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Abstract
In this dissertation, we challenge the preeminence of problem-solving

practice in the pedagogy of advanced computer science courses by compar-
ing it to worked examples. In doing so, we not only extend the theory of
example-based learning to this novel context, but make significant techno-
logical contributions to the infrastructure for conducting AI-facilitated edu-
cational experiments at scale. To conduct these experiments, we integrate the
Bazaar AI Conversational Agent framework into two courses on the Sail()
platform, thus enabling the rapid deployment of AI-facilitated interventions
and continuous data collection to support their experimental evaluation.

The findings reveal, in line with theory, that maximizing time spent with
worked examples improves conceptual learning. Some problem-solving prac-
tice remains necessary for implementation proficiency, especially when learn-
ers lack prior procedural knowledge, a novel finding for example-based learn-
ing in this context. In addition to the theoretical contributions, these re-
sults support a shift in the pedagogy of advanced computer science toward
worked example-based reflection, with the optimal design varying based on
learners’ prior knowledge.

To fulfill the promise of more effective team-programming project de-
signs, we build on these results to evaluate two strategies sensitive to learn-
ers’ prior procedural knowledge levels. The first employs reinforcement
learning-based parameter optimization to determine the optimal balance of
time spent on problem-solving practice and worked examples. The second
employs clever instructional design to create new tasks that simultaneously
promote reflection and problem-solving practice. Both designs outperform
existing team programming projects and approaches that are not sensitive to
learners’ prior procedural knowledge levels.

Collectively, this dissertation achieves three key outcomes: evidence-backed
AI-facilitated improvements to team programming project designs in ad-
vanced computer science education; theoretical advancements in example-
based learning and adaptive pedagogy; and a challenge to conventional
teaching practice through empirically validated alternatives. We establish
a scalable technological infrastructure to enable continuous experimenta-
tion with AI-driven learning innovations, while providing actionable guid-
ance for practitioners and researchers aiming to design adaptive, context-
sensitive educational interventions. These contributions collectively redefine
the pedagogical possibilities for advanced technical domains, demonstrating
how AI integration and iterative experimentation can systematically bridge
theory and practice in modern computing education.
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Chapter 1

Introduction

According to the theory of example-based learning [127], worked examples are more
effective than problem-solving practice for learners with low levels of prior knowl-
edge [78, 156]. For more knowledgeable learners, hands-on problem-solving practice
becomes more effective through minimally guided application of their existing knowl-
edge. This finding has been replicated in a variety of domains, including mathematics
[170], science [126], engineering education [181], as well as introductory computer sci-
ence [201]. However, it has not been explicitly studied in advanced computer science
courses.

In the absence of this evidence, advanced computer science courses have come to
rely heavily on problem-solving practice in the form of programming projects. These
courses are aimed at preparing students for professional work. Therefore, they have
perhaps been influenced by the belief that work-like practice is the best instructional
strategy. Consequently, like software engineering projects in the workplace, these pro-
gramming projects offer students with minimal guidance and require them to write
computer programs in response to programming challenges. To wit, the following post
on a popular forum for software engineers illustrates the prevailing dogma as well as
the misapplication of learning science theory — “Worked examples, like other pas-
sive learning situations, can cause an ‘illusion of knowledge’ — feeling like you know
and understand, but not really [9]." Although students in advanced computer science
courses might possess enough prior knowledge to make minimally guided problem-
solving the more effective strategy, a comprehensive investigation is necessary to make
an evidence-backed recommendation.

This investigation is at the core of this dissertation to address the research question
— How do worked examples compare with problem-solving practice for conceptual
learning and individual project performance in advanced computer science courses?

To enable this comparison, we turn to artificial intelligence (AI) technologies to sup-
port the orchestration of the tasks involved in the project, as well as to provide in-
process support, as needed, according to the learning intervention. Specifically, we use
AI conversational agents to orchestrate in-process support for both problem-solving
and worked example-based reflection in team programming projects. We show how
these AI-facilitated team programming projects can be integrated into advanced com-
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puter science courses to collect data and conduct experiments on the relative efficacy
of different learning interventions. Finally, based on the results of the investigation, we
design and deploy strategies from both learning science and AI that are most effective
for learners in this context.

In effect, we undertake and demonstrate the end-to-end process of designing ef-
fective learning interventions through educational experimentation at scale, which is
shown in Fig. 1.1 — We start by understanding the context of the learners. Then, based
on learning science theory and similarities or differences between theoretical results
and the learners’ context, we design interventions that ought to be effective and derive
informed hypotheses about why. We then set up experiments to test these hypothe-
ses. Multiple rounds of experimentation may be required depending on the number of
learners, the fidelity of the intervention design — adherence to protocols, the quality of
delivery and consistency of execution, and its sensitivity to extraneous variables. The
results of the experiments either support or help us refine the hypotheses, thus pro-
viding an improved understanding of what works for learners in this context, as well
as the applicability of existing theoretical knowledge which we have thereby extended.
Following an iterative process of testing refined hypotheses based on prior rounds of
experimentation and running additional experiments, as needed, we arrive at a design
that is most effective for learners in this context. This final design can then be deployed
for large-scale impact in practice.

Figure 1.1: Educational Experimentation At-Scale

This approach extends established instructional design frameworks like Backwards
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Design [105], ADDIE [24] (Analysis, Design, Development, Implementation, and Evalu-
ation), and SAM [8] (Successive Approximation Model) to educational experimentation
at scale.

1.1 Towards Measurable Learning Gains

As a precondition for conducting the proposed investigation, we need the ability to
measure the learning gains from the programming project. Although this is considered
a given in educational research, it is rare for projects to be individually measurable in
practice. Assessments are typically performed at the end of a unit which is a sequence of
lessons, or, utmost, at the end of each lesson. This is not sufficiently sensitive for exper-
imentation. The absence of sensitive measures means that even existing project designs
have not been tested for effectiveness, let alone compared to possible alternatives. Thus,
by instrumenting existing projects to measure possible learning gains, we will already
be adding value to advanced computer science pedagogy by collecting evidence on the
effectiveness — or lack thereof — of existing project designs. To further ensure that
we have a strong baseline for our investigation and that an observed effect is not due to
“lousy control conditions" [156], we need a project design that produces learning gains
from problem-solving practice in this context.

To produce such a project design, our first step is to refer to the details of the learners
in our experimental context, as provided in Chapter 3.

In brief, we conduct our experiments in graduate-level project-based computer sci-
ence courses covering advanced topics such as Cloud Computing, Data Science, and
Machine Learning. These courses are composed of several units, each culminating in an
individual programming project. To prepare students for this individual project, they
participate in a real-time team programming project in small groups, which is the sub-
ject of our design experiments. Students are expected to learn domain-relevant concepts
from the team programming project and then be evaluated on their ability to implement
those concepts in practice when they work on their individual programming projects.

For the purpose of coordinating the team programming project and providing in-
process support for collaborative learning, we design a new programming project inter-
face. The interface integrates the Bazaar AI conversational agent framework [2] which
was chosen for its ability to support “multi-party" conversations — conversations be-
tween multiple learners, using multiple AI support behaviors coordinated at the output
to ensure consistent and non-conflicting behavior from the conversational agent. The
resulting interface is integrated with the courses in our context through the Sail() plat-
form 1.

When designed to include sensitive measures of learning, this programming project
interface has the potential to satisfy the precondition for experimentation that we out-
lined at the beginning of this section. The conversational agent additionally allows us
to collect data about the learning process by capturing and responding to contributions

1https://sailplatform.org/
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Figure 1.2: Educational Experimentation At-Scale; Step 1 — Understanding the
Learner’s Context

from and interactions between learners. Integrating the programming project with the
Sail() platform enables rapid design and experimental data collection iterations since
updating AI behavior to support both task design and process facilitation does not re-
quire re-implementing the integration with each course. In addition, integration with
the platform enables the deployment of the programming project in multiple courses
offered on the platform with only topic-specific modifications. From the standpoint of
education research, this is a demonstration of how learning environments can be instru-
mented to collect evidence about learning processes at scale and how that evidence can
then be used to rapidly and iteratively improve the learning environment.

The design of AI support behaviors for the programming context, and the develop-
ment of a modular team programming project to integrate with any course and remain
extensible for future use are technological contributions of this dissertation. Our ap-
proach is novel in that it combines AI-supported collaborative learning with rigorous
measurement of learning outcomes in advanced computer science education, an area
that has seen limited research. The design of the programming project interface and the
integration and extension of Bazaar to facilitate AI support for group collaboration in
programming projects are described in detail in Chapter 4.

As our first finding, the existing team programming project designs do not produce
measurable improvements in conceptual learning. This already demonstrates the value
of instrumenting the project to measure learning gains. In addition, it makes apparent
the need for a learning science-informed overhaul of the team programming project.

4
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To redesign the team programming project not only with more sensitive learning
measures, but also to have a better chance of serving as a strong baseline by producing
learning gains from problem-solving practice, we build on insights from the Knowledge-
Learning-Instruction (KLI) framework [88]. Over four design-based research iterations,
we eventually arrive at a design that produces measurable learning gains from problem-
solving practice. The details of the findings and refinements to the project design from
each iteration are presented in Chapter 5. In this eventual design, we divide the project
into several tasks, each focused on a specific learning objective. For each learning ob-
jective, we create corresponding questions on the pre- and post-tests that students take
immediately before and after the project as a measure of domain-relevant conceptual
learning (henceforth referred to as conceptual learning) from the project. The individ-
ual programming project following the team programming project can then serve as a
delayed post-test measure of the ability of students to implement the concepts in com-
puter programs. The integration of the Bazaar AI conversational agent framework to
support task design and group processes, together with the learning science-informed
redesign of the programming project, represents the second step in the process of edu-
cational experimentation at scale — Intervention Design.

Figure 1.3: Educational Experimentation At-Scale; Step 2 — Intervention Design

The process reveals the critical distinction between learning objectives as conceived
by instructors and those defined by learning scientists. Fine-grained definitions for
learning objectives are required not only for measurability but also to improve the
chances that targeted instruction actually produces measurable learning gains [100,
101]. Instructors often question the return on investment from what is perceived as
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intensive instructional design. In this case, not only do we demonstrate the lack of
efficacy of an existing project design, but we are also able to show that a learning
science-informed redesign results in an effective design. Finally, instrumenting the
course project in this way allows us to carry out the primary comparative investigations
proposed in this dissertation on the efficacy of alternative designs using a data-driven
approach.

For tasks focused on domain-relevant concepts, the refined design of the team pro-
gramming project produces conceptual learning gains for learners. This constitutes the
strong baseline version of the programming project design. Nevertheless, some amount
of guidance, provided by the AI conversational agent in the form of reflection prompts,
shows compounded benefits over and above what is achievable with problem-solving
alone. Thus, testing even more guidance, such as with worked examples, would be the
next logical step. However, the concern from instructors in this context is that worked
examples alone, while better for conceptual learning, may leave students less able to im-
plement those concepts in practice. Consequently, in the following chapter, Chapter 6,
we compare problem-solving practice with worked examples based not only on their
impact on conceptual learning, but also on individual project performance. The hy-
pothesis from theory is that worked examples should be better for conceptual learning,
since the learners in our context are novices with respect to the concepts being learned.
However, the effect on hands-on task performance could be moderated by their prior
proficiency in at least one programming language, which is a prerequisite for each of
the advanced computer science courses in our context. This represents our hypothesis,
which is informed by theory as well as factors relevant to learners in our context.

1.2 Comparing Worked Examples with Problem-Solving
Practice

We conduct a total of four experiments. Across these, we compare three factors — the
level of prior procedural knowledge, the time spent on each treatment, and the order of
presentation of the treatments. We observe that the learners in this context are novices
with respect to conceptual knowledge, while their level of prior procedural knowledge
differs depending on the programming language they are asked to use for the project.

In the first experiment, the students have prior procedural knowledge in the pro-
gramming language used. The baseline condition is the final design from Chapter 5 that
maximizes the time spent on problem-solving. The experimental condition maximizes
the time spent reflecting on worked examples. Both conditions first present problem-
solving while keeping the total time on task constant. Consistent with the theory of
example-based learning, spending more time on worked examples improves concep-
tual learning. More importantly in this context, this condition also results in better
performance in the individual project [146].

We repeat this experiment in the subsequent semester, this time testing all combi-
nations of time spent on each treatment and the order of treatments, for a total of 8
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Figure 1.4: Educational Experimentation At-Scale; Steps 3 and 4 — Theory and Context-
Informed Hypotheses, Experimentation and Hypothesis Refinement

conditions (4 treatments × 2 orders). For conceptual learning, presenting worked ex-
amples first is better overall, and spending the entire time on worked examples is the
best individual condition. For individual project performance, problem-solving first is
generally better. Some time problem-solving and most of the time on worked examples
is the best individual condition. From these two experiments, it is clear that maximiz-
ing time with worked examples is best for conceptual learning, and a little time on
problem-solving is sufficient to help learners translate their conceptual understanding
into computer programs.

To check if the same applies when learners do not have prior procedural knowledge
in the programming language used, we compare the combinations of time spent on
each treatment, for a total of 4 conditions [147, 149]. All four conditions first present
problem-solving while keeping the total time on the task constant. Spending all the
time on worked examples is best for conceptual learning from the task and incurs no
performance deficit on the individual project. However, there was concern with the
project design — that the time between the team programming project and the individ-
ual project might evaporate otherwise observable differences. Consequently, we repeat
this study in the subsequent semester, moving the individual project to immediately
after the group project. We also test the order of treatments this time for a total of 8
conditions (4 treatments × 2 orders). Presenting worked examples first is better for con-
ceptual learning, with mostly examples followed by some problem-solving being the
best individual condition (though not significantly so). For individual project perfor-
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mance, problem-solving first is better overall, with half the time spent on each being the
best individual condition.

Therefore, even when learners do not have prior procedural knowledge, maximiz-
ing time with worked examples is best for conceptual learning. They do need some
additional time for practice, but spending more than half the time on problem-solving
is sub-optimal. The order of treatments has the same effect regardless of prior proce-
dural knowledge — presenting worked examples first is better for conceptual learning,
and problem-solving first is better for individual project performance. In either case, the
findings support mostly worked example-based reflection, thus challenging the preva-
lence of problem-solving practice in today’s pedagogy of advanced computer science.
The optimal design differs according to the learners’ prior procedural knowledge in the
programming language used.

1.3 Redesigning Programming Projects

Figure 1.5: Educational Experimentation At-Scale; Step 5 — Deployment

In light of these findings, we provide two strategies for designing programming
projects that take into account differences in prior procedural knowledge.

In the first strategy, detailed in Chapter 7, we use AI to customize task design to
the observed behavior of the learners, specifically using a reinforcement learning (RL)-
based parameter optimization to determine the optimal allocation of problem-solving
practice and worked examples. This process can be re-run for learners with different
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levels of prior procedural knowledge [148]. For this, we navigate concerns unique to
education such as ethical implications of subjecting learners to potentially detrimental
interventions during exploration as well as typical concerns about RL’s data-hungry
nature. We first constrain the design of the state space based on our knowledge of the
context and learning science theory. This mitigates the possibility of detrimental states
in the state space. Then, we introduce a Batched Offline Update methodology, where
we take a large exploration step after multiple group interactions. This derives more
information from the limited data. Noisy data would render this approach ineffective.
However, our new project design with sensitive measurements reduces the likelihood
of this and enables the use of the Batched Offline Update method to overcome the small-
data problem.

In the second strategy, presented in Chapter 8, we use clever instructional design to
eliminate the need for separate problem-solving practice and worked example compo-
nents. Using knowledge of the processes that problem-solving practice and worked ex-
amples stimulate, we present an “interleaved" design. Students are presented with two
strategically different worked examples in pseudocode — an algorithmic description of
the implementation. To choose a path to the solution, students engage in critical reflec-
tion, comparing conceptually relevant distinctions between worked examples. Then,
in translating the pseudocode into computer programs, they receive problem-solving
practice. We show that this strategy outperforms the presentation of treatments sepa-
rately as in previous designs and can be used regardless of prior procedural knowledge
levels.

1.4 Implications

In Chapter 9, we discuss the implications of our findings for the theory of example-
based learning and the pedagogy of advanced computer science.

Effectiveness of worked examples for conceptual learning — The finding that
spending more time on worked examples improves conceptual learning is consistent
with the theory of example-based learning, as learners in this context are novices with
respect to conceptual knowledge.

Prior procedural knowledge and worked examples — Programming knowledge
can be split into syntactic (procedural) and semantic dimensions. Learners with prior
procedural knowledge know the syntax well, but need the practice to determine the
appropriate semantics for the new concepts they have learned. Consequently, while
maximizing time with worked examples is best for conceptual learning, some problem-
solving practice helps translate their conceptual understanding into computer programs.

No prior procedural knowledge and the need for problem-solving practice —
Learners without prior procedural knowledge need time to acquire both syntax and
semantics. Normally, this would not be possible within the duration of the program-
ming project. However, as students advance in the computer science curriculum, they
transfer their knowledge of fundamental programming language concepts from one
programming language to another, making it possible to learn the syntax and semantics
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of a new language quickly.
Challenging prevailing pedagogy — The findings support mostly worked example-

based reflection, challenging the prevalence of problem-solving practice in advanced
computer science education. They also reveal nuanced differences based on treatment
order and prior procedural knowledge levels. What the results call for is a tailored ap-
proach to support learners in this context. We demonstrate that this can be achieved
either with AI or with learning design.

1.5 Contributions

Educational data is notoriously difficult to collect. Finding learning environments that
reach a large number of learners is the first challenge. Instrumenting that environment
to collect the data is the second. The final and most important challenge is the quality
of the data. The noisier the data, the more is needed to isolate the signal. Consequently,
the first significant contribution of this dissertation is the integration of the Bazaar AI
conversational agent framework into the design of a high-quality programming project,
which we then integrate with multiple advanced computer science courses through the
Sail() platform. This allows for continuous collection of high-quality data as well as
rapid experimentation to continuously test and improve AI support for learning. The
modular and extensible nature of this integration has meant that, since the conclusion of
the research conducted in this dissertation, it has been extended to support multimodal
interactions [191], portable interfaces [185], and the use of large language models for
even more personalized AI support [111].

The first round of data collected shows instructors that existing project designs are
ineffective and a learning science-informed redesign, although effort-intensive, is nec-
essary. Extensive comparisons of problem-solving practice to worked examples then
show that the latter to be more effective, challenging long-standing practice and dogma
in advanced computer science pedagogy. Both of these have lasting implications for
computer science educators and have already contributed positively to the experience
of several cohorts of students at Carnegie Mellon University, where this research was
conducted.

Finally, we propose strategies in response to these findings that produce contribu-
tions to their respective communities in AI and education. For RL, the amount of data
collected in this context remains low, making it a small data problem. In addition,
exploration-exploitation is uniquely problematic if it exposes learners to potentially
detrimental states. We address these challenges through informed state-space design
and a Batched Offline Update Model as solutions based on intimate knowledge of the
context. This highlights a crucial element of education research — the details of the
context and their impact on the design of learning environments.

Understanding the cognitive processes behind how problem-solving practice and
worked examples contribute to learning leads to a unique instructional design solution
that produces both processes through a single treatment. The continued understanding
of the underlying processes that drive the observed results will produce novel interven-
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tions that advance learning.
Together, data-driven AI solutions and theory-informed design represent a power-

ful combination demonstrated in this dissertation to produce measurable real-world
impact, at scale, on hundreds of learners. More importantly, this dissertation lays the
groundwork — both theoretically and technologically — for future work to expand on
impact as well as understanding.
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Chapter 2

Theoretical Foundations

2.1 Theory of Example-Based Learning

The primary investigation we set up in this dissertation is the comparison of problem-
solving practice with worked examples in the context of advanced computer science.
So long as learners are novices with respect to the concepts being learned, the literature
on example-based learning [127] generally establishes that extensive problem-solving
practice is inferior to the use of worked examples to positively impact their conceptual
learning. Cognitive load theory [171] is typically used to explain the positive impact.
Based on this theory, the identification and induction of schema — domain-specific
knowledge structures [29] — from problem states is the primary function of concep-
tual learning from a task. Problem-solving practice may involve additional production
steps that place a load on the limited cognitive resources of a learner by taking those
resources away from the processes that would impact their learning the most. Conse-
quently, the use of worked examples that eliminate those production steps and allow
learners to completely focus on learning from the problem states showcased in them
leads to improved learning over problem-solving practice. Worked examples have also
been compared with well-supported baselines such as cognitive tutors and have been
found to have a positive impact [156]. A similar mechanism explains why problem-
solving practice becomes more effective as learners gain expertise. The worked exam-
ples now carry redundant information which may produce cognitive overload for these
learners, thus resulting in the so-called “expertise-reversal effect" [77], that is, a rever-
sal in the aptitude-treatment interaction as the level of the learner’s prior knowledge
increases. Consequently, their limited cognitive resources are better spent on problem-
solving practice because it allows them to actively apply and refine their existing knowl-
edge, leading to deeper understanding and better schema development [78].

This finding has been replicated in a variety of domains, including mathematics
[37, 120, 170], science [126], engineering education [181], as well as introductory com-
puter science [102, 184, 201]. However, it has not been explicitly studied in advanced
computer science courses. Research in computer science education has focused over-
whelmingly on the introductory computer science context [40], leaving pedagogy unin-
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formed when moving beyond foundational courses. In the absence of direct evidence,
practice has been driven by prevailing dogma and a possible misunderstanding of gen-
eral principles of learning science. For instance, advanced computer science courses
are vocational in that they are meant to prepare students for work. In a misapplica-
tion of “learning by doing", the pedagogy in this context is designed to mimic what
software engineers do in the workplace. Thus, like software engineering projects in
the workplace, programming projects offer minimal guidance and ask students to write
computer programs in response to programming challenges. Of course, worked ex-
amples represent “doing" as well, having been designed to elicit self-explanation, re-
flection, and discussion among students. The difference lies in the level of guidance,
with the literature showing that minimally guided instruction, such as in these pro-
gramming projects, is less effective and efficient than approaches that emphasize strong
guidance. The advantage of guidance begins to recede only when learners have suffi-
cient prior knowledge to supplement with their own “internal" guidance [85]. Whether
learners in this context have acquired sufficient prior knowledge to make minimally
guided problem-solving the more effective strategy is an open question that requires
comprehensive investigation.

2.1.1 Computer Science Education

From the point of view of domain-relevant conceptual knowledge in the topics being
taught in these courses, such as Cloud Computing, Data Science, and Machine Learn-
ing, these students are novices. However, from the point of view of programming
knowledge, the situation is more nuanced. Early research in computer science peda-
gogy [79, 160, 161] points to the separation of programming knowledge into its syntactic
and semantic aspects. This separation is isomorphic to the separation between schema
acquisition and automation referred to in the worked-example literature [183]. Syntac-
tic knowledge combines declarative and procedural knowledge, while semantic knowl-
edge can be further divided into conceptual and strategic knowledge [103]. Syntactic
knowledge is about knowing specific facts about a programming language and rules
for its use, conceptual knowledge is an understanding of computer programming con-
structs and principles, and strategic knowledge is the development of programming-
specific versions of general problem-solving skills. Research indicates that expert pro-
grammers differ significantly from novices in the strategic aspects of programming, of-
ten viewing the process as general problem-solving, disjoint from the procedural as-
pects [154]. In addition, expert programmers are able to transfer the conceptual aspects
of programming from one programming language to another, even when they do not
know the implementation procedures of the second language. What they need the most
help with are the strategic aspects of language-independent planning — transforming
domain-relevant concepts they had learned into programming language concepts that
they can then implement using language-dependent implementation planning. Stu-
dents in the advanced computer science context fall exactly into this category. They are
experts in programming, in that they have acquired declarative, procedural, and con-
ceptual knowledge in at least one programming language. In fact, this is a prerequisite
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that is enforced for all students before they can enroll in the courses in which we situate
our studies (see Chapter 3. Therefore, they are novices with respect to domain-relevant
conceptual knowledge, may or may not have prior procedural programming knowl-
edge depending on the programming language of choice for the project, do have knowl-
edge of programming language concepts which transfers across languages, and need
to learn the strategic aspects of implementing domain-relevant conceptual knowledge
as computer programs. These dimensions of knowledge along with the correspond-
ing characteristics of students in the advanced computer science context are shown in
2.1. Thus, the only pertinent difference dimension is whether they have prior procedu-
ral knowledge in the programming language of choice for the project. For the sake of
brevity and since conceptual programming knowledge is not a relevant difference di-
mension, we will refer to domain-relevant conceptual knowledge simply as conceptual
knowledge going forward. Simply put, therefore, students in this context are novices
with respect to conceptual knowledge, while their level of prior procedural knowledge
differs depending on the programming language they are asked to use for the project.

Example-based learning involves less hands-on work to convert conceptual knowl-
edge into actual programs. Thus, while helping learners with language-independent
planning, it provides less practice with language-dependent implementation planning.
This concern is also espoused by practitioners in this context — the concern is that
while students may learn more concepts, they may be left less able to implement those
concepts, once learned, in projects that follow their learning experience. Research in the
introductory computer science context found that this is a possibility [201]. Therefore,
in addition to comparing worked examples to problem-solving practice for conceptual
learning, we also need to study their relative impact on implementation.

2.1.2 Ordering and Duration Effects

To round out the comparison, we also test the order of presentation of treatments for
their impact on conceptual learning and implementation. The presentation of worked
examples first is generally considered more effective [96, 182]. However, there is some
support for problem-solving followed by worked examples when the learning elements
of the task have low element interactivity — a smaller number of interconnected ele-
ments that must be processed simultaneously in working memory to achieve under-
standing [27], in other words, a measure of task complexity [28]. Thus, if the task is
less complex or its complexity is reduced in such a way that working memory can be
saved from processing too many procedures, then problem-solving first could be more
effective.

For duration effects, there is plenty of evidence from studying fading — progres-
sively transitioning from worked examples to problem-solving. Fading can be fixed
or personalized based on the knowledge of when the learner hits the threshold for
expertise-reversal [134]. Both of these have been shown to be more effective than problem-
solving alone.

Thus, across all the experiments presented in Chapter 6, we tested the order of pre-
sentation of treatments and various options for fixed fading. In the future work chapter,
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Prior Knowledge Dimension Brief Description Learner Expertise in
Current Context

Domain-relevant Conceptual
Conceptual knowledge

in the topics taught
(Cloud Computing,
Data Science, ML).

Novices

Programming

Syntactic
Declarative

Knowledge of symbols
and primitives (e.g.,

keywords, data types).

Experts in one
language; Provided

with primers prior to
the project for any new

ones.

Procedural
Knowledge of

implementation
procedures (e.g., syntax

rules, compilation
process)

Experts in one
language; Novices in
any new languages.

Semantic
Conceptual

Understanding of
programming
constructs and

principles (e.g., loops,
functions,

object-oriented
concepts).

Experts in one
language; Research

indicates this transfers
to others.

Strategic
Problem-solving skills

specific to
programming (e.g.,

algorithm design, code
organization).

Research says this
needs to be the focus of
learning for experts in

the above three.

Table 2.1: Prior Knowledge Dimensions for Learners in Advanced Computer Science
Contexts

Chapter 9, we talk about how recent advances in AI and large language models can en-
able more accurate detection of expertise-reversal and, as a result, more precise options
for appropriate personalized interventions for each learner/group of learners.

2.2 Orchestrating Collaborative Learning

The team-based programming projects are envisioned as effective learning environ-
ments to foster collaborative learning among learners. Collaborative learning allows
learners to co-construct new knowledge through productive interactions with their peers
[71]. When described with the group as the unit of analysis, collaborative learning is
the process of building shared understanding through interactions with others, where
participants are dedicated to shared goals and problem-solving [131]. However, from
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a sociocultural learning perspective, we can also look at the individual unit of anal-
ysis. Here, learners participate in meaningful peer interactions, such as explaining,
questioning, justifying, and negotiating their individual conceptual knowledge while
problem-solving in the collaborative learning environment [55, 69, 167]. The environ-
ment provides learners with the opportunity to externalize their mental models [81].
Then, through these interactions with peers who critically engage with the externalized
mental model [23], each learner has the opportunity to update and enhance their mental
model, leading to their improved conceptual understanding [58, 178, 179]. The role of
technology in orchestrating and facilitating collaborative learning was recognized early,
but shortcomings were already observed from simply adapting existing learning envi-
ronments that were not purpose-built for collaborative learning [162]. Without support,
learners faced significant hurdles in realizing the benefits of collaborative learning from
high-quality knowledge exchange, negotiation, and co-creation [19]. Encouraging ac-
tive participation and contributions from group members, regulating and coordinating
common goals, and integrating multiple perspectives was challenging [107]. But even
before that, process-related challenges such as higher levels of forgetfulness, procras-
tination, and social loafing than face-to-face learning, negatively impacted peer inter-
actions [70, 92]. Learner behaviors, such as their tendency to seek quick solutions and
make hasty decisions, rather than explore and critically evaluate alternatives, also un-
dermined the theoretical benefits from being realized in practice [180]. Thus, a body of
research emerged to design learning environments specifically for collaborative learn-
ing with sufficient support for learners to engage in desirable behaviors while prevent-
ing undesirable ones from manifesting.

2.2.1 Computer-Supported Collaborative Learning

Computer-Supported Collaborative Learning (CSCL) is based on the premise that tech-
nology can effectively facilitate collaborative knowledge construction and problem-solving.
From prior research in social psychology, CSCL recognized the critical role of social
interactions, including those involving conflicts [21, 45, 59], in the cognitive reorgani-
zation and development of learners [82]. Vygotsky [186, 187] highlighted that higher
psychological functions first appear in social interactions, and effective scaffolding the
learner within their “zone of proximal development (ZpD)" is critical for their cogni-
tive development. Vygotsky’s experiments illustrated ways in which group cognition
is a basis for individual cognition, thus advancing collaborative learning as “a basis for
all human learning, not just an optional and rare mode of instruction” [163]. Collab-
orative learning, in general [84, 192], and the operationalization of Vygotsky’s theory
with collaborative learning scaffolds that support learning in the ZpD [73], have shown
many cognitive, metacognitive, and social benefits for learners. Learning with peers
has shown improved levels of conceptual understanding, motivation, and engagement,
producing downstream effects on course performance [38, 159] and course completion
[122]. However, these positive effects require intentional pedagogy and support for peer
interaction, without which peer learning has been found to fail [34].

Specific to the online context that this dissertation focuses on, early efforts to repli-
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cate these results have had mixed results. The simple provision of communication tech-
nology has, predictably, proven insufficient. For instance, an early Massive Open Online
Course (MOOC) that offered optional learning groups found that only 300 out of a to-
tal of 7350 participants in the course signed up for one of the 12 learning groups [91].
One explanation is that students do not fully recognize the role that social interaction
is meant to play in their learning, suggesting a need for a much more intentional and
tighter coupling of social interaction opportunities with course content and pedagogy
[165]. Attempts to encourage unstructured discussions using real-time chat did not find
improvements in student retention rate or academic achievement [33]. In contrast, chat
facilitated by an intelligent agent led to an almost 50% reduction in dropout at the next
time point [52, 132]. The online context also faces some unique problems that, if not ad-
dressed, are detrimental to peer learning [86]. For example, students may fail to provide
feedback on the work of their peers, they may not show up for a collaboration session
they signed up for, or they may quit working with their team altogether as they dropout
of the course. These are some of the same reasons why students have also reported more
frustration with online groups than with groups in face-to-face learning environments
[159]. Therefore, designing support for collaborative learning in the online learning
context is an additional challenge to tackle. Technology such as video conferencing,
chat platforms, emails, and discussion boards have allowed learners to participate in
asynchronous and real-time exchanges [56]. Nevertheless, the lack of structured coordi-
nation mechanisms to facilitate meaningful collaborative learning has resulted in poor
learning outcomes [72].

Coordination, both social and cognitive, is crucial for effective collaborative learn-
ing. Research has shown that successful collaborative learning is based on the ability of
group members to synchronize their actions, share understanding, and build on each
other’s ideas [44]. Stahl et al. [164] emphasized that the quality of collaborative learn-
ing is significantly enhanced when participants effectively coordinate their efforts and
interactions. Supporting learners’ coordination has therefore been one of the most im-
portant objectives of CSCL research [18]. In addition to coordination, “the mutuality
of exchanges, the achievement of joint attentional engagement, and the alignment of
group members’ goals for the problem solving process" [18] are necessary to fully re-
alize the benefits of collaborative learning. Finally, support is required to ensure that
collaborative behaviors are not merely transitory either. For example, Raphael et al.
[124] observed that students adopted an array of roles in their small groups that were
fluid. However, when teachers returned to traditional instructional activities, students
reverted to their previous interaction styles, suggesting that group collaboration norms
run counter to those typically encountered in their learning [104]. Consequently, inten-
tional pedagogical support is also required to consistently manifest behaviors associ-
ated with collaborative learning in a sustained fashion.

This pedagogical support for collaborative learning can come in various forms. The
implicit variety relies on strategies such as intelligent team formation [140, 196, 197, 198]
to create teams of learners more likely to engage in positive collaborative behaviors.
However, implicit support may prove insufficient or impractical in many contexts, ne-
cessitating explicit scaffolding for coordination and reliable demonstration of positive
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collaborative behaviors. Collaboration scripts are a form of scaffolding that help achieve
this goal. Collaboration scripts guide learners through a sequence of interaction phases
with designated activities and roles [118, 119] and promote conducive cognitive, so-
cial, and metacognitive processes [83]. learners are provided with detailed and explicit
guidelines in terms of what, when, and by whom certain learning activities should be
performed [87]. Some representative collaboration scripts include the JIGSAW scripts
[11], ConceptGrid [44], ArgueGraph [42], and WiSim [41]. The use of collaboration
scripts appropriate to the task is the way in which CSCL ensures that desirable behav-
iors are scaffolded while preventing undesirable ones from manifesting. Similar struc-
turing of tasks, assignment of roles, and detailing of instructional phases is required
of team programming projects as well, in order to realize the benefits of collaborative
learning in this context. We take inspiration from a role scaffolding paradigm (role
assignment and role switching / rotation) that originated in the industry called Mob
Programming [199, 204]. In addition, we use a task structuring scaffold and in-process
AI support behaviors, all three of which we cast as forms of script-based scaffolding for
collaboration, which we describe in the next section.

2.2.2 Online Mob Programming as Script-Based Scaffolding

The final design of the team programming project can be described as a task-structuring
and role-scaffolding “macro"-script as defined in the Script Theory of Guidance [53]. As
mentioned earlier, collaboration scripts [54, 89] specify a sequence of learning activities,
learners’ roles, and other aspects of the task with the aim of promoting behaviors and
triggering engagement that would otherwise occur rarely or not at all [87]. Collabora-
tion scripts have been used to scaffold collaborative learning in several activities since
they were formalized [193]. A useful separation is that of the macro- and microscript
[43]. Macroscripts are external collaboration scripts that sequence the task into learn-
ing phases and/or provide high-level directives, such as role assignments, but do not
provide guidance on how to act within those phases [43]. In contrast, microscripts pro-
vide explicit scaffolding for collaborative behavior within each learning phase. Macro-
and microscripts have been successfully used to amplify each other’s positive effects in
some prior studies [3, 109]. The task-structuring paradigm, based on best practices in
instructional design of alignment between the context of the learner, the learning goal,
instruction, and assessment [26], along with granular definitions of the learning objec-
tive based on the Knowledge-Learning-Instruction (KLI) framework [88] that is reached
at the end of the design-based research iterations presented in Chapter 4 can be consid-
ered a macroscript. Similarly, the role assignment and rotation paradigm, based on the
Mob Programming paradigm [199, 204], is a macroscript. Now, explicit in-process sup-
port in the form of conversational agent prompts intensify learning from the activity.
These discourse-level prompts can be considered a microscript. Previous work used
academically productive talk prompts [108] to encourage learners to elaborate on their
own reasoning while challenging and extending the reasoning of their teammates [3].
They found that this form of support can significantly increase learning, but that the
effect was context-specific. In particular, the effectiveness of each strategy depended
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on factors such as the difficulty of the material (new versus review) and the level of
knowledge of the learner (public high school versus private university).

2.2.3 Collaborative Learning from Worked Examples

While discourse-level microscript prompts can provide some amount of guidance, even
more guidance in the form of worked examples is likely to be more effective in this
context, as we have established. It is important to note that learning from worked ex-
amples hinges on being able to draw learners’ attention to the relevant problem states
while helping them navigate away from superfluous ones [78]. In prior work, this has
been achieved by using various means such as classification of examples by common
schema [176], contrasting examples, and prompt-directed self-explanation [158]. In our
study, we posit that conversational agent-based prompts during a collaborative reflec-
tion can be used to direct learners’ joint attention to the aspects of the problem state that
are relevant to their learning. The collaborative learning context might not only allow
learners to rely on the experience of all the members of the team to identify relevant
problem states but, when designed appropriately, can require them to make their rea-
soning explicit. Then, one learner articulating their reasoning provides an opportunity
for other learners in the team to challenge, extend, or integrate that reasoning with their
own, resulting in transactive exchange that is associated with learning [81]. Indeed,
prior work in other contexts has provided evidence for the strategic use of conversa-
tional agent-based prompts to productively impact learner behavior in a collaborative
learning environment [60].

Collaboration scripts have been combined with worked examples in prior work, in
an attempt to produce synergistic positive effects on learning. Although using them
simultaneously did not produce any notable benefits over either scaffold separately [90],
sequencing the scripts or providing them one after another, while fading the initially
presented scaffold produced positive effects on dialogic mathematical argumentation
skills [155]. The authors hypothesize that the positive impact of fading may be due to
the fact that the two scaffolds are somewhat redundant and, therefore, the fading of one
frees up the cognitive resources of the learners, resulting in additional gain from the
task. It follows that in contexts where the two scaffolds can avoid redundant roles, we
might observe compounded benefits from their combination.

2.2.4 Discouraging Unproductive Behaviors

The design of the team programming project environment is further complicated by
the noted tendency of students in project-focused contexts to optimize for their project
grade and adopt an efficiency orientation while sidestepping well-intentioned learning
opportunities offered by instructors [68, 113]. In software engineering team projects, in
particular, tasks within a larger project often require specialized expertise. Therefore,
these projects can sometimes be completed more efficiently by having individuals fo-
cus on the part of each task that best aligns with their existing expertise (a divide-and-
conquer strategy). However, when individuals work independently, the opportunity
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for collaborative learning is lost. Consequently, these projects must be designed to ex-
plicitly discourage these tendencies in order to take advantage of collaborative learning
opportunities to impact student learning. Once such an environment is successfully
created, it can be instrumented with problem-solving practice or worked examples to
illustrate the comparison.

To do this, we rely on a combination of task structuring and role scaffolding macro-
scripts, and discourse-level microscript prompts in the eventual project design. The
task structuring macroscript divides the project into tasks, each of which has to be com-
pleted collaboratively prior to advancing to the next one. Within each task, students
are assigned to interdependent roles with distinct responsibilities by the role scaffold-
ing macroscript. This reduces the likelihood of free-riding since students in each role
have to contribute in order to make progress on the task. The distinct responsibilities
associated with the roles further reduce the likelihood of domineering and divide-and-
conquer tendencies. Discourse-level microscript prompts from the conversational agent
reinforce conformance to the roles in addition to providing support for reflection, elab-
oration, and discussion. To integrate worked examples, we modify the task-structuring
macroscript to present an example for the duration of a task. The discourse-level micro-
script prompts now call attention to relevant aspects of the worked examples to which
learners should pay attention.

Thus, positive collaborative behaviors are encouraged and unproductive ones are
discouraged through the use of script-based scaffolding for collaborative learning, with
appropriately designed scripts based on the context of the learners.
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Chapter 3

Experimental Context and Project
Design

3.1 Experimental Context and Participants

The bulk of the experiments presented in this dissertation start in the Fall 2018 semester
and end in the Fall 2021 semester. This chapter elaborates on the context in which we
conducted them. The very first study was in a free 6-week online Cloud Computing
course offered to working professionals in the summer of 2018. This was a shortened
version of a semester-long (16-week), graduate-level, online course on Cloud Comput-
ing that would subsequently be offered to the students of all of the worldwide campuses
of Carnegie Mellon University (CMU), starting in the fall of that year. These profession-
als were all proficient programmers but were new to the conceptual aspects of Cloud
Computing. The main premise behind using this course was to begin experimenting
with team programming project designs that would produce measurable learning gains.
It was also chosen because we were adapting the Mob Programming paradigm from in-
dustry to scaffold the team programming project. The industry audience, likely more
familiar with the paradigm, may not have as much overhead in learning the scaffold,
allowing us to focus on refining the instructional design. This experiment was the first
in the series of design-based research iterations described in Chapter 4.

The subsequent experiments in that series were conducted in the semester-long ver-
sion of the Cloud Computing course. The course offers hands-on experience with the
applications of Cloud Computing concepts using three leading cloud computing plat-
form providers – Amazon Web Services, Microsoft Azure, and Google Cloud Platform.
It sees participation from between 100-200 students depending on the semester, dis-
tributed across at least four of Carnegie Mellon University’s campuses in Pittsburgh,
Silicon Valley, Rwanda, and Adelaide. The majority of the participation comes from
the Pittsburgh campus. Depending on the semester, there may be occasional partici-
pation from partner universities, such as Sun Yat-sen University through CMU’s Open
Learning Initiative (OLI) 1. Although the course itself is fully online, the student sub-

1https://oli.cmu.edu/
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populations are co-located on each campus and can meet outside of the course. This has
some design implications for the design of the project, especially for the process of form-
ing teams and administering the project. For instance, internationally distributed teams
will have to find a time that works for all participants in order to do these programming
projects together, in real-time. This creates overhead for the course instructors as well
as a sub-par collaborative learning experience for the students. These were findings
from our previous research in this context [138, 139, 175]. Consequently, we enforce
co-location for all team members of a project group. The design implications from the
specifics of the context are highlighted alongside descriptions of the experimental de-
signs, where relevant. Almost all of the students enrolled in these courses are master’s
students. The prerequisite is that they are proficient in at least one programming lan-
guage. This allows us to make certain inferences about the prior levels of programming
knowledge that these students possess. Specifically, they are experts in the declarative,
procedural, and conceptual aspects of at least one programming language.

At the end of the design-based research iterations in Chapter 4, we successfully pro-
duce a programming project design that produces meaningful and measurable learning
gains in this context. That design is integrated with the Social and Interactive Learning
Platform, abbreviated as Sail() 2. The platform enables the projects to be offered in more
than just the Cloud Computing course. Importantly, it enables rapid iteration on the de-
sign and AI facilitation without requiring reintegration with each semester of the course
or additional courses onboarded to the platform. The first course added to the platform
after the Cloud Computing course was a foundational course on Computational Data
Science. This was the flagship course of the Master’s program in Computational Data
Science offered at Carnegie Mellon University’s Language Technologies Institute. As
such, the courses are structured very similarly and target a similar audience of learners.
The Data Science course is an additional subject of the remaining experiments presented
in Chapter 6 – Chapter 8. Since the completion of these experiments, the Sail() platform
has been integrated with community college and vocational education courses, prov-
ing the value of the integration not only for experimentation, but for the deployment of
successful designs to several contexts at scale. We will discuss this in more detail under
Future Work in Chapter 9.

3.2 Project Design

Both courses are structured around several project-based units. Each unit has several
sub-units and culminates in a large individual project that has assessment components
to evaluate achievement in that sub-unit. In the final design, students, in teams of 4,
work on their team programming project in real-time, to prepare for this individual
project.

The Cloud Computing course has five such units, with the experiments conducted
in either the third or the fourth unit. The third unit uses Java, which all the students

2https://sailplatform.org/
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Figure 3.1: Course structure, pre-test, post-test, and delayed post-test alignment.

were familiar with. Hence, they have prior knowledge in this language. The fourth
unit uses Scala for which students do not have prior procedural knowledge. Declara-
tive knowledge of Scala is obtained from interactive primers provided prior to the team
programming project. From the theory referenced in Chapter 2, we know that concep-
tual knowledge transfers from one programming language to another for these “expert"
programmers. Thus, prior procedural knowledge remains the key difference dimension
in our experiments. The difference in the requirements for the third and fourth units al-
lows us to test the aptitude-treatment interaction between prior procedural knowledge
and the use of worked examples in a between-subjects manner. This comparison be-
tween problem-solving practice and worked examples, including the order of presen-
tation of the treatments, for students with and without prior procedural knowledge, is
presented in Chapter 6.

A summary of the structure of the course and the location of the experiment within
the third unit of the course is shown in Figure 3.1 and a summary of the experiment in
the fourth unit is shown in Figure 3.2. For example, within the first sub-unit of the fourth
project unit of the course, students work in our collaborative learning environment on a
programming project to build an inverted index using the Scala programming language.

We realized very early in the design process that the lack of learning objectives at the
right level of granularity and the learning measures corresponding to those granular
learning objectives significantly affected our ability to measure learning gains from the
project. More importantly, this lack of specificity also reduced the efficacy of the project.
Given the intensive investment that would be involved in a redesign, we had to first
demonstrate to course instructors that the existing project designs were ineffective and
only then engage in the redesign. For the final design, we turn to best practices in
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Figure 3.2: Course structure, pre-test, post-test, and delayed post-test alignment

instructional design that emphasize the need for well-defined learning goals. Then,
for a given learning goal, the instruction must be positioned to explicitly target that
learning goal, and the assessment should measure what was targeted [26]. This process
is a distillation of several instructional design frameworks, such as Backwards Design
[105], ADDIE [24] (Analysis, Design, Development, Implementation, and Evaluation),
and SAM [8] (Successive Approximation Model).

To define measurable learning goals at the right level of granularity, we turn to the
Knowledge-Learning-Instruction (KLI) [88] framework. Accordingly, for our example
of building an inverted index using the Scala programming language, we might have
the following knowledge components –

• Conceptual knowledge:

Understanding of inverted index structure and purpose

Principles of functional programming in Scala
• Procedural knowledge:

Scala syntax and data structures

MapReduce paradigm for distributed computing

Algorithms for tokenization and index construction
• Declarative knowledge:

Scala language features (e.g., case classes, pattern matching)

Spark API for distributed computing

These imply the following specific and measurable learning objectives (LOs) using the
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KLI framework.

• Remember and Understand

Define an inverted index and explain its purpose in information retrieval sys-
tems.

Describe the basic structure of a Scala program and its functional program-
ming features.

• Apply

Implement a function to tokenize input text into individual terms using Scala’s
string manipulation methods.

Create a case class to represent document-term pairs with appropriate fields.
• Analyze

Compare the efficiency of different data structures (e.g. Map, Vector) for stor-
ing the inverted index in Scala.

Analyze the time and space complexity of the inverted index construction
algorithm.

• Evaluate

Assess the impact of removing common “noisy" words on the quality and
size of the inverted index.

Evaluate the scalability of the implemented inverted index solution using
various input sizes.

• Create

Develop a Spark application that builds an inverted index from a large corpus
of text documents using Scala.

Design and implement a query function that efficiently retrieves relevant doc-
uments based on input terms using the constructed inverted index.

Now each of these imply a different instructional approach. For the “Remember and
Understand" LOs, we use interactive primers with self-assess questions prior to the
team programming project. The “Apply", “Analyze", and “Evaluate" LOs can be ad-
dressed either through worked examples, guided practice, or minimally guided problem-
solving in the team programming project context, depending on the outcomes of our ex-
periment. The “Create" LOs are best addressed in the individual programming project
at the end of the sub-unit.

Following this recommendation, we divide the team programming project into five
different tasks that target five LOs. Each LO is assigned two multiple-choice questions
each on a pre-test that students take immediately before and a post-test they take im-
mediately after. This provides a proximal measure of student learning from the project.
The tasks of the team programming project are then aligned with those of the individual
project which then serves as a delayed post-test. Table 3.1 shows the LOs and examples
of pre- and post-test questions corresponding to each task, and Figure 3.2 shows the
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position of pre-, post- and delayed post-tests within the course.

# Learning
Objective

Example Pre/Post
Test Question

Information
Prompts

Elaboration Prompts
(Example)

1
Writing

OS-aware
code.

What needs to kept
in mind when

writing OS-aware
code?

@Researcher, what
is the advantage of
writing OS-aware
code like you did

here?

@Driver, How would you
improve the implemented
approach? The Researcher

can chime in too.

2 Need for pre-
processing

Whitespace
characters are

removed while
building the index.

Why is this
necessary?

Ok, @Navigator,
can you say why

these preprocessing
steps are necessary
before building the

inverted index?

@Researcher, do you agree
with this approach? @Project
Manager, what do you think?

3
“Map" for
word level

count.

Which of these is
true about

combining word
counts from

different parts of a
document?

@Driver, can you
tell us how the

word level counting
is going to help us

parallelize?

@Project Manager, do you
think there is better

implementation of this
function? @Driver can chime

in too about why.

4

“Reduce" for
collating

counts within
document.

Which Spark code
snippet produces
an RDD of tuple

(word, word
frequency)?

@Researcher, can
you think of

another way to do
the reduce?

@Navigator, what trade-offs
do you think you made in this

function implementation?
@Driver, can you provide

some insights too?

5

Collating
across

documents for
inverted
index.

What needs to be
done to build a
case-sensitive

index?

@Driver, what did
the groupBy

operation achieve
here?

Ok @Researcher, is there a
better way to implement this?
@Navigator, can you provide

insight too?

Table 3.1: Learning objectives, examples of corresponding pre- and post test questions,
information and elaboration prompts

At the end of the design-based research iterations in Chapter 4, we successfully pro-
duce a programming project design that produces meaningful and measurable learning
gains in this context.

This project design produces conceptual learning gains from problem-solving and,
therefore, serves as a strong baseline for subsequent comparison experiments with inter-
ventions that provide additional guidance. Before detailing the design-based research
iterations that helped us arrived at this project design, in Chapter 5, we will look at the
technology that enables orchestration of the team programming project and in-process
support using AI conversational agents in the next chapter.
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Chapter 4

Tech-Enabled Orchestration and
In-Process Support

We established in Chapter 2 that intentional scaffolding is required to help learners
consistently and sustainably manifest behaviors associated with collaborative learning
while avoiding pitfalls. To that end, we design a scaffold for team programming projects
that we will first describe. Then, we will see how AI technology can be used to orches-
trate the team programming project and deliver these scaffolds. In doing so, we will
also instrument the project to capture process data.

Prior work echoes this need for the process to be instrumented and captured as well.
Ju and Fox [76], for example, highlight the need to instrument learning environments
to capture learner behaviors during collaboration rather than just the end product. In-
structors are known to be largely unable to make these assessments since they are not
present during most of the group work [61], and are also known to fall prey to specific
cognitive biases when they form impressions from what they do observe [63]. Process
data, in addition to technology to orchestrate the project and deliver the scaffold, un-
locks a virtuous cycle for explicit in-process AI support to intensify the learning gains
from the project.

4.1 Mob Programming

We draw inspiration and conceptual foundations from industry to motivate a potential
solution to the obstacles faced in realizing the benefits of collaborative learning in prac-
tice. To do this, we build on the industry practice of Mob programming [199, 204]. In an
instructional context, we cast the Mob Programming paradigm as a form of script-based
scaffolding for collaborative learning. We call the resulting paradigm for collaborative
project-based learning in computer science — On-line Mob Programming (OMP).

Mob Programming grows out of Pair Programming and is a group activity in which
3-6 participants assume different roles to collectively contribute a solution to a program-
ming challenge. In this way, cognition is distributed and group members with different
abilities are able to contribute in different roles while benefiting from the support of the
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group. OMP first ensures that group work is conducted online, where it can be instru-
mented to collect data and provide data-driven support. Specifically, group processes
and progress are scaffolded by AI conversational agents. AI conversational agents have
been used in prior work to offer dynamic, context-sensitive support for collaboration
in the middle of text chat-based interactions, thus allowing for in-process feedback and
scaffolding [93, 94, 172, 173]. These forms of support have been shown to improve
learning, knowledge integration, and team performance in facilitated collaborative ac-
tivities [3, 48, 190]. OMP additionally provides the benefit of a structured collaboration
that manages group processes up to relatively large group sizes, anywhere from 3-6
learners. The defined roles and role-switching allow learners to contribute to the task
from different perspectives while being supported by the conversational agent. Impor-
tantly, role assignment discourages divide-and-conquer tendencies that learners in this
context fall for due to an efficiency mindset.

4.1.1 Prior Work

The Mob Programming construct is poorly studied in academic research, especially for
pedagogical uses. Buchan and Pearl [25] report on a software company team’s expe-
riences over 18 months of in-person Mob Programming. They report benefits partic-
ularly with respect to the broad knowledge and understanding that team members
gained about the project as a whole. Kattan et al. [80] present three case studies on
Mob Programming. Each study consists of a team in an academic setting working on
open-source code. In general, they report that there was unanimous approval for Mob
programming during team retrospectives. Malmgren [99] presents an experience report
describing how she participates in “Remote Mob Programming". Barring these experi-
ence reports, references to Mob Programming for pedagogy are scant.

In contrast to Mob Programming, there has been extensive research into Pair Pro-
gramming. Some Pair Programming work relevant to the OMP context is referenced
below. Harsley et al. [65] use an intelligent tutor to assist with Pair Programming. Ro-
dríguez et al. [130] found that more active participation from the “Driver" — the par-
ticipant writing the code and in the metaphorical driver’s seat. Encouraging active
participation is an important requirement for collaborative learning and may therefore
also have implications for the design of the OMP scaffold. Other researchers have stud-
ied distributed Pair Programming [15, 39, 169, 177] where pairs are not physically co-
located. In addition, researchers have investigated ideas adjacent to Pair Programming
with more than two participants.

Saros [135] is a platform that supports up to five participants in what they call dis-
tributed party programming. However, Saros does not provide guidance on how par-
ticipants should interact during a session. Nguyen et al. [114] present EduCo, a web-
based collaborative learning environment. They report supporting 40 students who
participated in a single session.
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4.1.2 Roles and Role Definitions

In Mob Programming, participants typically rotate through the following roles —
• Driver — A single participant who converts high-level instructions from the Nav-

igator into code.
• Navigator — A single participant who makes decisions based on discussions with

the mob and communicates that to the driver to be implemented into code.
• Mob — A group of participants who consider and deliberate between multiple

alternative implementations, ultimately informing the decision of the Navigator.
• Facilitator — A single participant (optional) who observes and intervenes when

necessary, such as to indicate when roles are switching and to keep the activity
progressing.

The rotation of roles gives participants the opportunity to experience how group pro-
cesses change when leadership changes within a group. Each participant will expe-
rience all the roles over the course of a single Mob Programming session, getting an
opportunity to contribute, as well as observe different perspectives and approaches to
solve problems.

In the Navigator role, a participant is responsible for making decisions about the
next step in the implementation. They will ask for input from the mob, decide on the
next action, and provide directions to the driver.

In the Driver role, responsibilities include taking directions from the navigator and
translating those into code. The Driver role allows a participant to focus on writing
syntactically correct code, while the navigator worries about the overall direction.

In the Mob role, a participant is responsible for considering alternative directions,
understanding the current state of the code, and providing input to the navigator on
how the code can be improved.

Along the programming knowledge dimensions, the Navigator and Mob members
are engaging in strategic language-independent planning. Whereas, the Driver and
Navigator engage in language-dependent implementation planning which the Driver
ultimately implements.

4.1.3 Mob Programming in Pedagogy

When applied in a pedagogical context, this synchronous learning supports learners
at different skill levels or those with complementary skills to scaffold each other. The
group context creates pressure to perform and yet balances that pressure with support
from the team. The learners are exposed to different perspectives for solving problems,
building solutions, experimenting, debugging, and writing readable code. They are
forced to externalize their thinking, which provides the opportunity for knowledge gaps
to be revealed and addressed. They also have the opportunity to observe knowledge
and expertise in action as they learn.

The concern with collaborative group activities is always that group processes come
in the way of learning and productivity, and without structure, they can descend into
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chaos. In addition, increasing group size can exacerbate instances of social loafing [121]
(free-riding) and losses due to increased difficulty in group coordination. Without guid-
ance, learners can also end up choosing suboptimal strategies, such as working on tasks
or roles that they are already good at, instead of taking the opportunity to learn. Finally,
group work can be dominated by the most outspoken members [74].

Mob Programming is pedagogically positioned to solve these issues. First, providing
a structure around the collaboration and helping learners understand how this structure
contributes to their learning and success in the problem can stem group coordination
difficulties at the outset. Second, assigning learners to roles and periodic rotation of
roles can prevent the adoption of suboptimal strategies. Moreover, role assignments
can solve the problem of freeloading by introducing an element of social pressure but at
the same time balancing that pressure with support from team members in other roles.

4.2 Online Mob Programming

The primary technological infrastructure needed to bring the offline version of Mob pro-
gramming online is a terminal that can run collaboratively composed code and a means
of communicating around the code. However, as mentioned previously, simply pro-
viding the technology without intentional design that can support collaboration leads
to failure [86]. We therefore adopted a smaller iterative design process over a series
of pilot studies, pausing after each to reflect on what worked and what did not work.
We then use the insights from the investigation of this space of possibilities to design
the final OMP setup for our study of measurable learning gains from the programming
project. These studies are described in Chapter 5.

One locus of investigation was the communication channel. Although audio can
lead to a much smoother interaction and coordination experience, it comes at two im-
portant costs. First, the audio channel is harder and more resource-intensive to cap-
ture and instrument for the purpose of analyzing the interaction between learners. The
text channel is readily instrumented because it completely captures the communication
among learners around the code. Second, the audio channel could disadvantage certain
kinds of learners.

Prior work has found that audio channels place a higher cognitive load on learners
compared to text channels, therefore disadvantaging learners with low or intermedi-
ate spoken proficiency [133, 168]. Furthermore, audio channels have been associated
with higher anxiety levels among learners than text channels [64, 153]. It has also been
observed that while audio channels provide a heightened sense of social presence to on-
line learners and minimize the chances of misinterpretations because of the use of voice
and tonal cues, text channels may be entirely more appropriate for tasks that require
learners to explore dissonances among ideas and negotiate opinions, which is the case
in Mob Programming. These tasks typically require that learners challenge each other’s
opinions and ideas [98] which is better supported by the text channel as it provides
more time to structure responses [66].

The second locus of investigation was the collaborative coding environment. Al-
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Figure 4.1: The Cloud9 IDE Interface

though tools like Coderpad1 provide support for collaborative coding and log edits
made to the code for later retrieval and analysis, they do not have a built-in commu-
nication channel. This necessitates the use of another application for communicating
around the code in real-time. Therefore, learners would have to switch between the two
applications, leading to coordination issues, switching costs, and an overall suboptimal
interaction experience. This further had the unintended consequence of slowing down
the entire group, resulting in the learner in the driver role having to wait for the group
to come to a consensus before translating that into code. Coupled with the relatively
frequent switching of roles, this meant that not much code was written in the amount of
time allotted for the exercise. The learning goals were not met due to the suboptimal in-
teraction experience and the productivity goals were not met due to coordination issues.
This meant that the ideal collaborative environment would provide for both collabora-
tive coding and support for communicating around the code in the same environment
without the need for context switching.

We choose the Cloud9 IDE2, which includes editor, terminal, text chat, and file nav-
igation, all on one screen. The collaboration pane above the chat includes some social
presence tools allowing users, at any given time, to determine which files and locations
within files other users are looking at. Cloud9 being a part of the Amazon Web Services
(AWS) infrastructure allows the setup to scale to a large class and to service many si-
multaneous mobs. In addition, contributions to the code and chat could be logged along
with user timestamps, which is conducive to analysis. A screenshot of the Cloud9 IDE
is shown in Figure 4.1.

The final locus of investigation was the use of a conversational agent to support

1https://coderpad.io/
2https://aws.amazon.com/cloud9/
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collaboration between learners who participated in the mob. Specifically, the role of
the facilitator, which if assigned to a learner would mean either that the learner cannot
fully concentrate on the task at hand or would be idly occupied by time-keeping and
other coordination tasks providing no pedagogical benefit. Thus, a conversational agent
facilitator, based on the open source Bazaar framework3 [3] was integrated into Cloud9
to handle the timing and sequencing of the activity by informing the learners when
they would need to switch and what their new roles would be. The introduction of
the agent also allowed for instructions about the use of the Cloud9 IDE and the activity
to be introduced more naturally as a part of the conversation rather than as a part of
an instruction file, and opened up the possibility of more dynamic context-sensitive
conversational support for learners and their roles in subsequent experiments.

4.2.1 Conversational Agent-Based Prompts

Throughout the design-based research iterations, various types of conversational agent-
based prompts were implemented to support and enhance the collaborative program-
ming experience. These prompts played a crucial role in structuring the activity, facili-
tating reflection, and promoting learning.

The most important function of the Bazaar conversational agent framework is to de-
liver these prompts intelligently without the behaviors clashing with each other. For
milestone-based advancement of the task, for example, the role-switching function lis-
tens for an event that is broadcast at the end of a task — say — from a test case passing.
In response, it triggers the role-switching prompt which is sent to the output coordina-
tor. Provided other actions proposed at the same time are lower priority, or there are no
other proposed actions or blockers in the output coordinator queue at the same time,
the role-switching prompt is passed and sent to the learners. Bazaar accomplishes this
with the use of events that are triggered for each relevant action made in the program-
ming project interface, and event listeners that are “listening" or subscribed to these
events in order to respond to them when they are published to the event queue. The
output actions are then sent by each event handler to the output queue from where they
are processed in time order as well as priority order. For example, In case time in the
programming portion of the activity runs out, the phase-switching prompt is pushed
to the front of the queue, and the rest of the input and output queues are cleared. No
subsequent actions from irrelevant event listeners enter the queue because those events
are no longer triggered. Consequently, from the point of view of the user, only a se-
quence of relevant prompts is sent at the appropriate times without clashes between
them [2, 3]. Without centralized coordination, therefore, Bazaar manages multi-party,
multi-agent coordination. Attributes such as priority, timeout, and lingering advisors
are attached to events that are independently proposed by actors. Events are able to
be proposed independently by actors who rely on the output coordinator to ensure be-
haviors do not clash and learners receive a coordinated experience at the output. The
architecture of the Bazaar conversational agent framework is shown in Figure 4.2. The

3https://github.com/DANCEcollaborative/bazaar
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process of output coordination is demonstrated with an illustrative example in Figure
4.3

The following types of prompts were utilized —

Role Scaffolding Macroscript Prompts

The conversational agent provided prompts to support the Mob Programming structure
by —

• Assigning roles to team members at the beginning of each task
• Providing instructions on role responsibilities
• Prompting role switches at appropriate intervals
• Initially, role switches were time-based, occurring every 7-8 minutes. In the final

iteration, the strategy evolved to milestone-based switching, with roles changing
after the completion of each task and its associated collaborative reflection.

Task Structuring Prompts

To ensure that teams progressed through tasks efficiently, the agent provides —
• Bottom-out hints to hasten task completion if a team exceeds the allotted time (e.g.,

14 minutes per task).
• Warnings before and notifications when it was time to move on to the next phase

or task.

Discourse-level Microscript Prompts

• Information prompts — Designed to focus discussion on specific knowledge re-
lated to the learning objectives

• Elaboration prompts — Aimed at encouraging deeper reflection and exploration
of alternative perspectives

• Collaborative Reflection prompts — Findings from investigating the above two
designs led to the creation of the collaborative reflection prompts which encour-
aged learners to construct arguments, supported them in warranting their claims,
and explicitly prompted members to build on each other’s arguments.

These prompts were presented during the collaborative reflection phase after the
completion of the task. The agent demonstrated some intelligent detection by waiting
for the ongoing discussions to conclude before presenting the prompts. The more in-
teresting forms of support involved detecting arguments expressed in the conversation
and triggering support behaviors such as elaboration or transactive exchange triggers,
as appropriate, in response to those arguments.
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Figure 4.2: Architecture of the Bazaar Conversational Agent Framework
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Figure 4.3: Process of Output Coordination
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RL-based Parameter Optimization for Adaptive Prompt-based Scaffolding

• Adaptive Prompt Selection — RL algorithms can be used to dynamically select
the most appropriate prompts based on the current state of the collaborative pro-
gramming session. The agent can learn which types of prompts (information or
elaboration) are most effective for different learning objectives, team dynamics, or
stages of the task.

• Timing Optimization — An RL model can be trained to identify optimal moments
to introduce prompts, maximizing their impact on learning without disrupting
productive collaboration. This includes macro decisions such as the duration split
between reflection and problem-solving.

Both of these premises are born out in Chapter 7 which describes the use of a Reinforce-
ment Learning (RL)-based parameter optimization to adaptively change conversational
agent-based prompts to best support a given cohort of learners.

The integration of these various prompt types allows the conversational agent to
provide comprehensive support throughout the collaborative programming activity.
By combining role structuring, task management, and targeted reflection prompts, the
agent plays a crucial role in scaffolding the learning experience and promoting effective
collaboration. In the next chapter, we will see how we arrived at the final designs of
these scaffolds through an iterative process of design-based research.
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Chapter 5

Towards Measurable Learning Gains

Existing project designs used in practice are not instrumented for the level of rigor in
measurement expected in educational research. This makes it difficult to determine
their efficacy, let alone compare them to improvements. Furthermore, while projects
are aligned with the learning objectives of the course at a high level, they are rarely
defined at any level of specificity that enables measurement and design aligned to that
measurement to eventually produce measurable learning gains for learners doing the
projects. Absent this level of understanding and alignment, any learning gains from the
project are accidental in the worst case and suboptimal in the best. Thus, in the first
series of experiments in this dissertation, we undertake a rigorous redesign of the team
programming project in a series of design-based research experiments.

An additional constraint that we face across these experiments is the time, effort,
and level of investment required from the course instructors to make the changes we
were suggesting. Consequently, updates could only be incremental, proving the value
of each update before implementing it in a subsequent design. Thus, we start with
a naive, lightweight implementation of the OMP paradigm in the team programming
project, moving progressively to more structure and scaffolding based on the evidence
gathered from experimentation. Demonstrating that rigorous instructional design and
finer-grained measurement of learning are required in the pedagogy of advanced com-
puter science courses is a contribution of this dissertation.

5.1 Study 1 — Uptake and Size Effects

In the first study in this series, we investigate OMP in the context of a 6-week free
online Cloud Computing course offered to working professionals in the summer of 2018
[67, 136, 141]. We first see if the industry-inspired paradigm can be used to structure
small group collaboration. Only then can it serve as a basis for learning from problem-
solving. To that end, we investigate the following research questions —

• RQ1 — To what extent do learners follow the behavior prescribed by OMP?
• RQ2 — How does learner behavior in the OMP differ according to group size,

problem difficulty, and success solving the problem in the allotted time?

39



May 3, 2025
DRAFT

As described in Chapter 4, OMP is designed to solve common collaboration issues ob-
served in this context. RQ1 poses the question of whether that scaffold was followed
in practice. RQ2 poses the question of how learner behavior changes with group size,
difficulty of the problem, and whether successful and unsuccessful groups behave dif-
ferently. This can help us improve the design of the OMP scaffold by determining the
right-sized groups, the right problem difficulty that provides sufficiently complex learn-
ing opportunities, and even better scaffolds for stimulating productive learning behav-
iors while quashing unproductive ones.

5.1.1 Course Context and Design of the Scaffold

We investigate OMP in the context of a 6-week free online Cloud Computing course
offered to working professionals in the summer of 2018. The participants had prior
programming experience in Java, Python, and Bash. Importantly, participants were fa-
miliar with Mob Programming as a paradigm which had originated in the industry.
Consequently, we can expect a faster uptake of the OMP scaffold and any observed
differences to be ascribable to the design of the scaffold rather than to a lack of famil-
iarity with Mob Programming. Thus, this context could serve as an intermediary for
importing OMP into advanced computer science courses where learners have a similar
background but much less familiarity with Mob Programming.

A series of four OMP projects was added to the course — Mob 0 through Mob 3,
across four weeks of the course. Grouped by their availability, up to 6 learners were
assigned to a project in order to account for those who would not show up and those
who would drop out of the course entirely. Three Mob Programming roles — Driver,
Navigator, and Mob member were used for the projects in this course. 3 to 6 learners
in each group would be sufficient for each OMP role to be satisfied, with 1 to 4 learners
in the mob role at any given time, providing space for deliberation. Each OMP project
session was for the duration of a class session (80 minutes), and the roles were set to
rotate every 7 minutes with a warning sent by the conversational agent 1 minute before
new roles were assigned.

The OMP project was envisioned as helping learners expand on the knowledge they
had gained from working on their individual projects. In other words, the individual
project served as preparation for collaboration, which has plenty of precedent in the col-
laborative learning literature [50, 95, 106]. Consequently, each of the four OMP project
sessions took place after the individual projects for that week of the course.

Special consideration was needed for the problems posed in each OMP. They needed
to be difficult enough to not be solvable by an individual while allowing multiple
solution paths to manifest and implementation consensus to emerge via discussion,
all to lead the group to, ideally, solve the problem in 80 minutes (the duration of a
synchronous project session). In other words, the problem had to be “collaboration-
worthy", a concept we elaborate on in Sankaranarayanan et al. [144].

In each OMP, a grade was assigned to incentivize participation [57], and for success-
fully completing the assigned problem.
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Before the first project, the learners received a primer that introduced them to the
OMP scaffold, its goals, the roles involved, and the responsibilities associated with each
role. A walkthrough provided a step-by-step example using Test Driven Development
(TDD) in the context of OMP. To put it into practice, they were introduced to the Cloud9
environment where they participated in Mob 0 around a trivial Fizz-Buzz problem 1.
The programming problem was kept trivial to allow the learners to focus on internaliz-
ing the group coordination aspects of OMP. Three more project sessions were conducted
in the weeks following Mob 0. Each project session was held after an individual project
so that the learners would have the background necessary to participate productively
in the project.

Individual projects in each week of the course leading up to the OMP project sessions
were as follows —

• Mob 0 — In the first week, the learners explored the offerings of each cloud service
provider (Amazon Web Services, Microsoft Azure and Google Cloud Platform)
used in the course. The OMP project session was an introduction to the scaffold
and the Cloud9 development environment with a straightforward FizzBuzz prob-
lem.

• Mob 1 — The individual project introduced the learners to the Map-Reduce paradigm
and required them to design a Map-Reduce job to filter and aggregate Wikipedia
page view statistics. During the OMP project, the learners built on this knowledge
by implementing more complex data processing rules in a parallelized fashion.

• Mob 2 — In the project leading up to Mob 2, the learners had to develop a software
solution to automatically scale virtual machines in response to changing HTTP
traffic. Subsequently, they were tasked with using cloud-based load balancers
and scaling policies to maintain a given resource usage limit. The task chosen
for the OMP project expanded on the load balancing concepts introduced in the
individual project by having the learners implement the Token Bucket algorithm
for HTTP traffic rate limiting.

• Mob 3 — In the project leading up to Mob 3, learners had to develop a video
processing pipeline that integrates machine learning services and search engines
to build a video indexing service. The OMP project required them to develop a
new AWS Lambda function that would identify faces within thumbnail images
and blur all faces in the image, using the Pillow Imaging Library.

5.1.2 Data Collection

The following data informed our analysis —
• Pre-Course Survey — Learners complete a survey at the beginning of the course

answering questions about programming proficiency, familiarity with collabora-
tive learning paradigms such as Pair and Mob Programming, English language
proficiency, familiarity with AWS or other cloud services and their course goals.

1https://www.hackerrank.com/challenges/fizzbuzz/problem
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• Post-OMP Surveys — After each OMP project session, learners completed a post-
project survey with questions about their OMP experience such as their thoughts
on its impact on their learning, whether they liked the project, what worked, what
did not work, and what could be done to make OMP better.

• Post-Course Survey — At the end of the course, learners completed a survey to
provide feedback on the course as a whole. They also answered questions about
their OMP experience, including how it will be relevant to their learning and work
in the future.

• Code Revisions — Code revisions during each OMP project session were logged
by timestamp.

• Chat Contributions — Chat contributions during each OMP project session were
also logged by timestamp.

Table 5.1 gives an overview of the data collected in the four OMP project sessions.

5.1.3 Analysis and Results

Uptake of the Scaffold

To answer RQ1, we looked at the chat contributions and file revisions made by learn-
ers separated by the roles they assumed in the OMP project session. If the structure
imposed by the scaffold was followed, we would expect to see that most of the file re-
visions (code contributions) come from learners in the driver role. Moreover, we would
expect learners in all roles to consistently make chat contributions as an indicator of
active participation in the project. Table 5.1(a) shows the number of chat contributions
and file revisions by role for each OMP project session. Examining chat contributions,
we see that across all the OMP project sessions, about a third came from learners assum-
ing each of the roles. This suggests that regardless of the roles assumed, learners were
not disengaged from the project. In addition, more than 80% of the file revisions in all
sessions were performed by the driver, indicating that the intended role of the driver
was largely followed.

Inspecting the chat contributions being made by the driver, most of them are re-
quests for direction such as “We passed that test case, what next?" or requests for clar-
ification such as “Are we reading from file or standard input?". This is consistent with
the role of the driver but needs further analysis to quantitatively verify, which we un-
dertake in the next study in this sequence. Similarly, messages sent by the navigator
mostly involve marshaling the mob or providing directions to the driver based on the
mob’s decision. Another factor that needs to be investigated in more detail is deviations
from role orthodoxy. For instance, one mob user commented in the file to organize their
thoughts. These comments end up being counted as code revisions in this study. In
some other cases, the role switches did not happen instantly, even with advance warn-
ing from the conversational agent. The driver would often wait to finish what they were
currently working on before switching roles. Contributions made after the switch are
attributed to their new roles in the current study, which could possibly explain some of
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the deviation observed in the results.

Table 5.1: Number of Chat Contributions and File Revisions
(a) Chat Contributions and File Revisions by Role per OMP project session

OMP Total # of Number of Chat Messages Number of File Revisions
Session Users Groups Total Driver Mob Navigator Total Driver Mob Navigator

mob_0 51 17 2697 866 (32.11%) 908 (33.67%) 923 (34.22%) 5178 4280 (82.66%) 395 (7.63%) 503 (9.71%)
mob_1 28 10 1449 387 (26.71%) 595 (41.06%) 467 (32.23%) 5451 4500 (82.55%) 676 (12.40%) 275 (5.04%)
mob_2 24 7 963 292 (30.32%) 380 (39.46%) 291 (30.22%) 1782 1530 (85.86%) 168 (9.43%) 84 (4.71%)
mob_3 19 5 927 263 (28.37%) 358 (38.62%) 306 (33.01%) 1245 1049 (84.26%) 125 (10.04%) 71 (5.70%)

(b) Chat Contributions and File Revisions by Role per Group Size

Group Total # of Number of Chat Messages Number of File Revisions
Size Users Groups Total Driver Mob Navigator Total Driver Mob Navigator

3 36 12 2117 643 (30.37%) 756 (35.71%) 718 (33.92%) 5005 3759 (75.10%) 902 (18.02%) 344 (6.87%)
4 40 10 2161 558 (25.82%) 918 (42.48%) 685 (31.70%) 3981 3560 (89.42%) 207 (5.20%) 214 (5.38%)
5 15 3 624 170 (27.24%) 278 (44.55%) 176 (28.21%) 1639 1464 (89.32%) 106 (6.47%) 69 (4.21%)
6 12 2 486 131(26.95%) 252 (51.85%) 103 (21.19%) 740 549 (74.19%) 139 (18.78%) 52 (7.03%)

(c) Chat Contributions and File Revisions by Success on the Problem (Normalized to One Learner in Mob Role)

Number of Chat Messages Number of File Revisions
Problem Total # of (Normalized to One Learner in Mob Role) (Normalized to One Learner in Mob Role)
Completion Users Groups Total Driver Mob Navigator Total Driver Mob Navigator

Success 103 32 5229 48.1 (29.43%) 61.12 (37.41%) 54.19 (33.16%) 9978 254.19 (81.52%) 32.16 (10.31%) 25.47 (8.17%)
Failure 19 7 807 38.43 (33.33%) 40.71 (35.32%) 36.14 (31.35%) 3678 460.71 (87.68%) 47.86 (9.11%) 16.86 (3.21%)

Group Size Effects

The first factor in RQ2 is group size. To infer that the structure imposed by the scaffold
continues to be followed as the group size increases, we would first expect the driver
to make a majority of the file revisions (code contributions). We would also expect
learners in all roles to actively participate in the chat, but expect learners in the mob role
to account for a larger percentage of contributions because the number of members in
the mob role increases with increasing group size.

To investigate this, we examine code contributions and file revisions separated by
group size. Table 5.1(b) shows file revisions and code contributions by role for groups of
each size. Looking at the chat contributions, we see that the learners are not disengaged
in any role (at least 20% of the chat contributions came from the learners in each role
regardless of the group size). We can also note that the percentage of chat contributions
made by learners in the mob role increases with increasing group size from 35.71% for
groups of size 3 (1 learner in mob role) to 51.85% for groups of size 6 (4 learners in mob
role), which is consistent with what we would expect to find.

Looking at the file revisions, we can say that the driver role was largely followed.
However, there seem to have been deviations in groups of sizes 3 and 6. These differ-
ences are not statistically significant — The number of file revisions made by drivers
in a group of size 3 for example was 313.25 on average per mob (SD = 269.34), which
was not significantly different from the same for groups of size 4 which was 356 (SD
= 316.74) (p = 0.7356 >0.05). Similarly, the difference in the average file revisions per
mob made by groups of size 5 which was 488 (SD = 308.95), and groups of size 6 which
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was 274.5 (SD = 283.55), was also not statistically significant (p = 0.4934 >0.05). Even so,
it might have been the case that in smaller groups, there is less social pressure to up-
hold rules, more instances of possible domineering by one member, or deference to one
person to code. In groups of larger sizes, decisions may take longer, or the driver role
takes longer to come around leading to impatience on the part of mob members, and
these warrant further investigation in order to identify the ideal group sizes for Mob
Programming.

Problem Difficulty Effects

The second factor in RQ2 is problem difficulty. As problems that the groups solve be-
come harder, we might expect that they spend more time thinking individually and
less time actually discussing or making code revisions. Therefore, we would expect to
see fewer chat contributions and fewer file revisions with increasing problem difficulty.
The course team rated Mob 3 as the most difficult followed by Mob 1 and Mob 2. Mob
0 cannot be used even though the problem was trivial because it served as the intro-
duction to the OMP scaffold and Cloud9 environment. Keeping this in mind, we can
once again look at Table 5.1(a). While there is no clear trend, learners seem to have
made fewer chat contributions and fewer code revisions on average in the case of the
hardest problem, suggesting that they may have spent more time thinking individually.
In-process support, such as conversational agent-based prompts can be used to encour-
age learners to externalize their thinking. The goal is ultimately for their mental models
to be externalized, providing an opportunity for peers to build on it through discussion
and, eventually, for the updated mental model to be internalized once again leading to
learning. An added benefit might be that this process helps learners understand the
benefits of collaborative learning — that their peers can be thought partners in helping
them understand and make progress towards a solution. We investigate this form of
in-process support in future studies in this series.

Effect of Unsuccessful Problem Completion

The final factor in RQ2 is the effect of success on the problem. Understanding ways
in which the behavior of unsuccessful learners differs from that of successful ones can
help us better support them. In cases where the group was unsuccessful, we might ex-
pect learners to make fewer file revisions and more chat contributions if they were dis-
cussing the problem but could not come to a consensus on the path forward. We might
also expect them to make more file revisions and fewer chat contributions if they were
“wheel-spinning" by trying many different things instead of discussing and coming to a
consensus before implementing [20]. Table 5.1c shows file revisions and chat contribu-
tions normalized to one learner in the mob role and separated by whether groups solved
the problem or not. Most groups were successful. In the minority of the unsuccessful
groups, learners made almost twice as many file edits and fewer chat contributions. The
number of file revisions made by the learners in the driver role for unsuccessful mobs
was on average 460.71 (SD = 350.47) which was marginally significantly more than the
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same for successful groups which was 254.19 (SD = 220.65) (p = 0.1455). Differences in
chat contributions made by members in any role were not statistically significant. This
may suggest that the students were possibly wheel-spinning. It was further observed
that these students made more submissions to the auto-grader hoping for feedback that
they could use to get to the right answer. This unproductive form of engaging with the
support, termed “gaming the system", has been identified as one major predictor of fail-
ure [16]. Both spaces provide opportunities for improved project and scaffold designs.

Student Perception

One goal of OMP is to provide an opportunity to jointly optimize for learning and pro-
ductivity on the task. To that end, we are faced with the challenging task of shifting
learner perceptions away from the current culture of fixating on grades to caring about
the process and mechanisms they use for learning from their peers. To gather evidence
for whether we contribute to this culture shift, and to get a deeper understanding of
what learner perceptions about the project were and what they thought they gained
from it, we administer surveys after each OMP project session and at the end of the
course. The post-OMP surveys solicited immediate feedback on learner perceptions
while the post-course survey provided an opportunity for learner to reflect on the four
OMP projects as a whole and suggest possible improvements.

Three Likert scale questions asked how they liked the projects as a whole, how much
they felt it improved their learning, and how their experience with Cloud9 was. The
feedback was generally positive with average scores of over 3 on a 5-point scale. The
answers to the open-response follow-up questions helped contextualize these scores.
Collaboration and teamwork were most often cited as a part of the OMP exercise that
worked best. Several learners commented about the advantage of being exposed to
different approaches to the problem, having multiple pairs of eyes to catch errors and
edge cases, and even commented on the benefits of collaborative programming in real
time. The mob structure and rotation of roles were cited as the part of the OMP project
that helped the collaboration the most. The overall sentiment is best captured by this
learner’s experience — “I think working as a team and rotating roles worked best. It
had people in the driver’s seat to perform the actual programming and then had you
sit back and see the whole picture. It also allowed us to see different approaches to
problems by other people.". However, some learners complained about their group
members’ lack of proficiency in programming, the mob slowing them down on things
they already knew, or the speed with which the problem was being solved as a whole.
This was especially pronounced in the harder projects indicating that although there
were positive examples of learning, the culture shift was not entirely embraced and
it is important to provide a problem at the right difficulty in order to strike a balance
between productivity and learning.
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5.1.4 Discussion

First, we situate this study in a context where learners are familiar with Mob Program-
ming. This allows us to more cleanly interpret the results as directly pertaining to the
OMP scaffold and its implementation. In general, we observe positive results in terms of
the uptake of the scaffold, with the Mob Programming roles being adopted and played
by the learners, as intended. Deviations from the roles are most common around the
time of role switching. At the very least, learners in the driver role wait to complete the
line of code or function they had been implementing before handing over control to the
next driver. This suggests that a project design that allows a group configuration to re-
main in place until a milestone is reached may be warranted. In this proposal, however,
learners may spend varying amounts of time on each milestone and therefore, in each
group configuration. Worse, they may be stuck on a milestone without another group
configuration to potentially break an impasse and help them make progress on the task.
Careful redesign is required if milestone-based role switching is to be implemented. For
now, since we see compliance at over 80%, we proceed with time-based switching.

For group size, we see the smallest and largest groups showing the most deviation,
although these differences were not statistically significant. In particular, file revisions
from the driver were lower in groups of sizes 3 and 6. Inspecting the chat logs, we see
that groups of size 3 often let a member not in the driver role continue to implement
code if they had previously signaled that they knew what they were doing. This indi-
cates instances of domineering and deference to one person which is lessened by the
social pressure seen in larger groups. At the other end of the spectrum, groups of size 6
had a similar issue that manifested differently. Members in the mob role who thought
they knew the answer grew impatient of working through the scaffold to convince the
group and the navigator of their idea and then for the driver to implement it. Instead,
they would implement the code themselves and go as far as to submit their results to
the autograder for testing. If they were successful, the group process would sometimes
break down as they continued to play the role of the driver. In some other groups, they
would thank the mob member for their contribution but reinforce the need to work
through the scaffold because they did not understand how they arrived at the solution,
or wanted to discuss other alternatives. This already shows some success in the culture
shift we are hoping to create in learners — from an efficiency to a learning mindset.
Nevertheless, the ideal group size might be smaller.

For problem difficulty, we observed that contributions overall were lower for the
hardest problem (although not significantly so). Learners tended to contribute less
when they were unsure or did not know the way forward. if unsuccessful for a long
time, the groups engaged in unproductive behaviors such as repeatedly submitting
slightly different solutions to the auto-tutor. Conversational agent prompt-based scaf-
folds would be particularly well-suited to draw out learner contributions in this case.
However, this can be a form of guidance. Consequently, we reserve their addition to
later studies until we have exhausted our ability to demonstrate learning from problem-
solving alone, with the help of a well-designed scaffold based on minimal guidance.

Overall, the first experimental study is a promising start in producing a design that
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explicitly scaffolds collaborative learning in team programming projects. The study
opens many avenues of further research including group size, problem difficulty, and
type, and avenues for in-process task-related support as well as support for group pro-
cesses. In order to complement the above experiment, and as the first experiment in
the context of an advanced computer science course, the subsequent experiment tests
the OMP scaffold against student self-organization, that is, the organic emergence of a
structure suited for task completion and learning. Although it is well understood in
the literature that collaboration requires scaffolding, it is effortful and requires justifi-
cation before instructors will implement it in their courses. The comparison is setup to
explicitly gather evidence for the need — or lack thereof — for the OMP scaffold.

The one other change that was made was to move the individual project after the
team programming project. Although we stated earlier that there is some evidence
for the benefits of individual preparation for subsequent collaborative learning, mixed
results have been reported in reality. Students were likely to encounter coordination
difficulties during the subsequent collaboration [106]. For example, Tsovaltzi et al. [174]
and Felton et al. [51] found that individual preparation prior to collaboration led to
greater idea solidification which hindered effective group coordination, resulting in
lower quality knowledge co-construction and reduced openness to alternative perspec-
tives. The latter of the three was observed in this study, manifesting as domineering
behavior from some of the learners. Thus, to provide the best change for positive col-
laborative behaviors to manifest, we refocus preparation before the task on declarative
and procedural knowledge, distinct from what is covered in the collaborative learning
task.

5.2 Study 2 — Comparing against Self-Organization

Reward structures used to evaluate students on their performance in team projects of-
ten incentivize behaviors like divide and conquer where students self-select into per-
forming tasks they are already good at rather than challenging themselves to learn new
skills. The OMP framework discourages the allocation of tasks purely on the basis of
prior expertise, thus allowing students to not only contribute in roles they are already
good at, but also learn from their teammates to contribute in roles when they are not.
The first study in this series provided some evidence that this was beginning to hap-
pen. Nevertheless, this has to be compared to student self-organization to establish that
these observed behaviors do not emerge organically. To that end, we hypothesize in this
second study that —

• Hypothesis 1 — the OMP scaffold, if effective, will produce distinct collaborative
behaviors associated with each role in Mob Programming.

If we also believe that students would default to optimizing for productivity in the
absence of such a scaffold, we can hypothesize that —

• Hypothesis 2 — these distinct collaborative behaviors will not be adopted in self-
organized groups, which could result in student behavior looking far more con-
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sistent throughout the project.

However, by enforcing the OMP scaffold for collaboration, we run the risk that produc-
tivity may be harmed because students with less expertise at each task may get in the
way. Furthermore, the cognitive load from role-switching might reduce productivity on
the task, and putting students in roles they are not familiar with could increase discom-
fort and, therefore, negatively affect their perception of the task. Consistent with the
Student Perception analyses in the prior study in the sequence, therefore, we hypothe-
size that —

• Hypothesis 3 — students from the OMP scaffold groups may feel more nega-
tively about their experience compared to students in the self-organized groups
and could perform worse on their project.

5.2.1 Course Context and Experimental Design

We experimentally contrast the OMP scaffold against student self-organization in a
between-subjects design embedded in the Cloud Computing Course described in Chap-
ter 3 [175]. A total of 120 students took the course and organized themselves into teams
of 3 for a half-semester-long course project.

In the first week of the course, as part of the primers that the students had to com-
plete, they were randomly grouped into teams based only on their availability to par-
ticipate in an OMP training session. Prior to this training session, students received
materials explaining the Mob Programming paradigm and how it will be used for col-
laborative programming exercises in the class. The training session itself required stu-
dents to solve a relatively simple programming task collaboratively. As before, the task
was kept simple to allow students to familiarize themselves with the Mob Program-
ming paradigm as well as the Cloud9 interface, which was the software development
platform that housed their collaborative project, as described in Chapter 4. Each project
session lasted 80 minutes with roles switching every 8 minutes. The role-switching was
kept relatively frequent in order to promote observation of the problem from multiple
perspectives.

The experimental manipulation took place two weeks after the OMP training ses-
sion, when the students had acquired the prerequisites necessary to complete the pro-
gramming task. As in the training session, the project session lasted a total of 80 minutes
with switches occurring every 8 minutes. The students in their 3-person teams decided
on a time when they would be available to work on the project together and informed
the course instructors. The programming task required the students to perform data
analysis on Twitter data using tools in the cloud. Many possible solution paths and
ways of implementing the solution provided room for the responsibilities associated
with each role to manifest in concrete ways towards producing the end product. Stu-
dents in both conditions performed their collaborative work during the manipulation
in the same Cloud9 environment. However, only in the OMP condition did the stu-
dents receive instructions from the conversational agent to engage in OMP practices
and experience automated support for role-taking and timed role switching.
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5.2.2 Data Collection

The following data was collected in both conditions to facilitate our analyses —
• Code contributions and chat logs from the team programming exercise — These

allow us to observe how students organized themselves in the self-organized con-
dition and see if they followed the structure imposed by the scaffold in the OMP
condition.

• Grades — Grades on individual assignments and the team project before and af-
ter the team programming exercise help control for differences in prior knowledge
among students assigned to either condition. The grades on the team program-
ming project itself help us see if there was a difference in group product quality
across conditions.

• Post team programming project survey — This survey asked about prior famil-
iarity with teammates, how this project helped discover teammates, how they
chose to structure the project, how their experience with the OMP training session
helped structure this project, how effective they felt their organization was, both
in the training session and in this project, and their experience with the Cloud9 in-
terface. The survey helped us answer the question about student perception, but
also allowed us to better understand the mechanisms behind the observed results.

5.2.3 Analysis and Results

Hypothesis 1

The OMP scaffold, if effective, will produce distinct collaborative behaviors associated
with each role in Mob Programming.

One goal of OMP is to orchestrate the rotation of team members through a set of
three distinct but interdependent roles. If the manipulation was successful, we would
expect to see distinctive behavior patterns associated with the roles, in support of Hy-
pothesis 1. As both a manipulation check and a lens for elucidating the effect of the
manipulation on collaborative processes, we conducted a quantitative discourse analy-
sis.

In order to test the distinctiveness of the roles that team members took up in the
discussions, we identified themes within the discussion using an automated technique.
First, we aggregated the transcripts for all discussions so that each turn was labeled
with a condition and a role. We removed the contributions from the conversational
agent. In total, there were 3,396 remaining turns produced by 36 groups and a total of
108 students. There are several topic analysis techniques for identifying themes auto-
matically within textual data; however, many of them require very large text corpora in
order to operate properly. Thus, we adopted a very simple technique based on the same
principles. In particular, we first computed a term frequency by document frequency
matrix where each document was the text uttered within a conversational turn, and its
representation within its row within the matrix contained a count for each word (term),
signifying how many times it appeared in the corresponding document. Then using a
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Principal Components Analysis with Varimax Rotation, we identified the top 15 latent
factors that distinguished conversational turns that explained the most variation in the
matrix. We then saved the loading onto the 15 latent factors in the data table so that
each turn was represented in terms of the 15 factors.

We selected 6 latent factors to interpret, shown in Table 5.2, which were the most
distinguishing between roles in the OMP condition and behaviors in the unsupported
condition based on a Chi-squared analysis between the factor loadings per turn and the
turn status, which was the role the speaker was in when uttering the turn (Supported
Driver, Supported Navigator, Supported Mob, or Unsupported Mob).

Factor Example Keyword Example Turn
Reporting
Structure
and Inter-
pretation

Type, says, explain,
extra, where, info

“I just did but the time doesn’t
improve a lot"

Evaluation
and Brain-
storming

away, optimized,
range, tables,

database

“To fix your problem, you have to
select from your database"

Direction You, near “You can use ‘submitter‘ to submit
your solution."

Code Crime_id, date_time,
limit

“SELECT crime_id from service s
where s.report_date = (select

max(report_date) as date_time"

Code Status line, at, error “there is a syntax error with
LIMIT 1"

Code
Abstraction

environment,
execute, line, mysql

“Let me execute this on mysql
directly"

Table 5.2: The 6 most distinguishing factors with their keywords and example turns as
identified by PCA

Next, we conducted a student-t post-hoc analysis to determine which comparisons
between turn status were significant. If Hypothesis 1 is supported, we would see turn
status between roles to be more distinctive in the OMP condition, meaning different
roles are showing different patterns (factors) in the way they talk.

Here we see that turns from Drivers were distinctive in their relatively high load-
ing on the Reporting Structure and Interpretation factor. The turns from Navigators
were distinctive in terms of their relatively high loading both on Direction and Code.
The turns from Mob members in the supported condition were high in Evaluation and
Brainstorming and Code. However, members’ turns in the unsupported condition did
not load very high on any of the distinguishing factors. The distinctions we see in the in-
terpretation of the factors that distinguish between supported roles are consistent with
what we would expect based on their definition.

Thus, we do see different roles in the OMP condition adopting different discourse
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Driver Navigator Supported
Mob

Un-
supported

Mob

Comp-
arison

(Student-
t)

Reporting
Structure and
Interpretation

0.14 -0.07 0.06 -0.03 D >N

Evaluation and
Brainstorming -0.09 0.02 0.14 -0.02 SM

>D,UM
Direction -0.01 0.14 -0.03 -0.02 N >D,SM

Code -0.06 0.07 0.11 -0.01 N,SM >D
Code Status -0.06 -0.04 -0.04 0.03 n.s.

Code
Abstraction 0.08 -0.08 -0.05 0.01 n.s.

Table 5.3: Comparison of factor loadings from PCA associated with each role, focusing
on the 6 identified themes

patterns, with Driver displaying more reporting, structure and interpretation, Naviga-
tor displaying more direction, and the mob displaying more on evaluation and code.
This is consistent with our definition of the three roles and Hypothesis 1 is thus sup-
ported.

Hypothesis 2

Hypothesis 2 — these distinct collaborative behaviors will not be adopted in self-
organized groups, which could result in student behavior looking far more consistent
throughout the project.

We considered that it is possible that within self-organized groups members took
on roles despite not having been assigned. If this was the case, we might not see those
distinctively in the analysis above since turns from all team members are taken together
in the self-organized condition as Unsupported Mob, and thus we would only be able
to see average behavior across roles (if any). In order to test Hypothesis 2, therefore,
we had to adopt a different methodology — cluster analysis. We clustered turns us-
ing K-means clustering in order to identify cross-cutting factor profiles across turn sta-
tuses. Since there are 4 Turn Statuses (Supported Driver, Supported Navigator, Sup-
ported Mob, and Unsupported Mob), we set the number of clusters to 4. In order to test
whether the cluster analysis identified patterns that distinguished some subset of un-
supported mob turns from those of the supported roles, we conducted a Chi-Squared
test between the cluster assignment per turn and the Turn Status, however, this was
not significant. One cluster contained only turns from the 3 supported roles, and in
particular contained all turns from the Driver role. However, none of the clusters were
distinguishing for the unsupported condition in contrast to the other supported roles.
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In particular, the other clusters contained a mixture of unsupported turns, the Navigator
and the supported Mob.

This cluster analysis shows that we are unable to identify any distinctive behavior
patterns for turns within the self-organized groups, suggesting that the collaborative
behaviors associated with each role in Mob Programming were not naturally adopted
by students if not explicitly scaffolded. Hypothesis 2 is thus supported.

Hypothesis 3

Hypothesis 3 — students from the OMP scaffold groups may feel more negatively about
their experience compared to students in the self-organized groups and could perform
worse on their project.

In the post-programming exercise survey, we asked students about their experience
with the Cloud 9 environment and how prepared they were for future group projects.
We compared student responses in the two conditions in order to test Hypothesis 3. The
outcome measures used were student responses to the Likert scale questions – 1) “How
prepared do you think your team is to start working on the project? (5 meaning very
prepared) and 2) “What was your experience with Cloud9?" (5 meaning very positive
experience). We also operationalized covariates to control for students’ prior familiarity
with group members and prior knowledge. Prior knowledge was operationalized as
the average score of the 2 individual exercises that the students had completed prior
to this project. Familiarity was the average of the response to 2 Likert scale questions
asking students to rate their familiarity with their teammates (5 meaning very familiar).
We then built linear regression models to investigate students’ self-reported level of
preparedness and experience with Cloud 9 across the OMP scaffold and unsupported
conditions. We used the Likert-scale response as the outcome variable, condition as
the main factor, and students’ prior grades and familiarity with the team as covari-
ates. Students in the OMP scaffold condition perceived themselves as less prepared to
start working on the project compared with students in the unsupported condition (p =
0.0413). Students in the OMP scaffold condition were also less satisfied with Cloud
9 compared with students in the unsupported condition (p = 0.0627). The effect is
marginally significant. Importantly however, a linear regression model built using the
mob session grade as the outcome variable, and the condition as the main factor while
controlling for students’ prior grades and familiarity with their team members found no
significant differences between the two conditions suggesting that while students pro-
vided with the scaffold experienced marginally significantly more discomfort, this did
not manifest itself in actual performance differences. We discuss below some reasons
why we think this might be the case. Hypothesis 3 is thus partly supported.

5.2.4 Discussion

In our analysis, we find full or partial support for all three hypotheses. Although it
might seem trivial that students in the OMP condition would take on behavior patterns
consistent with the roles we instructed and scaffolded during the project, and students
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in the self-organized condition would not, it is notable that just two weeks earlier, all
of the students went through an OMP training session in which they were instructed
about the roles and experienced the scaffolding. As a validation that students benefited
from that experience and sought to apply it with or without instruction to do so, we
included questions in the post-team exercise survey asking students to report whether
they felt the training session before this programming exercise was. As reported in the
survey, students, in general, felt the training session influenced their behaviors in the
programming exercise in both conditions (with an average of 3.55, and a standard devi-
ation of 1 on the Likert scale from the survey question — “Earlier in the semester, you
participated in a training session for Online Mob Programming (OMP). Do you feel that
experience influenced your behavior during this team exercise?"). The self-organized
groups reported higher influence than the OMP scaffold groups, with an average of
3.72 (SD = 0.96) for the self-organized groups and an average of 3.43 (SD = 1.01) for
the OMP scaffold groups. The difference between the two conditions is not statistically
significant. This result validates the need for scaffolding to reliably, consistently and
sustainably enable collaborative behaviors to manifest.

We also saw evidence that students felt more organized in the team programming
exercise compared to the first training session regardless of the condition they were in.
Two Likert-scale questions asking — 1) “How effectively did the organization work
between participants during the training session?" and 2) “How effectively did the or-
ganization work between participants during this exercise? (5 meaning very effectively
organized)" showed increases. Specifically, for self-organized groups, the self-reported
organization measure went from an average of 3.55 (SD = 1.12) in the training session
to an average of 4.24 (SD = 0.83) in the team programming exercise. For the OMP scaf-
folded groups, the self-reported organization measure went from an average of 3.49 (SD
= 1.07) in the training session to an average of 4.08 (SD = 0.80) in the programming ex-
ercise session. There was no statistical difference between the two conditions on the or-
ganization measure. This suggests that students start to become more proficient in their
roles with practice and shows promise for reducing the discomfort associated with the
scaffold, as well as the increased possibility of producing beneficial learning opportu-
nities over time. There could have been several reasons why students felt discomfort
with the OMP scaffold. An open-ended question in the survey asking “What could be
done to improve the exercise?" points to a few possible explanations. Several students
were disgruntled that the roles were not assigned separately by task or their ability to
do those tasks — “the roles can be changed according to tasks and individual’s ability".
This supports our hypothesis that students are focused on productivity rather than us-
ing the task as a learning opportunity and require a scaffold to make the best use of the
project for learning. In a similar vein, several students thought that a voice communi-
cation channel would produce more efficient and quicker communication, reinforcing
once again the fixation on productivity. A third possibility is discomfort with the Cloud9
IDE that several students expressed needing more practice with. As we observed above,
this form of discomfort is likely to decrease with practice. Finally, as in the first study,
we observed some instances of domineering and deference from group members where
individuals broke from their suggested roles. As in the first study, this could suggest
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that a slightly larger group size may be warranted to increase social pressure while also
not introducing the problems observed with even larger groups. We settle on groups of
size 4 based on the results of these two studies.

Although we do not yet measure learning from the task explicitly, we did conduct an
analysis to investigate whether the OMP scaffold session had any impact on students’
grades later in the course. We computed the post-OMP project session grade by averag-
ing the four assignment grades that occurred after the OMP project session and refer to
it as post-OMP grade. We used post-OMP grade as the outcome variable, condition as
the main factor, and controlled for students’ prior grades and familiarity with the team.
We do not see a difference in post-OMP grade between the two conditions. This sug-
gests that in the OMP scaffold session, students picked up the distinctive collaborative
behaviors associated with each role, while at least not harming their individual learning
to prepare them for the later stages of the course. Exposure to more OMP project ses-
sions could help us see decreases in the initial discomfort associated with the adoption
of the scaffold and start to see more of the learning gains.

5.3 Study 3 — Added Implicit Support and Comparison
with Individual Projects

Having reasonably settled questions about the adoption of behaviors scaffolded by the
OMP paradigm, we can start to turn our focus towards designing for learning from
the project. This study seeks to evaluate the use of implicit and explicit scaffolds for
collaborative learning in tandem. The OMP scaffold is an explicit one. In contrast, in
prior research, we had shown that intelligently forming teams based on maximizing
measures of transactive exchange from prior student interactions acted as an implicit
scaffold for collaboration [137, 138, 196, 198]. Transactive exchange refers to a pair of
utterances in which the second utterance operates on and builds on the reasoning of
the first [22]. They can, of course, be “self-oriented", where an individual is building
on their own reasoning. However, “other-oriented" transacts, or individuals operating
on the reasoning of others, are more interesting from the standpoint of collaborative
learning. They can lead to the emergence of transactive memory systems, a proxy for
collaboration effectiveness [35]. The hypothesis validated in prior research was that
demonstration of collaboration effectiveness, measured by a reasonable proxy, can be
used to form teams for future collaboration where this collaboration effectiveness con-
tinues and is better than in teams formed randomly. Implicit forms of scaffolding have
some precedence in the literature from the standpoint of efficacy [188]. The more com-
mon motivation to attempt implicit light-touch forms of scaffolding is to evaluate if
explicit scaffolding is warranted and only then design for it. Prior research using the
same implicit scaffold had shown that combining the two could produce synergistic ef-
fects [190], however, which prompted our design in this study. In a 3x3 Latin square
design, we compare students working alone and in two OMP configurations (with and
without transactivity-maximizing team formation) [143].
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Because the OMP paradigm separates the responsibilities into three distinct roles
associated with brainstorming ideas, selecting among the ideas being considered by
analyzing their pros and cons, and implementing the selected idea, we can expect that
the more teams adhere to the OMP paradigm, the more substantive their discussions
will be. The distribution of responsibilities to roles in an interdependent manner can
also ameliorate group coordination difficulties and process losses, thus ensuring that
the quality of the group product does not decrease. Moreover, the rotation of roles
affords a more even distribution of responsibilities among all of the participants. We
can hypothesize, therefore, that —

• Hypothesis 1 — Teams that demonstrate an elevated level of compliance with the
OMP paradigm will discuss conceptual content relevant to the project more sub-
stantively, contribute work towards the group solution more evenly, and produce
a group product of as high quality as individuals or teams with lower compliance
to the OMP paradigm.

In designing this current study, we build on previous work in developing a team forma-
tion strategy that is associated with increased idea sharing [198] and reduced problems
with labor distribution and conflict [138]. The benefits of transactive idea exchange can
potentially interface well with the hypothesized benefits of OMP including more even
distribution of work and more substantive discussions. Thus, we hypothesize that the
assignment of teams using this transactivity maximization approach might increase ad-
herence to OMP practices and further amplify its benefits.

• Hypothesis 2 — Groups formed transactively will demonstrate higher compliance
with OMP practices that will be associated with an intensification of the observed
benefits of OMP compliance.

5.3.1 Course Context and Experimental Design

In order to test the two hypotheses specified above, we experimentally contrast the
OMP scaffold in randomly formed and transactively formed groups against individual
programming in a 3x3 Latin square between-subjects design. As before, the experiment
is conducted in the online Cloud Computing course offered to the students of Carnegie
Mellon University and its campuses worldwide. The comparison between individual
programmers and groups will allow us to investigate Hypothesis 1 and the comparison
between transactively formed and random groups will allow us to investigate Hypoth-
esis 2.

A total of 120 students took the course, allowing 40 students to be assigned to each
condition for each exercise. In the first week of the course, as part of the primers that
the students had to complete, they were randomly grouped based only on their time
availability to participate in an OMP training session. Prior to this training session, stu-
dents were provided with materials explaining the Mob Programming paradigm. The
training session itself required students to solve a relatively simple programming task
collaboratively. The task was kept simple to allow students to familiarize themselves
with the Mob Programming paradigm as well as the Cloud9 interface. Each project
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lasted 80 minutes with 10 minutes reserved for introductions and wrap-up and roles
switching every 7 minutes. The role-switching was kept relatively frequent in order to
promote observation of the problem from multiple perspectives. All students first took
part in this OMP training session four weeks before the start of the experimental ma-
nipulation, thus allowing them to familiarize themselves with the workings of the OMP
framework and the Cloud9 interface.

The experimental study was carried out as a Latin square design of 3 (condition) x 3
(programming project), where the order of the conditions was counterbalanced between
three tracks to control for potential order effects. The three conditions were Individual,
Random Team Assignment, and Transactivity-Based Team Assignment. The students
were randomly assigned to the three tracks. Each time team formation was performed,
it was done within a track such that all students within that track on that assignment
were assigned to teams using the same paradigm. Teams of 4 students were formed.
Since within each track, team assignment was performed for two different program-
ming projects, we ensured that teams were formed with students who had not worked
together at the other time points, including the training that occurred prior to the exper-
imental manipulation.

The Reflection-Feedback Exercise

The transactivity-maximizing groups were formed by maximizing the pairwise trans-
active exchange observed from a Reflection-Feedback discussion forum exercise con-
ducted prior to the experimental manipulation. This exercise is described below.

In the initial part of the semester, the students worked through individual projects.
After each project, they were required to post a reflection to the discussion forum. Some
examples of questions posed to the students are shown below —

• Pick a task you found most challenging. Why was it challenging and how did you
end up solving it?

• Pick a task and choose among different solutions paths for this task. What were
the trade-offs you ended up making?

• Describe how you tested one of the tasks. How did you design your test? Was
your initial test sufficient? If not, how did you improve it?

After responding to these reflection questions, their answers were shared on a discus-
sion forum that the entire class could access. Students were then encouraged to provide
constructive feedback to at least three other reflection posts. An example reflection,
prompt, and feedback post can be seen in Fig. 5.1.

Substantive discussions resulted from this reflection-feedback exercise as shown in
the example feedback post. These posts showed evidence that students synthesized
the knowledge from several posts, gathered together, and provided encouragement to
each other. An example of a transactive and non-transactive exchange between students
from this reflection-feedback exercise is shown below —

• Transactive Exchange
Student 1: “. . . I used ‘f.readlines()’ to read the wiki log file. It worked well on my own
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Figure 5.1: Examples of a reflection post, a prompt soliciting constructive feedback and
a feedback post. Feedback post highlights instances of common ground, synthesis and
encouragement.
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computer, but it caused a ‘MemoryError’ when I tested it on AWS . . . "
Student 2: “The file object itself is a iterator. So if you ‘for x in file’, you get lines as x.
This is a more pythonic way than using ‘readline()‘."

• Non-Transactive Exchange
Student 1: “. . . I approached the problem by breaking it out into different modules and
functions which made it possible to test different cases really fast. . . .
Student 2: “Well done!"

In the first case, the second student is explicitly referring to the reasoning of the first stu-
dent and building on that reasoning further with their own reasoning. The interaction
is therefore transactive. In the second case, the second student is referring to the reason-
ing of the first student but is not contributing original reasoning of their own, and the
interaction is therefore non-transactive. Thus, evidence of transactive exchanges can be
mined from these interactions to automatically inform our team formation algorithm.

This feedback exchange provided the opportunity for students to experience more
social interaction in the course. At the same time, we can use the data to estimate col-
laboration potential for pairs of students based on their exchange of transactive feed-
back contributions. An automated measure of transactive exchange between students
in this context is first used to estimate pairwise collaboration potential, and then a con-
straint satisfaction algorithm is used to assign teams in such a way that students are
more likely to be part of teams with the other students with whom they have interacted
transactively than those with whom they have not interacted transactively.

Automatic Transactivity Analysis and Team Assignment

Before an estimate of pairwise transactivity exchange can be computed, posts in the
discussion forum must first be annotated as transactive or not. In our work, this was
accomplished using an automated text classification approach developed in prior work
on automated collaborative learning process analysis [6, 75, 197]. This approach re-
quires training data including a validated and reliable coding of transactivity [62]. For
our work, we used a previously validated coding manual [62] and coded 200 feedback
exchanges by hand. Using this training data, we trained a model to perform the trans-
activity analysis over the entire set automatically.

For each pair of students, we computed the total number of threads where either
they both contributed a transactive post to the discussion or one of them started the
thread and the other contributed a transactive post. We refer to this quantity hence-
forth as the Pairwise Transactivity Score for a given pair of students. Once the Pairwise
Transactivity Score is computed for each pair of students, a team score can be computed
by averaging the Pairwise Transactivity Score for each pair within the group. A score
for the resulting teams across the whole class can be computed by averaging across the
team scores. The goal of the automated team matching algorithm is to assign students
to teams in such a way that the score is maximized throughout the class. An exhaus-
tive search would take inordinately long. Thus, a constraint satisfaction algorithm is
used to find an approximate solution that comes close to the optimal assignment that
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maximizes the score in the class without having to perform an exhaustive search. The
specific constraint satisfaction algorithm we used is called the minimal cost max net-
work flow constraint satisfaction algorithm [5]. The algorithm generally tackles the
resource allocation problem with constraints, and in previous work, role assignments
such as the roles of a Jigsaw condition were used as constraints [197]. In this paper, lo-
cation was used as the constraint in addition to maximizing average transactivity across
teams, that is, all members of the team are co-located on the same CMU campus. We
covered the reasons for this additional constraint while describing the context in Chap-
ter 3. The algorithm finds an optimal grouping within O(N3) time complexity where N
is the number of students. A brute-force approach would have O(N!) time complexity
and would be infeasible in practice.

The algorithm is capable of forming teams of arbitrary size and approximates the
solution in admissible time by maximizing the transactivity post-count between two
adjacent pairs of users instead of the total accumulated transactivity post-count. A dis-
cussion network which is a directed weighted graph of the student’s discussion in the
reflection-feedback phase weighted by the transactivity score is built and the succes-
sive shortest paths algorithm shown in Algorithm 1 greedily finds the minimum-cost
flow until there is no remaining flow in the network. The algorithm can be extended to

Algorithm 1 Successive Shortest Paths for Minimum Cost Max Flow

1: f (v1, v2)← 0 ∀ (v1, v2) ∈ E
2: E′ ← a(v1, v2) ∀ (v1, v2) ∈ E
3: while ∃Π ∈ G′ = (V, E′) s.t. Π, a minimum cost path from source to destination

do
4: for each (v1, v2) ∈ Π do
5: if f (v1, v2) > 0 then
6: f (v1, v2)← 0
7: remove −a(v2, v1) from E′

8: add a(v1, v2) to E′

9: else
10: f (v1, v2)← 1
11: remove a(v1, v2) from E′

12: add −a(v2, v1) to E′

13: end if
14: end for
15: end while

accommodate more than one constraint, but it should be noted that adding additional
constraints could mean that an optimal team assignment ceases to exist.

Experimental Manipulation

The first project of the experimental manipulation started four weeks after the OMP
training session, and the other two projects were administered in two-week intervals
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after that. As in the training session, each project lasted a total of 80 minutes with
10 minutes reserved for introductions and wrap-up and role switches prompted by
the intelligent conversational agent facilitator happening every 7 minutes. In the first
project, students worked on the concept of thread synchronization to simulate a bank
system that handles deposits and withdrawals; in the second project, students used
functional programming in Scala to implement a simple application using Spark Dis-
tributed Databases; in the third project, students solved a binary classification problem
by extracting and engineering numeric and categorical features in Python. Students
in all 3 conditions performed their work during the manipulation in the same Cloud9
environment. They were supported by the AI conversational agent that provided in-
structions, managed the time for the project, and informed the students of their roles
and when they needed to change roles.

5.3.2 Data Collection

The following data was collected in all conditions to facilitate our analysis —

• Code contributions and chat logs — Code contributions allow us to analyze how
work was distributed among the group members. Because the student in the
Driver role is required to do all of the code changes, we can also measure if stu-
dents complied with the structure of OMP or not, using the code contributions.
Chat logs allow us to analyze the content of discussions between students.

• Grades — Grades on individual assignments and the team project before and af-
ter the OMP exercises help control for differences in prior knowledge and ability
among students assigned to any condition. The grades on the exercises them-
selves, which help us see if there was a difference in group product quality across
conditions.

• Post-OMP and post-course surveys — In addition to asking for feedback, the
surveys were used to gather information on student perception of the project, the
learning from the project and the group product. The survey provides additional
context for analyzing the quantitative data obtained from the logs.

To quantify whether the students complied with the structure suggested by the OMP
project, we calculated a Compliance Score for each of the groups. The compliance score
was measured as

compliance_score = code_driver/(
code_not_driver

n− 1
)

where code_driver is the number of edits to the code made by participants in the driver
role, code_not_driver is the number of edits to the code made by everyone else and n
is the number of group members. A higher compliance score, therefore, means that the
ratio of the code contributions made by the driver to the number of contributions made
by the rest of the members is more, and that constitutes more compliance with the OMP
structure.
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In order to further pin down how work was being distributed in the group, we
calculated the percentage of code contributions made by each group member. From this,
we computed an Evenness Deviation score, which measured the difference between
this percentage and what percentage would be observed for the group if work was
distributed evenly. This number was scaled in order to allow for values to vary between
0 and 1 regardless of group size.

Finally, in order to quantify the extent to which project-relevant Conceptual Content
was being discussed in the chat, we measured the vector similarity of the topic repre-
sentation of the chat contributions of a student with that of the primer corresponding
to that project. The topic representation was constructed using a latent semantic index-
ing model over a bag-of-words representation of the set of primer documents using the
number of topics set to 5. A higher document similarity score meant that more of the
conceptual content from the primer was discussed in the chat.

5.3.3 Analysis and Results

The formulation of our hypotheses and the accompanying study design was based on
the concern that when students are assigned team work in a project course, dysfunc-
tional teams function like the most capable student within the team because that person
takes on the lion’s share of the work, thus undercutting the practice opportunities of
teammates. So, as a foundation for the evaluation of the hypotheses, we first quantified
the extent to which this problem was in evidence within the course we chose to study.

We begin by checking to ensure that students in all three conditions achieved equiv-
alent grades on the projects and that there were no significant differences. For this test,
we computed an ANCOVA model with Condition at a time point as the Independent
variable, average grade prior to the experiment as Covariate, Project time point as a
random variable, and Grade at time point as the Dependent variable. There was no sig-
nificant effect of Condition either for the auto-graded portion of the projects (F(2,348)
= 0.17, p = 0.88) or for the manually graded portion of the projects (F(2,348) = 0.83, p =
0.43). Thus, teams (regardless of condition) and individuals achieved the same grade
on average. For the remainder of the analysis, we will focus only on teams.

We have observed students who default to an uneven distribution of labor in order
to achieve an advantage on their grade. In order to test the extent to which the reward
structure does encourage an uneven distribution of labor, we computed an ANCOVA
model with a three-way split on the Evenness Deviation variable (Top Quartile, Middle,
Lower Quartile) as the independent variable, average grade prior to the experiment
as Covariate, Project time point as a random variable, and Grade at time point as the
Dependent variable. The upper quartile had deviation scores of higher than 0.33, and
the lower quartile had deviation scores less than 0.08. The median deviation score was
0.2. In 3 percent of teams, a single member did all of the work. There was no significant
effect of the deviation variable on grade, though the trend was in the expected direction
both for the auto-graded and manually graded portions of the project. Thus, students
may falsely believe that it is necessary to deviate from an even distribution of labor
when, in fact, it does not help their grade.
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Hypothesis 1

• Hypothesis 1 — Teams that demonstrate an elevated level of compliance with the
OMP paradigm will discuss conceptual content relevant to the project more sub-
stantively, contribute work towards the group solution more evenly, and produce
a group product of as high quality as individuals or teams with lower compliance
to the OMP paradigm.

We first tested for an association between Compliance scores with Conceptual Content
scores and found the association to be highly significant (R=0.2, p <0.005) such that
more highly compliant groups focused more on conceptual content in their chats. Then
we compared the Conceptual Content scores for students in compliant teams with those
in noncompliant teams. We computed a median split on the Compliance score in order
to compare students in groups that were highly compliant with OMP practices versus
those in groups that were not. Then we compared Evenness Deviation scores for stu-
dents in compliant teams with those in noncompliant teams using a t-test and found
that Evenness Deviation was significantly higher in noncompliant teams F(1, 161) =
4.2, p <0.05, effect size 0.3 SD. Just as we tested the effect of condition on grade, we
also tested compliance to Mob practices. For this test, we again computed an ANCOVA
model with the median split on Compliance at a time point as the Independent variable,
average grade prior to the experiment as Covariate, Project time point as a random vari-
able, and Grade at time point as the Dependent variable. There was no significant effect
of Compliance. Thus, we have correlational, though not causal, evidence to support the
hypothesis that Mob practices are associated with a more conceptual focus and more
even distribution of labor.

Hypothesis 2

• Hypothesis 2 — Groups formed transactively will demonstrate higher compliance
with OMP practices that will be associated with an intensification of the observed
benefits of OMP compliance.

To test Hypothesis 2, we computed an ANOVA model with Condition as the indepen-
dent variable and Project time point as a random variable. Compliance score was the
dependent variable. Here, we found a trend consistent with the hypothesis, but it was
not significant. Thus, Hypothesis 2 is not supported. One explanation is that the OMP
structure acts as its own scaffold for idea exchange, which might also make the transac-
tivity manipulation less necessary. This might explain the lack of significant support for
Hypothesis 2. Considering this, future iterations drop the implicit support scaffolding.

5.3.4 Discussion

First, groups of size 4 were adopted for this study after evidence from two prior experi-
ments showed that too large as well as too small groups were detrimental to compliance
to the OMP scaffold. While the tendency was lesser than observed in prior studies, com-
pliance to the roles was still not perfect and did not differ significantly based on whether
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teams were formed on prior evidence of transactive exchange or randomly. Before we
choose to impose compliance, however, we ask the question of whether that is benefi-
cial.

The results show a more even distribution of labor and an increased conceptual focus
in the discussions for groups with higher compliance. In other words, off-task discus-
sions were lesser in groups that complied more with the OMP scaffold. Deviating from
the scaffold was not even necessary for improved performance, since there were no
significant different in project scores even with the individual project condition. Thus,
we are starting to see benefits of compliance to to conceptual learning from the OMP
scaffold, which we should measure with more sensitive assessments rather than relying
on post-hoc discourse analysis. Diving deeper into non-compliance, we see that while
the instances are fewer than in prior studies, the reasons are largely the same. That
students are not task switching when told to and the only clean switch is when a mile-
stone is reached. Therefore, milestone-based switching could indeed be warranted, but
with changes to the project design such that a disproportionate amount of time is not
spent on a single task within the project and students get to experience all of the Mob
Programming roles over the course of the project. Taken together, this suggests a few
design changes for the subsequent study.

First, we require more sensitive measures of conceptual learning from the task, which
is, at the moment, a correlation, observed from the OMP project. Second, we need to re-
design the project to support milestone-based switching rather than time-based switch-
ing to improve compliance. Third, we do not need additional implicit forms of scaffold-
ing since the OMP scaffold appears to sufficiently support manifesting distinct collabo-
rative behaviors in students. Finally, to help conceptual learning from the task translate
into performance on the individual project, we may require at least some guidance in
the form of conversational agent-based prompts. In particular, the prompts can be used
to draw out reasoning from students and require others to build on already expressed
reasoning. This addresses issues such as wheel-spinning, and encourages unblocking
progress through discussion when groups reach an impasse. As an explicit, targeted
form of scaffolding, it can also help us better direct students towards the learning objec-
tives of the project. Of course, that carries a secondary implication —that the learning
objectives themselves have to be articulated at a finer grain. As is, the learning objec-
tives are only described at the level of the project which reduces the ability to design
targeted support. Better defining and communicating learning objectives could also
improve of changes of students realizing measurable learning gains from the project.
This is supported by analogous research in subgoal labeling [100, 101]. We investigate
the impact of this full redesign along with added guidance from conversational agent-
based prompts in the subsequent study.
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Figure 5.2: Course structure, pre-test, post-test, and delayed post-test alignment

5.4 Study 4 — Design Overhaul and Conversational Agent-
Based Prompts

5.4.1 Course Context and Experimental Design

One major design change in this iteration is the introduction of pre- and post-test learn-
ing measures. An average of grades from before and after the project was used in the
previous studies. While this may have shown that students were coming into the project
with approximately the same levels of prior knowledge, it was not fine-grained enough
to help us measure immediate learning benefits from the project itself. Further, as is typ-
ical with university courses, achievement is measured with performance on the task,
but whether students are learning during the bulk of the process is not answered. In
this study, we raise that question and identify that only some portions of the instructor-
designed project appear to produce learning as measured by pre- to post-test learning
gains [144, 145].

A summary of the course structure and the location of the study within it is shown
in Figure 5.2. Within the first sub-unit of the fourth project unit of the course, stu-
dents work with our collaborative software development project, now called the Online
Programming Exercise (OPE), to build an inverted index using the Scala programming
language. A total of 101 students from three campuses completed the task, and 100 of
these students completed the subsequent project.

As described in Chapter 3, we conduct a learning science and instructional design
based overhaul to the task design. We divide the overall programming project into five
different tasks which target five granular learning objectives (LOs). Each LO is assigned
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two multiple-choice questions each on the pre- and post-tests to measure student learn-
ing from the project. Student performance on the subsequent individual project asso-
ciated with the task then serves as a delayed post-test. Table 5.4 shows the LOs and
examples of pre- and post-test questions corresponding to each task, and Figure 5.2
shows the position of pre-, post- and delayed post-tests within the course.

# Learning
Objective

Example Pre/Post
Test Question

Information
Prompts

Elaboration Prompts
(Example)

1
Writing

OS-aware
code.

What needs to kept
in mind when

writing OS-aware
code?

@Researcher, what
is the advantage of
writing OS-aware
code like you did

here?

@Driver, How would you
improve the implemented
approach? The Researcher

can chime in too.

2 Need for pre-
processing

Whitespace
characters are

removed while
building the index.

Why is this
necessary?

Ok, @Navigator,
can you say why

these preprocessing
steps are necessary
before building the

inverted index?

@Researcher, do you agree
with this approach? @Project
Manager, what do you think?

3
“Map" for
word level

count.

Which of these is
true about

combining word
counts from

different parts of a
document?

@Driver, can you
tell us how the

word level counting
is going to help us

parallelize?

@Project Manager, do you
think there is better

implementation of this
function? @Driver can chime

in too about why.

4

“Reduce" for
collating

counts within
document.

Which Spark code
snippet produces
an RDD of tuple

(word, word
frequency)?

@Researcher, can
you think of

another way to do
the reduce?

@Navigator, what trade-offs
do you think you made in this

function implementation?
@Driver, can you provide

some insights too?

5

Collating
across

documents for
inverted
index.

What needs to be
done to build a
case-sensitive

index?

@Driver, what did
the groupBy

operation achieve
here?

Ok @Researcher, is there a
better way to implement this?
@Navigator, can you provide

insight too?

Table 5.4: Learning objectives, examples of corresponding pre- and post test questions,
information and elaboration prompts

Within each task, we specified four interdependent roles to better clarify the roles of
the Mob members especially. As before, the Driver is the only participant who writes the
code, based on high-level instructions received from Navigator, who makes decisions
on the next course of action based on discussion with the rest of the team members.
The Mob roles are defined further to support groups of size 4. The Researcher assists
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the group in ideation and implementation by consulting resources such as a provided
project primer and other external Web-accessible support material. The Project Manager
is responsible for making sure that the rest of the team members are complying with and
performing their roles adequately. After each programming task, the Project Manager
reports on the level of compliance of the team and their progress of the project overall.
As we saw in Chapter 2, prior research indicates that expert programmers need most
help with the strategic aspects of language-independent planning [154]. These roles,
much more refined than the typical ones in Mob Programming that we saw in earlier
studies, serve distinct functions. While the Navigator engages in language-independent
planning with support from the Researcher and Project Manager, they also engage in
language-specific implementation planning with the Driver. Finally, the Project Man-
ager explicitly helps smooth coordination issues for the group, thus reducing the likeli-
hood of behaviors that might cause the breakdown of collaboration from manifesting.

Due to the differences in responsibilities associated with each of the roles, it is pos-
sible that there are varying degrees of learning associated with the roles. However,
the roles rotate over the course of the task, making sure that any learning deficit is
spread across the team and not concentrated on an individual. The rotation of roles
also gives students the opportunity to contribute and observe different perspectives
and approaches to solving problems in the same session. Finally, the interdependence
baked into the roles requires the externalization of thinking in the course of discussing
implementation alternatives, which provides opportunities for knowledge gaps to be
revealed and addressed, a mechanism for individual learning from the collaborative
learning environment [58, 178, 179]. A summary of the OPE roles is shown in Figure
5.3.

All students, regardless of the experimental condition, first participated in a train-
ing session two weeks before the experimental manipulation to familiarize themselves
with the project environment. Students were placed into random groups of four based
on their time availability and participated in sessions lasting 80 minutes, with roles
switching every 8 minutes. The role-switching was kept relatively frequent in order
to help students become accustomed to switching and performing the responsibilities
associated with each role.

The experimental manipulation took place two weeks later, when the students had
acquired the prerequisites for the project. As in the training session, students were ran-
domly grouped into teams of 4 based on their time availability while making sure they
were not placed into teams with students with whom they had done the training. The
project lasted 80 minutes in total, with roles switching as each new task was successfully
completed and the collaborative reflection associated with that task ended. This satis-
fies the need for milestone-based switching implied by the findings from prior studies
in this series. Because the roles remained the same within each task (but varied system-
atically across tasks), we are able to measure the learning that occurred for each role
during the task. Students in all of the conditions worked on 5 tasks, each contributing
to an overarching project — an inverted index over a collection of Shakespearean texts
in Scala. By default, they were given a maximum of 14 minutes to complete each task
and discuss it before being asked to rotate roles. At the 14-minute mark, if they were
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Figure 5.3: A summary of the four roles that students are assigned to in the Online
Programming Exercise (OPE)
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still not finished, they were provided with a bottom-out hint to hasten the completion
of the task.

Experimental Manipulation

Based on the theoretical foundations of task design, the combination of task structuring
and role scaffolding should bring the learning objective into focus for discussion and
offer the opportunity for learning. However, there are many reasons why reflective
discussion may not occur in a way that is conducive to learning.

First, students may choose not to focus and reflect on ideas that are meant to learn
from the task. To address this, we design information prompts, which are reflection
prompts that explicitly bring discussion topics into focus. They encourage the prompted
student to examine and make explicit their mental model about the relevance of the task
to the overall learning objective. In doing so, their articulation serves as an opportunity
for others to examine their own mental models against the one presented and discuss
to reconcile any emergent conflicts [21, 45, 59]. Because the prompts are designed for
reflection on specific knowledge, they also serve as a form of direct instruction. Direct
instruction is an efficient form of instruction and can lead to quicker knowledge conver-
gence. However, it might not foster subject matter expertise that generalizes beyond the
specific knowledge provided. Without meaningful practices for expanding on what is
given explicitly, subject matter knowledge remains captured in internal scripts specific
to tasks that could remain “inert" outside of those tasks [128].

Thus, a second concern is that students may discuss the target knowledge too briefly
to elicit the deep reflection required for learning. To address this, we design elaboration
prompts designed to draw out evaluation, elaboration, and exploration of alternative
perspectives [129]. The elaboration prompts, in contrast to the information prompts,
do not require a task-specific design but might result in additional time for reflection,
which may adversely affect task efficiency.

Since project-based learning primarily focuses on task completion and the group
product, an important locus of our investigation is whether learning is taking place.

We first investigate whether the redesigned OMP scaffold alone can produce a learn-
ing effect. This would mean that students are able to adequately manifest these learning
behaviors on their own while being assisted by the agent only for role scaffolding.

• Hypothesis 1 — Students learn during programming — Learning occurs during
the collaborative programming task, observed as gains from the pre- to post-test.

We will evaluate this hypothesis overall and specifically in conjunction with each of five
separate learning objectives (LOs). Subsequently, we see if conversational agent-based
prompts can offer benefits beyond the role scaffolding.

• Hypothesis 2 — Elaboration prompts improve learning — Elaboration prompts
will serve to intensify the effect of task structuring and role scaffolding on discus-
sion processes, thereby producing significantly more learning on the task. This
will be observed in better pre-to-post-test gains (immediate) and better perfor-
mance on a subsequent programming task (delayed).
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• Hypothesis 3 — Information prompts improve learning — Information prompts
will significantly improve learning either because they result in reflection or be-
cause they serve as a form of direct instruction.

We tested our hypotheses with a 2x2 factorial design in which the first factor was the
presence or absence of information prompts, and the second factor was the presence or
absence of elaboration prompts. In the conditions where the prompts were provided,
students received them during the collaborative reflection upon completion of the pro-
gramming task. Teams were randomly placed in the four conditions — 7 groups in the
control condition where no prompts were presented, 6 groups presented with elabora-
tion prompts, 5 with information prompts only, and 9 groups where both prompts were
presented. The control condition checked to see if student-led support assisted by the
task structuring and role assignment alone can bring the discussion into focus enough
to impact learning. The two subsequent experimental conditions were tested to see if
the elaboration prompts or the information prompts themselves would further inten-
sify this learning effect. The final condition tested both prompts in tandem. Testing
the effects of elaboration prompts with and without information prompts enables us to
test whether the task structure and role scaffolding were sufficient to set the stage for
collaborative reflection. An interaction effect where elaboration prompts only have an
effect in conjunction with the information prompts would suggest a failure in the task
structure and role scaffolding.

5.4.2 Data Collection

In addition to the pre- and post-tests, performance on the subsequent individual project
and productivity metrics for that project, such as the number of submission attempts
(students could resubmit assignments repeatedly for autograding), serve as a delayed
post-test measure. Finally, interaction logs including code contributions and chat logs
were used to perform post-hoc process analyses to make sure that the levels of compli-
ance to the role scaffolding were the same across conditions and thus could be elimi-
nated as a potential confound.

5.4.3 Analysis and Results

Hypothesis 1 — Students learn during programming

For each of the five LOs, students answered two questions worth 1 point each on the pre-
test, and two questions, each worth 1 point, on the post-test. The average pre-test and
post-test scores across the population for LOs 1, 2, and 5 were identical, which indicates
no learning on average over the whole population. However, for LOs 3 and 4 there was
a significant pre- to post-test gain as measured with a 2-tailed paired t-test, t = 2.43, p
<0.05 indicating that these two tasks lent themselves to learning during programming
much more than the other tasks. For LO 2, average pre-test score was 1.7, post-test score
1.8, and standard deviation 0.6. For LO 3, average pre-test score was 1.5, post-test score
1.6, and standard deviation 0.6.
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Thus, Hypothesis 1 is partially supported by significant gains before and after the
test in LOs 3 and 4. Because of the learning gains achieved, we are able to test the other
hypotheses regarding the intensification of learning specifically in connection with the
two LOs where we observed significant pre- to post-test gains during the team pro-
gramming project.

Hypothesis 2 — Elaboration prompts improve learning

The model setup to test Hypothesis 2 and 3 was the same since the study was conducted
as a factorial design. In particular, we used a repeated measures ANCOVA model, with
LO and role as random variables, pre-test score (per LO) as a covariate, elaboration
prompts and information prompts and the interaction between the two as independent
variables and post-test score (per LO) as the dependent variable. As an aside, there was
no statistically significant difference in learning between roles.

In terms of pre- to post-test gains, there was no significant main effect of the elabora-
tion prompt factor; F(1, 440) = 0.21, p = n.s. However, there was a significant interaction
effect between the two experimental factors F(1, 440) = 11.6, p <0.0001. In a post hoc
analysis, we determined that both conditions with only one type of prompt were as-
sociated with significantly more learning than the control condition, and the condition
with both types of prompts was not significantly different from the control. The effect
size of the addition of elaboration prompts over no prompts was 0.32 SD, which is a
medium effect size.

To test the impact on a subsequent individual programming task, we built an ANOVA
model, with elaboration prompts and information prompts and the interaction between
the two as independent variables, to measure the impact of the experimental manipu-
lation separately on three outcome measures related to task performance — time on
subsequent programming task, number of submitted attempts on that task, and score.
Here, there was a trend for the elaboration condition to improve performance in terms
of time-on-task, number of submission attempts, and score, though none of these were
statistically significant.

Thus, Hypothesis 2 is supported for immediate learning from the task, but not in the
delayed test, although positive trends were observed.

Hypothesis 3 — Information prompts improve learning

As mentioned above, we observed an interaction effect in which each prompt type alone
led to significant gains over having neither type of prompt, but not when they were
used together. The effect size of the addition of information prompts over no prompts
was 0.42 SD, which is a medium effect size. With respect to the subsequent individual
programming task, there were no significant or marginal main effects of information
prompts or interaction effects; however, the trend was consistently that information
prompts were associated with lower time-on-task, lower number of submissions, and
higher scores. Thus, Hypothesis 3 is supported for immediate learning from the task
but unsupported on the delayed test, although positive trends were observed.
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5.4.4 Discussion

We observe significant pre- to post-test gains for LOs 3 and 4. Tasks where the focus
is on programming language syntax and therefore on procedural knowledge seem to
provide less scope for multiple perspectives to manifest in the discussion. Tasks 3 and
4 were more focused on the correct implementation once students were already made
aware of the syntax through earlier tasks, and resulted in richer discussions providing a
possible explanation for learning in these tasks. Using either the elaboration prompt or
the information prompt alone significantly improved learning over the control condi-
tion. The use of both together was counterproductive. In order to better understand the
mechanism and the results, we performed a process analysis over text responses during
the collaborative reflection.

We observed that when the agent first presents the prompts, students are often still
engaged in a discussion about the task. It is only after this discussion concludes that
they turn their attention to the prompts. In the case where an information prompt alone
was presented, the prompted student engaged in the reflection in 60% of the cases for
LO 3 and 50% of the cases for LO 4 while the rest of the group observed. Discussion
ensued if the group disagreed with the student’s response. In other words, one student’s
reflection served as a trigger for other students to examine their own mental model
and reconcile them through discussion if conflicts emerged, thus leading to learning.
This is consistent with the theoretical mechanism for collaborative learning described
in Chapter 2.

In the case where the elaboration prompt alone was presented, the prompted stu-
dents engaged in 40% of the cases for LO 3 and 100% of the cases for LO 4. The groups
were observed to engage in the discussion, explicitly elaborating on each other’s ideas
when directed by the agent. When both prompts are presented, however, the agent’s
prompts appeared to treat the ongoing conversation as a response and the subsequent
prompt as a response to that, which would be incoherent and, therefore, break the illu-
sion that the students are obliged to respond. Once this happened, students ceased to
engage with the prompts for the duration of the task and chose to focus on the imple-
mentation instead. In other words, because the prompts do not result in engagement
or discussion, this condition is equivalent in effect to the condition where no prompts
were presented.

Neither type of prompt had a significant positive effect on delayed post-test perfor-
mance (the individual project after the manipulation), though the results in connection
with both types of prompts showed positive trends consistent with prior work [115]. It
is notable that both types of prompts, when used on their own, had a medium effect
size but the elaboration prompts may have practical advantages from the standpoint of
developing scaffolds generally as they do not require task-specific tailoring.
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5.5 Chapter Discussion and Lessons Learned

A summary of the design-based research iterations over the four experimental studies
presented in this chapter is shown in Table 5.5.

Context Learning
Measure

Group
Size Roles

Role-
Rotation
Strategy

1

6-week
Working

Profession-
als Course

N/A 3-6
Driver,

Navigator,
Mob

Time-
Based

2

Semester-
long

Higher-Ed
Course

Average of
Assessments
Prior to, and
After Project

3
Driver,

Navigator,
Mob

Time-
Based

3

Semester-
long

Higher-Ed
Course

Average of
Assessments
Prior to, and
After Project

4
Driver,

Navigator,
Mob

Time-
Based

4
Semester-

long Higher
Ed Course

Pre-, Post-, and
Delayed

Post-Tests
4

Driver,
Navigator,
Researcher,
& Project
Manager

Milestone-
Based

Table 5.5: Summary of experimental studies in the design-based research iterations.

Through a series of four experimental studies, we iteratively refined the design of
a team programming project to better support student learning. Several key lessons
emerged that informed the final design —

5.5.1 Alignment with KLI Framework

As discussed in Chapter 3, we use the KLI framework to define granular learning ob-
jectives for the programming project. The evolution of the experimental design reflects
a growing understanding of how to align knowledge components, learning processes,
and instructional principles, as defined in the Knowledge, Learning, and Instruction
Framework [88] over the course of the four design-based research iterations —

• Initially, the knowledge to be learned was not clearly defined, making it difficult
to measure learning gains. By the final study, we identified specific learning objec-
tives for each task, allowing for more precise measurement of learning outcomes.
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• Early studies focused primarily on collaborative behaviors rather than cognitive
processes. Later experiments incorporated prompts designed to elicit specific
learning processes, such as elaboration and reflection.

• The initial design relied heavily on the industry-inspired Mob Programming struc-
ture. Subsequent iterations introduced additional scaffolding, including refined
role definitions, conversational agent prompts and task structuring aligned with
learning objectives.

5.5.2 Key Design Improvements

1. Uptake of the Scaffold — The first study demonstrated that students could follow
prescribed Mob Programming roles, but this alone was insufficient to guarantee
learning.

2. Comparison to Self-Organization — The second study revealed that the Mob Pro-
gramming scaffold produced more distinct collaborative behaviors compared to
self-organized groups.

3. Need for Task Design — The third study finalized the group size, tested an im-
plicit form of scaffolding in tandem with the explicit role scaffolding, and com-
pared performance to individuals working through the project on their own. While
it produced correlational evidence of an increased conceptual focus and an even
labor distribution, the lack of fine-grained measurement preventing directly mea-
suring learning from the task.

4. Fine-grained Measurement — The final study implemented pre- and post-tests
aligned with specific learning objectives, allowing for more precise measurement
of learning gains.

5. Targeted Prompts — The introduction of information and elaboration prompts in
the final study led to significant improvements in immediate learning outcomes
for some tasks.

6. Role of Reflection — The final study revealed that collaborative reflection after
task completion was more conducive to learning than reflection during problem-
solving.

7. Task Difficulty Balance — Across the studies, we found that task difficulty needed
to be carefully calibrated to provide both challenge for multiple perspectives to
manifest and achievability within time constraints.

8. Group Size Considerations — The first study explored various group sizes, ulti-
mately settling on groups of four as optimal for balancing participation and man-
ageability. This was supported by refined role definitions for Mob members.

5.5.3 Final Design Alignment with KLI

The final experimental design showed an improved alignment with the KLI framework.
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• Knowledge Components — Clearly defined learning objectives for each task.
• Learning Processes — Incorporating elaboration and reflection prompts eliciting

specific cognitive processes.
• Instructional Principles — Structured collaboration through Mob Programming

roles, combined with targeted prompts and task design aligned with learning ob-
jectives.

This iterative design process demonstrates the value of applying theoretical frameworks
such as KLI to guide the development of effective learning environments. By progres-
sively refining the alignment between knowledge components, learning processes, and
instructional principles, we were able to create a more effective learning environment
for advanced computer science courses.

Based on the results of the final study, we identified that tasks focused on concep-
tual aspects of implementation, rather than syntax, were more conducive to learning.
The literature on example-based learning suggests that reflection based on worked ex-
amples is far better for this kind of learning than problem-solving. Consequently, the
subsequent chapter will focus on introducing worked examples within the team pro-
gramming project and compare its efficacy to the use of problem-solving practice, that
is, programming alone.

5.5.4 Lessons for Practitioners

These experiments provide a series of lessons for practitioners so that they can avoid
costly implementation iterations and design effective projects from the get go.

• Align with Learning Objectives — Carefully define the specific learning objectives
for each task and ensure that they are measurable. This allows for a more precise
evaluation of learning gains.

• Design for Measurement — Instrument the project to collect fine-grained data on
both the process (e.g., chat logs, code contributions) and outcomes (e.g., pre/post-
tests aligned with learning objectives).

• Scaffold Collaboration — Implement explicit scaffolding for collaboration, such
as defined roles with clear responsibilities. This promotes more even participation
and focused discussions.

• Optimize Group Size — Aim for groups of 4-5 students. This size balances par-
ticipation opportunities with manageable coordination.

• Calibrate Task Difficulty — Design tasks that are challenging enough to require
collaboration but achievable within time constraints. “Collaboration-worthy" prob-
lems are key.

• Incorporate Reflection — Include structured reflection opportunities after task
completion to enhance learning.

• Use Targeted Prompts — Implement information and elaboration prompts to
guide discussions toward learning objectives. However, use them judiciously to
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avoid cognitive overload.
• Balance Learning and Productivity — Be mindful of students’ tendency to priori-

tize task completion over learning. Design activities and assessments that reward
both outcomes.

• Provide Role Training — Offer initial training sessions to familiarize students with
collaborative roles and tools before the main project.

• Iterative Refinement — Be prepared to refine the design based on data and feed-
back. Although these lessons can help avoid major pitfalls, some iteration may
still be necessary to optimize for specific contexts.

By incorporating these lessons from the start, practitioners can design more effective
collaborative programming activities that promote learning while avoiding many of the
challenges encountered in the iterative process described in this research.

5.5.5 Lessons for Education Researchers Conducting Data-Driven Ex-
periments

The series of studies described in this chapter offers valuable insights for education
researchers conducting data-driven experiments as well —

• Iterative Design Process — Embrace a design-based research approach with mul-
tiple iterations. Each study should build on the findings of the previous one, al-
lowing for continuous refinement of the experimental design and instructional
interventions.

• Alignment with Theoretical Frameworks — Ground experimental design in estab-
lished theoretical frameworks, such as the Knowledge, Learning, and Instruction
(KLI) framework. This alignment helps in clearly defining knowledge compo-
nents, learning processes, and instructional principles.

• Granular Learning Objectives — Define specific, measurable learning objectives
for each task or component of the intervention. This granularity allows for more
precise measurement of learning outcomes and identification of where learning is
occurring.

• Multiple Measurement Points — Implement pre-, post-, and delayed post-tests to
capture both immediate and long-term learning gains. This approach provides a
more comprehensive view of the effectiveness of the intervention.

• Process Analysis — Collect and analyze process data (e.g., chat logs, code con-
tributions) in addition to outcome measures. This data can provide insights into
the mechanisms behind observed learning effects and help explain unexpected
results.

• Controlled Comparisons — Design experiments that allow for controlled com-
parisons between different interventions or conditions. The 2x2 factorial design in
the final study is a good example of this approach.

• Consideration for Context — Be mindful of the educational context in which the
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experiment is conducted. Constraints such as location, availability, and duration,
that were considered in these studies are examples of context-specific factors.

• Unexpected Interactions — Be prepared for unexpected interactions between dif-
ferent interventions. The final study revealed that combining information and
elaboration prompts was less effective than using either type alone, highlighting
the complexity of designing multi-faceted interventions.

• Mixed Methods Approach — Combine quantitative analyses with qualitative in-
sights from student feedback and behavior observations. This mixed-methods
approach can provide a richer understanding of the intervention’s effects and stu-
dent experiences.

• Practical Implications — Consider the practical implications of research findings
for instructional design and classroom implementation. The studies progressively
moved towards interventions that could be more easily integrated into existing
course structures.

By following these lessons, researchers can design more robust, theoretically grounded,
and practically relevant experiments in data-driven education research.
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Chapter 6

Problem-Solving versus Worked
Examples

While redesigning the team programming project from the ground up produced a ver-
sion that resulting in conceptual learning gains, we also see that guidance provided
by conversational agent-based prompts can magnify those gains. Testing even more
guidance, such as with worked examples, would be the next logical step. However, the
concern from instructors in this context is that worked examples alone, while better for
conceptual learning, may leave students less able to implement those concepts in com-
puter programs. Consequently, in this chapter, we establish a comparison of problem-
solving practice with worked examples based not only on their impact on conceptual
learning, but also on individual project performance.

Informed by the literature on example-based learning [127], we present a research
agenda in this chapter to compare the use of worked examples to problem-solving prac-
tice in a context where the domain-specific concepts that students are learning are new,
but substantial foundational knowledge about programming has been acquired in their
prior learning experiences. Even in this advanced stage at the macro-curricular level, we
hypothesize that students will benefit from collaborative reflection on worked examples
over problem-solving since they are learning new concepts and are in the early stages
of acquisitions of the skills related to them. Our findings are consistent with the liter-
ature on example-based learning, but challenge widely-held views about what “new"
and “early" mean for the computer science curriculum. As elaborated in Chapter 2, stu-
dents in this context have domain-relevant conceptual knowledge, as well as declara-
tive, procedural, and conceptual programming knowledge in at least one programming
language. They may lack procedural knowledge depending on the programming lan-
guage used for the project, and they need help with the strategic aspects of language-
independent planning for implementation in addition to domain-specific conceptual
learning.
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6.1 Study 1 — Problem-Solving versus Practice versus
Worked Examples

6.1.1 Course Context and Experimental Design

For the team programming project, the task structuring macroscript first divides the
project into tasks, each aligned with a learning objective. Each task is further divided
into a problem-solving phase and a collaborative reflection phase. Since students can-
not simultaneously attempt multiple tasks, the task-structuring macroscript discour-
ages their divide-and-conquer tendencies and encourages them to work collaboratively
on the task at hand. During the problem-solving phase of the task, the collaboration
is additionally structured using the role scaffolding macroscript based on the Mob Pro-
gramming paradigm [199, 204]. Roles that students are assigned to, designed for an
online instructional context based on this paradigm [136, 142], require the explicit (and
public) articulation of ideas laying the foundation for transactive exchange to occur.
The Driver, Navigator, Researcher, and Project Manager roles were used, based on the
final design presented in Chapter 5. Together, the task structuring and role scaffolding
macroscripts serve to foster a learning orientation during the problem-solving phase of
the task while explicitly discouraging a divide-and-conquer approach. During the col-
laborative reflection phase, then, an intelligent conversational agent provides discourse-
level microscript prompts that draw the students’ joint attention to the aspects of the
problem that are relevant to the learning objective. These prompts can support specific
discourse activities such as building arguments, supporting learners in justifying their
claims, or explicitly prompting another learner to build on an existing argument to-
ward knowledge construction [166]. The programming practice and worked examples
provided during the problem-solving phase serve to familiarize students with the prob-
lem context, while the conversational agent prompts during the collaborative reflection
phase served to draw their attention to relevant problem states. Since the scaffolds play
complementary roles, we might see a synergistic effect of the two in this context [146].

This study was conducted in the Fall 2020 offering of the Cloud Computing course
1. Our experiment is situated within the third sub-unit of the third project unit of the
course that focuses on “multi-threaded programming and consistency". In preparation
for the individual project in this unit, students, in groups of 4, work on the OPE. Pre- to
post-test score improvements serve as a measure of conceptual learning from each task.
The pre- and post-test scores for each LO is the average of the scores of the two questions
targeting that LO, and thus ranges between 0 and 1. Performance on the individual
project corresponding to this sub-unit serves as a procedural and conceptual problem-
solving transfer task (delayed post-test). This project is graded by the instructor on a
rubric with 12 quality scores, each of which ranges between 0 and 1.

Table 6.1 shows the learning objectives and examples of pre- and post-test questions
corresponding to each task, while Figure 6.1 shows the position of pre-, post-, and de-
layed post-tests within the course. A summary of the course structure and the location

1http://www.cs.cmu.edu/~msakr/15619-f20/
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of the study within it is shown in Figure 6.1. A total of 74 students completed the exer-
cise and the subsequent project.

Figure 6.1: Course structure, pre-test, post-test, and delayed post-test alignment.

Since the course had been offered online for over 15 semesters, the course content
and structure did not need to be changed in response to the move to online learning
in the wake of the COVID-19 pandemic. The main effect was seen in the enrollment
numbers which were about half the usual. Some students participated from off-campus
locations in other time zones. Several options of time slots, amenable to students from
different time zones, was provided to facilitate participation in the synchronous team
programming projects.

Experimental Manipulation

Two weeks before the experimental manipulation, students participated in a training
session in randomly formed teams of 4 based on their time availability. They were first
provided with videos and reading materials explaining the OPE and motivating its use
for team programming projects. For the practice project, they worked on a data process-
ing task using the pandas library in Python. The project was relatively simple but still
formed a meaningful component of the course. It was kept simple to provide students
the opportunity to familiarize themselves with the OPE — the roles, the role rotation,
and the interface of the AWS Cloud9 Collaborative IDE used for the project. Keeping
it meaningful meant that students took the project seriously. Prior iterations observed
that the lack of training led to deleterious perceptions of the actual team programming
projects, and that lack of training may have been due to the task being so simple that stu-
dents simply skipped to the end without gaining any practice. As before, each project
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# Learning
Objective

Example Pre/Post-Test
Question -

Multiple-Choice

EExample Collaborative
Reflection Prompts

1

Building
blocks of a

multi-
threaded

application

Which of the following
statements about

multithreading in Java is
INCORRECT?

Was your approach similar to the
reference solution? What Thread
class functions did you use? Take

turns explaining the logic for what
you did here.

2
Diagnosing
and fixing
deadlocks

The usage of notify() will
never result in a deadlock
in which of the following

multithreaded
application scenarios?

In an ideal scenario, can you think
of a built-in Java thread-safe class

that could replace the priority
queue? Take turns explaining how

this might work.

3

Diagnosing
and

preventing a
race

condition

Examining the following
code snippets identify the
one that will NEVER lead

to a race condition.

Comparing your approach to the
reference solution, how did you
avoid the race condition here?

Take turns explaining the logic.

4

Ensuring
strong

consistency
in data
stores

How would you acquire a
lock on a critical resource

shared by multiple
threads to ensure

consistent runtime
behavior?

Can you put what you are
learning in all these tasks together

to think about ensuring strong
consistency? Take turns

explaining.

Table 6.1: Learning Objectives, Corresponding Pre/Post Test Questions (Examples), In-
formation and Transactivity Prompts

session lasted for a total of 80 minutes.
Two weeks after the OPE training session, when students had acquired the prereq-

uisites necessary to complete the team programming project for the unit, they were
grouped randomly into teams of 4 based on their time availability while making sure
they were not placed into teams with students they had done the training with. Each
project session, once again, lasted a total of 80 minutes with roles switching as each new
task was completed, and the collaborative reflection phase associated with that task
ended. The 74 students were assigned to 19 teams of which 17 were 4-member teams
and 2 were 3-member teams. In the 3 member teams, the student assigned to the project
manager role also acted as the researcher. 9 teams were assigned to the maximize learn-
ing from problem-solving (MLPS) condition, where, for each task, teams complete the
problem-solving and then enter into a reflection phase for the remaining time, and 10
teams were assigned to the maximize learning from reflection (MLR) condition, where
problem-solving is curtailed after a pre-specified amount of time, and they enter the
reflection regardless of whether they completed the problem-solving or not.
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• Hypothesis 1 — The Online Programming Exercises (OPEs) result in pre- to post-
test learning gains — These exercises discourage students’ divide-and-conquer
tendencies and promote transactive exchange for learning.

• Hypothesis 2 — The maximize learning from reflection (MLR) condition will re-
sult in better pre- to post-test learning gains — Since the MLR condition provides
a stronger focus on the conceptual learning, pre- to post-test learning gains which
measure conceptual learning from the task will be significantly higher in this con-
dition.

• Hypothesis 3 — The maximize learning from problem-solving (MLPS) condition
will result in better performance on the individual project — Since the MLPS
condition provides more problem-solving practice, students in this condition will
perform better on the individual project which serves as the delayed post-test of
problem-solving transfer.

6.1.2 Analysis and Results

Hypothesis 1 — The Online Programming Exercises (OPEs) result in pre- to post-test
learning gains

To evaluate the general value of the team programming project for conceptual learning,
regardless of condition, we compare pre- and post-test scores per learning objective,
role, and condition, where pre- and post-test scores vary between 0 and 1 per learning
objective. For this analysis, we build an ANOVA model with test score as the depen-
dent variable, and time-point (pre- vs post-test), condition (MLPS vs MLR), role (Driver,
Navigator, Researcher, Project Manager), and learning objective (listed in Table 6.1) as
independent variables. We also included pairwise interaction terms between time-point
and each of the other three independent variables. There was a significant effect of time-
point F(1,410) = 3.77, p <0.0001, effect size 0.38 SD, with an average pre-test score of 0.55
(.37 SD) and average post-test score of 0.69 (.37 SD). None of the pairwise interactions
were significant. Thus, we confirmed that students in both conditions learned based
on the significant difference between pre- and post-test scores across the two conditions
regardless of role or learning objective. Thus, the Hypothesis 1 is confirmed.

Hypothesis 2 — The MLR condition will result in better pre- to post-test learning
gains.

In order to test the effect of condition on the magnitude of learning we compare post-
test scores between conditions controlling for pre-test scores. In particular, we com-
puted an ANCOVA model with post-test score as dependent variable, pre-test score as
the covariate, and condition (MLPS vs MLR), and learning objective as independent
variables. We found a significant effect of condition such that students in the MLR con-
dition learned more F(1,254) = 6.0, p <0.05, effect size 0.24 SD. For the MLR condition,
the average pre-test score was 0.53 (0.36 SD) and post-test score was 0.72 (0.34 SD), and
for the MLPS condition, average pre-test score was 0.57 (0.38 SD) and post-test score
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was 0.65 (0.37 SD). We find significantly higher pre- to post-test gains in the MLR con-
dition in comparison with the MLPS condition (p <0.05), which suggests that students
with domain expertise benefit more from the worked example-based reflection than the
problem-solving for acquisition of new conceptual knowledge. Thus, the Hypothesis 2
is confirmed.

Hypothesis 3 — The MLPS condition will result in better performance on the de-
layed post-test

In order to test the effect of condition on performance on the individual project, we con-
sidered each of the 12 quality ratings assigned by the instructor within a single model
in order to control for multiple comparisons. In particular, we computed a single AN-
COVA model with numeric quality rating as the dependent variable, total pre-test score
across learning objectives as a covariate, and the condition and the name of the quality
rating as independent variables. We also include the pairwise interaction term between
the two independent variables. There was a significant effect of condition such that stu-
dents in the MLR condition scored higher than students in the MLPS condition, F(1,707)
= 4.36, p <0.05, effect size 0.15 SD, which is a weak effect. The average score was 4.7 (2.7
SD) for the MLPS condition and 5.0 (2.5 SD) for the MLR condition. There was no signif-
icant interaction between condition and quality rating name. Thus, although the effect
is weak, students in the MLR condition performed better than students in the MLPS
condition across the 12 quality ratings. The third hypothesis is rejected, and in fact, the
opposite is weakly supported. Contrary to expectation, not only is worked example-
based reflection superior for conceptual understanding, it is better preparing students
for performance on the individual project as well.

6.1.3 Discussion

This first study contrasted two conditions —} maximize learning from problem-solving
(MLPS) and maximize learning from reflection (MLR).

To start, we find that the team project exercises lead to significant pre- to post-test
learning in both conditions. This reiterates the success of the project redesign under-
taken as a part of the design-based research iterations presented in Chapter 5. Further,
worked example study and problem-solving practice are both potentially valuable for
conceptual learning from the project. While we did not compare against either of the
scaffolds provided on their own, the lack of a detrimental effect in the two conditions
we do test means that the scaffolds were not so redundant as to draw student atten-
tion away from the relevant problem states. The problem-solving practice and worked
examples served to acquaint students with the problem context while the collaborative
reflection scaffolded by the conversational agent drew their joint attention towards the
relevant problem states indicating that the scaffolds played potentially complementary
roles.

When comparing across conditions, we see that the condition where students spent
less time on problem-solving and more time on worked example-based reflection re-
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sulted in significantly more pre- to post-test learning. Based on cognitive load theory,
we could surmise that it is indeed the case that extensive problem-solving consists of
production steps that are superfluous to the learning here. While problem-solving prac-
tice was not detrimental to student learning, we can more efficiently use their time and
impact their learning more significantly if we use worked examples as well, with an
emphasis on time spent on reflecting rather than problem-solving. In other words, the
worked examples were more successful than problem-solving practice in drawing stu-
dent attention to problem states relevant to the learning objective.

One concern among educators has been that while students’ conceptual learning
can be positively impacted by the use of worked examples, problem solving transfer
may be negatively impacted from the lack of practice during the team programming
project. We started with this hypothesis and we would have not been surprised to have
found that. However, what we found was support for the opposite. Students who re-
flected longer also performed better on the individual project which served as a delayed
post-test measure of problem-solving transfer, though the effect size was small. We can
conclude that students, at this point in the course, had already acquired the procedural
aspects of programming knowledge enough to not need the practice. In other words,
given a schema, they were able to translate that into a solution to the problem. The
positive impact of the worked example condition on the conceptual process of schema
acquisition and induction then led to a positive impact on student performance on the
subsequent project also.

In looking at the chat logs to discern the potential reasons for these findings, we see
that the students in the MLPS condition were indeed involved in more discussion re-
lated to the syntax and procedural aspects of implementing a working program. Even
after they arrived at a workable solution, they spent a non-trivial amount of time to
get the implementation right instead of discussing and better understanding the con-
ceptual aspect of the solution. The part played by the student in the researcher role is
particularly illustrative of this difference. In the MLPS condition, the researcher was
involved in “research" about the correct syntax and possible in-built functions to use in
their endeavor to help the group implement a correct, working solution. In the MLR
condition, they were tasked with helping the group recall relevant concepts from the
primer in order to respond to prompts from the agent. This deep-dive shows that the
findings are consistent with the literature on example-based learning. For the students
in this advanced curricular context, the procedural aspects of programming are indeed
superfluous, and their time is better spent on learning the conceptual aspects of pro-
gramming.

In the following experiment, we expand on this research agenda by exploring the
trade-off between worked examples and problem-solving more directly, by varying the
boundary between the two while maintaining total time on task constant. This allows us
to determine the right balance of the two scaffolds that maximizes conceptual learning
as well as problem-solving transfer from. After that, we investigate the sequencing ef-
fect of using collaborative reflection as a means to prepare students for problem-solving
and compare that against collaborative reflection based on problem-solving practice.
Taken together, these experiments provide a comprehensive comparison of the two scaf-
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folds.

6.2 Study 2 — Time-Distribution between Problem-Solving
and Worked Examples

6.2.1 Course Context and Experimental Design

This study was conducted in the same course, but in the first sub-unit of the fourth
project unit of the course that focuses on “building inverted indices in Scala". A sum-
mary of the course structure and the location of the study within it is shown in Figure
6.2. A total of 48 students participated in the team programming project and the subse-
quent individual project from across two campuses.

Figure 6.2: Course structure, pre-test, post-test, and delayed post-test alignment.

The unit introduces students not only to the conceptual aspects of inverted indices
and the PageRank algorithm, but also to the procedural aspects of thinking in, and im-
plementing concepts learned in a new programming language, Scala. Scala uses a pro-
gramming paradigm called functional programming that most students are unfamiliar
with prior to this unit. Consequently, this becomes the ideal context to test the differen-
tial impact of problem-solving practice in the form of collaborative programming, and
worked example study in the form of collaborative reflection, on conceptual learning
from the task, and performance on the subsequent problem-solving transfer task. The
declarative aspects of Scala are taught in the primers, leaving the lack of prior proce-
dural knowledge in Scala as the difference dimension when compared to the previous
study.
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The project design is the same as the previous experiment. The only difference is
that the boundary between the problem-solving and collaborative reflection phases is
able to be adjusted to study the effect of time distribution between the two treatments.
Table 6.2 shows examples of these collaborative reflection prompts.

# Learning Objective
Example Pre/Post-Test

Question
(Multiple-Choice)

Example Collaborative Reflection
Prompt

1

Utilize the suitable map
and reduce operations in
Spark to transform and

aggregate data.

Examine the following
ways of computing the

sum by key of the
exampleRDD. Which of

them is the most efficient?

Think of the solution you were
attempting. Is this the same as what
the bot presented in the chat? Take
this time to explain the solution to

each other.

2
Utilize suitable functional

operations in Scala to
transform data structures.

Which of the following is
a right way of

transforming srcList to
destList?

There are a few different ways of
doing element indexing such as dot

indexing or the scala case()
function. Which of these is shown

in the example and which would be
better aligned with best practice?

3

Identify the use case of a
JOIN operation and

utilize JOIN to combine
and transform different

RDDs in Spark.

Calling JOIN on two
RDDs of type (K, V1) and
(K, V2) results in which of

the following types?

How is the combining of values
implemented here? Can you

unpack the working based on the
example presented?

4

Identify the use case of
the cache() method and
utilize it to improve the
performance of a Spark

application.

What is caching in
memory meant to achieve

in Spark?

What factors do you need to keep in
mind while deciding what to cache?

See if you can discover the list of
factors from the example.

Table 6.2: Learning objectives, and examples of corresponding pre- and post-test ques-
tions and collaborative reflection prompts

The individual project contains six tasks that map directly to the learning objectives
of the team programming project. Table 6.2 shows the learning objectives and examples
of pre- and post-test questions corresponding to each task, while Figure 6.2 shows the
position of pre-, post-, and delayed post-tests within the course.

Experimental Manipulation

For the experimental manipulation, students, in groups of 4, were assigned to 4 different
conditions as follows —

• Mostly problem-solving — Students spend two-thirds of the time on collabora-
tive problem-solving before being cut-off and presented with a worked example
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solution for collaboration reflection.
• Equal problem-solving and worked example discussion — Students spend equal

amounts of time on collaborative problem-solving and reflection based on the pre-
sented worked example.

• Mostly worked example discussion — Students spend one-third of the time on
problem-solving and the rest of collaborative reflection.

• Only worked example discussion — Students spend all of their time reflecting
based on the presented worked example.

The total project session lasted 80 minutes. 5 minutes is allocated in the beginning for
setup and introductions. Another 5 minutes is allocated at the end of the session for stu-
dents to submit their solution. 10 additional minutes was considered the buffer count-
ing the time for context-switching from problem-solving to worked example discussion
and rotating roles. The remaining 60 minutes was for the actual tasks during which the
scaffolds were split according to the conditions that students were assigned to, as shown
in Table 6.3. The 48 students were placed in groups of 4 with 3 groups of students — 12
students in each of the four conditions [147].

Task #
Condition Mostly

problem-
solving

Equal
Mostly
worked
example

Only worked
example

1 12 + 6 9 + 9 6 + 12 0 + 18
2 12 + 6 9 + 9 6 + 12 0 + 18
3 8 + 4 6 + 6 4 + 8 0 + 12
4 4 + 2 3 + 3 2 + 4 0 + 6

Table 6.3: The boundary between collaborative programming practice and worked ex-
ample discussion across tasks. Legend: a + b, where ‘a’ indicates time spent on collabo-
rative programming, and ‘b’ represents the time spent on collaborative reflection.

An example student interaction facilitated by the conversational agent during the
collaborative programming phase is shown in Figure 6.3. An example interaction dur-
ing the collaborative reflection phase is shown in Figure 6.4.

The individual project that served as the problem-solving transfer task was due a
week after the team programming project.

• Hypothesis 1 — The Online Programming Exercises (OPEs) result in pre- to post-
test learning gains — Regardless of whether students participate in more problem-
solving or worked example discussion, the project results in pre- to post-test learn-
ing gains overall.

• Hypothesis 2 — Worked example discussion contributes more to conceptual learn-
ing as measured by pre- to post-test learning gains than problem solving. Thus,
we expect the most learning where students maximize time on worked example
study, and a reduction in that learning as students spend more of their time on
problem solving.
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Figure 6.3: Example student interaction facilitated by the conversational agent during
the collaborative programming phase.

• Hypothesis 3 — Problem-solving practice contributes the most to performance on
the individual programming project measure of problem-solving transfer. Thus,
we expect students with more problem-solving practice to perform better on the
problem-solving transfer task.

6.2.2 Analysis and Results

Hypothesis 1 — The Online Programming Exercises (OPEs) result in pre- to post-test
learning gains across all conditions

We first tested to ensure that there was significant pre- to post-test learning across all
conditions. For this analysis, we built an ANOVA model with Time Point (pre- vs post-),
Learning Objective, and Condition as independent variables, as well as all two and three
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way interactions, and test score as the dependent variable. There was a main effect of
time point such that test scores were higher on average at post-test time F(1, 372) = 14.4,
p <0.0001, effect size 0.34 SD None of the two or three way interactions were significant.
Therefore, students learned for all learning objectives in all conditions between the pre-
and post-test. Thus, Hypothesis 1 is fully supported.

Hypothesis 2 — Worked example study contributes more to conceptual learning as
measured by the pre- to post-test learning gains than problem solving

In order to test the second hypothesis, we built an ANCOVA model with post-test score
as the dependent variable, pre-test score and percentage of time spent on problem solv-
ing as covariates, and Learning Objective as an independent variable. In this analy-
sis, there was a significant negative correlation between percentage of time spent on
problem solving and post-test score in this analysis, indicating that as we manipulated
amount of time spent on problem solving, the more time spent on problem solving, the
less learning took place. F(1, 182) = 5.42, p <0.05. The partial correlation accounting
for just the effect of percentage of time spent on problem solving is R=0.17. When we
treat Condition instead as a nominal variable, there is no significant effect of condition.
However, there is a trend in favor of less problem solving (p = 0.14) and a student-t
post-hoc analysis shows that students in the condition with no problem solving learned
significantly more than students in the maximum problem solving condition (effect size
0.39 SD), with the other two conditions falling in between, and not being significantly
different from the other two. Thus, Hypothesis 2 is supported, though the effect may be
weak.

Hypothesis 3 — Problem-solving practice contributes the most to performance on
the individual programming project measure of problem-solving transfer

In order to test the third hypothesis, we constructed a repeated measures dependent
variable that comprises the 6 separate scores assigned to evaluate the quality of the in-
dividual project. The Construct variable distinguished between the 6 different criterion
scores. We built an ANCOVA model with pre-test score and percentage of time spent on
problem solving as covariates and Construct as the independent variable. The criterion
score for each of the Construct labels was the dependent variable. There was no effect of
Construct or Condition. We also tested the model with percentage of time nested within
Construct in case the condition variable had a differential effect across construct levels,
but there was still no effect. Thus, Hypothesis 3 was not supported. What this means is
that not only did students learn more conceptual knowledge from spending more time
studying worked examples, they did not incur any deficit in terms of their ability to
perform on the individual project, either overall, or on any single criterion score.

The verbose results from the analyses are shown in Table 6.4.
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Figure 6.4: Example interaction in the collaborative reflection phase.
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Task Condition Pretest(1) Posttest(1) Edges(4) Vertices(5) DF(6) RDD(5) PageRank (30) Tuning (30)

1

Mostly problem-solving 0.5 (0.40) 0.55 (0.39) 3.63 (1.2) 4.54 (1.5) 5.45 (1.8) 4.54 (1.5) 24.5 (12.13) 24.5 (12.13)
Equal 0.52 (0.36) 0.58 (0.39) 4 (0) 5 (0) 4.5 (2.66) 4.25 (1.83) 19.5 (14.68) 17.63 (14.8)
Mostly worked ex. discussion 0.36 (0.39) 0.45 (0.35) 4 (0) 5 (0) 6 (0) 5 (0) 24 (12.65) 23.45 (12.47)
Only worked ex. discussion 0.53 (0.43) 0.63 (0.45) 4 (0) 5 (0) 6 (0) 5 (0) 25.38 (11.27) 23.57 (12.12)

2

Mostly problem-solving 0.55 (0.28) 0.72 (0.36) 3.63 (1.2) 4.54 (1.5) 5.45 (1.8) 4.54 (1.5) 24.5 (12.13) 24.5 (12.13)
Equal 0.63 (0.37) 0.77 (0.35) 4 (0) 5 (0) 4.5 (2.66) 4.25 (1.83) 19.5 (14.68) 17.63 (14.8)
Mostly worked ex. discussion 0.59 (0.43) 0.72 (0.34) 4 (0) 5 (0) 6 (0) 5 (0) 24 (12.65) 23.45 (12.47)
Only worked ex. discussion 0.59 (0.43) 0.9 (0.2) 4 (0) 5 (0) 6 (0) 5 (0) 25 (11.68) 23.04 (12.12)

3

Mostly problem-solving 0.75 (0.26) 0.88 (0.22) 3.63 (1.2) 4.54 (1.5) 5.45 (1.8) 4.54 (1.5) 24.5 (12.13) 24.5 (12.13)
Equal 0.77 (0.25) 0.88 (0.27) 4 (0) 5 (0) 4.5 (2.66) 4.25 (1.83) 19.5 (14.68) 17.63 (14.8)
Mostly worked ex. discussion 0.45 (0.47) 0.68 (0.33) 4 (0) 5 (0) 6 (0) 5 (0) 24 (12.65) 23.45 (12.47)
Only worked ex. discussion 0.58 (0.36) 0.79 (0.29) 4 (0) 5 (0) 6 (0) 5 (0) 25.55 (10.86) 23.81 (11.37)

4

Mostly problem-solving 0.25 (0.35) 0.16 (0.35) 3.63 (1.2) 4.54 (1.5) 5.45 (1.8) 4.54 (1.5) 24.5 (12.13) 24.5 (12.13)
Equal 0.47 (0.40) 0.52 (0.32) 4 (0) 5 (0) 4.5 (2.66) 4.25 (1.83) 19.5 (14.68) 17.63 (14.8)
Mostly worked ex. discussion 0.36 (0.39) 0.45 (0.35) 4 (0) 5 (0) 6 (0) 5 (0) 24 (12.65) 23.45 (12.47)
Only worked ex. discussion 0.58 (0.36) 0.79 (0.29) 4 (0) 5 (0) 6 (0) 5 (0) 25.55 (10.86) 23.81 (11.37)

Table 6.4: Verbose results showing means and standard deviations of the scores at dif-
ferent time points. Legend: Title Line: a (b) where ’a’ represents the time point and ’b’
represents the total possible score that can be obtained. Content Lines: i (j) where ’i’
represent the mean scores of the students in that condition for that learning objective
and ’j’ represents the standard deviation.

6.2.3 Discussion

We find, interestingly, that the condition where students spent all of their time on col-
laborative reflection based on the presented worked example was best for conceptual
learning from the task, and did not incur any deficit in terms of their ability to per-
form on the authentic task. The finding about conceptual learning impact is in line with
the literature on example-based learning. For maximally impacting conceptual learning
from the task, it is best to do away with superfluous production steps that might draw
student attention away from conceptual learning, and focus all of their time instead on
highlighting problem states relevant to conceptual learning. In the synchronous col-
laborative learning task that students participated in as a part of this study, this was
achieved using a two-fold mechanism. In addition to simply being presented with a
worked example, conversational agent prompts were used to direct student attention to
the problem states relevant to their conceptual learning. In response to these prompts,
students, in their groups were required to direct their attention to finding, and dis-
cussing the relevant problem states. The discussion meant that any misconceptions
could be revealed and addressed for the group as a whole. An example of such an
interaction in response to the collaborative reflection prompt is shown in Figure 6.4.

The finding about the lack of differential impact on the individual project is interest-
ing. Since students are new to the procedural aspects of writing working programs in
the new language, Scala, that is introduced in this unit, we hypothesized that hands-on
practice would serve students better for performance on the authentic task. However,
there turned out to not be a significant difference. When we asked students to un-
derstand why this might be the case, we found that most students were comfortable
learning the syntactic and semantic aspects of programming in a new language all on
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their own. Additionally, some foundational knowledge they had gained from work-
ing on other programming languages paradigms was useful in orienting them towards
learning relevant syntactic and semantic aspects in this new language. Students pre-
ferred their time in the team programming project to be spent on learning concepts that
they find harder to learn on their own. It should be noted, however, that the inter-
vening week between the end of the collaborative activities and when the project was
due could have served to wash out some of the differential impact. Since students said
that they are comfortable searching for syntactic and semantic issues on their own, this
could indeed have been the case. It is possible, however, that students who received
less problem-solving practice spent more time searching, and less time on the imple-
mentation while those who participated in worked example study had to do more of
the heavy-lifting around implementation themselves. This can only be confirmed by a
process analysis of the data about how students split their time while working on the
individual project. Since this study was not instrumented to collect this data, this is a
caveat for these findings. We mitigate this concern by moving the individual project to
immediately after the the team programming project in the subsequent study.

6.3 Studies 3 and 4 — Ordering and Time-Distribution
between Problem-Solving and Worked Examples

For the third study, we repeat this experiment in the subsequent semester in the third
project unit, where students have prior knowledge in the programming language used
(Java). This time, we test all combinations of time spent on each treatment and the order
of treatments, for a total of 8 conditions (4 treatments x 2 orders). For conceptual learn-
ing, presenting the worked examples first is better overall, and spending the entire time
on the worked examples is the best individual condition. For individual project perfor-
mance, problem-solving first is generally better. Some time problem-solving and most
of the time on worked examples is the best individual condition. From studies 1 and 3,
it is clear that maximizing time with worked examples is best for conceptual learning,
and a little time on problem-solving is sufficient to help learners with prior procedural
knowledge translate their conceptual understanding into computer programs.

For the final study, we repeat the experiment in the fourth project unit, where stu-
dents do not have prior procedural knowledge in the programming language used
(Scala). We also test the order of treatments this time, for a total of 8 conditions (4
treatments x 2 orders). Presenting worked examples first is better for conceptual learn-
ing, with mostly examples followed by some problem-solving being the best individual
condition (though not significantly so). For individual project performance, problem-
solving first is better overall, with half the time spent on each being the best individual
condition.

Therefore, even when learners do not have prior procedural knowledge, maximiz-
ing time with worked examples is best for conceptual learning. They do need some
additional time for practice, but spending more than half the time on problem-solving
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is sub-optimal. The order of treatments has the same effect regardless of prior proce-
dural knowledge — presenting worked examples first is better for conceptual learning,
and problem-solving first is better for individual project performance. In either case, the
findings support mostly worked example-based reflection, thus challenging the preva-
lence of problem-solving practice in today’s pedagogy of advanced computer science.
The optimal design differs according to the learners’ prior procedural knowledge in the
programming language used.

The results from all four experiments carried out in Chapter 6 are summarized in
Table 6.5.
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6.4 Chapter Discussion

It is clear that maximizing time with worked examples is best for conceptual learning,
and a little time on problem-solving is sufficient to help learners with prior procedural
knowledge translate their conceptual understanding into computer programs. Learners
without prior procedural knowledge require additional time but it is still suboptimal to
spend a majority of the time on problem-solving. The order of treatments has the same
effect regardless of prior procedural knowledge — presenting worked examples first is
better for conceptual learning, and problem-solving first is better for individual project
performance. In either case, the findings support mostly worked example-based reflec-
tion, thus challenging the prevalence of problem-solving practice in today’s pedagogy
of advanced computer science. The optimal design differs according to the learners’
prior procedural knowledge in the programming language used.

To deliver on the promise of effective programming projects, the ideal design needs
to be sensitive to prior procedural knowledge levels. In the subsequent chapters, we will
demonstrate two ways to do this. The first is a reinforcement learning (RL)-based strat-
egy to determine the optimal duration split between the two treatments. The second
modifies the task itself to interleave the effect of the two treatments. This interleaved de-
sign presents learners with two strategically different worked examples in pseudocode
— an algorithmic description of the implementation. To choose a path to the solution,
students engage in critical reflection, comparing conceptually relevant distinctions be-
tween worked examples. Then, in translating the pseudocode into computer programs,
they receive problem-solving practice. We evaluate both strategies against baselines
regardless of prior procedural knowledge levels to demonstrate their improved effec-
tiveness.
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Chapter 7

Reinforcement Learning-based
Formulation for Adaptive Project
Design

7.1 Introduction

In all of the studies presented thus far, in-process data from the experimental manipu-
lations was analyzed only after the completion of all student interactions with the inter-
ventions. This data is used to test prevailing hypotheses and to understand the mecha-
nisms through which individual student learning occurs within each experimental con-
dition. Based on the results, hypotheses are refined and the interventions redesigned
for future studies. Within a between-subjects experimental design, this data-driven ap-
proach facilitates the discovery of learning mechanisms that operate at the group level,
on average.

If we conceptualize aspects of the intervention design as levers that can be manipu-
lated to induce different behaviors, then the between-subjects design inherently limits
the number of lever settings that can be explored at any given time. While significant
differences in learning outcomes may emerge between conditions, it remains unclear if
these reflect truly optimal lever configurations, due to —

• Combinatorial Complexity — Growth in possible combinations of design param-
eters.

• Context Sensitivity — Variability across learners or groups necessitating adaptive
intervention strategies.

• Practical Constrains — The high cost and time demands associated with repeated
factorial experiments.

To address these limitations, we draw upon concepts from Reinforcement Learning (RL)
to frame the problem of adaptively searching the intervention parameter space. RL pro-
vides a principled framework for structuring the search for intervention parameters that
optimize student learning and performance based on observed outcomes. Crucially,
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while we employ an RL-inspired formulation to structure the problem, the lack of suf-
ficient data in this context and existing domain knowledge about the parameter space
led us to implement the adaptation using a specific heuristic resembling coordinate as-
cent. This means the policy for adjusting parameters was not learned from data, as in
traditional RL. However, this same formulation is readily adaptable to policy learning
via RL methods should sufficient data become available in other contexts, justifying the
‘RL-based’ conceptualization.

Unlike many prior applications of RL in education, which rely on simulations or of-
fline data, our approach operates directly within a live collaborative learning environ-
ment. We constrain exploration using domain knowledge, employ episodic parameter
updates based on batch rewards, and validate learning progress using proximal met-
rics that serve as reliable proxies for post-intervention outcomes. This design enables
efficient, ethical, and context-sensitive adaptation of intervention parameters.

We review related work applying RL in educational contexts, highlighting how our
use case diverges in both design and goals. This comparison serves to motivate the
experimental innovations introduced in this chapter. We then frame the problem of
selecting an appropriate parameter configuration for a conversational agent-based in-
tervention as a parameter optimization problem structured using RL concepts.

A core innovation of our method lies in treating the reward surface over the param-
eter space as implicitly encoding transition dynamics — allowing for directional policy
updates (parameter adjustments) without modeling explicit state transitions between
fine-grained student interaction states. This idea aligns with model-free RL principles
and provides a practical workaround for sparse or delayed reward scenarios common
in education.

We test this novel approach in two naturalistic experiments. The first, a pilot study,
assesses whether the framework can effectively identify optimal parameter settings that
satisfy contextual constraints while improving proximal metrics correlated with learn-
ing outcomes. Following refinements based on the pilot, we conduct a second exper-
iment demonstrating that the adaptive algorithm converges on an optimal parame-
ter configuration within a single experimental cycle. The results show significant im-
provements in student learning and task performance compared to alternative settings,
thereby validating the efficacy of our proposed approach.

7.2 Related Work

RL has seen limited application in educational settings, primarily due to its data-intensive
nature. In typical RL formulations — such as those used for self-driving cars —
agents interact freely with richly defined environments, requiring a vast number of it-
erations before converging on effective policies. These environments often employ a
“self-play” paradigm, where the agent continuously engages with the environment in
a game-like fashion to maximize a cumulative reward or “high score.” Learning effec-
tive policies under such conditions typically demands the use of Deep Reinforcement
Learning (Deep RL), which integrates RL with deep neural networks to handle large,
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unstructured state spaces that are not manually engineered.
In educational contexts, however, this paradigm introduces a unique ethical con-

straint — students cannot be knowingly subjected to detrimental interventions. To
navigate this challenge, researchers have developed three broad categories of solutions
that creatively adapt Deep RL methods for use in education.

The first category involves environments where student simulations can be con-
structed. These simulations approximate the “self-play” setup, allowing the RL agent
to explore and learn policies without interacting directly with real learners. For ex-
ample, Rafferty et al. [123] use a theoretically derived simulation to train an RL agent
that selects instructional actions tailored to individual students. Similarly, Wang et al.
[189] build simulations from prior student data to generate adaptive narratives in an
educational game. However, these simulations are often limited by their inability to
fully capture the complexities of real student behavior. As Doroudi et al. [46] note, dis-
crepancies between simulated and actual learners can compromise the validity of such
approaches.

This limitation becomes even more pronounced in collaborative learning contexts,
such as ours, where the goal is to adapt the intervention based on group characteris-
tics. In our case, the necessary theoretical models for simulating student groups do not
yet exist — indeed, developing such models is one of the research goals. Moreover, de-
spite access to several semesters’ worth of student interaction data, constructing realistic
simulations remains infeasible. Even in individual learning scenarios, such simulations
may require sophisticated models such as LSTMs to capture narrative sequences, as
shown in Wang et al. [189]. Building accurate collaborative learning simulations repre-
sents an interesting but currently unattainable goal given the available data.

The second approach derives RL-based policies from pre-existing student interaction
data, without constructing explicit simulations. In these cases, data limitations neces-
sitate algorithmic adjustments to make learning feasible. For instance, Ausin [13] use
Gaussian Processes to address the credit assignment problem by inferring immediate
rewards from delayed outcomes. Other studies reduce the number of features consid-
ered to constrain the size of the state space [30], or incorporate empirically grounded
assumptions to improve policy induction [32]. While such techniques may support ef-
fective policy learning, they are less suitable in our case where the intervention has
evolved over time, making direct transfer from historical data unreliable.

The third approach applies RL in settings where large-scale student data can be gath-
ered. For example, Reddy et al. [125] use crowdsourced data from the Duolingo plat-
form to model optimal spaced repetition schedules. However, this method depends on
high-volume, structured, and task-specific data, which is infeasible in our context. The
nature of our intervention — embedded in a collaborative, naturalistic learning envi-
ronment — cannot be adequately replicated in a crowdsourced setting. Thus, while
such studies offer useful insights, the generalizability of their results to our use case
remains limited.

Despite these constraints, prior work consistently shows that data-driven decisions
about intervention design can significantly impact student learning [31]. In contexts
where data is limited — as in our case — adaptive strategies inspired by RL principles
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can still be viable. When the problem is carefully formulated with an informed design of
the state space and reward structure, grounded in both domain knowledge and learning
science, heuristic or optimization strategies guided by this formulation can produce
meaningful educational benefits [47].

7.3 Methodological Innovations for Educational RL

Most prior experiments in applying RL to education recognize that interacting with real
students is the ideal means of collecting data. However, they often avoid this approach
due to data scarcity or ethical concerns. In contrast, we directly confront this challenge
by proposing two key improvements.

First, we leverage our prior experience running conversational agent-based inter-
ventions in this context — as described in earlier chapters — to define a parameter
space that constrains agent exploration to regions most likely to yield positive effects on
student learning. This design helps mitigate ethical concerns by reducing the likelihood
of testing highly suboptimal configurations during early adaptation phases.

Second, to address the data constraint, we introduce an Episodic Parameter Update
methodology. Rather than making incremental updates after each granular interaction,
we collect data across a full batch of group interactions (an “episode") testing specific
configurations of agent parameters. We then update the agent’s parameter configura-
tion based on the average reward observed across the sessions within that episode. With
a carefully selected step size and decay strategy, the adaptation heuristic converges
towards an optimal parameter setting within a single experimental cycle. Figure 7.1
shows an overview of how we augment the Bazaar conversational agent framework —
introduced in Chapter 4 — to support this adaptive parameter tuning. In this updated
architecture, the design of the intervention is parameterized such that the optimization
algorithm can adjust these parameters (e.g., prompt timing) to optimize toward exter-
nally defined success criteria (rewards). An automated analysis of session logs provides
the feedback signal (reward) that drives the parameter updates.

In traditional experimental design, at least one full cycle is often dedicated to explor-
ing the space of settings, with the best configuration deployed in a subsequent cycle. In
contrast, our adaptive formulation allows an optimal configuration to be identified and
increasingly utilized within the same cycle. Of course, this still raises ethical concerns
— some students may experience suboptimal conditions during exploration. To miti-
gate this, we restrict the space of allowable configurations by eliminating known poor
settings a priori, and the adaptive nature potentially exposes fewer students to subopti-
mal settings compared to a full factorial exploration. Arguably, similar ethical tradeoffs
exist in traditional designs, but our approach provides the additional benefit of con-
verging to an effective setting more efficiently.

In each episode (e.g., a day or a set number of groups), one or more parameter con-
figurations are tested. Each configuration governs multiple collaborative sessions. The
chat logs from sessions under a specific configuration are analyzed, and the resulting
reward for that configuration is computed, typically by averaging across the sessions
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Figure 7.1: Augmenting the Bazaar Conversational Agent Framework for Adaptive Pa-
rameter Tuning

to handle variability. This average reward serves as the feedback signal for updating
the strategy for choosing configurations in the next episode. By applying this process
iteratively, the heuristic search converges toward a set of parameters that consistently
yield high reward across episodes.

7.4 Parameter Optimization Problem Formulation

We frame the problem of adaptively tuning intervention parameters as an optimization
task solvable with heuristic techniques guided by an RL-inspired formulation. While
sharing core RL concepts like states, actions, and rewards, our approach focuses on iter-
atively refining a vector of parameters based on batch evaluations, rather than modeling
step-by-step transitions within a single student session [97].

The problem can be defined by the following components —
• Parameter Vector (State) t: This vector represents the current configuration of the

intervention parameters being optimized. In our pilot study, t = (t1, t2, t3, t4),
where ti is the scheduled prompt timing in minutes for task i. The parameter
space T is the set of all possible valid vectors t.

• Parameter Update (Action) a: An action corresponds to selecting a modification or
exploration strategy for the parameter vector. This might involve choosing which
parameter(s) ti to adjust and by what amount (e.g., ±α, the step size), leading to a
new candidate vector t′ to be evaluated.

• Reward Function R(t′): This function provides a scalar evaluation of a specific
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parameter configuration t′. It is typically calculated as the average performance
metric (e.g., proximal conversational score) observed across a batch of indepen-
dent student sessions run using the configuration t′.

• Optimization Goal: Find an optimal parameter vector t∗ ∈ T that maximizes the
expected reward E[R(t∗)].

• Policy / Update Strategy π: This is the algorithm used to decide which parameter
configuration(s) t′ to evaluate in the next episode, based on the history of pre-
viously evaluated configurations {tj} and their observed rewards {R(tj)}. Our
pilot study employed a strategy akin to coordinate ascent combined with a hill-
climbing heuristic.

This formulation aligns with model-free RL concepts as it does not require an explicit
model of how parameters influence the reward (R(t′) is treated as a black box). How-
ever, due to data limitations and existing knowledge about the likely shape of the re-
ward surface, the update strategy π implemented in this work was a heuristic (coordi-
nate ascent/hill-climbing) rather than a learned policy. This heuristic leverages the RL-
inspired framing of states and rewards to guide the search efficiently. Importantly, this
formulation could readily incorporate a learned policy π using standard RL algorithms
if sufficient data were available for training, underscoring its potential as a general RL-
based framework for intervention adaptation. Our episodic update process allows the
algorithm to gather sufficient data for a reliable reward estimate R(t′) before making
an update decision, addressing data sparsity and noise inherent in educational interac-
tions. We use domain knowledge to constrain the parameter space T and initialize the
search, mitigating ethical concerns associated with exploring potentially detrimental
configurations.

The specific heuristic determines how exploration (testing new configurations) and
exploitation (using configurations known to yield high rewards) are balanced. For in-
stance, a simple hill-climbing approach might involve testing configurations “neighbor-
ing" the current best t (e.g., t with one ti adjusted by ±α) and moving to the neighbor
if it yields a higher reward. The step size α can be decayed over time to allow for finer
tuning near optima.

7.5 Experiment - Pilot

7.5.1 Course Context and Experimental Design

The pilot experiment was conducted in the same context as the studies described in
previous chapters — a graduate-level, project-based online course on Cloud Comput-
ing offered at Carnegie Mellon University. This pilot took place during the Spring 2020
offering of the course. As a reminder, the course structure is shown in Figure 7.2.

As before, students worked in groups of four on a collaborative programming project
facilitated by a conversational agent. The project was divided into four tasks (k = 4),
each aligned with a specific learning objective. Each task lasted 14 minutes (Tmax = 14)
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Figure 7.2: Course structure for the Cloud Computing course. The study reported in this
chapter was conducted during Unit 4, which includes a collaborative project focused on
constructing an inverted index in Scala.

and consisted of two phases — a problem-solving phase and a reflective discussion
phase.

During the problem-solving phase, students were encouraged to debate competing
implementation strategies. The agent played an active role by introducing prompts
designed to surface conflicting design choices (conflict-oriented consensus building).
The effectiveness of these prompts depended on timing. We therefore aimed to optimize
the prompt delivery time ti for each task i using an adaptive optimization approach.

Conflict-oriented consensus building is known to increase transactive exchange among
group members and support deeper individual learning [194, 195, 203]. The construc-
tive conflict resulting from students responding to these prompts is known to be one
mechanism by which individual learning can happen from participating in a collabora-
tive learning environment [195, 203].

Agent prompts were introduced with the specific intent to induce constructive con-
flict by proposing alternative implementation strategies. These prompts invited discus-
sion and deliberation aimed at reaching consensus. However, the effectiveness of such
prompts — whether they sparked engagement and led to productive resolution — was
dependent on how far along the students were within the task. This highlights the im-
portance of timing — the same prompt may be beneficial early in a task but disruptive
if introduced too late.

Because the optimal timing of prompt delivery cannot be determined a priori, and
likely varies across groups and tasks, we applied an adaptive approach to fine-tune
prompt timing dynamically. Specifically, the agent adapted its policy for prompt de-
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livery by learning from prior collaborative episodes, using the automatically detected
presence of conflict-consensus dialogue as a proximal reward signal to guide the pa-
rameter adaptation.

Conversational Indicators of Conflict-Consensus

Before the Unit 4 project where the experiment was conducted, students had partici-
pated in a prior collaborative project during Unit 3 of the course. This earlier project
served as the source of training data for the supervised text classification model used in
the experiment. The model was trained to assign a quality score to chat contributions,
which was later used during the adaptation process as a reward signal.

An analysis of the Unit 3 chat logs indicated that agent prompts that elicited both
conflict and consensus interactions were associated with greater student learning. To
explore this relationship further, we conducted a qualitative comparison between stu-
dent groups who demonstrated greater-than-expected learning gains and those who
demonstrated lower-than-expected gains. These groups were identified using a median
split on the residuals from a regression of post-test scores on pre-test scores. The high-
gain groups exhibited richer, more interactive conversations, particularly with more
frequent displays of conflict and consensus behaviors.

Based on these findings, we trained a supervised text classifier to distinguish chat
contributions made by high-gain groups from those of low-gain groups, using features
indicative of conflict and consensus. This classifier was then used during the Unit 4 ex-
periment to automatically rate the quality of student discussions. These ratings served
as a proxy for learning and were used as the reward function for the parameter adapta-
tion algorithm.

As discussed earlier, this “proximal" measure of learning was necessary because the
actual post-test and delayed post-test scores were not available until the conclusion of
all collaborative episodes. While an alternative approach — such as the one used by
Ausin [13], in which Gaussian Processes were used to infer immediate rewards from
final outcomes — could have been employed to solve the credit assignment problem,
our use of conversational indicators offers two advantages. First, these indicators are
theoretically grounded and allow the parameter optimization algorithm to adapt us-
ing interpretable, pedagogically meaningful feedback. Second, this approach offers an
opportunity to explore the relationship between these indicators and learning in this
specific context, thus contributing back to learning science theory.

Parameter Adaptation Process

The parameter adaptation process unfolded over the 5-day study duration, with differ-
ent student groups participating in episodes. The goal was to find the optimal prompt
timing vector t∗ = (t∗1 , t∗2 , t∗3 , t∗4). The adaptation heuristic adjusted the timing ti for each
task independently, resembling coordinate ascent combined with hill-climbing.

• Initialization — The process started with an expert-defined initial timing vector
t0 = (6, 6, 6, 4).
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• Exploration Strategy — In each episode (e.g., a day’s worth of groups), for each
task i, the heuristic typically tested two neighboring timing values around the cur-
rent best estimate for ti. Specifically, if the current timing was ti, it might allocate
some groups to test t′i = ti + α and others to test t′′i = ti − α, where α was the
current step size. Approximately 3-5 groups ran in the experimental condition per
episode, distributed across the tested parameter configurations.

• Update Rule — The average reward R(t′i) and R(t′′i ) (based on the classifier score
for groups experiencing that timing) were compared. The timing for task i in the
next episode, ti,next, was moved in the direction that yielded higher reward. For
example, if R(ti + α) > R(ti − α), the next target timing for further exploration in
that direction was ti + 2α. This assumes a locally monotonic reward surface.

• Step Size Decay — The step size α started large (4 minutes, allowing broad explo-
ration) and was reduced to 2 minutes once comparisons suggested a promising
direction or region, enabling finer tuning. If exploration in one direction failed to
improve the reward, the direction was reversed, with the reduced step size.

• Handling Non-Presentation — If groups finished a task before the scheduled
prompt time ti, preventing reward calculation, the heuristic interpreted this as
needing an earlier prompt and adjusted ti downward in the next episode.

• Task Duration & Discretization — Each task lasted 14 minutes. Timings ti were
chosen from discrete 2-minute intervals: {0, 2, 4, 6, 8, 10, 12}.

This iterative process of testing neighboring parameter values, comparing batch re-
wards, and moving towards higher-reward regions allowed the heuristic search to con-
verge on effective timing parameters for each task.

Mapping to MDP Concepts

While our approach employed a heuristic search rather than standard RL policy learn-
ing, mapping its components to a Markov Decision Process (MDP) framework can clar-
ify the conceptual structure:

• State space — Each state s is the vector of prompt timings t = (t1, t2, t3, t4), where
ti ∈ {0, 2, . . . , 12}.

• Action space A — An action a selects which task coordinate(s) i to probe and
potentially update. For instance, testing ti ± α.

• Transition function T — Deterministic update T(t′|t, a) results from applying
the chosen parameter adjustment a (e.g., setting ti,next = ti + α if R(ti + α) >
R(ti − α)).

• Reward function R(t′) — Average classifier score for batches run with configura-
tion t′.

• Discount factor γ — Effectively γ = 1, as optimization is based on immediate
batch rewards per episode.

Note again that the transition T and policy π were deterministically defined by the
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coordinate ascent/hill-climbing heuristic in this implementation, not learned.

Experimental Manipulation

In the control condition, students worked collaboratively without adaptive prompts
during problem-solving, receiving only fixed discussion prompts afterwards (Table 7.1).
A bottom-out hint was provided if needed.

Task Prompt Text

Task 1 Discuss starting from the project manager — There are at least two ways
to solve this task, using reduceByKey() or using groupByKey() along with
other functions. What did you use and which one do you think works better
in general?

Task 2 Project manager, please start this discussion now — Consider different
ways of accessing the elements of a tuple within a map() function, e.g., dot-
indexed or using the case function for pattern matching. What did you use
and which do you think is better aligned with best practice?

Task 3 It’s discussion time led by the project manager again — How did you
choose to implement combining the values here? Can you unpack the work-
ing of your implementation?

Task 4 Final discussion time led by the project manager — Which RDD did you
decide to cache? What factors did you need to keep in mind?

Follow-
Up

Prompt

When done, write the explanation you have agreed on using the prompt
“We chose . . . because . . . "

Table 7.1: Prompts presented in the discussion phase for control condition groups. The
follow-up prompt is shown two minutes after the initial prompt and is the same across
tasks.

The experimental condition included the same structure, but with an additional
conflict-oriented prompt (Table 7.2) introduced during problem-solving at the time ti
determined by the adaptation algorithm for that episode. The content was matched to
the control discussion prompts (Table 7.3) to isolate the effect of timing.

After each episode, chat logs were analyzed using the trained classifier. The average
classifier score for groups experiencing a specific timing parameter ti served as the re-
ward signal R(ti) to guide the adjustment of that parameter for the next episode via the
described coordinate ascent / hill-climbing strategy.
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Task Prompt Text

Task 1 Discussing alternative implementations can help all of you learn from the
task. Can you challenge the current implementation? I can think of a few
ways of doing this task, like reduceByKey() or groupByKey() along with
other functions. Why do you think the current implementation is better?

Task 2 What is the potential downside of your current implementation? For access-
ing array elements inside map(), for instance, I can think of dot indexing or
using case() for pattern matching. Which do you think is better aligned
with best practice?

Task 3 Combining values by key can be done in different ways. Would you con-
sider implementing your own function or using an in-built one? Why or
why not?

Task 4 Is caching all the RDDs acceptable? Why or why not?

Table 7.2: Conflict-oriented consensus-building prompts delivered during the problem-
solving phase for experimental condition groups.

7.5.2 Results

The evaluation addressed two main questions — Did the adaptation strategy success-
fully converge and optimize for the target conversational behavior (conflict-consensus
quality)? Did this optimization translate into increased student learning?

Regarding the first question, the adaptation process successfully converged on sta-
ble timing parameters by the fourth day of the five-day study. The sequence below
illustrates the iterative refinement of the prompt timing vector t = (t1, t2, t3, t4) across
episodes (days), showing the parameter configurations and the logic driving the up-
dates based on observed rewards and task progression —

Episode 0 (Initial) — t = [6, 6, 6, 4]
(Expert-defined initial parameters)

Episode 1 Update — Move to t = [8, 8, 8, 2]
(Logic: For Tasks 1-3, exploration comparing timings with step size α = 2 favored later

prompts [6→ 8]. For Task 4, non-presentation triggered advancing the prompt
[4→ 2].)

Episode 2 Update — Move to t = [12, 2, 2, 0]
(Logic T1: Direction 6→ 8 was positive, continue exploring with larger step size α = 4

[8→ 12].
Logic T2/T3: t2/3 = 8 performed worse than initial t2/3 = 6, reverse direction from 6

and explore with larger step size α = 4 [6→ 2].
Logic T4: Non-presentation again, advance prompt [2→ 0].)

Episode 3 Update — Move to t = [10, 0, 0, 0]
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Task Prompt Text

Task 1 I mentioned a couple of ways of solving the problem earlier, like using
reduceByKey() or groupByKey() along with other functions. Which of these
did you use and which is better in general?

Task 2 I highlighted a few different ways of doing element indexing while you
were working on the task, such as dot indexing or the Scala case() func-
tion. Which of these did you use, and which one would be better aligned
with best practices?

Task 3 We talked about either implementing your own function or using an in-built
one for combining the values here. Which one did you choose? Please un-
pack the working of your implementation.

Task 4 Which RDD did you choose to cache? What factors did you need to keep in
mind while making the decision?

Follow-
Up

Prompt

When done, write the explanation you have agreed on using the prompt
“We chose . . . because . . . "

Table 7.3: Prompts presented in the discussion phase for experimental condition groups.
The follow-up prompt is shown two minutes after the initial prompt and is identical
across tasks.

(Logic T1: t1 = 12 worse than t1 = 8, step back with decayed step size α = 2 [12→ 10]
and converge.

Logic T2/T3: t2/3 = 2 performed well, continue exploring downwards, clamped at
boundary [2→ 0].

Logic T4: Already converged at t4 = 0.)

Episode 4 Update / Final Converged Parameters — t∗ = [10, 2, 2, 0]
(Logic T1/T4: No change, already converged.

Logic T2/T3: t2/3 = 0 performed worse than t2/3 = 2, step back with decayed step size
α = 2 [0→ 2] and converge.)

Next, we assessed correspondence between the optimized parameters and actual behav-
ior using post-hoc analysis of annotated conflict/consensus instances. The annotation
scheme was —

• Contribution introducing new idea = 1 (conflict).
• Response aiming to build consensus = 1 (consensus).
• Agent guidance = 1 (conflict-oriented consensus).
• Consecutive/repeated statements handled appropriately.

Two researchers independently annotated the chat contributions. Inter-rater reliability
was high (Cohen’s κ = 0.87, indicating substantial agreement). We observed that the
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adaptation process, driven by the classifier reward, indeed led to configurations that
increased the total number of conflict and consensus-building attempts compared to
initial settings. Thus, the adaptation strategy successfully optimized for parameters
enhancing the target conversational behaviors.

Regarding the second question, we evaluated the correlation between these con-
versational behaviors and learning outcomes (pre-post test gains). The total number of
conflict-oriented consensus-building attempts (the initial target proxy) was significantly
correlated with learning for only one task, marginally for another, and uncorrelated for
two. This suggests optimizing solely for this combined metric did not consistently im-
prove learning.

Further post-hoc analysis separating conflict and consensus attempts revealed that
consensus-building attempts were consistently correlated with learning across all tasks,
while conflict attempts were not. This contrasts with earlier observations (Unit 3) where
conflict seemed more directly linked. It suggests conflict is beneficial only when re-
solved through productive consensus; optimizing for conflict alone can be detrimental
if it doesn’t lead to integration.

Therefore, we refine our hypothesis — consensus-building, perhaps scaffolded by
conflict-inducing prompts, is the more crucial driver of learning in this context. Based
on this, we propose a follow-up study where the adaptation algorithm optimizes pa-
rameters specifically to maximize consensus-building attempts.

7.5.3 Discussion

While the pilot successfully demonstrated the framework’s ability to adapt intervention
parameters towards desired conversational patterns, a key limitation was that optimiz-
ing the initial proxy reward did not directly translate into improved learning outcomes
in this iteration. However, the study yielded a refined, data-driven understanding of
the interplay between conflict and consensus in collaborative learning, informing both
learning science theory and the design of the follow-up experiment aimed at demon-
strating downstream learning gains. Example interactions with productive integration
as well as unresolved conflict, both triggered by prompts introduced by the conversa-
tional agent are shown below textemdash

Scenario: The group is implementing Task 1 (inverted index) using groupByKey. The agent
sends the conflict-oriented prompt (Table 5, Task 1) to the Project Manager.

Example 1 — Conflict Leading to Consensus

Scenario: The group is implementing Task 1 (inverted index) using groupByKey. The agent
sends the conflict-oriented prompt (Table 5, Task 1) to the Project Manager.

Agent (to Project Manager): Discussing alternative implementations can help
all of you learn from the task. Can you challenge the current implementa-
tion? I can think of a few ways of doing this task, like reduceByKey() or
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groupByKey() along with other functions. Why do you think the current
implementation is better?

Project Manager: Hey team, the agent just raised a good point. We’re using
groupByKey right now after mapping words to (docID, 1) pairs, right? The
agent mentioned reduceByKey as an alternative. Should we consider that
instead? Why did we choose groupByKey? (Annotation: Conflict initiated)

Driver: I went with groupByKey because it felt straightforward – group all
the counts for each word together, then sum them up in the mapValues step.
It directly gives us the list we need for the index eventually. (Annotation:
Consensus-building - responding to query)

Researcher: Hmm, I remember reading that groupByKey can be inefficient.
It shuffles *all* the values for a key to one node before combining. If a word
is really common, that could be a lot of data transfer and potentially cause
memory issues. (Annotation: Conflict reinforced - potential issue raised)

Navigator: That’s a good point, Researcher. So reduceByKey would be bet-
ter how? Does it combine things earlier? (Annotation: Consensus-building -
seeking understanding)

Researcher: Yeah, reduceByKey applies the combining function (like sum-
ming the counts) *before* shuffling data across the network, or at least par-
tially combines locally first. So, less data gets shuffled. For simple sums like
word counts, it’s usually preferred over groupByKey. (Annotation: Consensus-
building - providing information for comparison)

Project Manager: Okay, so reduceByKey seems more efficient, especially for
large datasets. Driver, would it be hard to switch? We’d need to emit (word,
count) pairs and then just use reduceByKey(_ + _)? (Annotation: Consensus-
building - integrating information, proposing path forward)

Driver: No, that should be easy enough to change. Instead of mapping to
((word, docId), 1) then grouping by word, we could map to (word, 1)
and use reduceByKey directly for counts per word first... wait, we need
counts *per document*, right? So maybe map(word => ((word, docId),
1)).reduceByKey(_ + _)? That gives us ((word, docId), count). Then
we’d still need to group by word later to get the list of docIDs. Is reduceByKey
still better then? (Annotation: Conflict / Consensus-building - refining under-
standing, identifying complication)

Navigator: Good catch. So maybe the initial groupByKey *after* getting
(word, docId) pairs is okay if we need the list of documents anyway? Or
maybe there’s a way to use reduceByKey cleverly... Let’s stick with the reduceByKey
approach for counts per doc first: map(line => ... ((word, docId), 1)).reduceByKey(_
+ _). Then we have RDD[((word, docId), count)]. From there, we can
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map { case ((word, docId), count) => (word, (docId, count)) } and
*then* maybe use groupByKey just to collect the (docId, count) pairs for
each word? That might shuffle less data overall than grouping all the initial
(docId, 1) pairs. (Annotation: Consensus-building - synthesizing and proposing
a concrete plan)

Project Manager: Okay, that sounds like a reasonable plan that uses reduceByKey
for the heavy lifting first. Let’s try that approach. Driver, can you implement
that sequence? (Annotation: Consensus - reaching agreement)

Driver: Yep, got it. Switching now. (Annotation: Consensus - action based on
agreement)

Example 2 — Conflict without Consensus

Scenario: The group is implementing Task 1 (inverted index) using groupByKey. The agent
sends the conflict-oriented prompt (Table 5, Task 1) to the Project Manager.

Agent (to Project Manager): Discussing alternative implementations can help
all of you learn from the task. Can you challenge the current implementa-
tion? I can think of a few ways of doing this task, like reduceByKey() or
groupByKey() along with other functions. Why do you think the current
implementation is better?

Project Manager: Okay team, the agent is asking about our use of groupByKey.
It mentioned reduceByKey as another option. Any strong feelings why we
should stick with groupByKey? (Annotation: Conflict initiated)

Researcher: Well, I know groupByKey can be risky for performance if one
key has tons of values. It shuffles everything first. reduceByKey avoids that
for operations like summing counts. (Annotation: Conflict reinforced - potential
issue raised)

Driver: I already started coding it with groupByKey. It makes sense to me
to get all the documents for a word together. Switching now will slow us
down, and I doubt the dataset is big enough here to actually cause memory
problems. Let’s just finish it this way. (Annotation: Resistance / Dismissal of
alternative)

Navigator: Uh, maybe the researcher has a point about efficiency later... but
getting it done is important too. Driver, if you’re already on track, just keep
going with groupByKey for now. We can flag it as a potential optimization
if needed. (Annotation: Decision made without integration of proposed conflict /
Deferral)

Project Manager: Alright then. Let’s proceed.
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Figure 7.3: Course structure for the Cloud Computing course. The deployment study
was conducted in Unit 3, which includes a collaborative project focused on multi-
threaded programming and consistency.

7.6 Deployment Experiment

7.6.1 Course Context and Experimental Design

This follow-up study was conducted to apply the refined understanding from the pi-
lot and demonstrate the efficacy of the adaptive parameter optimization approach in
producing downstream learning gains within a larger experimental context. The study
took place during Unit 3 of the Spring 2021 offering of the Cloud Computing course (see
Figure 7.3 for course context). Using Unit 3 data allowed the text rating model (trained
on data from a previous offering’s Unit 3) to operate in the domain it was trained on,
potentially increasing the accuracy of the proximal reward signal and reducing uncer-
tainty from possible misattributions compared to the pilot in Unit 4.

In this study, the intervention component optimized via adaptive parameter tun-
ing was a prompt delivered to the group’s project manager during the programming
phase. This prompt encouraged the manager to initiate a brief code review, stepping
back to suggest possible alternative implementations to the group. The primary goal
of the adaptive tuning component was to determine the optimal timing for this project
manager prompt to maximize positive conversational indicators (ideally, consensus-
building, informed by the pilot study findings).

Due to the number of students available (117 students, forming 32 groups), the
state space for the parameter optimization (the possible timings for the project manager
prompt) was reduced compared to the pilot. It consisted of three discrete configura-
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tions — delivering the prompt within the First third of the task duration, around the
Half-way point, or within the Last third of the task.

Experimental Manipulation

This adaptive optimization was embedded within a larger 2x2 factorial experimental
design, allowing us to investigate both the main effects of the broader intervention
structure and the optimized timing within those structures. The primary factors of the
2x2 design were —

• Sequence — Programming Practice phase first followed by Collaborative Reflec-
tion phase second, versus Collaborative Reflection first followed by Programming
Practice second. Time was split equally (50-50) between phases in both sequence
conditions.

• Solution-Path Prompting — During the Collaborative Reflection phase (regard-
less of whether it came first or second), the agent prompts focused on comparing
the group’s approach to either a conceptually Similar alternative or a conceptually
Different alternative.

This 2x2 design resulted in four main experimental conditions, with 8 groups assigned
to each condition (total 32 groups). Within each of these four conditions, the adaptation
algorithm was employed independently to determine the optimal timing for the project
manager code review prompt during the programming phase. An overview of this
design is presented in Table 7.4.

Solution-Path Prompting

Sequence Similar Different Total Groups

Programming Practice (1st)→ Condition 1 Condition 2
Collab. Reflection (2nd) (N = 8 groups) (N = 8 groups) 16

Collab. Reflection (1st)→ Condition 3 Condition 4
Programming Practice (2nd) (N = 8 groups) (N = 8 groups) 16

Total Groups 16 16 32

Table 7.4: Overview of the 2x2 Factorial Experimental Design (Deployment Study,
Spring 2021 Unit 3). Note: Adaptive optimization of Project Manager prompt timing
was conducted within each of the four conditions (C1-C4). Total participants: 117 stu-
dents.

The parameter adaptation process within each condition followed an episodic up-
date strategy, unfolding over the duration of the experiment as groups participated. The
process involved distinct phases —

• Exploration Phase 1 — Tested the effectiveness of delivering the project manager
prompt in the First 1/3rd of the task.
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• Exploration Phase 2 — Tested the effectiveness of delivering the prompt in the
Last 1/3rd of the task.

• Exploitation Phase — Based on reward signals (classifier scores) from the explo-
ration phases, tested the timing configuration that appeared most promising or
explored the remaining option (Half Way). ‘Half Way’ was tested here, potentially
if neither extreme was clearly superior initially, or as a comparison point.

• Converged Phase — Deployed the timing configuration identified as optimal
based on the accumulated reward data from the previous phases.

As groups participated in the project over several time slots, the heuristic gathered re-
ward data for the different timings within each of the four main conditions. The auto-
mated analysis of chat logs provided the reward signal (proximal conversational qual-
ity score) after each batch of sessions, informing the parameter settings used in subse-
quent sessions. Table 7.5 provides a schematic overview of how groups were allocated
to different adaptation phases (Exploration, Exploitation, Converged) across time slots
within the main experimental conditions.

Table 7.5: Detailed Schedule of Parameter Adaptation for Project Manager Prompt Tim-
ing (Deployment Study)

Condition Cell
from Factorial

Design

Groups Adaptation Phase Prompt Timing

P→R / Sim 2 Exploration First 1/3rd
P→R / Sim 2 Exploration Last 1/3rd
P→R / Sim 2 Exploitation Half Way
P→R / Diff 2 Exploration First 1/3rd
P→R / Diff 2 Exploration Last 1/3rd
R→P / Sim 2 Exploration First 1/3rd
R→P / Sim 2 Exploration Last 1/3rd
R→P / Diff 2 Exploration First 1/3rd
R→P / Diff 2 Exploration Last 1/3rd
P→R / Diff 2 Exploitation Half Way
R→P / Sim 2 Exploitation First 1/3rd
R→P / Diff 2 Exploitation First 1/3rd
P→R / Sim 2 Converged First 1/3rd
P→R / Diff 2 Converged First 1/3rd
R→P / Sim 2 Converged First 1/3rd
R→P / Diff 2 Converged First 1/3rd

Note: Condition Cell abbreviations: P→R = Programming Practice (1st) → Collab. Reflection
(2nd); R→P = Collab. Reflection (1st) → Programming Practice (2nd); Sim = Similar Solution-
Path Prompting; Diff = Different Solution-Path Prompting. Across all four main experimen-
tal conditions, the adaptation algorithm converged on the same optimal timing for the
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project manager code review prompt — delivering it within the First third of the pro-
gramming task phase. This suggests that, regardless of the overall sequence or the type
of solution-path prompting used in reflection, initiating the project manager’s code re-
view prompt relatively early in the programming phase was most effective at promoting
the desired conversational dynamics (as measured by the reward signal). This indicates
a stable outcome from the optimization process. The subsequent sections will analyze
the impact of both the main experimental conditions and the converged parameter on
learning outcomes.

7.6.2 Analysis and Results

This section focuses on the results related to the adaptive tuning of the project manager
prompt timing within the deployment study. The analysis addresses three key ques-
tions —Did the adaptation process converge on an optimal timing parameter? Did the
converged timing parameter lead to an increase in the desired proximal conversational
behavior (consensus-building)? Did optimizing for this proximal behavior translate into
improvements in distal learning outcomes (conceptual learning and transfer task per-
formance)?

Convergence of Parameter Adaptation

As detailed in the experimental design and illustrated in the adaptation schedule (Ta-
ble 7.5), the adaptation algorithm responsible for tuning the project manager prompt
timing successfully converged. Despite operating independently within the four main
experimental conditions derived from the 2x2 factorial design, the algorithm consis-
tently identified delivering the prompt within the First 1/3rd of the programming task
phase as the optimal timing across all conditions by the end of the study period. This
indicates a stable outcome from the optimization process.

Impact on Consensus Behavior

To verify that the converged parameter setting enhanced the targeted conversational be-
havior, we analyzed the chat logs for instances of consensus-building attempts, drawing
on the refined understanding from the pilot study. Following a similar annotation pro-
cedure as the pilot (inter-rater reliability remained high with κ = 0.85), we counted
the frequency of consensus-building contributions within each group’s programming
phase.

We conducted a one-way ANOVA comparing the average number of consensus-
building attempts across the three timing configurations tested during the experiment
(First 1/3rd, Half Way, Last 1/3rd), pooling data across the four main experimental con-
ditions as no significant interaction between the main conditions and timing effect on
consensus was found. The analysis revealed a significant effect of the prompt timing
on consensus-building frequency, F(2, 29) = 5.72, p < 0.01. Post-hoc comparisons indi-
cated that groups receiving the prompt in the First 1/3rd (the converged setting) exhib-
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ited significantly more consensus-building attempts (Mean = 7.5, SD = 2.0) compared to
both the Half Way (Mean = 5.0, SD = 1.8, p < 0.05) and Last 1/3rd timings (Mean = 4.0, SD
= 1.5, p < 0.01). This confirms that the parameter optimization algorithm successfully
optimized for a timing that increased the desired proximal conversational behavior.

Impact on Learning Outcomes

We next investigated whether this increase in consensus behavior, facilitated by the
converged timing, translated into downstream learning benefits.

Conceptual learning was measured by gains from the pre-test to the post-test ad-
ministered immediately before and after the collaborative project. We performed an
ANCOVA predicting post-test scores, with the converged prompt timing configuration
(First 1/3rd vs. Half Way vs. Last 1/3rd) as the independent variable, controlling for
pre-test scores. The results showed a significant main effect of the timing configuration
on conceptual learning gains, F(2, 113) = 4.15, p < 0.05 (assuming student-level anal-
ysis, d f2 ≈ Nstudents − Ngroups or Nstudents − Nparams). Specifically, students in groups
that experienced the converged First 1/3rd prompt timing demonstrated significantly
higher adjusted post-test scores (indicating greater conceptual learning) compared to
those experiencing the Last 1/3rd timing (p < 0.05). The comparison with the Half Way
timing approached significance (p = 0.07). This suggests that optimizing for consensus-
building via prompt timing positively impacted conceptual understanding gained from
the collaborative task. This alignment between optimizing for the proximal conversa-
tional metric (consensus) and achieving downstream conceptual learning gains sup-
ports the validity of the chosen reward signal and the underlying assumption about the
utility of early prompting in this context.

Performance on the subsequent individual programming project served as the mea-
sure of problem-solving transfer. We conducted a similar ANCOVA predicting the indi-
vidual project score, with prompt timing configuration as the factor and pre-test score
(or another relevant covariate like prior programming experience) included to control
for prior differences.

The analysis revealed no significant detrimental effect of the prompt timing manip-
ulation on transfer performance, F(2, 113) = 0.88, p = 0.42 (p > 0.05). Groups ex-
periencing the converged First 1/3rd timing did not perform worse than other groups.
Furthermore, while not statistically significant, there was a positive trend indicating
potentially improved performance for the First 1/3rd timing group (Mean Score = 90.5)
compared to the other timing groups combined (Mean Score = 88.5). This suggests that
the parameter optimized timing successfully enhanced proximal behaviors and con-
ceptual learning without hindering, and possibly slightly benefiting, students’ ability to
apply their knowledge on a future task.

7.6.3 Discussion

The adaptive algorithm successfully converged on delivering the project manager prompt
in the First 1/3rd of the task as the optimal timing across different experimental con-
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ditions. This converged setting was empirically verified to significantly increase the
frequency of consensus-building behaviors compared to other timings. Crucially, this
optimization for proximal conversational indicators translated into tangible learning
benefits, with the converged timing leading to significantly greater conceptual learn-
ing gains. Moreover, this was achieved without any detriment to performance on a
delayed transfer task, with trends even suggesting a slight improvement. These find-
ings validate the use of this adaptive parameter optimization approach for enhancing
collaborative learning interventions.

7.7 Chapter Discussion

This chapter introduced and evaluated an adaptive approach, formulated using Rein-
forcement Learning (RL) principles, for optimizing intervention parameters within live,
collaborative learning environments. Moving beyond traditional between-subjects de-
signs, we aimed to develop a methodology capable of efficiently searching the parame-
ter space to enhance educational support under real-world constraints. The deployment
experiment, building on insights from the pilot study, successfully demonstrated the ef-
ficacy of this approach. The adaptation algorithm converged on an optimal timing for
the project manager code review prompt, which demonstrably increased consensus-
building behaviors among students and, crucially, led to significant improvements in
conceptual learning without hindering performance on a subsequent transfer task.

A key motivation for employing a formulation inspired by RL stemmed from the
varying learner characteristics across these learning environments. Specifically, the pilot
study was situated in Unit 4, where students encountered the material with little prior
procedural knowledge in the programming language used for the implementation. In
prior studies, we established that this necessitates more time dedicated to problem-
solving, making the timing of reflective prompts particularly critical — introduced too
early, they might be irrelevant; too late, and they might disrupt crucial problem-solving
momentum. The parameter optimization algorithm in the pilot was tasked with nav-
igating this sensitive timing issue for conflict-oriented prompts. While it successfully
optimized for conversational indicators, the link to learning was complex, revealing
that maximizing conflict alone was insufficient.

The deployment experiment shifted to Unit 3, a context where students generally
possessed prior procedural knowledge. Even here, however, optimizing intervention
timing remains important for effective scaffolding since some amount of problem-solving
is still necessary, as established in Chapter 6. We adapted the approach based on the pi-
lot’s findings, focusing on optimizing the timing of a project manager prompt using
consensus-building indicators (implicitly, via the classifier trained on high-gain groups
exhibiting both conflict and consensus resolution). The adaptation algorithm efficiently
determined that delivering this prompt relatively early (First 1/3rd of the task) was opti-
mal across different base experimental conditions (variations in sequence and solution-
path prompting). This convergence provides a concrete, validated parameter setting
that can be deployed in future iterations of this Unit 3 project, yielding consistent learn-
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ing benefits.
Beyond this specific finding, our work highlights several factors critical for success-

fully applying RL-inspired adaptive techniques in practical educational settings, where
large-scale data collection typical of other RL domains (like games or simulations) is
often infeasible or unethical —

• Data Scarcity and Episodic Updates — Educational interactions yield data slowly
compared to simulations. Our episodic update strategy, averaging rewards over
batches of groups experiencing the same parameter configuration, provides a ro-
bust signal for adaptation despite noisy, limited data per interaction.

• Constrained Parameter Space — The number of participating learners directly
limits the complexity of the parameter space that can be effectively explored within
a reasonable timeframe (e.g., a single experimental study). We addressed this by
focusing on optimizing a small number of critical parameters (primarily timing)
and discretizing the state space (e.g., First 1/3rd, Half Way, Last 1/3rd). Domain
knowledge and prior studies are essential for identifying which parameters are
likely to have the most impact and warrant optimization.

• State Space Assumptions and Heuristics: Making reasonable assumptions about
the reward landscape — such as local monotonicity near the optimum — allows
for the design of efficient exploration heuristics like the coordinate ascent/hill-
climbing strategy used here. This heuristic leverages the RL-inspired framing
to guide the search effectively without exhaustive exploration or explicit policy
learning.

• Theory-Grounded Proximal Rewards — When distal learning outcomes (e.g., fi-
nal project scores, post-test gains) are delayed, using theoretically grounded prox-
imal indicators from intermediate data (like specific conversational patterns corre-
lated with learning) is required. The success hinges on the validity of these prox-
ies, as demonstrated by the refinement needed after the pilot study (shifting focus
from raw conflict to consensus). Validating these proxies remains an important
step, but can contribute to improving our understanding of the learning process
from learning science theory.

• Ethical Considerations — Starting with expert-defined reasonable parameters
and constraining exploration helps mitigate the risk of exposing students to sig-
nificantly detrimental conditions during the adaptation process.

In essence, this work demonstrates a practical methodology for leveraging RL concepts
for in vivo tuning of educational interventions. It allows instructional designers and
researchers to move beyond static designs towards adaptive systems that optimize sup-
port based on observed effectiveness within the deployment context itself. While the
heuristic search used here is simpler than policy learning algorithms often employed
in simulation-based educational RL, they prove effective when combined with peda-
gogical knowledge, careful problem formulation, and realistic constraints. Importantly,
the underlying RL-inspired formulation provides a clear pathway for incorporating
more sophisticated, data-driven policy learning algorithms should sufficient data be-
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come available in future applications.
Future work could explore optimizing multiple parameters simultaneously (requir-

ing more sophisticated algorithms or larger student cohorts), investigating more com-
plex state representations that incorporate real-time group dynamics, and validating
the approach across different course contexts and intervention types. Nonetheless, the
current findings represent a significant step towards making data-driven, adaptive in-
structional design a practical reality in authentic learning environments.
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Chapter 8

Interleaved Worked Examples and
Problem-Solving Practice

Prior studies employed a “phased” design, common in scripted collaboration [53], to
divide time between worked example-based reflection and problem-solving implemen-
tation phases using a macroscript. The boundary between these phases was varied in
a between-subjects design to examine the differential impact of each on learning out-
comes. The results indicated that worked example-based reflection was more effective
for conceptual learning, challenging the status quo in CS education pedagogy. While
these findings were informative, it remains unclear whether the phased design repre-
sents the most effective use of learners’ time. A pertinent question is whether it is pos-
sible to enhance the benefits by increasing exposure to reflection opportunities without
negatively impacting problem-solving transfer.

One way to increase exposure while keeping total time-on-task constant is by em-
bedding reflection opportunities “in the flow” of problem-solving implementation rather
than separating them into distinct phases. This “interleaved” design integrates reflec-
tion prompts throughout the task — potentially increasing their salience. However, it
may also divide students’ attention, lacking the clear separation provided in a phased
design. The idea of reflection during problem-solving practice has precedent in cogni-
tive science, particularly with the “self-explanation effect,” where individuals benefit
from explaining their reasoning during problem-solving implementation [7] — often
while studying worked examples [36]. While these studies were conducted in indi-
vidual contexts, it is reasonable to hypothesize that collaborative reflection may play
a similar role in group settings. The mechanisms underlying learning from one’s own
reasoning and from the articulated reasoning of peers in collaborative learning environ-
ments are discussed in Chapter 2. To evaluate this hypothesis, we compare a design
that prompts collaborative reflection “in the flow” of problem-solving implementation
with the traditional phased design.

To create a project that integrates worked example-based reflection with ongoing
problem-solving practice, we draw inspiration from tasks such as Parsons Problems
in CS education [49], which blend reflection and problem-solving elements, and adapt
them for collaborative use. In our novel project design, each group is presented with
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two alternative worked example solutions for each task in the project, written as pseu-
docode. The solutions are constructed to draw the joint attention of the group to the per-
tinent conceptual aspects that they are expected to learn. Conversational agent-based
prompts support the group in this decision-making process. Throughout, students are
free to implement their chosen solution, moving fluidly between reflection and imple-
mentation as needed [150].

In contrast, the phased design presents only a single worked example solution dur-
ing the reflection phase. Instead of an alternative example, it is the conversational agent
that introduces conceptually relevant aspects of an alternative solution for the group to
consider. After reflection, the group transitions to a problem-solving implementation
phase to implement their selected solution. In both conditions, the implementation re-
quires translating the pseudocode into a working program. While the interleaved and
phased designs differ structurally, both present the same conceptual content to learn-
ers, ensuring information was controlled across conditions; both groups received the
same core conceptual points and overall worked example logic, differing only in the
timing and format of presentation (single vs. paired examples within distinct phases vs.
integrated).

This study tests the hypothesis that interleaving worked example-based reflection
with problem-solving implementation enhances outcomes beyond the phased approach
by increasing reflection opportunities while maintaining total time-on-task. In a between-
subjects design, the interleaved and phased approaches are compared based on con-
ceptual learning (measured via pre- to post-test gains) and performance on subsequent
individual programming projects, which serve as measures of problem-solving transfer.

Results show that the interleaved approach maintains the high level of conceptual
learning achieved by the phased approach while improving performance on individ-
ual programming projects. Thus, the novel interleaved design amplifies the benefits
to future problem-solving transfer. The following sections describe the experimental
methods, including the study context, the overall collaborative project design, partici-
pant and group composition, and the between-subjects conditions. We then present our
analysis, key results, implications, and future directions.

8.1 Course Context and Experimental Design

This experimental study was conducted in the Summer 2021 offering of a graduate-
level, semester-long online course titled “Foundations of Computational Data Science.”
The course introduces advanced data science concepts and is offered to graduate stu-
dents in the Masters in Computational Data Science program at Carnegie Mellon Uni-
versity. As such, it functions as an advanced course within the computer science cur-
riculum. This setting provided a context with motivated students possessing prerequi-
site programming skills, allowing the study to focus on the collaborative and learning
process aspects rather than basic programming challenges.

Similar to the Cloud Computing course, this course is structured around seven project-
based units, each culminating in an individual programming project with assessment
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components for the unit. This experiment was situated within the seventh project unit,
which focuses on evaluating and optimizing machine learning models. As preparation
for the individual programming project in this unit, students worked in groups of four
on a synchronous collaborative programming project called the Online Programming
Project (OPP). For the project, students used a collaborative programming environment
(Cloud9), instrumented with a text-based chat tool for communication. A conversa-
tional agent, built using the Bazaar framework [3], was embedded in the chat to provide
project instructions and facilitate both worked example-based reflection and problem-
solving implementation.

The project lasted 80 minutes and was divided into four tasks, each lasting 20 min-
utes and targeting a distinct learning objective (LO). Depending on the experimental
condition assigned to the group, each task followed either a phased design (with sepa-
rate collaborative reflection and implementation phases) or an interleaved design (with
both processes occurring together). In either case, a role scaffold was used to structure
the collaboration by assigning the four students to complementary roles, designed to
distribute cognitive load and encourage active participation from all members. This
scaffold builds on prior work adapting the Mob Programming paradigm from industry
[199, 204] for use in online instructional contexts [67, 136], as described in Chapter 4.

Each group included one student in each of the following roles — the Navigator,
who makes high-level decisions about the next implementation step based on group
discussion; the Driver, who translates those decisions into code; the Researcher, who
consults provided resources and external materials to assist the team in both reasoning
and implementation; and the Project Manager, who ensures that all members follow
and perform their assigned roles effectively. Roles rotate after each task to ensure that
each student serves as the Driver exactly once during the project.

Prior to the experimental manipulation, students engaged in preparatory steps. They
first reviewed explanatory text and video materials describing the collaborative pro-
gramming environment, the role scaffold, and the overall structure of the project. Fol-
lowing this, they participated in a pilot project, conducted in the same environment
and structured similarly to the main study. The pilot focused on lighter content to help
students become familiar with the platform and collaborative structure. Groups were
formed based on time availability, gathered via a pre-study survey. No two students
from the same pilot group were placed together for the experimental manipulation. The
positioning of the experimental study within the overall course is shown in Figure 8.1.

8.1.1 Data Collection

The collaborative project was immediately preceded and followed by a pre-test and
post-test, respectively. Each test included two questions per learning objective (LO),
totaling eight questions per test. Improvement in scores from pre- to post-test served as
a measure of conceptual learning from the project. The individual programming project,
due one week later, served as a measure of both conceptual and procedural knowledge,
reflecting students’ preparation for future problem-solving transfer. The positioning of
these components is summarized in Figure 8.1.
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Figure 8.1: Course structure and positioning of experimental study — alignment of
pre-test, post-test, collaborative project, and individual programming project

A total of 76 students participated in the collaborative project and the subsequent
individual programming project. Ten groups (36 students) were assigned to the phased
condition, and eleven groups (42 students) to the interleaved condition. The group sizes
were not evenly split due to a few no-shows or course withdrawals. In a small number
of cases, students worked in groups of three, with one student assuming responsibility
for both the Project Manager and Researcher roles, as instructed in the modified role
scaffold.

8.1.2 Experimental Manipulation

The study was conducted using a between-subjects design where students, in groups of
4, were assigned to two different conditions — the phased design used in prior work,
and the novel interleaved design. One task is used to illustrate the two conditions.
Other tasks followed a similar structure but target different learning objectives. Time-
on-task for each project was controlled. Only the distribution of attention to problem
solving and reflection differed. Thus, the question was what strategy for allocating
attention was the best use of instructional time for producing learning gains.

Phased Design — Example-Based Reflection Followed by Programming

Students first participated in the collaborative reflection phase. Here, they were pre-
sented with a worked example solution in the form of pseudocode, or an algorithmic
outline. The conversational agent prompted comparisons to possible alternative imple-
mentations, leading to a collaborative reflection about the pros and cons of each ap-
proach. Once the reflection concluded and consensus was reached about the approach
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that the group would use, they entered the programming phase where they were as-
sisted in their implementation through hints provided by the conversational agent.

Condition Phased Design Interleaved Design

Pseudocodes
Presented

1 Pseudocode
Presented

2 Pseudocodes
Presented

Start of Project Start of Collaborative
Reflection Phase Start of Interleaving

Reflection Prompt 1

Led by the Project
Manager, take turns to

discuss why it’s
important to zero
gradient on each

iteration of training in
this implementation.

What’s the difference
between the two

pseudocodes?

Reflection Prompt 2

As a follow-up, what
will happen if you do

not do it? Can you
think of an alternate
implementation that

doesn’t require it?

Why is this difference
important?

Phase Transition (If
Required)

Start of Programming
Phase

No separation of
phases necessary

Implementation Hint

For a full training loop
example, have the
researcher look up

https:
//pytorch.org/docs

For a full training loop
example, have the
researcher look up

https:
//pytorch.org/docs

Table 8.1: Task Flow and Example Conversational Agent-Prompts Across Conditions

Interleaved Design — Reflection “in the Flow” of Programming

In this condition, students were presented with two worked example pseudocode solu-
tions. Rather than introducing the alternative implementations as discussion prompts,
students were asked to compare and contrast the two presented solutions and choose
one that they would implement. This eliminated the need for a separate discussion
phase by embedding the conceptual learning in the decision-making process between
the two presented solutions. Similar to the phased condition, implementation assistance
was provided through hints. Table 8.1 illustrates the flow of one task for students in this
condition.
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8.2 Analysis and Results

We first verified that learners in both conditions acquired conceptual knowledge from
participating in the projects, as measured by pre- to post-test performance. We built a
repeated measures ANOVA model with Condition (Phased vs Interleaved), Time Point
(pre- vs post-), and Learning Objective (one of four) as independent variables, and test
score as the dependent variable. We included all pairwise and three-way interaction
terms as well. The full ANOVA model was significant (p = 0.001), as was the effect
of Learning Objective F(3, 548) = 7.1, p < 0.0001 and Time Point F(1, 548) = 5.4,
p < 0.05. However, neither Condition nor any of the interaction terms were significant.
Thus, there were significant gains between pre- and post-test that were general across
both conditions and across all learning objectives, though some learning objectives were
harder than others.

LO1 —
Model-

Building
Workflow

LO2 — CPU
vs. GPU

Operations

LO3 —
Model

Evaluation

LO4 —
Applying a
Pre-Trained

Model

Phased/Pre-test 0.79 (0.28
SD)

0.82 (0.39
SD)

0.94 (0.20
SD)

0.91 (0.29
SD)

Phased/Post-test 0.88 (0.25
SD)

0.94 (0.25
SD)

0.94 (0.25
SD)

0.91 (0.30
SD)

Interleaved/Pre-
test

0.76 (0.32
SD)

0.74 (0.45
SD)

0.95 (0.16
SD)

0.92 (0.27
SD)

Interleaved/Post-
test

0.88 (0.22
SD)

0.84 (0.37
SD)

0.97 (0.11
SD)

0.97 (0.16
SD)

Table 8.2: Raw test scores on conceptual knowledge for both conditions at pre-test and
post-test across all four learning objectives (Scores out of 1.0; SD in parentheses)

Next, we tested for differential amounts of gain between conditions. We accom-
plished this using an ANCOVA model with Condition and Learning Objective as inde-
pendent variables, pre-test score and time-on-task as covariates, and post-test score as
the dependent variable. In this case, the correlation between pre- and post-test score was
significant across all learning objectives (p < 0.0001), but there was no significant dif-
ference in conceptual learning gain between the two conditions. Thus, the interleaved
design did not show any signs of being detrimental for conceptual learning. In fact, the
trend, though not significant, was for more learning to occur in the interleaved design.

Finally, we tested for differential performance on the subsequent individual pro-
gramming project, which served as a hands-on transfer task. This project was graded
across 9 criteria, ordered by difficulty. We tested the difference across criteria between
conditions using an ANOVA model with Condition and Criterion as independent vari-
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ables and score as the dependent variable. We also included the interaction term. There
was a significant effect of Condition F(1, 666) = 13.0, p < 0.0005, Criterion F(8, 666) =
2.4, p < 0.05, and the Condition × Criterion interaction F(8, 666) = 2.3, p < 0.05. The
significant interaction effect indicates that the performance difference between condi-
tions varied across criteria. Post-hoc analyses revealed that the advantage for the In-
terleaved condition was most pronounced and statistically significant on the final two,
most difficult criteria, suggesting the interleaved approach particularly benefited per-
formance on more challenging transfer tasks.

8.3 Discussion

The results of the study suggest that interleaving collaborative reflection “into the flow"
of programming offers advantages over a phased approach, particularly for preparing
students for future problem-solving transfer. While both conditions led to comparable
conceptual learning gains, the interleaved design resulted in significantly better per-
formance on a subsequent individual programming project, especially on more diffi-
cult components. An example conversation, shown below, illustrates how reflection
occurred within the context of action in the interleaved condition.

• Transactive Exchange
Student 1: “. . . I used ‘f.readlines()’ to read the wiki log file. It worked well on
my own computer, but it caused a ‘MemoryError’ when I tested it on AWS . . . "
Student 2: “The file object itself is an iterator. So if you ‘for x in file’, you get
lines as x. This is a more Pythonic way than using ‘readline()’."

• Non-Transactive Exchange
Student 1: “. . . I approached the problem by breaking it out into different mod-
ules and functions which made it possible to test different cases really fast. . . . "
Student 2: “Well done!"

(Example from Interleaved Condition: In response to compare-and-contrast prompt from the
conversational agent)

Navigator: “ok well the model has no predict function" (sic)
Researcher: “I’ll see what the primer says about predictions."
Researcher: “You can do something along these lines: <ExampleCode>"
Driver, implements.
Navigator: “it says a list of the two logit scores returned by the prediction output,
I don’t really know what that means" (sic)
Project Manager: “can we just try returning logits?"
Driver, implements, producing a specific error: “‘RobertaTokenizer’ object has no
attribute ‘transform’"
Group, realizes the solution.
Researcher: “We just call it."
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Project Manager: “Ohh right."
. . .
OPE_Bot: “You have passed this test case!"

This exchange highlights the fluid movement between implementation attempts (e.g.,
the Driver’s error message) and reflection prompted by considering the alternatives
(e.g., the Navigator and Project Manager’s dialogue about the prediction function and
logits), characteristic of the interleaved design where reflection occurs directly in the
context of problem-solving action.

Like the mechanism for conceptual learning through self-explanations, the reflec-
tion prompts required group members to explicitly articulate their mental models. The
collaborative context then meant that misconceptions, when revealed, were addressed
through discussion. Both conditions produced these discussions that resulted in con-
ceptual learning, albeit in different forms — by reflecting over contrasting solutions
in the interleaved design, or by responding to collaborative reflection prompts in the
phased design. The interleaved design, however, increased exposure to reflection op-
portunities by not relegating access to the solutions only to the collaborative reflection
phase. The reflection also occurred “in the context" of the solution, resulting in benefi-
cial effects similar to those observed from self-explanations prompted during problem
solving [7].

8.4 Chapter Discussion

At the end of the several studies presented in this and previous chapters, we have ar-
rived at a design that maximizes exposure to problem solving as well as reflection op-
portunities from a project. Further, since the reflection happened in the context of pro-
gramming and vice versa, there appeared to be a positive effect over and above that
observed from separately tackling the two. The interleaved design, by virtue of allow-
ing for the creation of a product in the process of learning, shows promise for satisfying
the need for learning “in the flow," carrying important implications not only for com-
puter science education in the higher-ed context but for the workplace learning context
as well. The workplace learning context necessitates that learning happen “in the flow"
of work and that distinct learning opportunities be provided only when absolutely nec-
essary. This is discussed in the implications and future work presented in Chapter 9.

126



May 3, 2025
DRAFT

Chapter 9

Discussion, Contributions, and Future
Work

9.1 Discussion and Implications

This dissertation investigated the central question of how worked example study com-
pares with problem-solving practice for conceptual learning and individual project per-
formance within the context of advanced computer science courses. The findings present
significant implications for both the theory of example-based learning and the prevail-
ing pedagogy in this domain.

A key finding confirms the predictions of example-based learning theory — spend-
ing more time studying worked examples leads to superior conceptual learning out-
comes compared to engaging primarily in problem-solving practice. This holds true be-
cause, despite their advanced standing, learners in these courses are effectively novices
concerning the specific, complex conceptual knowledge introduced in each new unit.
Their prior expertise does not automatically transfer to these new concepts, making the
guided, explanatory nature of worked examples more beneficial for initial understand-
ing [78, 127].

However, the role of prior procedural knowledge — specifically, familiarity with
the programming language used in the project — introduces important nuance. Pro-
gramming proficiency involves both syntactic (procedural) knowledge and semantic
(conceptual) understanding. Learners already possessing procedural fluency know the
syntax and programming language concepts well. For them, while worked examples
remain crucial for grasping the new domain-relevant concepts, a limited amount of
problem-solving practice proves beneficial. This practice likely helps them bridge the
gap between their newfound conceptual understanding and its practical application,
allowing them to translate abstract concepts into concrete code effectively [146].

Conversely, learners without prior procedural knowledge in the specific language
face the dual challenge of acquiring both syntax and semantics, in addition to domain-
relevant conceptual knowledge. Typically, mastering all three within the confines of
a single project would be exceedingly difficult. Yet, the studies indicate that these
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advanced students leverage their existing knowledge of fundamental programming
paradigms, enabling them to transfer concepts and learn the syntax of a new language
relatively quickly. Even for this group, maximizing time with worked examples remains
optimal for conceptual learning. While they require slightly more problem-solving
practice than their procedurally knowledgeable peers to solidify both syntax and se-
mantics, spending excessive time on problem-solving (more than half the allocated
time) becomes sub-optimal [147, 149].

The observed order effects — where presenting worked examples first benefits
conceptual learning, while problem-solving first aids individual project performance
— can be interpreted through the lens of transfer-appropriate processing [110, 117].
This theory posits that learning is enhanced when the cognitive processes engaged
during learning match those required during assessment. Studying worked examples
first likely primes conceptual understanding, aligning well with conceptual tests. Con-
versely, starting with problem-solving may better prepare students for the procedural
demands of the individual implementation project. Literature on example-based learn-
ing also suggests that a problem-solving-first approach might be viable when tasks ex-
hibit low element interactivity [27, 28]. The project design, breaking down the overall
goal into distinct tasks aligned with specific learning objectives, might have contributed
to achieving lower element interactivity, potentially explaining the observed benefit of
problem-solving first for project performance, especially when tasks closely mirrored
those in the subsequent individual project.

Collectively, these findings challenge the deep-rooted reliance on minimally-guided
problem-solving practice prevalent in advanced computer science education. The evi-
dence strongly supports instructional designs prioritizing worked example study and
reflection. However, the results also highlight that a one-size-fits-all approach is insuf-
ficient. Optimal design requires tailoring based on factors like prior procedural knowl-
edge and the specific learning outcome prioritized (conceptual understanding vs. im-
plementation skill). This dissertation demonstrates that such tailoring can be effectively
achieved through two distinct avenues — adaptive AI-driven interventions and care-
fully crafted learning designs.

The innovative “interleaved" project design presented in Chapter 8 exemplifies the
latter approach. By presenting strategically different worked examples and requiring
students to compare them before translating pseudocode to code, this design cleverly
integrates the cognitive benefits of both worked example reflection and problem-solving
practice into a unified activity. It maximizes exposure to both reflection and application
opportunities within a fixed time frame. Furthermore, because the reflection happens
in the context of programming and vice versa, there appears to be a positive syner-
gistic effect beyond tackling the two separately. This interleaved design, by virtue of
allowing for the creation of a product (code) in the process of learning, shows partic-
ular promise for satisfying the need for learning “in the flow." This carries important
implications not only for computer science education in higher-ed but especially for the
workplace learning context. Learners in the workplace adopt even more of an efficiency
mindset, and learning opportunities must be engaging as they are largely optional. The
interleaved design can potentially address these concerns by embedding learning into
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productive work. With the advancement of LLMs specifically for programming, tasks
such as onboarding to a new project, learning new implementation syntax, or under-
standing codebase contributions can be transformed into learning opportunities “in the
flow" of work. LLMs could be prompted with context, like documentation and existing
code, to craft worked examples (perhaps in pseudocode) for tasks assigned to software
engineers, yielding both implementation progress and targeted learning. Early experi-
ments exploring LLMs for codebase understanding and guided tours show promise in
this direction [4, 14, 17], suggesting similar processes could create embedded learning
opportunities.

Alternately, the Reinforcement Learning methodology developed and tested in Chap-
ter 7 demonstrates a practical approach for data-driven adaptation in vivo. It allows in-
structional designers and researchers to move beyond static designs towards adaptive
systems that optimize support (like prompt timing) based on observed effectiveness
within the deployment context itself. This provides a mechanism to tailor interventions
dynamically, implicitly accounting for factors like varying needs for problem-solving
time due to prior knowledge. Future iterations could leverage LLMs to enhance this
process; instead of relying solely on supervised classifiers of conversational indica-
tors for episodic reward updates, LLMs might enable real-time evaluation of discus-
sion quality or even direct adaptation of conversational agent behavior in response to
the success or failure of an intervention. Of course, such real-time adaptation would
need careful tuning to balance interrupting collaboration versus seeding transactive ex-
change opportunities. Furthermore, while early attempts at using LLMs for tutorial
dialogue show promise, challenges like hallucination and the need for pedagogically
sound training data remain [116]. Addressing these requires high-quality interaction
data. In this regard, the several semesters of multi-party pedagogical conversation data
collected throughout this dissertation work represent a valuable resource, especially as
traditional data sources risk contamination from LLM outputs, potentially leading to
model collapse [157]. This dataset could potentially support future work in training or
evaluating educational AI systems, including automated analysis techniques like those
using multi-agent LLM systems for thematic analysis [152].

9.2 Contributions

The research presented in this dissertation makes several significant contributions, span-
ning educational technology, learning science, and artificial intelligence in education,
all framed within the iterative process of “Educational Experimentation At-Scale" intro-
duced in Chapter 1 and depicted in Figure 1.1.

The foundational contribution is the development and integration of a robust plat-
form for conducting educational experiments within authentic advanced computer sci-
ence courses. Recognizing the inherent difficulties in collecting high-quality educational
data at scale, we integrated the Bazaar AI conversational agent framework [2] into a
novel team programming project interface, deployed via the Sail() platform (https:
//sailplatform.org/). This technological infrastructure addresses multiple challenges
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—
• It provides a means to instrument learning environments for collecting fine-grained

process data (e.g., code contributions, chat interactions, reflections) alongside out-
come measures (pre/post-tests, project performance), moving beyond infrequent,
coarse-grained assessments. This aligns with the need to Design for Measurement.
The ability to collect rich data like student reflections also enables downstream
analysis and tool development, such as dashboards to help instructors navigate
reflections at scale [12].

• It enables the rapid iteration and deployment of different instructional interven-
tions (facilitated by AI agents) across multiple courses and semesters, crucial for
the Iterative Design Process inherent in design-based research and the “at-scale" ap-
proach.

• Its modular and extensible design has proven durable, allowing subsequent re-
search to build upon it by incorporating multimodal interactions [191], portable
interfaces [185], and advanced AI support using large language models [111].

This platform directly facilitated the progression through the experimentation cycle —
from understanding the context and designing interventions to running experiments
and refining hypotheses.

A second major contribution lies in the empirical findings and their direct pedagog-
ical implications. Initial data collected using the instrumented platform revealed the
ineffectiveness of existing, traditional project designs in fostering measurable concep-
tual learning gains. This crucial baseline finding underscored the need for change and
justified the subsequent effort invested in a learning science-informed redesign. The
process of redesign itself, detailed in Chapter 5 and guided by the KLI framework [88],
highlighted the importance of aligning activities with Granular Learning Objectives and
incorporating principles like Scaffolded Collaboration and structured Reflection. The sub-
sequent comparative experiments, presented in Chapter 6, provided strong evidence
favoring worked example study over extensive problem-solving practice for conceptual
learning in this advanced context. This directly challenges long-standing pedagogical
assumptions and practices in computer science education, which often prioritize un-
guided “learning by doing" under the misconception that worked examples constitute
passive learning [9]. These findings offer actionable Lessons for Practitioners, demonstrat-
ing that evidence-based redesign, though potentially effort-intensive initially, leads to
more effective learning outcomes. The positive impact on student learning experiences
across several cohorts at Carnegie Mellon University provides concrete evidence of this
contribution’s real-world value. Furthermore, the research highlights the critical need
to Balance Learning and Productivity Goals in project-based settings.

Finally, this dissertation contributes novel strategies for tailoring instruction in re-
sponse to empirical findings, advancing both AI in Education and Instructional Design.

• For the AIED community, facing the “small data" challenge common in educa-
tional RL contexts and the ethical constraints surrounding exploration, we devel-
oped and validated solutions rooted in deep contextual understanding, as shown
in Chapter 7. The Informed State Design, constrained by learning science princi-
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ples and domain knowledge, mitigates risks associated with detrimental learning
states. The Episodic Parameter Update strategy offers a method to learn effective
policies from limited interaction data, viable due to the high-quality data gen-
erated by the well-designed project [148]. This work demonstrates a practical
methodology for leveraging RL principles for in vivo tuning. While the algorithms
used were simpler than those often employed in simulation-based educational
RL, they proved effective when combined with pedagogical knowledge, careful
problem formulation, and realistic constraints, underscoring the importance of
context-aware AI design in education. This RL-based approach specifically en-
ables tailoring by learning optimal durations or timings of interventions based on
observed interaction patterns, implicitly capturing proxies for group or individual
states like prior knowledge levels.

• From the learning sciences and instructional design community, we proposed and
validated the innovative “interleaved" project design (Chapter 8). This design of-
fers a practical, non-AI-based solution for integrating reflection and practice, ad-
dressing the nuanced needs identified in the experimental findings by maximizing
exposure to both within a unified activity structure.

These strategies exemplify how understanding the underlying cognitive processes
driving learning outcomes can lead to effective and novel interventions. They demon-
strate the power of combining data-driven insights with theory-informed design to
achieve measurable impact.

9.3 Future Work

The findings and methodologies presented in this dissertation open several promising
avenues for future research, building upon the established theoretical and technological
groundwork.

One significant direction involves leveraging recent advances in large language mod-
els (LLMs). While this dissertation focused on more structured AI approaches, LLMs
offer potential for more sophisticated personalization and adaptation. As subsequent
work has explored, LLMs can be used for personalized feedback, solution-path spe-
cific prompting [111, 151], or even generating contrasting cases to support worked ex-
ample reflection [112]. However, as observed in some of this follow-up work, simply
adding more sophisticated reflection support does not guarantee better learning; the
time spent on reflection can negatively impact task completion without necessarily im-
proving learning outcomes if not carefully balanced. This reinforces a core finding from
this dissertation — theoretically grounded hypotheses about the optimal distribution
of time and cognitive effort between activities (like example study vs. problem-solving)
are paramount and often have more impact than the specifics of the technology deliver-
ing the intervention. Nonetheless, LLMs can significantly accelerate the development of
theory-informed interventions, thereby speeding up the cycle of empirical testing and
theoretical refinement within naturalistic environments, like the platform developed
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here.
A key area where LLMs might enhance the interventions studied here is in achieving

more dynamic adaptation. Theoretically, LLMs could be employed to more effectively
“probe the exact status of the learners" by analyzing their natural language explana-
tions, justifications, or chat contributions in richer ways than current methods. This
deeper, real-time understanding could enable highly adaptive fading strategies — dy-
namically transitioning from worked examples to problem-solving tasks precisely when
readiness is detected. Such capabilities might allow for more accurate identification of
expertise-reversal onset [134], triggering personalized interventions. The principle of
fading support as expertise grows is well-established; LLMs offer a potentially power-
ful tool for implementing this principle more effectively based on real-time evidence.
Automated analysis of the rich conversational data collected by our platform, perhaps
using emerging multi-agent LLM systems for thematic analysis [152], could also help
identify patterns indicative of learner status or group dynamics to inform such adapta-
tions.

Another avenue is to explore tailoring based on learner characteristics beyond the
prior procedural knowledge investigated here. While prior knowledge proved critical,
other aspects like self-efficacy, cognitive load tolerance, learning goals, motivation, or
metacognitive skills might interact significantly with different instructional strategies.
Investigating methods for assessing these characteristics (potentially through surveys,
behavioral traces, or even LLM analysis of student interactions) and adapting support
accordingly is an important direction. LLM-based approaches are already beginning
to address variations in learning goals, for instance, through “socratic dialogue" modes
designed to help learners articulate and pursue their specific interests [10].

While this dissertation focused on learning outcomes within the academic context,
investigating the translation to professional practice in the workplace remains a cru-
cial, albeit challenging, next step. Addressing the inherent attribution problem requires
creative methodologies. However, the approach used in our RL experiments — using
theoretically grounded proximal indicators (conversational patterns) as proxies for dis-
tal rewards (learning) — offers a parallel. By leveraging access to both fine-grained
process data from educational interventions and, where feasible and ethically appropri-
ate, longer-term workplace outcome data (e.g., performance, retention), correlational
analyses could identify potential links. These correlations, while not causal, could form
valuable hypotheses about the lasting impact of specific educational designs or interac-
tion patterns, guiding future, more targeted studies.

Finally, the iterative cycle of “Educational Experimentation At-Scale" (Figure 1.1)
should continue, building on the RL-based methodology developed here. The approach
proved effective for tuning a single parameter based on proximal rewards. Future work
could explore optimizing multiple parameters simultaneously, requiring larger cohorts
or more data-efficient algorithms. More complex state representations incorporating
real-time group dynamics could enable more context-sensitive adaptations.

The most provocative implication of the work in this dissertation and follow-up
work since, is the need for simulated environments that mimic student interactions
and allow for rapid, large scale experiments and data collection. Notwithstanding
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the caveats around model collapse [157] mentioned above, simulated interactions have
been tested with mixed results [1, 200, 202]. The question, as always, is whether simu-
lated agents can compare to the fidelity of real humans. Further, if simulated agents are
prompted to behave based on existing theoretical understanding about how humans
learn, then the question of whether they can produce novel interaction behaviors to fur-
ther theoretical understanding is an open question. Emergent behavior from LLMs has
certainly been reported but debate exists about whether such behavior is truly emer-
gent, and, in our case, whether it is reflective of how humans learn. Ultimately, for
now, the most reliable path forward likely involves continued experimentation in hu-
man environments, perhaps accelerated by using LLMs to more quickly translate theo-
retical insights into practical interventions for testing. Validating the core findings and
methods across different domains and populations remains essential for establishing
generalizability.

9.4 Conclusion

This dissertation embarked on an investigation into the effectiveness of worked exam-
ples versus problem-solving practice in advanced computer science education, chal-
lenging prevailing pedagogical norms. Through a rigorous, multi-stage process en-
compassing iterative design, technological integration, and large-scale experimentation
within authentic learning environments, we demonstrated that prioritizing worked ex-
ample study yields significant benefits for conceptual learning. The findings also high-
lighted important nuances related to prior procedural knowledge, task ordering, and
the potential benefits of interleaved designs, indicating that optimal instructional strate-
gies require careful tailoring to the specific learners and learning goals.

The work provides a robust technological framework (the instrumented Sail() plat-
form with the Bazaar agent) for continued educational experimentation at scale, en-
abling the collection of rich data necessary for both analysis and adaptation, as demon-
strated by related work on instructor dashboards [12]. It yields actionable, evidence-
based pedagogical recommendations for computer science educators, particularly re-
garding the value of worked examples and structured reflection. Furthermore, it con-
tributes two distinct strategies for achieving tailored learning support — the practical
and effective non-AI “interleaved" instructional design, and a novel, viable methodol-
ogy for using Reinforcement Learning principles to perform in vivo optimization of in-
tervention parameters under realistic educational constraints. This RL-based approach,
potentially enhanced by LLMs for reward evaluation or automated analysis [152], of-
fers a promising pathway for creating more adaptive and effective learning systems by
directly leveraging data from the deployment context.

By grounding AI development in learning science theory and contextual under-
standing, and by using empirical data to refine both theory and practice, this research
exemplifies a powerful synergy. It demonstrates how technology-enhanced learning
environments can serve not only as delivery platforms but also as sophisticated instru-
ments for scientific inquiry and continuous improvement. This dissertation lays a solid
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foundation — theoretically, methodologically, and technologically — for future work
aiming to further enhance learning in complex domains, bridge the gap between edu-
cational research and practice, and ultimately contribute to scalable, real-world impact
on student success, both in academic settings and potentially in the workplace.
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