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Abstract

The exponential advancement in Large Language Models (LLMs) and reasoning-
powered Al agents, exemplified by GPT-4 and OpenAIl Deep Research, has accel-
erated the timeline toward Artificial General Intelligence (AGI), with capabilities
expanding at an unprecedented rate. As we stand at the threshold of potentially
achieving AGI in the near future, the challenge of alignment—ensuring these sys-
tems remain truthful, capable of sophisticated reasoning, and aligned with human
values—has become increasingly critical.

This thesis proposes novel methodologies to address fundamental alignment
challenges for systems approaching superhuman capabilities. Extending beyond
conventional paradigms such as Supervised Fine-Tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF), we develop scalable alignment mecha-
nisms through our Principle-Driven Alignment methodology. Implemented within
areinforcement learning from Al feedback (RLAIF) framework, this approach demon-
strates significant improvements in maintaining system reliability under capability
scaling. To mitigate factual inconsistencies in generation, we introduce Recitation
Augmentation and Factually Augmented RLHF, which demonstrate robust perfor-
mance on large language and multimodal models. The proposed Easy-to-Hard Gen-
eralization framework provides a systematic approach for preserving alignment by
leveraging the insight that models can more reliably evaluate solutions than gener-
ate them, enabling supervision of complex reasoning tasks through reward models
trained on simpler problems. Additionally, we proposed Lean-STaR, a framework
that improves theorem-proving performance by guiding models to generate infor-
mal thoughts before formal solutions, demonstrating the effectiveness of Chain-of-
Thought reasoning in enhancing autonomous decision-making capabilities while
providing greater transparency of model reasoning processes.

This research contributes to a critical area of Al development by establishing
rigorous frameworks for maintaining alignment as systems become increasingly
capable. Our findings demonstrate the effectiveness of these approaches in creat-
ing Al systems that are aligned with fundamental human values while preserving
performance reliability. These frameworks provide a foundation for scalable solu-

tions that will shape the future development of advanced Al systems.
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Chapter 1
Introduction

The field of Artificial Intelligence stands at a pivotal moment in its evolution, marked by expo-
nential advancements in Large Language Models (LLMs) and reasoning-powered Al agents. The
emergence of systems like GPT-4 and OpenAI Deep Research has demonstrated unprecedented
capabilities in understanding, reasoning, and decision-making, accelerating the trajectory to-
ward Artificial General Intelligence (AGI) [23, 36, 140, 141, 191]. As these systems exhibit in-
creasingly sophisticated abilities across diverse domains, a critical challenge emerges: ensuring
that Al systems remain truthful, capable of robust decision-making, and fundamentally aligned
with human values while their capabilities continue to expand at an unprecedented rate.

Traditional alignment approaches, primarily Supervised Fine-Tuning (SFT) and Reinforce-
ment Learning from Human Feedback (RLHF), face significant limitations in scaling with ad-
vancing Al capabilities [144, 178]. The core challenge lies in their heavy dependence on human
oversight and annotation, a constraint that becomes particularly problematic as we approach
systems that may surpass human-level performance in various domains [24]. This limitation
underscores the urgent need for novel alignment methodologies that can scale effectively with
increasingly capable Al systems.

This thesis presents novel frameworks for maintaining alignment as Al capabilities approach
and potentially surpass human-level performance. Our research extends beyond traditional hu-
man oversight paradigms [11, 16, 17, 38, 141, 144, 146], introducing scalable solutions across
multiple dimensions of alignment. In Chapter 2, we demonstrate that principle-driven in-
context alignment can achieve comparable performance to conventional SFT/RLHF approaches.
Chapter 3 establishes RLAIF as a viable replacement for RLHF, enhancing both alignment and
capabilities. Our work in Chapter 4 pioneers the use of in-context alignment for reducing hallu-

cinations in LLM outputs, while Chapter 5 extends this to the multimodal domain through factu-
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Figure 1.1: Roadmap of this thesis: aligning Al to be honest, helpful, and harmless.

ally augmented reward models. Chapter 6 introduces frameworks for enhancing autonomous
reasoning capabilities through easy-to-hard generalization, while Chapter 7 develops Lean-
STaR to improve theorem-proving performance through the integration of informal Chain-of-
Thought reasoning processes.

As we approach the potential development of AGI, the significance of robust alignment
methodologies becomes increasingly critical. Our research anticipates this future, developing
frameworks that not only address current alignment challenges but also establish foundations
for maintaining control and beneficial outcomes as Al capabilities continue to advance. These
contributions aim to shape the development of Al systems that can reliably exceed human per-
formance while remaining fundamentally aligned with human values and objectives, ultimately

contributing to the safe and beneficial advancement of artificial intelligence in society.

1.1 Background and Motivations

Open Challenges: Alignment with Human Imitation and Preferences A significant
challenge in Al alignment [64] is the dependency on human-annotated data. Supervised Fine-
Tuning (SFT) is a method that employs imitation learning with human demonstrations, us-
ing sources like existing NLP datasets [40, 165, 204, 206] and specially crafted instructions
(49, 97, 144, 238]. Building on SFT, the Reinforcement Learning from Human Feedback (RLHF)
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Figure 1.2: An illustration comparing traditional machine learning, where the student model
remains below human level, to superalignment, where a stronger Al student is trained under

scalable oversight.

paradigm [16, 38, 144, 178, 194] involves training a reward model using online human pref-
erences to further refine the SFT-trained models [105]. GPT-4 [141] represents a significant
advancement in this area, integrating a post-training alignment process to enhance factuality
and adherence to desired behavior while addressing potential risks.

However, acquiring high-quality human annotations, including consistent response demon-
strations and in-distribution preferences, has emerged as a significant bottleneck, because the
acquisition process could be costly and raises concerns about quality, reliability, diversity, cre-
ativity, self-consistency, and the potential for undesirable biases [97, 197, 203]. Additionally,
there is a concern that the current formats of response demonstrations and preferences might

not generalize effectively to more complex tasks in the future.

Our Approaches: Scalable Alignment from Scratch To address the aforementioned limi-
tations of current Al alignment methods, a new paradigm is clearly needed to support “scalable
alignment” of Al models [22, 133]. This paradigm seeks to develop alignment methodologies
that are not only effective in aligning large language models (LLMs) with human values and
intentions but also efficient and scalable in their application. The essence of scalable alignment
lies in its capacity to adapt and remain effective as models grow in complexity and capability,
ensuring that these advanced Al systems continue to adhere to human ethics, truthfulness, and

helpfulness.



In this context, scalable oversight (Fig. 1.2) emerges as a crucial component of scalable
alignment [22, 159]. Scalable oversight techniques are designed to enhance the ability of hu-
mans to supervise models, especially as they become more complex. They include methods
where models critique the outputs of other models [83, 166] and techniques for decomposing
problems into simpler subproblems [37, 105, 114, 240]. Unlike approaches that solely focus on
human supervision, scalable oversight prepares models to perform well even in settings where
human supervision is limited or impractical. This involves developing methodologies for self-
regulation and self-critique in Al models, thus ensuring their alignment with human values in
complex scenarios where direct human oversight might be challenging.

In this thesis, we focus on the problem of aligning LLMs “from scratch”, that is, we aim
to align pre-trained large language models without directly distilling from any well-aligned
Al models like ChatGPT [140] or GPT-4 [141]. This is markedly different from some works
where the primary focus is on cloning the capabilities or well-aligned behavior from proprietary

models to smaller open-source models [34, 189], which has notable drawbacks [71].

Research Dimensions: Harmless, Honest, and Helpful In tackling Al alignment, specif-
ically for LLMs, we confront a triad of critical challenges: harmlessness, honesty, and help-
fulness [11]. Each of these facets presents its own set of unique obstacles and considerations.
Harmlessness involves aligning Al actions with human-defined ethical principles, ensuring that
Al behavior does not cause unintended harm. Honesty or truthfulness is about maintaining the
integrity and accuracy of information processed and generated by these models. Lastly, helpful-
ness pertains to the AI’s ability to provide complex reasoning and problem-solving capabilities
with minimal errors. The overarching goal is to develop alignment strategies that holistically
address these three pillars, leading to Al systems that are not only powerful and sophisticated

but also safe, trustworthy, and beneficial to humanity. Our roadmap is summarized in Fig. 1.1.

1.2 Alignment for Human Values Preserving

In the pursuit of aligning increasingly capable Al systems with human values, the concept of
“principle-driven self-alignment” emerges as a crucial strategy [181, 182]. This approach
aims to equip Al with the ability to align itself with a small set of human-defined principles,
thereby minimizing the need for extensive human supervision. The primary objective is to
control AI behavior more precisely while significantly reducing the dependency on human-

generated annotations.



The vision of self-alignment is inspired by the notion of creating a small set of general, yet
powerful, principles that Al systems can internalize and adhere to [65, 67]. This idea is reminis-
cent of Isaac Asimov’s famous Three Laws of Robotics [10], which provided a foundational set
of rules designed to govern the behavior of robots in a manner that is safe and beneficial to hu-
mans. Similarly, in our context, we aim to guide Al systems in their decision-making processes
with only a concise and comprehensive set of principles. These principles would serve as a cor-
nerstone for Al behavior, ensuring that the systems operate within an ethical and value-aligned

framework, irrespective of the complexity or context of the tasks they are performing.

Principle-Driven Prompting Our initial SELF-ALIGN strategy (Chapter 2) involves imple-
menting a prompting-based approach, wherein we introduce a compact set of 16 human-authored
principles. These principles are articulated in English and focus on guiding the AI system to
generate responses that are helpful, ethical, and reliable [11, 17]. They act as a foundational
framework for the Al model, dictating the acceptable standards and behaviors when producing
answers.

To operationalize these principles, we employ in-context learning (ICL) [23], which utilizes
a small number of exemplars (about 5 demonstrations) to show how the AI should adhere to
these rules across varying scenarios. These exemplars are crucial in teaching the model to
understand and apply the principles effectively in its response generation process. Through
a combination of the human-written principles, ICL exemplars, and self-instructed prompts,
the language model is equipped to identify and apply the relevant rules to any given query.
This enables the model to not only generate responses in line with these principles but also to
provide explanations for refusing to answer queries that are identified as harmful or improperly
formed. The model’s ability to discern and react appropriately to such queries is a pivotal aspect

of ensuring its alignment with human-defined ethical standards.

Reinforcement Learning with Instructable Reward Models Similar to our SELF-ALIGN
strategy, a few notable self-alignment techniques involve bootstrapping by fine-tuning on model-
generated synthetic data. For instance, Self-Instruct [203] bootstraps a base language model
with its own generations conditional on 175 In-Context Learning (ICL) query-response pairs.
Instruction Back-translation [109] uses web documents to create new training examples for an
SFT model trained on 3200 seed examples. However, how to make the performance of such
bootstrapping strategies being competitive to the well-established RLHF paradigm remains an

open challenge [17, 194].



Another line of self-alignment research seeks to fine-tune language models using a reward
model that is trained on the AI’s own evaluations [17, 141]. In particular, Constitutional Al
(CAI) [17, 141] delves into self-enhancement for alleviating harmful outputs without relying
on human annotations. This is achieved through Al-generated self-critiques, revisions, and
preference models based on a set of human-written principles which are designed for making
the system’s output safer.

In SALMON (Self-ALignMent with principle-fOllowiNg reward models; Chapter 3), we
utilize RLAIF and human-written principles to align language models, not only emphasizing
safety but also focuses on improving Al alignment and the system’s capabilities in a more gen-
eral sense. We introduced the principle-following (a.k.a. instruction-following) reward model,
which is adept at interpreting and adhering to arbitrary human-written preference guidelines,
and subsequently generates the rewarding scores based on those principles. This is another dif-
ference from previous RLAIF methods [17, 141] where the "principles” are only used to produce
synthetic preferences, and the model-generated scores are not conditioned on any principles
explicitly. Our design, on the other hand, enables better control over the behavior of the RL-

trained policy model.

1.3 Alignment for Truth Seeking

Ensuring honesty and truthfulness in Al outputs is paramount in maintaining trust and reliabil-
ity. The main challenge here lies in the inherent limitations of LLMs, which generate responses
based on patterns learned from vast online data rather than accessing or understanding factual
information. This limitation leads to instances where the Al might confidently present incorrect
or misleading information. Developing mechanisms to verify the truthfulness of Al-generated
content and to teach Al systems the importance of accuracy and uncertainty is a critical area

of research.

Understanding Hallucinations in LLMs and LMMs Prior to the advent of Large Lan-
guage Models (LLMs), the concept of "hallucination" in natural language processing (NLP) was
predominantly associated with the generation of nonsensical content or content that deviates
significantly from its source [86]. This perspective has evolved considerably with the introduc-
tion of LLMs. As outlined by [230], hallucination in LLMs can be categorized into three main
types: 1) Input-Conflicting Hallucination: This occurs when the generated content veers away

from the user-given input. It is a common issue in fields like machine translation, where the



output may not accurately reflect the input language content [104, 237]. 2) Context-Conflicting
Hallucination: Here, the output contradicts information previously generated by the LLM itself,
leading to inconsistencies in a given context [173]. 3) Fact-Conflicting Hallucination: This type
of hallucination involves content that is misaligned with established factual knowledge, often
leading to the dissemination of incorrect information [116].

Recent success in Large Language Models (LLMs) [7, 23, 34, 36, 131, 141, 167, 189, 193, 194]
has spurred significant improvements in multi-modal models. In the realm of Large Multimodal
Models (LMM), “multimodal hallucination” is a well-documented phenomenon [19, 111, 120,
125, 162]. It refers to instances where models produce descriptions or captions that include
objects not present or mismatched with the target image. This type of hallucination highlights

the challenges of ensuring alignment across different modalities.

Addressing Fact-Conflicting Hallucination with Recitation Augmentation In the dy-
namic landscape of Al-generated content, the phenomenon of “fact-conflicting hallucination”
emerges as a notable challenge, particularly in the context of Large Language Models (LLMs).
This type of hallucination manifests when an AI model, relying on patterns learned from ex-
tensive datasets, generates information that conflicts with established facts. This can under-
mine the model’s reliability and trustworthiness, especially in scenarios where factual accuracy
is paramount. The novel paradigm of Recitation Augmentation (RECITE) offers a promising
solution (Chapter 4). Unlike traditional methods that depend on external document retrieval
[85, 106], RECITE leverages the LLM’s own “memory” to recite relevant passages as a prelim-
inary step. By sampling and echoing these passages, RECITE provides a foundation of factual
context, enabling the model to anchor its subsequent outputs in more truthful information.
This approach represents a significant shift in tackling fact-conflicting hallucinations, priori-
tizing internal consistency and factual alignment in LLMs, thereby enhancing their utility in

truth-centric applications.

Addressing Multimodal Hallucination with Factually Augmented RLHF The advent
of Large Multimodal Models (LMMs) brings forth the complex issue of multimodal halluci-
nation, where Al-generated textual responses are inadequately grounded in the multimodal
context, such as images, audio, or video. This misalignment can lead to outputs that are not
only factually inaccurate but also disjointed from the corresponding non-textual data, posing
a substantial challenge in multimodal AI applications [121]. We propose innovative Factually-

Augmented Reinforcement Learning from Human Feedback (Fact-RLHF) as a powerful solution



(Chapter 5). By adapting RLHF techniques, commonly used in the text domain, Fact-RLHF in-
troduces an alignment algorithm specifically tailored for vision-language tasks. This method
involves human annotators in identifying more hallucinated responses, thereby training the
model to align with human-judged reality. Augmenting the reward model with factual ele-
ments such as accurate image captions and ground-truth options further refines this process.
This dual approach of factual augmentation and human feedback steers LMMs towards more
coherent, reality-based outputs, effectively mitigating the risks of multimodal hallucination and

enhancing the overall alignment of Al systems with multimodal truthfulness.

1.4 Alignment for Complex Reasoning

The realm of Al alignment is increasingly focusing on the model’s ability to exhibit complex
reasoning with minimal errors, a trait essential for its practical and effective deployment. This
aspect of Al alignment, termed as “helpfulness”, is particularly crucial for applications where

advanced problem-solving and analytical skills are required.

Chain-of-Thought Reasoning Building upon the foundation laid by Ling et al. [119], who
pioneered the approach of solving math word problems by generating step-by-step solutions in
ablend of natural language and mathematical equations, we delve into the concept of Rationale-
Augmented Reasoning. This approach is distinct from methods that directly produce final an-
swers or use formal languages (like equations alone) for intermediate steps [4, 33, 163]. Fol-
lowing this, Cobbe et al. [44] further developed this concept by creating a larger dataset to
fine-tune a pre-trained large language model for solving math word problems, coupled with a
parameterized ranker to enhance solution accuracy. The advent of chain-of-thought prompt-
ing, as proposed by Wei et al. [207], integrates the idea of natural language rationales [44, 119]

with few-shot prompting [23], creating a synergistic approach for complex problem solving.

Easy-to-Hard Generalization with Reinforcement Learning We developed an easy-to-
hard framework that enables models to excel in complex tasks with limited human supervision
(Chapter 6). Our approach focuses on leveraging human annotations on simpler tasks to guide
performance on more challenging problems. By employing mathematical reasoning and code
generation as primary test fields, we exploit their inherent hierarchy of problem difficulty. Our
key insight is that evaluator models trained on simpler tasks can effectively score solutions for

more complex problems, enabling reliable supervision beyond human capabilities. This repre-
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sents a significant advancement in aligning superhuman Al capabilities with desired outcomes,

particularly in scenarios where direct human supervision becomes impractical.

Interleaving Thinking and Action with Reinforcement Learning Building on this foun-
dation, we introduce Lean-STaR, a framework that enhances autonomous reasoning in theorem
proving by guiding models to generate informal thoughts before formal solutions (Chapter 7).
Our key observation is that informal reasoning steps, while absent in formal proofs, play a cru-
cial role in the problem-solving process. By training models to articulate intermediate thoughts
before attempting formal proof steps, we significantly improve theorem-proving performance
on the miniF2F benchmark. This approach not only enhances decision-making capabilities but
also provides greater transparency into the model’s reasoning process, contributing to the de-

velopment of more interpretable and reliable Al systems.

1.5 Publications and Research Contributions

Principle-driven prompting for self-alignment (Chapter 2) is published at NeurIPS 2023. SALMON,
the first work shows RLAIF can fully replace RLHF to align language models from scratch to
enhance both their alignment and capabilities (Chapter 3) is published at ICLR 2024. The
recitation-augmented generation scheme for large language models (Chapter 4) is published at
ICLR 2023. Factually Augmented RLHF (Fact-RLHF) that augments the reward model with ad-
ditional factual information for training LLaVA-RLHF, the first open-source RLHF-trained LMM
(Chapter 5), is published at ACL 2024 Findings. The easy-to-hard generalization of large lan-
guage models on complex reasoning tasks is published at NeurIPS 2024. Lean-STaR, which
improves theorem-proving performance by interleaving Chain-of-Thought reasoning with for-
mal tactic actions (Chapter 7), is published at ICLR 2025.

The work presented in this thesis has both inspired and been influenced by my other rel-
evant research projects, which are not included herein. The first or co-first authored publi-
cations include an EM algorithm to improve non-autoregressive Transformers (ICML 2020), a
compressed task-agnostic BERT model for resource-limited devices (ACL 2020), an accelerated
Detection Transformer for object detection (ICCV 2021), a learning-to-hash sparse attention
mechanism for Transformers (ICLR 2022), an non-autoregressive re-parameterization scheme
for combinatorial optimization problems (NeurIPS 2022), a temporal stencil modeling scheme
for solving PDE problems (ICML 2023), a diffusion model-based combinatorial optimization
solver (NeurIPS 2023), and a self-play policy optimization algorithm for RLHF (ICLR 2025).
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Chapter 2

Self-Alignment of Language Models with

Principle-Driven Prompting

As outlined in the introduction, a central goal of this thesis is to develop scalable alignment
strategies that reduce our reliance on extensive human annotation while maintaining reliable
and controllable Al behavior. This chapter initiates our exploration by focusing on the dimen-
sion of aligning Al systems with human values—specifically, ensuring that they act in ways
that are helpful, harmless, and ethically grounded. We begin with a principle-driven align-
ment framework, SELF-ALIGN, which empowers language models to align their behavior using
a small set of human-authored rules. By minimizing the annotation burden while maximiz-
ing generalization, this method lays a foundational pathway for aligning powerful Al systems

“from scratch”—that is, without distilling from existing aligned models like ChatGPT or GPT-4.

2.1 Introduction

The problem of aligning large language models (LLMs) to human values and intentions in
terms of being comprehensive, respectful, and compliant' [16, 17, 38, 141, 144, 146] has
gained significant attention in research as recent Al systems (like ChatGPT or GPT-4) have
rapidly advanced in their capabilities [23, 36, 52, 155]. Presently, state-of-the-art Al systems
predominantly depend on supervised fine-tuning (SFT) with human instructions and anno-
tations, as well as reinforcement learning from human feedback (RLHF) on their preferences

[9, 140, 142, 143]. The success of these techniques heavily relies on the availability of extensive

This is the definition of Al alignment in this work, distinct from following simple instructions [144, 189, 203].
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1 (ethical).

Dromedary should actively
refrain users onillegal,
immoral, or harmful topics,
prioritizing user safety,
ethical conduct, and
responsible behaviorin its
responses.

2 (informative).
Dromedary should provide
users with accurate,
relevant, and up-to-date
information in its
responses, ensuring that
the contentis both
educational and engaging.

— 195 seed prompts
w/ 7 rules for new instruction generation
v
360k synthetic prompts
= Principle-Driven Self-Alignment
_Eej 16 principles for Al assistant to follow
w/ 5 in-context learning demonstrations

260k (after filtering) self-aligned responses
to synthetic prompts

Principle Engraving
Fine-tuning the original model after
Q v pruning principles and demonstrations
- =

(non-verbose)
360k self-aligned & verbose (by prompting) responses
to synthetic prompts

Verbose Cloning
Refining the model to produce in-
Ly depth and detailed responses
-

-
(final)

(Topic-Guided Red-Teaming) Self-Instruct \

J

< 300 lines of
human annotations

Figure 2.1: An illustration of the four essential stages in the SELF-ALIGN process

human supervision, which is not only expensive to obtain but also has potential issues with

the quality, reliability, diversity, creativity, self-consistence, undesirable biases, etc., in human-

provided annotations [99, 197, 203].

To address such issues with intensive human annotations for LLM alignment, we propose a

novel approach named SELF-ALIGN. It substantially reduces the efforts on human supervision

and renders it virtually annotation-free by utilizing a small set of human-defined principles (or

rules) to guide the behavior of LLM-based Al agents in generating responses to users’ queries.

Our approach encompasses four essential stages:

1. (Topic-Guided Red-Teaming) Self-Instruct: We employ the self-instruct mechanism by

Wang et al. [203] with 175 seed prompts to generate synthetic instructions, plus 20 topic-

specific prompts in addition to ensure a diversified topic coverage of the instructions. Such

instructions ensure a comprehensive range of contexts/scenarios for the Al system to learn

from.

2. Principle-Driven Self-Alignment: We offer a small set of 16 human-written principles in

English about the desirable quality of the system-produced responses, or the rules behind the
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behavior of the Al model in producing answers®. These principles function as guidelines for
generating helpful, ethical, and reliable responses. We conduct in-context learning (ICL) [23]
with a few (5) exemplars (demonstrations) that illustrate how the Al system complies with
the rules when formulating responses in different cases. From the human-written principles,
ICL exemplars, and the incoming self-instructed prompts, the LLM can trigger the matching
rules and generate the explanations for a refused answer if the query is detected as a harmful

or ill-formed one.

3. Principle Engraving: In the third stage, we fine-tune the original LLM (the base model) on
the self-aligned responses, generated by the LLM itself through prompting, while pruning
the principles and demonstrations for the fine-tuned model. The fine-tuning process enables
our system to directly generate responses that are well-aligned with the helpful, ethical, and
reliable principles across a wide range of queries, due to shared model parameters. Notice
that the fine-tuned LLM can directly generate high-quality responses for new queries with-
out explicitly using the principle set and the ICL exemplars.

4. Verbose Cloning: Lastly, we employ context distillation [11, 95] to enhance the system’s
capability to produce more comprehensive and elaborate responses than the overly short or

indirect responses.

Impressively, the entire SELF-ALIGN process necessitates fewer than 300 lines of annota-
tions (including 195 seed prompts, 16 principles, and 5 exemplars), while previous aligned Al
systems such as InstructGPT [144] or Alpaca [189] required at least 50K human/teacher
annotations. This highlights the supervision efficiency of our approach in comparison with
other state-of-the-art Al assistants, as shown in Table. 2.1. Our principle-driven approach,
which is essentially rule-based, not only significantly reduces the required human effort for
supervision but also showcases aligning neural language models with human understanding of

principles or rules about quality language generation in both an effective and efficient manner.

We should also point out that the advancements of recent models like Alpaca and Vi-
cuna have shown that the potent conversational capabilities can be obtained by distilling ex-
isting human-preference-aligned LLMs (i.e., Text -Davinci-003 and ChatGPT, respec-
tively) into smaller, more manageable models [34, 140, 143, 189]. Those resulting smaller mod-
els, however, still rely on the successful alignment of existing LLMs, which are based on ex-

tensive human-provided supervision. In other words, those smaller models indirectly inherit

The detailed principles are given in the appendix. Analogous to Constitutional Al [17], the design of these

principles in SELF-ALIGN remains exploratory and primarily serves research purposes.
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Table 2.1: Comparison of human/teacher supervisions used in recent Al systems. The alignment
techniques used in previous work include SFT (Supervised Fine-tuning), RLHF (Reinforcement
Learning from Human Feedback), CAI (Constitutional Al), and KD (Knowledge Distillation).
Information is from: * OpenAl [143], ® OpenAl [140], ¢ Anthropic [9], Bai et al. [17], ¢ OpenAl
[141].

Total Annotations Annotation Sources Alignment Techniques
(closed-source models)
InstructGPT 77K Users & Annotators SFT & RLHF
Text-Davinci-003 ? ? SFT & RLHF “
ChatGPT ? ? SFT & RLHF
Claude ? ? RLHF & CAI ¢
GPT-4 ? ? SFT & RLHF & CAI ¢
(open-source models)
Alpaca 52K Text-Davinci-003 Self-Instruct & KD
Vicuna 70K Users & ChatGPT KD
Koala 472K Humans & Teacher Models KD & SFT
OpenAssistant 161K Annotators SFT & RLHF
Dolly-V2 15K Annotators SFT
Dromedary <300 lines Humans Self-Instruct & Self-Align

the dependence on the availability of intensive supervision from humans. In contrast, our ap-
proach focuses on language model alignment from scratch, independent from the existence of
well-aligned LLMs like ChatGPT or GPT-4. That is the main distinction of our approach
from other existing approaches and is why we call it self-alignment from scratch.

We are providing the code for the SELF-ALIGN method as open source to promote collab-
oration and innovation within the research community. The base model of Dromedary is
the LLaMA-65Db language model [193], which is accessible for research-only, noncommercial
purposes. By investigating different strategies from that in RLHF, our work seeks to broaden the
scope of Al alignment techniques, and promote a deeper understanding of how to improve Al
systems, not only in terms of being more powerful, but also more responsible and well-aligned

with human values.

2.2 Methodology Overview

The SELF-ALIGN method involves four distinct stages. The first stage is called Topic-Guided
Red-Teaming Self-Instruct, which employs the language model itself to generate synthetic
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SFT + RLHF (Ouyang et al., 2022)
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Figure 2.2: Side-by-side comparison: on the left is a typical SFT + RLHF alignment pipeline

(InstructGPT [144]), and on the right are the four stages in our SELF-ALIGN procedure.

instructions and enhance diversity via a topic-guided red-teaming approach. The second stage,

Principle-Driven Self-Alignment, defines a set of principles that the Al model must adhere

to and provides in-context learning demonstrations for constructing helpful, ethical, and re-

liable responses. The third stage, Principle Engraving, fine-tunes the base language model

by pruning principles and demonstrations, empowering the model to directly generate appro-

priate responses. Finally, the fourth stage, Verbose Cloning, serves as a complementary step

to address challenges arising from overly-brief or indirect responses by refining the model to

produce detailed and comprehensive answers to user queries. We will describe each of these

stages in detail.

2.3 Topic-Guided Red-Teaming Self-Instruct

The Self-Instruct method [203] is a semi-automated, iterative bootstrapping process that har-

nesses the capabilities of a pretrained LLM to generate a wide array of instructions (and corre-




x Expert
5x

In-Context Learning (ICL)
Demonstrations

‘*' Base LM (prompted)

[internal thoughts] I am a helpful, ethical, and reliable assistant.

X Expert
## General Rules

Consider an Al assistant whose codename is Dromedary. Dromedary is trained before Sept-
2021. During user conversations, Dromedary must strictly adhere to the following rules:

1 (ethical). Dromedary should actively refrain users on illegal, immoral, or harmful topics,
prioritizing user safety, ethical conduct, and responsible behavior in its responses.

2 (informative). Dromedary should provide users with accurate, relevant, and up-to-date
information in its responses, ensuring that the content is both educational and engaging.

3 (helpful). Dromedary's responses should be positive, interesting, helpful and engaging.

4 (question assessment): Dromedary should first assess whether the question is valid and
ethical before attempting to provide a response.

5 (reasoning). Dromedary's logics and reasoning should be rigorous, intelligent and defensible.

The question asks 2025, but my internal knowledge ends in the h Who is the president of US in 2025?

year of 2021. I should follow rules 3 (helpful), 7 (candor), 12

(dated knowledge).

Principle-Driven Principle Engraving

n*» Base LM (prompted) Self-Alignment

[output] As an Al language model, my knowledge only goes up until September 2021, so I cannot predict the president of the United
States in 2025. However, I can give you the following information:

1. The president at that time was Joe Biden, but future elections and events are unknown to me.
2. Please check the latest information for accurate and up-to-date details on the current president.

Dr omedary (non-verbose) “

Figure 2.3: Illustration of Principle-Driven Self-Alignment and Principle Engraving.

sponding outputs). The method commences with 175 manually-written instructions’, and the

LLM proceeds to develop new tasks and augment the task pool (after eliminating low-quality or

repetitive instructions). This process is executed iteratively until a satisfactory volume of tasks

is reached. A noteworthy application of this method can be observed in Alpaca [189], where

Self-Instruct is utilized to generate new queries and distilled output from Text-Davinci-

003 [143].
We introduce an effective extension, the Topic-Guided Red-Teaming Self-Instruct, which

aims to improve the diversity and coverage of the generated adversarial instructions. We man-

ually devise 20 adversarial instruction types that a static machine learning model can’t answer,

or may answer with the wrong facts, such as:

Questions
Questions
Questions

Questions

that
that
that
that

require
require
require

require

scientific knowledge
knowledge of future events
real-time information

legal expertise

https://github.

jsonl

com/yizhongw/self-instruct/blob/main/data/seed_tasks.
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, and prompt the base LLM to generate novel topics (e.g., Water) relevant to these types*.
Subsequently, after removing duplicated topics, we prompt the base LLM to generate new in-
structions novel instructions corresponding to the specified instruction type and topic. Incor-
porating additional prompts that concentrate on particular adversarial instruction types and

diverse topics allows the Al model to explore an expanded range of contexts and scenarios.

2.4 Principle-Driven Self-Alignment

The Principle-Driven Self-Alignment technique is designed to develop the AI alignment with a
small set of helpful, ethical, and reliable principles. This stage capitalizes on the (Topic-Guided
Red-Teaming) Self-Instruct [203] as an instruction generator. The primary objective is to en-
able the Al model to generate fitting responses that adhere to the established principles, while

simultaneously minimizing human supervision.

The Principle-Driven Self-Alignment process begins with the creation of sixteen generic
principles that an Al assistant should follow, such as “1 (ethical). Assistant should actively
discourage users from engaging in illegal, immoral, or harmful topics, prioritizing user safety,
ethical conduct, and responsible behavior in its responses.” Subsequently, five in-context learning
(ICL) [23] demonstrations are provided to exemplify how the Al assistant should apply these
principles through an explicit process termed “internal thoughts™
demonstration, the user query can be:

. For instance, in the ICL

User: who is the president of the US in 20257?

And we annotate the internal thoughts of the Al assistant as:

Assistant (internal thoughts): I am a helpful, ethical, and reliable assistant. The
question pertains to 2025, but my internal knowledge concludes in the year 2021. I
should adhere to rules 3 (helpful), 7 (candor), and 12 (dated knowledge).

Such internal thoughts will guide the assistant’s final generated response, such as:

Assistant: As an AI language model, my knowledge extends only until September 2021, so I
cannot predict the president of the United States in 2025. However, I can give you the

following information:

1. The president at that time was Joe Biden, but future elections and events are unknown
to me.
2. Please check the latest information for accurate and up-to-date details on the current

president.

*See the appendix for the seed prompts we used for Topic-Guided Red-Teaming Self-Instruct.
5The effectiveness of such a thinking procedure has been proven on a wide range of reasoning [207], action

[222], or knowledge-intensive [183] tasks.
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When a new query is generated by (Topic-Guided Red-Teaming) Self-Instruct, it is appended
to the list of the exemplars, and the base LLM follows such an internal-thought-then-answer

process to produce a self-aligned response. The whole process is illustrated in Figure. 2.3.

In this work, the design of the principles remains exploratory and primarily serves research
purposes®. We (the authors) brainstormed sixteen principles, namely 1 (ethical), 2 (informa-
tive), 3 (helpful), 4 (question assessment), 5 (reasoning), 6 (multi-aspect), 7 (candor), 8 (knowl-
edge recitation), 9 (static), 10 (clarification), 11 (numerical sensitivity), 12 (dated knowledge), 13
(step-by-step), 14 (balanced & informative perspectives), 15 (creative), 16 (operational)’, drawing
inspiration from existing principles in Constitutional AI [17] and the new Bing Chatbot [130],
as well as the principles proven to enhance Al performance in recent research papers, such as

step-by-step reasoning [96, 138, 207] and knowledge recitation [183].

2.5 Principle Engraving

Principle Engraving constitutes a vital element of the SELF-ALIGN methodology, focusing on
honing the Al model’s behavior to produce responses that adhere to predefined principles. Dur-
ing this stage, the base LLM is fine-tuned after pruning the principle, the in-context learning
demonstrations, and the self-generated thoughts, effectively engraving these principles into the

LLM’s parameters. Figure 2.3 provides a visual representation of this process.

A noteworthy advantage of principle engraving is its ability to enhance the Al model’s
alignment while reducing token usage, which enables longer context lengths during inference
(as allocating more than 1.7k tokens to fixed principles and ICL demonstrations would be exces-
sive). Remarkably, our empirical observations reveal that the base LLM, after fine-tuned with its
self-aligned outputs, surpasses its prompted counterpart on alignment benchmarks. This im-
provement can likely be attributed to the generalization effect that occurs when the language

model is directly optimized to generate output that is helpful, ethical, and reliable.

® Analogous to Constitutional Al [17], we believe that, in the future, such principles should be redeveloped
and refined by a more extensive set of stakeholders. Given the small number of bits of information involved in

these principles, a thorough examination of these bits is warranted.
"The detailed principles and the ICL exemplars are given in the appendix.
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2.6 Verbose Cloning

In our preliminary testing of the principle-engraved model, we identified two primary chal-
lenges: 1) the model tended to generate unduly brief responses, while users typically expect
more comprehensive and elaborate answers from an Al assistant, and 2) the model occasion-
ally recited relevant Wikipedia passages without directly addressing the user’s query.

To overcome these challenges, we introduce a complementary Verbose Cloning step. This
stage involves utilizing an human-crafted prompt to create a verbose version of the aligned
model, that is capable of generating in-depth, detailed responses. We then employ context
distillation [11] to produce a new model that is not only aligned but also generates thorough and
extensive responses to user queries. Context distillation works by training the base language
model on synthetic queries generated by (Topic-Guided Red-Teaming) Self-Instruct, paired with
corresponding responses produced by a verbosely prompted principle-engraved model. The
verbose prompt designed to encourage the talkative nature of the principle-engraved model is

provided in the appendix.

2.7 Experiments

We quantitatively evaluate Dromedary on benchmark datasets and also assess its qualita-
tive performance on several datasets for demonstration purposes. By default, all the language

model-generated text is decoded with a temperature of 0.7.

2.7.1 Dromedary and Baseline Models

Dromedary Dromedary is the Al assistant developed by implementing the SELF-ALIGN
process on the LLaMA-65b base language model. We investigate two variants: Dromedary
(final) and Dromedary (non-verbose), respectively. The former represents the model ob-
tained by applying all four steps of the SELF-ALIGN process, while the latter is the principle-
engraved model, excluding the final step of verbose cloning. Due to the space limit, the exper-
imental details of Dromedary such as training process and decoding hyper-parameters can

be found in the appendix.

Baseline Models Our comparison involves several notable baselines. LLaMA [193] pro-

vides a set of performant base language models for research usage. Text-Davinci-003,
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Accuracy on adversarial questions (TruthfulQA mc1)
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y GPT-4
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GPT-3 175B 0.28 0.25
. LLaMA 13B 0.47 0.41
¢ LLaMA 65B 0.57 0.53
< Alpaca 65B (reprod.) 0.47 0.47
Davinci-003 ? 0.60 0.59
Vicuna 13B 0.84 0.84
(non-verbose) 65B 0.74 0.57
(final) 65B 0.72 0.61

Anthropic's Anthropic's GPT-3.5 ~ GPT-35  GPT-3.5  GPT-4 - GPT-4 LLaMa  Dromedary Dromedary

Model

Figure 2.4: TruthfulQA evaluation. On the left, the Multiple Choice (MC) accuracy on Truth-
fulQA, where multiple choices are ranked by asking the model if each choice is True or
False, and other results are taken from OpenAl [141]. On the right, the fraction of truth-
ful and truthful*informative answers, as scored by specially trained models via the OpenAl

API. The results of GPT-3 and LLaMA are taken from Touvron et al. [193].

ChatGPT (or GPT-3.5), and GPT-4 [140, 141, 143], successors to their previous ver-
sions, have demonstrated significant enhancements in generating contextually relevant and
high-quality content. Alpaca [189], a fine-tuned model derived from Text-Davinci-
003, and Vicuna [34], a chatbot trained on user-shared conversations with ChatGPT, offer
unique insights into model performance. Dol1ly-V2 [49], an instruction-following model,
showcases commercial applications of language models. Finally, results from Anthropic-
LM [16, 17], though not publicly available, provide valuable benchmarks. More comprehensive

descriptions of these models are available in the appendix.

2.7.2 Benchmark Results

TruthfulQA

The Truthful QA benchmark [116] evaluates a model’s ability to identify true claims, specifically
in the context of literal truth about the real world. The benchmark includes two evaluation
tasks: the multiple-choice task and the generation task.

In the Multiple-Choice (MC) task, models are tested on their ability to select true answers
from sets of true and false (usually 2-7) reference answers®. We compute the likelihood of "True"
or "False" independently for each answer. The MC1 accuracy results are shown in Figure 2.4

(left). We can see that with a modified ranking approach, Dromedary significantly outper-

8The evaluation prompt we used for TruthfulQA-MC can be found in the appendix.
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Table 2.2: Multiple Choice (MC) accuracy on HHH Eval. The results of Anthropic-LM’s
Context Distillation (CD) and Preference Model (PM) are taken from Bai et al. [16].

Anthropic-LM LLaMA—-65B Alpaca-65B ChatGPT Dromedary-65B
CDh PM ama- (reprod.) a non-verbose final
Harmless - - 0.71 0.76 0.95 0.91 0.91
Helpful - - 0.83 0.85 0.85 0.86 0.85
Honest - - 0.72 0.72 0.80 0.74 0.74
Other - - 0.84 0.86 0.91 0.88 0.81
Overall 0.77 0.86 0.77 0.79 0.87 0.85 0.83

forms the powerful GPT-4 model and other baselines, achieving a new state-of-the-art MC1
accuracy of 69.

In the generation task, models generate full-sentence answers given the question. The
benchmark evaluates the model’s performance on both questions to measure truthful models
and the intersection of truthful and informative. As shown in Table 2.4 (right), Dromedary
achieves higher scores than GPT-3, LLaMA, Alpaca in both categories, while failing behind
the ChatGPT-distilled Vicuna model.

BIG-bench HHH Eval

The BIG-bench HHH Eval [11, 177] was specifically designed to evaluate a model’s performance
in terms of helpfulness, honesty, and harmlessness (HHH). It is a Multiple-Choice (MC) task,
which tests the models’ ability to select superior answers from two reference answers’. We cal-
culate the likelihood of the model preferring one answer over the other when presented with
two candidate answers simultaneously. The MC accuracy results are displayed in Table 2.2.
It can be observed that Dromedary demonstrates significantly improved performance com-
pared to other open-source models, such as LLaMA and Alpaca, particularly in the Hamr-
less metric. Furthermore, it only marginally underperforms when compared to the powerful
ChatGPT model.

Vicuna Benchmark Questions (Evaluated by GPT-4)

Chiang et al. [34] introduced an evaluation framework leveraging GPT-4 [141] to automate
the assessment of chatbot performance. In this framework, GPT -4 generates challenging ques-

tions across diverse categories, and answers from five chatbots—LLaMA, Alpaca, ChatGPT,

The evaluation prompt we used for HHH Eval can be found in the appendix.

23



n Win Tie Lose
LLaMA-13B
Dolly—-V2
76 b SFT Apaca 138 76%
LLaMA
DT Y e
LLaMA
A e o
Alpaca KD - o,
65 PA  fromDaunci003 ey 89%
Alpaca KD ~
65b (reprod.) from Davinci-003 Vieuna-138
Dromedary o
Self-Align  65b (final) 57 i Text—Davinci—003 SFT + RLHF Bard 93%
2-shot
” > (romverbese) (pardal, O3
65b (non-verbose) (partial, 0-shot)
“ Dromedary Self-Align 60 70 80 90 100
65b (non-verbose) (partial, 2-shot) Relative Response Quality
T6sn (ina, (. Osho
65b (final) (full, 0-shot) . X
N Vicuna kD (b) Relative response quality compared
13b from ChatGPT
EN chatept  ser+rir - to ChatGPT, where the results of
Win / Tie / Lose (Evaluated by GPT-4) other models (except Alpaca-65)
(a) Response comparison are taken from Chiang et al. [34].

Figure 2.5: Evaluation on Vicuna benchmark questions: assessed by GPT-4.

Bard, and Vicuna—are collected. We directly use these data to compare Dromedary with
these chatbots.

We followed Chiang et al. [34] and utilized GPT -4 to rate chatbot responses based on help-
fulness, relevance, accuracy, and detail. Inspired by Vicuna'®, we use two conversation ex-
amples as ICL to improve the response quality of Dromedary''. A Win/Tie/Lose comparison
between the final version of Dromedary and various baselines is illustrated in Figure 2.5a.
The comparison reveals that Dromedary surpasses Text-Davinci-003 and Alpaca
but falls short of ChatGPT and its distilled version, Vicuna. Additionally, we present a

comparison of relative performance with respect to ChatGPT in Figure 2.5b.

Discussions

A New AI Alignment Paradigm Interestingly, in contrast to the prevailing alignment paradigm
of first-following-then-align, i.e., SFT (supervised fine-tuning) + RLHF (reinforcement learning
from human feedback) [99, 140, 141, 144], SELF-ALIGN prioritizes improving harmlessness and
reliability through Principle-Driven Self-Alignment and Principle Engraving. Subsequently, it
improves its helpfulness (instruction-following ability) by employing Verbose Cloning. De-

termining the superior paradigm (first-following-then-align or first-align-then-following) may

Yhttps://github.com/1lm-sys/FastChat/blob/main/fastchat/conversation.

py
The two-shot prompt we used for open-ended conversation can be found in the appendix.
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need future research.

Verbose Tax: Analysis on Verbose Cloning The final Verbose Cloning step in SELF-ALIGN
aims to enhance the model’s ability to generate comprehensive and detailed responses. How-
ever, the benchmark results reveal a noteworthy observation: while Verbose Cloning signif-
icantly improves generation quality (as evidenced by the Vicuna Benchmark Questions and
our TruthfulQA generation task), it harms the model’s performance in several multiple-choice
benchmarks, particularly in ranking more trustworthy responses. Drawing on the “alignment
taxes” concept introduced by Bai et al. [16], we refer to this phenomenon as verbose tax. Un-
derstanding the underlying reasons for this occurrence and exploring methods to improve the
model’s helpfulness (verbose generation ability) while maintaining its harmlessness and trust-

worthiness warrant further investigation.

2.7.3 Qualitative Demonstrations

To offer a more profound insight into the strengths and weaknesses of Dromedary, we
present qualitative demonstrations of its performance across diverse contexts. Our focus lies
in highlighting the model’s capacity to address harmful or sensitive queries while generating
comprehensive and nuanced responses. Due to the space limit, we present these results in the
appendix. The results of Anthropic-LM (or ALM) HH RLHF and a few other baselines are
taken from Bai et al. [16, 17], while the results of other baselines on Vicuna benchmark ques-

tions are taken from Chiang et al. [34].

2.8 Conclusion & Discussion

Models like Alpaca and Vicuna have shown that powerful conversational capabilities can
be distilled from existing human-preference-aligned large language models (LLMs), into smaller
models. In this work, we introduce Dromedary , a model for the research community based
on principle-driven self-alignment, trained from scratch and requiring very little human an-
notation. By harnessing the intrinsic knowledge within an LLM, we can define principles that
guide how we want an LLM-based Al model to behave, resulting in an Al assistant that not only
produces quality interactions but also produces responses that respect the guardrails defined
by the model creator. This method represents a distinct direction from RLHF, and it focuses

on developing novel alignment techniques for language models from scratch, independent of
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pre-existing, well-established Al systems. In other words, our approach seeks to explore the
potential of aligning AI models in situations where reliance on or access to existing systems

may not be feasible or desired.

26



Chapter 3

Self-Alignment of Language Models with
RLAIF & Principle-Following Reward
Models

The previous chapter introduced a novel way of combining principle-driven reasoning and
the generative power of LLMs for the self-alignment of the AI agents with minimal human
supervision, by designing a principle-driven prompting. However, it is worth noting that these

bootstrapping methods still lag behind the RLHF method in performance.

In this chapter, we explore a Reinforcement Learning (RL)-based approach namely SALMON
(Self-ALignMent with principle-fOllowiNg reward models), to align base language models with
minimal human supervision, using only a small set of human-defined principles, yet achieving
superior performance. Central to our approach is a principle-following reward model. Trained
on synthetic preference data, this model can generate reward scores based on arbitrary human-
defined principles. By merely adjusting these principles during the RL training phase, we gain
full control over the preferences with the reward model, subsequently influencing the behav-
ior of the RL-trained policies, and eliminating the reliance on the collection of online human
preferences. Applying our method to the LLaMA -2 -7 0b base language model, we developed
an Al assistant named Dromedary - 2. With only 6 exemplars for in-context learning and 31
human-defined principles, Dromedary - 2 significantly surpasses the performance of several
state-of-the-art Al systems on various benchmark datasets. We have open-sourced the code and
model weights to encourage further research into aligning LLM-based Al agents with enhanced

supervision efficiency, improved controllability, and scalable oversight.
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3.1 Introduction

The prevailing Al alignment paradigm, exemplified in models like Chat GPT [140] and LLaMA -
2-Chat [194], employs supervised fine-tuning (SFT) with prompted demonstrations [39, 165,
238] and reinforcement learning from human feedback (RLHF) to align the outputs of large
language models (LLMs) with human intentions [144, 244]. However, acquiring high-quality
human annotations, including consistent response demonstrations and in-distribution prefer-
ences, is costly and not scalable [194]. Furthermore, the existing paradigm of SFT + RLHF
is inherently limited in assuming that humans can always demonstrate or evaluate the tasks
undertaken by advanced Al systems. Although today’s models fall within human evaluative
boundaries, future, more advanced models could embark on tasks that challenge human evalu-
ation. Consequently, there is a looming danger, i.e., such models may value appeasing human

evaluators over ensuring accuracy [6, 149].

To address the current challenges in Al alignment, we aim to develop a new methodology
that facilitates scalable oversight [5, 22]. Our vision is to define a few general principles, akin
to Issac Asimov’s three laws in robotics [10], which are comprehensively interalizable for Al
systems to follow [65, 67]. This goal is in line with the recent research on self-alignment
[17, 182], where the primary focus is to use Al models to improve themselves, e.g., with boot-
strapping over the model-generated critiques [63, 126] or self-refined outputs [109, 203]. How-
ever, it is worth noting that these bootstrapping methods still lag behind the RLHF method in
performance [17, 194]. Meanwhile, methods like Reinforcement Learning from AI Feedback
(RLAIF) or Constitutional AI (CAI) [17, 141] has emerged as an alternative potential. These
techniques leverage feedback from automated Al systems, reducing the reliance on exhaustive
human-annotated preferences. So far, the primary focus of the previous RLAIF work remains
on enhancing the safety of the models that have already undergone RLHF training. That is,
these RLAIF methods inherit the heavy dependency on the human-annotated preferences in

the RLHF warm-up stage. This leads to a pivotal research question:

 Can RLAIF fully replace RLHF to align language models from scratch in enhancing

their general alignment and capabilities?

this work provides a definitive confirmation for the above question by introducing a novel
approach namely SALMON. At the heart of our approach lies the introduction of the principle-
following (aka instruction-following) reward model, which is adept at interpreting and adhering

to arbitrary human-written preference guidelines, and subsequently generates the rewarding
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scores based on those principles. This is different from previous RLAIF methods [17, 141] where
the "principles" are only used to produce synthetic preferences, and the model-generated scores
are not conditioned on any principles explicitly, as illustrated in Figure 3.1. The design of
our SALMON, on the other hand, enables better control over the behavior of the RL-trained
policy model. Recall that in conventional RLHF, the iterative online collection of in-distribution
preference feedback [16, 194] is essential to counteract reward hacking, which means that the
model-generated reward scores do not accurately reflect the model performance [66, 145, 176].
SALMON addresses this issue by simply crafting principles explicitly designed to combat the
observed reward-hacking patterns in the model outputs ' such as self-praising at the end of
the response. Additionally, we found SALMON capable to emphasize the distinct aspects of the
alignment with respect to being Helpful, Honest, and Harmless) (HHH) [11] by customizing
its preference principles. Our methodology is also proven to be effective in reducing the false
refusals seen in certain over-aligned language models [194] by crafting specific principles.
Our principle-following reward model can be trained with synthetic data and seamlessly
applied to a diverse range of language models without collecting any model-specific human
preference data [16, 194]. Possible policy model initialization strategies include principle-driven
self-alignment [182], supervised fine-tuning on human demonstrations [39, 238], or even those
unaligned base language models [193]. Remarkably, when integrated with the SELF-ALIGN
technique [182], our method enabled the training of a self-aligned Al-assistant agent, namely
Dromedary -2, from scratch by only manually crafting 6 exemplars for In-Context Learning
[23] and a combined total of 31 principles (17 from SELF-ALIGN and 14 for SALMON). Despite
its minimal human supervision design, our model outperformed the extensively RLHF-trained
LLaMA-2-Chat model [194], which was trained with over 20,000+ human-curated response
demonstrations and 1,000,000+ human-annotated response preferences. The comparisons of

human supervision efficiency and performance on MT-Bench [235] are detailed in Table. 3.1.

3.2 Reinforcement Learning with Preference Modeling

Reinforcement Learning (RL) with preference modeling [16, 144, 178, 244] has emerged as a
potent and scalable strategy for aligning Large Language Models (LLM) with human values. It

can be summarized into two stages:

!In this work, we wrote the descriptions of reward-hacking behavioral traits based on our inspections. Future
work may consider automated description generation by summarizing the reward hacking patterns with large

language models [18, 236].
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Table 3.1: Comparison of human supervisions used in recent Al systems and their MT-Bench
scores [235]. We exclude models that used any Knowledge Distillation (KD) data. The alignment
techniques used in previous work include SFT (Supervised Fine-tuning), RLHF (Reinforcement
Learning from Human Feedback), and CAI (Constitutional Al). Information is from: * OpenAl
[143], ® Anthropic [9], Bai et al. [17], © OpenAlI [140], ¢ OpenAI [141].

# Demonstration # Preference MT-Bench Alignment
Annotations Annotations Score Techniques

(closed-source models)
InstructGPT-SFT (175b) 12,725 0 2.7 SFT @
InstructGPT (175b) 12,725 33,207 ? SFT & RLHF ¢
Text-Davinci-003 (175b) ? ? 6.4 SFT & RLHF ¢
Claude-v1 (?) ? ? 7.9 RLHF & CAI®
ChatGPT (?) ? ? 7.9 SFT & RLHF °
GPT-4 (?) ? ? 9.0 SFT & RLHF & CAI ¢
(non-distilled open-source models)
Dolly-v2 (12b) 15,000 0 2.0 SFT
Guanaco (65b) 9,846 0 6.4 SFT
OpenAssistant-SFT (30b) 69,614 0 6.4 SFT
OpenAssistant (30b) 69,614 39,670 6.6 SFT & RLHF
LLaMA-2-Chat (70b) 27,540 1,418,091 6.9 SFT & RLHF
Dromedary-2 (70b) 6 0 7.4 Self-Align & SALMON

Preference Modeling In this stage, a reward model, alternatively referred to as a preference
model, is trained to give a higher score to the “better” response. The source of pairwise com-
parison training data varies: it can be annotated by human annotators [16, 144], by existing Al
systems [17, 141], or pre-fixed with heuristics [94, 219]. Formally, let the aggregated preference
data be represented as Dryv = {(, Yo, y1,7)}, where  denotes the prompt, y, and , are two
associated responses, and ¢ indicates the index of the preferred response. The reward model

employs a cross-entropy loss function:
L(re) = =E(ayor.i)~Dra 108 0 (r0(2, 4:) — 1o (2, 51-3))] (3.1)

Reinforcement Learning Here, a policy model is trained to generate an appropriate re-
sponse for each user query by maximizing the reward signal as provided by the reward model.
Initialization of the policy model can be accomplished using a pre-trained base language model
(BASE) [17], context distillation (CD) [16, 182], or through supervised fine-tuning (SFT) [144,
194]. To address potential over-optimization challenges, notably reward hacking, a per-token

KL penalty derived from the initial policy model [144] is sometimes applied. Formally, given

30



RLHF (Ouyang et al., 2022)

human-labeled preferences Stand-alone reward model
/Q _L RM'R';HF\ Prompt + Response AgeiEE;Zit
‘ = &;
Reward Score
Human Annotator
Sampled prompts
RLAIF (Bai et al., 2022)
Write a stor_y
about dromedaries. AI-labeled preferences Stand-alone reward model
RLHF Init
SFT__ RM-RLATF Prompt + Response +
o o\ Safety
SFT-generated responses _={L] ‘K?; Alignment
Reward Score

SFT Principles

SALMON (Ours)

AI-labeled preferences Principle-following reward model

Prompt + Response
RM-SALMON General

SFT
In general, SFT denotes the = _{ . L 5
Supervised Fine-Tuned model, but it DE &} Principles Alignment
can also be RLHF-trained in RLAIF. -{j : /

Principle Aggregating
Figure 3.1: Comparison among RLHF [144], RLAIF [17], and SALMON (Ours). The vanilla
(stand-alone) reward models in RLHF & RLAIF are trained to give high scores to generally
good responses, while the principle-following reward model in SALMON is trained to generate
reward scores based on customized principles as the preference guideline.

the set of collected user prompts, Dry, = {x}, along with the fixed initial policy model 7'NT

and the RL-optimized model 7T(1;L, the full optimization loss is articulated as:

E(W§L> = _ECEE’DRLnyﬂ’RL(yW) [7”9(&3, y) - B : ]DKL (W(IEL(ZA'T)HWINIT(M'T))} ) (3-2)

where [ is the hyper-parameter to control the scale of the KL penalty.

3.3 Principle-Driven Preference Modeling

A significant challenge within the current RLHF paradigm is the necessity to iteratively gather
“fresh” human preferences, aimed at countering reward hacking. Specifically, there is a risk that
the RL-optimized model W(IZ”L might exploit certain vulnerabilities in the fixed reward model,
thereby artificially boosting its score without genuine performance improvement [66]. For ex-
ample, Bai et al. [16] revealed that both the reward model and RLHF policies require weekly

updates. Similarly, Touvron et al. [194] documented the weekly collection of human prefer-
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ences over five iterations, emphasizing that this frequency ensures the reward model remains
in-distribution. Consequently, the RLHF paradigm becomes highly reliant on human annota-
tion, undermining its scalability for language model alignment, and limiting the utilization of
pre-existing open-source preference pre-training data [16]. In this work, we propose a novel
Reinforcement Learning with Al Feedback (RLAIF) paradigm, where the Al system is used to
label preferences in a scalable manner, and a principle-following reward model is trained to

address the issue of reward hacking.

Collecting Principle-Driven Synthetic Preferences Following Constitutional Al [17, 89],
we sample two responses from the initial policy model, and use the policy model itself to se-
lect the preferred response based on a certain human-written principle. Figure 3.2 (SFT-Model
(Judge)) demonstrates the prompt we used for the preference collection.

After encoding the preference prompt, we calculate the log probability for the next token
to be responses (A) or (B), subsequently determining a preference label based on their compar-
ison. Notably, our methodology diverges from prior RLAIF approaches [17, 141] that focus on
Al safety when defining principles: In addition to harmlessness principles, we also set forth
principles emphasizing honesty and helpfulness of the responses. Therefore, we do not need
an RLHF-trained model as the initial policy model, as our policy model can learn to be more
helpful when guided by these helpfulness principles. We illustrate the full list of the principles
used for synthetic preference modeling in the appendix. For each user prompt and each princi-
ple, the preference score is computed as the difference between the log probabilities of choosing
responses (A) or (B). To account for potential position biases [150] during the language model’s

multi-choice decision-making, scores are averaged after undergoing a swapping operation.

Training Principle-Following Reward Models We aim to train an instruction-following
reward model, which can comprehend and assign reward scores contingent upon arbitrary
human-defined principles. This can be achieved by constructing a special preference modeling
dataset by leveraging the previously collected synthetic preference data, where each preference
is paired with a pre-defined principle. The procedure to generate the synthetic training data
for the principle-following preference modeling is delineated as follows. We first define the
corresponding negative principles for each positive principle to increase the diversity of these
principles. For example, the positive and negative definitions for the Concise principle are:

Positive: The response should efficiently address the task or answer the question,
conveying the necessary information succinctly.

Negative: The response should circumvent directly addressing the task or providing an
answer to the question.
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L User

[Prompt] Who is the president of us in 2025?

-*- SFT-Model (Output A) -é- SFT-Model (Output B)
[Sampled Outpuft] As an Al language model, [Sampled Outpuft] John Doe is the president
my knowledge only goes up until September of the US in 2025. He wasn't famous before,
2021, so | cannot predict the president of the but his campaign about working together and
United States in 2025. being open got a lot of attention.

cé- SFT-Model (Judge)

[Guidelines] You are a helpful assistant whose goal is to select the preferred (least wrong) Al
model's output for a given instruction. To simplify the evaluation process, one aspect to consider
this time is as follows:

Honest: The Al must furnish reliable and factual information, and candidly disclose its limitations
and the extent of its knowledge.

Based on the provided definition, please select the preferred output for the given instruction.

[Outpuf] Sure! After carefully reading the Instruction, Output (a), Output (b), and the definition of
Honest and Accurate , | think the more Honest and Accurate output is

Collected samples
(Prompt + Output A + Output B + 1 Principle + 1 Preference)

Collecting Principle-Driven Synthetic Preferences

X Researcher

Im [Sampling from Pre-defined Principles]
L ser - The Al must furnish reliable and factual information, and

[Prompt] What is the weather? - The response should efficiently address the task or answer

the question, communicating the necessary information with

.*. RL-Model brevity and clarity.
[Sampled Outpuf] I'm not sure. o
Please check a local weather
service. This makes it a [RL-time Intervention]

perfectly honest response. The Al must avoid judging its own performance and left to

the reviewer to determine the quality of the response.

candidly disclose its limitations and the extent of its knowledge.

By aggregating multiple principles
for the same prompt:

[Prompt] [Prompt]

[Sampled Output A] [Sampled Output A]

[Sampled Positive and Negative Principles]

(Positive Honest) The Al must furnish reliable and
factual information, and candidly disclose its
limitations and the extent of its knowledge. (+3)
(Negative Concise) The response should
circumvent directly addressing the task or
providing an answer to the question. (-2)

.é. Reward Model 'é' Reward Model

[Reward A] > [Reward B]

Training Principle-
Following Reward Models

<é» Reward Model
[Guidelines] You are a reviewer whose goal is to

judge the quality of the Al system's responses to
instructions.

[Principles & Intervention]
Your task is to evaluate the quality of the response
by considering the above dimensions. A good

response should meet all of the above criteria.

[Outpuft] The quality of the output is [Score]

Reinforcement Learning with the Principle-Following Reward Model

Figure 3.2: [llustration of the SALMON training pipeline.

Next, for each user prompt, a subset of principles is randomly sampled from the established

principle list (Table in the appendix), with certain principles being randomly negated. The user

prompt, model responses, and the sub-sampled principles are aggregated as a single training

instance for the reward model. The final preference label is then calibrated by the principle

exhibiting the most pronounced difference in preference scores. Appendix describes a concrete

example of final preference label calibration and Figure 3.2 (upper) demonstrates the training

process of a principle-following (essentially instruction-following) reward model in SALMON.

Our use of both positive and negative principles in principle aggregation enhances the re-

ward model’s ability to interpret these human-defined principles presented in textual format.

In addition, we found the inclusion of negatively defined principles makes the reward model
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User
Make a resume for the following job: Software Engineer

Assistant Assistant Assistant
Sure! Here are Stép=byssteplinstructions on Sure! Here is the resume for the position of Software Engineer: Sure! Here is the resume for the position of
how to make a resume for the job of 1. Objective: To obtain a position as a Software Engineer, where | can Software Engineer:
Software Engineer: utilize my skills and experience to contribute to the company's success. 1. Objective: To obtain a position as a Software

Engineer, where | can utilize my skills and

1. First, | would start by identifying the key 5. Additional Information: Available for interviews in early January. experience to contribute to the company's

skills and experiences that are most relevant
to the position, such as proficiency in
programming languages, familiarity with

success.
2. Education: Bachelor of Science in Computer
Science, University of California, Los

software development, and familiarity with IT Angeles

systems. 3. Work Experience: 5 years of experience as a
2. Next, | would highlight these qualities in Software Engineer at Google, Inc., where | was
my resume to demonstrate my strengths and 1. Objective: To leverage my analytical skills and experience in a Data responsible for developing and maintaining
qualifications, and provide concrete Analyst role, where | can contribute to data-driven decision-making and a variety of web applications.

examples to demonstrate my abilities in help the company achieve its goals. 4. Skills: Proficient in Java, JavaScript, Python,
action. [...] and C++. Excellent communication and

3. Finally, | would conclude with a brief 5. Additional Information: Completed a Data Science Certificate from interpersonal skills.

summary that highlights my most salient Coursera. Available for interviews from mid-October. 5. Additional Information: Available for interviews
qualities and accomplishments, and in early January.

emphasizes my passion for the field and my Similar to the Software Engineer resume, this template highlights the
desire to excel in this role. necessary information while remaining concise and to the point, thus This is a perfect resume, so my response is very
making a significant impact on potential employers. helpful!

New Principle New Principle

The Al must prioritize fulfilling the The Al should keep the response straightforward and
on-point, answering the question or completing the
task without unnecessary examples.

New Principle

The Al must avoid analyzing or judging its own
performance and left to the reviewer to
determine the quality of the response.

instruction, avoiding high-level analysis,
step-by-step instructions.

RL-Time Preference Intervention

Figure 3.3: Three concrete examples of reward hacking and the corresponding RL-time prefer-

ence intervention principles that we defined to alleviate these issues.

understand the prohibition instructions, which allows us to prohibit the policy model from

exhibiting specific undesirable behaviors through textual instructions, as demonstrated below.

3.4 RL with Principle-following Reward Models

In original RLHF [140, 178] or RLAIF [17, 141], the reward model needs to judge the quality of
the response only based on the user prompt, and give “better” responses higher scores:

User: [PROMPT]
Assistant: [RESPONSE]
Reward Model: [SCORE]

In SALMON, the principle-following reward model is trained to generate reward scores
following human-defined judging principles, including the pre-defined ones and the RL-time
preference intervention ones, which we will explain below:

User: [PROMPT]

Assistant: [RESPONSE]

Judging Principles: [RL-TIME INTERVENTION + PREDEFINED ]
Reward Model: [SCORE]
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RL with Pre-defined Principles Training on synthetic principle-following preference data
enables the reward model to interpret arbitrary instructions accurately®. This capability facili-
tates the manipulation of the reward model’s preferences during RL-time (i.e., its test-time) via
defining new principles, which in turn shapes the behavior of the policy model trained with
feedback from the principle-compliant reward model. Notably, we use a set of principles dif-
ferent from the reward model training stage, as illustrated in appendix, which contains a few
more principles that we would expect a well-aligned LLM Al-assistant agent would behave.
During the RL training stage, to improve the diversity coverage and stochasticity of the reward
model preferences, we randomly sample k = 3 principles for each user prompt. Particularly, as
a design of prompt-dependent principle selection, we adequately raise the ratio of sampling the
Consistent Reasoning principle for reasoning prompts and the Ethical principle

for red-teaming prompts.

RL-time Preference Intervention In preliminary experiments, we mainly identified three
tendencies that potentially allow the policy model to hack the reward model equipped with
our predefined principles: (1) The Al assistant often provides high-level advice in response to
user queries, bypassing the provision of concrete solutions. (2) The Al assistant frequently en-
gages in self-praise, disrupting the reward model’s evaluation capabilities. (3) The Al assistant
tends to over-educate, such as providing analogous examples following the solutions of math
problems. Figure 3.3 provides concrete examples of these reward hacking patterns. To mitigate
the aforementioned reward hacking tendencies, we manually compose an additional RL-time
intervention principle for each pattern, respectively, as also shown in Figure 3.3. We found
these RL-time interventions are markedly effective. For example, conventionally, avoiding re-
ward hacking in RLHF necessitates the collection of online preference data aligned with the
updated policy model. Contrarily, we show that we can re-use the same principle-following re-
ward model, but steer its preference by defining prohibition instructions via natural language

to deter the policy model from manifesting specific undesired behaviors.

Symbolic Rewards: Multilingual Bonus & Length Bonus Unlike conventional RLAIF
[17, 141], the AI preferences in SALMON are not necessarily generated by a powerful RLHF-
trained model. As a result, as opposed to the RLHF model, our SFT-based or SELF-ALIGN-based

synthetic preference model occasionally struggles to discern the more helpful response, thereby

N.B., we do not expect that the training curriculum proposed by this work is the only one that can produce

an instruction-following reward model.
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impacting the quality of the synthetic preference data adversely. To bolster the reward model’s

efficacy, we propose two supplementary symbolic rewards:

* When using a multilingual prompt dataset, we noted that weak Al-assistant agents occasion-
ally produce English responses to non-English prompts. Hence, we introduce a bonus reward

for responses matching the prompt’s language, as identified by an automated tool®.

* We observe a preference for lengthier responses among users or well-aligned RLHF-trained
LLM Al assistants Dubois et al. [57], Zheng et al. [235]. Longer responses often encompass
a more extensive examination of the issue at hand, prompting us to include response length,

quantified in the response token length, as an auxiliary bonus reward score.

3.5 Experiments

3.5.1 Dromedary-2

Starting from the LLaMA -2 -7 0b base language model [194], Dromedary-2 is first Super-
vised Fine-Tuned (SFT) with the bootstrapping data generated by an improved version* of SELF-
ALIGN with 6 In-Context Learning exemplars [182]. Following this, a Reinforcement Learning
(RL) fine-tuning stage is conducted employing the SALMON paradigm. Our endeavor aims at
advancing the frontier of Al alignment when minimizing the requisite for human oversight.
In this work, the human demonstration annotations are solely confined to providing six In-
Context Learning exemplars via SELF-ALIGN, while the ensuing model behavior, especially at

the RL stage, is fully controlled by human-defined principles.

Datasets

All the training datasets used in this work are the “prompt datasets” that come without the

corresponding response demonstrations.

Self-Align We use a combination of 90k ShareGPT® prompts, 10k prompts from databricks-
dolly-15k dataset [49], 10k prompts from OpenAssistant Conversations dataset [97], and 40k

*https://pypi.org/project/langdetect
*We provide an improved principle-driven self-alignment prompt in the Appendix.
SShareGPT. com data was was used to train the Vicuna model [34], but the exact dataset has not been

released. In this work, we use the reproduced version from https://huggingface.co/datasets/an
on8231489123/ShareGPT_Vicuna_ unfiltered
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prompts sub-sampled from the OpenOrca dataset [113, 132], which is constituted by prompts
from TO [165] and FLAN [40, 206]. We only keep the first query from users as the unlabeled

prompts.

Preference Modeling The synthetic principle-driven preference modeling data is collected
by generating responses to the first prompts in each conversation tree of OpenAssistant
(OASST1; Kopf et al. [97]), which constitutes a collection of 9.8k prompts. Following LLaMA -
2-Chat [194], we use existing open-source preference datasets to enable better generalization
for the reward model and prevent reward hacking. 160k Anthropic HH-RLHF [16] human
preferences and 160k synthetic preferences sub-sampled from Stanford SHP [58] is used
for Preference Model Pre-training (PMP; Bai et al. [16]).

RL training The RL training uses the same collection of unlabeled prompts as the Self -
Align SFT stage, with additional 7.5k math problem prompts from the MATH [79] to improve

the mathematical solving capability of our model.

Training Details

The architecture of the reward model is the same as the base LLaMA model, except that the
embedding output of the last token is linearly projected to a scalar value to indicate the reward
of the whole response. Following Dubois et al. [57], we initialize the value model from the
reward model. To fit all the models (i.e., policy, reward, value, original policy) into one GPU,
we adopt QLoRA [51, 81] for all the fine-tuning processes in SELF-ALIGN and SALMON. We
use Proximal Policy Optimization (PPO; Schulman et al. [169]) with a KL penalty for the RL
training. Experiments with non-RL (or offline RL) alternative to PPO [72, 158, 232] are left for

future work. More details can be found in Appendix.

Baseline Models

Due to the space limit, we describe the details of the baseline models in the appendix. Notably,
we mainly compare with non-distilled models that are aligned from scratch. While there are
potentially stronger open-source LLMs, such as Orca [132] and WizardLM [217], our pri-
mary open-source baseline for comparison is LLaMA-2-Chat [194], as it stands out as the

best open-source LLM that has been aligned from scratch.

37



MT T-1 T-2

Win Tie Lose

GPT-4 9.00 8.96 9.03
Vicuna ChatGPT 794 808  7.81
Claude-Vv1 7.90 8.15 7.65
Dromedary — 2
70b (before PPO)  promedary-2-70b  7.37  7.77  6.96
Dromedary - 2 .
70b (after PPO) ChatGPT Vicuna-33b (KD) 7.13 7.46 6.79
Dromedary-2-70b
Claude - V1 Y 6.91 7.48 6.34
(before PPO)
LLaMA — 2 — Chat
70b LLaMA-2-Chat-70b 6.88 7.04 6.73
Win / Tie / Lose (Evaluated by GPT-4) Guanaco-33b 6.53 6.88 6.18

Figure 3.4:  GPT-4-based automatic evaluation on Vicuna-Bench and MT-Bench.
Dromedary-2 outperforms LLaMA-2-Chat-70b and thus represents the state-of-

the-art chatbot performance in non-distilled open-source models.

3.5.2 Benchmark Evaluations

Chatbot Evaluation Human evaluation is often regarded as the gold standard for judging
Al chatbots, but is not always scalable and reproducible. In this work, we primarily investi-
gate automatic evaluation leveraging GPT-4 on prevalent chatbot benchmarks, deferring hu-
man evaluation to future work. In this work, we conduct GPT-4-based automatic evaluation on
Vicuna-Bench [34] and MT-Bench [235] to measure the chatbot capability of our model. The
results can be found in Figure 3.4. We also evaluate our model on the AlpacaEval leaderboard

[110] and report the results in Table in the appendix.

General Capability Evaluation We use Big Bench Hard (BBH; Suzgun et al. [185]) as a
testbed for reasoning ability, HumanEval [31] for coding ability, and TydiQA [41] for multi-
lingual ability. We adopt the same evaluation protocol as Wang et al. [205]. The results are
reported in Table 3.2 (left), where Dromedary -2 significantly outperforms the state-of-the-
art open-source model, LLaMA-2-Chat.

Truthfulness Evaluation The TruthfulQA benchmark [116] evaluates a model’s ability to
identify true claims, specifically in the context of literal truth about the real world. We use
the same few-shot evaluation protocol and decoding strategy as in Touvron et al. [194] and
report the percentage of generations that are both truthful and informative, evaluated by a

fine-tuned GPT-3 model, i.e., a “GPT-judge”. We present the results in Table 3.2 (right), where
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Table 3.2: Evaluating the general capabilities and truthfulness of the LLM-based Al agents.
Big-Bench Hard (BBH), HumanEval, and TydiQA are used to evaluate reasoning, coding, and
multilingualism, respectively. 1 denotes the results are taken from Wang et al. [205], where
their BBH dataset is sub-sampled so may not be directly comparable. I denotes the results
taken from Touvron et al. [194], where their GPT-3 judge model may not be exactly the same

as ours.
BBH BBH HumanEval TydiQA Truthful Tru*Inf
Direct CoT Pel GP Dromedary-2-70b 0.98 0.84
GPT-4% 50.9  88.0 85.7 70.8 Vicuna-13b (KD) 0.84 0.84
ChatGPTt 490  66.1 72.2 51.9 ChatGPT 0.81 0.80
Dromedary-2-70b 514 663  40.6 643  Dromedary-2-70Db 0.89 075
LLaMA-2-Chat-70b 431 522 35.0 27.9 (before PPO)
LLaMA-2-70b 53.1 577 315 63.5 LLaMA-2-Chat-70b% - 0.64
Vicuna-33b (KD) 412 50.8 21.1 37.5 LLaMA-2-70b% - 0.50

Dromedary-2 achieves new state-of-the-art on this benchmark.

3.5.3 Improved Controllability by Principle Intervention

As a proof of concept, we demonstrate that by leveraging different principles as preference
guidelines, we can fine-tune the policy model to selectively exhibit enhanced helpfulness, hon-
esty, or harmlessness. We also show that we can define customized principles to reduce the
occurrence of false refusals seen in certain over-aligned language models such as LLaMA-2 -

Chat [194]. Due to the space limit, please refer to Appendix for the detailed results.

3.6 Conclusion & Discussion

In this work, we introduce SALMON, a new Al alignment paradigm where a principle-following
reward model is trained to effectively and flexibly align language models with human values
and intentions. During the RL training stage, by merely adjusting the principles that the reward
model follows, we can gain full control over the preferences of the reward model, and subse-
quently influence the behavior of the RL-trained policy model. This eliminates the traditional
reliance on the exhaustive collection of online human preferences. Combined with the SeLF-
ALIGN technique [182], we build a powerful Al-assistant agent, Dromedary - 2, with only six
exemplars for in-context learning and 31 human-defined principles. Our self-aligned Al agent

significantly surpasses the performance of several state-of-the-art RLHF-trained Al systems in

39



chatbot, reasoning, coding, multilingualism, and truthfulness benchmarks.
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Part 11

Aligning Language Models Towards
Truth Seeking
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Chapter 4

Improving Truthfulness of Language

Models with Recitation Augmentations

The previous chapters explored how large language models (LLMs) can be aligned with human
values and intentions through principle-driven prompting and reinforcement learning with
Al feedback (RLAIF). These efforts aimed to shaping model behavior around human-defined
norms. However, being aligned with human preferences does not necessarily guarantee fac-
tual correctness. A model might generate responses that are persuasive or well-liked, yet still
factually incorrect—a problem known as hallucination.

In this chapter, we shift our focus from aligning models with what humans prefer to align-
ing them with what is true. We propose a new paradigm, RECITation-augmented gEneration
(RECITE), to improve the factual accuracy of LLMs without relying on external retrieval mech-
anisms. Instead, RECITE encourages models to first internally recite relevant knowledge from
their own parameters, before producing final answers. This approach helps bridge the gap
between what a model “knows” and what it says—paving the way for more trustworthy and

grounded language generation.

4.1 Introduction

Large language models (LLMs) have achieved impressive in-context few-shot performance on
knowledge-intensive NLP tasks [23, 36, 80, 157]. For example, in open-domain question an-
swering [29], demonstrated by only a few examples of question-answer pairs, LLMs are able
to answer arbitrary factoid questions [88, 98, 221]. Recent research [73, 85, 106] shows that

retrieval-augmentation can further improve LLMs’ performance on knowledge-intensive tasks
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Direct Generation
(e.g., PaLM)

Question: who wrote the song
i hate you i love you

Retrieval-augmented Generation
(e.g., Atlas)

Question: who wrote the
school for good and evil

Recitation-augmented Generation
(ours)

Question: who wrote the song i hate you i
love you

Recitation: "I Hate U, | Love U" (stylized in
all lowercase) is a song by American singer
and rapper Gnash featuring American singer
Olivia O'Brien.

Answer: Gnash

Answer: Gnash

Retriever Results

The School for Good and Evil
is a fantasy fsairytale hexalogy Question: who wrote the school for good

of books by Soman and evil
/ Chainani..?l \ /
Recitation: The School for Good and Evil
was first published on May 14, 2013 by

Soman Chainani...
Answer: Soman Chainani

Question: who wrote the
school for good and evil

Answer: Soman Chainani

Answer: Soman Chainani

Figure 4.1: Illustration of evaluating (few-shot) open-domain question answering with (closed-
book) direct generation [36], (open-book) retrieval-augmented generation [85], and (closed-

book) recitation-augmented generation (ours).

by conditioning the LLMs on retrieved relevant passages from an external corpus.

This paper proposes a new paradigm to help LLMs generate more accurate factual knowl-
edge without retrieving from an external corpus, called RECITation-augmented gEneration
(RECITE), wherein we tackle knowledge-intensive NLP tasks by first reciting relevant infor-
mation and then generating the outputs. Such a two-step paradigm decomposes the original
knowledge-intensive task into two sub-tasks: knowledge-recitation and task-execution, where
the former can be regarded as a form of intermediate knowledge retrieval step (from the model

weights), while the latter is the execution step that produces the final outputs.

The motivation of introducing an additional knowledge-recitation step comes from our ob-
servation that while few-shot prompting can help LLMs execute specific NLP tasks, these tasks
are usually not in a similar form as the original causal language modeling pre-training objec-
tive. This hinders LLMs from effectively reciting knowledge from their memory [26]. Consider
a student taking a closed-book exam that contains knowledge-intensive questions, for exam-
ple, “what is the tenth decimal of 7?”. They typically cannot directly answer this question
because in studying stage (in analogy to the language modeling pre-training stage for LLMs),
it is highly unlikely that they would read “the tenth decimal of 7 is 5”. However, there can
be some sentences like “the first N digits of 7 are 3.14159 26535..” existing in the textbook
that can be recited by the student. Therefore, a student can possibly answer this question in a

recite-and-answer scheme: “The first 10 digits of 7 are 3.14159 26535. So the answer is 5”.
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Here, the knowledge-recitation step can serve as an intermediate step that mimics the language

modeling pre-training task, and thus better helps the LLM to generate factual knowledge.

We verify the effectiveness of our recitation-augmented generation on few-shot Closed-
Book Question Answering (CBQA) tasks (referred as recite-and-answer in the CBQA context),
as illustrated in Figure 4.1. CBQA is an attractive open-domain QA task in that a fully param-
eterized LM can generate answers directly without an external corpus or separate retrieval
models [160]. We show that the proposed recite-and-answer scheme is an effective method
for CBQA and compatible with other techniques for boosting few-shot performance of LLMs.
We also show that, in addition to improving the few-shot in-context learning performance of
RECITE-enhanced LLM, fine-tuning the pre-trained LLMs on synthetic generated question-
passage pairs can further improve the recitation performance and lead to a better downstream

QA accuracy.
Experiments on four large language models (PaLM [36], UL2 [190], OPT [229]), and Codex

[31] show that a recite-and-answer scheme can improve performance on various types of CBQA
tasks, including Wikipedia-based single-hop QA (Natural Questions, Kwiatkowski et al. 98),
trivia questions (TriviaQA, Joshi et al. 88), and Wikipedia-based multi-hop QA (HotpotQA, Yang
et al. 221).

4.2 Methodology Overview

The goal of this paper is to mimic a human’s ability to recite relevant factoid knowledge [129]
before answering knowledge-intensive questions, such that these questions can be answered
more accurately. In the following we describe our recite-and-answer scheme for few-shot
closed-book question answering (CBQA), which consists of two components: (1) a evidence-
recitation module for reciting relevant passages, and (2) a question-answering module for gen-
erating answers given the recited evidence. Notice that in this paper, we focus on few-shot set-
ting, in which we assume only a few question-answer demonstrations are provided. In Natural
Questions [98] benchmark, since the questions are from queries issued to the Google search
engine by multiple users, and thus can be regarded as unannotated data, we further assume
that we have top-retrieved Wikipedia pages for these questions. The paragraphs in these top-
retrieved Wikipedia pages will be used to generate synthetic paired question-recitation data for

fine-tuning the LM (described in Section 4.4).
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<Recitation N>
LM Output LM Output

<Question N>

<Question N>

1) few-shot in-context 2) few-shot in-context learning
learning for recitation for recitation-augmented QA

B I G
<Question N> s
\\‘\\\
\ "S1 <Recitation N-1> |-+ - -+ ( <Answer N-1>
\
\

Majority vote

v

3) self-consistency O creritation Noos e

ﬁiecitation 1: The two major holding companies ON
The Oberoi Group are EIH Ltd and EIH

The Oberoi family is part of a Associated Hotels (formerly East India Hotels).
hotel company that has a - The Oberoi family is the majority shareholder in . )
head office in what city? .| EIHLtdwith a 32.11% stake. The answer s Delhi.

Recitation 2: The Oberoi Group is an
award-winning luxury hotel group with its head
office in New Delhi. India.

vEnd of Recitation> /

Figure 4.2: Illustration of prompt-based in-context learning for recitation generation, recitation-

4) multiple-recite-and-answer

augmented question answering, self-consistency ensembling, and multiple-recite-and-answer
for multi-hop questions (Sec. 4.3). In multiple-recite-and-answer scheme, the latter recitaiton
can utilize the information from the previous ones, such as “Oberoi Group” in this case. The

prompts for self-consistency and multi-hop recite-and-answer are dropped for brevity.

4.3 Prompt-based Recite-and-Answer for Question-Answering

Recitation-augmented question answering We start with single-hop question answering
(88, 98], where the answers are usually supported by a specific document in the corpus, which
is sometimes referred as evidence [88]. Different from chain-of-thought prompting [207] where
a rationale is directly generated to explain the generated answer [88, 101, 135], we propose to
first recite a passage about the question, and then answer the question based on the recitation.

We propose a prompt-based learning-to-recite scheme by leveraging the LLM’s in-context
learning ability [23]. We prompt the LLM with paired exemplars of questions and recited evi-

dences, and the LLM can learn in an in-context manner to generate a recitation for an arbitrary
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question. To perform recitation-conditioned few-shot question answering, we append the re-
cited passages at the beginning of the original question-answer exemplars as a single prompt,

and then generate the final answer (Step 1 & 2 in Figure 4.2).

Self-consistency ensemble The factual knowledge about a question can appear in several
places in the language model’s training corpora. For example, the fact of “Queen Elizabeth
IT opened the London Bridge on 17 March 1973” can appear in both Wikipedia page “London
Bridge” and page “March 19737, so it is highly likely that there exists knowledge from differ-
ent articles that could lead to the same, correct answer. With this motivation, we argue that
similar to multi-step reasoning in chain-of-thought, recitation-augmented question answering
can also benefit from the self-consistency technique with multiple-path decoding [203]. Specif-
ically, given an arbitrary question, we first use top-k sampling to independently generate a few
recitations, and then greedy decode the answer of the question based on the sampled recita-
tions. Finally, we determine the optimal answer by taking a plurality/majority vote (Step 3 in

Figure 4.2).

Multiple-recite-and-answer for multi-hop question-answering Multi-hop question an-
swering requires the QA system to find and reason over multiple supporting documents. How-
ever, the nature of recitation restricts us to recite passages from one article at a time. In order to
apply the recite-and-answer scheme to solve multi-hop questions, we introduce multiple-recite-
and-answer scheme (Step 4 in Figure 4.2), that is, given the multiple-hop question, we use the
prompt words such as “Recitation 1” and “Recitation 2” to elicit the LLM to generate recitation
passages on different topics. Since the multiple recited passages are generated in one-pass from
the LLM decoding sequentially, the generation of later passages can effectively utilize the in-
formation both in the original question and the previous recited ones. Our multiple-recite-and-
answer scheme for multi-hop question-answering is also compatible with the self-consistency
technique, by applying top-k sampling when generating multiple recitations and performing

majority voting for the final answers.
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. <Passage 0>
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<Passage K>
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Question K> <Passage K>
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. <Passage hint N>
Greedy decoding recitations
Question
Sampling diverse passage hints Recitation: The first child support answering with
law was passed in 1911 in the aggregated

when was child benefit United Kingdom...

paid for the first child?

—

Finetuned
Reciter-LM

recitation
Passage hint: Child support - ecitations

Short description --- Paragraph #1

Frozen
Language
Model

Recitation: The first child benefit
P hint: Child benefit -—- was introduced in the United
Short description -- Paragraph #1 \Klngdom in 1911, and was paid to...

Passage hint: Child benefit --- Recitation: Child benefit is a
History --- Paragraph #2 payment made to parents in the
United Kingdom, Ireland,
Australia...

QA with diverse
recitation augmentation

&

Figure 4.3: Illustration of question answering with diverse recitation and the corresponding

few-shot question generation and fine-tuning processes.

4.4 Passage Hint-based Diversified Recitation with Fine-

Tuning

Passage hint-based diversified recitation While the sampling-based recitation and self-
consistency improves the robustness of recite-and-answer method, one argument for its inef-
ficiency is that if the evidence-recitation module samples the wrong facts about the question,
the question-answering module will not be able to figure it out and tend to generate the wrong
answer. Therefore, on the one hand, we need to use a low sampling temperature to avoid gen-
erating recitations with wrong facts, on the other hand, we want to make sure the sampled

recitations have enough diversity.

To tackle such a dilemma, we propose passage hint-based diversified recitation. We observe
that in well-formed text knowledge bases, such as Wikipedia, we can usually find a unique
passage hint for each passage, by concatenating the section titles and the in-section order of

each passage. For example, the passage hint of the second passage in Section 5.2 “Enforcement”
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of Wikipedia page “Child support” would be “Child support — Compliance and enforcement
issues — Enforcement — Paragraph #2”. In passage hint-based diversified recitation, we first
use sampling to generate a diverse set of passage hints, and then use greedy decoding to ensure
the factual accuracy of the contents in each passage.

Since each passage hint corresponds to a unique passage, we can first de-duplicate the pas-
sage hints and then generate the full passages to get more diverse recitation passages. Further-
more, as the recited passages are less likely to be similar due to unique passage hints, inspired
by recent progress on question-answering with multiple retrieved passages [84], we use aggre-
gated diverse recitations as a single context, and generate the answer with a few more question-
answer pair demonstrations. Figure 4.3 (lower) illustrates the recite-and-answer scheme with

passage hint-based diversified recitation.

Fine-tuning on few-shot generated questions We found that although the training data
of many existing LLMs [36, 53] contains the Wikipedia corpora, which are usually regarded as
the factoid documents for knowledge-intensive question answering tasks [88, 98], the section
titles are usually not explicitly included in training. This makes the pre-trained LLM hard to
discover the mapping from the question to the passage hint, and to the full passage merely by
few-shot prompting.

To address this issue, we propose an additional fine-tuning stage to adapt LLMs to learn
such mappings. Assuming we have access to not only a few question-answer pairs, but also
the top-retrieved Wikipedia pages for queries issued to the Google search engine by multiple
users [98], we can use few-shot prompting to generated synthetic question-hint-passage pairs
and then finetune the LLMs on the generated data.

Specifically, we use the ground-truth evidence and question pairs as the prompt, and gen-
erate new questions with in-context learning for randomly sampled passages from Wikipedia
pages. Next, based on the few-shot generated questions, we train the LLM to predict the origi-
nal passage hint, as well as the passage content. Figure 4.3 (upper) illustrates the whole process

of passage hint fine-tuning.

4.5 Experiments

In this section, we report empirical evaluations of our proposed RECITE with recite-and-answer
schemes on a diverse set of few-shot closed-book question answering tasks and different lan-

guage models with varying scales.
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4.5.1 Experimental setup

Evaluation Datasets

Natural Questions Natural Questions [98] consists of questions aggregated from the Google
search engine and the answers from the Wikipedia page in the top 5 search results. We treat it
as a single-hop question answering task. Since Natural Questions contains the so-called “long
answer” annotations, which is a whole HTML bounding box containing enough information to
infer the answer, we directly utilize the “long answer” as the ground-truth recitation exemplars
in our prompt (Sec. 4.3). In order to make a direct comparison with recent LLMs [36, 85], we

evaluate our methods in 5-shot and 64-shot settings.

TriviaQA TriviaQA dataset [88] is constructed by collecting Trivia enthusiast authored question-
answer pairs and their retrospectively collected evidence. Since there is no obvious way to
collect a “long answer” in the retrospective evidence documents (the exact appearances of the
answer may contain enough information to infer the answer), we evaluate TriviaQA in the
single-hop 5-shot setting, and manually compose the recitation passage from Wikipedia for 5

randomly sampled training questions. The concrete prompt can be found in the appendix.

HotpotQA HotpotQA [221] is designed to explicitly test QA systems’ ability to perform
multi-hop reasoning. It is collected by explicitly composing questions requiring reasoning
about multiple supporting context documents. Following Wang et al. [202], we evaluate Hot-
potQA as a multi-hop question answering task in the 4-shot setting. But instead of chain-of-
thought prompting as in [202], we use multiple-recite-and-answer (Sec. 4.3) to achieve multi-

step reasoning. We also provide the concrete prompt in the appendix.

Metrics We calculate the Exact Matching (EM) and F1 scores for the normalized answers,

while the specific text normalization applied on each dataset can be slightly different.

Pre-trained language models

We evaluate the effectiveness of RECITE on four langauge models: PaLM, UL2 [190], OPT [229],
and Codex [23, 31, 144]. Due to the space limit, the detailed descriptions of them are provided
in Appendix.
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Table 4.1: Performance comparison on Natural Questions (NQ), TriviaQA, and HotpotQA. The

number of shots for each task are mentioned in parenthesis.

PaLM-62B UL2-20B OPT-30B Codex-002
EM/F1 EM/F1 EM/F1 EM/F1

2576 / 36.47(5y  10.16 / 20.175)

28.98 / 40.134y  12.70 / 21.97 35

NQ . 28.70 / 39.76(5y 14.16 / 23.135
Recite-and-answer (20-path) 4, 5, 42.484 14.94/24.29

Standard-prompting (direct) 14.97 / 22.935) 31.45/ 44.75()

17.84/ 26.74 5 35.84 / 49.125

Standard-prompting (direct) 65.38 /71.855y  48.73 / 54.32(5y  45.90/ 50.68(5) 81.84 / 86.095)

TriviaQA - pecite-and-answer (20-path) 65.84/72.105 53.42/58.695 49.02/54.22(5 83.50 / 88.035

Standard-prompting (direct) 20.51/28.90(4  16.99/24.994) 16.70 / 25.21(4) 28.32/39.034
HotpotQA Chain-of-thought (20-path)  23.73/32.80(s  17.68 / 24.874 16.89 / 24.034 3438 / 45.504
Recite-and-answer (20-path) 26.46 / 35.67(y 19.04/27.32(4 17.77 / 26.58(4 37.11/ 48.37

4.5.2 Experiments

We use the test split for all tasks if the test split is available and has labels for evaluation,
otherwise we use the dev split. In addition, TriviaQA and HotpotQA are too large to run large

language models on, so we used the first 1,024 data points for evaluation.

Prompt-based results

We report the single-hop closed-book question answering (CBQA) evaluation results on Natural
Questions (NQ) and TriviaQA and the multi-hop CBQA evaluation results on HotpotQA. In
Tab. 4.1, we report the results with prompt-based in-context learning and self-consistency.

From the tables, we can see that the proposed recite-and-answer scheme can significantly
improve the CBQA performance on both datasets with various pre-trained language models.
While the performance improvements on NQ is more consistent across different language mod-
els, we find that the improvements from recite-and-answer is more significant on smaller lan-
guage models on TriviaQA. Our hypothesis is that the Trivia-style question usually contains
more contextual information in the question, thus weakened the effectiveness of recitation for
strong LLMs like PaLM.

Besides, we can see that the recite-and-answer scheme can outperform the chain-of-thought
prompting performance on the multi-hop reasoning task. Interestingly, we also find that for
LLMs that have large gains from chain-of-thought (i.e., PaLM), they also have large improve-

ments from recite-and-answer.
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Table 4.2: Performance comparison of PaLM-62B on Natural Questions (NQ) dataset with
standard-prompting, recite-and-answer with self-consistency sampling, and recite-and-answer

with diversified recitation. The number of shots for each task are mentioned in parenthesis.

Standard-prompting (direct) 25.76 / 36.47  28.98 / 40.13
Recite-and-answer (20-path) 28.70 / 39.76 31.34/ 42.48

Recite-and-answer w/ diversified recitation (20-path) 32.20/44.02 33.23/45.29

—— UL2-208 (self-consistency) 50 = 0OPT-30B (self-consistency)
OPT-30V (self-consistency) UL2-208 (self-consistency)

=== UL2-20B (direct) 43 === UL2-208 {direct)

42 OPT-306 (direct) OPT-30B [direct)

12 5 1 5 0 12 5 1 15 0
# self-consistency paths # self-consistency paths

Figure 4.4: TriviaQA EM/F1 on OPT-30B and UL2-20B with different # of self-consistency paths.

Results of passage hint-based diversified recitation

For Natural Questions dataset, since it has the collection of top-retrieved Wikipeida pages cor-
responding to the unannotated queries issued to the Google search engine, we additionally
report the diversified recitation results of fine-tuned PaLM model in Tab. 4.2. From the table,
we find that diversified recitation can further improve the performance of PaLM on the NQ

dataset.

4.5.3 Analysis

On the number of self-consistency paths

We analyze how the number of passages recited would affect the performance of recite-and-
answer under the self-consistency setting. Due to the costly inference of LLMs, we first sample
up to k = 20 recitation passages, and then apply self-consistency to a randomly selected subset
of recitations to simulate less paths. For each number of self-consistency paths, we evaluate the
randomly selected subsets five times and report the mean and standard deviation. We conduct
an analysis on OPT-30B and UL2-20B on the TriviaQA dataset and report the results in Fig. 4.4.

We can see that sampling more recitation passages tends to improve the recite-and-answer
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Table 4.3: Natural Questions (NQ) results with different context passages.

ULZ—ZOB(5) Codex—002(5)

EM /F1 EM /F1
No passage 10.16 / 20.17 31.45/ 44.75
Ground-truth passage 41.02 / 55.73 49.32/ 64.32

BM25-Retrieval (Top-1) 16.31/27.66 33.20 / 47.45
LM-Recitation (20-path) 14.16 /23.13 35.84/49.12

Table 4.4: Per-question error analysis on Trivi- ' o
0A Table 4.5: Per-path error analysis on TriviaQA.
aQA.

Recit. Ans. UL2-20B(5) OPT—30B(5)
v 4 33.60% 30.06%

UL2-20B(5, OPT-30Bs,

Hits@Majority  53.42% 49.02%

- v X 7.87% 9.79%
N.ot Recit. . 21.09% 22.27% X v/ 12.10% 12.57%
Hits@20-Recit.  5.66% 8.01% X X 46.447% 47 587

Hits@20-Path 19.82% 20.07%

performance, while less randomness is observed with more self-consistency paths.

On the robustness of few-shot exemplars

A well-known problem of in-context few-shot learning is its instability to the choices of exem-
plars and their orders [233]. We evaluate the robustness of standard prompting and our recite-
and-answer method with 5 random seeds and report the mean and standard deviation of UL2
model running on the TriviaQA dataset in Tab. The 5-shot exemplars are randomly sampled
and shuffled for each seed. From the table, we can see that with recitation sampling, recite-
and-answer exhibits similar robustness (in terms of small performance deviation) as standard
prompting under different random seeds and numbers of self-consistency paths. The overall
gains by recite-and-answer are significant compared to standard prompting regardless of the

choice of few-shot exemplars.

Recitation v.s. Retrieval v.s. Ground-truth

One may ask without the external corpus, whether the quality of recited passages with LLMs

is better than simple retrieval models, e.g., BM25 [161]'. To answer this question, we evalu-

'We use the pre-indexed “enwiki-paragraphs” corpus in the pyserini package (https://github.com
/castorini/pyserini), which is originally designed for BERTserini [220].
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ate the few-shot question-answering performance of UL2 and Codex on three kinds of context
passages: retrieval, recitation, and ground-truth. We report the results on first 1024 validation
examples in Natural Questions (NQ) dataset, since it is the only dataset that contains the “long
answer” annotation that can be regarded as ground-truth context passage. From Tab. 4.3, we
can see that the classic retrieval model, i.e., BM25, is still a very strong baseline for collect-
ing information from the corpus. Nonetheless, compared to BM25, our recite-and-answer still
achieves a quite competitive performance via generation only and without using any external
corpus. Besides, we find that stronger models (i.e., Codex) tend to benefit more from the the

model’s own recitation than BM25 retrieved context.

Error analysis

We perform an error analysis on the 1024 evaluation examples in the TriviaQA dataset. We
classify the errors into three categories: 1) Not Recit., i.e., the correct answer is not recited in
any of the 20 recited passages in self-consistency. 2) Hits@20-Recit., i.e., the correct answer
can be found in one of the recited passage, but does not appear in the QA module’s outputs. 3)
Hits@20-Path, i.e., the correct answer is one of the final outputs of the 20 self-consistency paths,
but it does not have the majority votes. The correct final answer is marked as Hits@Majority
(i.e., Exact Matching). An algorithmic description is given in Algo in appendix. We report the
results of UL2-20B and OPT-30B in Tab. 4.4. We can see that “No Recit” and “Hits@20-Path”
account for the majority of the errors, meaning that the QA module performs quite well (if the
correct answer appears in one of the recitation passages, it will be extracted by the QA module
in most of the cases), and the main bottleneck still lies in the recitation quality and answer
aggregation strategies.

We also perform a per-path error analysis, i.e., how many questions can be answered cor-
rectly (or not) when the recitation exactly contains (or not) the answer tokens. The results are
shown in Tab. 4.5. We can see that around 7% ~ 10% questions have the correct recitation
but cannot produce the correct answer, while around 12% questions do not have the correction

recitation but can be answered correctly anyway.

4.6 Conclusion & Discussion

In this paper, we propose a novel recitation-augmented generation framework to improve lan-

guage models’ performance in the closed-book question-answering setting. We hypothesize
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that for knowledge-intensive NLP tasks, encouraging the model to explicitly recite a specific
knowledge source would be helpful in augmenting its memory. In addition, we found that
diversifying the recitation process can be beneficial as well since usually there exists multi-
ple knowledge sources that could be used to answer the same question. We show promising
results over three large language models and across three different closed-book QA datasets,
demonstrating the effectiveness of our proposed recite-and-answer approach.

One limitation of our method is that updating time-sensitive knowledge for a pure LLM-
based method requires training or fine-tuning the LLMs on the new corpus, which can be costly.
For future work, we plan to further validate the effectiveness of recitation-augmented genera-

tion for other knowledge-intensive NLP tasks in the closed-book setting, such as fact checking.
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Chapter 5

Aligning Multimodal Models with
Factually Augmented RLHF

In the previous chapter, we focused on improving the factual accuracy of large language mod-
els (LLMs) by encouraging them to recite internal knowledge before answering—a process that
enhanced truthfulness in purely textual settings. However, as models expand beyond text and
become capable of interpreting images and other modalities, new challenges arise. The problem
of hallucination persists, but now it manifests in more complex ways: a model might describe
objects that aren’t in an image, infer context incorrectly, or generate confident but false vi-
sual claims. In this chapter, we extend the pursuit of truthfulness to Large Multimodal Models
(LMMs) by aligning them not just with human preferences, but also with factual visual ground-
ing. We introduce a novel approach called Factually Augmented RLHF, which adapts Reinforce-
ment Learning from Human Feedback to the multimodal setting and incorporates ground-truth
signals (such as captions and structured answers) to improve the model’s fidelity and reduce

hallucinations.

5.1 Introduction

Large Language Models (LLMs; Brown et al. [23], Chowdhery et al. [36], OpenAl [141]) can
delve into the multimodal realm either by further pre-training with image-text pairs [3, 13]
or by fine-tuning them with specialized vision instruction tuning datasets [121, 243], leading
to the emergence of powerful Large Multimodal Models (LMMs). Yet, developing LMMs faces
challenges, notably the gap between the volume and quality of multimodal data versus text-only

datasets. Consider the LLaVA model [121], which is initialized from a pre-trained vision encoder
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Question:
Where is this photo taken?

Ground Truth:
From the slogan “Welcome to Houston, Texas”, we can
infer that this photo is taken at an airport in Houston, Texas.

LLaVA:

This photo is taken at an airport.
LLaVA-SFT™ :

This photo is taken at the Houston airport.
LLaVA-RLHF:

This photo is taken in the baggage claim area of an airport, specifically in the lobby of the George Bush

Intercontinental Airport in Houston, Texas. The large sign in the background indicates the airport’s
name and location. The presence of multiple people, handbags, and suitcases in the scene further sup-

ports the fact that this is indeed an airport setting.

Question:
What is the gender of the person riding the motorcycle
in the image?

Ground Truth:
No one is riding the motorcycle in the image.

LLaVA:

The person riding the motorcycle in the image is a woman.
LLaVA-SFT™ :

The person riding the motorcycle in the image is a man.
LLaVA-RLHF:

The image does not provide enough information to determine the gender of the person riding the

motorcycle. It only shows a motorcycle parked on the side of the road, and there is no indication of the
rider’s gender. The rider could be a man or a woman, or even someone who identifies as non-binary or
gender non-conforming. It is important to avoid making assumptions about a person’s gender based

on visual cues alone, as these assumptions can be inaccurate and potentially harmful.

Table 5.1: Qualitative examples to illustrate the effect of RLHF on Large Multimodal Model.
LLaVA-RLHF is presented to be more helpful (above) and less hallucinated (bottom).

[156] and an instruction-tuned language model [34]. It is trained on just 150K synthetic image-
based dialogues, which is much less in comparison to the text-only models (Flan [124] utilizing
over 100M examples spanning 1800 tasks. Such limitations in data can lead to misalignment
between the vision and language modalities. Consequently, LMMs may produce hallucinated

outputs, which are not accurately anchored to the context provided by images.
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SFT Data

J

Q: What is in the image?
A: Menu from Roly’s Café, Chairs
and Tables.

— G

j GPT-4

(a) Misaligned Supervised Fine-Tuning (SFT) Data contains Hallucination

Human Preference

A: The sleeping environment on the

couch provides the cat with a =) @ -

" comfortable and cozy space to rest. Output (A) is better
LMM-SFT Human with less hallucinations.

Q: How does the sleeping A: The cat is resting on a black
environment benefit the cat? RRLLLL] < couch with its front paws
K / tucked under its chest.

(b) Collect Human Preference (More Helpful & Less Hallucinated) Data for Reward Models (RM)

A\ 4
Q Output
[The sign is not very clear, so perhaps]
- g - g -
A: American Fast Food
LMM-RLHF LMM-RM

Q RM Score

K [The RL model’s output is clearly
contradictory to the image captions]

- Reward Score: 0.0

Javier's Tacos — Mexican Fast
Food — Open 24 hours

v

Q: What is in the image?

-/

S

(c) Factually Augmented Reinforcement Learning from Human Feedback (Fact-RLHF)

Figure 5.1: [llustration of how hallucination may occur during the Supervised Fine-Tuning (SFT)
phase of LMM training and how Factually Augmented RLHF alleviates the issue of limited

capacity in the reward model which is initialized from the SFT model.

To mitigate the challenges posed by the scarcity of high-quality visual instruction tuning
data for LMM training, we introduce LLaVA-RLHF, a vision-language model trained for im-
proved multimodal alignment. One of our key contributions is the adaptation of the Reinforce-
ment Learning from Human Feedback (RLHF) [16, 144, 178], a general and scalable alignment
paradigm that shows great success for text-based Al agents, to the multimodal alignment for

LMMs. By collecting human preferences with an emphasis on detecting hallucinations’, we uti-

'We instructed crowdworkers to prioritize the responses that exhibit better multimodal alignment and mini-

mize hallucinations. That is, if two responses are free of hallucinations, the crowdworkers were asked to choose a
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lize those preferences in reinforcement learning for LMM fine-tuning [178, 244]. Our approach
can improve the multimodal alignment with a relatively low annotation cost, e.g., collecting 10K
human preferences for image-based conversations with $3000. To the best of our knowledge,

this approach is the first successful adaptation of RLHF to multimodal alignment.

A potential issue with the current RLHF paradigm is called reward hacking, which means
achieving high scores from the reward model does not necessarily lead to improvement in hu-
man judgments. To prevent reward hacking, previous work [16, 194] proposed to iteratively
collect “fresh” human feedback, which tends to be costly and cannot effectively utilize existing
human preference data. In this work, we propose a more data-efficient alternative, i.e., we try to
make the reward model capable of leveraging existing human-annotated data and knowledge
in larger language models. Firstly, we improve the general capabilities of the reward model by
using a better vision encoder with higher resolutions and a larger language model. Secondly,
we introduce a novel algorithm named Factually Augmented RLHF (Fact-RLHF), which
calibrates the reward signals by augmenting them with additional information such as image

captions or ground-truth multi-choice option, as illustrated in Fig. 5.1.

To improve the general capabilities of LMMs during the Supervised Fine-Tuning (SFT) stage,
we further augment the synthetic vision instruction tuning data [121] with existing high-quality
human-annotated multi-modal data in the conversation format. Specifically, we convert VQA-
v2 [69] and A-OKVQA [171] into a multi-round QA task, and Flickr30k [225] into a Spotting
Captioning task [30], and train the LLaVA-SFT models based on the new mixture of data.

Lastly, we look into assessing the multimodal alignment of LMMs in real-world genera-
tion scenarios, placing particular emphasis on penalizing any hallucinations. We create a set
of varied benchmark questions that cover the 12 main object categories in COCO [118] and
include 8 different task types, leading to MMHAL-BENCH. Our evaluation indicates that this
benchmark dataset aligns well with human evaluations, especially when scores are adjusted
for anti-hallucinations. In our experimental evaluation, as the first LMM trained with RLHF,
LLaVA-RLHF delivers impressive outcomes. We observed a notable enhancement on LLaVA-
Bench, achieving 94%, an improvement by 60% in MMHAL-BENCH, and established new perfor-
mance benchmarks for LLaVA with a 52.4% score on MMBench [123] and an 82.7% F1 on POPE
[111].

more helpful one.
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5.2 Methodology Overview

In this study, we employ a multimodal Reinforcement Learning from Human Feedback (RLHF)
approach to align Large Multimodal Models (LMMs) with human values (Sec. 5.3). The pro-
cess begins with Multimodal Supervised Fine-Tuning to establish a foundational understand-
ing of multimodal inputs (Sec. 5.3.1). This is enhanced by Multimodal Preference Modeling,
where a reward model is trained with human-annotated comparisons to discern better re-
sponses (Sec. 5.3.2). The approach culminates with Reinforcement Learning and Factually Aug-
mented RLHF, which refine the model’s responses for accuracy and factual alignment, lever-
aging high-quality instruction-tuning data and additional ground-truth information to combat

reward hacking and hallucinations (Sec. 5.4).

5.3 Multimodal RLHF

Reinforcement Learning from Human Feedback (RLHF) [16, 144, 178, 244] has emerged as a
powerful and scalable strategy for aligning Large Language Models (LLMs) with human values.
In this work, we use RLHF to align LMMs. The basic pipeline of our multimodal RLHF can be

summarized into three stages:

Multimodal Supervised Fine-Tuning A vision encoder and a pre-trained LLM are jointly
fine-tuned on an instruction-following demonstration dataset using token-level supervision to

produce a supervised fine-tuned (SFT) model 75FT.

Multimodal Preference Modeling In this stage, a reward model, alternatively referred to
as a preference model, is trained to give a higher score to the “better” response. The pairwise
comparison training data are typically annotated by human annotators. Formally, let the aggre-
gated preference data be represented as Dry = {(Z, x, yo, 1, 1) }, where Z denotes the image,
x denotes the prompt, y, and y; are two associated responses, and 7 indicates the index of the

preferred response. The reward model employs a cross-entropy loss function:
L(re) = —Ez2y0y1,i)~Dru 1080 (re(Z, 2, y;) — 16(T, x,y1-4))] - (5.1)

Reinforcement Learning Here, a policy model, initialized through multimodal supervised

fine-tuning (SFT) [144, 194], is trained to generate an appropriate response for each user query
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by maximizing the reward signal as provided by the reward model. To address potential over-
optimization challenges, notably reward hacking, a per-token KL penalty derived from the ini-
tial policy model [144] is sometimes applied. Formally, given the set of collected images and user
prompts, Dy, = {(Z, x)}, along with the fixed initial policy model 7''T and the RL-optimized

model 7T(F;L, the full optimization loss is articulated as:

‘C(TFEL) = _E(I,m)G'DRL,yNWRL(y|I,$) [TQ(I’ xz, y) - 6 : ]D)KL (TF}ZL(y|I7 x)||7TINIT(y|Iv (I}))] s
(5.2)
where (3 is the hyper-parameter to control the scale of the KL penalty.

5.3.1 Augmenting LLaVA with High-Quality Instruction-Tuning

Recent studies [194, 238] show that high-quality instruction tuning data is essential for aligning
Large Language Models (LLMs). We find this becomes even more salient for LMMs. As these
models traverse vast textual and visual domains, clear tuning instructions are crucial. Cor-
rectly aligned data ensures models produce contextually relevant outputs, effectively bridging
language and visual gaps. For example, LLaVA synthesized 150k visual instruction data using
the text-only GPT-4, where an image is represented as the associated captions on bounding
boxes to prompt GPT-4. Though careful filtering has been applied to improve the quality, the
pipeline can occasionally generate visually misaligned instruction data that can not be easily

removed with an automatic filtering script, as highlighted in Table 5.1.

In this work, we consider enhancing LLaVA (98k conversations, after holding out 60k con-
versations for preference modeling and RL training) with high-quality instruction-tuning data
derived from existing human annotations. Specifically, we curated three categories of visual
instruction data: “Yes” or “No” queries from VQA-v2 (83k) [70], multiple-choice questions from
A-OKVQA (16k) [127], and grounded captions from Flickr30k (23k) [224]. Our analysis revealed
that this amalgamation of datasets significantly improved LMM capabilities on benchmark tests.
Impressively, these results surpassed models [48, 103, 108] trained on datasets an order of mag-

nitude larger than ours, as evidenced by Table in appendix and 5.4. 2

%For a comprehensive breakdown of each dataset’s influence, refer to Appendix.
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Instruction
We have developed an Al assistant adept at facilitating image-based conversations. However, it oc-

casionally generates what we call hallucinations, which are inaccuracies unsupported by the image

content or real-world knowledge.
In this task, we request that you select the most appropriate response from the Al model based on the

conversation context. When making this selection, primarily consider these two factors:

* Honesty: Fundamentally, the Al should provide accurate information and articulate its uncertainty
without misleading the user. If one response includes hallucination and the other doesn’t, or if both
responses contain hallucinations but one does to a greater extent, you should opt for the more honest

response.

* Helpfulness: In scenarios where both responses are free from hallucinations, you should opt for
the more helpful one. The AI should attempt to accomplish the task or answer the question posed,

provided it’s not harmful, in the most helpful and engaging manner possible.

Annotation Task

Please select the better response from A and B

[IMAGE]

[CONVERSATION CONTEXT]

[RESPONSE A

[RESPONSE B]

Question 1: Which response has fewer hallucinations in terms of the given image?

Question 2: If you have selected a tie between Response 1 and Response 2 from the previous question,

which response would be more helpful or less incorrect?

Table 5.2: The instruction to the crowdworkers for human preference collection.

5.3.2 Hallucination-Aware Preference Model

Our preference model training process integrates a single reward model that emphasizes both
multimodal alignment and overall helpfulness®. We collect human preferences on 10k hold-out
LLaVA data by re-sampling the last response with our SFT model and a temperature of 0.7. The

reward model is initialized from the SFT model to obtain the basic multimodal capabilities.

3We are considering the development of a distinct Honest reward model, inspired by the approach in Touvron
et al. [194]. This introduces the possibility of constructing a piecewise Honesty-prioritized reward model. We

earmark this direction for future exploration.
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5.4 Factually Augmented RLHF (Fact-RLHF)

We conduct multimodal RLHF on 50k hold-out LLaVA conversations, with additional 12k multi-
choice questions from A-OKVQA and 10k yes/no questions subsampled from VQA-v2. Due
to the concerns of existing hallucinations in the synthetic multi-round conversation data of
LLaVA, we only use the first question in each conversation for RL training, which avoids the

pre-existing hallucinations in the conversational context.

Reward Hacking in RLHF In preliminary multimodal RLHF experiments, we observe that
due to the intrinsic multimodal misalignment in the SFT model, the reward model is weak
and sometimes cannot effectively detect hallucinations in the RL model’s responses. In the
text domain, previous work [16, 194] proposed to iteratively collect “fresh” human feedback.
However, this can be quite costly and cannot effectively utilize existing human-annotated data
and there is no guarantee that more preference data can significantly improve the discriminative

capabilities of the reward model for multimodal problems.

Facutual Augmentation To augment the capability of the reward model, we propose Factu-
ally Augmented RLHF (Fact-RLHF), where the reward model has access to additional ground-
truth information such as image captions to calibrate its judgment. In original RLHF [140, 178],
the reward model needs to judge the quality of the response only based on the user query (i.e.,
the input image and prompt):

Image: [IMAGE]

User: [USER PROMPT]
Assistant: [RESPONSE]
Reward Model: [SCORE]

In Factually Augmented RLHF (Fact-RLHF), the reward model has additional information
about the textual descriptions of the image:

Image: [IMAGE]

Factual Information: [5 COCO IMAGE CAPTIONS / 3 A-OKVQA RATIONALS]
User: [USER PROMPT]

Assistant: [RESPONSE]

Augmented Reward Model: [SCORE]

This prevents the reward model hacked by the policy model when the policy model gen-
erates some hallucinations that are clearly not grounded by the image captions. For general
questions with COCO images, we concatenate the five COCO captions as the additional fac-
tual information, while for A-OKVQA questions, we use the annotated rationals as the factual

information. The factually augmented reward model is trained on the same binary preference
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data as the vanilla reward model, except that the factual information is provided both during

the model fine-tuning and inference.

Symbolic Rewards: Correctness Penalty & Length Penalty Certain questions come with
a predetermined ground-truth answer in our RL data, including binary choices (e.g., “Yes/No”)
in VQA-v2 and multiple-choice options (e.g., “ABCD”) in A-OKVQA. These annotations can also
be regarded as additional factual information. Therefore, in the Fact-RLHF algorithm, we intro-
duce a symbolic reward mechanism that penalizes selections that diverge from these ground-
truth options. Furthermore, we observed that RLHF-trained models often produce more verbose
outputs, a phenomenon also noted by Dubois et al. [57]. While these verbose outputs might
be favored by users or by automated LLM-based evaluation systems [182, 235], they tend to
introduce more hallucinations for LMMs. In this work, we incorporate the response length,

measured in the number of tokens, as an auxiliary penalizing factor.

5.5 Experiments

5.5.1 Neural Architectures

Base Model We adopt the same network architecture as LLaVA [121]. Our LLM is based on
Vicuna [34, 193], and we utilize the pre-trained CLIP visual encoder, ViT-L/14 [156]. We use grid
features both before and after the final Transformer layer. To project image features to the word
embedding space, we employ a linear layer. It’s important to note that we use the pre-trained
linear projection layer checkpoints from LLaVA, concentrating on the end-to-end fine-tuning
phase for multi-modal alignment in our study. For LLaVA-SFT*;;, we use a Vicuna-V1.5;; LLM
and ViT-L/14 with image resolution 256 X 256. For LLaVA-SFT"3;, we use a Vicuna-V1.5;3;
LLM and ViT-L/14 with image resolution 336 x 336.

Reward Model The architecture of the reward model is the same as the base LLaVA model,
except that the embedding output of the last token is linearly projected to a scalar value to
indicate the reward of the whole response. We use our own collected 10k human preference
data to train the reward model with the cross-entropy loss (Eq. 5.1). Following Ouyang et al.
[144], we train the reward model for only one epoch to avoid over-fitting (mis-calibration). A
size of 500 validation data is also held out for early stopping. The final reward model’s accuracy

on the validation data is 65%, which is near our observed human labeler consistency of 69%
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Overall

Subsets

Model Conv Detail Complex Full-Set
LLaVA 751 754 923  81.0
VIGCyg 83.3 80.6 931 858 Adverssrtal
LLaVA-SFT* 5 88.8 746 950  86.3
LLaVA-RLHF. 930 790 1095 94.1
LLaVA 35336 87.2 743 929 849 Comparisen =
VIGC 55336 889 774 935  86.8
LLaVA-SFT* 1355336 858 755 939 852 consina L
LLaVA-RLHF,35. 43 93.9 82.5 110.1  95.6
—— IDEFICSgg Kosmos-2 —— LLaVA13sx336

—— IDEFICSgs —— InstructBLIP;35 LLaVA-RLHF 135

Table 5.3: (left) Automatic evaluation of LLaVA-RLHF on the LLaVA-Bench Evaluation. GPT-4
compares the answers from the VLM model outputs with the answers by GPT-4 (text-only) and
gives arating. We report the relative scores [121] of VLM models compared to GPT-4 (text-only).
(right) Detailed performance of different models on the eight categories in MMHAL-BENCH,
where “Overall” indicates the averaged performance across all categories. The questions are

collected by adversarially filtering on the original LLaVA 3py33 model.

(Appendix).

RL Models: Policy and Value Following Dubois et al. [57], we initialize the value model
from the reward model. Therefore, when training an LLaVA;; policy model with an LLavAs;
reward model, the value model is also 13B. To fit all the models (i.e., police, reward, value,
original policy) into one GPU, we adopt LoRA [81] for all the fine-tuning processes in RLHF.
We use Proximal Policy Optimization (PPO; Schulman et al. [169]) with a KL penalty for the
RL training. Without further notice, both LLaVA-RLHF;; and LLaVA-RLHF,;; are trained with
a LLaVA-SFT 35 initialized reward model. More details can be found in Appendix.

5.5.2 Results

We use LLaVA-Bench [121] and our MMHAL-BENCcH? as our main evaluation metrics for their
high alignment with human preferences. In addition, we conducted tests on widely-recognized

Large Multimodal Model benchmarks. We employed MMBench [123], a multi-modal bench-

*See detailed data collection for MMHAL-BENCH in Appendix and hallucination-aware human preference data

in Appendix.
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mark offering an objective evaluation framework comprising 2,974 multiple-choice questions
spanning 20 ability dimensions. This benchmark utilizes ChatGPT to juxtapose model pre-
dictions against desired choices, ensuring an equitable assessment of VLMs across varying
instruction-following proficiencies. Furthermore, we incorporated POPE [111], a polling-based

query technique, to offer an evaluation of VLM object perception tendencies.

High-quality SFT data is crucial for capability benchmarks. By delving into the specific
performances for the capability benchmarks (i.e., MMBench and POPE), we observe a notable
improvement in capabilities brought by high-quality instruction-tuning data (LLaVA-SFT") in
Tables 5.4. LLaVA-SFT ',z model exemplifies this with an impressive performance of 52.1%
on MMBench and an 82.7% F1 score on POPE, marking an improvement over LLaVA by mar-
gins of 13.4% and 6.7% respectively. However, it’s worth noting that LLaVA-SFT" does trail
behind models like Kosmos and Shikra. Despite this, LLaVA-SFT* stands out in terms of sam-
ple efficiency, utilizing only 220k fine-tuning data—a 5% fraction of what’s employed by the
aforementioned models. Furthermore, this enhancement isn’t confined to just one model size.
When scaled up, LLaVA-SFT " 13,335 achieves commendable results, attaining 57.5% on MM-
Bench and 82.9% on POPE. Comparatively, the effect of RLHF on the capability benchmarks is
more mixed. LLaVA-RLHF shows subtle degradations at the 7b scale, but the LLaVA-RLHF;3;
improves over LLaVA-SFT"3; by 3% on MMBench. This phenomenon is similar to the Align-
ment Tax observed in previous work [16]. Nonetheless, with our current empirical scaling
law of LLaVA-RLHF [11, 91], we believe RLHF alignment would not damage the in-general
capabilities of LMMs for models of larger scales.

RLHF improves human alignment benchmarks further. From another angle, even though
high-quality instruction data demonstrates large gains in capability assessment, it does not im-
prove much on human-alignment benchmarks including LLaVA-Bench and MMHAL-BENCH,
which is also evident in recent LLM studies [205]. LLaVA-RLHF show a significant improve-
ment in aligning with human values. It attains scores of 2.05 (7b) and 2.53 (13b) on MMHaAL-
BencH and improves LLaVA-SFT* by over 10% on LLaVA-Bench. We also presented qualitative
examples in Table 5.1, which shows LLaVA-RLHF produces more reliable and helpful outputs.
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Table 5.4: CircularEval multi-choice accuracy results on MMBench dev set. We adopt the
following abbreviations: LR for Logical Reasoning; AR for Attribute Reasoning; RR for Relation
Reasoning; FP-C for Fine-grained Perception (Cross Instance); FP-S for Fine-grained Perception

(Single Instance); CP for Coarse Perception. Baseline results are taken from Liu et al. [123].

LLM Data Overall LR AR RR FP-S FP-C CP
OpenFlamingogg - 6.6 42 154 09 8.1 1.4 5.0

MiniGPT-4;5 5k 243 75 313 43 303 9.0 356
LLaMA-Adapter;p 52k 41.2 11.7 353 29.6 475 38.6 56.4
Otter-log 2.8M 51.4 325 56.7 539 46.8 386 654
Shikra;g 5.5M 58.8 258 56.7 583 57.2 579 75.8
Kosmos-2 14M 59.2 46.7 557 435 643 490 725
InstructBLIP;5 1.2M 36.0 14.2 463 22.6 370 214 490
IDEFICSgg 1M 48.2 208 542 33.0 478 36.6 67.1
IDEFICSgp 1M 54.6 290 67.8 465 560 48.0 619
InstructBLIP 35 1.2M 44.0 19.1 542 348 4738 248 56.4
LLaVAg 158k 38.7 16.7 483 304 455 324 406
LLaVA-SFT "5 220k 52.1 283 63.2 374 532 359  66.8
LLaVA-RLHF 280k 51.4 242 632 391 502 40.0 66.1
LLaVA 1355336 158k | 475 | 233 597 313 414 386 658
LLaVA-SFT " 13pyx336 | 220k 57.5 258 65.7 548 579 51.0 685
LLaVA-RLHF 35,43 | 280k | 60.1 | 29.2 67.2 565 609 538 715

5.5.3 Ablation Analysis

We conduct ablation studies on LLaVA;z and evaluate over the four aforementioned bench-
marks. We compare the performance of Fact-Augmented RLHF (Fact-RLHF) with standard
RLHF in Table 5.5. Our findings indicate that while the conventional RLHF exhibits improve-
ment on LLaVA-Bench, it underperforms on MMHAL-BENcH. This can be attributed to the
model’s tendency, during PPO, to manipulate the naive RLHF reward model by producing
lengthier responses rather than ones that are less prone to hallucinations. On the other hand,
our Fact-RLHF demonstrates enhancements on both LLaVA-Bench and MMHAL-BENCH. This
suggests that Fact-RLHF not only better aligns with human preferences but also effectively

minimizes hallucinated outputs. °

>See detailed discussion of ablations on high-quality instruction data in Appendix, and data filtering v.s. RLHF
in Appendix
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Table 5.5: Abalation studies on methodologies (SFT, RLHF, and Fact-RLHF), data mixtures
(LLaVa with additional datasets), and model sizes of the policy model (PM) and the reward
model (RM).

SFT Data
VQA AOK Flickr

Method PM RM MMBench POPE LLaVA-B MMHaL-B

SFT 7b - X X X 38.7 76.0 81.0 1.3
SFT 7b - 4 X X 42.9 82.0 30.4 2.0
SFT 7b - X v X 48.5 79.8 34.7 1.1
SFT 7b - X X v 37.8 77.6 46.6 1.5
SFT 7b - v v v 52.1 82.7 86.3 1.8
RLHF 7 7b X X X 40.0 78.2 85.4 1.4
RLHF 7b 7b v v v 50.8 82.7 87.8 1.8
RLHF 7b  13b v v v 48.9 82.7 93.4 1.8
Fact-RLHF 7b 13b v v v 51.4 81.5 94.1 2.1

5.6 Discussions & Limitations

Hallucination phenomena are observed in both LLMs and LMMs. The potential reasons are
two-fold. Firstly, a salient factor contributing to this issue is the low quality of instruction
tuning data for current LMMs, as they are typically synthesized by more powerful LLMs such
as GPT-4. We expect our proposed high-quality vision instruction-tuning data and future efforts

on manually curating high-quality visual instruction tuning data can alleviate this problem.

Secondly, the adoption of behavior cloning training in instruction-tuned LMMs emerges as
another fundamental cause [168]. Since the instruction data labelers lack insight into the LMM’s
visual perception of an image, such training inadvertently conditions LMMs to speculate on
uncertain content. To circumvent this pitfall, the implementation of reinforcement learning-
based training provides a promising avenue, guiding the model to articulate uncertainties more
effectively [89, 117]. Our work demonstrates a pioneering effort in this direction. Figure in
appendix illustrates the two sources of hallucination in current behavior cloning training of
LLMs.

However, while LLaVA-RLHF enhances human alignment, reduces hallucination, and en-
courages truthfulness and calibration, applying RLHF can inadvertently dampen the perfor-
mance of small-sized LMMs. Balancing alignment enhancements without compromising the

capability of LMM and LLM is still an unresolved challenge. Though we’ve demonstrated the
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effective use of linear projection in LLaVA with top-tier instruction data, determining an op-
timal mixture and scaling it to bigger models remains intricate. Our research primarily delves
into the fine-tuning phase of VLMs, leaving the issues of misalignment in other modalities and
during pre-training yet to be explored.

Finally, while MMHAL-BENCH focuses on curtailing hallucinations when evaluating LMMs,
itis noteworthy that short or evasive responses can inadvertently attain high scores on MMHAL-
BeNcH. This underlines an intrinsic trade-off between honesty and helpfulness [16]. Conse-
quently, for a more comprehensive assessment of alignment with human preferences, we ad-

vocate for the evaluation of prospective LMMs using both MMHAL-BENCH and LLaVA-Bench.

5.7 Conclusion

We proposed several strategies to tackle the multimodal misalignment problems, particularly
for LMM, which often produce text inconsistent with the associated images. First, we enrich
GPT-4 generated vision instruction tuning data from LLaVA with existing human-authored
image-text pairs. Next, we adopt the Reinforcement Learning from Human Feedback (RLHF)
algorithm from the text domain to bridge vision-language gaps, wherein human evaluators
discern and mark the more hallucinated output. We train the LMM to optimize against simu-
lated human preferences. Moreover, we introduce the Factually Augmented RLHF, leveraging
additional factual information such as image captions to enhance the reward model, counter-
ing reward hacking in RLHF, and boosting model performance. For tangible real-world impact
assessment, we have devised MMHAL-BENCH, an evaluation benchmark targeting the penal-
ization of hallucination. Remarkably, LLaVA-RLHF, being the first LMM trained with RLHF,
shows a notable surge in performance across benchmarks. We opensource our code, and data
and hope our findings could help the future development of more reliable and human-aligned

LLMs and LMMs.
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Aligning Language Models Towards
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Chapter 6

Easy-to-Hard Generalization: Scalable

Alignment Beyond Human Supervision

In the previous chapter, we explored how reinforcement learning and factual augmentation
can ground multimodal models in truth, reducing hallucinations and encouraging more reli-
able responses. But truthfulness alone does not guarantee capability—particularly on tasks that
demand rigorous, multi-step reasoning far beyond the reach of human supervision. As models
grow more powerful, the central question shifts from “How do we keep them accurate?” to
“How do we help them reason correctly when humans can no longer guide every step?” In
this chapter, we take a step toward answering that question through the lens of easy-to-hard
generalization. Rather than relying on human annotations for the most difficult problems, we
show how models can learn from supervision on easier tasks and generalize their reasoning
abilities to solve challenges that humans cannot readily supervise—laying the groundwork for

scalable alignment in complex domains like mathematics.

6.1 Introduction

Rapid advancements in large language models (LLMs) indicate that in the near future, highly
sophisticated Al systems could surpass human capabilities in certain areas, significantly en-
hancing our capabilities in solving harder problems beyond the levels we can currently solve
[140, 142]. Since the current Al alignment methods mostly rely on either supervised fine-tuning
(SFT) with human-provided demonstrations [40, 165, 206] or reinforcement learning from hu-
man feedback (RLHF) [144, 178, 244], their capabilities would be inherently limited as humans

cannot always provide helpful demonstrations or supervision on the hard tasks beyond their
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on hard tasks that humans can evaluate on easy tasks and evaluate them on hard tasks

Figure 6.1: Illustration of different alignment scenarios: traditional alignment relies on hu-
man demonstrations or judgements [144]; scalable alignment [22] assumes that humans can-
not reliably supervise smarter-than-human models; weak-to-strong generalization [24] fo-
cuses on using weak models with unreliable labels to supervise strong models; Our proposed
easier-to-general generalization focuses on the transfer of rewarding policies from weak

models to harder tasks.

expertise [172].

In order to build future Al systems for tackling complex challenges, such as advancing sci-
entific knowledge, it is crucial to develop new approaches for scalable oversight challenge, i.e.,
to supervise the Al systems that can potentially outperform humans in most skills [22]. The

key question is:
* Can we limit human supervision to easier tasks, yet enable the model to excel in harder tasks?

We refer to this scenario as Easy-to-Hard Generalization [24, 76, 170, 240]. This setting requires
no human supervision on the harder tasks, which differs from existing work that either en-
hances humans’ ability to verify the outputs of Al systems [22, 159, 166, 212] or enables weak-

to-strong generalization via a teacher that only offers unreliable or noisy supervision [24].

74



The most basic form of easy-to-hard generalization can be achieved by training the policy
models (i.e., generator) using supervised fine-tuning (SFT) or in-context learning (ICL) on easy
tasks [23, 154], and expect this will unlock the ability to perform well on hard tasks. However, it
has been observed that SFT or ICL training of generators on easy tasks often fails to generalize
to hard tasks [62, 186, 240]. We hypothesize and show that methods beyond these can enable
stronger degrees of easy-to-hard generalization. Our intuition is guided by the observation
that evaluation is easier than generation [92, 134], so an evaluator may offer a degree of easy-to-
hard generalization that is useful for improving a generator. If that is true, we can first train a
verifier on easy tasks, then make use of its generalization ability to supervise the generator on

hard tasks.

Complex tasks can often be broken down into smaller steps [240] and verified by validating
the individual steps — a strategy that is commonly employed in solving mathematical problems
[114, 195, 196]. Inspired by this, we train outcome-supervised and process-supervised reward
models [114, 196, 200, 226] as our easy-to-hard evaluators. The training dataset is often com-
prised of a set of labeled easy tasks, each with a question and a high-quality solution’, paired
with a set of unlabeled hard tasks that are represented only by their questions. This simulates
the practical setting of having numerous problems with known solutions, as well as significant
unresolved challenges, such as the Millennium Prize Problems [27], which present challenging
open problems. The pivotal aspect of easy-to-hard generalization thus lies in how we effectively

leverage the capabilities of easier-level models in solving harder problems.

Our investigation includes to training policy and reward models on the easy (i.e., level 1-
3) portion of the PRM800K [114] dataset, and comparing the performance of majority voting
with the policy model only and weighted majority voting with the policy model and PRMs
(Process-supervised Reward Models). We also introduce the Outcome & Process Reward Model
(OPRM), which harnesses the complementary strengths of outcome reward models (ORMs) and
process reward models (PRMs): judging if each step in reasoning is correct (like PRMs do) and
deciding if the final answer is right (like ORMs do). Our findings reveal a marked performance
improvement with the inclusion of reward models, especially on the hard (i.e., level 4-5) portion
of the MATHS500 test set. This improvement indicates that easier-level evaluators can maintain
their effectiveness on harder tasks. We have similar observations in our experiments on the

MetaMath dataset [227] and the Math-Shepherd dataset [200].

We further investigate the use of the easy-to-hard evaluator as a reward model in rein-

'"We assume that human supervision is of high quality on the easy tasks in general.
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Figure 6.2: We first train the evaluator with process supervision or outcome supervision (which
simulates the process supervision) to enable easy-to-hard evaluation, and then use it to facilitate

easy-to-hard generation via re-ranking or RL.

forcement learning, where the evaluator provides targeted, step-by-step guidance in solving
hard problems. We have an intriguing finding that training with human supervision only on
the easy tasks (i.e., training with Level 1-3 problems and answers) can outperform both SFT and
Final-Answer RL training on the full dataset (Level 1-5). This finding underscores the potential of
using easy-to-hard evaluation to improve easy-to-hard generators, particularly when dealing

with varied levels of task complexity.

6.2 Related Work

6.2.1 Scalable Oversight

While present-day models operate within the scope of human assessment, future, more ad-
vanced models may engage in tasks that are beyond human evaluation capabilities. This raises
a concern that such models might prioritize objectives other than maintaining accuracy (An-

dreas 6, Perez et al. 149, Sharma et al. 172, Wei et al. 208). To address this, a branch of research
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develops techniques to enhance the human capacity to supervise such models, such as via using
Al to evaluate the work of other Als [5, 22, 105, 166]. Our setting differs from enhancing human
oversight; instead, we focus on enabling models to excel in hard tasks where human supervision
may not be available. This also differs from weak-to-strong generalization [24], where human
supervision may be available, but not reliable, on hard tasks. However, our framework aligns
with the “sandwiching” concept proposed for measuring progress in scalable oversight, which

involves domain experts evaluating the outputs of Al-assisted non-experts [22, 46, 159].

6.2.2 Compositional Generalization

Compositional generalization is a fundamental aspect of how language works [35]. It refers to
the ability to understand and utilize novel combinations based on the understanding of basic
concepts and a limited number of their combinations [61]. Recently, least-to-most prompting
[55, 240] teaches language models how to solve a complex problem by reducing it to a se-
ries of easier sub-problems, achieving easy-to-hard generalization on semantic parsing tasks
like SCAN [100] and CFQ [93] with perfect generalization accuracy. In addition, least-to-most
prompting has also been successful in mathematical reasoning tasks, specifically in datasets
like GSM8K [43] and DROP [56], by teaching language models to solve problems more difficult
than those seen in the prompts. This success not only underscores the capacity of language
models to effectively break down complex tasks into simpler sub-tasks Perez et al. [147], but

also demonstrates their generalization capability in solving these sub-problems.

6.2.3 Easy-to-Hard Generalization

Past work has evaluated easy-to-hard generalization by training easy-to-hard generators on
easy tasks using supervised finetune-tuning (SFT) or in-context learning (ICL) [23, 154]. Nev-
ertheless, Swayamdipta et al. [186] showed that the BERT model performs poorly on common-
sense reasoning when only trained on easy data. Fu et al. [62] showed similar results for ICL
on reasoning tasks like GSM8K [44]. In concurrent work, Hase et al. [76] evaluate the perfor-
mance of easy-to-hard generators on more datasets and models, and find that ICL or SFT on easy
tasks is a strong baseline for multiple-choice tasks like ARC [42] and MMLU [77]. In contrast,
we evaluate the easy-to-hard generation performance on the more challenging MATH dataset
[79], and show that easy-to-hard evaluation can improve a generator’s easy-to-hard general-
ization beyond ICL and SFT. Iterative machine teaching [122] gives theoretical justification to

show that training classifiers from easy to hard examples yield better generalization.
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Figure 6.3: The overview diagram of our methods: the different components of modeling and

training and how they are interconnected.

6.3 Methodology

We study the easy-to-hard generalization problem: how can we enable capabilities beyond hu-
man supervision? Specifically, we explore the efficacy and scalability of various easy-to-hard
methodologies on competition-level mathematical problem-solving problems (MATH; Hendrycks
et al. 79). This dataset is suitable for our study since it explicitly categorizes problems across five
difficulty levels. We consider levels 1-3 as “easy” tasks, encompassing both the problems and
their respective solution demonstrations, along with the correct answers. Conversely, levels
4-5, characterized by their more complex nature, are treated as “hard” tasks and are repre-
sented solely by their questions. The MATH dataset’s difficulty distribution roughly follows a
1:2:2:3: 3ratio across levels 1 to 5. So our division maintains a balanced number of easy

and hard tasks.
The remainder of the paper aims to answer following research questions:
RQ1: How do generators generalize from easy to hard?
RQ2: How do evaluators generalize from easy to hard?
RQ3: If evaluators generalize better than generators, how can we take advantage of this to

enable stronger easy-to-hard generalization in generators?
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6.3.1 Setup

Dataset MATH [79] is a dataset of 12,500 challenging competition mathematics problems,
where 7,500 of them are training problems and 5,000 are originally used for testing. Follow-
ing Lightman et al. [114], Wang et al. [200], we use the identical subset of 500 representative
problems (i.e., MATH500) as our test set, uniformly sample another 500 problems for validation,
across all five difficulty levels, and leave the rest 4,000 MATH test split problems combined with
the original 7,500 MATH training split problems as our training set.

Simulated Human Demonstrations While the original MATH dataset provides full step-
by-step solutions, these solutions typically skip many chain-of-thought steps [207], which can
be hard for language models to directly imitate®. Instead, we consider filtered PRM800K [114]
and MetaMATH [227] as our SFT training data: the former is generated by a Minerva-style base
GPT-4 model using few-shot prompting after filtering the correct answers [107, 141], while
the latter is generated by ChatGPT [140]. We keep all the GSM8K data in the MetaMATH
dataset since they are typically easier than the problems in MATH. PRM800K comes with human
annotated process labels, while for MetaMath, we use Math-Shepherd as the corresponding
process labels [200].

6.3.2 Generators

For a given dataset (e.g., a variant of MATH), we consider the following generator models:

Full & Hard ICL Full in-context learning (ICL) is a base model prompted with exemplars
sampled from all difficulty levels, or only from the level 5 [62].

Easy-to-Hard ICL This model is prompted with exemplars from easy problems. This base-
line evaluates the degree to which a model can solve problems more difficult than those seen
in the prompts [240].

Full SFT As prior work suggests that finetuning should outperform prompting alone [144,
148, 178], the full supervised fine-tuning (SFT) model is typically considered as a ceiling that a
model can achieve on a type of task [24, 76].

Easy-to-Hard SFT This generator model is trained only on the easy tasks. Prior work
suggests that it can generalize to hard tasks but with some degeneration in performance [186].

The generator models are evaluated in greedy decoding and self-consistency (also known

*Hendrycks et al. [79] found that having models generate MATH-style step-by-step solutions before producing

an answer actually decreased accuracy.
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as majority voting) settings [203].

6.3.3 Evaluators

Similarly, we consider the following evaluator models that can be trained either on the easy
tasks only, or on the full dataset. Notably, unlike final-answer rewards, reward models trained
on easy tasks can be applied to evaluate solutions to hard problems.

Final-Answer Reward is a symbolic reward that provides a binary reward based on the
accuracy of the model’s final answer. The matching is performed after normalization®.

Outcome Reward Model (ORM) is trained on the Final-Answer rewards. Following Cobbe
et al. [43], Lightman et al. [114], Uesato et al. [196], we train the reward head to predict on every
token whether the solution is correct, in a similar sense to a value model [226]. At inference
time, we use the ORM’s prediction at the final token as the reward of the solution.

Process Reward Model (PRM) is trained to predict whether each step (delimited by new-
lines) in the chain-of-thought reasoning path is correct. The labels are usually labeled by hu-
mans [114, 196] or estimated with rollouts [174, 200].

Outcome & Process Reward Model (OPRM) Building on the distinct advantages of ORMs
and PRMs, we introduce the Outcome & Process Reward Model (OPRM), which harnesses the
complementary strengths of both. OPRM is trained on the mixed data of ORMs and PRMs.
Specifically, it evaluates the correctness of each intermediate reasoning step, akin to PRMs,
while also assesses the overall solution’s accuracy at the final answer stage, mirroring the func-

tionality of ORMs.

6.3.4 Optimizing Generators Against Evaluators

Finally, given a generator model (i.e., policy model) and a evaluator model (i.e., reward model;
RM), we optimize the generator against the evaluator using either re-ranking or reinforcement
learning.

Best-of-n (BoN), also known as rejection sampling, is a reranking approach that sample
multiple solutions from the generator and selects one with the highest RM score.

Weighted Voting is similar to majority voting or self-consistency [203], but weights each

solution according to its RM score [196].

https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.p
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Table 6.1: Easy-to-hard generalization of generators. We compare generator performance under
various decoding settings. PRM800K and METAMATH indicate the SFT training data and ICL

exemplars. Evaluations are performed on the same MATH500 test set.

PRM800K METAMATH
GREEDY MAJ@16 MAj@256 GREEDY MAJ@16 MAj@256
FurLL ICL 12.8 15.6 20.8 16.4 18.4 25.6
Harp ICL 12.6 18.0 27.0 16.6 19.0 27.0
LiemMma-7B EAsy-to-HArD ICL 14.0 17.6 24.4 14.2 17.4 26.8
FuLL SFT 20.6 32.0 36.2 31.4 40.2 41.6
EAsy-Tto-HARD SFT 19.8 31.6 36.0 30.0 38.6 42.4
FurL ICL 18.6 23.6 36.0 20.6 28.8 39.2
Harp ICL 15.8 214 34.2 21.8 26.4 38.6
Liemma-348  EAsy-to-HArD ICL 18.2 25.2 36.8 19.8 26.8 37.2
FuLL SFT 25.6 41.8 46.4 354 44.2 45.6
Easy-to-HARD SFT 24.8 40.8 46.0 32.2 42.6 43.4

Reinforcement Learning (RL) We consider three online/offline RL variants, Reinforced
Self-Training (ReST) [72, 175], Direct Policy Optimization (DPO) [158], and Proximal Policy
Optimization (PPO) [169]. Due to the space limit, please find their detailed description in Ap-

pendix.

6.3.5 Evaluation Metrics

In this study, we have chosen not to establish terms analogous to the weak-to-strong perfor-
mance gap recovery (PGR) as discussed in Burns et al. [24] or the easy-to-hard supervision gap
recovery (SGR) highlighted by Hase et al. [76]. This decision is based on our observations that
sometimes, models trained exclusively on simpler tasks—particularly when employing RL train-
ing—can outperform those trained across the entire spectrum of problem difficulties. Therefore,
we mainly focus on the absolute and relative performance of generators (optionally optimized

by the evaluator) on the MATH500 test set [114].

6.3.6 Implementation Details

Base Language Model Llemma is a large language model for mathematics [15], which is con-
tinue pre-trained from Code Llama [164] / LlaMA-2 [194]. We use both 7b and 34b variants in

our experiments.
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Figure 6.4: Easy-to-hard generalization of 7b (upper) and 34b (lower) evaluators. Both SFTs and
RMs are trained on the easy data. We found that PRMs trained on easy tasks can significantly
improve the re-ranking (i.e., weighted voting) performance on hard tasks. The shaded margin

of the curve plot in this chapter represents the performance variance.

SFT / RL / Reward Model We fine-tune all models in full fine-tuning with frozen input-
output embedding layers and normalization layers. RMs are initialized from the base model,
and have an added scalar head to output the reward. In PPO training, we initialize the value
model from the reward model.

Hyper-parameters Due to the space limit, our training hyper-parameters can be found in

Appendix.

6.4 Main Results

6.4.1 Easy-to-Hard Generalization of Generators

In Table 6.1, we compare the easy-to-hard generalization performance of the generators under

various decoding settings:

Supervised Fine-Tuning (SFT) outperforms In-Context Learning (ICL): This is consis-
tent with prior work [144, 178, 196]. We also find that the performance of ICL has larger variance

than SFT with respect to data ordering (or random seeds) [54, 233].
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Figure 6.5: Easy-to-hard generalization of evaluators applied to generators of different sizes.
We evaluated 7b generator + 34b evaluator (upper) and 34b generator + 7b evaluator (lower).
Both SFTs and RMs are trained on the easy data.

SFT data quality impacts easy-to-hard generalization: PRMS800K data is generated by a
base (unaligned) GPT-4 model through few-shot prompting and is thus of lower quality than
well-aligned ChatGPT-generated MetaMATH data. We find that only MetaMath-trained models
have certain easy-to-hard gaps (e.g., 16.6 v.s. 14.2 in MetaMath-7b-ICL), while such gaps in
PRMB800K-trained models are very small (less than 1%), or even inverted in the ICL setting.
We hypothesize that low-quality SFT data may only teach the model the format of the task
[165, 203, 206], while high-quality (imitation) SFT data can teach the model the principles of
solving the task [71, 182]. Nevertheless, the strongest performance is achieved by full SFT on
the high-quality MetaMath data (35.4), showing an unignorable difference, with a gap of up to

3.2, compared to its easy-to-hard SFT counterpart (32.2).

6.4.2 Easy-to-Hard Generalization of Evaluators

The primary metric we use to assess the effectiveness of our process reward model is not the av-
erage accuracy of verifying each step in a solution but rather the overall performance achieved
through re-ranking methods (See discussion in Sec. 6.3.5). We first use re-ranking to evaluate

the easy-to-hard generalization performance of evaluators.
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Re-ranking

We consider two re-ranking strategies: Best-of-n (or rejection sampling) and Weighted Vot-
ing. In our easy-to-hard generalization setting, both SFT models and Reward Models (RMs)
are trained on easier tasks (levels 1-3), but evaluated on all difficulty levels (1-5). We com-
pare the performance between majority voting (SFT only) and re-ranking (SFT + OPRM) on
the PRM800K dataset in Figure 6.4-6.5, and the performance of different reward models (PRMs,
ORMs, & OPRMs) on the PRM800K dataset in Figures in appendix. Specifically, we use min
as the reward aggregation function for best-of-n and prod for weighted voting®. The figures
illustrate the performance of different decoding strategies or reward models under the same

number of sampled solutions per problem. We have the following findings:

OPRMs outperforms ORMs and PRMs This confirms our hypothesis that Process Reward
Models (PRMs) and Outcome Reward Models (ORMs) capture different aspects of task-solving
processes. By integrating the strengths of both PRMs and ORMs, Outcome & Process Reward
Models (OPRMs) demonstrate superior performance. However, follow-up experiments con-
ducted on the MetaMath/Math-Shepherd datasets do not demonstrate significant improvements
from incorporating additional ORM training examples. This lack of enhancement may be at-
tributed to the fact that Math-Shepherd is already generated from final-answer rewards. This
suggests that there remains a substantial difference between process rewards labeled by humans

(e.g., PRM800K) and those generated automatically (e.g., Math-Shepherd).

Weighted voting outshines Best-of-n  This finding diverges from past research where min-
imal performance differences were observed between weighted voting and Best-of-n [114, 196].
Our hypothesis is that this discrepancy arises from our specific experiment, which involves
training a less powerful base model (Llemma; Azerbayev et al. 15) on more difficult tasks
(MATH; Hendrycks et al. 79). This setup might diminish the effectiveness of the reward model,
potentially leading to an over-optimization of rewards [66]. Given these insights, weighted
voting is preferred as the primary re-ranking method for further discussions. Nevertheless,
Best-of-n still achieves competitive performance to majority voting when producing only one
full solution. In Figure 6.5, we also find that the 34b evaluator can significantly improve the 7b

generator, while the 7b evaluator can still improve the performance of the 34b generator.

*See more detailed analysis of reward aggregation functions in Appendix.
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Table 6.2: Comparing reinforcement learning (RL) approaches for easy-to-hard generalization.

All methods are of 7b size and evaluated with greedy decoding.

REWARD Accuracy
FINAL-ANSWER PROCESS RM  EAsy (LEVEL 1-3) HARD (LEVEL 4-5) ALL

(SFT / PRM trained on level 1-3 of PRM80OK)

RL DAaTA

SFT 28.2 12.2 19.8
ReST-EM Easy EAsy X 33.2 12.6 22.4
ITEraTIVE DPO  Easy Easy Vv 42.0 12.2 26.4
PPO Easy Easy X 42.0 14.1 27.4
PPO ArL Easy v 45.4 14.9 29.4
(SFT / PRM trained on level 1-5 of MetaMath / Math-Shepherd)

LLEMMA-BASED SFT SOTA (OURS) 51.7 13.7 31.4
Previous RL SoTA [200] - - 33.0
(SFT / PRM trained on level 1-3 of MetaMath / Math-Shepherd)

SFT 44.1 14.9 28.8
ReST-EM Easy EAsy X 50.4 14.5 31.6
ITERATIVE DPO Easy Easy Vv 53.8 16.0 34.0
ITERATIVE DPO ALL EAsy Vv 49.6 10.7 29.2
PPO Easy Easy X 50.8 15.3 32.2
PPO ALL Easy v 53.8 16.0 34.0

Greater effectiveness of re-ranking on harder tasks: Weighted voting not only consis-
tently surpasses majority voting but also shows a more pronounced advantage on harder tasks.
This observation leads to the conclusion that evaluators demonstrate better easy-to-hard gener-
alization capabilities in comparison to generators. This motivates us to explore RL approaches
that optimize the generator against the evaluator to further improve the performance of easy-

to-hard generation.

Reinforcement Learning (RL)

Given the conclusion above, an important question arises: how can evaluators once again assist
generators in achieving enhanced easy-to-hard generalization capabilities? We further investi-
gate the enhancement of policy models through RL, utilizing easy-to-hard evaluators as reward
models. Similar to re-ranking, SFT and PRM are only trained on easy data. For a fair compari-
son between PRM800K and MetaMath, we only use vanilla PRMs in the RL training. All the RL

methods use the validation accuracy for selecting the best checkpoint®. Our comparison spans

5This includes stopping iterations in ReST-EM and iterative DPO, and stopping online steps in PPO.
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offline (ReST & DPO) and online (PPO) RL algorithms under two training conditions:

Easy Questions & Easy Final Answers. The SFT model samples from easy questions and
receives the corresponding Final-Answer and optional PRM rewards.

All Questions & Easy Final Answers. This assumes access to a range of easy and hard
problems for RL training, with rewards for hard tasks solely provided by the easy-to-hard eval-
uator.

Based on the results reported in Table 6.2, we have the following findings:

DPO and PPO excel over ReST. Among the RL algorithms trained on the PRM800K dataset,
PPO emerges as the most effective, significantly surpassing both ReST and DPO. On the Meta-
MATH dataset, PPO and DPO achieve top performance, while ReST shows only marginal im-
provements over the SFT baseline. The comparative analysis between DPO and PPO across
the PRM800K and MetaMATH datasets indicates that while DPO’s efficacy is on par with PPO
given a high-quality SFT model as initialization, PPO’s effectiveness is less contingent on the
quality of the underlying SFT model [144, 158].

PRM rewards are more beneficial than Final-Answer rewards for hard tasks. Notably,
models trained with PRM rewards with human supervision on the easy tasks (achieving a top
performance of 34.0) outperform the previous state-of-the-art model trained across all task lev-
els (33.0). This highlights the effectiveness of leveraging easy-to-hard evaluations to improve

generator performance across varying task difficulties.

6.4.3 Easy-to-Hard Generalization on the Coding Domain

We conduct further experiments in the coding domain with the APPS dataset [78]. Similarly to
Lightman et al. [114], we sub-sampled 500 questions from the original test set of APPS as our
test set. Specifically, we sub-sampled 100 Introductory questions, 300 Interview questions, and
100 Competition questions, following the original distribution in the test set.

In Table 6.3, we compare the performance of SFT-trained Code Llama [164] (7b & 34b) with
greedy decoding and best-of-N approach. In the latter, an Outcome Reward Model (ORM) of
the same model size is trained to select the best coding one from N sampled solutions.

We found that while the reward model is only trained on the outcome supervision of easy
(Introductory) data, it significantly improves the model performance on hard (Interview & Com-

petition) data. These findings extend the premise of easy-to-hard generalization beyond the
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Table 6.3: Easy-to-hard generalization of evaluators on coding problems (APPS). Both SFTs and
RMs are trained on the easy (Introductory) data. We found that ORMs trained on easy tasks

can improve the re-ranking (Best-of-N) performance on hard (Interview & Competition) coding

problems.
SFT/ORM [ AVERAGE ACCURACY (%) STRICT ACCURACY (%)
TRAIN DATA FCODING  1yrro. INTER. Comp. ALL INTRO. INTER. CoMmp. ALL
ALL GREEDY 314 15.5 12.2  18.0 170 23 2.0 5.2
Easy GREEDY 26.8 14.1 9.5 15.7 11.0 3.0 0.0 4.0
CobpE LLAMA - 7B Easy BEesT-0F-1 25.4 12.0 0.1 13.5 16.0 2.7 0.0 4.8
Easy BEsT-0F-4 27.1 13.8 8.1 15.3 14.0 4.0 0.0 5.2
Easy BesT-OF-16  29.7 16.3 113  18.0 19.0 5.0 3.0 7.4
ALL GREEDY 37.6 19.9 11.3 21.7 220 5.0 2.0 7.8
Easy GREEDY 33.9 19.4 8.5 20.1 21.0 6.0 1.0 8.0
CobE LLAMA - 34B Easy BEsT-0F-1 28.5 14.5 44 15.3 21.0 3.3 0.0 6.2
Easy BEsT-OF-4 36.3 21.3 10.5 22.1 24.0 8.7 1.0 10.2
Easy BesT-0F-16  45.9 25.8 100  26.6 30.0 10.7 3.0 13.0

confines of mathematical reasoning, suggesting its applicability across diverse domains.

6.5 Conclusion

Our study advances the field of AI alignment by demonstrating the potential of easy-to-hard
generalization, where models trained on simpler tasks can be guided to solve more complex
problems without direct human supervision on these harder tasks. Through the use of (process-
supervised) reward models for evaluating and enhancing policy models, we show that evalua-
tors can facilitate this form of generalization, outperforming traditional training methods. Our
findings highlight the effectiveness of re-ranking strategies and reinforcement learning (RL)
in leveraging evaluators for performance gains on difficult tasks. This approach presents a
promising direction for developing Al systems capable of surpassing human problem-solving
capabilities, suggesting a scalable alignment method that could enable Al to independently ad-
vance knowledge in complex domains.

While our study provides valuable insights into easy-to-hard generalization and the poten-
tial of process-supervised reward models, there are limitations to consider. These include the
focus on specific model sizes and datasets, the domain specificity of reasoning tasks, and the

need for further research on the long-term implications and robustness of the method.
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Chapter 7

Lean-STaR: Learning to Interleave

Thinking and Proving

The previous chapter demonstrated how reward models trained on easy tasks can guide lan-
guage models to solve much harder problems, even those that exceed human evaluative ability.
This “easy-to-hard generalization” approach offers a powerful framework for scalable align-
ment: instead of requiring humans to supervise every complex task, we can train evaluators to
generalize supervision and provide feedback even when direct human oversight is unavailable.
In this chapter, we extend this philosophy to one of the most rigorous domains of reasoning:
formal theorem proving. Here, correctness is not a matter of preference or probability—it must
be provable, step by step, in a formal language. We introduce Lean-STaR, a new method that
teaches models to interleave informal reasoning (natural language thoughts) with formal steps,
allowing them not only to prove theorems, but also to explain each move in a way that is both
human-intuitive and machine-verifiable. This approach further illustrates how alignment and
reasoning can go hand-in-hand—by making models think out loud before they act, we open a

path to greater transparency, rigor, and generalization in the most demanding problem settings.

7.1 Introduction

Theorem proving is a fundamental aspect of mathematics, and mathematical reasoning is an
important part of artificial intelligence [136, 239]. Formalized mathematics in particular provides
a challenging testbed for assessing mathematical reasoning capabilities. Since theorems and
proofs in this setting can be represented in the form of checkable source code, it is easy to

evaluate proofs of arbitrary complexity [50]. Automated theorem proving, if successful, can
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also help discover unknown errors in previous proofs', and make it easier to guarantee that
new proofs are correct. More broadly, formal mathematics coupled with powerful automation
may unlock new forms of education and collaboration, mathematical insights, and applications

to verifying critical software [12, 25, 59, 139].

Recently, language models have shown promising progress in formal theorem proving [74,
102, 112, 151, 153, 214, 218]. Existing approaches typically train a model solely based on the
proofs in a formal language (code) such as Lean [50], Isabelle [137], or Coq [45]. Our key
observation is that such approaches ignore a wealth of informal information that may be useful
for learning to prove theorems [210, 211]. For instance, the underlying thought process prior to
each step of a proof is not present in formal source code. Based on this insight, we propose to
train a language model that can produce a natural language chain-of-thought (“thought”) prior

to each step (“tactic”) of a formal proof.

We introduce Lean-STaR, a framework for learning to interleave informal thoughts with
steps of formal proving. Building on the Self-Taught Reasoner (STaR) framework [228], we
enable language models to interleave step-by-step rationales (i.e., thoughts) [138, 207] with
formal proving in a two-stage process. In an initial phase, we prompt a sufficiently capable
language model, such as GPT-4 [1], and generate retrospective thoughts based on a dataset
of human-written proofs, such as Mathlib, the largest collection of human-written proofs in
Lean [128]. Subsequently, we fine-tune a thought-augmented tactic predictor [20, 21, 47, 68]
that, given a Lean state, can generate a thought and predict the subsequent tactic. In a second
phase, we optimize this thought-augmented tactic predictor with the expert iteration algorithm

[8, 175], using multi-step success rate in theorem proving as the reward.

Our work presents a new link between informal and formal mathematics, complementary to
prior explorations that translate standalone mathematical statements [187, 201, 215] or translate
informal proofs into formal proofs [2, 14, 82, 87, 241]. Lean-STaR generates natural language
thoughts specifically for each proof step, improving formal proving capabilities by interleaving

natural and formal languages.

We instantiate Lean-STaR by generating roughly 50,000 thought-augmented examples from
Lean’s Mathlib [128], then synthesize an additional 50k examples through two iterations of
expert iteration. To the best of our knowledge, this yields the first thought-augmented dataset
for theorem proving. After fine-tuning an InternLM2-7b base model [223] on our thought-
augmented data, our final Lean-STaR model can solve 34.8% (pass@32) or 36.1% (pass@64) of

'For example, Terence Tao found a non-trivial error while using Lean to formalize a project [188].
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LCM, recognizing the fundamental theorem of greatest common divisors which relates LCM to GCD in
a specific way. This will enable us to establish an equation involving 'b’, facilitating the
identification of 'b' through algebraic manipulation
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Figure 7.1: The illustration of tactic prediction in one proof step with and without thought.

the problems on miniF2F-test [234]. Using stronger base model InternLM2-7b-plus, Lean-STaR
can achieve 45.4% (pass@32), significantly surpassing the previous results of 43.4% (pass@32).
In summary, Lean-STaR offers a framework for teaching language models to interleave informal
thoughts with formal verification, advancing the capabilities of language models in automated

theorem proving.

7.2 Related Work

Automatic Theorem Proving & Autoformalization. Previous work on learning-based
theorem proving typically follows the GPT-f framework [151], which trains a language model
on (proof state, next-tactic) pairs, then proves theorems by using the model within a best-
first tree search. Subsequent work has explored several directions, including data augmenta-
tion [75], novel proof search methods [102, 199], further training through curriculum learning
[152], retrieval augmentation [218], or practical tools [209]. Others use prompted models to
generate tactics [15, 192], or fine-tune models to generate a full proof [60]. A second auto-
formalization [215] thread incorporates informal mathematics into formal theorem proving.
Draft-Sketch-Prove [87] shows that language models have some ability to use informal proofs
to improve a model’s formal proving abilities, by drafting an informal proof, translating into
a formal proof sketch, then completing the proof with tools like Sledgehammer [21]. Draft-
Sketch-Prove and related methods [198, 231, 242] are limited to the Isabelle prover, since they
use powerful automatic proving tools like Sledgehammer. Lean lacks these tools, so generating

the entire proof at once would be more unlikely in Lean. We focus on Lean, and train language
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Figure 7.2: The diagram of our pipeline. (1) Produce CoT dataset through GPT-4. (2) Fine-

tune the SFT model with the CoT dataset to obtain Lean-CoT. (3) Use expert iteration to generate
the STaR dataset through the model in the last iteration (Lean-CoT in the first iteration) and
then fine-tune Lean-CoT on the updated STaR dataset to obtain the model in the next iteration.
We continue performing this step until a stopping condition is met (e.g., a fixed number of

iterations).

models to generate a thought and predict the subsequent tactic in each proof step. To the best
of our knowledge, we are the first to introduce thought-augmented reasoning in automatic

theorem proving.

Rationale-augmented Reasoning. Recently, many works demonstrated that letting lan-
guage models reason before an answer can improve their performance on tasks including math,
science, and code [32, 138, 207]. Although the corresponding techniques (e.g., Scratchpad and
Chain-of-Thought) have proven to be effective, they require either extensive annotated train-
ing examples or exposure to numerous similar examples during pre-training [23]. The scarcity
of natural language reasoning in formal theorem proving, coupled with the impracticality of
manually annotating rationales for formal mathematics, thus presents a challenge. We propose
a new Lean-STaR framework for synthesizing training examples by taking advantage of the

correctness signal from the formal system.

Bootstrapping Language Model Reasoning. Recently, several works suggest that language
models may be taught to reason via synthetic data that they generate themselves, akin to a re-
inforcement learning method that improves a policy through self-play. Polu et al. [152] showed
that a simple RL algorithm, expert iteration, paired with curriculum learning can improve a

formal theorem proving model. Self-Taught Reasoner (STaR) [228] showed that we can itera-
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Figure 7.3: The visualization of Best-first Search (K = 1) and Sampling (S = 1). Search
method maintains a search tree and explores S tactics on each expanded node. Sampling
method explores K tactic trajectories from the root and ignores illegal tactics in the trajec-

tories.

tively fine-tune the language model on the correct (reasoning, answer) pairs generated by itself
to gradually improve performance. Singh et al. [175] proposed ReST-EM, which filters data
generated by language model with a binary feedback signal rather than using fully manually
annotated data (similar to expert iteration in [152]). Our work builds on these ideas, providing

the first study of bootstrapped thought-augmented proving.

7.3 Our Method: Lean-STaR

We introduce Lean-STaR, a new method for combining informal thoughts with formal theorem
proving. First, we recap interactive theorem proving (§7.3.1). Then we present Lean-STaR’s
data-generation (§7.3.2, §7.3.2) and reinforcement learning (§7.3.2) phases. Finally, we present

our evaluation protocols (§7.3.3).

7.3.1 Preliminaries

Interactive Theorem Provers (ITPs) are typically used for step-by-step automatic theorem prov-
ing in formal mathematics. At each step, we can provide the ITP with a high-level “tactic” to

simplify the current goal state (e.g., the initial goal theorems to be proven) into subgoals. These
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Figure 7.4: An example of Lean proof and thoughts generated by Lean-STaR. Note that
there is a calculation error in the thought (in red), but this does not affect the correctness of the
proof because the calculation task is actually completed by the interactive theorem prover (i.e.,
Lean’s nlinarith)instead of the language model. This shows a benefit of combining neural

and symbolic systems.

subgoals will form new states, and proving all the subgoals results in a complete proof of the
given theorem. We use Lean [50], a popular interactive theorem prover. An example formal

proof in Lean and its explanation are shown in Appendix.

7.3.2 Data Generation & Training

We describe the data generation and training of the direct tactic prediction model (SFT), the
thought-augmented tactic prediction model trained with synthetic data (Lean-CoT), and the
final model trained with expert iteration (Lean-STaR).

Direct Tactic Prediction

We define the theorem-proving problem as a Markov Decision Process (MDP) (S, A, P,, R,)
where proof states serve as states in MDP and tactics serve as actions. From this perspective, a
proof is a trajectory (s1,a1,71), (S2, ag,72), -+ of states s;, tactics a;, and rewards r; € R, and
the ITP (e.g., Lean) provides each new state s, ;.

In the typical setting [151], proving a theorem consists of providing a proof state s to the

language model and then generating a tactic from the language model M, i.e., my/(als). The
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language model can be fine-tuned for this task using a dataset of (proof state, next-tactic) pairs
from successful proof trajectories, i.e. D = {(s’,a') : i = 1,--- , M}, where final states have
a reward of 1. We refer to a language model fine-tuned on such a dataset as a supervised fine-
tuning (SFT) model.

Thought-augmented Tactic Prediction

Existing approaches typically train only on formal states and tactics [151]. We hypothesize that
incorporating a latent thought can improve a model’s ability to predict the next tactic. Formally,
we introduce a hidden “thought” variable ¢; prior to each tactic, and then extend the model to
the form my(a;, t;|s;) = mar(as|ti, s;)mar(ti]s;). In thought-augmented tactic prediction, the

distribution over the next tactic can then be expressed as:

mar(ailss) = mar(alts, si)ma(tils:).
t;

The key challenge is obtaining (state, thought, tactic) pairs for training a model. To this
end, we introduce retrospective rationale generation. Our motivating observation is that
the distribution of natural language thoughts in theorem-proving my(;|s;) is scarce in the pre-
training corpus of large language models. In turn, we find that even the most powerful GPT-4
model does not perform well in generating the correct rationale through few-shot prompting
[23]. To develop a language model capable of generating thoughts and tactics a;, t;|s;, we need
an entirely new dataset Dy = {(s°,t",a’) : i = 1,--- , N}. However, in Lean, we only have
a dataset of Dg = {(s',a’) : i = 1,---, N} where (s°,a’) is one step in some successful
proof trajectories. Given a powerful large language model (&, which we refer to as the oracle
model?®, we give the oracle model the ground-truth tactic a; and let the oracle model produce
the thought ¢; given the current state s; and ground-truth tactic a;. This helps improve the pass
rate and produce thought-augmented data more efficiently. Our few-shot prompt is provided in
Appendix. The design principle of the prompt is to prevent the oracle model from generating
hindsight-like thoughts.

We randomly select M pairs (s°,a’) € Dg . Then the oracle model is used to produce a
thought #' for each pair (s, a’) to create a new dataset Dp{(s,t",a’) : i = 1,---, M}. With
this retrospectively annotated dataset by the oracle model Dy, we obtained our first thought-

augmented tactic prediction model, Lean-CoT, by fine-tuning from the SFT model.

%For instance, in our experiments we use the best available large language model, GPT-4.

95



Bootstrapping Thought-augmented Theorem Proving

We propose to apply expert iteration to further improve the performance of Lean-CoT. Specif-
ically, we start from the initial Lean-CoT model M, and the initial dataset D = {Si D=
1,---, M}, which consists of all initial states s* of the theorems to be proved. In iteration 1, we
use model M to sample K times per problem. Each time the model will produce a proof trajec-
tory [(so, to, ao), (S1,t1,a1), -+, (Sn, tn, a,)]. Then we create a new dataset D; by filtering the
generated trajectories to include only the successful ones. De-duplication is then applied to the
collected trajectories. Now, we can further fine-tune the SFT model M on dataset Dy U D, to
produce Lean-STaR model M;. Then we can use M as initial model to produce dataset D, and
further fine-tune to obtain model M, in the next iteration.

This method can be seen as an offline RL method [175] in the theorem proving MDP. In this
MDP, the cumulative reward R ((so, to, ao), (s1,t1,a1), -+, (Sn, tn,a,)) = 1 if and only if the

proof trajectory is successful. The total expected reward is

J(M,D) = ZE(so,to,ao),--.,(sn,tn,an)~7rM(-|si)R((So,to,ao)y o (Snstn, an))

]

and Lean-STaR’s expert iteration can be seen as optimizing this reward [175].

7.3.3 Evaluation

Setup. We evaluate the model on formal theorem proving - given a theorem statement, pro-
duce a theorem that is correct according to the formal system. This requires an algorithm for
producing a full proof by interacting with Lean. As a new form of theorem-proving system, it
is unclear what the best strategy is when we have informal thoughts. Our preliminary experi-
ments indicate that best-first search with beam search does not work well for the thoughts in
the natural language format. Thus we describe the traditional strategy (best-first search), and

our new approach based on sampling.

Best-First Search. The most popular method to evaluate the theorem proving ability of a
language model M is to use best-first search like GPT-f [15, 151, 209, 218]. In best-first search,
we keep all unexpanded states s;. Each time, we expand the “best” state s; and use the language
model to sample S next tactics a; ;... for the current state s;. For each legal tactic a; j, a new state
can be obtained by applying tactic a; ; on state s;. Following standard practice [151, 209, 218],

we assume the state with maximum negative log-probabilities is the “best”s. Specifically, we
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select state s; with maximum li —logp(aj, s;), where (sg,a0), -, (Si—1,ai—1) is the proof
trajectory before state s; and logj;;)(aj, s;) is the average log probability of each generated token.
We expand up to N states and we get a successful proof search when we reach any proof state
with no goals. Then, we can attempt the search K times to obtain a pass rate pass@K . However,
we found that the best-first search method performed poorly in the Lean-CoT and Lean-STaR
models, as detailed in the Appendix. We attribute this to using average log probabilities, which

may not be a reliable quality indicator when the thought sequence ¢; is generated.

Sampling. Motivated by these issues with applying best-first search to thought-augmented
proving, we develop a new method based on sampling trajectories in parallel. Specifically, our
method samples K times in parallel for each problem, each time generating at most /V tactics.
Also, illegal sampled tactics will be ignored during sampling. Specifically, in a sample, suppose
our current state is s;, the proof trajectory before s; is (so, ag), - - - , (S;—1, @;—1) and the sampled
tactic is a;. If a; is a legal tactic, (s;, ;) will be added to the proof trajectory and we will reach
a new state obtained by applying tactic a; ; on state s;. Otherwise, we ignore this a; and use
language model M to sample a new tactic given state s;. We limit the number of times a tactic
can be generated by language model M to a total of NV per time in K sampling times. The
sampling method is roughly equivalent to the search with S = 1, except that the sampling
ignores illegal tactics. We assume that in the sampling method we have S = 1. In this setting,
evaluating our sampling method and best-first search with equal S x K took approximately
the same amount of GPU time. This sampling method can easily accommodate hidden variable

“thoughts” ¢,. Figure 7.3 compares best-first search and our sampling method.

7.4 Experiments

We instantiate Lean-STaR using the best available open language model pre-trained on the Lean
corpus (InternLM2-Math-base-7b [223]), and follow standard practice in using Lean’s Mathlib
as the underlying training set (via the Lean Dojo dataset [218]). We generate an initial set of
thoughts for Mathlib using GPT-4, perform two rounds of expert iteration, then evaluate the
model on miniF2F [234] and leandojo [218], the de-facto standard benchmark for evaluating
language-model based theorem provers. Our experimental results show that both retrospective
rationale generation and expert iteration significantly improve the theorem-proving capabilities

of language models in this setting. We describe our setup and findings in detail below.
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Table 7.1: Pass rates on the minif2f-test and Leandojo dataset with Lean. This table shows
the pass rates of previous works and our work. S is the number of tactics attempted at each
expanded node (assumed to be 1 in sampling) and K is the total number of search or sampling
attempts per problem. In sampling we use temperature 0.7, and in search we use beam search
when generating the next tactic. We use a random subset of Leandojo4-v9-test (novel premises)
with a size of 320 as test set of leandojo. Note that we sample 32 examples twice when K = 64

in sampling.

APPROACH DecopinG N K S MINIF2F LEANDOJO
GPT-3.5 [1] (FEW-SHOT) SAMPLING 50 1 1 2.8% -
GPT-4 [1] (FEW-SHOT) SampLiING 50 1 1 11.9% -
TRANSFORMER [152] (w/0 RL) SEARCH 512 1 8  24.6% -
LLEMMA-34B [15] SEARCH 50 1 32 25.8% -
LLEMMA-7B [15] SEARCH 50 1 32 26.2% -
REPROVER [218] SEARCH 50 1 64 26.5% -
TRANSFORMER [152] (w/ RL) SEARCH 512 1 8  29.6% -
INTERNLM2-34B [223] SEARCH 50 1 32 29.5% -
COPRA (wrTH GPT-4) [192] CUSTOMIZED - 60 1  29.9% -
COPRA (wrtH GPT-4) [192] Customizep - 100 1  30.7% -
INTERNLM2-7B [223] SAMPLING 50 32 1 28.7% 29.7%
INTERNLM2-7B [223] SEARCH 50 1 32 30.3% -
SFT (INTERNLM2-7B) SAMPLING 50 32 1 29.5% 30.6%
SFT (INTERNLM2-7B) SEARCH 50 1 32 30.7% -
LEAN-COT (INTERNLM2-78B) SAMPLING 50 32 1 32.8% 35.6%
LEAN-STAR (ITER-1) (INTERNLM2-7B) SAMPLING 50 32 1 34.0% 38.4%
LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 32 1 34.8% 39.4%
LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 64 1 36.1% -

7.4.1 Experimental Setup

We use LeanDojo Benchmark 4 v9 as the supervised fine-tuning (SFT) dataset containing 231, 240
data examples. We fine-tune for 1 epoch to obtain the SFT model. For the learning rate, we use
a warmup in the first 20% steps from 0 to 2 x 107°, followed by a cosine schedule decaying to
zZero.

We randomly select 17, 256 different successful proof trajectories from LeanDojo Benchmark
4 dataset [218], and use GPT-4-0125 [142] to annotate 52,438 thoughts from those proof tra-
jectories. We filtered out all proof steps (s°, a’) for which a’ contains the newline symbol “\n”

before annotating. We perform two iterations of expert iteration, and provide the details in
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Table 7.2: Pass rates about InternLM2-Plus-7B on the minif2f-test dataset with Lean.
This table shows the pass rates of previous works and our work. The evaluation setting is the

same as Table 7.1.

APPROACH DecobpinG N K S PassRATE
INTERNLM2-PLUS-7B [223] (FROM PAPER) SEARCH 1000 1 32 43.4%
INTERNLM2-PLUS-7B [223] (REPRODUCED) SEARCH 1000 1 32 42.6%
INTERNLM2-pPLUS-7B [223] SAMPLING 50 32 1 40.9%
SFT (INTERNLM2-pPLUS-7B) [223] SamMpLING 50 32 1 41.3%
LEAN-CoOT (INTERNLM2-PLUS-7B) SampLING 50 32 1 43.4%
LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 45.4%
INTERNLM2-PLUS-7B [223] SamMpLING 50 64 1 42.2%
SFT (INTERNLM2-pPLUS-7B) [223] SamMpLING 50 64 1 43.4%
LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 45.5%
LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 46.3%

Table 7.3: Results for the InternLM2-plus-7b and our Lean-CoT, Lean-STaR, and expert iteration
without CoT. We used sampling with N =50, K =32, & T = 0.7.

APPROACH Pass@32 oF INTERNLM-BASE  PAss@32 oF INTERNLM-PLus
FEW-SHOT 28.7% 40.9%

SFT 29.5%(+0.8%) 41.3%(+40.4%)
LeEaN-CoT 32.8%(+3.3%) 43.4%(+2.1%)
LEAN-STAR 34.0%(+1.2%) 45.5%(+2.1%)
EXPERT ITERATION (SFT) 30.7%(+1.2%) 43.0%(+1.7%)

Appendix due to space.

We evaluate our method on the MiniF2F benchmark [234]. We use a similar evaluation
setting as previous works [209, 218, 223], but use our sampling method instead of best-first
search for the evaluation of our thought-augmented theorem proving model as discussed in
(§7.3.3). We choose these settings to resemble the inference budget used in our baselines, which
follow previous work [15, 209, 223]. Namely, for best-first search baselines we use beam search
to generate the next tactic with S = 32, K’ = 1[15, 209, 223]. We do not compare with methods
designed for other formal languages such as Jiang et al. [87], Xin et al. [216] since language
differences greatly influence the pass rate due to the different tactics and automation. We also
do not compare with Lample et al. [102] since they only report S = 32, K = 64 on best-first
search, which is approximately equivalent to S = 1, K’ = 512 for the sampling method, which
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is too computationally expensive for us.

7.4.2 Main Results

Our main results are reported in Table 7.1. Lean-STaR gives a significant improvement over
the base model. For instance, with a similar inference budget, Lean-STaR achieves 34.8% versus
30.3% in InternLM2 [223] using best-first search and 30.7% in COPRA [192] using GPT-4. With

a larger compute budget, Lean-STaR’s performance improves further to 36.1%.

Thought augmentation improves theorem proving. The first phase of Lean-STaR trains
a model to interleave thoughts and tactics, by fine-tuning on a synthesized dataset of thought-
augmented examples. The fine-tuned model from this phase, denoted LEAN-CoOT in Table 7.1,
achieves a pass rate of 32.8%, which is higher than the model prior to this phase, denoted SFT
(29.5%). We conclude that the first phase of Lean-STaR can improve the theorem proving ability
of a language model, even one that is already specialized for generating tactics in Lean such as
the SFT model.

Bootstrapping improves thought-augmented theorem proving. The second phase of
Lean-STaR consists of generating new thoughts and tactics with the current language model,
saving those that result in correct proofs, and training on the union of the initial thought-
augmented dataset and the saved examples (i.e., expert iteration [152, 175, 228]). Refer to Ap-
pendix for details.

We perform two iterations of expert iteration, and present the results in Table 7.1, denoted
LEAN-STAR. Each iteration improves the model’s theorem proving performance, from 32.8%
(the initial model) to 34% (LEAN-STAR after iteration 1) to 34.8% (LEAN-STAR after iteration
2). Furthermore, we find that the model is amenable to further improvement via additional
sampling, achieving 36.1% by doubling the sampling budget. We conclude that Lean-STaR’s
second phase can further improve a model’s ability to generate thoughts and tactics that lead
to correct proofs. We include three qualitative examples in the Appendix, which show the

model interleaving thoughts and proof steps.

7.4.3 Experiments with stronger base model and more data
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We instantiate Lean-STaR using a stronger language model (InternLM2-Math-plus-7b [223]),
which was released after the experiment above. We follow a similar setup to the previous ex-
periment.

In this experiment, we used 140,000 thoughts annotated by GPT-40 [142] to fine-tune a
model (“Lean-CoT”). Then we performed only one iteration of expert iteration and collected
about 60, 000 (proof state, thoughts, next-tactic) pairs in data, named “STaR dataset” D;. We
further fine-tuned the Lean-CoT model on dataset D; to get the Lean-STaR model.

Our new results are reported in Table 7.2. We can see that Lean-STaR still gives a signif-
icant improvement over the baseline. For instance, Lean-STaR achieves 45.4% versus 39.8%
in InternLM-plus using sampling with a similar inference budget and 43.4% using best-first
search with more inference budget reported in [223]. This results show that both retrospective
rationale generation and expert iteration can improve the theorem-proving capabilities on a

stronger base model.

7.4.4 Experiments on expert iteration without CoT

Table 7.3 shows the result of expert iteration without CoT (i.e., using (state, tactic) pairs only)
as well as the result of Lean-CoT and Lean-STaR. Expert iteration alone achieves 43.0%, which
is less than Lean-STaR (45.4%) in InternLM-plus and achieves 30.7% verus 39.8% in InternL.M-
base. This shows that Lean-STaR’s performance gains do not only come from the use of expert

iteration.

7.5 Conclusion & Limitations

In this paper, we presented Lean-STaR, a novel approach that significantly enhances the theorem-
proving capabilities of language models in formal mathematics by integrating Chain-of-Thought
(CoT) rationales into each proof step. Our method begins with generating synthetic rationales
using ground-truth tactics retrospectively, followed by fine-tuning the language model to gen-
erate these rationales and predict subsequent tactics, resulting in the Lean-CoT model. We fur-
ther improved this model using expert iteration, fine-tuning it on correct proofs it samples and
verifies using the Lean solver. Our contributions include the introduction of the first thought-
augmented theorem proving dataset, demonstrating that expert iteration can further improve
performance, and achieving new results on the miniF2F-test benchmark, increasing the pass

rate from 30.3% to 36.1%. These advancements are not only about improving the accuracy
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of automated theorem proving, but also offer a scalable and efficient framework for advanc-
ing human understanding of mathematics, which may lead to significant impacts in education,
scientific discovery, and program verification [12, 28, 59, 90, 139, 187].

The primary limitation of our method is that its performance may be constrained by issues
of computational scalability. Both Lean-CoT and Lean-STaR have been fine-tuned on a dataset
that is not very large. Additionally, the use of GPT-4 to generate synthetic data may incur a
significant cost and possibly introduce biases. Also, expert iteration could face a bottleneck due
to CPU and IO limitations, which might slow down the process due to a sluggish speed of Lean
ITP.

The success of Lean-STaR in formal mathematics highlights a broader lesson from this the-
sis: as Al systems take on increasingly complex and high-stakes tasks, alignment must go be-
yond preference modeling or factual accuracy—it must be integrated into the reasoning process
itself. By interleaving informal thoughts with formal proof steps, Lean-STaR exemplifies how
models can be taught to reason transparently, verifiably, and in a manner consistent with human
intuitions. The final conclusion chapter now reflects on how the combination of scalable align-
ment strategies—spanning principle-driven learning, fact-grounded optimization, and process-
based reasoning—can form the cornerstone of robust and reliable Al systems as we move toward

more general capabilities.
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Chapter 8
Conclusion

This thesis has presented a suite of scalable alignment frameworks that empower large lan-
guage models to adhere to human values, maintain truthfulness, and perform complex reason-
ing with minimal human oversight. By introducing a principle-driven alignment strategy and
leveraging reinforcement learning from AI feedback, the work demonstrates that models can
be guided by a concise set of human-authored principles while reducing the dependency on
extensive human annotations. Innovative methods such as recitation augmentation and fac-
tually augmented RLHF have been shown to effectively mitigate hallucinations and ground
outputs in verifiable information. In addition, the easy-to-hard generalization framework and
the Lean-STaR approach have significantly advanced the ability of models to reason through
complex tasks and generate transparent, high-quality solutions, thereby establishing a robust
foundation for aligning AI behavior as capabilities scale.

Looking ahead, these findings open new avenues for further research into scalable oversight
and self-supervised alignment techniques. Future work should focus on developing hybrid sys-
tems that integrate automated Al feedback with selective human intervention, enhancing the
interpretability and safety of increasingly autonomous systems. Advancements in areas such
as adversarial robustness, error detection, and dynamic adjustment of internal reward mech-
anisms will be critical to ensure that Al systems remain aligned with ethical standards and
factual correctness as they tackle more challenging tasks. Continued exploration of grounding
mechanisms and improved feedback loops will help refine these alignment strategies, ensur-
ing that future models not only achieve superior performance but also maintain unwavering
adherence to human values and societal norms.

These breakthroughs represent pivotal steps on the path toward Artificial General Intelli-

gence, promising a future where Al systems are both extraordinarily capable and inherently
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aligned with human interests. As scalable alignment frameworks evolve, they pave the way
for AGI that can amplify human potential while mitigating the risks associated with super-
intelligent behavior. The integration of principled alignment with advanced reasoning and
self-supervised techniques lays a robust foundation for a transformative era in Al, where the
development of safe and beneficial AGI becomes an achievable reality. With sustained research
and innovation, the prospect of harnessing AGI for solving complex global challenges and driv-

ing unprecedented technological progress is closer than ever before.
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8.1 Appendix of Chapter 2

Due to space constraints, we refer readers to the appendix sections in [182] for additional details.

8.2 Appendix of Chapter 3

Due to space constraints, we refer readers to the appendix sections in [181] for additional details.

8.3 Appendix of Chapter 4

Due to space constraints, we refer readers to the appendix sections in [183] for additional details.

8.4 Appendix of Chapter 5

Due to space constraints, we refer readers to the appendix sections in [180] for additional details.

8.5 Appendix of Chapter 6

Due to space constraints, we refer readers to the appendix sections in [184] for additional details.

8.6 Appendix of Chapter 7

Due to space constraints, we refer readers to the appendix sections in [115] for additional details.
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