat limited, with an end-to-end task
success rate of only 14.41%, while the human performance is 78.24%. We hypothesize that the
limited performance of current LLMs stems from a lack of crucial capabilities such as active ex-
ploration and failure recovery to successfully perform complex tasks (§3.5.1). These outcomes
underscore the necessity for further development towards robust and effective agents [91] in
WebArena.

3.2 Web App as an Environment for Autonomous Agents

Our goal is to create a realistic and reproducible web environment. We achieve reproducibility
by making the environment standalone, without relying on live websites. This circumvents
technical challenges such as bots being subject to CAPTCHAs, unpredictable content modifi-
cations, and configuration changes, which obstruct a fair comparison across different systems
over time. We achieve realism by using open-source libraries that underlie many in-use sites
from several popular categories and importing data to our environment from their real-world
counterparts.

17

Search for museums
in Pittsburgh

webarena.wikipedia.com

Search for each art
museum on the Map

webarena.openstreetmap.com

Record the optimized
results to the repo

webarena.gitlab.com

…

Create an efficient itinerary to visit all of Pittsburgh's art museums with minimal driving distance
starting from Schenley Park. Log the order in my “awesome-northeast-us-travel” repository

“
”

Figure 3.2: A high-level task that can be fully executed in WebArena. Success requires so-
phisticated, long-term planning and reasoning. To accomplish the goal (top), an agent needs
to (1) find Pittsburgh art museums on Wikipedia, (2) identify their locations on a map (while
optimizing the itinerary), and (3) update the README file in the appropriate repository with
the planned route.

3.2.1 Controlling Agents through High-level Natural Language

The WebArena environment is denoted as E= ⟨S,A,O,T ⟩ with state space S , action space
A (§3.2.4) and observation space O (§3.2.3). The transition function T ∶ S × AÐ→ S is deter-
ministic, and it is defined by the underlying implementation of each website in the environ-
ment. Given a task described as a natural language intent i, an agent issues an action at∈ A
based on intent i, the current observation ot∈ O, the action history at−1

1 and the observation
history ot−1

1 . Consequently, the action results in a new state st+1∈ S and its corresponding ob-
servation ot+1∈ O. We propose a reward function r(aT

1 , s
T
1) to measure the success of a task

execution, where aT
1 represents the sequence of actions from start to the end time step T , and

sT1 denotes all intermediate states. This reward function assesses if state transitions align with
the expectations of the intents. For example, with an intent to place an order, it verifies whether
an order has been placed. Additionally, it evaluates the accuracy of the agent’s actions, such as
checking the correctness of the predicted answer.

18

3.2.2 Website Selection

To decide which categories of websites to use, we first analyzed approximately 200 examples
from the authors’ actual web browser histories. Each author delved into their browsing histo-
ries, summarizing the goal of particular segments of their browser session. Based on this, we
classified the visited websites into abstract categories. We then identified the four most salient
categories and implemented one instance per category based on this analysis: (1) E-commerce
platforms supporting online shopping activities (e.g., Amazon, eBay), (2) social forum platforms
for opinion exchanges (e.g., Reddit, StackExchange), (3) collaborative development platforms
for software development (e.g., GitLab), and (4) content management systems (CMS) that man-
age the creation and revision of the digital content (e.g., online store management).

In addition to these platforms, we selected three utility-style tools that are frequently used
in web-based tasks: (1) a map for navigation and searching for information about points of
interest (POIs) such as institutions or locations (2) a calculator, and (3) a scratchpad for taking
notes. As information-seeking and knowledge acquisition are critical in web-based tasks, we
also incorporated various knowledge resources into WebArena. These resources range from
general information hubs, such as the English Wikipedia, to more specialized knowledge bases,
such as the website user manuals.

Implementation We leveraged open-source libraries relevant to each category to build our
own versions of an E-commerce website (OneStopShop), GitLab, Reddit, an online store content
management system (CMS), a map, and an English Wikipedia. Then we imported sampled data
from their real-world counterparts. As an example, our version of GitLab was developed based
on the actual GitLab project.1 We carefully emulated the features of a typical code repository
by including both popular projects with many issues and pull requests and smaller, personal
projects. Details of all websites in WebArena can be found in Appendix A.1. We deliver the
environment as dockers and provide scripts to reset the environment to a deterministic initial
state (See Appendix A.2).

3.2.3 Observation Space

We design the observation space to roughly mimic the web browser experience: a web page
URL, the opened tabs , and the web page content of the focused tab. WebArena is the first web

1https://gitlab.com/gitlab-org/gitlab

19

https://gitlab.com/gitlab-org/gitlab

 <div>

 <div class>
 Outdoor Patio …

 <div>
 Rating:
 <div>
 82%
 </div>
 12
Reviews

webarena.onestopshop.comwebarena.onestopshop.com

RootWebArea ‘Patio, Lawn ..’
 link 'Image'
 img 'Image'
 link 'Outdoor Patio..’
 LayoutTable ''
 StaticText 'Rating:'
 generic '82%'
 link '12 Reviews'
 StaticText ‘$49.99'
 button 'Add to Cart’ focusable: True
 button 'Wish List’ focusable: …
 button 'Compare’ focusable: …

webarena.onestopshop.com

Figure 3.3: We design the observation to be the URL and the content of a web page, with options
to represent the content as a screenshot (left), HTML DOM tree (middle), and accessibility tree
(right). The content of the middle and right figures are trimmed to save space.

environment to consider multi-tab web-based tasks to promote tool usage, direct comparisons
and references across tabs, and other functionalities. The multi-tab functionality offers a more
authentic replication of human web browsing habits compared to maintaining everything in
a single tab. We provide flexible configuration to render the page content in many modes:
(see Figure 3.3 for an example): (1) the raw web page HTML, composed of a Document Object
Model (DOM) tree, as commonly used in past work [46, 97, 151]; (2) a screenshot, a pixel-based
representation that represents the current web page as an RGB array and (3) the accessibility
tree of the web page.2 The accessibility tree is a subset of the DOM tree with elements that are
relevant and useful for displaying the contents of a web page. Every element is represented as its
role (e.g., a link), its text content, and its properties (e.g., whether it is focusable). Accessibility
trees largely retain the structured information of a web page while being more compact than
the DOM representation.

We provide an option to limit the content to the contents within a viewport for all modes.
This ensures that the observation can be input into a text-based model with limited context
length or an image-based model with image size or resolution requirements.

3.2.4 Action Space

Following previous work on navigation and operation in web and embodied environments [101,
151], we design a compound action space that emulates the keyboard and mouse operations
available on web pages. Figure 3.4 lists all the available actions categorized into three distinct
groups. The first group includes element operations such as clicking, hovering, typing, and key

2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

20

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

combination pressing. The second comprises tab-related actions such as opening, closing, and
switching between tabs. The third category consists of URL navigation actions, such as visiting
a specific URL or navigating forward and backward in the browsing history.

Building on these actions, WebArena provides agents with the flexibility to refer to ele-
ments for operation in different ways. An element can be selected by its on-screen coordinates,
(x, y), or by a unique element ID that is prepended to each element. This ID is generated when
traversing the Document Object Model (DOM) or accessibility tree. With element IDs, the el-
ement selection is transformed into an n-way classification problem, thereby eliminating any
disambiguation efforts required from the agent or the underlying implementation. For example,
issuing the action click [1582] clicks the button given the observation of [1582] Add

to Cart. This flexible element selection allows WebArena to support agents designed in
various ways (e.g., accepting input from different modalities) without compromising fair com-
parison metrics such as step count.

User Role Simulation Users of the same website often have disparate experiences due to
their distinct roles, permissions, and interaction histories. We emulate this scenario by generating
unique user profiles on each platform. The details can be found in Appendix A.3.

3.3 Benchmark Suite of Web-based Tasks

We provide a benchmark with 812 test examples on grounding high-level natural language
instructions to interactions inWebArena. Each example has ametric to evaluate the functional
correctness of the task execution. In this section, we first formally define the task of controlling
an autonomous agent through natural language. Then we introduce the annotation process of
our benchmark.

3.3.1 Intent Collection

We focus on curating realistic intents to carry out complex and creative tasks withinWebArena.
To start with, our annotators were guided to spend a few minutes exploring the websites to fa-
miliarize themselves with the websites’ content and functionalities. As most of our websites
are virtually identical to their open-web counterparts, despite having sampled data, most an-
notators can quickly comprehend the websites.

Next, we instructed the annotators to formulate intents based on the following criteria:

21

1. The intent should be abstract and high-level, implying that the task cannot be fulfilled
with merely one or two actions. As an example, instead of “click the science subreddit”,
we encouraged annotators to come up with something more complex like “post a greeting
message on science subreddit”, which involves performing multiple actions.

2. The intent should be creative. Common tasks such as account creation can be easily
thought of. We encouraged the annotators to add constraints (e.g., “create a Reddit account
identical to my GitLab one”) to make the intents more unique.

3. The intent should be formulated as a template by making replaceable elements as vari-
ables. The annotators were also responsible for developing several instantiations for each
variable. For example, the intent “create a Reddit account identical tomyGitLab one” can be
converted into “create a {{site1}} account identical to my {{site2}} one”, with an instantiation
like “{site1: Reddit, site2: GitLab}” and another like “{site1: GitLab, site2: OneStopShop-
ping}”. Notably, tasks derived from the same template can have distinct execution traces.
The similarity resides primarily in the high-level semantics rather than the specific im-
plementation.

We also provided a prompt for the annotators to use with ChatGPT3 for inspiration, that
contains an overview of each website and instructs the model to describe potential tasks to be
performed on these sites. Furthermore, we offered a curated list of examples for annotators to
reference.

Intent Analysis In total, we curated 241 templates and 812 instantiated intents. On average,
each template is instantiated to 3.3 examples. The intent distribution is shown in Figure A.1.
Furthermore, we classify the intents into three primary categories with examples shown in
Figure 3.5:

1. Information-seeking tasks expect a textual response. Importantly, these tasks in We-
bArena often require navigation across multiple pages or focus on user-centric content.
This makes them distinct from open-domain question-answering [88, 181], which fo-
cuses on querying general knowledge with a simple retrieval step. For instance, to an-
swer “Whenwas the last time I bought the shampoo”, an agent traverses the user’s purchase
history, checking order details to identify the most recent shampoo purchase.

2. Site navigation: This category is composed of tasks that require navigating through
web pages using a variety of interactive elements such as search functions and links. The

3https://chat.openai.com/

22

https://chat.openai.com/

Action Type Description

noop Do nothing
click(elem) Click at an element
hover(elem) Hover on an element
type(elem, text) Type to an element
press(key_comb) Press a key comb
scroll(dir) Scroll up and down

tab_focus(index) focus on i-th tab
new_tab Open a new tab
tab_close Close current tab

go_back Visit the last URL
go_forward Undo go_back

goto(URL) Go to URL

Figure 3.4: Action Space of We-
bArena

Category Example

Information
Seeking

When was the last time I bought shampoo

Compare walking and driving time
from AMC Waterfront to Randyland

Site
Navigation

Checkout merge requests assigned to me

Show me the ergonomic chair
with the best rating

Content
&

Config
Post to ask “whether I need a car in NYC”

Delete the reviews from the scammer Yoke

Figure 3.5: Example intents from three categories.

objective is often to locate specific information or navigate to a particular section of a
site.

3. Content and configuration operation: This category encapsulates tasks that require
operating in the web environment to create, revise, or configure content or settings. This
includes adjusting settings, managing accounts, performing online transactions, gener-
ating new web content, and modifying existing content. Examples range from updating
a social media status or README file to conducting online purchases and configuring
privacy settings.

3.3.2 Evaluation Annotation

Evaluating Information SeekingTasks Tomeasure the correctness of information-seeking
tasks where a textual answer is expected, we provide the annotated answer a∗ for each intent.
The a∗ is further compared with the predicted answer â with one of the following scoring
functions rinfo(â, a∗).

First, we define exact_match where only â that is identical with a∗ receives a score
of one. This function is primarily applicable to intent types whose responses follow a more
standardized format, similar to the evaluation on question answering literature [135, 181].

23

Second, we create must_include where any â containing a∗ receives a score of one. This
function is primarily used in when an unordered list of text is expected or where the emphasis
of evaluation is on certain key concepts. In the second example in Table 3.1, we expect both the
correct name and the email address to be presented, irrespective of the precise wording used to
convey the answer.

Finally, we introduce fuzzy_match where we utilize a language model to assess whether
â is semantically equivalent to a∗. Specifically, in this work, we use gpt-4-0613 to per-
form this evaluation. The corresponding prompt details are provided in Appendix A.7. The
fuzzy_match function applies to situations where the format of the answer is diverse. For
instance, in responding to “Compare the time for walking and driving route from AMC Water-

front to Randyland”, it is essential to ensure that driving time and walking time are accurately
linked with the correct terms. The fuzzy_match function could also flexibly match the time
“2h58min” with different forms such as “2 hour 58 minutes”, “2:58” and others. We demonstrate
a language model can achieve nearly perfect performance on this task in §A.8.

Evaluating Site Navigation and Content & Config Tasks The tasks in these categories
require accessing web pages that meet certain conditions or performing operations that modify
the underlying data storage of the respective websites. To assess these, we establish reward
functions rprog(s) that programmatically examine the intermediate states swithin an execution
trajectory to ascertain whether the outcome aligns with the intended result. These intermediate
states are often the underlying databases of the websites, the status, and the content of a web
page at each step of the execution.

Evaluating each instance involves two components. First, we provide a locator, tasked
with retrieving the critical content pertinent to each intent. The implementation of this locator
varies from a database query, a website-supported API call, to a JavaScript element selection on
the relevant web page, depending on implementation feasibility. For example, the evaluation
process for the intent of the fifth example in Table 3.1, first obtains the URL of the latest post
by examining the last state in the state sequence s. Then it navigates to the corresponding post
page and obtains the post’s content by running the Javascript “document.querySelector(‘.submission__inner’).outerText”.

Subsequently, we annotate keywords that need to exist within the located content. For ex-
ample, the evaluation verifies if the post is correctly posted in the “nyc” subreddit by examining
the URL of the post and if the post contains the requested content by examining the post con-
tent. We reuse the exact_match and must_include functions from information-seeking
tasks for this purpose.

24

Function ID Intent Eval Implementation

rinfo(a∗, â)

1 Tell me the name of the customer who
has the most cancellations in the history exact_match(â, “Samantha Jones”)

2 Find the customer name and
email with phone number 8015551212

must_include(â, “Sean Miller”)
must_include(â, “sean@gmail.com”)

3
Compare walking and driving time
from AMC Waterfront to Randyland

fuzzy_match(â, “walking: 2h58min”)
fuzzy_match(â, “driving: 21min”)

rprog(s)

4
Checkout merge requests

assigned to me

url=locate_current_url(s)

exact_match(URL, “gitlab.com/merge_
requests?assignee_username=byteblaze”)

5 Post to ask “whether I
need a car in NYC”

url=locate_latest_post_url(s)
body=locate_latest_post_body(s)
must_include(URL, “/f/nyc”)
must_include(body,“a car in NYC”)

Table 3.1: We introduce two evaluation approaches. rinfo (top) measures the correctness of
performing information-seeking tasks. It compares the predicted answer â with the annotated
reference a∗ with three implementations. rprog (bottom) programmatically checks whether the
intermediate states during the executions possess the anticipated properties specified by the
intent.

Unachievable Tasks Due to constraints such as inadequate evidence, user permissions (§A.3),
or the absence of necessary functional support on the website, humans may ask for tasks that
are not possible to complete. Inspired by previous work on evaluating question-answering
models on unanswerable questions [137], we design unachievable tasks in WebArena. For in-
stance, fulfilling an intent like “Tell me the contact number of OneStopShop” is impracticable in
WebArena, given that the website does not provide such contact information. We label such
instances as "N/A" and expect an agent to produce an equivalent response. These examples
allow us to assess an agent’s ability to avoid making unfounded claims and its adherence to
factual accuracy.

Annotation Process The intents were contributed by the authors following the annotation
guideline in §3.3.1. Every author has extensive experience with web-based tasks. The refer-
ence answers to the information-seeking tasks were curated by the authors and an external

25

annotator. To ensure consistency and accuracy, each question was annotated twice. If the two
annotators disagreed, a third annotator finalized the annotation. The programs to evaluate the
remaining examples were contributed by three of the authors who are proficient in JavaScript
programming. Difficult tasks were often discussed collectively to ensure the correctness of the
annotation. The annotation required the annotator to undertake the full execution and scruti-
nize the intermediate states.

Avg. Time 110s
Success Rateinfo 74.68%
Success Rateothers 81.32%
Success Rateall 78.24%

Human Performance We sample one task from each of the 170
templates and ask five computer science graduate students to per-
form these tasks. The human performance is on the right. Over-
all, the human annotators complete 78.24% of the tasks, with lower
performance on information-seeking tasks. Through examining the
recorded trajectories, we found that 50% of the failures are due to misinterpreting the intent
(e.g., providing travel distance when asked for travel time), incomplete answers (e.g., providing
only name when asked for name and email), and incomplete executions (e.g., partially filling
the product information), while the remaining instances have more severe failures, where the
executions are off-target. More discussions on human annotations can be found in §A.5.

3.4 Baseline Web Agents

We experiment with three LLMs using two prompting strategies, both with two examples in the
context. In the first setting, we ask the LLM to directly predict the next action given the current
observation, the intent and the previously performed action. In the second setting, with the
same information, the model first performs chain-of-thought reasoning steps in the text before
the action prediction (CoT, Wei et al. [170], Yao et al. [183]). Before the examples, we provide a
detailed overview of the browser environment, the allowed actions, and many rules. To make
the model aware of the unachievable tasks, the instruction explicitly asks the agent to stop if it
believes the task is impossible to perform. We refer to this directive as Unachievable hint, orUA
hint. This introduction is largely identical to the guidelines we presented to human annotators
to ensure a fair comparison. We use an accessibility tree with element IDs as the observation
space. The agent can identify which element to interact with by the ID of the element. For
instance, the agent can issue click [1582] to click the “Add to Cart” button with the ID
of 1582. The full prompts can be found in Appendix A.9. The detailed configurations of each
model can be found in Appendix A.6.

26

CoT UA Hint Model SR SRAC SRUA

✓ ✓ text-bison-001 5.05 4.00 27.78
✗ ✓ GPT-3.5 6.41 4.90 38.89
✓ ✓ GPT-3.5 8.75 6.44 58.33
✓ ✓ GPT-4 11.70 8.63 77.78

✗ ✗ GPT-3.5 5.10 4.90 8.33
✓ ✗ GPT-3.5 6.16 6.06 8.33
✓ ✗ GPT-4 14.41 13.02 44.44

- ✓ Human 78.24 77.30 100.00

Table 3.2: The end-to-end task success rate (SR %) on WebArena with different prompting
strategies. CoT: the model performs step-by-step reasoning before issuing the action. UA

hint: ask the model to stop when encountering unachievable questions.

3.5 Results

The main results are shown on the top of Table 3.2. GPT-4 [121] with CoT prompting achieves
a modest end-to-end task success rate of 11.70%, which is significantly lower than the human
performance of 78.24%. GPT-3.5 [120] with CoT prompting is only able to successfully perform
8.75% of the tasks. The explicit reasoning procedure is somewhat helpful, it brings 2.34% im-
provement over the version without it. Further, text-bison-001 [10] underperforms GPT-3.5,
with a success rate of 5.05%. These results underline the inherent challenges and complexi-
ties of executing tasks that span long horizons, particularly in realistic environments such as
WebArena.

3.5.1 Analysis

Do models know when to stop? In our error analysis of the execution trajectories, we ob-
serve a prevalent error pattern of early stopping due to the model’s conclusion of unachievabil-
ity. For instance, GPT-4 erroneously identifies 54.9% of feasible tasks as impossible. This issue
primarily stems from the UA hint in the instruction, while this hint allows models to identify
unachievable tasks, it also hinders performance on achievable tasks. To address this, we con-
duct an ablation study where we remove this hint. We then break down the success rate for

27

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0
Success rate (%) within a template

0

5

10

15

20

25

Te

m
pl

at
e

gpt-3.5-direct
gpt-3.5-cot
gpt-4-cot

Figure 3.6: Distribution of success rates on templates with ≥ 1 successful executions on gpt
models (no UA hint).

both achievable and unachievable tasks. As shown in Table 3.2, eliminating this instruction led
to a performance boost in achievable tasks, enhancing the overall task success rate of GPT-4 to
14.41%. Despite an overall decline in identifying unachievable tasks, GPT-4 retains the capacity
to recognize 44.44% of such tasks. It does so by generating reasons of non-achievability, even
without explicit instructions. On the other hand, GPT-3.5 rarely exhibits this level of reason-
ing. Instead, it tends to follow problematic patterns such as hallucinating incorrect answers,
repeating invalid actions, or exceeding the step limits. This result suggests that even subtle dif-
ferences in instruction design can significantly influence the behavior of a model in performing
interactive tasks in complex environments.

Can a model maintain consistent performance across similar tasks? Tasks that orig-
inate from the same template usually follow similar reasoning and planning processes, even
though their observations and executions will differ. We plot a histogram of per-template suc-
cess rates for our models in Figure 3.6. Of the 61 templates, GPT-4 manages to achieve a 100%
task success rate on only four templates, while GPT-3.5 fails to achieve full task completion
for any of the templates. In many cases, the models are only able to complete one task varia-
tion with a template. These observations indicate that even when tasks are derived from the
same template, they can present distinct challenges. For instance, while “Fork metaseq” can be
a straightforward task, “Fork all repos from Facebook” derived from the same template requires
more repetitive operations, hence increasing its complexity. Therefore, WebArena provide a
testbed to evaluate more sophisticated methods. In particular, those that incorporate memory
components, enabling the reuse of successful strategies from past experiments [163, 208]. More
error analysis with examples can be found in Appendix A.10.

28

Benchmark
Dynamic

Interaction?
Realistic

Environment?
Diverse

Human Tasks?
Functional
Correctness?

Mind2Web [46] ✗ ✓ ✓ ✗

Form/QAWoB [151] ✗ ✓ ✓ ✗

MiniWoB++ [101] ✓ ✗ ✗ ✓

Webshop [182] ✓ ✗ ✗ ✓

ALFRED [153] ✓ ✗ ✗ ✓

VirtualHome [132] ✗ ✗ ✓ ✗

AndroidEnv [161] ✓ ✓ ✗ ✗

WebArena ✓ ✓ ✓ ✓

Table 3.3: The comparison between our benchmark and existing benchmarks on grounding
natural language instructions to concrete executions. Our benchmark is implemented in our
fully interactable highly-realistic environment. It features diverse tasks humansmay encounter
in their daily routines. We design evaluation metrics to assess the functional correctness of task
executions.

3.6 Comparison with Other Agent Benchmarks

Controlling agents via natural language in the digital world have been studied in the litera-
ture [21, 46, 97, 101, 151, 161, 178]. However, the balance between functionality, authenticity,
and support for environmental dynamics remains a challenge. Existing benchmarks often com-
promise these aspects, as shown in Table 3.3. Some works rely on static states, limiting agents’
explorations and functional correctness evaluation [46, 151], while others simplify real-world
complexities, restricting task variety [101, 182]. While AndroidEnv [161] replicates an An-
droid setup, it does not guarantee the reproducibility since live Android applications are used.
[83, 132, 153] and extends to gaming environments [52, 87], where the environment mecha-
nisms often diverge from human objectives.

Author Contributions Shuyan Zhou proposed the evaluation framework for AI agents on
web-based tasks, and was responsible for designing and executing the data collection pipeline,
developing the evaluation metrics, and building the codebase. Frank Xu designed, implemented
or supervised the implementation of the sandbox web environments, and provided significant
input into the overall design and development of the other components of the project.

29

30

Part II

More Versatile“Language” for AI Agents

31

Chapter 4

Representing Procedures as Programs

Large language models are proficient in producing natural language text. However, free-form
text lacks the expressiveness to represent the versatile behaviors in the human problem-solving
process, such as hierarchical planning and tool use. This chapter presents our initial work
on exploring the appropriate “language” for AI agents to use, which could describe the task
execution process in a versatile, accurate and user-friendly way. This work first appears in:

• Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated
agents through natural language. In Workshop on Structured and Unstructured Knowl-

edge Integration (SUKI), Seattle, USA, July 2022. URL https://arxiv.org/abs/2109.08214

4.1 Overview

As discussed inmany examples before, procedures are inherently hierarchical; high-level proce-
dures consist of many lower-level procedures. There has been significant prior work on bench-
marks and methods for complex task completion using situated agents given natural language
(NL) instructions, such as agents trained to navigate the web and mobile UIs [97, 178] or solve
household tasks [153]. However, most methods applied to these tasks use a reactive strategy
that makes decisions on the low-level atomic actions available to the agent while making steps
through the environment [61, 214], or define procedures in a shallow way where there only
exists one level of hierarchy [8, 44, 59, 188].These approaches are often data-inefficient due to
the semantic gap between abstract natural language instructions and concrete executions. In
contrast, several works have demonstrated that using specially designed intermediate repre-
sentations tailored to individual tasks [11, 29, 113] can help reduce this expense and improve
performance, albeit at the cost of significant effort on the part of the researchers devising these

33

https://arxiv.org/abs/2109.08214

Prepare a meal

ex
ec

ute

HMN-Planner (§ 4)
!

I have to
reheat the bread

and prepare some
fruits udp_heat_object(bread)

udp_clean_object(apple)
…

plan

This is a microwave! It can be
opened and it is close

def udp_put_object(obj, recep):
 atomic_navigate(recep)
 reactor = get_reactor(“check_attr”)
 attr = reactor(recep)
 if attr.openable and attr.close:
 atomic_open_object(recep)
 atomic_put_object(obj, recep)
 else:
 atomic_put_object(obj, recep)

attr.openable=True  
attr.close=True

HMN-Reactor (§ 4)
"

Environment

predict

Procedure Library | PaP (§ 3)

def udp_pickup_object(obj)

…

def udp_heat_object(obj)

def udp_cool_object(obj)

def udp_clean_object(obj)

#

$

 an executable procedural action ae
natural language input x

execute

Figure 4.1: The proposed framework, containing a hierarchical library of procedures written
as Python functions (§4.4). Coupled with this library is a hierarchical neural network (HMN,
§4.5) with a Planner that constructs an executable procedure and Reactors that react to the
environment to resolve control flow.

methods.

In this chapter, we propose a framework to improve the execution of complex natural lan-
guage commands (example in Fig. 4.1) by expressing procedures as programs (PaP) written in a
high-level programming language like Python (§4.4). This makes it easy for human engineers to
express and leverage their hierarchical procedural knowledge, and the execution of each program
yields actions to accomplish a task described in NL. There are several merits to this approach.
First, programs are inherently hierarchical; they apply nested function calls to realize higher-
level functionality with multiple calls to lower-level functionality. Second, programs have built-
in control-flow operators, making it possible to deal with multiple divergent situations without
the loss of higher-level abstraction. Third, programs provide a flexible way to define, share and
call different machine-learned components to perceive the environment through an embodied
agent’s executions. Finally, programs in a familiar high-level programming language are com-
prehensible and curatable, allowing for fast development on various tasks. These four features
remain largely unexplored in the existing representations [11, 29, 113], as discussed further in
§4.2.

Coupled with this representation, we propose a modeling paradigm of hierarchical modu-

lar networks (HMN; §4.5) that has (1) a learnable Planner that maps NL to the corresponding
executable programs and (2) a collection of Reactors that perceive the environment and pro-
vide context-sensitive feedback to decide the further execution of the program. Such modular
design can facilitate training efficiency and improve the performance of each individual com-
ponent [7].

34

We instantiate our framework on two task settings: the IQA dataset [59] where an agent ex-
plores the environment to answer questions regarding objects; and the ALFRED dataset [153],
in which an agent must map natural language instructions to actions to complete household
tasks (§4.6). In experiments (§4.7), we find that our framework outperforms the reactive base-
line by a significant margin on both datasets, and is significantly more data-efficient. We also
demonstrate the flexibility of our framework for fast iterative development of program libraries.
We endwith a discussion of the limitations of the framework and the potential solutions, paving
the way for future works that scale our framework to more open-domain tasks (§7).

4.2 Contrast to Previous Formalisms

While designing intermediate representations that stand between NL and low-level actions for
individual tasks has been studied in the literature, our goal is to design a framework that makes
it simple to design such representations for new tasks, with a particular focus on capturing
the hierarchical nature of procedures. In contrast to most previous works in this area, which
employ relatively esoteric representation methods such as lambda calculus [11, 12], PaP uses
widely-adopted general-purpose programming languages (e.g., Python) to specify and repre-
sent hierarchical procedures. These are comprehensible to most engineers and do not require
system designers to learn a new task-specific language. PaP also enable easy creation of more
hierarchical procedures with reusable sub-routines. Existing works either do not model such
sub-procedures as reusable components [113], or define procedures as a flat sequence of actions
without any hierarchy [11, 34]. The hierarchical procedures with reusable sub-routines is also
reminiscent of works in semantic parsing, which compose programs from idiomatic program
structures [72, 152].

Additionally, PaP uses control flowwith divergent branches to handle environment-specific
variations of a high-level procedure. A single procedure could therefore dynamically adapt to
a variety of environments following the branches triggered by the environments. This makes
our representations more compact. This feature also allows developers to easily inject human
priors of executions traces under different conditions, which might be challenging to learn in a
data-efficient manner. To our best knowledge, this feature is largely unexplored in the literature
on designing intermediate representations for agent control.

Finally, PaP provides a convenient interface for procedures to query and interact with task-
specific situated components (e.g., a visual component). Under PaP, situated components are
exposed as pre-defined APIs, and can be easily called by high-level procedures. In contrast,

35

existing works either require separate mechanisms to call such components [113], or the en-
vironment where they are expected to work is less complex, and thus the flexible use of a
collection of situated components is not a necessity [29].

We can also view the PaP formalism as a way to construct behavior trees [43], which have
been used in robotic planning and game design literature. We can use the off-the-shelf tools to
convert the programs to abstract syntax trees (AST) which resemble these trees. Previous works
on robotics also leverage planning domain definition language (PDDL) and answer set planners
(ASP) for task planning [76], which is conceptually different from our formalism. PDDL+ASP
searches for an action sequences based on the initial and the final states, while our formalism
focuses on describing the actual procedure used to accomplish a task.

4.3 Task: Controlling Situated Agents

First, we define the task of controlling an agent in some situated environmentE through natural
language. The environment E provides a set of atomic actionsAa = {aa1, aa2, ...} to interact with
the environment. Each atomic action can take zero or more arguments that specify which parts
of the environment to which it is to be applied. We denote action aai ’s jth argument as ri,j . The
specific type of each argument will depend on the action and environment; it could be discrete
symbols, scalar values, tensors describing regions of the visual space, etc. Given a user intent
x, the control system aims at creating an atomic action sequence consisting of a sequence of
actions a = [a1, a2, ...] (ai ∈ Aa) and concrete assignments vfor each of these n actions. This
action sequence is executed against the environment to achieve a result ŷ = E(a,v), which
is compared against a gold-standard result y using a score function s(y, ŷ). Action sequences
realizing the intent will receive a high score, and those that do not will receive a low score.

4.4 Representing Procedures as Programs

Next, we introduce the main components of our formalism. A few examples are listed in Ta-
ble 4.1.1

Interface to Atomic Actions Aa
(C1) Atomic actions provide a medium for direct inter-

action with the environment. The call of an atomic action with proper argument types will
invoke the corresponding execution in the environment.

1Since actions are implemented as functions, we use “action” and “function” interchangeably.

36

C1: an atomic action to toggle on an appliance

def atomic_toggle_on(obj):

env.call("toggle_on", obj)

C2: a procedural action to pick and then put an object

def udp_pick_and_put_object(obj, dst):

udp_pickup_object(obj)

udp_put_object(obj, dst)

C3: an emptying receptacle procedure with for−loop

def udp_empty_recep(recep, dst):

reactor = get_reactor("find_all_obj")

obj_list = reactor(recep)

for obj in obj_list:

udp_pick_and_put_object(obj, dst)

C4: a pickup object procedure with control flow

def udp_pickup_object(obj):

atomic_navigate(obj)

reactor1 = get_reactor("find_recep")

reactor2 = get_reactor("check_obj_attr")

recep = reactor1(obj)

attr = reactor2(recep)

if attr.openable and attr.close:

atomic_open_object(recep)

atomic_pickup_object(obj)

atomic_close_object(recep)

else: atomic_pickup_object(obj)

Table 4.1: Atomic and procedural action functions in Python, starting with atomic and udp

respectively.

37

Procedural Actions Ap
(C2-C4) Procedural actions describe abstractions of higher-level

procedures composed of either lower-level procedures or atomic actions. Notably, lower-level
procedures can be re-used across many higher-level procedures without re-definition. Formal-
izing the hierarchies in this compact way can not only facilitate the procedure library curation
process but also potentially benefit automatic library induction (e.g. through minimal descrip-
tion length [50]).

Control-flow ofAp
(C3-C4) There can be multiple execution traces to accomplish the same

goal under different conditions. For example, picking up an object from inside a closed recepta-
cle requires opening the receptacle first, while the open action is not required for objects not in
a receptacle. To improve the coverage of procedural functions we leverage the built-in control
flow of the host programming language to allow for conditional execution of environment-
specific actions (C4). To deal with the repeated calls of the same routine, we further introduce
for/while-loops. For example, C3 works for emptying receptacles with variable number of ob-
jects without repeatedly writing down the udp_pick_put_object. Leveraging control flows
to describe divergent procedural traces remains largely unexplored in previous works.

Call of Situated Components (C3-C4) The dynamic trigger of a control flow often remain
unknown before the agent interacts with the environment. We introduce situated components
to probe the environment and gather state information to guide program execution. In C4, the
agent uses two different reactors to find the potential holder of an object (reactor1) and exam
the holder’s properties (reactor2). A reactor can be implemented in many ways (e.g., using a
neural network).

4.5 Hierarchical Modular Networks

This section introduces how to use the procedure libraryA to generate executable programs to
complete tasks described in natural language x. We propose a modeling method of hierarchical
modular networks (HMN) that consists of twomain components. First, there is a HMN-Planner
that convertx to an executable procedural actionae = {a1, a2, ..., an}where ai either belongs to
atomic functions Aa or procedural functions Ap. We model the HMN-Planner as a sequence-
to-sequence model where the encoder takes x as input, and the decoder generates one function
ai at a time from a constrained vocabulary Ap⋃Aa, conditioned on x and the action history
{a1, ..., ai−1}.

38

Next, we define the collection of situated components, “reactors,” as HMN-Reactors. Each
reactor is a classifier that predicts one or many labels given the observed information (e.g., the
NL input, the visual observation. For example, reactor2 in C4 in Table 4.1 probes the status of
a receptacle based on receptacle name and the visual input. HMN-Reactors allows us to flex-
ibly share the same reactor among different functions and design separated reactors to serve
different purposes. For example in C4, we use two reactors to find the possible receptacle of
an object (reactor1) and to perceive the open/closed status of a receptacle (reactor2) since
these two tasks presumably require more mutually exclusive information. At the same time,
we share reactor2 to also probe the related openable property of a receptacle for more effi-
cient parameter sharing. This sort of modular design leads to efficient training and improved
performance [7].

4.6 Instantiations

In this section, we introduce two concrete realizations of the proposed framework over the IQA
dataset [59] and theALFRED dataset [153]. Both are based on egocentric vision in a high-fidelity
simulated environment THOR [45].

4.6.1 IQA

IQA is a dataset for situated question answering with three types of questions querying (1) the
existence of an object (e.g., Is there a mug?), (2) the count of an object (e.g., How many mugs are

there?) and (3) whether a receptacle contains an object (e.g., Is there a mug in the fridge?).
There are seven atomic actions in IQA, i.e., Moveahead, RotateLeft, RotateRight, LookDown,

LookUp, Open and Close; and all arguments are expressed through the unique object IDs (e.g.,
apple_1). We further process the atomic navigation actions to a single atomic action Navigate
with one argument destination, which moves the agent directly to the destination. This re-
placement is done by searching the scene and recording the coordinates of unmovable objects
(e.g., cabinet)

Procedure Library We design a procedure for each of the three types of questions in IQA,
as shown in Table 4.2. Generally speaking, those procedures first search all or a subset of the
receptacles (e.g.,table, fridge) in a scene for the target object (e.g.,mug), and then execute a
question-specific intent (e.g., existence-checking, counting). Table 4.2 shows the procedure for

39

check existence of an object in the scene

def udp_check_obj_exist(obj):

all_recep = udp_grid_search_recep()

for recep in all_recep:

rel = udp_check_relation(obj, recep)

if rel == OBJ_IN_RECEP:

return True

return False

check object inside receptacle

def udp_check_relation(obj, recep):

atomic_navigate(recep)

r1 = get_reactor("check_obj_attr")

r2 = get_reactor("check_obj_recep_rel")

attr = r1(recep)

if attr.is_openable and attr.is_closed:

atomic_open_object(recep)

rel = r2(obj, recep)

atomic_close_object(recep)

else:

rel = r2(obj, recep)

return rel

Table 4.2: The procedural actions to answer the existence questions of the IQA dataset.

answering existence questions. Since the target object can be inside a receptacle (e.g., fridge),
we introduce control flow to decide whether to open and close a receptacle before and after
checking its contents in sub-procedure udp_check_relation. Following the paper author’s
understanding of the three types of questions, these procedural functions were created without
looking into any actual trajectories that answer these questions.

HMN The natural language questions x in IQA are generated with a limited number of
templates. There are only seven receptacles, and three of them are openable. We thus use a rule-
based HMN-Planner to map a template to one of the three high-level procedural actions (i.e.,
existence, count and contain). Then, we design two reactors, each as a multi-classes classifier:
AttrChecker, which examines the properties (whether the object is openable) and the status

40

(whether the object is opened) of an object, and RelChecker, which checks the spatial relation
between two objects. Notably, we use zero IQA training data to build the HMN. Instead, it is
made up of a few heuristic components based on the predictions of a pre-trained perception
component.

4.6.2 ALFRED

ALFRED is a benchmark for mapping NL instructions to actions to accomplish household tasks
in the situated environment (e.g., heat an egg). Examples in ALFRED come with both single-
sentence high-level intents describing a goal (e.g., the NL input in Fig. 4.1), and more fine-
grained, step-by-step instructions. In this paper we only use the high-level intents, a more real-
istic yet more challenging setting to study the effectiveness of our framework in encoding extra
procedural knowledge for under-specified intents. Besides the seven atomic actions in the IQA
dataset, ALFRED also introduces Pickup, Put, ToggleOn, ToggleOff for object interactions.
ALFRED uses 2D binary tensor describing regions of the visual space as arguments. Similarly
to IQA, we replace the navigation action with an atomic action Navigate destination. Pre-
vious works also apply similar replacement [79, 154] to allow the agent to proceed to a location
without fail.

Procedure Library We create a procedure library for ALFRED by identifying idiomatic con-
trol flow and operations from a small set of randomly sampled examples. The library is designed
with two goals in mind as discussed in §4.4: reusability, where a single function can be applied
to multiple similar scenarios, and coverage, where a function should cover different execution
trajectories under different conditions For instance, many tasks consist of a sub-routine to ob-
tain an object by first navigating to the object and then picking up the object by hand, calling
for a reusable procedure adaptable to those scenarios. Moreover, if an object is positioned in-
side a receptacle, picking up the object would require opening the receptacle first, an edge
case that should be covered by relevant procedures (e.g., C4 in Table 4.1). Notably, we con-
strain the conditions of the control flow to the logic operation of the property values of objects
(e.g., fridge.is_openable=True).

In total, we define ten such procedural actions. This creation process was done by the
first author, a graduate student proficient in Python, and took about two hours. This modest
amount of time is partially due to PaP’s intuitive interface that allows for quick summarization
of complex procedures and partially due toALFRED’s relative simplicity; it has a limited number

41

C1, heat an object with microwave

def udp_heat_object(obj):

udp_pick_and_put_object(obj, microwave)

atomic_toggleon_object(microwave)

atomic_toggleoff_object(microwave)

C2, prepare the receptacle for future interactions

def udp_prepare_recep(obj):

reactor = get_reactor("check_obj_attr")

attr = reactor(obj)

if attr.is_openable and attr.is_closed:

atomic_open_object(obj)

Table 4.3: Two procedural actions for ALFRED

of task types and consistent execution traces. A sanity check of an initial version of the library
uncovered some mismatches. For example, a laptop should be closed before picking up, which
was not captured by our library. We thus added a udp_close_if_needed function call before
the atomic_pick_object in udp_pick_object. On one hand this increases the complexity of
the library design process, but on the other hand it also demonstrates the flexibility of the PaP
framework, as the necessary fixes could be done entirely by modifying the procedure library
itself. §4.7.1 provides an end-to-end comparison with different procedural libraries.

To investigate the scalability of our annotation process, we also provided a similar guideline
and the 21 examples to a separate programmer who does not have any prior knowledge to the
dataset. We found that the programmer could quickly understand the PaP Python interface and
issue reasonable procedural functions that highly resemble our own creations. This indicates
the possibility to curate the procedure libraries with crowd-sourcing efforts.

HMN As discussed in §4.5, HMN-Planner generates an executable procedural action ae,
given the natural language instruction x. We implement our planner with a sequence-to-
sequence model with attention [15].

Based on the construction of the procedure library and the required argument type, we
design three reactors: AttrChecker, which has the same functionality as in IQA, ReFinder,
which probes where the desired object lies by predicting a receptacle name from all available re-
ceptacles to the dataset, and MGenerator, which generates the 2D binary tensor representing
the interaction region. Since ALFRED has much richer scene configurations and more diverse

42

EX CNT CT

A3C
seen - - -

unseen 48.6 24.5 49.9

HIMN
seen 73.7 36.3 60.7

unseen 68.5 30.4 58.7

Reactive
seen 50.0 25.1 49.6

unseen 18.9 9.1 30.6

PaP-HMN
seen 82.8 43.8 82.2

unseen 83.8 45.2 83.1

PaPv0.1-HMN seen 80.3 41.5 75.7

Table 4.4: The answer accuracy (%) over IQA dataset on existence (EX), counting (CNT) and
contain (CT) questions. The results of AC3 and HIMN are from Gordon et al. [59]. Bold shows
the best performance

objects than IQA, the reactors are fully implemented with neural networks.This demonstrates
the flexibility of our framework to share, add and replace components to suit different situa-
tions.

4.7 Experiments

We compare our proposed framework with the baseline reactive agents that predicts a single
atomic action at each time step. Notably, we apply the same pretrained vision models, pre-
searched map and the Navigate atomic action used in PaP-HMN to the baseline to ensure a fair
comparison. We attempt to answer the following research questions: (1) Does our framework
performs better in complex tasks with inherent hierarchical structures, comparing to a purely
reactive system? If so, in what way? (2) Can our framework leverage the procedural knowledge
encoded in the procedure library and the modularity of its HMN to learn more efficiently? And
(3) Can our framework accelerate the development of the task of interest?

43

4.7.1 Results on IQA

Results in Table 4.6 show that our framework yields the best performance across all models over
different question types. Through error analysis, we observe that while the reactive model can
generate reasonable action sequences seen, its answers are no better than a random guess. This
indicates the inability of a reactive model to book-keep the observed objects in the memory.
For unseen, we find that the baseline model skips predicting some receptacles or even generates
syntactically invalid sequences (e.g., functions without required arguments). This is surprising,
since the reactive baseline is trained using the canonicalized action sequences according to
the roll-out of the for-loops in the procedure library, which are quite regular. This indicates
that even simple repeated procedures can be easily represented with a for/while-loop can still
be challenging to a reactive agent implemented with a sequence-based backbone. The strong
performance of PaP might seem unsurprising given that the library is tailored carefully to the
domain. However, sophisticated models like HIMN [59] still struggle to capture such simple
patterns, and there is not a straightforward way to plug the simple rules that we were easily
able to describe in PaP in to improve its performance; PaP solves the easy problems so that an
MLmodel can focus its effort on the more challenging problems that truly require learning (e.g.,
object grounding).

Procedure Library Manipulation One advantage of our approach is that it decouples the
reactors from the creation of the procedural knowledge, thus allowing plug-in update of the
procedure library without time-consuming redesigning or retraining the reactors. Table 4.5
lists two versions of the procedure that decides the list of receptacles to enumerate, and the
results of v0.1 are shown at the bottom of Table 4.4. In v0.1, the agent stands in its randomly
initialized position, looks around, and detects receptacles. Only the detected receptacles are
checked to answer the question. However, since not all receptacles are visible to the agent at
the agent’s initial point, such checking could be incomplete. We upgraded this function to the
new version where the agent searches all possible positions of the scene and memorizes the
unmovable receptacle positions. This process only happens once for a scene, and the searched
map is stored for future uses. In thisway, most receptacles are covered. This simplemodification
without changing the remaining parts of the framework improved the CT answer accuracy by
6.6% and improvement of around 2.5% over the other two question types.

1unseen features the out-of-distribution visual appearances and arrangements of objects, same for ALFRED

44

v0.1: only scan at the start position

def udp_search_recep():

r = get_reactor("detect_recep")

receps = []

for rotation in range(0, 360, 90):

atomic_rotate(rotation)

for horizon in [−30, 0, 30]:

atomic_look(horizon)

receps += r()

return receps

now: navigate to every reachable point and scan

def udp_grid_search_recep():

if not done_search:

all_receps = [] # global var

for pos in reachable_pos:

atomic_navigate_pos(pos)

all_receps += udp_search_recep()

return all_receps

Table 4.5: Two versions for getting receptacles.

4.7.2 Results on ALFRED

Table 4.6 lists the results. Our model yields a consistent gain over the baseline system on both
splits.2 In our analysis, we find that the Mask R-CNN vision model is the main bottleneck
of both end-to-end systems, which we hypothesis is due to the sub-optimal transfer from the
MSCOCO [98] to the ALFRED data. It frequently misclassifies the object types or does not
recognize the object in the scene at all. This results in the failure of object grounding and thus
the failure of the task completion. Since the development of a better object detector is somewhat
orthogonal to our main contributions, to isolate the impact of using a weak object detector on
the end-to-end performance, we replace the Mask R-CNNwith an oracle object mask generator,
which always localize and interact with the provided object name if the object is in view for
all experiments below. We observe a larger performance gap using this oracle mask generator

2Singh et al. [156] predicts atomic navigation sequences (e.g.,MoveAhead) instead of Navigate. The agent
struggles to navigate to destination with only high-level goal. This shows the difficulty of navigation under our
experiment setting.

45

seen unseen

Singh et al. [156] 5.4 0.2
Reactive 21.0 5.6
PaP-HMN 27.0 11.7

Reactive + Oracle MG 40.7 (48.6) 36.4 (45.0)
PaP-HMN + Oracle MG 54.5 (61.0) 51.3 (61.1)

Table 4.6: The full task success rate SR (the partial task success rate, SSR, %) of the baseline
reactive model and our model. MG represents the mask generator. bold shows the best perfor-
mance for each setting.

as shown in the bottom half of Table 4.6. This gap suggests that procedural knowledge that
could be summarized as several functions describable within a short period of time (in this
case, ten functions in two hours) can still be difficult for a reactive system to capture. While the
same procedural knowledge can be used in many cases with different environment dynamics,
a reactive system struggle to distill such knowledge when interacting with highly diverse and
dynamic environments.

Performance w.r.t. Action Length In Fig. 4.2, we further break down the results to buckets
w.r.t the length of atomic action sequences (without arguments), which roughly represents the
difficulty of a task. We observe consistent improvements over all buckets, This difference is
even more obvious for challenging tasks with over 21 atomic actions. Our model maintains
similar performance for such cases on seen, and being able to accomplish 30% tasks successfully
on unseen, while the baseline can barely complete any task. These suggest our framework’s
stronger capacity to solve long-horizon tasks of deeper hierarchies.

Data Efficiency The hierarchical procedural knowledge could potentially allow the system
to learn task completion in a data-efficient manner. We benchmark HMNwith varying amounts
of training data. As shown in Fig. 4.2, with 20% of the training data, our method exceeds the
baseline with the full training set by a large margin (7.7% and 17.3% respectively). Furthermore,
for seen, the baseline only obtains less than 60% SR with 20% training data, compared to the
full data; our method could maintain around 90% SR of the full data setting. These strongly
demonstrate the data efficiency of our method.

46

Figure 4.2: The SR (%) with proportions of the full training set (top) and on each length bucket
of the seen,unseen (bottom).

Few-shot Generalization Next, we test if our framework can generalize to novel compo-
sitional procedures with relatively supervised examples. We design the few-shot experiments
where a subset of the executable procedural actions (ae) are held out, and we sample at most 20
samples of each ae and add them to the training set. We evaluate the model on these held-out
ae. We use two strategies to choose the held-out set; the first randomly selects n ae; the other
selects the longest n ae (n = 4/19). PaP-HMN achieves 33.1 and 44.9 SR with these two strate-
gies while the reactive baseline only reaches 13.9 and 3.3 respectively3. Ourmethod consistently
outperforms the baseline by a large margin on both settings, which strongly demonstrates our
method’s generalization ability in the few-shot scenario. The significant gain under the short
to long setting shows our method’s strong capacities in completing long-horizon tasks in a
data-efficient way compared to the baseline.

Analysis Our framework brings several advantages. First, compared to low-level actions, the
high-level procedural functions are better aligned with abstract NL inputs. This thus benefits
the learning and the prediction of Planner. Second, programs maintain the consistency of
the actions, while a reactive agent might make inconsistent predictions, especially arguments,

3For random split, we average over four different splits.

47

between actions. Finally, the modular design of Planner and the Reactors improve the robust
behavior of the agent.

Next, we investigate failure cases. First, our ablation study shows that Planner correctly
predicts 80% of executable procedural actions ae, and the failures are mainly due to rare words
(e.g., soak a plate). In addition, we manually annotated 50 failed examples whose ae are correct.
We found that 26 failures are due to the sub-optimal interaction positions of the receptacles
that we compute during the pre-search phase. This causes the interaction with a visible object
or receptacle to fail. The pre-search map also missed some objects, and navigating to these
objects always failed. Besides, the Reactor prediction errors fail on 18 examples; ambiguous
annotations caused two errors, and the wrong argument prediction of the Planner caused four
errors.

48

Chapter 5

Few-shot ProgramWriting for Broader

Reasoning Tasks

So far, we have demonstrated that human could quickly construct and effective refine the pro-
grams to increase the task success rate of situated agents, thanks to the readability of programs.
However, high-quality program annotations often require a comprehensive understanding of
the task, including its sub-tasks and potential branching situations. In this chapter, we inves-
tigate how to automatically write program solutions for reasoning tasks that require multiple
steps. This work first appears in:

• Luyu Gao*, Aman Madaan*, Shuyan Zhou*, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. Pal: Program-aided language models. In International Con-

ference on Machine Learning, pages 10764–10799. PMLR, 2023

5.1 Overview

Recent studies have shown that LLMs can achieve impressive success in various tasks, including
commonsense [107, 147, 169], mathematical [94, 112, 174], and symbolic reasoning [2, 183],
through few-shot prompting [26]. Therefore, we aim to explore the effectiveness of LLMs in
writing programs for complex tasks withonly a few human demonstrations on specific instances.

We propose Program-Aided Language model (PaL): a novel method that uses an LLM to
read natural language problems and generate programs as reasoning steps, but offloads the so-
lution step to a Python interpreter, as illustrated in Figure 5.1. This offloading leverages an LLM
that can decompose a natural language problem into programmatic steps, which is fortunately

49

A: The bakers started with 200 loaves

loaves_baked = 200

They sold 93 in the morning and 39 in the afternoon

loaves_sold_morning = 93

loaves_sold_afternoon = 39

The grocery store returned 6 loaves.

loaves_returned = 6

The answer is

answer = loaves_baked - loaves_sold_morning
 - loaves_sold_afternoon + loaves_returned

>>> print(answer)

74

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left?

Chain-of-Thought (Wei et al., 2022)
Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis_balls = 5

2 cans of 3 tennis balls each is

bought_balls = 2 * 3

tennis balls. The answer is

answer = tennis_balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
did they have left?

Program-aided Language models (this work)
Input

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.

The answer is 62.

Model Output

❌

Figure 5.1: A diagram illustrating PaL: Given a mathematical reasoning question, Chain-of-
thought (left) generates intermediate reasoning steps of free-form text. In contrast, Program-
aided Language models (PaL, right) generate intermediate steps and Python code. This shifts
the role of running the reasoning steps from the language model to the Python interpreter. The
final answer is obtained by running the generated reasoning chain. Chain-of-thought reasoning
is highlighted in blue; PaL steps are highlighted in gray and pink; the Python interpreter run
is highlighted in black and green.

available using contemporary state-of-the-art LLMs that are pre-trained on both natural lan-
guage and programming languages [26, 30, 37]. While natural language understanding and
decomposition require LLMs, solving and reasoning can be done with the external solver. This
bridges an important gap in chain-of-thought-like methods, where reasoning chains can be
correct but produce an incorrect answer.

We demonstrate the effectiveness of PaL across 13 arithmetic and symbolic reasoning tasks.
In all these tasks, PaL using Codex [30] outperformsmuch larger models such as PaLM-540b us-

50

ing chain-of-thought prompting. For example, on the popular gsm8k benchmark, PaL achieves
state-of-the-art accuracy, surpassing PaLM-540b with chain-of-thought by absolute 15% top-1
accuracy. When the questions contain large numbers, a dataset we call gsm-hard, PaL outper-
forms CoT by an absolute 40%. We believe that this seamless synergy between a neural LLM
and a symbolic interpreter is an essential step towards general and robust AI reasoners.

5.2 Background: Few-shot Prompting

Few-shot prompting leverages the strength of large-language models to solve a task with a set
of k examples that are provided as part of the test-time input [26, 37, 102], where k is usually a
number in the low single digits. These input-output examples {(xi, yi)}ki=1 are concatenated in
a prompt p ≡ ⟨x1 ⋅ y1⟩ ∥ ⟨x2 ⋅ y2⟩ ∥ . . . ∥ ⟨xk ⋅ yk⟩. where “⋅” denotes the concatenation of an input
and output, and “∥” indicate the concatenation of different examples. During inference, a test
instance xtest is appended to the prompt, and p ∥ xtest is passed to the model which attempts
to complete p ∥ xtest, and thereby generate an answer ytest. Note that such few-shot prompting
does not modify the underlying LLM.

Wei et al. [170] additionally augment each in-context example with chain of thought (CoT)
intermediate steps. Specifically, each in-context example in the CoT setup is a triplet ⟨xi, ti, yi⟩,
where xi and yi are input-output pair as before, and ti is a natural language description of the
steps that are needed to arrive at the output yi from the input xi. See Figure 5.1 for an example.
With the additional “thoughts” ti, the prompt is set to p ≡ ⟨x1 ⋅t1 ⋅y1⟩∥⟨x2 ⋅t2 ⋅y2⟩∥. . .∥⟨xk ⋅tk ⋅yk⟩.

During inference, the new question xtest is appended to the prompt as before and supplied
to the LLM. Crucially, the model is tasked with generating both the thought ttest and the final
answer ytest. This approach of prompting the model to first generate a reasoning process ttest
improves the accuracy of the answer ytest across a wide range of tasks [165, 166, 170, 206].

5.3 Program-aided Language Models

In a Program-aided Language model, we propose to generate the thoughts t for a given nat-
ural language problem x as interleaved natural language (1) and programming language (PL)
statements. Since we delegate the solution step to an interpreter, we do not provide the final
answers to the examples in our prompt. That is, every in-context example in PaL is a pair ⟨xi,
ti⟩, where tj = [s1, s2, . . . , sN] with each si ∈ NL∪PL, a sequence of tokens in either2 or PL. The
complete prompt is thus p ≡ ⟨x1 ⋅ t1⟩ ∥ ⟨x2 ⋅ t2⟩ ∥ . . . ∥ ⟨xk ⋅ tk⟩.

51

Given a test instance xtest, we append it to the prompt, and p ∥ xtest is fed to the LM. We
let the LM generate a prediction ttest, which contains both the intermediate steps and their
corresponding programmatic statements.

A: Roger started with 5 tennis balls.

tennis_balls = 5

2 cans of 3 tennis balls each is

bought_balls = 2 * 3

tennis balls. The answer is

answer = tennis_balls + bought_balls

Figure 5.2: A close-up of a single example from a PaL prompt. Chain-of-thought reasoning is
highlighted in blue, and PaL programmatic steps are highlighted in gray and pink

Example A close-up of the example from Figure 5.1 is shown in Figure 5.2. While chain-
of-thought only decomposes the solution in the prompt into natural language steps such as
Roger started with 5 tennis balls and 2 cans of 3 tennis balls each is 6, in PaL we also augment
each such NL step with its corresponding programmatic statement such as tennis_balls = 5 and
bought_balls = 2 * 3. This way, the model learns to generate a program that will provide the
answer for the test question, instead of relying on LLM to perform the calculation correctly. We
prompt the language model to generate NL intermediate steps using comment syntax (e.g. “ #

...” in Python) such they will be ignored by the interpreter. We pass the generated program
ttest to its corresponding solver, we run it, and obtain the final run result ytest. In this work we
use a standard Python interpreter, but this can be any solver, interpreter or a compiler.

Crafting prompts for PaL In our experiments, we leveraged the prompts of existing work
whenever available, and otherwise randomly selected the same number (3-6) of examples as
previous work for creating a fixed prompt for every benchmark. In all cases, we augmented the
free-form text prompts into PaL-styled prompts, leveraging programming constructs such as
for loops and dictionaries when needed. Generally, writing PaL prompts is easy and quick.

We also ensure that variable names in the prompt meaningfully reflect their roles. For
example, a variable that describes the number of apples in the basket should have a name such
as num_apples_in_basket. This keeps the generated code linked to the entities in the
question. In Section 5.6 we show that such meaningful variable names are critical. Notably, it
is also possible to incrementally run the PL segments and feed the execution results back to

52

the LLM to generate the following blocks. For simplicity, in our experiments, we used a single,
post-hoc, execution.

5.4 Experimental Setup

Data and in-context examples We experiment with three broad classes of reasoning tasks:
(1)mathematical problems (§5.4.1) from awide range of datasets including gsm8k [41], svamp [130],
asdiv [110], andmawps [84]; (2) symbolic reasoning (§5.4.2) fromBIG-BenchHard [159]; (3) and
algorithmic problems (§5.4.3) fromBIG-BenchHard aswell. For all of the experiments for which
CoT prompts were available, we use the same in-context examples as used by previous work.
Otherwise, we randomly sampled a fixed set of in-context examples, and used the same set for
PaL and CoT.

Figure 5.3: Example prompt for the mathematical reasoning tasks, from the gsm8k benchmark.

Baselines Weconsider three prompting strategies: Direct prompting – the standard prompt-
ing approach using pairs of questions and immediate answers (e.g., 11) as in Brown et al. [26];
chain-of-thought (CoT) prompting [170]; and our PaL prompting. We performed greedy de-
coding from the language model using a temperature of 0. Unless stated otherwise, we used
Codex (code-davinci-002) as our backend LLM for both PaL, Direct, andCoT. In datasets
where results for additional base LMs, such as PaLM-540b, were available from previous work,
we included them as CoT PaLM-540b.

53

Figure 5.4: An example for a PaL prompt in the Colored Objects task. For space considera-
tions, we omit the code that creates the list objects.

5.4.1 Mathematical Reasoning

We evaluate PaL on eight mathematical word problem datasets. Each question in these tasks
is an algebra word problem at grade-school level. An example for a question and PaL example
prompt is shown in Figure 5.3. We found that using explicit NL intermediate steps does not
further benefit these math reasoning tasks, hence we kept only the meaningful variable names
in the prompt.

gsm-hard LLMs can perform simple calculations with small numbers. However, Madaan
and Yazdanbakhsh [106] found that 50% of the numbers in the popular gsm8k dataset of math
reasoning problems are integers between 0 and 8. This raises the question of whether LLMs

54

Figure 5.5: An example for a PaL prompt in the Object Counting task. The base LM is expected
to convert the input into a dictionary where keys are entities and values are their quantities,
while filtering out non-vegetable entities. Finally, the answer is the sumof the dictionary values.

can generalize to larger and non-integer numbers? We constructed a harder version of gsm8k,
which we call gsm-hard, by replacing the numbers in the questions of gsm8k with larger num-
bers. Specifically, one of the numbers in a question was replaced with a random integer of up
to 7 digits.

5.4.2 Symbolic Reasoning

We applied PaL to three symbolic reasoning tasks from BIG-Bench Hard [159], which involve
reasoning about objects and concepts: (1) Colored Objects requires answering questions
about colored objects on a surface. This task requires keeping track of relative positions, ab-
solute positions, and the color of each object. Figure 5.4 shows an example for a question and
example PaL prompt. (2) Penguins describes a table of penguins and some additional infor-
mation in natural language, and the task is to answer a question about the attributes of the
penguins, for example, “how many penguins are less than 8 years old?”. While both Penguins
and ColoredObject tasks require tracking objects, Penguins describes dynamics as well, since
the penguins in the problem can be added or removed. (3) Date is a date understanding task
that involves inferring dates from natural language descriptions, performing addition and sub-
traction of relative periods of time, and having some global knowledge such as “howmany days
are there in February”, and performing the computation accordingly.

55

gsm8k gsm-hard svamp asdiv singleeq singleop addsub multi

Direct Codex 19.7 5.0 69.9 74.0 86.8 93.1 90.9 44.0
CoT UL2-20B 4.1 - 12.6 16.9 - - 18.2 10.7
CoT LaMDA-137B 17.1 - 39.9 49.0 - - 52.9 51.8
CoT Codex 65.6 23.1 74.8 76.9 89.1 91.9 86.0 95.9
CoT PaLM-540b 56.9 - 79.0 73.9 92.3 94.1 91.9 94.7
CoT Minerva 540B 58.8 - - - - - - -
PaL 72.0 61.2 79.4 79.6 96.1 94.6 92.5 99.2

Table 5.1: Problem solve rate (%) on mathematical reasoning datasets. The highest number
on each task is in bold. The results for Direct and PaLM-540b are from Wei et al. [170], the
results for LaMDA and UL2 are from Wang et al. [166], and the results for Minerva are from
Lewkowycz et al. [94].

5.4.3 Algorithmic Tasks

Finally, we compare PaL and CoT on algorithmic reasoning. These are tasks where a human
programmer can write a deterministic program with prior knowledge of the question. We ex-
periment with two algorithmic tasks: Object Counting and Repeat Copy. Object Counting
involves answering questions about the number of objects belonging to a certain type. For ex-
ample, as shown in Figure 5.5: “I have a chair, two potatoes, a cauliflower, a lettuce head,

two tables, ... How many vegetables do I have?”). Repeat Copy requires generating a sequence
of words according to instructions.

5.5 Results

5.5.1 Math Results

Table 5.1 shows the following results: across all tasks, PaL using Codex sets a new few-shot
state-of-the-art top-1 decoding across all datasets, outperforming CoTCodex, CoTPaLM-540b, and
CoTMinerva 540B which was fine-tuned on explicit mathematical content.

Interestingly, CoT also benefits from Codex over PaLM-540b in some of the datasets such
as asdiv, but performs worse than PaLM-540b in others such as svamp. Yet, using PaL further
improves the solve rate across all datasets.

56

Colored Object Penguins Date Repeat Copy Object Counting

Direct Codex 75.7 71.1 49.9 81.3 37.6
CoT LaMDA-137B - - 26.8 - -
CoT PaLM-540b - 65.1 65.3 - -
CoT Codex 86.3 79.2 64.8 68.8 73.0
PaL Codex 95.1 93.3 76.2 90.6 96.7

Table 5.2: Solve rate on three symbolic reasoning datasets and two algorithmic datasets, In
all datasets, PaL achieves a much higher accuracy than chain-of-thought. Results with closed
models LaMDA-137B and PaLM-540B are included if available to public [159, 170].

gsm-hard On gsm-hard (Table 5.1), the accuracy of Direct drops dramatically from 19.7%
to 5.0% (a relative drop of 74%), the accuracy of CoT drops from 65.6% to 20.1% (a relative drop of
almost 70%), while PaL remains stable at 61.5%, dropping by only 14.3%. The results of CoT on
gsm-hard did not improve even when we replaced its prompts with prompts that include large
numbers. This shows how PaL provides not only better results on the standard benchmarks, but
is also much more robust. In fact, since PaL offloads the computation to the Python interpreter,
any complex computation can be performed accurately given the correctly generated program.

Large Numbers or Incorrect Reasoning? Are the failures on gsm-hard primarily due to
the inability of LLMs to do arithmetic, or do the large numbers in the question “confuse” the
LMwhich generates irrational intermediate steps? To investigate this, we evaluated the outputs
generated by CoT for the two versions of the same question (with and without large numbers).
We find that in 16 out of 25 cases we analyzed, CoT generates nearly identical natural language
“thoughts”, indicating that the primary failure mode is the inability to perform arithmetic ac-
curately.

Multi-sample Generation As found by Wang et al. [166], chain-of-thought-style methods
can be further improved by sampling k > 1 outputs, and selecting the final answer using ma-
jority voting. We thus repeated the greedy-decoding experiments using nucleus sampling [68]
with p = 0.95 and k = 40 as in Lewkowycz et al. [94] and temperature of 0.7. As shown in
Table 5.3, this further increases the accuracy of PaL from 72.0% to 80.4% on gsm8k, obtaining
1.9% higher accuracy than Minerva-540B using the same number of samples.

57

gsm8k

CoT UL2-20B 7.3
CoT LaMDA-137B 27.7
CoT Codex 78.0
CoT PaLM-540b 74.4
CoT Minerva 540B 78.5
PaL Codex 80.4

Table 5.3: Problem solve rate (%) on gsm8k using majority@40 [166]

5.5.2 Symbolic Reasoning & Algorithmic Tasks Results

Results for symbolic reasoning and algorithmic tasks are shown in Table 5.2. In Colored Ob-
jects, PaL improves over the strong CoT by 8.8%, and by 19.4% over the standard direct prompt-
ing. In Penguins, PaL provides a gain of absolute 14.1% over CoT. In Date, PaL further provides
11.4% gain over both CoT Codex, PaLM-540b, and LaMDA-137B.

The two rightmost columns of Table 5.2 show that PaL is close to solving Object Counting,
reaching 96.7% and improving over CoT by absolute 23.7%. Similarly, PaL vastly outperforms
CoT by absolute 21.8% on Repeat Copy. Surprisingly, Direct prompting performs better than
CoT on Repeat Copy. Yet, PaL improves over Direct by 9.3% in Repeat Copy.

[0,2] [3,5] [6,8] [9,11] [12,14] [15,17] [18,20] [21,23] [24,26]

0.6

0.8

1

Number of Objects

Ac
cu
ra
cy

PaL
CoT

Figure 5.6: The solve rate on Colored Objects with respect to the number of objects included
in the test question.

Is PaL sensitive to the complexity of the question? We examined how the performance
of PaL and CoT changes as the complexity of the input question grows, measured as the number

58

code-cushman-001

code-davinci-001
code-davinci-002

0

20

40

60

80

21.7
31.8

72.0

19.1
26.0

60.1

13.6%
22.3% 19.8%

So
lv
e
ra
te

PaL
CoT
Relative Improvement

Figure 5.7: PaL with different models on
gsm8k: though the absolute accuracies
with code-cushman-001 and code-

davinci-001 are lower than code-

davinci-002, the relative improvement
of PaL over CoT is consistent across mod-
els.

text-davinci-001
text-davinci-002

text-davinci-003

0

20

40

60

80

26.5

46.9

65.3

8.6

65.8 69.8CoT PaL

Figure 5.8: PaL with NL LMs on gsm8k:
though CoT outperforms PaL with text-

davinci-001, once the base LM is suffi-
ciently strong, PaL is beneficial with text-

davinci-002 and text-davinci-003

as well. That is, PaL is not limited to code-
LMs only.

of objects in the question of Colored Objects. As shown in Figure 5.6, PaL is superior CoT
across all input lengths. As the number of objects in the question increases, CoT’s accuracy is
unstable and drops, while PaL remains consistently close to 100%.

5.6 Analysis

Does PaL work with weaker LMs? In all our experiments in Section 5.5, PaL used the
code-davinci-002 model; but can PaL work with weaker models of code? We compared
PaLwith CoTwhen both prompting approaches use the sameweaker base LMscode-cushman-

001 and code-davinci-001. As shown in Figure 5.7, even though the absolute accuracies
of code-cushman-001 and code-davinci-001 are lower, the relative improvement of
PaL over CoT remains consistent across models. This shows that PaL can work with weaker
models, while its benefit scales elegantly to stronger models as well.

Does PaL work with LMs of natural language? We also experimented with PaL using the
text-davinci series. Figure 5.8 shows the following interesting results: when the base LM’s
“code modeling ability” is weak (using text-davinci-001), CoT performs better than PaL.

59

Colored Objects Date Penguins
60

70

80

90

100

84.4

64.8

79.2

95.2

76.2

93.391.1

69.1

91.3

79.9

63.4

91.9
CoT PaL PaL−comment PaL−var−comment

Figure 5.9: Ablation study of PaL prompt formats. We consider the original PaL prompt, it with
natural language comments removed (PaL−comment), and further variable names replaced with
random character (PaL−var−comment). As a reference, we also show the CoT performance (blue).

However, once the LM’s code modeling ability is sufficiently high (using text-davinci-

002 and text-davinci-003), PaL outperforms CoT, and PaL text-davinci-003 performs
almost as PaL code-davinci-002. This shows that PaL is not limited to LMs of code, but it can
work with LMs that were mainly trained for natural language, if they have a sufficiently high
coding ability.

Is PaL better because of the Python prompt or because of the interpreter? We exper-
imented with generating Python code, while requiring the neural LM to “execute” it as well,
without using an interpreter, followingMadaan et al. [107], Nye et al. [118]. We created prompts
that are similar to PaL’s, except that they do include the final answer. This resulted in a 23.2
solve rate on gsm8k, much lower than PaL (72.0), and only 4.5 points higher than Direct. These
results reinforce our hypothesis that the main benefit of PaL comes from the synergy with the
interpreter, and not only from having a better prompt.

Do variable names matter? In all our experiments, we used meaningful variable names in
the PaL prompts, to ease the model’s grounding of variables to the entities they represent. For
the Python interpreter, however, variable names are meaningless. To measure the importance
of meaningful variable names, we experimented with two prompts variants:

1. PaL−comment – the PaL prompt without intermediate NL comments.

2. PaL−var−comment – the PaL prompt without intermediate NL comments and with variable
names substituted with random characters.

The results are shown in Figure 5.9. In Colored Objected and Date, removing intermedi-

60

ate NL comments but keeping meaningful variable names (PaL−comment) – slightly reduces the
results compared to the full PaL prompt, but it still achieves higher accuracy than the baselines
CoT. Removing variable names as well (PaL−var−comment) further decreases accuracy, and performs
worse than CoT. Since variable names have an important part in code quality [58, 160], mean-
ingful variable names are only expected to ease reasoning for Codex, which was trained on
mostly meaningful names, as was also found by Madaan et al. [107].

Author Contributions The key idea of this work emerged during a discussion between the
co-first authors. The three co-first authors then experimentedwith this idea on various datasets,
including those in BigBench-Hard, other math-related datasets and multi-hop QA datasets.
Shuyan Zhou was later responsible for conducting a more in-depth analysis of why the method
works, through both qualitative and quantitative studies.

61

62

Part III

Knowledge Base of Hierarchical

Procedures

63

Chapter 6

Discovering Hierarchies of Procedures

from Semi-structured Web Data

The third goal of this thesis is to teach AI agents to perform new tasks without direct demon-
strations from humans. The key idea is to leverage the ubiquitous human-authored knowledge

on the Internet. This chapter examines what knowledge resources AI agents can use, discusses
why these resources may not be readily usable, and explores how to mitigate these deficiencies.
This work first appears in:

• Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-Burch, and
GrahamNeubig. Showmemore details: Discovering hierarchies of procedures from semi-
structured web data. In Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 2998–3012, Dublin, Ireland, 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.214. URL https:
//aclanthology.org/2022.acl-long.214

6.1 Overview

A procedure includes some steps needed to achieve a particular goal [114]. Procedures are in-
herently hierarchical: a high-level procedure is composed of many lower-level procedures. For
example, a procedure with the goal make videos consists of steps like purchase a camera, set
up lighting, edit the video, and so on, where each step itself is a procedure as well. Such hier-
archical relations between procedures are recursive: the lower-level procedures can be further
decomposed into even more fine-grained steps: one may need to arrange the footage in order

65

https://aclanthology.org/2022.acl-long.214
https://aclanthology.org/2022.acl-long.214

to edit the video.

Relatively little attention has been paid to hierarchical relations in complex procedures in
the field of NLP. Some work performed a shallow one-level decomposition and often required
costly resources such as human expert task-specific annotation [38, 194, 201]. More attention
has been paid in fields adjacent to NLP. For example, Lagos et al. [89] and Pareti et al. [127] both
create hierarchical structures in how-to documents by linking action phrases in one procedure
to another procedure or by linking steps in how-to articles to resources like DBPedia [13].
This kind of linking is helpful for explaining complex steps to readers who do not have prior
knowledge of the topic being explained.

In this chapter, we revisit this important but understudied task to develop a simple and ef-
fective algorithm (Figure 6.1) to construct a hierarchical knowledge-base (KB) for over 110k
complex procedures spanning a wide range of topics from wikiHow, a large-scale how-to web-
site that has recently become a widely-used resource in NLP [191, 195, 196, 213].1 From each
wikiHow article which represents a procedure, we follow Zhang et al. [196] and extract the
title as the goal (e.g., g1 in Figure 6.1), and the paragraph headlines as steps (e.g., s1 . . . sn). Next,
we decompose the steps by linking them to articles with the same or a similar goal (e.g., s1 to
g2). The steps of the linked article are treated as the finer-grained steps (si to sj) of the linked
step (s1). In this way, the procedural hierarchies go from shallow (B1) to deep (B4).

To link steps and article goals, we employ a retrieve-then-rerank approach, awell-established
paradigm in related tasks [70, 173]. Our hierarchy discovery model (§6.3) first independently
encodes each step and goal in wikiHow and searches the k nearest goals of similar meaning
for each step (B2). Then, it applies a dedicated joint encoder to calculate the similarity score
between the step and each candidate goal, thus reranking the goals (B3). This pipeline can ef-
ficiently search over a large candidate pool while accurately measuring the similarity between
steps and goals. With each step linked to an article goal, a hierarchical KB of procedures is thus
constructed.

We evaluate our KB both intrinsically and extrinsically. Intrinsically, the discovered links
can be directly used to complete missing step-goal hyperlinks in wikiHow, which have been
manually curated (B5). Our proposed method outperforms strong baselines (e.g., Lagos et al.
[89]) according to both automatic and human evaluation, in terms of recall and usefulness re-
spectively (§6.4, §6.5). Extrinsically, we consider the task of retrieving instructional videos given
textual queries. We observe that queries that encode deeper hierarchies are better than those

1www.wikihow.com

66

www.wikihow.com

: Make videosg1

: Purchase  
a camera
s1 : Set up  

equipment
s2

:Choose a camerag2

: Consider use casesj: Set a budgetsi
…

B1: Input

: Record  
the video
s3 : Practice 

editing your 
videos

s4
cat(s1, g2)
cat(s1, gi)
cat(s1, gj)

sim(s1, gi) = 0.3
sim(s1, g2) = 0.6
sim(s1, gj) = 0.1

ℳc

ℳb

§3.1 g3
g4 gk

gj

g2

gi

s1

B5: Application 1 (§4&5) 
Enrich wikiHow

step-goal hyperlinks

S: step collection 
Purchase a camera 
Set up equipment 
Consider use case

G: goal collection 
Make videos 

Choose a camera 
Edit videos

B2: Candidate retrieval (§3.1)

B3: Reranking (§3.2)

Make videos

Purchase a camera Set up equipment

Consider  
use case

Set a  
budget

gn

sj

…

…

si

B4: Output

g

s
g

g

s s′

The suggested
link is helpful

…

B6: Application 2 (§6)  
Video retrieval

Stain cabinet

s (retrieved)

!"

…

…

…

…

Figure 6.1: The overview of our proposed method. The input (Block1) and output (B4) of the
hierarchy discovery model (B2, B3) and the applications (B5, B6) of the hierarchical knowledge
base.

that do not (§6.6). This provides evidence that our KB can bridge the high-level instructions
and the low-level executions of procedures, which is important for applications such as robotic
planning.

6.2 Problem Formulation

We represent a procedure as a tree where the root node n represents a goal and its children
nodes Ch(n) represent the steps of n. We formulate the hierarchy discovery task as identifying
the steps among Ch(n) that can themselves be a goal of some other finer-grained steps (sub-
steps), which are inserted into the tree.

While this formulation could potentially be used on any large collection of procedures, we
specifically focus on wikiHow. As shown in B1 of Figure 6.1, each article comprises a goal (g),
and a series of steps (Ch(g)). Therefore, each article forms a procedure tree of depth one.

We denote the collection of all goals and steps in wikiHow as G and S respectively. Our
hierarchy discovery algorithm aims to link a step si ∈ S to a goal g ∈ G such that g has the same
meaning as si. It then treatsCh(g) asCh(si). Given that g and si are both represented by textual
descriptions, the discovery process can be framed as a paraphrase detection task. This discovery
process can be applied recursively on the leaf nodes until the resulting leaf nodes reach the
desired granularity, effectively growing a hierarchical procedure tree (B4 of Figure 6.1).

67

6.3 Hierarchy Discovery Model

For each of the 1.5 million steps in the wikiHow corpus, we aim to select one goal that ex-
presses the same procedure as the step from over 110k goals. We propose a simple and efficient
method to deal with such a large search space through a two-stage process. First, we perform
retrieval, encoding each step and goal separately in an unsupervised fashion and select the k

most similar goals for each step s. This process is fast at the expense of accuracy. Second,
we perform reranking, jointly encoding a step with each of its candidate goals in a supervised
fashion to allow for more expressive contextualized embeddings. This process is more accurate
at the expense of speed, since calculating each similarity score requires a forward pass in the
neural network. The goal with the highest similarity score is selected and the step is expanded
accordingly, as in B4 of Figure 6.1.

6.3.1 Retrieval

In the first stage, we independently encode each step s ∈ S and goal g ∈ G with a modelMb,
resulting in embeddings es1 , es2 , ..., esn and eg1 , eg2 , ..., egm . The similarity score between s and
g is calculated as the cosine similarity between es and eg. We denote this first-stage similarity
score as sim1(s, g). Using this score, we can obtain the top-k most similar candidate goals for
each step s, and we denote this candidate goal list as C(s) = [g1, ..., gk]. To perform this top-k
search, we use efficient similarity search libraries such as FAISS [78].

We instantiateMb with two learning-based paraphrase encoding models. The first is the
SP model [171, 172], which encodes a sentence as the average of the sub-word unit embeddings
generated by SentencePiece [86]. The second is SBert [139], which encodes a pair of sentences
with a siamese BERT model that is finetuned on paraphrase corpus. For comparison, we ad-
ditionally experiment with search engines asMb, specifically Elasticsearch with the standard
BM25 weighting metric [140]. We index each article with its title only or with its full article.
We also experiment with Bing Search API where we limit the search to wikiHow website only2.
The BM25 with the former setting resembles the method proposed by Lagos et al. [89].

2www.bing.com

68

www.bing.com

6.3.2 Reranking

While efficient, encoding steps and goals independently is likely sub-optimal as information in
the steps cannot be used to encode the goals and vice-versa. Therefore, we concatenate a step
with each of its top-k candidate goals in C(s) and feed them to a modelMc that jointly encodes
each step-goal pair. Concretely, we follow the formulation of Wu et al. [173] to construct the
input of each step-goal pair as:

[CLS] ctx [ST] step [ED] goal [SEP]

where [ST] and [ED] are two reserved tokens in the vocabulary of a pretrained model, which
mark the location of the step of interest. ctx is the context for a step (e.g., its surrounding steps
or its goal) that could provide additional information. The hidden state of the [CLS] token is
taken as the final contextualized embedding. The second-stage similarity score is calculated as
follows:

sim2(s, gi) = proj(Mc(s, gi)) + λsim1(s, gi) (6.1)

where proj(⋅) takes an d-dimension vector and turns it to a scalar with weight matrixW ∈ Rd×1,
and λ is the weight for the first-stage similarity score. Both W and λ are optimized through
backpropagation (see more about labeled data in §6.4.1).

With labeled data, we finetuneMc to minimize the negative log-likelihood of the correct
goal among the top-k candidate goal list, where the log-likelihood is calculated as:

ll(s, gi) = − log(softmax(sim2(s, gi)
∑gj∈C(s) sim2(s, gj)

)) (6.2)

Compared to the randomly sampled in-batch negative examples, the top-k candidate goals are
presumably harder negative examples [80] and thus the model must work harder to distinguish
between them. We will explain the extraction of the labeled step-goal pairs used to train this
model in §6.4.1.

Concretely, we experiment with two pretrained models asMc, specifically BERT-base [47]
and DeBERTa-large finetuned on the MNLI dataset [67]. We pick them due to their high per-
formance on various tasks [200]. 3

In addition, we consider including different ctx in the reranking input. For each step, we
experiment with including no context, the goal of the step, and the surrounding steps of the
step within a window-size n (n=1).

3 https://cutt.ly/oTx5gMM. BERTScore measures the semantic similarity between a pair of texts, similar to the
objective of our reranking.

69

https://cutt.ly/oTx5gMM

6.3.3 Unlinkable Steps

Some steps in wikiHow could not be matched with any goal. Such steps are unlinkable because
of several reasons. First, the step itself might be so fine-grained that further instructions are
unnecessary (e.g. Go to a store). Second, although wikiHow spans a wide range of complex
procedures, it is far from comprehensive. Some goals simply do not exist in wikiHow.

Hence, we design a mechanism to predict whether a step is linkable or not explicitly. More
specifically, we add a special token unlinkable, taken from the reserved vocabulary of a pre-
trained model, as a placeholder “goal” to the top-k candidate goal list C(s), and this placeholder
is treated as the gold-standard answer if the step is determined to be unlinkable. The similarity
score between a step and this placeholder goal follows Equation 6.1 and sim1(s,unlinkable)
is set to the lowest first-stage similarity score among the candidate goals retrieved by the first-
stage model. Accurately labeling a step as unlinkable is non-trivial – it requires examining
whether the step can be linked to any goal in G. Instead, we train the model to perform this
classification by assigning unlinkable to steps that have a ground-truth goal but this goal
does not appear in the top-k candidate goal list. The loss follows Equation 6.2.

6.4 Automatic Step Prediction Evaluation

We evaluate the quality of our construct hierarchical KB both intrinsically and extrinsically. In-
trinsically, we perform human evaluation and automatic evaluation using the manually curated
step-goal hyperlinks in wikiHow. Extrinsically, we conduct retrieving instructional videos us-
ing queries that encode hierarchical knowledge. In the following sections, we demonstrate the
qualitative evaluations and defer the in-depth analysis and case study to appendix.

6.4.1 Labeled Step-goal Construction

In wikiHow, there are around 21k steps that already have a hyperlink redirecting it to another
wikiHow article, populated by editors. We treat the title of the linked article as the ground-truth
goal for the step. For example, as in B5 of Figure 6.1, the ground-truth goal of the step Create

a channel is Make a Youtube Channel. We build the training, development and test set with a
7:2:1 ratio.

70

Model R@1 R@10 R@30

SP 35.8 64.4 72.5
SBert 30.6 53.3 63.4
BM25 (goal only) 30.5 51.6 61.1
BM25 (article) 9.3 35.3 49.2
Bing Search 28.0 47.9 -

BERT 50.7 69.4 -
DeBERTa 55.4 71.9 -
− surr 54.3 71.6 -
− goal 55.0 71.5 -
− both 52.4 71.0 -
+ unlinkable 50.4 71.6 -
+ λ = 0 51.9 71.4 -

Table 6.1: The recall@n for different models on the test set. The top half are with paraphrase
retrieval only and the bottom half are with taking the top-30 candidate goals generated by the
best model (SP) and adding the reranking model. The best performance recall is bold. “surr”
denotes the surrounding steps of the query step.

6.4.2 Results

Table 6.1 lists the recall of different models without or with the reranking. Precision is imma-
terial here since each step has only one linked article.

Candidate Retrieval The SP model achieves the best recall of all models, outperforming
SBert by a significant margin. Models based on search engines with various configurations,
including the commercial Bing Search, are less effective. In addition, BM25 (goal only), which
does not consider any article content, notably outperforms BM25 (article) and Bing Search,
implying that the full articles may contain undesirable noise that hurts the search performance.
This interesting observation suggests that while commercial search engines are powerful, they
may not be the best option for specific document retrieval tasks such as ours.

3We are unable to get the top-30 results from Bing search because the web queries only return top-10 search
results.

71

Reranking We select the top-30 candidate goals predicted by the SP model as the input to
the reranking stage. The recall@30 of the SP model is 72.5%, which bounds the performance
of any reranker.4 As seen in the bottom half of Table 6.1, reranking is highly effective, as the
best configuration brings a 19.6% improvement on recall@1, and the recall@10 almost reaches
the upper bound of this stage. We find that under the same configuration, DeBERTa-large
finetuned on MNLI [67] outperforms BERT by 1.7% on recall@1, matching the reported trends
from BERTScore.5

In §6.5, we will demonstrate that this explicit unlinkable prediction is overall informative
to distinguish steps of the two types through crowdsourcing annotations. We empirically find
that setting the weight of sim1(s, g) (λ) to 0 is beneficial in the unlinkable prediction setting.

6.5 Manual Step Prediction Evaluation

The automatic evaluation strongly indicates the effectiveness of our proposed hierarchy dis-
covery model. However, it is not comprehensive because the annotated hyperlinks are not
exhaustive. We complement our evaluation with crowdsourced human judgments via Amazon
Mechanical Turk (MTurk).

Each example of annotating is a tuple of a step, its original goal from wikiHow, and the top-
ranked goal predicted by one of our models. For each example, we ask three MTurk workers to
judge whether the steps in the article of the linked goal are exact, helpful, related, or unhelpful
with regard to accomplishing the queried step.

We select SP, DeBERTa, and DeBERTa with unlinkable prediction and λ = 0 (DeBERTa-ul)
for comparison. We attempt to answer the following questions. First, does the performance
trend shown in automatic evaluation hold in human evaluation? Second, can the unlinkable
predictions help avoid providing users with misleading information [136]?

For the purpose of the second question, we separate the examples into two groups. One
contains linkable examples. Namely, those whose top-1 prediction is not predicted as un-

linkable by the DeBERTa-ul model. Ideally, the linked articles from these examples should
be helpful. The other group contains unlinkable examples. For these, we evaluate the second-
highest ranked prediction of the DeBERTa-ul model. Ideally, the linked articles from these
examples should be unhelpful.

The corresponding crowd judgment is shown in Figure 6.2. Comparing the models, the

4We only experiment with SP because it is the best retrieval model, providing a larger improvement headroom.

72

ex
act

he
lpf

ul

rel
ate

d

un
he

lpf
ul

0

50

100

150

200

250

300

350

400
linkable

ex
act

he
lpf

ul

rel
ate

d

un
he

lpf
ul

unlinkable
DeBERTa-UL
DeBERTa
SP

Figure 6.2: Crowd workers’ ratings of step-goal links predicted by our models. The left graph
shows steps linked to some goals by the DeBERTa-ul model, while the right shows steps those
predicted as unlinkable.

DeBERTa model and the DeBERTa-ul model have similar performance, while greatly outper-
forming the SP model. This shows that our proposed model decomposes much more helpful
finer-grained steps to assist users with tasks, similar to the trend observed in our automatic
evaluation. Comparing the two graphs, it is apparent that when the DeBERTa-ul model pre-
dicts unlinkable for a step, the suggested decompositions of all models are more likely to be
unhelpful. This implies the high precision of the unlinkable prediction, effectively avoiding
misleading predictions. Note that our study does not explicitly require subjects to carry out the
task, but only annotates whether they find the instructions helpful.

6.6 Application to Video Retrieval

In addition to intrinsic evaluation, we take a further step to study the usefulness of our open-
domain hierarchical KB to downstream tasks. We select video retrieval as the extrinsic eval-
uation task, which aims at retrieving relevant how-to videos for a textual goal to visually aid
users. More formally, given a textual goal g, the task is to retrieve its relevant videos vg from
the set of all videos, with a textual query q. Intuitively, our KB can be useful because videos
usually contain finer-grained steps and verbal descriptions to accomplish a task. Therefore, the
extra information presented in decomposed steps could benefit retrieving relevant videos.

73

Query R/P@1 R/P@10 R/P@25 R/P@50 MR

l0 2.2/89.2 19.2/78.1 39.9/66.0 56.6/48.2 79.49
l1 2.2/88.0 19.2/78.0 40.1/66.4 58.1/49.6 75.79
Fil-l1 2.2/89.9 20.2/81.7 43.1/71.2 63.2/53.8 66.32
Fil-l2 2.2/89.4 20.3/82.7 43.9/72.3 65.0/55.2 63.38

l0 12.1/81.7 59.8/42.8 71.9/20.8 77.9/11.3 41.60
l1 11.8/79.7 61.2/43.9 74.1/21.4 80.5/11.6 36.70
Fil-l1 12.4/83.7 66.0/47.3 77.4/22.4 82.9/12.0 33.35
Fil-l2 12.5/84.4 66.1/47.7 78.0/22.5 83.3/12.0 32.30

l0 11.4/82.6 59.2/45.2 71.8/22.1 77.8/12.0 43.11
l1 11.2/81.3 60.4/46.2 73.8/22.7 79.9/12.3 38.19
Fil-l1 11.7/85.1 64.8/49.5 77.2/23.8 82.2/12.7 34.76
Fil-l2 11.6/84.5 65.5/50.0 77.9/24.0 82.7/12.7 34.13

Table 6.2: The Recall/Precision@N (%, ↑) and mean rank (MR, ↓) with different queries on
the relevant video retrieval task on the training (top), development (middle) and the test set
(bottom). The best performance on each set is bold.

6.6.1 Dataset Construction

We use Howto100M [111] for evaluation. It is a dataset of millions of instructional videos
corresponding to over 23k goals. We construct our video retrieval corpus by randomly sam-
pling 1,000 goals (e.g., record a video) with their relevant videos. The relevant videos vg =
{v1, v2, ..., vn} of each goal g in the dataset are obtained by selecting the top 150 videos among
the search results of the goal on YouTube.5 For each goal g, we randomly split its relevant videos
vg into three sub-sets vtr

g , vdev
g and vtest

g with a ratio of 7.5:1.25:1.25, as the training, development,
and testing sets.

5Although the relevance between a goal and a video is not explicitly annotated in the Howto100M dataset, we
argue that with the sophisticated engineering of the YouTube video search API and hundreds of thousands user
clicks, the highly ranked videos likely demonstrate the queried goal.

74

6.6.2 Setup

Since our KB is fully textual, we also represent each video textuallywith its automatically gener-
ated captions. For the search engine, we use Elasticsearchwith the standard BM25metric [140].6

We denote the relevance score calculated by BM25 between the query q and a textually repre-
sented video v as Rel(q, v). We experiment with four different methods, which differ in how
they construct the query q:

l0: Goal only. The query is the goal g itself. This is the minimal query without any additional
hierarchical information. The relevance score is simply Rel(q, v) = Rel(g, v).

l1: Goal + Children. The query is a concatenation of the goal g and its immediate children
steps Ch(g). This query encodes hierarchical knowledge that already exists in wikiHow. The
relevance score is then defined as aweighted sum, Rel(q, v) = wgRel(g, v)+ws∑s∈Ch(g) Rel(s, v).
The weights wg and ws are tuned on a development set and set to 1.0 and 0.1 respectively.

Fil-l1: Goal + Filtered children. The query is a concatenation of the goal g and a filtered
sequence of its children Ch(g). Intuitively, decomposing a goal introduces richer information
but also introduces noise, since certain steps may not visually appear at all (e.g., enjoy yourself).
Therefore, we perform filtering and only retain the most informative steps, denoted by Ch′(g).
Specifically, to construct Ch′(g) for a goal g, we use a hill-climbing algorithm to check each
step s from Ch(g), and include s into the query only if it yields better ranking results for
the ground-truth videos in the training set vtrain

g .The relevance score is defined as Rel(q, v) =
wgRel(g, v)+ws∑s∈Ch′(g) Rel(s, v), wherewg is set to 1.0 andws is set to 0.5 after similar tuning.

Fil-l2: Goal + Filtered children + Filtered grand-children. The query is the concatena-
tion of the goal g and a filtered sequence of its immediate children Ch(g) and grandchildren
Ch(s) (s ∈ Ch(g)). These filtered steps are denoted by Ch′(g + Ch(g)). This two-level decom-
position uses the knowledge from our KB, therefore including lower-level information about
the execution of the goal. We perform the same filtering algorithm as in Fil-l1, and we define
Rel(q, v) = wgRel(g, v) +ws∑s∈Ch′(g+Ch(g)) Rel(s, v). wg is set to 1.0 and ws is set to 0.5.

6We find the performance of a neural model (BERT finetuned on query/video caption pairs) significantly lower
than BM25 and therefore, we only report the results with BM25.

75

6.6.3 Results

We report the precision@N , recall@N and mean rank (MR) following existing work on video
retrieval [104]. Table 6.2 lists the results. Many steps do not have corresponding executions in
the videos and become noisy steps in the l1 queries. More interestingly, we observe that queries
using deeper hierarchies (Fil-l2) outperform the shallower ones (Fil-l1) in most cases. This is
probably due to the fact that how-to videos usually contain detailed (verbal) instructions of a
procedure, which are better aligned with more fine-grained steps found in Fil-l2.

In our qualitative study, we investigate how Fil-l2 queries with deeper hierarchies help
retrieval. Table 6.3 list Fil-l1 and Fil-l2 queries for two goals. We find that the Fil-l2 queries are
more informative and cover more aspects. For example, the Fil-l2 queries for stain cabinet and
make avocado fries consist of the preparation, actual operations, and the post-processing steps,
while the Fil-l1 query only contains the first one. In addition, we search the goals on Google
and list the key moments of some randomly sampled videos.7 These key moments textually
describe the important clips of the videos, and therefore they presumably also serve as the
query for the goal. We find that the Fil-l2 query ofmake avocado fries explains a few necessary
steps to accomplish this goal, while the key moment is mostly composed of the ingredients
of this dish. This comparison suggests the potential integration of our induced hierarchical
knowledge to identify key moments in videos in the future.

6.7 Decomposition Analysis

In this section, we study the properties of the hierarchies. First, what kind of steps are likely
to be linked to another goal and are thus decomposed? Second, what do the decomposed steps
look like?

We group steps into two clusters. The first contains the immediate steps of a goal (s ∈
Ch(g)) whose prediction is not unlinkable. The second contains the decomposed steps of
the steps in the first cluster (s′ ∈ Ch(s)). We use spaCy [69] to extract and lemmatize the
verb in each step and rank the verbs by their frequency in each cluster. Next, the top-100
most frequent verbs in each cluster are selected and we measure the rank difference of these
verbs in the two clusters. Figure 6.3 plots the verbs with largest rank difference. We observe
that verbs that convey complex actions and intuitively consist of many other actions become

7Key moments are either identified manually or are extracted automatically by YouTube. https://cutt.ly/

qTcxSi6

76

https://cutt.ly/qTcxSi6
https://cutt.ly/qTcxSi6

Goal Stain Cabinet

Fil-l1 Purchase some stain colors to test

Fil-l2

Fil-l1 +
Buy cloth with which to apply the stain
Unscrew the cabinet from the wall
Clean your workspace

KM

Remove the doors
Sanding the front
Top coat
Finished look

Goal Make Avocado Fries

Fil-l1

Bake the avocado fries until they are golden
Dip the avocado wedges into the egg
and then the breadcrumbs

Fil-l2

Fil-l1 +
Preheat the oven
Peel and pit the avocados
Cut your avocado in half and remove the stone
Let rise
Finished, cool and enjoy

KM

2 large avocados ...
pinch of salt, pinch of pepper
two eggs, beaten ...
bake at 425F 20 min until golden bros ...

Table 6.3: The queries and the key moments (KM) for two goals. “...” represents the omission
of steps that describe the ingredients to save space. The first selected video is h9k0T25_NxA

and the second is o7uVUmPph6I.

less frequent after the decomposition (e.g., decorate). On the other hand, verbs that describe the
action itself gain in frequency after the decomposition (e.g., push, hold, press). This observation
follows our assumption that the decompositionwould lead tomore fine-grained realizations of a
complex procedure. Some other more abstract actions such as “learn” and “decide” also increase

77

https://www.youtube.com/watch?v=h9k0T25_NxA
https://www.youtube.com/watch?v=o7uVUmPph6I

200

100

0

100

200
clu

st
er

 1
 ra

nk
 -

clu
st

er
 2

 ra
nk

m
el

t
bu

ild
se

w
di

g
sim

m
er

pa
in

t
be

at
se

as
on

kn
ea

d
de

co
ra

te
pu

sh
co

nt
in

ue
le

ar
n

de
cid

e
re

pe
at

av
oi

d
fin

ish
m

ov
e

wa
it

ac
co

rd

Figure 6.3: The verbs with largest rank difference in two clusters. The blue bars are words
becoming less frequent in cluster 2 (decomposed steps) and the orange bars are words becoming
more frequent.

in frequency, as some low-level goals are explained with more complex steps.

Author Contributions Shuyan Zhou proposed the idea of defining the hierarchies of pro-
cedures from wikiHow, designed and implemented the two-stage method and performed the
automatic and downstream task evaluations. Li Zhang provides key insights from his earlier
work [196] and conducted the human evaluation of our method.

78

Part IV

New Knowledge Acquisition without

Direct Demonstrations

79

Chapter 7

Generating Code with Unseen Usages by

Retrieving the Docs

Regardless of the impressive capabilities of LLMs in learning from only a few examples, LLMs
are limited by a knowledge cutoff, as they can only be trained with knowledge that exists in
a specific snapshot of the training corpus. As the world evolves, new knowledge emerges and
existing knowledge may be updated, pretrained models inherently cannot generalize and ef-
fectively use new knowledge that was not included in their training. Luckily, new knowledge
are likely to be recorded in some form of text, and it can be easily added to an unstructured
text knowledge base using a single insertion action. In light of this, we propose a solution to
combat knowledge cutoff problem based on retrieval, where an agent retrieves relevant text
information from the knowledge base to supplement their existing knowledge and improve
performance on a given task. Specifically, we apply this approach to the natural language to
code generation task, where the relevant knowledge corresponds to libraries and functions.
This work first appears in:

• Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompt-
ing: Generating code by retrieving the docs. In International Conference on Learning Rep-

resentations (ICLR), 2023

7.1 Overview

Many existing code generation models either learn directly from input-output pairs provided
as training data [3, 4, 24, 73, 167, 177, 185], or learn the mapping between input and output

81

implicitly from naturally occurring corpora of intertwined natural language and code [14, 117].
Nevertheless, all these works assume that all libraries and function calls were seen in the training
data; and that at test time, the trained model will need to generate only seen libraries and
function calls. However, new functions and libraries are introduced all the time, and even a
seen function call can have unseen arguments. Thus, these existing models inherently cannot

generalize to generate such unseen usages.
In contrast to these existing models, human programmers frequently refer to manuals and

documentation when writing code [92, 119]. This allows humans to easily use functions and
libraries they have never seen nor used before. Inspired by this ability, we propose DocPrompt-
ing: a code generation approach that learns to retrieve code documentation before generating
the code. An overview of our approach is illustrated in Figure 7.1: First, a document retriever
uses the NL intent n⃝ to retrieve relevant code documentation { d1⃝, d2⃝, d3⃝} from a documenta-
tion pool D⃝. Then, a code generator uses these docs in its prompt to generate the corresponding
code c⃝. The documentation pool serves as an external data store that can be updated frequently
with new contents (e.g., documentation of newly released libraries), without re-training any
model component. This way, DocPrompting can leverage newly added documentation, and
it can generate code containing unseen and unused functions and libraries. DocPrompting is
general and applicable to any programming language and underlying base architecture. To the
best of our knowledge, this is the first demonstration of leveraging documentation in models
of code explicitly and effectively.

We demonstrate the effectiveness of DocPrompting on two NL→code benchmarks and
tasks, across two programming languages, and using several base models: GPT-Neo [20], T5
[134], CodeT5 [167], Fusion-in-Decoder [74]), and Codex [31]. Further, we experiment with
both sparse retrievers such as BM25 [141] and dense retrieval models such as SimCSE [57].
Finally, we introduce two new benchmarks for retrieval-based code generation: (a) in Bash, we
curate a new benchmark by crawling the tldr repository, and constructing the training/de-
velopment/test splits without overlapping commands; (b) in Python, we re-split the popular
CoNaLa benchmark [186] by making every test example contain at least one Python function
that is not seen in the training data. Models that use DocPrompting consistently outperform
their base models that generate code solely based on the NL intents. Using DocPrompting
improves strong base models such as CodeT5 by 2.85% in pass@1 (52% relative gain) and 4.39%
in pass@10 (30% relative gain) in execution-based evaluation in CoNaLa; on the new tldr

dataset, DocPrompting improves CodeT5 and GPT-Neo-1.3B by up to absolute 6.9% exact
match. We release our new benchmarks, including annotation of oracle documents for each

82

Generate HTML with python
syntax highlighting for
“print(‘reading docs’)”

Re!iever Genera"r

!

n c

d1

d2

d3Pygment is a generic syntax highlighter

A lexer splits the source into tokens, fragments …

class PythonLexer
For Python source code

A formatter takes the token stream and writes it
to an output file …

class HtmlFormatter
Format tokens as HTML 4 tags with …

from pygments import *
code = ‘print(“reading docs”)’
s = highlight(code, PythonLexer(),
 HtmlFormatter())

Figure 7.1: DocPrompting: given an NL intent n⃝, the retriever retrieves a set of relevant
documentation { d1⃝, d2⃝, d3⃝} from a documentation pool D⃝. Then, the generator generates the
code c⃝ based on the NL and retrieved docs. DocPrompting allows the model to generalize
to previously unseen usages by reading those docs. Italic blue highlights the shared tokens
between NL and docs; Bold shows shared tokens between docs and the code snippet.

example and pools of documentation, to serve as a test-bed for future retrieval-based code gen-
eration models.

7.2 Code Generation by Reading the Docs

Our underlying assumption is that code documentation is the most exhaustive yet succinct
resource for most libraries and programming languages [143], and that documentation allows
to effectively generalize to unseen libraries and functions [53]. We follow the retrieve-then-
generate paradigm [65, 93], focusing on retrieving documentation. In this section, we describe
the general approach of DocPrompting; in §7.3 and §7.6.2, we elaborate and experiment with
practical implementations of DocPrompting.

FormulationGiven NL intent n, our goal is to generate a corresponding code snippet cwritten
in some programming language (PL) such as Python. We assume that a model has access to a
collection of code documentation D. Each document di ∈ D describes the usage of a library,
a function, or an argument in that PL. The construction of D is flexible: it can either be a
comprehensive set of all available libraries and functions in a PL, or a customized subset for the
scope of a specific project.

83

7.2.1 Background: Retrieval-Conditioned Generation

Although a model may use the entire collection of documentsD, only a few documents inD are
relevant for any particular intent. Further, it is usually computationally infeasible to directly
condition on the entire, unbounded, collection of documents while making predictions. Thus,
we first let the model select a subset of documents Dn = {d1, d2, .., dk} ⊆ D that are potentially
relevant given n, and refer to this subset while generating c.

Overall, we decompose the probability of generating c into the probability of choosing a
particular subset of documents P (Dn ∣ D, n), and the probability of generating the code con-
ditioned on the intent and the selected documents P (c ∣ Dn, n); finally, we marginalizing over
all Dn ⊆ D:

P (c ∣ D, n) = ∑Dn⊆D P (c ∣ Dn, n) ⋅ P (Dn ∣ D, n) (7.1)

assuming that c is independent ofD givenDn (that is, (c á D ∣ Dn)). Since enumerating all pos-
sible subsetsDn is computationally infeasible, we follow the common practice and approximate
the marginalization over Dn in Equation (7.1) by taking the most probable subset of retrieved
documents D̂n, and then conditioning the prediction of c on these most likely documents:

D̂n ∶= argmaxDn⊆DP (Dn ∣ D, n) P (c ∣ D, n) ≈ P (c ∣ D̂n, n) ⋅ P (D̂n ∣ D, n) (7.2)

7.2.2 DocPrompting: Generating Code by Retrieving the Docs

Equation 7.2 implies that DocPrompting relies of two main components: A retriever R re-
trieves relevant documents D̂n given the intent n; and a generator G generates the code snippet
c conditioned on the retrieved documents D̂n and the intent n, which compose a new prompt.
Specifically, R computes a similarity score s (di, n) between a intent n and every document
di ∈ D. Thus, the subset D̂n ⊆ D is the top-k documents with the highest similarity scores:
D̂n = top-kdi∈D (s (di, n)).

An overview of our approach is illustrated in Figure 7.1: given the intent Generate HTML

with python syntax highlighting for “print(’reading docs’)”, the retriever R retrieves three rel-
evant documents: d1 describes the syntax highlighting library pygments, d2 describes the
class PythonLexer, and d3 describes the HtmlFormatter class. Given these docs and the
intent, the generator G generates the code snippet c, which uses PythonLexer and Html-

Formatter from the pygment library.

84

7.3 Practical Instantiations of DocPrompting

DocPrompting is a general approach that is not bound to any specific model choices, and it
can be instantiated with any base retriever and generator. This section presents the concrete
instantiations of R and G that we found to provide the best performance in our experiments.

7.3.1 Retriever Instantiation

We experiment with two main types of retrievers: sparse retrievers and dense retrievers. As our
sparse retriever, we use Elasticsearch1 with the standard BM25 [141]. This retriever represents
documents using sparse features that rely on word frequencies, such as BM25 and TF-IDF.

As our dense retriever, we follow prior work [32, 57, 80]: given a triplet (n, c,D∗n), where
D∗n are the oracle docs for n, each d+i ∈ D∗n and n form a positive pair (n, d+i), while each d−j ∉
D∗n and n form a negative pair (ni, d−j). We train the retriever in a contrastive fashion where
the similarity score of a positive pair is maximized while that of in-batch negative pairs is
minimized. For a pair (ni, d+i), the loss function is defined as:

Lr = − log exp (sim(hn,hd+i
))

exp (sim(hn,hd+i
)) +∑d−j ∈B/D∗n exp (sim(hn,hd−j

)) (7.3)

where hx is the representation of x computed by a neural encoder, and B are positive docs for
other examples in the batch. We define sim(hx,hy) as the cosine similarity between hx and
hy.

We use all (ni, d+i) in the training set as our supervised training dataset. Additionally, we use
all sentences in the documentation pool for weak supervision: Following Chen et al. [32] and
Gao et al. [57], representations of the same sentence with different dropout masks are treated as
a positive example. Instead of using either supervised or weakly supervised training as in Gao
et al. [57], we simply mix the two resulting supervision signals, and examples are randomly
distributed into batches. This mixture of tasks not only facilitates the learning process (§7.6.2),
but also reduces the engineering effort required to store and reload models for separate super-
vised and unsupervised training phases. We initialize the retriever encoder with either the best
model of Gao et al. [57] or the encoder of CodeT5-base [167].

1https://github.com/elastic/elasticsearch

85

https://github.com/elastic/elasticsearch

7.3.2 Generator Instantiation

We experimented with a variety of generator models. We used GPT-Neo-125M, GPT-Neo-
1.3B [20] and Codex [31], where we concatenate the retrieved documents and the NL intent
as a single, long, prompt. T5-base [133] and CodeT5-base [167] have a shorter input size of
512 tokens, which is sometimes too short for the concatenation of multiple docs. Thus, for
T5 and CodeT5 we apply the fusion-in-decoder approach [FiD; 74]: we first concatenate the
intent n with each retrieved di ∈ D̂n and encode each (n, di) pair independently. Then, the
decoder attends to all encoded NL-document pairs. We finetune the generator to maximize the
log-likelihood of the reference code c given n and D̂n.

With Codex [31], we performed few-shot learning rather than finetuning because the model
parameters are not publicly available. We constructed the prompt with three static examples,
each of which is a concatenation of retrieved documentation, an NL intent and the reference
code snippet. We then appended the test example and its retrieved documentation to the few-
shot examples. We used the code-davinci-001 version because we suspect potential leakage of
the test set into the training set of code-davinci-002.

7.4 Experimental Setup

We evaluate DocPrompting on two NL→code tasks: shell scripting (§7.4.1), in which we gen-
erate complex shell commands given an intent, and Python programming (§7.4.2), where we
generate answers in Python for NL questions. In this section, we first introduce a newly curated
benchmark tldr; we then describe our re-split of the popular CoNaLa benchmark [186]. For
each benchmark, we provide a global documentation pool D that is shared for all examples
and oracle documents D∗n which we use to train the retriever. We release our newly curated
benchmarks to serve as test-bed for future retrieval-based code generation models.

7.4.1 Shell Scripting

tldr is a community-driven project that maintains easily-readable help pages with examples
for over 2.5k Bash commands in over 25 natural languages2. We collected pairs of English in-
tents and Bash command lines. The NL intents are written by human users, and the Bash com-
mands range from popular ones like cat and tar, to uncommon commands such as toilet

2https://github.com/tldr-pages/tldr

86

https://github.com/tldr-pages/tldr

Figure 7.2: An example NL-code pair from tldr, along with three oracle documentation items.

and faketime. Our resulting tldr benchmark contains 1,879 unique Bash commands and
9,187 NL→Bash pairs. We constructed the training, development and the test set with com-

pletely disjoint commands to test the generalizability of a code generation model. The shared
documentation pool D is made up of the 400k paragraphs from the 1,879 Bash manuals. Each
paragraph describes a single concept such as an argument flag. We further curated the ora-
cle documents D∗n for each example using simple string matching. An example from tldr is
shown in Figure 7.2. To the best of our knowledge, this is the first work to leverage tldr as
an NL→code benchmark. In tldr, each NL intent results in a single Bash command with a
combination of argument flags. We therefore first retrieve an entire Bash manual; then, we
take the top manual and retrieve the top-10 paragraphs from that manual.
Evaluation metrics We measure: (a) command name accuracy (CMD Acc) – whether the
command name (e.g., cat) is an exact match; (b) exact match (EM) – exact match between the
reference and the generation; (c) token-level F1; and (d) character-level BLEU [charBLEU; 99,
150]. In all metrics, we disregard user-specific variable names in the references and the models
outputs. For example, “mycli -u [user] -h [host] [database]” is evaluated as
“mycli -u $1 -h $2 $3”.

7.4.2 Python Programming

CoNaLa [186] is a popular benchmark for NL→Python generation. NL intents are StackOver-
flow questions, and code snippets are their answers. Both intents and code snippets are rewrit-
ten by human annotators. We re-split the dataset to test models’ generalization to unseen
Python functions. In our re-split, we verifed that every example in the development or the
test set uses at least one Python function (e.g., plt.plot) that was not seen in the training
data. In addition, we make sure that the examples from the same StackOverflow posts are in

87

the same set to prevent leakage. This re-split results in 2,135/201/543 examples in the train-
ing/development/test sets, respectively.

The CoNaLa documentation pool D contains 35,763 documents, each describing a single
function, from all Python libraries available on DevDocs (https://devdocs.io). These include
built-in libraries and other popular libraries such as numpy. We constructed the oracle docs
D∗n for each example by matching all function names in the target code c with docs.
Evaluation metricsWe follow Yin et al. [186] and measure BLEU-4. Since we focus on gener-
alization to unseen functions, we additionally report function name recall (recall) and unseen
function recall (recallunseen), which measures recall among function calls that do not appear in
the training set. Finally, following Austin et al. [14], Chen et al. [31], we used the manually
written unit tests fromWang et al. [168] for 100 examples from CoNaLa’s test set and measure
pass@k. We followed Chen et al. [31] and performed nucleus sampling [68] with p = 0.95.
For each k, we searched for the best temperature for each model from {0.2,0.4,0.6,0.8,1.0}.
On average, each example has 2.03 tests. The concatenation of multiple Python docs often ex-
ceeded the length limit of GPT-Neo, we hence experimented in this dataset with FiD, which
allows longer inputs.

7.5 Results

In all following results, all models with DocPrompting use the top-10 retrieved docs from
the best retriever on that dataset (Table 7.4). Every baseline uses the exact same setup as its
“+DocPrompting” version, except for not using the documentation.

7.5.1 Shell Scripting Results

Results for tldr are shown in Table 7.1. DocPrompting consistently improves the base mod-
els. For example, T5+DocPrompting achieves more than twice higher accuracy in predicting
the command name, more than 16 charBLEU points on the entire prediction, and almost 9%
of absolute exact match gain, compared to the vanilla T5. In the few-shot learning setting
with Codex, DocPrompting brings gains of 6.7 charBLEU points, and consistent improvement
across all metrics over the baseline that observes only NL-code pairs in its prompt. These re-
sults show that retrieving documentation also benefits strong models such as Codex, and with
only few examples in the context.

88

https://devdocs.io

Table 7.1: Results on shell scripting, using a BM25 retriever with top-10 retrieved docs, on the
test set of tldr. For the “oracle command name” experiments, we selected the best model of
each type.

Model CMD Acc (%) EM (%) Token F1 charBLEU

GPT-Neo-125M
- 11.96 1.94 28.75 19.99

+DocPrompting 25.32 3.56 31.23 24.43

GPT-Neo-1.3B
- 14.55 3.12 32.46 24.70

+DocPrompting 27.59 9.05 37.24 30.57

T5
- 10.02 0.76 19.90 25.48

+DocPrompting 30.28 9.16 37.58 31.97

CodeT5
- 14.60 2.18 30.00 21.50

+DocPrompting 30.72 9.15 36.71 33.83

Codex 3-shots
- 27.48 8.94 36.04 16.94

+DocPrompting 31.21 9.29 36.77 23.72

With the oracle command name

T5
- - 12.96 59.36 45.05

+DocPrompting - 22.55 64.84 54.28

Codex 3-shots
- - 22.44 62.26 50.29

+DocPrompting - 32.43 69.73 55.21

Code generation with oracle command names In realistic settings, a human programmer
may know the command name they need to use (e.g., awk), but not know the exact usage and
flags. In fact, better understanding of the usage of known commands is the purpose of Unix
man pages and the tldr project. We conducted an oracle experiment where we provided T5
(which was the strongest model using DocPrompting) and Codex with the oracle command
name (e.g., awk). This oracle information is provided to both the baseline and the model that
uses DocPrompting. The results are shown on the bottom part of Table 7.1. When the oracle
command is given, DocPrompting further improves over the base models. For example, when
providing Codex with the ground truth command name, DocPrompting improves its exact
match from 22.44% to 32.43%.

Should we retrieve documentation or examples? All existing retrieval-based models of

89

Table 7.2: Comparison to approaches that retrieve examples [128, 129]
.

Model CMD Acc (%) EM (%) Token F1 charBLEU

GPT-Neo-125M
+ExPrompting 6.68 0.32 20.49 11.15

+M 25.32 3.56 31.23 24.43

GPT-Neo-1.3B
+ExPrompting 14.01 2.8 30.07 22.11

+M 27.59 9.05 37.24 30.57

Table 7.3: Results on CoNaLa, using a CodeT5 retriever with top-10 retrieved docs. Function
recall (Recall) measures how many functions in the reference code are correctly predicted, and
unseen function recall (Recallunseen) only considers the subset held out from the training data.

Model BLEU Recall Recallunseen

Codex 3-shots
- 43.16 39.52 -

+M 43.47 39.87 -

+Moracle docs 50.59 57.84 -

T5
- 28.07 14.36 2.57

+M 30.04 21.34 8.24

CodeT5
- 34.57 24.24 9.03

+M 36.22 27.80 18.30

+Moracle docs 49.04 72.20 63.91

code retrieve NL-code pairs or code snippets, rather than documentation. To simulate this
scenario, we followed Parvez et al. [128] and Pasupat et al. [129] to retrieve NL-code pairs
from the training set of tldr, and refer to this baseline as ExPrompting. We finetuned the
best retriever RoBERTa and two generators, and retrieved the top-30 NL-code pairs for every
example. As shown in Table 7.2, retrieving documentation (DocPrompting) provides much
higher gains than retrieving examples (ExPrompting). Theoretically, adding examples of
unseen commands can help ExPrompting generalize to them as well. However, new libraries
and functions may not have available examples on the web yet, while documentation often does
becomes available when the library is released.

90

Published as a conference paper at ICLR 2023

Table 3: Results on CoNaLa, using a CodeT5 retriever with top-10 retrieved docs. Function recall
(Recall) measures how many functions in the reference code are correctly predicted, and unseen
function recall (Recallunseen) only considers the subset held out from the training data.

Model BLEU Recall Recallunseen

Codex 3-shots
- 43.16 39.52 -

+ DocPrompting 43.47 39.87 -

+ DocPrompting oracle docs 50.59 57.84 -

T5 - 28.07 14.36 2.57
+ DocPrompting 30.04 21.34 8.24

CodeT5
- 34.57 24.24 9.03

+ DocPrompting 36.22 27.80 18.30

+ DocPrompting oracle docs 49.04 72.20 63.91

110 50 100 200
0

5

10

15

20

25

30

35

40

8.26

18.70

27.54
31.87

35.46

5.41

14.31

23.38 25.54 27.08

k

pa
ss

@
k

+DocPrompting
CodeT5

Figure 3: Pass@k of CodeT5 with and without
DocPrompting on 100 CoNaLa examples.

1 2 3
0%

20%

40%

60%

80%

100%

12%

0% 0%

24%

2% 0%

n-gram

R
ec

al
l

tldr

1 2 3 4 5

30%

14% 11% 9% 7%

91%

52%

28%

16%
11%

n-gram

CoNaLa

NL←→Code

(NL+Docs)←→Code

Figure 4: Using documentation significantly in-
creases the n-gram overlap recall between the
input and the output, in tldr and CoNaLa.

We hypothesis that the minor gain is mainly due to the potential data leakage of Codex, which violates
the split of seen and unseen functions. Another reason is that a strong generator such as Codex
may require an equally strong retriever as well. We find that Codex can achieve even higher results
with an oracle retriever, which shows the potential further improvement by improving the retrievers.
Finally, CodeT5 performs better than T5, with and without using DocPrompting. This emphasizes
the importance of using code-specific pretrained models.

Execution-based evaluation The results are shown in Figure 3. Using DocPrompting consistently
outperforms the baseline CodeT5 for all values of pass@k. For example, DocPrompting yields
2.85% improvement on pass@1 and 4.45% improvement on pass@5, which are realistic numbers
of completions that can be suggested in an IDE. When k = 200, DocPrompting widens the gap
to 8.38%. These results demonstrate that DocPrompting does not only improve the quality of the
generated code in its surface form, but also increase its functional correctness. Additional details and
results are provided in Appendix G.

6 ANALYSIS

6.1 WHY DOES READING THE DOCUMENTATION HELP GENERATING MORE ACCURATE CODE?

We believe that one of the major reasons is that documentation eases the mapping between NL
intents and code, since the documentation contains both NL descriptions and function signatures.
We calculated the n-gram overlap between the NL intents and their corresponding code snippets
(NL←→code), and the overlap between the NL intents with their top-10 retrieved documents and
their code snippets ((NL+docs)←→code). As shown in Figure 4, adding documentation significantly
increases the overlap across n-grams, and increase, for example, the unigram overlap from 12% to

7

Figure 7.3: Pass@k of CodeT5 with and with-
out DocPrompting on 100 CoNaLa examples.

Published as a conference paper at ICLR 2023

Table 3: Results on CoNaLa, using a CodeT5 retriever with top-10 retrieved docs. Function recall
(Recall) measures how many functions in the reference code are correctly predicted, and unseen
function recall (Recallunseen) only considers the subset held out from the training data.

Model BLEU Recall Recallunseen

Codex 3-shots
- 43.16 39.52 -

+ DocPrompting 43.47 39.87 -

+ DocPrompting oracle docs 50.59 57.84 -

T5 - 28.07 14.36 2.57
+ DocPrompting 30.04 21.34 8.24

CodeT5
- 34.57 24.24 9.03

+ DocPrompting 36.22 27.80 18.30

+ DocPrompting oracle docs 49.04 72.20 63.91

110 50 100 200
0

5

10

15

20

25

30

35

40

8.26

18.70

27.54
31.87

35.46

5.41

14.31

23.38 25.54 27.08

k

pa
ss

@
k

+DocPrompting
CodeT5

Figure 3: Pass@k of CodeT5 with and without
DocPrompting on 100 CoNaLa examples.

1 2 3
0%

20%

40%

60%

80%

100%

12%

0% 0%

24%

2% 0%

n-gram

R
ec

al
l

tldr

1 2 3 4 5

30%

14% 11% 9% 7%

91%

52%

28%

16%
11%

n-gram

CoNaLa

NL←→Code

(NL+Docs)←→Code

Figure 4: Using documentation significantly in-
creases the n-gram overlap recall between the
input and the output, in tldr and CoNaLa.

We hypothesis that the minor gain is mainly due to the potential data leakage of Codex, which violates
the split of seen and unseen functions. Another reason is that a strong generator such as Codex
may require an equally strong retriever as well. We find that Codex can achieve even higher results
with an oracle retriever, which shows the potential further improvement by improving the retrievers.
Finally, CodeT5 performs better than T5, with and without using DocPrompting. This emphasizes
the importance of using code-specific pretrained models.

Execution-based evaluation The results are shown in Figure 3. Using DocPrompting consistently
outperforms the baseline CodeT5 for all values of pass@k. For example, DocPrompting yields
2.85% improvement on pass@1 and 4.45% improvement on pass@5, which are realistic numbers
of completions that can be suggested in an IDE. When k = 200, DocPrompting widens the gap
to 8.38%. These results demonstrate that DocPrompting does not only improve the quality of the
generated code in its surface form, but also increase its functional correctness. Additional details and
results are provided in Appendix G.

6 ANALYSIS

6.1 WHY DOES READING THE DOCUMENTATION HELP GENERATING MORE ACCURATE CODE?

We believe that one of the major reasons is that documentation eases the mapping between NL
intents and code, since the documentation contains both NL descriptions and function signatures.
We calculated the n-gram overlap between the NL intents and their corresponding code snippets
(NL←→code), and the overlap between the NL intents with their top-10 retrieved documents and
their code snippets ((NL+docs)←→code). As shown in Figure 4, adding documentation significantly
increases the overlap across n-grams, and increase, for example, the unigram overlap from 12% to

7

Figure 7.4: Using documentation significantly
increases the n-gram overlap recall between
the input and the output, in tldr and
CoNaLa.

7.5.2 Python Programming Results

Table 7.3 shows the results on CoNaLa. CodeT5+DocPrompting yields a 1.65 BLEU improve-
ment over the state-of-the-art baseline that was initialized with CodeT5.3 When measuring
the recall of the generated function names, the benefit of DocPrompting is especially higher
for unseen functions (recallunseen). For example, DocPrompting achieves 18.30 compared to only
9.03 of the base CodeT5 in unseen functions. Additionally, DocPrompting improves in-context
learning setting with Codex. We hypothesis that the minor gain is mainly due to the potential
data leakage of Codex, which violates the split of seen and unseen functions. Another reason is
that a strong generator such as Codex may require an equally strong retriever as well. We find
that Codex can achieve even higher results with an oracle retriever, which shows the poten-
tial further improvement by improving the retrievers. Finally, CodeT5 performs better than T5,
with andwithout using DocPrompting. This emphasizes the importance of using code-specific
pretrained models.
Execution-based evaluation The results are shown in Figure 7.3. Using DocPrompting con-
sistently outperforms the baseline CodeT5 for all values of pass@k. For example, DocPrompt-
ing yields 2.85% improvement on pass@1 and 4.45% improvement on pass@5, which are real-
istic numbers of completions that can be suggested in an IDE. When k = 200, DocPrompting

3In a separate experiment on the original split of CoNaLa, this baseline achieved a BLEU score of 39.12, which
outperforms the previous state-of-the-art [18] by 4.92 BLEU points.

91

Table 7.4: Retrieval performance of multiple models on the dev set of tldr (top) and
CoNaLa (bottom). RoBERTa is the best model taken from from Gao et al. [57], and CodeT5
is the encoder of CodeT5-base [167]. Models with the subscript “off-shelf” are the off-the-shelf
models, and the other models were finetuned with the objective in Equation 7.3. The last col-
umn is the best model (RoBERTa for tldr and CodeT5 for CoNaLa) trained without the weak
supervision corpus.

n BM25 RoBERTaoff-shelf RoBERTa CodeT5off-shelf CodeT5 Best w/o weak sup.

tldr

1 32.81 17.53 30.03 10.45 18.10 28.30
5 51.73 37.89 52.50 20.26 38.52 50.50
10 59.86 46.80 60.33 25.73 51.03 59.84
20 62.01 56.11 64.30 33.65 57.26 62.30

CoNaLa

1 3.01 4.46 13.49 4.60 16.54 10.51
5 7.16 7.58 26.38 8.63 42.35 21.15
10 9.73 10.93 34.86 12.25 55.81 29.34
20 11.46 13.89 45.46 18.46 66.79 42.21

widens the gap to 8.38%. These results demonstrate that DocPrompting does not only improve
the quality of the generated code in its surface form, but also increase its functional correctness.

7.6 Analysis

7.6.1 Why does reading the documentation help?

We believe that one of the major reasons is that documentation eases the mapping between NL in-

tents and code, since the documentation contains both NL descriptions and function signatures.
We calculated the n-gram overlap between the NL intents and their corresponding code snip-
pets (NL←→code), and the overlap between the NL intents with their top-10 retrieved documents
and their code snippets ((NL+docs)←→code). As shown in Figure 7.4, adding documentation sig-

nificantly increases the overlap across n-grams, and increase, for example, the unigram overlap
from 12% to 24% in tldr. That is, one of the reasons that retrieving documentation helps gen-
erating accurate code is that documentation bridges the gap between the “intent terminology”
and the “code terminology”.

92

7.6.2 Ablation Study

We compared different configurations of the retriever, to gather more insights for effective
DocPrompting. Table 7.4 shows a comparison between different retrievers and their setups.
First, the performance of BM25 varies among datasets: In tldr, BM25 matches the recall of
trained dense retrievers; however in CoNaLa, BM25 achieves only recall@10 of 9.73%, and
strong dense retrievers such as the encoder of CodeT5 achieve recall@10 of 55.81. We hypoth-
esize that this difference between datasets stems from the ways these datasets were created:
tldr intents were written based on existing Bash commands and manuals; while CoNaLa

examples were mined from StackOverflow posts, where users ask questions with limited or
no context. Thus, NL intents in CoNaLa require a better semantic alignment with the docu-
ments, and thus benefit from dense retrievers. The gap resulting from different data curation
processes was also observed by Rodriguez and Boyd-Graber [142] in open-domain question
answering (QA).

Second, retrievers that were pretrained on the target programming language are generally
stronger. For example in CoNaLa, CodeT5 which was pretrained on Python, is both a better
off-the-shelf retriever and a better finetuned-retriever than RoBERTa, which was pretrained
mainly on text. In contrast, tldr is based on Bash, which neither CodeT5 nor RoBERTa were
explicitly pretrained on. Thus, tldr benefits mostly from BM25 and RoBERTa rather than
CodeT5 as retrievers.

Finally, training the retriever using weak supervision on the documentation pool (Sec-
tion 7.3.1) dramatically improves the retriever. The recall of the best retrievers of each dataset
without this corpus is shown in the last column of Table 7.4 (“Best w/oweak sup.”). OnCoNaLa,
removing this corpus results in severe performance degradation. One possible explanation is
that this weak supervision helps the retriever perform domain adaptation more effectively.

7.6.3 Case study

We examine the models’ outputs and show two representative examples in Figure 7.5. In the
first example, Image.open was not seen in the training set, and the baseline CodeT5 in-
correctly predicts os.open. In contrast, using DocPrompting allows to retrieve the docs
and to correctly predict Image.open. In the second example, df.to_csv was not seen
in training, and the baseline CodeT5 fails to correctly predict it. In contrast, DocPrompting
does predict most of the df.to_csv call correctly, thanks to the retrieved docs. Nevertheless,

93

Published as a conference paper at ICLR 2023

Table 5: Examples of predictions from CoNaLa, of the base CodeT5 compared to
CodeT5+DocPrompting. Unseen functions are

::::::::::
underscored.

NL Intent: Open image ”picture.jpg”
Ground truth: img =

::::::::::
Image.open(’picture.jpg’) \n Img.show

CodeT5: os.open(’picture.jpg’, ’r’)
CodeT5+DocPrompting: image =

:::::::::::
Image.open(’picture.jpg’, ’rb’)

NL Intent: Exclude column names when writing dataframe ‘df’ to a csv file ‘filename.csv’
Ground truth:

:::::::::
df.to csv (’filename.csv’, header=False)

CodeT5: df.drop([’col1’, ’col2’], axis=1, inplace=True)
CodeT5+DocPrompting:

:::::::::
df.to csv(’filename.csv’, skiprows=1)

7 RELATED WORK

Code generation The most common practice in NL→code generation is training a model on a dataset
of NL-code pairs (Allamanis et al., 2015; Yin and Neubig, 2017; Rabinovich et al., 2017; Iyer et al.,
2018). Nevertheless, all these works assume that their training corpus covers all required libraries and
functions, and their models are inherently incapable of generating libraries and functions that were not
seen in the training data. On the contrary, DocPrompting allows models to generate calls to unseen
function, by retrieving these functions’ documentation and reading them at test time. Hayati et al.
(2018); Parvez et al. (2021); Hashimoto et al. (2018) and Lu et al. (2017) learn to retrieve examples at
test time; Pasupat et al. (2021) also considered settings where the test data has a distribution shift from
the training data. However, when new libraries are released they often come with documentation,
and thus we assume that documentation for new libraries is much more likely to be available than
concrete natural language intent and code snippet pairs (n, c) that use these libraries already. The
models of Shrivastava et al. and Wu et al. (2021) retrieve code snippets from relevant files in the
same project; contrarily, when predicting new libraries and functions that are external to the user’s
project, documentation is the source that is the most likely to be available.

Retrieval augmented generation The paradigm of retrieve-then-generate has gained popularity in
the field of open-domain question answering (Guu et al., 2020; Lewis et al., 2020; Karpukhin et al.,
2020), where the answer for an open-domain question exists in only few documents out of a much
larger pool. Although DocPrompting takes a similar approach, documentation retrieval in code
generation is even more valuable, since code libraries are updated constantly, and new libraries are
introduced daily. Thus, DocPrompting allows updating the documentation pool frequently with new
contents, without re-training any model components.

Documentation conditioned generation The model of Zhong et al. (2019) reads documents to
understand environment dynamics in a grid-world game, and Branavan et al. (2011) controls situated
agents in a game (Civilization II) by reading the game’s manual. However, all their models were
tailored to specific games; in contrast, DocPrompting is general and is applicable for a variety of
programming languages and datasets.

8 CONCLUSION

We propose DocPrompting, a simple and effective approach for code generation by retrieving the
relevant documentation. DocPrompting consistently improves NL→code models in two tasks, in
two PLs, and across multiple strong base models. DocPrompting improves strong base models such
as CodeT5 by 2.85% in pass@1 (52% relative gain) in execution-based evaluation on the popular
Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves CodeT5 and
GPT-Neo-1.3B by up to 6.9% exact match, and Codex by 6.78 charBLEU score.

These results open a promising direction for NL→code generation. We believe that our results can be
further improved using more clever encoding of the structured nature of long documents, and using
joint training of the retriever and the generator, which hopefully will avoid cascading errors. Further,
we believe that the principles and the methods presented in this paper are applicable to additional
code-related tasks, and other documentation-like resources such as tutorials and blog posts. To these
ends, we make all our code, data, and models publicly available.

9

Figure 7.5: Examples of predictions fromCoNaLa, of the base CodeT5 compared to CodeT5+M.

Unseen functions are
::::::::::::
underscored.

DocPrompting generates an incorrect argument skiprows=1, instead of header=False.
The reason is that along with the retrieved documentation of df.to_csv, the retriever also
retrieved the documentation of df.read_csv, which has a skiprows argument. That
is, the generator uses an argument of df.read_csv with the function df.to_csv. Fur-
ther improving the retrievers and the generators, and post-filtering based on the validity of
argument names, may mitigate such mistakes.

94

Chapter 8

Turning Indirect Knowledge into Direct

Demonstrations at Scale

While documentation explains how to perform a task, the knowledge is still indirect, requiring
an agent to comprehend the information and take corresponding actions. How can we derive
knowledge that directly teaches models what to do? This chapter continues the discussion on
leveraging widely available human-authored knowledge through data synthesis. This work is
currently under review:

• Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta
Sengupta, Dan Roth, GrahamNeubig, and Shuyan Zhou. Synatra: Turning indirect knowl-
edge into direct demonstrations for digital agents at scale. In submission to NeurIPS, 2024

8.1 Overview

For AI agents, demonstrations typically involve specifying the desired next action under certain
states to successfully complete tasks, as shown on the right of Figure 8.1. Existing works that
automatically collect demonstrations (1) set up environments for an agent to interact with, (2)
run a baseline agent within this environment, and (3) employ heuristically designed filtering
mechanisms to remove low quality demonstrations [55] or perform relabeling [9, 115]. All three
of these requirements limit applicability to a wide variety of practical applications. Setting up
an environment that is representative of the actual environments in which wewould like agents
to act is a difficult task, and existing environments are generally limited in scope to a few web
sites [49, 212] or digital apps [176]. Even within these constrained settings, strong LLMs such

95

as GPT-4 struggle on tackling digital tasks [212], making collecting successful demonstration
with LLMs inefficient. In addition, collecting demonstrations of the tasks that we would like to
solve from human is costly and the scope is not exhaustive [46, 71]. For example, gathering a
demonstration for canceling a PayPal order requires an actual PayPal account with a legitimate
subscription history.

In this work, we propose Synatra, a data generation approach that synthesizes high-quality
execution trajectories for complex digital tasks at scale. This approach is based on the intuition
that there is a rich trove of existing knowledge that encodes indirect supervision about how to
perform digital tasks (§8.2.2). An example indirect knowledge is a tutorial that details the se-
quential breakdown of a complex task on aweb site, such as “how to cancel a recurring payment
on Paypal” for human readers (Figure 8.1 upper left) [197, 210]. While this outlines some pro-
cedural knowledge, it does not directly map these steps onto the actual actions within concrete
observations (e.g. on the Paypal web site). Given this indirect knowledge, we leverage an LLM
to re-purpose it into more usable form that directly demonstrates the exact action to take under
different observations (§8.3). This process involves leveraging LLMs’s language processing ca-
pability for knowledge paragraphing, coding capability for generative digital environment, and
general web knowledge for hypothetical executionsTherefore, our approach can scale with the
availability of the indirect knowledge, rather than the reliance on direct human annotations or
the human-level performance of LLMs digital tasks.

We carefully study the sources of indirect knowledge, the design of demonstration formats,
and the mechanisms for iterative refinement in order to synthesize high-quality demonstra-
tions using an LLM (§8.3, §8.4). We generate demonstrations of 50k tasks from 21 domains, and
finetune a 7b Codellama-instruct model with this synthetic data. The resulting agent,
Synatra-CodeLlama, surpasses existing open-source models of similar size on three popu-
lar web-based task benchmarks: Mind2Web, MiniWoB++, andWebArena. Moreover, it consis-
tently outperforms models that are ten times larger and have been fine-tuned with interactive
data (§8.6). Our findings also indicate that our model is a more accurate option for predict-
ing single-step actions or for performing tasks with fewer steps in browser copilot settings,
in comparison to GPT-3.5. Importantly, while each synthetic example incurs only approxi-
mately 3% of the cost of a human-generated demonstration, we demonstrate that synthetic data
with good domain coverage can be more effective than an identical quantity of limited-domain
human demonstrations in real-world web-based tasks (§8.7).

96

3

goto("https://www.paypal.com")
[...]
click(“login")
type(“username","john@example.com”)
[...]
type("search bar","Amazon Prime")

action history a1, . . . , at−1

observation ot

click("Amazon Inc.”, id=156)
next action at

Cancel Amazon Prime membership on Paypal

task intent i
<!DOCTYPE html>
<html lang="en">
<head>
 [...]
</head>
<body>
 [...]
</body>
</html>

Cancel a PayPal payment

[…]
Log in with your
credentials.
[…]
Enter the keyword
Select the payment
[…]

Indirect knowledge

Synthetic
agent

trajectory
generation
(Synatra)

id=156

Figure 8.1: Our approach aims to synthesize direct demonstrations (right of the arrow) that
specify the immediate next actions based on previous actions and current observations. The
sources comprise only indirect knowledge (left of the arrow), such as tutorials designed for
human consumption and randomly sampled observations that lack associated tasks and actions.

8.2 Problem Formulation

8.2.1 Controlling Digital Agents through Natural Language

An agent interacts with a computer environment E = ⟨S,A,O,T ⟩ with state space S , action
space A, observation space O and the environment dynamics T ∶ S × A Ð→ S . While this
framework can be applied to different types of task, in this work, we consider a web browser as
the unified entry to access different web applications. We followWebArena [212] to define the
observation space as the contents on screen, represented as the text-based accessibility trees.
We use the same universal action space as in WebArena. This action space resembles the key-
board andmouse operations of a computer (e.g., click, type), and is applicable to arbitrary web
applications. Appendix 3.2.4 lists all valid actions. The environment dynamics (e.g., the effect of
clicking a button) and the states (e.g., the database status) are decided by the implementations
of the web applications.

Given the natural language intent i, at each time step t, an agent issues an action at ∈ A
based on st. The environment state is updated to st+1 with new observation ot+1. This process
ends when the agent predicts the stop action. We follow existing works [46, 183, 202, 212] to
represent st as (i, a1, ..., at−1, ot). A benchmark (e.g., WebArena) supplies a scoring function
r(i, sn) that examines the final state and returns 1 if the desired goal state is satisfied, and 0

otherwise.

97

8.2.2 Definition of Direct Demonstrations and Indirect Knowledge

We consider the expected action at given st as a form of direct demonstration, i.e., (st, at). This
allows an agent to directly learn how to predict the next action under a given state. On the other
hand, indirect knowledge is broadly defined as resources that can benefit the task execution,
but is not in the format of state and expected action tuple. We mainly focus on three types of
indirect knowledge:

1. Procedural knowledge details the sequence of steps ⟨a′1, a′2, ..., a′n⟩ required to complete
a specific task i. Unlike an action at in trajectories, the steps in procedural knowledge are
ungrounded, they lack a direct association with any particular observation and are not
tied to specific action spaces. For instance, the tutorial in Figure 8.1 instructs “login with

your credentials” without providing the concrete PayPal login page and the input fields
to type.

2. Environment knowledge T that describe the effects of applying different actions in
some hypothetical states. Example knowledge includes verbal descriptions such as “...
after clicking the cancel button, you will see a pop up window ...”.

3. Ungrounded observations o that are not associatedwith particular tasks or trajectories.
In the context of web-based tasks, an observation is a random web page with different
contents and status (e.g., a product page with a query in the search field).

8.3 Scalable Demonstration Synthesis for Digital Agents

In this section, we first introduce our design choices on the canonical formalization of trajecto-
ries, which account for the structural nature of procedures. Then, we delve into the sources for
acquiring indirect knowledge, and the mechanisms for re-purposing this knowledge into direct
supervisions.

8.3.1 Trajectories as Programs

Existing works demonstrate that representing the task solving procedure as writing programs
is beneficial due to the structural natural of programs compared to free-form text [108, 208], and
the flexibility of using tools [33, 56, 164]. Inspired by these observations, we conceptualize a tra-
jectory as a Python function that interleaves between natural language planning articulated in
comments and actions API calls on the right, as shown in Figure 8.2. The planning includes both

98

Cancel a PayPal recurring payment

- Go to https://www.paypal.com in a web
browser

- Log in with your credentials.
- […]
- Enter the keyword in the search box
- Click the payment you'd like to cancel […]

website = "<url>"
observation = "<AXtree of the page>"
objective = "[...]"

past actions
def solve():
 objective = "[...]"
 # sub-task 1: [...]
 # <NL explanation for the step>
 action(arg=value)
 [...]

 # sub-task 2: [...]
 [...]
 stop(ans=value)

Figure 8.2: The template of formulating trajectories as programs.

task-level planning, which decomposes the task into multiple sub-tasks, and action-level plan-
ning, which can be viewed as the natural language translation of the code. A concrete example
can be found in appendix B.1. We note that while existing works also study using program
formalization for web-based tasks [63, 179], they focus on action-level interventions without
incorporating task-level planning. We study the empirical effect of program formalization in
§8.8.

8.3.2 Synthesizing from Text Procedural Knowledge with Generative

Environment

The Internet offers fairly extensive procedural knowledge that describes how to perform high-
level tasks by breaking down the task into detailed lower-level steps, such as how-tos and tu-
torials.

Source We use wikiHow1 as our main source for these tutorials due to its comprehensive
coverage of diverse tasks, and its consistent format. Each article is consist of a high-level task
description and the step-by-step instructions. We performed a filtering step and only kept
the qualified articles that only involving navigation through the graphical user interface (GUI)
of a computer or a mobile phone. We prompted GPT-3.5-turbo with six examples mixing

1https://www.wikihow.com/Main-Page

99

https://www.wikihow.com/Main-Page

qualified articles (e.g., How to redeem anAmazon gift card online2) and unqualified articles (e.g.,
How tomake a pizza) to perform the classification of all wikiHow articles. The prompt is shown
in appendix B.2. As a result, we obtained 25k qualified articles. We further sample 3k articles
to perform data synthesis.

Synthesis Approach Wewant to bridge two gaps to re-purpose ⟨a′1, a′2, ..., a′n⟩ for task i into
⟨a1, ..., at−1, ot⟩. When re-purposing a sequence of actions ⟨a′1, a′2, ..., a′n⟩ for task i into a new
sequence ⟨a1, ..., at − 1, ot⟩, many challenges arise. First, the action descriptions provided in
tutorials are not constrained to specific action spaces. Instead, they are presented as free-form
natural language (NL) expressions, which can lead to ambiguity. For instance, various verbs
such as "enter," "input," and others may all correspond to the same underlying action, type.
Second, NL descriptions are often abstract, omitting concrete actions. For example, the process
of "logging in" involves a series of actions, including typing in a username and password, but
these specific actions may not be explicitly mentioned. Finally, the steps outlined in tutorials
are ungrounded, meaning they are not directly associated with observable states or outcomes.
Tutorials typically employ generic descriptions to accommodate various instances of concep-
tually similar tasks. For example, as illustrated in Figure 8.1, the tutorial merely instructs to
“enter the keyword” without addressing any specific scenario.

Based on these findings, we propose an iterative approach that first use an LLM to rewrite
an article into a hypothetical trajectory in the format shown in §8.3.1, then we leverage a gener-
ative model to synthesize the intermediate observation between two consecutive actions. First,
in the rewriting step, we ask GPT-4 to perform: (1) propose a hypothetical concrete scenario
relevant to the task (2) perform basic parsing such as translating “enter the keyword [...]” into
type("search bar", "Amazon Prime"); (3) categorize actions into groups that reflect the
sub-task structures outlined by coding blocks. These tasks mainly demand a LLMs’s creativity,
language processing ability and event understanding respectively. An example of rewriting a
how-to article into a trajectory in program format is showed in appendix B.4. The detailed
prompt for the rewriting step is shown in appendix B.3.

Next, we leveraged GPT-4 to generate the observations between randomly sampled con-
secutive actions. We use the consecutive actions of type("search bar", "Amazon Prime")

and click("Amazon Inc", id=156) in Figure 8.1 as the example. There are mainly two re-
quirements for the generated observation. First, the observation reflects the outcomes of past
actions. In the example, it corresponds to a page with a user logged in, and a search input

2https://www.wikihow.com/Apply-a-Gift-Card-Code-to-Amazon#Online

100

https://www.wikihow.com/Apply-a-Gift-Card-Code-to-Amazon#Online

field filled with “Amazon Prime”. Second, the observation encodes the necessary elements to
perform the next action. In the example, it corresponds a payment history list with a payment
to Amazon. We prompt GPT-4 with the action sequence to generate a HTML snippet that
fulfills the above requirements. Since the next action requires the concrete element to interact
with, we ask the model to insert a tag of id=“next-action-target-element” in the
corresponding HTML node to indicate the grounding. This step mainly requires a model’s cod-
ing capabilities, particularly in front-end development. We do not require the LLM to generate
HTMLs with high fidelity and complexity, which is a open research question [155]. The full
prompt is in appendix B.3 and an example for this step is in Figure B.1.

It is notable that there are other resources that share similar traits, such as the captions of
YouTube how-to videos [111], our transformation mechanism is generally applicable to such
resources and we leave the empirical study as our future work.

8.3.3 Synthesize from Random Observations

To compensate for the loss in simplified observations, we also perform data synthesis with
real web pages. We show that these two sources can compensate each other by examining the
generated data in §8.4 and comparing the actual web-based task performance in §8.8.

Source We utilize ClueWeb [124] as our data source, which comprises HTML snapshots of
more than 10 billion web pages. Our initial analysis indicates that a random sampling approach
would likely lead to a homogeneous distribution dominated by less interactive pages, such as
news articles. In contrast, more complex web-based tasks typically requires interaction with
various web elements to advance the task. To diversify the sampled web pages, we employed
a temperature sampling approach to select pages based on their content categories. Web pages
from ClueWeb exhibits the distribution that domains with higher frequency are typically more
interactive, such as Amazon and Reddit, while domains appearing in lower frequency are less
interactive. We use a temperature sampling with t = 0.6 to up-sample more interactive sites
while maintaining diversity on more rare sites. More details are listed in § B.7.

Synthesis Approach We treat each sampled web page as an intermediate observation at
time step t, aiming to synthesize the specific task i, the previous actions a1, ..., at−1 and the
subsequent action at consisting of an action, and a corresponding interacting element in the
observation. We first convert a web page into its corresponding accessibility tree at the begin-

101

clic
k

typ
e

sto
p

scr
oll

pre
ss

go
to

go
_ba

ck

ne
w_ta

b

clo
se_

tab
ho

ve
r

go
_fo

rw
ard

sw
ith

_ta
b

Action Type

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
of

 A
ct

io
ns

Action Distribution by Data Source
Mind2Web
Tutorials Only
Synatra

Figure 8.3: Left: t-SNE of task intent embedding; middle: t-SNE plots of accessibility tree em-
beddings of the synthetic data source and Mind2Web; right: Distribution of Action Types.

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22
Trajectory Length

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

Distribution of Trajectory Lengths
Tutorials
Random Observation
Mind2Web

Figure 8.4: Distribution of trajectory lengths

ning of each node, and sample a segment to present to GPT-4. We follow WebArena to assign
a unique ID to each node in the tree to easy the challenging in referencing to the nodes. To
increase the diversity of the tasks, we first instruct the model to brainstorm k task categories
relevant to the web domain. Then the model randomly selects three of these categories and
develops them into concrete scenarios with past actions leading up to the current observation
and the next action to take. The prompt is in § B.5 and the response is in § B.6.

8.4 Data Statistics

We inspect on the number of action steps, action types, and semantic embedding of agent tra-
jectories, while using Mind2Web’s human collected trajectories as a reference. We ask the
question: how does our synthetic data compared with real human annotated data? To answer
this question, we look into it in two dimensions: how close we are to real data, and how different
we are from real data.

102

How close are we? For length of trajectories, our synthesized data share similar distribution
with human annotated ones, as displayed in Figure 8.4. Majority of the histories are shorter than
six steps. The distribution of action types are also similar between synthesized data and human
annotated ones. As shown on the right of Figure 8.3. Both data sources work on similar tasks
too. As shown on the left of Figure 8.3, semantic embedding of task objectives are displayed
with t-SNE reduction. The task semantics are highly overlapped between human collected
trajectories and synthetic trajectories.

How different are we? One key advantage of synthesized data is its low turn around cost,
particularly in adjusting action space and action distribution, which are key for adapting to new
environments. Synthetic trajectories completes the action space of existing human annotated
training data through providing necessary yet lacking actions such as stop, scroll, and so
on. There is no inherent limitations to include additional action types, our flexible synthesizing
approach could expand to any action space. Further more, the combine use of ClueWeb and
wikiHow generation pipeline allows us to have fine-grained control over which action types
we want the agent to prioritize in learning, and relax on those that have been learned heavily
in the past.

Synthetic trajectories provides additional diversity on top of human collected ones. We
embedded our synthetic data’s accessibility trees along with those of Mind2Web’s training set
with embeddingmodel all-mpnet-base-v2. We visualize the embeddings with t-SNE and display
the results in the middle of Figure 8.3 [162]. Accessibility trees from our synthetic data has a
good proportion of overlap with human annotated Mind2Web dataset while providing many
diversity at the same time.

8.5 Experimental Setup

Agent training Wefine-tuneCodeLlama-instruct-7b [145]with 49,373 ofweb-navigation
instruction data, which is sourced from WikiHow articles and ClueWeb web pages.

Evaluation tasks We select 3 evaluation tasks in the domain of web-navigation. 1) We test
with Mind2Web’s test set. Mind2Web’s test set contains three categories, marked by their de-
gree of deviation from its training data: cross-task, cross-website, cross-domain in the order of
increasing difference from training data [46]. However, since we do not train at all on its train-
ing set, every category are held-out set for us. Our setting is also different from the original

103

Mind2Web, where we remove the DeBerta filter. To feed in the most information in our lim-
ited context window, we input in-viewport accessibility trees instead of whole page HTML. 2)
We test with WebArena. WebArena is an execution based web agent benchmark that allows
agents to freely choose which path to take in completing their given tasks. There could be mul-
tiple correct next actions to take at any given stage, using a result based benchmark here would
account for all correct actions [212]. 3) We test with MiniWoB++, another dynamic interactive
benchmark. Different from WebArena, MiniWoB++ consists of easier tasks that involve only
one web page, one or a few steps to complete, and more specific, low level task directions [71].

8.6 Results

Table 8.1 presents the performance of various models across three web-based task benchmarks.
Overall, Synatra-CodeLlama achieves the best performance among models of comparable
size. Notably, Synatra-CodeLlama significantly outperforms its base model CodeLlama-

instruct-7b. WhileCodeLlama-instruct-7b fails to complete any tasks inWebArena,
Synatra-CodeLlama successfully executes 4.8% of them. Furthermore, Synatra-CodeLlama

elevates the performance of CodeLlama-instruct-7b from 6.62% to 17.26% in Mind2Web
(a 160% relative improvement) and from 23.04% to 39.57% in MiniWoB++ (a 71% relative im-
provement). More encouragingly, Synatra-CodeLlama demonstrates superior performance
on Mind2Web and MiniWoB++ compared to GPT-3.5. It also outperforms Lemur-chat-

70b, which is finetuned with interactive data and is ten times larger, across all three bench-
marks. The results suggest that our data synthesis approach is effective in helping the model
predict the next action (as in Mind2Web) and performing simple tasks with a few steps (as in
MiniWoB++). The synthesized data can also guide the model towards executing real-world
complex tasks more accurately. Consequently, Synatra-CodeLlama has potential applica-
tions in suggesting individual steps in browser copilot scenarios.

Synatra-CodeLlama surpassed the performance of all open source model finetuned
with interactive data. Among these models, AgentLM, CodeActAgent and AgentFlan

includes demonstrations to perform web-based tasks in their instruction finetuning dataset.
However, we find that these models may not serve as capable agents to perform web-based
tasks due to the special design choice encoded in the finetuned models. For instance, AgentLM

and CodeActAgent use Regex expression to match interactive element on a web page and
require carefully selected in-context examples to showcase which are the proper Regex expres-
sion for different examples. However, Regex expressions only work for simple web pages with

104

a few elements as in MiniWoB++, while it is prohibitive to do pattern matching in complex
web pages as in Mind2Web and WebArena. As a result, when we experiment with the more
generic action space which is suitable for all three benchmarks without in-context examples, we
see these models have a significant performance degradation. On the other hand, Synatra-

CodeLlama targets at the generic web-based tasks and does not encode any dataset artifacts
during training. Even though all three benchmarks are completely held-out during data gener-
ation, Synatra-CodeLlama achieves consistent superior performance on all benchmarks.

8.7 Analysis

What does the model learn from the synthetic data? Basic Interactive Pattern: Synatra
training data enables models to learn how to interact with web pages. Trained models are xxx
percent less likely to click on non-interactive elements compared to GPT-4-turbo, and xx
percent less likely to issue a type action to web-components that do not contain a textbox.

Planning: Synatra trained models can better keep track of and utilize histories.

Can Synatra be as effective as human annotations? The Mind2Web dataset [46] in-
cludes human-annotated trajectories for approximately 1k web-based tasks in its training set,
with each trajectory costing $0.8. We process these 1k trajectories into 9k direct demonstrations
((st, at)) tomatch the format of Synatra. We then compare themodel trainedwith these 9k hu-
man demonstrations (human only) and the model trained with 9k demonstrations generated by
Synatra. The results are shown on the right of Figure 8.5. Simply training CodeLlama with
the Mind2Web human annotations provides modest improvement of 3.96% on MiniWoB++ ,
while failing entirely on WebArena. In contrast, Synatra led to a substantial improvement
of 17.81% on MiniWoB++ and 4.56% on WebArena. The limited performance of the human
annotations can be partially attributed to their restricted task coverage; notably, Mind2Web
lacks information seeking tasks that require a string answer. Furthermore, the human trajecto-
ries did not specify conditions for terminating task execution. Despite adding such trajectories
from Synatra (human + synthsis), the model still underperformed. We hypothesize the di-
versity of tasks plays a role in this discrepancy, since many tasks cannot be covered without
pre-set environment (e.g., return an order) (Figure 8.3). These findings underscore the efficacy
of Synatra, which also exempts from the complexities of developing recording tools and man-
aging communication with annotators. However, it is important to recognize that the quality
of human demonstrations is presumably higher, but they require meticulous design and control

105

during the data collection process.

8.8 Ablation

In this section, we perform an ablation to validate the design choices of our data synthesis
approach.

Representing trajectories as programs is beneficial To verify if the programs format is
helpful, we convert 30k trajectories to the NL format similar to setting in WebArena [212] and
we compare its performance with the model trained with the exact data, but in our program
format. The results are shown in left of Figure 8.5. We can see that performance drops on
both MiniWoB++ and WebArena when using the NL format. We hypothesize that program is
potentially a more natural format to represent a sequence of actions in the form of API calls, and
the chain-of-thought reasoning can be embedded as code comments. Our observation also echo
the observations of using program representation for non-programming tasks [108, 131, 164],
while our experiments further contributes insights towards finetuning setups for interactive
tasks.

Difference sources of indirect knowledge complement each other Our indirect knowl-
edge primarily comes from two sources: tutorials and randomly sampled web pages. In the
former source, the procedural knowledge of how-to perform the task are accurate, since the
tutorials are written and verified by human. However, there is no guarantee on the authentic-
ity of the generated observations of web pages. Indeed, generating web pages with real-world
complexity is a open research problem [155]. In the contrast, the observations from the lat-
ter sources are completely real, while there is no guarantee of the trajectory accuracy – they
are simply hallucinated by an LLM. Therefore, we hypothesize that the two sources can com-
pensate each other. To test this hypothesis, we trained three models: one using 9k synthetic
data mixed from both sources, and two others each using 9k data exclusively from one of the
sources and the results are shown in the middle of Figure 8.5. We observe a noticeable perfor-
mance degradation when models are trained with data from only one source. This indicates
that utilizing multiple sources yields a more comprehensive dataset by integrating the precise
procedural knowledge from tutorials with the realistic observations of web snapshot data.

106

MiniWoB++

Ta
sk

 su
cc

es
s r

at
e

(%
)

36.52

36.09

WebArena

4.31

4.19

Program Format NL Format

MiniWoB++

40.87

36.25

26.09

WebArena

4.56

3.33

1.48

Both sources
Random observation only

Tutorials only

MiniWoB++

40.87

36.09

27.00

23.04

WebArena

4.56

2.09

0.00 0.00

Synatra
Human + synthesis

Human only
CodeLlama

Figure 8.5: Left: the comparison between different trajectory formats. Middle: the compari-
son between different sources of indirect knowledge. Right: comparison between the models
trained with trajectories generated by our approach and the data collected from human.

8.9 Case Study

We conducted a detailed examination of instances where Synatra-CodeLlama successfully
completes tasks that GPT-4-turbo fails to accomplish on WebArena. We present a specific
example in Figure 8.6, where both agents are required to create a refund report for Q1 2023 in
the admin portal of an online store. Up to this point, both agents had correctly entered the start
and end dates. However, GPT-4 incorrectly predicts that the next step is to re-enter the starting
date, whereas Synatra-CodeLlama correctly interprets the status of the web page (“with
the date range set to include the entirety of Q1 2023”), plans appropriately (“we are ready to
generate the refund report”), and executes the correct action. This example illustrates that data
generated by Synatra could enhance the capability of a model in accurately understanding and
responding to the context, thereby enhancing the efficiency and reliability of task execution in
dynamic settings.

step 5: With the date range set to include the
entirety of Q1 2023, we are ready to generate the
refund report. The next action is to click the 'Show
Report' button to display the data.
click(element_id="1504")
step summary: Generate the refund report for Q1
2023.

[1504] button 'Show Report'
…….
[2278] StaticText 'Date Used'
[2279] combobox 'Date Used' hasPopup: menu expanded:
False
[2283] combobox 'Period' hasPopup: menu expanded: False
[2324] StaticText 'From'
[1281] textbox 'From *' required: True
 [2346] StaticText '01/01/2023'
[2286] button 'undefined \ue627'
[2333] StaticText 'To'
[1284] textbox 'To *' focused: True required: True
 [2497] StaticText '03/31/2023'
[2289] button 'undefined \ue627'
[2292] StaticText 'Order Status'
[2293] combobox 'Order Status' hasPopup: menu expanded:
False

Let's think step-by-step. The task is to generate a
refund report for Q1, and the end date is
3/31/2023, which has been correctly entered in the
"To" textbox. The "From" textbox with id [1281]
should contain the date which marks the
beginning of Q1, which is 01/01/2023. I will input
this date into the "From" textbox. After filling in
both the "From" and "To" dates, I will need to
click the 'Show Report' button with id [1504] to
generate the report.
In summary, the next action I will perform is
```type [1281] [01/01/2023] [1]```

Synatra-CodeLlamaGPT-4-turbo

Figure 8.6: An example task where Synatra-CodeLlama is successful while GPT-4-

turbo is not.

107



Author Contributions Tianyue Ou and Shuyan Zhou were the primary contributors to this
work. Shuyan Zhou proposed the idea, designed the data generation paradigm, conducted the
major part of the data generation and analysis. Tianyue Ou performed detailed investigations
and revisions of the data generation pipeline, fine-tuned the agent models, and conducted the
evaluations.

108



Table 8.1: Performance of various models in different tasks. We measure step accuracy (%)
for Mind2Web, and task success rate (%) for MiniWoB++ and WebArena. The numbers of
FireAct-7b is taken from [36]; AutoWebGLM-7b(S1) represents the model trained with
only synthetic data in [90]. All other numbers are reproduced by our work under with the same
configurations.

Model Mind2Web MiniWoB++ WebArena

Single step Short Long
Reference-based Execution-based Execution-based

API-based Models

GPT-3.5 12.79 39.57 6.16
GPT-4 29.09 53.04 14.41

Open Source Instructed Models

CodeLlama-instruct-7b 6.62 23.04 0.00
Llama3-chat-8b 11.50 31.74 3.32
Llama3-chat-70b 22.27 48.70 7.02

Open Source Interactive Data Finetuned Models

FireAct-7b [28] - - 0.25*
AgentLM-7b [192] 2.99 15.65 0.86
CodeActAgent-7b [164] 3.13 9.78 2.34
AutoWebGLM-7b(S1) [90] - - 2.50*
AgentFlan-7b [36] 3.80 20.87 0.62
Lemur-chat-70b [179] 14.28 21.30 3.33
AgentLM-70b [192] 10.61 36.52 3.07

Synatra-CodeLlama-7b 17.26 39.57 4.80

109



110



Chapter 9

Conclusion and Future Work

This thesis contributes to the ecosystem for creating general-use agents for real-world tasks.
Part I introduces our efforts to build WebArena that features complex real-world tasks and
accurate outcome-based evaluations. We believe that good benchmarks and evaluation setups
are key steps for research innovations. WebArena uncovers the fundamental limitations of
LLM-powered AI agents, and provides a shared playground for future development.

In Part II, we propose instructing AI agents to use programming languages, even for non-
coding tasks. Programming languages inherently encode structures and contain many built-in
concepts useful for complex problem-solving. Utilizing programming languages as the medium
for AI agents leverages both the design of these languages and the benefits of pretraining on
large-scale coding corpora. Our findings, particularly those presented in PaL (Chapter 5), have
inspired many follow-up works on LLMs tool use. The idea has been widely applied in products
such as the ChatGPT code interpreter1 and Bard’s implicit code executions.2

Part III presents large-scale resources encoding the hierarchies of procedures previously ab-
sent in human-authored knowledge. Observations from this part inspired the choice of proce-
dural knowledge sources and the demonstration conversion mechanism described in Chapter 8.

Finally, in Part IV, we explore leveraging human-authored indirect knowledge for agent
task learning, thus circumventing the limitations of human annotations for data scaling. In
Chapter 7, we propose a method that involves first retrieving relevant knowledge and then
generating corresponding actions. This approach mirrors the human workflow of learning
from documentation, enabling AI agents to utilize knowledge originally intended for human
use. This method obviates the need for specific annotations, such as exact demonstrations for

1https://openai.com/blog/chatgpt-plugins#code-interpreter
2https://blog.google/technology/ai/bard-improved-reasoning-google-sheets-export/

111

https://openai.com/blog/chatgpt-plugins#code-interpreter
https://blog.google/technology/ai/bard-improved-reasoning-google-sheets-export/


agents, which are often unnecessarily labor-intensive for humans. In Chapter 8, we introduce
Synatra, which capitalizes on the strengths of LLMs in language processing and code gen-
eration to synthesize demonstrations and enhance model performance on tasks where they
typically underperform.

9.1 Open Problems and Future Directions

9.1.1 Safeguard against Execution Risks

AI agents pose execution risks as they can take actions that directly impact the environment or
user assets. For example, they may access credit card information and make irrational transac-
tions, resulting in financial distress. A future direction is to develop terminologies, metrics,

and methodologies for evaluating execution risks, similar to current benchmarks for assess-
ing risks such as hallucination and factuality in LLMs.

Measuring these risks requires real executions in controlled environments. As we anticipate
increasing AI agent capabilities, the features of the testing environment must evolve accord-
ingly, becoming more resource-intensive in both time and cost than current environments like
WebArena (Chapter 3). Thus, an interesting direction is to explore generative agent bench-

marks that use generative technologies to enhance the authenticity and controllability of the
environments in a cost-efficient way [146, 180]. For instance, can we develop approaches that
use LLMs as an auxiliary environment engine, describing specific and intricate environment
dynamics that are otherwise difficult to implement manually?

9.1.2 Personalized AI Agents

Personalized AI agents are a vital cornerstone for developing generally useful agents. We view
software engineering automation with AI agents as a tangible next step, enabling individu-
als to develop customized applications effortlessly, even without programming experience. The
works presented in this thesis primarily focus on single-round code generation. Expanding this
to more dynamic scenarios with executions and feedback loops will be interesting.

In addition, as AI agents become more adept at specific tasks and involved in mission-
critical, multi-task jobs, the need for enhanced agent memory will increase. We explored
creating hierarchical procedural memory with programs and retrieving memory with goals in

112



this thesis. Moving forward, open questions include investigating novel memory architectures
to store diverse types of memory (e.g., semantic memories of facts and concepts, procedural
memories of processes [85]). Learning algorithms that enable agents to refine their memory
based on experiences is another intriguing topic.

Finally, our focus has been activating AI agents through natural language commands, where
agents act as passive executors. It will be interesting to investigate new modes of agent-

human interaction where agents can proactively offer suggestions, even before being explic-
itly asked [96].

9.1.3 Physical Robots

While this thesis primarily focuses on digital agents (except for Chapter 4, which discusses
robots in simulated environments), the expansion of AI agent research into physical robots to
reducemanual labor in home environments is a natural progression. A crucial step is to develop
advanced largemulti-modalmodels (LMMs), as robotics tasks often require multi-modal in-
puts. Specifically, procuring high-qualitymulti-modal data and innovatingmore efficient model
architectures for LMMs are essential [25]. Additionally, developing algorithms that bridge

LMMs with robotic systems to enhance their semantic understanding for tasks such as pre-
cise scene interpretation, task planning, and efficient tool utilization is necessary [42]. Finally,
it will be exciting to explore LMMs for low-level tasks such as dexterous manipulations [105],
addressing Moravec’s Paradox concerning their computational demands3.

3https://en.wikipedia.org/wiki/Moravec’s_paradox

113

https://en.wikipedia.org/wiki/Moravec' s_paradox


114



Bibliography

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-
training for program understanding and generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 2655–2668, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.211. URL https://aclanthology.org/2021.

naacl-main.211. (page 10)

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al.
Do as i can, not as i say: Grounding language in robotic affordances. ArXiv preprint,
abs/2204.01691, 2022. URL https://arxiv.org/abs/2204.01691. (page 49)

[3] Miltiadis Allamanis, Daniel Tarlow, AndrewD. Gordon, and YiWei. Bimodalmodelling of
source code and natural language. In Francis R. Bach and David M. Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2123–
2132. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/allamanis15.html. (page 81)

[4] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models of code.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
245–256. PMLR, 2020. URL http://proceedings.mlr.press/v119/alon20a.html. (page 81)

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf,
Ian D. Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, pages 3674–3683. IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00387. URL http://openaccess.thecvf.com/content_cvpr_2018/html/

115

https://aclanthology.org/2021.naacl-main.211
https://aclanthology.org/2021.naacl-main.211
https://arxiv.org/abs/2204.01691
http://proceedings.mlr.press/v37/allamanis15.html
http://proceedings.mlr.press/v119/alon20a.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html


Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html.
(page 15)

[6] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf,
Ian D. Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, pages 3674–3683. IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00387. URL http://openaccess.thecvf.com/content_cvpr_2018/html/

Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html.
(page 2)

[7] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module net-
works. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, pages 39–48. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.12. URL https://doi.org/10.1109/CVPR.2016.12. (pages 34 and 39)

[8] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning
with policy sketches. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,

6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 166–175.
PMLR, 2017. URL http://proceedings.mlr.press/v70/andreas17a.html. (pages 3 and 33)

[9] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,

USA, pages 5048–5058, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

453fadbd8a1a3af50a9df4df899537b5-Abstract.html. (pages 11 and 95)

[10] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexan-
dre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu,
Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav
Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Ke-
fan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Ja-
cob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks,

116

http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2016.12
http://proceedings.mlr.press/v70/andreas17a.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html


Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob De-
vlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fien-
ber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui,
Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kath-
leen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin
Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhong-
tao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant
Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Ali-
cia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily
Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar
Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon
Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, XuezhiWang, PidongWang,
Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue,
Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny
Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023. (page 27)

[11] Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers
for mapping instructions to actions. Transactions of the Association for Computational

Linguistics, 1:49–62, 2013. doi: 10.1162/tacl_a_00209. URL https://aclanthology.org/

Q13-1005. (pages 3, 9, 33, 34, and 35)

[12] Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning compact lexicons for CCG semantic
parsing. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1273–1283, Doha, Qatar, 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1134. URL https://aclanthology.org/D14-1134. (pages 9
and 35)

[13] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages
722–735. Springer, 2007. (page 66)

[14] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program syn-
thesis with large language models. ArXiv preprint, abs/2108.07732, 2021. URL https:

//arxiv.org/abs/2108.07732. (pages 9, 82, and 88)

117

https://aclanthology.org/Q13-1005
https://aclanthology.org/Q13-1005
https://aclanthology.org/D14-1134
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732


[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473. (page
42)

[16] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Ku-
mar. Digirl: Training in-the-wild device-control agents with autonomous reinforcement
learning. ArXiv preprint, abs/2406.11896, 2024. URL https://arxiv.org/abs/2406.11896.
(page 8)

[17] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Bran-
don Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act
by watching unlabeled online videos. Advances in Neural Information Processing Systems,
35:24639–24654, 2022. (page 11)

[18] Nathanaël Beau and Benoit Crabbé. The impact of lexical and grammatical processing on
generating code from natural language. In Findings of the Association for Computational

Linguistics: ACL 2022, pages 2204–2214, Dublin, Ireland, 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.173. URL https://aclanthology.org/

2022.findings-acl.173. (page 91)

[19] Yonatan Bisk, Jan Buys, Karl Pichotta, and Yejin Choi. Benchmarking hierarchical script
knowledge. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 4077–4085, Minneapolis, Minnesota, 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1412. URL https://aclanthology.org/

N19-1412. (page 17)

[20] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-Tensorflow, 2021. URL https://doi.

org/10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.
(pages 82 and 86)

[21] S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natu-

ral Language Processing of the AFNLP, pages 82–90, Suntec, Singapore, 2009. Association

118

http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2406.11896
https://aclanthology.org/2022.findings-acl.173
https://aclanthology.org/2022.findings-acl.173
https://aclanthology.org/N19-1412
https://aclanthology.org/N19-1412
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715


for Computational Linguistics. URL https://aclanthology.org/P09-1010. (pages 10, 11,
and 29)

[22] S.R.K. Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading between the lines:
Learning to map high-level instructions to commands. In Proceedings of the 48th An-

nual Meeting of the Association for Computational Linguistics, pages 1268–1277, Uppsala,
Sweden, 2010. Association for Computational Linguistics. URL https://aclanthology.org/

P10-1129. (pages 10 and 11)

[23] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.
(page 16)

[24] Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov.
Generative code modeling with graphs. In 7th International Conference on Learning Rep-

resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=Bke4KsA5FX. (page 81)

[25] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof
Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. ArXiv

preprint, abs/2307.15818, 2023. URL https://arxiv.org/abs/2307.15818. (page 113)

[26] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS

2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/

hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. (pages 49, 50, 51, and 53)

[27] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code genera-
tion. https://github.com/sahil280114/codealpaca, 2023. (page 11)

[28] Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu

119

https://aclanthology.org/P09-1010
https://aclanthology.org/P10-1129
https://aclanthology.org/P10-1129
https://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=Bke4KsA5FX
https://arxiv.org/abs/2307.15818
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/sahil280114/codealpaca


Yao. Fireact: Toward language agent fine-tuning. ArXiv preprint, abs/2310.05915, 2023.
URL https://arxiv.org/abs/2310.05915. (pages 11 and 109)

[29] David L. Chen and Raymond J. Mooney. Learning to interpret natural language navi-
gation instructions from observations. In Wolfram Burgard and Dan Roth, editors, Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San

Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011. URL http://www.aaai.

org/ocs/index.php/AAAI/AAAI11/paper/view/3701. (pages 33, 34, and 36)

[30] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex
Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluat-
ing Large Language Models Trained on Code. ArXiv preprint, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374. (pages 8 and 50)

[31] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan,
Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://

arxiv.org/abs/2107.03374. (pages 17, 82, 86, and 88)

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th

International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 2020.
URL http://proceedings.mlr.press/v119/chen20j.html. (page 85)

[33] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
ArXiv preprint, abs/2211.12588, 2022. URL https://arxiv.org/abs/2211.12588. (pages 9
and 98)

120

https://arxiv.org/abs/2310.05915
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2211.12588


[34] Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, and Denny Zhou.
Compositional generalization via neural-symbolic stack machines. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-

ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

12b1e42dc0746f22cf361267de07073f-Abstract.html. (page 35)

[35] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, and
Denny Zhou. Spreadsheetcoder: Formula prediction from semi-structured context. In
MarinaMeila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 1661–1672. PMLR, 2021. URL http://proceedings.mlr.

press/v139/chen21m.html. (pages 3 and 9)

[36] Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai
Chen, and Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning
for large language models. ArXiv preprint, abs/2403.12881, 2024. URL https://arxiv.org/

abs/2403.12881. (page 109)

[37] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, JasonWei, KathyMeier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with Path-
ways. ArXiv preprint, abs/2204.02311, 2022. URL https://arxiv.org/abs/2204.02311. (pages
50 and 51)

[38] Cuong Xuan Chu, Niket Tandon, and Gerhard Weikum. Distilling task knowledge from

121

https://proceedings.neurips.cc/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
http://proceedings.mlr.press/v139/chen21m.html
http://proceedings.mlr.press/v139/chen21m.html
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311


how-to communities. In Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy
Gabrilovich, editors, Proceedings of the 26th International Conference on World Wide Web,

WWW 2017, Perth, Australia, April 3-7, 2017, pages 805–814. ACM, 2017. doi: 10.1145/
3038912.3052715. URL https://doi.org/10.1145/3038912.3052715. (page 66)

[39] Cuong Xuan Chu, Niket Tandon, and Gerhard Weikum. Distilling task knowledge from
how-to communities. In Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy
Gabrilovich, editors, Proceedings of the 26th International Conference on World Wide Web,

WWW 2017, Perth, Australia, April 3-7, 2017, pages 805–814. ACM, 2017. doi: 10.1145/
3038912.3052715. URL https://doi.org/10.1145/3038912.3052715. (page 3)

[40] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic pars-
ing from the world’s response. In Proceedings of the Fourteenth Conference on Computa-

tional Natural Language Learning, pages 18–27, Uppsala, Sweden, 2010. Association for
Computational Linguistics. URL https://aclanthology.org/W10-2903. (page 9)

[41] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. Training Verifiers to Solve Math Word Prob-
lems. ArXiv preprint, abs/2110.14168, 2021. URL https://arxiv.org/abs/2110.14168. (page
53)

[42] OXE Collaboration, A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, A Irpan, A Khaz-
atsky, A Rai, A Singh, et al. Open x-embodiment: Robotic learning datasets and rt-x
models. ArXiv preprint, abs/2310.08864, 2023. URL https://arxiv.org/abs/2310.08864. (page
113)

[43] Michele Colledanchise and Petter Ögren. Behavior trees in robotics andAI: An introduction.
CRC Press, 2018. (page 36)

[44] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Neural Mod-
ular Control for Embodied Question Answering. ArXiv preprint, abs/1810.11181, 2018.
URL https://arxiv.org/abs/1810.11181. (pages 3 and 33)

[45] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve, Roozbeh
Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. Robothor: An open simulation-to-real embodied
AI platform. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 3161–3171. IEEE, 2020. doi: 10.1109/
CVPR42600.2020.00323. URL https://doi.org/10.1109/CVPR42600.2020.00323. (page 39)

122

https://doi.org/10.1145/3038912.3052715
https://doi.org/10.1145/3038912.3052715
https://aclanthology.org/W10-2903
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/1810.11181
https://doi.org/10.1109/CVPR42600.2020.00323


[46] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, BoshiWang, Huan Sun,
and Yu Su. Mind2web: Towards a generalist agent for the web, 2023. (pages 3, 7, 15, 16,
17, 20, 29, 96, 97, 103, 105, and 149)

[47] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423. (page 69)

[48] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of artificial intelligence research, 13:227–303, 2000. (page 3)

[49] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme,
TomMarty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Cha-
pados, and Alexandre Lacoste. Workarena: How capable are web agents at solving com-
mon knowledge work tasks?, 2024. (page 95)

[50] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas
Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder:
Growing generalizable, interpretable knowledge with wake-sleep bayesian program
learning. ArXiv preprint, abs/2006.08381, 2020. URL https://arxiv.org/abs/2006.08381.
(page 38)

[51] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. Out of the
bleu: how should we assess quality of the code generation models? Journal of Systems

and Software, 203:111741, 2023. (page 8)

[52] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu,
Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge. In Thirty-sixth Conference

on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=rc8o_j8I8PX. (pages 3, 11, 16, and 29)

[53] Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,
tools and technologies: a survey. In Proceedings of the 2002 ACM symposium on Document

engineering, pages 26–33, 2002. (page 83)

[54] Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran,

123

https://aclanthology.org/N19-1423
https://arxiv.org/abs/2006.08381
https://openreview.net/forum?id=rc8o_j8I8PX


Kyunghoon Bae, and Honglak Lee. Autoguide: Automated generation and selection of
state-aware guidelines for large language model agents. ArXiv preprint, abs/2403.08978,
2024. URL https://arxiv.org/abs/2403.08978. (page 11)

[55] Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and
Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
ArXiv preprint, abs/2305.11854, 2023. URL https://arxiv.org/abs/2305.11854. (page 95)

[56] Luyu Gao*, Aman Madaan*, Shuyan Zhou*, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. Pal: Program-aided language models. In International Con-

ference on Machine Learning, pages 10764–10799. PMLR, 2023. (page 98)

[57] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of
sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Nat-

ural Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552.
URL https://aclanthology.org/2021.emnlp-main.552. (pages 82, 85, and 92)

[58] Edward M Gellenbeck and Curtis R Cook. An investigation of procedure and variable
names as beacons during program comprehension. In Empirical studies of programmers:

Fourth workshop, pages 65–81. Ablex Publishing, Norwood, NJ, 1991. (page 61)

[59] Daniel Gordon, AniruddhaKembhavi, MohammadRastegari, Joseph Redmon, Dieter Fox,
and Ali Farhadi. IQA: visual question answering in interactive environments. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,

UT, USA, June 18-22, 2018, pages 4089–4098. IEEE Computer Society, 2018. doi: 10.1109/
CVPR.2018.00430. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_

IQA_Visual_Question_CVPR_2018_paper.html. (pages 2, 3, 15, 33, 35, 39, 43, and 44)

[60] Kristen Grauman, AndrewWestbury, Eugene Byrne, Zachary Chavis, Antonino Furnari,
Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin,
Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant
Sharma, MichaelWray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal,
Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Era-
palli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie,
Cristina González, James Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo,
Jáchym Kolár, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li,
Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Mur-

124

https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2305.11854
https://aclanthology.org/2021.emnlp-main.552
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html


rell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari,
Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen
Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbeláez, David Crandall,
Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Kr-
ishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard A. New-
combe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng
Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, and Jitendra Malik. Ego4d:
Around the world in 3, 000 hours of egocentric video. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-

24, 2022, pages 18973–18990. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01842. URL
https://doi.org/10.1109/CVPR52688.2022.01842. (page 11)

[61] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Ma-
lik. Cognitive mapping and planning for visual navigation. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017, pages 7272–7281. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.769. URL
https://doi.org/10.1109/CVPR.2017.769. (page 33)

[62] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual
reasoning without training. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 14953–14962, 2023. (page 9)

[63] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas
Eck, and Aleksandra Faust. A real-world webagent with planning, long context un-
derstanding, and program synthesis. ArXiv preprint, abs/2307.12856, 2023. URL https:

//arxiv.org/abs/2307.12856. (page 99)

[64] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains
and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 8342–8360, Online, 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.740. URL https://aclanthology.org/2020.acl-main.740.
(page 10)

[65] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. ArXiv preprint, abs/2002.08909, 2020.
URL https://arxiv.org/abs/2002.08909. (page 83)

125

https://doi.org/10.1109/CVPR52688.2022.01842
https://doi.org/10.1109/CVPR.2017.769
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://aclanthology.org/2020.acl-main.740
https://arxiv.org/abs/2002.08909


[66] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhen-
zhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large
multimodal models. ArXiv preprint, abs/2401.13919, 2024. URL https://arxiv.org/abs/2401.
13919. (page 8)

[67] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-
enhanced bert with disentangled attention. In 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=XPZIaotutsD. (pages 69 and 72)

[68] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In 8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:

//openreview.net/forum?id=rygGQyrFvH. (pages 57 and 88)

[69] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy:
Industrial-strength Natural Language Processing in Python, 2020. URL https://doi.org/

10.5281/zenodo.1212303. (page 76)

[70] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-encoders:
Transformer architectures and pre-training strategies for fast and accurate multi-
sentence scoring. ArXiv preprint, abs/1905.01969, 2019. URL https://arxiv.org/abs/1905.

01969. (page 66)

[71] Peter C. Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chha-
paria, Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy P.
Lillicrap. A data-driven approach for learning to control computers. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors,
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,

Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 9466–
9482. PMLR, 2022. URL https://proceedings.mlr.press/v162/humphreys22a.html. (pages
96 and 104)

[72] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettle-
moyer. Learning a neural semantic parser from user feedback. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 963–973, Vancouver, Canada, 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1089. URL https://aclanthology.org/P17-1089. (page 35)

126

https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2401.13919
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://arxiv.org/abs/1905.01969
https://arxiv.org/abs/1905.01969
https://proceedings.mlr.press/v162/humphreys22a.html
https://aclanthology.org/P17-1089


[73] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping lan-
guage to code in programmatic context. In Proceedings of the 2018 Conference on Em-

pirical Methods in Natural Language Processing, pages 1643–1652, Brussels, Belgium,
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1192. URL
https://aclanthology.org/D18-1192. (page 81)

[74] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative mod-
els for open domain question answering. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics: Main Volume, pages
874–880, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
eacl-main.74. URL https://aclanthology.org/2021.eacl-main.74. (pages 82 and 86)

[75] Yacine Jernite, Kavya Srinet, Jonathan Gray, and Arthur Szlam. CraftAssist Instruction
Parsing: Semantic Parsing for aMinecraft Assistant. ArXiv preprint, abs/1905.01978, 2019.
URL https://arxiv.org/abs/1905.01978. (pages 2, 3, and 16)

[76] Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and Peter Stone. Task planning in
robotics: an empirical comparison of pddl-and asp-based systems. Frontiers of Infor-

mation Technology & Electronic Engineering, 20(3):363–373, 2019. (page 36)

[77] Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham
Neubig, Xi Victoria Lin, Wen-tau Yih, and Srinivasan Iyer. Instruction-tuned language
models are better knowledge learners. ArXiv preprint, abs/2402.12847, 2024. URL
https://arxiv.org/abs/2402.12847. (page 10)

[78] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
ArXiv preprint, abs/1702.08734, 2017. URL https://arxiv.org/abs/1702.08734. (page 68)

[79] Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang. Learning adaptive language in-
terfaces through decomposition. In Proceedings of the First Workshop on Interactive and

Executable Semantic Parsing, pages 23–33, Online, 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.intexsempar-1.4. URL https://aclanthology.org/2020.

intexsempar-1.4. (page 41)

[80] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question an-
swering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), pages 6769–6781, Online, 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.

127

https://aclanthology.org/D18-1192
https://aclanthology.org/2021.eacl-main.74
https://arxiv.org/abs/1905.01978
https://arxiv.org/abs/2402.12847
https://arxiv.org/abs/1702.08734
https://aclanthology.org/2020.intexsempar-1.4
https://aclanthology.org/2020.intexsempar-1.4
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550


emnlp-main.550. (pages 69 and 85)

[81] Najoung Kim and Sebastian Schuster. Entity tracking in language models. ArXiv preprint,
abs/2305.02363, 2023. URL https://arxiv.org/abs/2305.02363. (page 10)

[82] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
GrahamNeubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. In Annual Conference of the

Association for Computational Linguistics (ACL), Bangkok, Thailand, August 2024. URL
https://arxiv.org/abs/2401.13649. (page 8)

[83] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, LucaWeihs, Alvaro Herrasti,
Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive
3D Environment for Visual AI. arXiv, 2017. (page 29)

[84] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Ha-
jishirzi. MAWPS: A math word problem repository. In Proceedings of the 2016 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 1152–1157, San Diego, California, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/N16-1136. URL https://aclanthology.org/

N16-1136. (page 53)

[85] Iuliia Kotseruba and John K Tsotsos. 40 years of cognitive architectures: core cognitive
abilities and practical applications. Artificial Intelligence Review, 53(1):17–94, 2020. (page
113)

[86] Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 66–71, Brussels, Belgium, 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012. (page 68)

[87] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Sel-
vatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning environ-
ment. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-

cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

569ff987c643b4bedf504efda8f786c2-Abstract.html. (pages 3 and 29)

128

https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2401.13649
https://aclanthology.org/N16-1136
https://aclanthology.org/N16-1136
https://aclanthology.org/D18-2012
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html


[88] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, AndrewM. Dai, Jakob Uszko-
reit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019.
doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026. (page 22)

[89] Nikolaos Lagos, Matthias Gallé, Alexandr Chernov, and Ágnes Sándor. Enriching how-
to guides with actionable phrases and linked data. In Web Intelligence, volume 15, pages
189–203. IOS Press, 2017. (pages 66 and 68)

[90] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu,
Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and rein-
force a large languagemodel-basedweb navigating agent. ArXiv preprint, abs/2404.03648,
2024. URL https://arxiv.org/abs/2404.03648. (page 109)

[91] Yann LeCun. A path towards autonomousmachine intelligence version 0.9. 2, 2022-06-27.
Open Review, 62, 2022. (page 17)

[92] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software engineers use
documentation: The state of the practice. IEEE software, 20(6):35–39, 2003. (page 82)

[93] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebas-
tian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive
NLP tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-

cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

6b493230205f780e1bc26945df7481e5-Abstract.html. (page 83)

[94] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
Wu, BehnamNeyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. ArXiv preprint, abs/2206.14858, 2022. URL https://arxiv.

org/abs/2206.14858. (pages 49, 56, and 57)

[95] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.

129

https://aclanthology.org/Q19-1026
https://arxiv.org/abs/2404.03648
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858


Solving quantitative reasoning problems with language models. Advances in Neural In-

formation Processing Systems, 35:3843–3857, 2022. (pages 3 and 9)

[96] Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human
preferences with language models. ArXiv preprint, abs/2310.11589, 2023. URL https:

//arxiv.org/abs/2310.11589. (page 113)

[97] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural
language instructions to mobile UI action sequences. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 8198–8210, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.729. URL
https://aclanthology.org/2020.acl-main.729. (pages 2, 4, 7, 16, 20, 29, and 33)

[98] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014. (page 45)

[99] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. NL2Bash: A
corpus and semantic parser for natural language interface to the linux operating system.
In Proceedings of the Eleventh International Conference on Language Resources and Eval-

uation (LREC 2018), Miyazaki, Japan, 2018. European Language Resources Association
(ELRA). URL https://aclanthology.org/L18-1491. (page 87)

[100] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program Induction by Ratio-
nale Generation: Learning to Solve and Explain AlgebraicWord Problems. ArXiv preprint,
abs/1705.04146, 2017. URL https://arxiv.org/abs/1705.04146. (page 9)

[101] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Re-
inforcement learning on web interfaces using workflow-guided exploration. In 6th In-

ternational Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:

//openreview.net/forum?id=ryTp3f-0-. (pages 20, 29, and 149)

[102] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing. ArXiv preprint, abs/2107.13586, 2021. URL https:

//arxiv.org/abs/2107.13586. (page 51)

[103] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation
with multi-turn dialogue. ArXiv preprint, abs/2402.05930, 2024. URL https://arxiv.org/

130

https://arxiv.org/abs/2310.11589
https://arxiv.org/abs/2310.11589
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/L18-1491
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930


abs/2402.05930. (page 7)

[104] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li.
CLIP4Clip: An empirical study of clip for end to end video clip retrieval. ArXiv preprint,
abs/2104.08860, 2021. URL https://arxiv.org/abs/2104.08860. (page 76)

[105] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward
design via coding large language models. ArXiv preprint, abs/2310.12931, 2023. URL
https://arxiv.org/abs/2310.12931. (page 113)

[106] AmanMadaan andAmir Yazdanbakhsh. Text and patterns: For effective chain of thought,
it takes two to tango. ArXiv preprint, abs/2209.07686, 2022. URL https://arxiv.org/abs/

2209.07686. (page 54)

[107] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language
models of code are few-shot commonsense learners. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.90. (pages 49, 60, and 61)

[108] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language
models of code are few-shot commonsense learners. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.90. (pages 9, 98, and 106)

[109] RobertMcCarthy, Daniel CHTan, Dominik Schmidt, Fernando Acero, NathanHerr, Yilun
Du, Thomas G Thuruthel, and Zhibin Li. Towards generalist robot learning from internet
video: A survey. ArXiv preprint, abs/2404.19664, 2024. URL https://arxiv.org/abs/2404.

19664. (page 11)

[110] Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating
and developing English math word problem solvers. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 975–984, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.92. URL https:
//aclanthology.org/2020.acl-main.92. (page 53)

[111] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev,
and Josef Sivic. Howto100m: Learning a text-video embedding by watching hundred

131

https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2104.08860
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2209.07686
https://arxiv.org/abs/2209.07686
https://aclanthology.org/2022.emnlp-main.90
https://aclanthology.org/2022.emnlp-main.90
https://arxiv.org/abs/2404.19664
https://arxiv.org/abs/2404.19664
https://aclanthology.org/2020.acl-main.92
https://aclanthology.org/2020.acl-main.92


million narrated video clips. In 2019 IEEE/CVF International Conference on Computer Vi-

sion, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 2630–2640.
IEEE, 2019. doi: 10.1109/ICCV.2019.00272. URL https://doi.org/10.1109/ICCV.2019.00272.
(pages 74 and 101)

[112] Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral,
Tanmay Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, and Ashwin Kalyan.
LILA: A unified benchmark for mathematical reasoning. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 5807–5832, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.392. (pages 9 and 49)

[113] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave:
Context-sensitive grounding of natural language to manipulation instructions. The Inter-
national Journal of Robotics Research, 35(1-3):281–300, 2016. (pages 15, 33, 34, 35, and 36)

[114] Yoshio Momouchi. Control structures for actions in procedural texts and PT-chart. In
COLING 1980 Volume 1: The 8th International Conference on Computational Linguistics,
1980. URL https://aclanthology.org/C80-1016. (page 65)

[115] Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee.
Bagel: Bootstrapping agents by guiding exploration with language. ArXiv preprint,
abs/2403.08140, 2024. URL https://arxiv.org/abs/2403.08140. (pages 11 and 95)

[116] Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for
transfer in deep reinforcement learning. Journal of Artificial Intelligence Research, 63:
849–874, 2018. (pages 10 and 11)

[117] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. A conversational paradigm for program synthesis. arXiv
preprint, 2022. (page 82)

[118] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,
Charles Sutton, and Augustus Odena. Show your Work: Scratchpads for Intermedi-
ate Computation with Language Models. ArXiv preprint, abs/2112.00114, 2021. URL
https://arxiv.org/abs/2112.00114. (page 60)

[119] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L Norman, Matthew Mace, and
Manuel Gordon. What programmers really want: results of a needs assessment for sdk

132

https://doi.org/10.1109/ICCV.2019.00272
https://aclanthology.org/2022.emnlp-main.392
https://aclanthology.org/C80-1016
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114


documentation. In Proceedings of the 20th annual international conference on Computer

documentation, pages 133–141, 2002. (page 82)

[120] OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI Blog, 2022. (page
27)

[121] OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023. (page 27)

[122] Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta
Sengupta, Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect
knowledge into direct demonstrations for digital agents at scale. In submission to NeurIPS,
2024. No citations.

[123] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in Neural Infor-

mation Processing Systems, 35:27730–27744, 2022. (page 157)

[124] Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron VandenBerg, and Jamie Callan.
Clueweb22: 10 billion web documents with visual and semantic information. ArXiv

preprint, abs/2211.15848, 2022. URL https://arxiv.org/abs/2211.15848. (page 101)

[125] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr.
Autonomous evaluation and refinement of digital agents. ArXiv preprint, abs/2404.06474,
2024. URL https://arxiv.org/abs/2404.06474. (page 8)

[126] Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu,
Yanyi Shang, Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web
agents in online environments. ArXiv preprint, abs/2406.12373, 2024. URL https://arxiv.

org/abs/2406.12373. (page 8)

[127] Paolo Pareti, Benoit Testu, Ryutaro Ichise, Ewan Klein, and Adam Barker. Integrating
know-how into the linked data cloud. In International Conference on Knowledge Engi-

neering and Knowledge Management, pages 385–396. Springer, 2014. (page 66)

[128] Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. In Findings of the Associa-

tion for Computational Linguistics: EMNLP 2021, pages 2719–2734, Punta Cana, Domini-
can Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-emnlp.232. URL https://aclanthology.org/2021.findings-emnlp.232. (page 90)

133

https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2406.12373
https://arxiv.org/abs/2406.12373
https://aclanthology.org/2021.findings-emnlp.232


[129] Panupong Pasupat, Yuan Zhang, and Kelvin Guu. Controllable semantic parsing via re-
trieval augmentation. In Proceedings of the 2021 Conference on Empirical Methods in Natu-

ral Language Processing, pages 7683–7698, Online and Punta Cana, Dominican Republic,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.607.
URL https://aclanthology.org/2021.emnlp-main.607. (page 90)

[130] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP Models Really Able to
Solve Simple Math Word Problems? ArXiv preprint, abs/2103.07191, 2021. URL https:

//arxiv.org/abs/2103.07191. (page 53)

[131] Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan Zhu, and Iryna Gurevych. Code
prompting elicits conditional reasoning abilities in text+ code llms. ArXiv preprint,
abs/2401.10065, 2024. URL https://arxiv.org/abs/2401.10065. (page 106)

[132] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and An-
tonio Torralba. Virtualhome: Simulating household activities via programs. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, pages 8494–8502. IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00886. URL http://openaccess.thecvf.com/content_cvpr_2018/html/

Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html. (pages 3, 4, 15, 16,
17, and 29)

[133] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.
URL http://jmlr.org/papers/v21/20-074.html. (page 86)

[134] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.
URL http://jmlr.org/papers/v21/20-074.html. (page 82)

[135] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, 2016.
Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://

aclanthology.org/D16-1264. (page 23)

[136] Pranav Rajpurkar, Robin Jia, and Percy Liang. Knowwhat you don’t know: Unanswerable

134

https://aclanthology.org/2021.emnlp-main.607
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2401.10065
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264


questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia,
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https:

//aclanthology.org/P18-2124. (page 72)

[137] Pranav Rajpurkar, Robin Jia, and Percy Liang. Knowwhat you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia,
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https:

//aclanthology.org/P18-2124. (page 25)

[138] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural

Information Processing Systems, 36, 2024. (page 7)

[139] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natu-

ral Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China, 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/

D19-1410. (page 68)

[140] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25
and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009. ISSN 1554-0669. doi: 10.1561/
1500000019. URL https://doi-org.proxy.library.upenn.edu/10.1561/1500000019. (pages 68
and 75)

[141] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms. Journal
of the American Society for Information science, 27(3):129–146, 1976. (pages 82 and 85)

[142] Pedro Rodriguez and Jordan Boyd-Graber. Evaluation paradigms in question answer-
ing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 9630–9642, Online and Punta Cana, Dominican Republic, 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.758. URL
https://aclanthology.org/2021.emnlp-main.758. (page 93)

[143] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do professional
developers comprehend software? In 2012 34th International Conference on Software

Engineering (ICSE), pages 255–265. IEEE, 2012. (page 83)

135

https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://doi-org.proxy.library.upenn.edu/10.1561/1500000019
https://aclanthology.org/2021.emnlp-main.758


[144] Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1743–
1752, Lisbon, Portugal, 2015. Association for Computational Linguistics. doi: 10.18653/
v1/D15-1202. URL https://aclanthology.org/D15-1202. (page 3)

[145] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation
models for code. ArXiv preprint, abs/2308.12950, 2023. URL https://arxiv.org/abs/2308.

12950. (page 103)

[146] Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba,
Yann Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm
agents with an lm-emulated sandbox. arXiv preprint, 2023. (page 112)

[147] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Sai-
ful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea
Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali
Bers, Thomas Wolf, and Alexander M. Rush. Multitask Prompted Training Enables Zero-
Shot Task Generalization, 2021. URL https://arxiv.org/abs/2110.08207. (page 49)

[148] Gabriel Sarch, Lawrence Jang, Michael J Tarr, William W Cohen, Kenneth Marino, and
Katerina Fragkiadaki. Ical: Continual learning of multimodal agents by transforming
trajectories into actionable insights. ArXiv preprint, abs/2406.14596, 2024. URL https:

//arxiv.org/abs/2406.14596. (page 11)

[149] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in
Neural Information Processing Systems, 36, 2024. (page 9)

[150] Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang.
Natural language to code translation with execution. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 3533–3546, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.231. (page 87)

136

https://aclanthology.org/D15-1202
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/pdf/2110.08207.pdf
https://arxiv.org/pdf/2110.08207.pdf
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2406.14596
https://arxiv.org/abs/2406.14596
https://aclanthology.org/2022.emnlp-main.231


[151] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World
of bits: An open-domain platform for web-based agents. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine

Learning Research, pages 3135–3144. PMLR, 2017. URL http://proceedings.mlr.press/v70/

shi17a.html. (pages 7, 15, 20, 29, and 149)

[152] Eui Chul Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov. Pro-
gram synthesis and semantic parsing with learned code idioms. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Confer-

ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, pages 10824–10834, 2019. URL https://proceedings.neurips.cc/

paper/2019/hash/cff34ad343b069ea6920464ad17d4bcf-Abstract.html. (page 35)

[153] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh
Mottaghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting
grounded instructions for everyday tasks. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
10737–10746. IEEE, 2020. doi: 10.1109/CVPR42600.2020.01075. URL https://doi.org/10.

1109/CVPR42600.2020.01075. (pages 2, 4, 7, 8, 15, 29, 33, 35, and 39)

[154] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew J. Hausknecht. Alfworld: Aligning text and embodied environments for inter-
active learning. In 9th International Conference on Learning Representations, ICLR 2021,

Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=0IOX0YcCdTn. (pages 15 and 41)

[155] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code:
How far are we from automating front-end engineering? ArXiv preprint, abs/2403.03163,
2024. URL https://arxiv.org/abs/2403.03163. (pages 101 and 106)

[156] Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim, Roozbeh Mottaghi, and
Jonghyun Choi. Moca: A modular object-centric approach for interactive instruction
following. ArXiv preprint, abs/2012.03208, 2020. URL https://arxiv.org/abs/2012.03208.
(pages 45 and 46)

[157] Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu, Hadi Khader, Marwa Mouallem, Iris

137

http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
https://proceedings.neurips.cc/paper/2019/hash/cff34ad343b069ea6920464ad17d4bcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cff34ad343b069ea6920464ad17d4bcf-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2012.03208


Zhang, and Yoav Artzi. Executing instructions in situated collaborative interactions. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 2119–2130, Hong Kong, China, 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1218. URL https://aclanthology.org/D19-1218. (pages 2
and 4)

[158] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112
(1-2):181–211, 1999. (page 3)

[159] Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay,
Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny Zhou, and Ja-
son Wei. Challenging big-bench tasks and whether chain-of-thought can solve them.
ArXiv preprint, abs/2210.09261, 2022. URL https://arxiv.org/abs/2210.09261. (pages 53, 55,
and 57)

[160] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. The effects of comments
and identifier names on program comprehensibility: an experimental investigation. J.

Prog. Lang., 4(3):143–167, 1996. (page 61)

[161] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Za-
farali Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A rein-
forcement learning platform for android. ArXiv preprint, abs/2105.13231, 2021. URL
https://arxiv.org/abs/2105.13231. (page 29)

[162] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An In-
troduction to Probabilistic Programming. ArXiv preprint, abs/1809.10756, 2018. URL
https://arxiv.org/abs/1809.10756. (page 103)

[163] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large
language models. ArXiv preprint, abs/2305.16291, 2023. URL https://arxiv.org/abs/2305.

16291. (pages 9 and 28)

[164] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng
Ji. Executable code actions elicit better llm agents, 2024. (pages 98, 106, and 109)

[165] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou.
Rationale-Augmented Ensembles in Language Models. ArXiv preprint, abs/2207.00747,

138

https://aclanthology.org/D19-1218
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2105.13231
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2207.00747


2022. URL https://arxiv.org/abs/2207.00747. (page 51)

[166] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
Consistency Improves Chain of Thought Reasoning in Language Models. ArXiv preprint,
abs/2203.11171, 2022. URL https://arxiv.org/abs/2203.11171. (pages 51, 56, 57, and 58)

[167] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 8696–8708, Online and Punta Cana, Dominican Republic, 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL
https://aclanthology.org/2021.emnlp-main.685. (pages 81, 82, 85, 86, and 92)

[168] Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based eval-
uation for open-domain code generation. ArXiv preprint, abs/2212.10481, 2022. URL
https://arxiv.org/abs/2212.10481. (pages 17 and 88)

[169] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M Dai, and Quoc V Le. Finetuned Language Models are Zero-shot
Learners. ArXiv preprint, abs/2109.01652, 2021. URL https://arxiv.org/abs/2109.01652.
(page 49)

[170] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824–24837, 2022. (pages
9, 26, 51, 53, 56, and 57)

[171] John Wieting, Kevin Gimpel, Graham Neubig, and Taylor Berg-Kirkpatrick. Simple and
effective paraphrastic similarity from parallel translations. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics, pages 4602–4608, Florence,
Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1453. URL
https://aclanthology.org/P19-1453. (page 68)

[172] John Wieting, Kevin Gimpel, Graham Neubig, and Taylor Berg-kirkpatrick. Paraphras-
tic representations at scale. In Proceedings of the 2022 Conference on Empirical Meth-

ods in Natural Language Processing: System Demonstrations, pages 379–388, Abu Dhabi,
UAE, 2022. Association for Computational Linguistics. URL https://aclanthology.org/

2022.emnlp-demos.38. (page 68)

[173] LedellWu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Zero-

139

https://arxiv.org/abs/2207.00747
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://aclanthology.org/2021.emnlp-main.685
https://arxiv.org/abs/2212.10481
https://arxiv.org/pdf/2109.01652.pdf
https://arxiv.org/pdf/2109.01652.pdf
https://arxiv.org/abs/2109.01652
https://aclanthology.org/P19-1453
https://aclanthology.org/2022.emnlp-demos.38
https://aclanthology.org/2022.emnlp-demos.38


shot entity linking with dense entity retrieval. corr abs/1911.03814 (2019). ArXiv preprint,
abs/1911.03814, 2019. URL https://arxiv.org/abs/1911.03814. (pages 66 and 69)

[174] Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus N Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with Large Language Models. ArXiv preprint,
abs/2205.12615, 2022. URL https://arxiv.org/abs/2205.12615. (page 49)

[175] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Ya-
sunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong,
BailinWang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Uni-
fiedSKG: Unifying and multi-tasking structured knowledge grounding with text-to-text
language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing, pages 602–631, Abu Dhabi, United Arab Emirates, 2022. Association
for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.39. (page
9)

[176] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmark-
ing multimodal agents for open-ended tasks in real computer environments, 2024. (page
95)

[177] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig. In-
corporating external knowledge through pre-training for natural language to code gener-
ation. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, pages 6045–6052, Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.538. URL https://aclanthology.org/2020.acl-main.538. (pages
11 and 81)

[178] Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay,
and Monica Lam. Grounding open-domain instructions to automate web support tasks.
In Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 1022–1032, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.80.
URL https://aclanthology.org/2021.naacl-main.80. (pages 7, 16, 29, and 33)

[179] Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan

140

https://arxiv.org/abs/1911.03814
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2020.acl-main.538
https://aclanthology.org/2021.naacl-main.80


Zhou, Yitao Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for
language agents. ArXiv preprint, abs/2310.06830, 2023. URL https://arxiv.org/abs/2310.

06830. (pages 99 and 109)

[180] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans,
and Pieter Abbeel. Learning interactive real-world simulators. arXiv preprint, 2023. (page
112)

[181] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-
hop question answering. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 2369–2380, Brussels, Belgium, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/

D18-1259. (pages 22 and 23)

[182] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in

Neural Information Processing Systems, volume 35, pages 20744–20757. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/

82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf. (pages 8, 15, 29, and 147)

[183] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. ArXiv preprint,
abs/2210.03629, 2022. URL https://arxiv.org/abs/2210.03629. (pages 9, 26, 49, and 97)

[184] Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin
Choi, and Bill Yuchen Lin. Lumos: Learning agents with unified data, modular design,
and open-source llms. ArXiv preprint, abs/2311.05657, 2023. URL https://arxiv.org/abs/

2311.05657. (page 11)

[185] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver, Canada, 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1041. URL https://aclanthology.org/
P17-1041. (page 81)

[186] Pengcheng Yin, BowenDeng, Edgar Chen, BogdanVasilescu, andGrahamNeubig. Learn-
ing to mine aligned code and natural language pairs from stack overflow. In 2018

141

https://arxiv.org/abs/2310.06830
https://arxiv.org/abs/2310.06830
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041


IEEE/ACM 15th international conference on mining software repositories (MSR), pages 476–
486. IEEE, 2018. (pages 82, 86, 87, and 88)

[187] Pengcheng Yin, GrahamNeubig,Wen-tau Yih, and Sebastian Riedel. TaBERT: Pretraining
for joint understanding of textual and tabular data. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 8413–8426, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.745. URL
https://aclanthology.org/2020.acl-main.745. (page 9)

[188] Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal, Tamara L. Berg, and Dhruv
Batra. Multi-target embodied question answering. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 6309–6318. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.
00647. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Multi-Target_

Embodied_Question_Answering_CVPR_2019_paper.html. (pages 3, 9, and 33)

[189] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma,
Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A
large-scale human-labeled dataset for complex and cross-domain semantic parsing and
text-to-SQL task. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 3911–3921, Brussels, Belgium, 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.
(page 9)

[190] JohnM Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on artificial intelligence,
pages 1050–1055, 1996. (page 3)

[191] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag:
Can a machine really finish your sentence? In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy,
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472. (page 66)

[192] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie
Tang. Agenttuning: Enabling generalized agent abilities for llms. ArXiv preprint,
abs/2310.12823, 2023. URL https://arxiv.org/abs/2310.12823. (page 109)

[193] Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous

142

https://aclanthology.org/2020.acl-main.745
http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Multi-Target_Embodied_Question_Answering_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Multi-Target_Embodied_Question_Answering_CVPR_2019_paper.html
https://aclanthology.org/D18-1425
https://aclanthology.org/P19-1472
https://arxiv.org/abs/2310.12823


process structure induction for sub-event sequence prediction. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1541–
1550, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.119. URL https://aclanthology.org/2020.emnlp-main.119. (page 3)

[194] Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous
process structure induction for sub-event sequence prediction. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1541–
1550, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.119. URL https://aclanthology.org/2020.emnlp-main.119. (page 66)

[195] Li Zhang, Qing Lyu, and Chris Callison-Burch. Intent detection with WikiHow. In Pro-

ceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Compu-

tational Linguistics and the 10th International Joint Conference on Natural Language Pro-

cessing, pages 328–333, Suzhou, China, 2020. Association for Computational Linguistics.
URL https://aclanthology.org/2020.aacl-main.35. (page 66)

[196] Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about goals, steps, and
temporal ordering with WikiHow. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 4630–4639, Online, 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.374. URL
https://aclanthology.org/2020.emnlp-main.374. (pages 66 and 78)

[197] Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about goals, steps, and
temporal ordering with WikiHow. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 4630–4639, Online, 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.374. URL
https://aclanthology.org/2020.emnlp-main.374. (page 96)

[198] Li Zhang, Liam Dugan, Hainiu Xu, and Chris Callison-burch. Exploring the curious
case of code prompts. In Bhavana Dalvi Mishra, Greg Durrett, Peter Jansen, Danilo
Neves Ribeiro, and Jason Wei, editors, Proceedings of the 1st Workshop on Natural Lan-

guage Reasoning and Structured Explanations (NLRSE), pages 9–17, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.nlrse-1.2. URL
https://aclanthology.org/2023.nlrse-1.2. (page 10)

[199] Li Zhang, Hainiu Xu, Yue Yang, Shuyan Zhou, Weiqiu You, Manni Arora, and Chris
Callison-Burch. Causal reasoning of entities and events in procedural texts. In Findings

143

https://aclanthology.org/2020.emnlp-main.119
https://aclanthology.org/2020.emnlp-main.119
https://aclanthology.org/2020.aacl-main.35
https://aclanthology.org/2020.emnlp-main.374
https://aclanthology.org/2020.emnlp-main.374
https://aclanthology.org/2023.nlrse-1.2


of the Association for Computational Linguistics: EACL 2023, pages 415–431, Dubrovnik,
Croatia, 2023. Association for Computational Linguistics. URL https://aclanthology.org/

2023.findings-eacl.31. (page 9)

[200] Tianyi Zhang, Varsha Kishore, FelixWu, Kilian Q.Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with BERT. In 8th International Conference on Learning Rep-

resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=SkeHuCVFDr. (page 69)

[201] Yi Zhang, Sujay Kumar Jauhar, Julia Kiseleva, Ryen White, and Dan Roth. Learning
to decompose and organize complex tasks. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 2726–2735, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.217. URL https://aclanthology.org/2021.

naacl-main.217. (page 66)

[202] Boyuan Zheng, BoyuGou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. ArXiv preprint, abs/2401.01614, 2024. URL https://arxiv.org/abs/

2401.01614. (page 97)

[203] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. arxiv 2017. ArXiv preprint,
abs/1709.00103, 2017. URL https://arxiv.org/abs/1709.00103. (page 17)

[204] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning. ArXiv preprint,
abs/1709.00103, 2017. URL https://arxiv.org/abs/1709.00103. (page 9)

[205] Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel
environment dynamics via reading. ArXiv preprint, abs/1910.08210, 2019. URL https:

//arxiv.org/abs/1910.08210. (pages 2, 10, and 11)

[206] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-Most Prompting Enables
Complex Reasoning in Large Language Models. ArXiv preprint, abs/2205.10625, 2022.
URL https://arxiv.org/abs/2205.10625. (page 51)

[207] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. ArXiv preprint,
abs/2211.09066, 2022. URL https://arxiv.org/abs/2211.09066. (pages 3 and 9)

144

https://aclanthology.org/2023.findings-eacl.31
https://aclanthology.org/2023.findings-eacl.31
https://openreview.net/forum?id=SkeHuCVFDr
https://aclanthology.org/2021.naacl-main.217
https://aclanthology.org/2021.naacl-main.217
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2211.09066


[208] Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated
agents through natural language. In Proceedings of the Workshop on Structured and Un-

structured Knowledge Integration (SUKI), pages 67–84, Seattle, USA, 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.suki-1.8. URL https://aclanthology.

org/2022.suki-1.8. (pages 28 and 98)

[209] Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated
agents through natural language. In Workshop on Structured and Unstructured Knowl-

edge Integration (SUKI), Seattle, USA, July 2022. URL https://arxiv.org/abs/2109.08214.
No citations.

[210] Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-Burch, and
Graham Neubig. Show me more details: Discovering hierarchies of procedures from
semi-structured web data. In Proceedings of the 60th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 2998–3012, Dublin, Ireland,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.214. URL
https://aclanthology.org/2022.acl-long.214. (page 96)

[211] Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompt-
ing: Generating code by retrieving the docs. In International Conference on Learning

Representations (ICLR), 2023. No citations.

[212] Shuyan Zhou*, Frank F. Xu*, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. We-
barena: A realistic web environment for building autonomous agents. In International

Conference on Learning Representations (ICLR), Vienna, Austria, 2024. (pages 8, 95, 96, 97,
104, and 106)

[213] Yilun Zhou, Julie Shah, and Steven Schockaert. Learning household task knowledge from
WikiHow descriptions. In Proceedings of the 5th Workshop on Semantic Deep Learning

(SemDeep-5), pages 50–56, Macau, China, 2019. Association for Computational Linguis-
tics. URL https://aclanthology.org/W19-5808. (page 66)

[214] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang. Vision-language navigation
with self-supervised auxiliary reasoning tasks. In 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
10009–10019. IEEE, 2020. doi: 10.1109/CVPR42600.2020.01003. URL https://doi.org/10.

1109/CVPR42600.2020.01003. (page 33)

145

https://aclanthology.org/2022.suki-1.8
https://aclanthology.org/2022.suki-1.8
https://arxiv.org/abs/2109.08214
https://aclanthology.org/2022.acl-long.214
https://aclanthology.org/W19-5808
https://doi.org/10.1109/CVPR42600.2020.01003
https://doi.org/10.1109/CVPR42600.2020.01003


146



Appendix A

Appendix for Chapter 3

A.1 Website Implementation

Given the selected websites described in §3.2.2, we make the best attempt to reproduce the
functionality of commonly used sites in a reproducible way. To achieve this, we utilized open-
source frameworks for the development of the websites across various categories and imported
data from their real-world counterparts. For the E-commerce category, we constructed a shop-
ping website with approximately 90k products, including the prices, options, detailed product
descriptions, images, and reviews, spanning over 300 product categories. This website is devel-
oped using Adobe Magento, an open-source e-commerce platform1. Data resources were ob-
tained from data from actual online sites, such as that included in theWebshop data dump[182].
As for the social forum platform, we deployed an open-source software Postmill2, the open-
sourced counterpart of Reddit3. We sampled from the top 50 subreddits4. We then manually se-
lectedmany subreddit for northeast US cities as well as subreddit for machine learning and deep
learning-related topics. This manual selection encourages cross-website tasks such as seeking
information related to the northeast US on both Reddit and the map. In total, we have 95 sub-
reddits, 127390 posts, and 661781 users. For the collaborative software development platform,
we choose GitLab5. We heuristically simulate the code repository characteristics by sampling
at least ten repositories for every programming language: 80% of them are sampled from the
set of top 90 percentile wrt stars repos using a discrete probability distribution weighted pro-

1https://github.com/magento/magento2
2https://postmill.xyz/
3https://www.reddit.com/
4https://redditlist.com/sfw.html
5https://gitlab.com/gitlab-org/gitlab

147

https://github.com/magento/magento2
https://postmill.xyz/
https://www.reddit.com/
https://redditlist.com/sfw.html
https://gitlab.com/gitlab-org/gitlab


portional to their number of stars; the remaining are sampled from the bottom ten percentile
set using similar weighted distribution. This is done to ensure fair representation of repos of
all kinds, from popular projects with many issues and pull requests to small personal projects.
In total, we have 300 repositories and more than 1000 accounts with at least one commit to a
repository. For the content management system, we adapted Adobe Magento’s admin portal,
deploying the sample data provided in the official guide. We employ OpenStreetMap6 for map
service implementation, confining our focus to the northeast US region due to data storage
constraints. We implement a calculator and a scratchpad ourselves.

Lastly, we configure the knowledge resources as individual websites, complemented with
search functionality for efficient information retrieval. Specifically, we utilize Kiwix7 to host an
offline version of EnglishWikipedia with a knowledge cutoff of May 2023. The user manuals for
GitLab and Adobe Commerce Merchant documentation are scraped from the official websites.

A.2 Environment Delivery and Reset

One goal for our evaluation environment is ease of use and reproducibility. As a result, we
deploy our websites in separate Docker images 8, one per website. The Docker images are
fully self-contained with all the code of the website, database, as well as any other software
dependencies. They also do not rely on external volume mounts to function, as the data of
the websites are also part of the docker image. This way, the image is easy to distribution
containing all the pre-populated websites for reproducible evaluation. End users can download
our packaged Docker images and run them on their systems and re-deploy the exact websites
together with the data used in our benchmarks for their local benchmarking.

Since some evaluation cases may require the agent to modify the data contained in the
website, e.g., creating a new user, deleting a post, etc., it is crucial to be able to easily reset the
website environment to its initial state. With Docker images, the users could stop and delete the
currently running containers for that website and start the container from our original image
again to fully reset the environment to the initial state. Depending on the website, this process
may take from a few seconds to one minute. However, not all evaluation cases would require an
environment reset, as many of the intents are information gathering and are read-only for the
website data. Also, combined with the inference time cost for the agent LLMs, we argue that

6https://www.openstreetmap.org/
7https://www.kiwix.org/en/
8https://www.docker.com/

148

https://www.openstreetmap.org/
https://www.kiwix.org/en/
https://www.docker.com/


this environment reset method, through restarting Docker containers from the original images,
will have a non-negligible but small impact on evaluation time.

A.3 User Roles Simulation

Users of the same website often have disparate experiences due to their distinct roles, permis-

sions, and interaction histories. For instance, within an E-commerce CMS, a shop owner might
possess full read and write permissions across all content, whereas an employee might only
be granted write permissions for products but not for customer data. We aim to emulate this
scenario by generating unique user profiles on each platform.

On the shopping site, we created a customer profile that has over 35 orders within a span
of two years. On GitLab, we selected a user whomaintains several popular open-source projects
with numerousmerge requests and issues. This user alsomanages a handful of personal projects
privately. On Reddit, our chosen profilewas a userwho actively participates in discussions, with
many posts and comments. Lastly, on our E-commerce CMS, we set up a user profile for a shop
owner who has full read-and-write access to all system contents.

All users are automatically logged into their accounts using a pre-cached cookie. To our
best knowledge, this is the first publicly available agent evaluation environment to implement
such a characteristic. Existing literature typically operates under the assumption of universally
identical user roles [46, 101, 151].

A.4 Intent Distribution

The distribution of intents across the websites are shown in Figure A.1.

A.5 Human Performance

We acknowledge that there may be a difference in human performance when annotators with
different demographics are involved. In fact, many tasks in our dataset require domain-specific
knowledge. For instance, an average user may not know what a git merge request is; or how to
create a product in a complex content management system. We aim to design tasks that have
easy-to-imagine outcomes (e.g., a new product page is created) rather than those that are easily
performed by an average user without significant domain knowledge.

149



CMS

22.4%

Map

13.4%

E-commerce
23.0%

Reddit

13.1%

Gitlab

22.2%
Cross Site

5.9%

Figure A.1: The intent distribution across different websites. Cross-site intents necessitate in-
teracting with multiple websites. Notably, regardless of the website, all user intents require
interactions with multiple web pages.

CoT UA Hint Model SR

✓ ✗ GPT-3.5 6.28

Table A.1: The task success rate (SR %) of GPT-3.5-turbo-16k-0613 with temperature 0.0.

A.6 Experiment Configurations

We experiment with GPT-3.5-turbo-16k-0613, GPT-4-0613, and text-bison-001 with a tem-
perature of 1.0 and a top-p parameter of 0.9. The maximum number of state transitions is set
to 30. We halt execution if the same action is repeated more than three times on the same
observation or if the agent generates three consecutive invalid actions. These situations typi-
cally indicate a high likelihood of execution failure and hence warrant early termination. For
text-bison-001, we additionally allow ten retries until it generates a valid action.

Primarily, we use a high temperature of 1.0 to encourage the exploration. To aid replicating
the results, we provide the results of GPT-3.5-turbo-16k-0613with temperature 0.0 in Table A.1
and the execution trajectories in our code repository.

150



Dataset gpt-4-0613 gpt-4-1106-preview

Date (900 examples) 100 100
Time duration (900 examples) 100 100

Table A.2: The accuracy (%) of two versions of GPT-4 on judging if dates and time duration of
different formats are equivalent.

A.7 Prompt for fuzzy_match

Help a teacher to grade the answer of a student given a question. Keep in mind that the student may use
different phrasing orwording to answer the question. The goal is to evaluatewhether the answer is semantically
equivalent to the reference answer.
question: {{intent}}
reference answer: {{reference answer}}
all the string ’N/A’ that you see is a special sequence that means ’not achievable’
student answer: {{prediction}}
Conclude the judgement by correct/incorrect/partially correct.

Predictions that are judged as “correct” will receive a score of one, while all other predictions
will receive a score of zero.

A.8 The Accuracy of Fuzzy Match Function

To evaluate this, we manually checked 40 examples and found that 39 of them are identical
to our human judgment. In addition, among the 82 examples that require using GPT-4 for
evaluation, the answer of 49 (60%) examples is a date (e.g., 10/23/2022) or time duration (e.g., 15
minutes). In these cases, GPT-4 is only used to judge the different format of the answers. We
quantitatively evaluate the correctness of GPT-4 in this case by generating different formats
of a date and time duration programmatically. We randomly sample negative examples. For
instance, Nov 3, 2022, November 3, 2022, 3rd November 2022, 3 Nov 2022, 2022-11-03, and 3rd
of November, 2022 are all correct variances of 2022/11/03. The accuracy of GPT-4 is shown in
Table A.2. We can see that two versions of GPT-4 are extremely accurate, both achieving 100%
accuracy.

151



A.9 The Prompts of the Baseline Web Agents

The system message of the reasoning agent for both GPT-3.5 and GPT-4 and two examples; the
system message of the direct agent for GPT-3.5 and the two examples are shown below. UA
hint refers to the instruction of “ If you believe the task is impossible to complete, provide the
answer as "N/A" in the bracket.”. We remove this sentence in our ablation studies.

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based
tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing key
information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
`click [id]`: This action clicks on an element with a specific id on the webpage.
`type [id] [content] [press_enter_after=0|1]`: Use this to type the content into the field with id. By default,
the "Enter" key is pressed after typing unless press_enter_after is set to 0.
`hover [id]`: Hover over an element with id.
`press [key_comb]`: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
`scroll [direction=down|up]`: Scroll the page up or down.

Tab Management Actions:
`new_tab`: Open a new, empty browser tab.
`tab_focus [tab_index]`: Switch the browser’s focus to a specific tab using its index.
`close_tab`: Close the currently active tab.

URL Navigation Actions:
`goto [url]`: Navigate to a specific URL.
`go_back`: Navigate to the previously viewed page.
`go_forward`: Navigate to the next page (if a previous `go_back` action was performed).

152



(cont’d)

Completion Action:
`stop [answer]`: Issue this action when you believe the task is complete. If the objective is to find a text-based
answer, provide the answer in the bracket. If you believe the task is impossible to complete, provide the answer
as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites
you can visit.
http://homepage.com/password.html lists all the account names and passwords for the websites. You can use
them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I will perform is“ phrase,
followed by action inside ``````. For example, "In summary, the next action I will perform is ```click
[1234]```”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop."""

example_user
OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’
[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None
example_assistant
Let’s think step-by-step. This page lists the information of HP Inkjet Fax Machine, which is the product identi-
fied in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop action with
the answer. In summary, the next action I will perform is ```stop [$279.49]```

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’

153



[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None
example_assistant
Let’s think step-by-step. This page has a search box whose ID is [164]. According to the nominatim rule of
openstreetmap, I can search for the restaurants near a location by r̈estaurants near̈. I can submit my typing by
pressing the Enter afterwards. In summary, the next action I will perform is ```type [164] [restaurants near
ABC] [1]```

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based
tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing key
information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
`click [id]`: This action clicks on an element with a specific id on the webpage.
`type [id] [content] [press_enter_after=0|1]`: Use this to type the content into the field with id. By default,
the "Enter" key is pressed after typing unless press_enter_after is set to 0.
`hover [id]`: Hover over an element with id.
`press [key_comb]`: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
`scroll [direction=down|up]`: Scroll the page up or down.

Tab Management Actions:
`new_tab`: Open a new, empty browser tab.
`tab_focus [tab_index]`: Switch the browser’s focus to a specific tab using its index.
`close_tab`: Close the currently active tab.

URL Navigation Actions:
`goto [url]`: Navigate to a specific URL.
`go_back`: Navigate to the previously viewed page.

154



`go_forward`: Navigate to the next page (if a previous
`go_back` action was performed).
Completion Action:
`stop [answer]`: Issue this action when you believe the task is complete. If the objective is to find a text-based
answer, provide the answer in the bracket. If you believe the task is impossible to complete, provide the answer
as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites
you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You can use
them to log in to the websites.

To be successful, it is very important to follow the following rules:
To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. Generate the action in the correct format. Always put the action inside a pair of ```. For example, ```click
[1234]```

4. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop."""

OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’
[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None
example_assistant
```stop [$279.49]```

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’
[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org

155

[2430] searchbox 'Search query'
 [5172] StaticText 'DMV area'

[2361] link 'Projects 0'
[2365] link 'Users 1'
[2070] heading " We couldn't
find any projects matching
Facebook"

Figure A.2: Two examples where the GPT-4 agent failed, along with their screenshot and the
accessibility tree of the relevant sections (grey). On the left, the agent fails to proceed to the
“Users” section to accomplish the task of “Fork all Facebook repos”; on the right, the agent
repeats entering the same search query even though the observation indicates the input box is
filled.

OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None

example_assistant
```type [164] [restaurants near ABC] [1]```

A.10 Additional Error Analysis

Observation Bias Realistic websites frequently present information on similar topics across
various sections to ensure optimal user accessibility. However, a GPT-4 agent often demon-
strates a tendency to latch onto the first related piece of information it encounters without
sufficiently verifying its relevance or accuracy. For instance, the homepage of the E-Commerce
CMS displays the best-selling items based on recent purchases, while historical best-seller data
is typically accessed via a separate report. Presented with the task of “What is the top-1 best-

156



selling product in 2022”, the GPT-4 agent defaults to leveraging the readily available information
on the homepage, bypassing the necessary step of generating the report to obtain the accurate
data.

Failures in Observation Interpretation Interestingly, while GPT-4 is capable of summa-
rizing the observations, it occasionally overlooks more granular information, such as the pre-
viously entered input. As in the right-hand example of Figure A.2, [5172] StaticText

indicates that the search term “DMV area” has already been entered. However, the agent disre-
gards this detail and continuously issues the command type [2430] [DMV area] until
it reaches the maximum step limit. Furthermore, the agent often neglects the previous action
information that is provided alongside the observation.

We hypothesize that these observed failures are related to the current pretraining and su-
pervised fine-tuning on dialogues employed in GPT models [123]. These models are primar-
ily trained to execute instructions given immediate observations (i.e.,, the dialogue history);
thereby, they may exhibit a lack of explorations. Furthermore, in dialogue scenarios, subtle
differences in NL expressions often have less impact on the overall conversation. As a result,
models may tend to overlook minor variations in their observations.

157



158



Appendix B

Appendix for Chapter 8

B.1 Trajectory Representation

objective = "Find and review the estimated value of your property on the website."

# sub-task 1: Look up your property on Zillow

# step 1: Search for your address on Zillow’s homepage search bar to open the property page.
type(element_id="6135", string="Main St")
# step 2: From the property details page, navigate to the "Zestimate" section.
scroll(down)
# sub-task 2: Begin adjusting the estimated value

# step 3: Click on ’Edit home facts’ to adjust details that might affect the home’s estimated value.
click(element_id="9945")

B.2 Prompt to Filter wikiHow Articles

Prompt to filter wikiHow articles
Given the title of an article, determine if it is about performing a task solely with computer or mobile phone’s
graphical user interface, and without any physical world configurations.

input: How to Set Up Chromecast WiFi (Using an Android Phone or Tablet)
output: Set Up Chromecast WiFi involves both a mobile application and physical interactions with the
Chromecast device such as plug in the device, so the answer is "No"

input: How to Change Your Desktop Wallpaper on Linux Mint (Using the Linux Mint Wallpapers)

159



output: Linux Mint is a desktop operating system, and changing the desktop wallpaper is typically done
through the system settings or desktop environment’s configuration tools, which are desktop applications, so
the answer is "Yes"

input: How to delete a file using command line in Linux
output: Command line interface (CLI) in Linux is a text-based interface not a graphical user interface (GUI), so
the answer is "No"

input: How to Reboot an iPad (Frozen iPads)
output: Rebooting an iPad usually involves physical actions like pressing and holding buttons on the iPad, so
the answer is "No"

input: How to Connect the Kindle Fire to the
Internet (Connecting to an Existing Wi-Fi Network)
output: Kindle is neither a computer nor a mobile phone, so the answer is "No"

input: How to Pair AirPods to an iPhone (If Your AirPods Won’t Connect)
output: Pairing AirPods with an iPhone typically includes physical actions such as opening the AirPods case
near the iPhone and possibly pressing a button on the AirPods case, so the answer is "No"

input: {{Title of the article}}
output: {{Model prediction}}

B.3 Prompt to Generate Demonstrations from Tutorials

Prompt to rewrite an article to a trajectory in program format
# Task overview
You are given an article about performing a task in a web browser. Your goal is to make this article as accessible
as possible to a user who is not familiar with the functionalities of the websites and the task at all.

# Guideline
Read the article carefully and follow the instructions below:

160



- Assume you start with the home page of the web application, skip the initial ‘goto‘ action.
- Break down the article into a sequence of steps.
- In every step, provide a concrete example that reflects a real execution. This example should clearly describe
the element you are interacting with, the concrete value of an element you select, the precise content you type
and other details. Never use broad descriptions. The example should be creative and realistic, avoid boilerplate
text such as email@example.com. Make sure that the example is consistent across steps.
- Following the concrete example, provide the Python API call corresponding to the example.
- Group all API calls into multiple sub-sections, each section corresponds to a logical and actionable sub-task.

There are special scenarios and here are the ways to deal with them: - If the article describes multiple scenarios
or multiple ways to approach the same goal, you can use your own judgement to choose the most common one
to describe. - If there are repeated steps, make sure to unroll the steps and describe each of them canonically. -
Always assume you perform this task using a web browser, if the original article uses a desktop app or mobile
phone app, simply assume the corresponding web app exists. Hence, any steps regarding installation or login
can be skipped.

# APIs
The APIs are as follows: ‘click(element_desc: str)‘ - Click on an element.
‘element_desc‘ is the the displayed text or the most representative attribute of the HTML element.
‘hover(element_desc: str)‘ - Hover over an element.
‘click_and_type(element_desc: str, content: str)‘ - Click an input element and type ‘content‘ into it.
‘key_press(key_comb: str)‘ - Press a key combination. ‘key_comb‘ is the combination of keys you want to
press on. The default OS is MacOS if there is no explicit specification in the article.
‘goto(url: str)‘ - Navigate to ‘url‘
‘go_back()‘ - Go back to the previous page.
‘go_forward()‘ - Go forward to the next page.
‘new_tab()‘ - Open a new tab.
‘close_tab()‘ - Close the current tab.
‘switch_tab(tab_index: int)‘ - Switch to the tab with index ‘tab_index‘, starting from 0.

# Response format
Your response should follow the following format.
“‘python
sub-task <index>: <sub-task description>
# step <index>: <the real execution with concrete values for each argument>
<API, do not skip the keys in the API calls>

# step <index>: <the real execution with concrete values for each argument>
<API, do not skip the keys in the API calls>

161



<repeat for all sub tasks>

# task: <task command given to a smart assistant, only the necessary details on expectation are needed.>
“‘

# Article
{{Article here}}

Prompt to generate observation for two consecutive actions
# HTML Background Knowledge
Commonly used interactable elements in HTML:
[’a’, ’button’, ’input’, ’textarea’, ’select’, ’option’, ’label’, ’form’, ’details’, ’summary’, ’map’, ’area’, ’iframe’,
’embed’, ’object’, ’dialog’, ’menu’, ’fieldset’, ’legend’, ’datalist’, ’output’, ’progress’, ’meter’, ’keygen’]

# Task Overview
You are given:
- A browser-based task
- A seuqnece of past actions to perform the task and
- The next action to perform the task.

Your goal is to recover the HTML and the dynamic of a web application with the following requirements:
- The web page embodies a same level of content richness as advanced web applications on the internet. That
is, the web page should have around 80 elements and at least 20 interactable elements. The depth of the DOM
tree should be around 7. The length is at least 3000 tokens.
- Analyze the past actions and determine which of these actions have visible or functional impacts on the web
page you design. Reflect the effects of these past actions in your HTML code. This may involve updating
text, adding new elements, or modifying the layout or styles to represent the state of the web page after these
actions.
- Design the interactable element that enables the next action. Make sure the choice of element type, attributes,
and other essential characteristics are correct. For example, a text field is not interactable. Once the element is
designed, assign the attribute id="next-action-target-element" to this interactable element.
- Please focus on making the static HTML visually rich. Ignore CSS animations & style and JavaScript
functionality in your HTML code. - Provide the concrete reason to perform the next action.

# Response format
“‘html
<HTML that fullfils the requirements, make sure ‘next-action-target-element‘ is always included>

162



“‘
<Summarize the progress by analyzing past actions. Provide a brief reason for performing the next action.
Keep it short. Use imperative sentences.>

# Provided information
task: {{task description}}

past actions:
“‘python
{{past actions}}
“‘

next action:
“‘python
{{next action}}
“‘

B.4 Example SyntheticDemonstration fromTutorials from

a wikiHow Article

A wikiHow article
How to Use Google Chat on iPhone (Enabling Google Chat in Gmail)

Open Gmail on your iPhone or iPad. This app icon looks like a white and red envelope. If you don’t have it,
you can download the Gmail app for free from the App Store.

Tap and tap Settings. The three-line menu icon is in the top left corner of your screen, and the option
is generally at the bottom of the menu next to a gear icon. If you have multiple Gmail accounts, select the one
you want to use Google Chats with. You can repeat these steps if you want to use Google Chats with multiple
Gmail accounts.

Tap to check the box next to "Chat. A checked box indicates that Google Chat is active in your Gmail
account and you’ll see the Chat and Spaces tabs near the bottom of your screen. If Google Chat is enabled,
you can tap these tabs to move between conversations in Chat and your emails in Gmail. If this is turned off,
you’ll need to use the Google Chats app to see your conversations in Chat.

163



The output from the rewriting step
# sub-task 1: Navigate to Settings to activate Google Chat in another account
# step 1: Click on the menu icon to reveal options
click(element="Menu Icon")

# step 2: Go into Settings by clicking on it
click(element="Settings")

# step 3: Select another Gmail account, this time for jane.doe@gmail.com
click(element="jane.doe@gmail.com")

# sub-task 2: Activate Google Chat in the chosen account
# step 4: Click to enable Google Chat by checking the box
click(element="Check box next to Chat")

# step 5: Ensure the Chat feature is activated
stop(answer="Google Chat activated for jane.doe@gmail.com")

# task: Enable Google Chat on web version of Gmail for jane.doe@gmail.com

B.5 Prompt to Generate Direct Demonstrations fromRan-

dom Observations

Prompt to Generate Direct Demonstrations from Random Observations
## Task overview
Given the accessibility tree of a web page, your goal is to propose creative and diverse browser-based tasks
that involves interacting with this page, along with the previous actions that lead to the current state and the
next action needed to be taken to accomplish the task.

## Action space

164



Figure B.1: The rendered generated HTML between step 2 and step 3. The concrete element to
interact with is tagged with id="next-action-target-element".

165



Here are the allowed actions that you can take to interact with the web page:
‘click(element: str, element_id: int=0)‘ - Click on an element. ‘element‘ is the displayed text or the most
representative attribute of the HTML element. ‘element_id‘ is the index of the element at the beginning of the
node.
‘click_and_type(element: str, content: str, element_id: int=0)‘ - Click and type ‘content‘ into an ‘element‘.
‘key_press(key_comb: str)‘ - Press a key combination. ‘key_comb‘ is the combination of keys you want to
press on. The default OS is MacOS if there is no explicit specification in the article.
‘goto(url: str)‘ - Navigate to ‘url‘
‘go_back()‘ - Go back to the previous page.
‘go_forward()‘ - Go forward to the next page.
‘new_tab()‘ - Open a new tab.
‘close_tab()‘ - Close the current tab.
‘switch_tab(tab_index: int)‘ - Switch to the tab with index ‘tab_index‘, starting from 0.
‘scroll(up|down)‘ - Scroll the page up or down.
‘stop(answer: str=”)‘ - The task is completed. If the task is to seek information, include the answer as a string.
Otherwise, leave it empty.

## Guidelines
You will follow the guidelines below to perform the task:
1. Examine the web page to understand the the domain of the web page.
2. Brainstorm 8 task categories that could be performed the website. Be creative.
3. For each task category, propose a concrete task that has this web page as one of its steps. You want the
concrete task to be unambiguous and clear so that no further clarification is needed to perform the task.
4. Given a concrete task, you are ask to come up with the past actions that leads to the current page, as well as
the next action.
* Requirement for past actions: You should write down each past action in the details. You want to group all
actions into multiple sub-sections, each section corresponds to a logical and actionable sub-task. The next
action could start with a new sub-task. You can omit the ‘elemement_id‘ if they are not in the current page.
There should only be one action at each step. DO NOT give goto() or new_tab() as first step.
* Requirement for next action: Provide the reasoning behind your past actions and the progress in completing
the task. Also, describe your understanding of the current page and the concrete reason to execute the next
action. If the action takes an element as the argument, it is important that you understand the role and the
attributes of that element so that the action can be appropriately applied. Make sure to always include the
‘element_id‘ in your next action if there is any. Any ‘element_id‘ must come from the given Accessibility Tree.

## Format of the response
You are asked to provide the action sequence for task #1 with roughly 7 past actions; task #2 with roughly 0
past actions; task #4 with roughly 6 past actions; task #5 with roughly 4 past actions; task #6 with roughly 10
past actions. Your answer should follow the following format:

166



<Analysis and understanding about the domain and the concrete content of the web page>
<The list of 8 creative task categories>
<The concrete tasks for task category #1 #2 #4 #5 #6. Remember, a concrete task needs to include concrete
details so that no further clarification is required when performing the task. Use imperative sentences.>

“‘python
# task: <repeat concrete task #1>

# ——————–
# past actions (history)
# sub-task 1: <sub-task description>
# step 1: <step description>
<action>
# step 2: <step description>
<action>
# sub-task 2: <sub-task description>
# step 3: <step description>
<action>
# step 4: <step description>
<action>
# sub-task 3: <sub-task description>
# step 5: <step description>
<action>
# step 6: <step description>
<action>
# sub-task 4: <sub-task description>
# step 7: <step description>
<action>

# ——————–

# next action
# step <index>: <summarize the progress so far and analyze the current state of the web page. Provide the
concrete reason to perform the next action>
<action>
# step summary: <brief step description>
“‘
“‘python
# task: <repeat concrete task #2>

167



# ——————–
# past actions (history)

# ——————–
# sub-task <index>: <sub-task description>
# next action
# step <index>: <summarize the progress so far and analyze the current state of the web page. Provide the
concrete reason to perform the next action>
<action>
# step summary: <brief step description>
“‘
......
## The Accessibility Tree
[4812] link ’Shopbop Designer Fashion Brands’
[4815] LineBreak
[4819] LineBreak

[1742] LayoutTableCell ”
[1743] LayoutTableCell ’Amazon Warehouse Great Deals on Quality Used Products’
[4822] link ’Amazon Warehouse Great Deals on Quality Used Products’
[4825] LineBreak
[4829] LineBreak

B.6 Example Generated Trajectories from RandomObser-

vation

Generated trajectories from random observation
The domain appears to be that of a major online retail website, likely Amazon, considering the references
to "Prime," "Best Sellers," and "Amazon Basics," as well as services like "Magazine Subscriptions" and "Prime
Video." The structure of the page includes a variety of product categories, a search textbox, and links to other
services such as account sign-in and shopping cart. This suggests that users on this page can shop for a wide
range of items, manage their account, or engage with support services.

Below are eight creative task categories that could be performed on this type of website:

1. Product Searching: Looking up products in a specific category or using a search query.
2. Account Management: Signing into an account, creating a new account, or managing existing account
details.

168



3. Navigational Inquiry: Using the site’s navigation to find different departments or special features.
4. Customer Support: Accessing customer service features or disability support services.
5. Deal Hunting: Searching for best sellers, deals of the day, or exclusive prime deals.
6. Media Consumption: Navigating to and consuming digital media such as eBooks, Prime Video, or music.
7. Educational Browsing: Exploring educational materials or subscribing to learning resources.
8. Wishlist Management: Adding items to a wishlist or gift registry for future purchase.

The concrete tasks for task category #1, #2, #6, #7, #8 are as follows:

### Concrete Task #1: Product Searching
Find and search for popular fitness trackers within the "Sports & Outdoors" category.

“‘python
# task: Find and search for popular fitness trackers within the "Sports & Outdoors" category.

# ——————–
# past actions (history)
# sub-task 1: Open the site and navigate to the product categories.
# step 1: The user opens the main page of the retail website.
go_forward()
# sub-task 2: Navigate to the "Sports & Outdoors" category.
# step 2: The user accesses the menu to view the category list.
click(element=’Open Menu’)
# step 3: The user browses through the categories.
scroll(down)
# step 4: The user selects the "Sports & Outdoors" category.
click(element=’Sports & Outdoors’, element_id=7964)

# ——————–

# next action
# step 5: The user now needs to search for fitness trackers within the selected category. Clicking and typing
into the search bar is necessary to filter the results.
click_and_type(element=’Search’, content=’fitness trackers’, element_id=7657)
# step summary: Initiate a search for fitness trackers in the Sports & Outdoors category.
“‘

### Concrete Task #2: Account Management
Sign into your personal account to check on active subscriptions.

169



“‘python
# task: Sign into your personal account to check on active subscriptions.

# ——————–
# past actions (history)

# ——————–
# sub-task 1: Sign into the account.
# next action
# step 1: The user is already on a page where they can initiate the sign-in process, but the next step is to click
and type the username in the search bar, which suggests that an error might have taken place, or this is being
used as a workaround.
click_and_type(element=’Search’, content=’myusername@example.com’, element_id=7657)
# step summary: Try to sign in by using the search bar to enter the username.
“‘

### Concrete Task #6: Media Consumption
Navigate to Prime Video to browse the latest movie releases.

“‘python
# task: Navigate to Prime Video to browse the latest movie releases.

# ——————–
# past actions (history)
# sub-task 1: Access the main page.
# step 1: The user starts by reaching the home page, where they can find various services.
go_back()
# step 2: The user considers different media options available on the site.
scroll(up)
# sub-task 2: Go to Prime Video.
# step 3: The user clicks on the "Prime Video" link.
click(element=’Prime Video’, element_id=7961)

# ——————–

# next action
# step 4: To search for the latest movie releases within Prime Video, the user needs to use the search function.
click_and_type(element=’Search’, content=’latest movie releases’, element_id=7657)
# step summary: Search for the latest movie releases on Prime Video.
“‘

170



### Concrete Task #7: Educational Browsing
Subscribe to a magazine about technology within the "Magazine Subscriptions" category.

“‘python
# task: Subscribe to a magazine about technology within the "Magazine Subscriptions" category.

# ——————–
# past actions (history)
# sub-task 1: Enter the site and locate the magazine section.
# step 1: The user starts on the home page where they can browse products.
go_forward()
# step 2: The user opens the categories menu to look for subscriptions.
click(element=’Open Menu’)
# step 3: The user scrolls through the menu to find the magazine subscriptions.
scroll(down)
# sub-task 2: Select the "Magazine Subscriptions" category.
# step 4: The user selects the "Magazine Subscriptions" option from the categories.
click(element=’Magazine Subscriptions’, element_id=7955)
# step 5: The user is now presented with different types of magazines but wants to find technology-related
ones.
scroll(down)

# ——————–

# next action
# step 6: With the magazine subscriptions displayed, it’s time to search for technology magazines specifically.
click_and_type(element=’Search’, content=’technology magazine’, element_id=7657)
# step summary: Search for technology magazines in the Magazine Subscriptions section.
“‘

### Concrete Task #8: Wishlist Management
Add a popular sci-fi novel to your wishlist for future purchasing.

“‘python
# task: Add a popular sci-fi novel to your wishlist for future purchasing.

# ——————–
# past actions (history)
# sub-task 1: Access the website’s book section.

171



# step 1: The user has started on the homepage and is looking for books.
click(element=’Books’, element_id=6007)

# ——————–

# next action
# step 2: The user wants to find and add a sci-fi novel to their wishlist, and the next logical action involves
searching for the item.
click_and_type(element=’Search’, content=’popular sci-fi novels’, element_id=7657)
# step summary: Begin the search for popular sci-fi novels to add to the wishlist.

B.7 Data Selection fromRandomObservations inClueWeb

We inspect a random sample of ClueWeb on its domain distribution. As shown in Figure B.2,
the majority of domains appear only once, making up 69.1% of all the web pages.

1

2

3
456-1212-2525-5050-100

>100

Categories
1 - 64.2%
2 - 7.9%
3 - 3.7%
4 - 2.2%
5 - 1.3%
6-12 - 3.6%
12-25 - 4.5%
25-50 - 2.9%
50-100 - 3.5%
>100 - 6.1%

Figure B.2: Frequencies of domains and proportion of each frequency in ClueWeb

172



B.8 Training Settings

The CodeLlama checkpoints are fine-tuned with A100 GPUs with deepspeed 1 acceleration
framework. We set the context length to 4096 tokens. To train on 50k dataset, we train with 6
x A100 80G GPUs for about 20 hours. We use a batch size of 48, and learning rate of 5e-5. We
use cosine annealing and a warm-up ratio of 0.03.

1https://github.com/microsoft/DeepSpeed

173

https://github.com/microsoft/DeepSpeed

	1 Introduction
	1.1 Problem Scope
	1.2 Challenges of Creating Autonomous AI Agents
	1.3 Contributions Overview

	2 Background
	2.1 Evaluation of AI Agents
	2.2 The ``Language'' in Procedural Tasks
	2.3 Learning without Extensive Human Annotations

	I Realistic Environment for AI Agent Evaluation
	3 Realistic Web Environment for Building Autonomous AI Agents
	3.1 Overview
	3.2 Web App as an Environment for Autonomous Agents
	3.3 Benchmark Suite of Web-based Tasks
	3.4 Baseline Web Agents
	3.5 Results
	3.6 Comparison with Other Agent Benchmarks


	II More Versatile``Language'' for AI Agents
	4 Representing Procedures as Programs
	4.1 Overview
	4.2 Contrast to Previous Formalisms
	4.3 Task: Controlling Situated Agents
	4.4 Representing Procedures as Programs
	4.5 Hierarchical Modular Networks
	4.6 Instantiations
	4.7 Experiments

	5 Few-shot Program Writing for Broader Reasoning Tasks
	5.1 Overview
	5.2 Background: Few-shot Prompting
	5.3 Program-aided Language Models
	5.4 Experimental Setup
	5.5 Results
	5.6 Analysis


	III Knowledge Base of Hierarchical Procedures
	6 Discovering Hierarchies of Procedures from Semi-structured Web Data
	6.1 Overview
	6.2 Problem Formulation
	6.3 Hierarchy Discovery Model
	6.4 Automatic Step Prediction Evaluation 
	6.5 Manual Step Prediction Evaluation
	6.6 Application to Video Retrieval
	6.7 Decomposition Analysis


	IV New Knowledge Acquisition without Direct Demonstrations
	7 Generating Code with Unseen Usages by Retrieving the Docs
	7.1 Overview
	7.2 Code Generation by Reading the Docs
	7.3 Practical Instantiations of DocPrompting
	7.4 Experimental Setup
	7.5 Results
	7.6 Analysis

	8 Turning Indirect Knowledge into Direct Demonstrations at Scale
	8.1 Overview
	8.2 Problem Formulation
	8.3 Scalable Demonstration Synthesis for Digital Agents
	8.4 Data Statistics
	8.5 Experimental Setup
	8.6 Results
	8.7 Analysis
	8.8 Ablation
	8.9 Case Study

	9 Conclusion and Future Work
	9.1 Open Problems and Future Directions

	A Appendix for Chapter 3
	A.1 Website Implementation
	A.2 Environment Delivery and Reset
	A.3 User Roles Simulation
	A.4 Intent Distribution
	A.5 Human Performance
	A.6 Experiment Configurations
	A.7 Prompt for fuzzy_match
	A.8 The Accuracy of Fuzzy Match Function
	A.9 The Prompts of the Baseline Web Agents
	A.10 Additional Error Analysis

	B Appendix for Chapter 8
	B.1 Trajectory Representation
	B.2 Prompt to Filter wikiHow Articles
	B.3 Prompt to Generate Demonstrations from Tutorials
	B.4 Example Synthetic Demonstration from Tutorials from a wikiHow Article
	B.5 Prompt to Generate Direct Demonstrations from Random Observations
	B.6 Example Generated Trajectories from Random Observation
	B.7 Data Selection from Random Observations in ClueWeb
	B.8 Training Settings



