
Toward Length-Extrapolatable Transformers

Ta-Chung Chi

CMU-LTI-24-005

May 2024

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Alexander I. Rudnicky, Chair

Daniel Fried
Lei Li

Dilek Hakkani-Tur, University of Illinois, Urbana-Champaign

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Language and Information Technology.

© 2024 Ta-Chung Chi



Keywords: Transformer, Length Extrapolation, Positional Embedding, Regular Language



Abstract
Since the advent of Transformer language models, the field of natural language

processing has seen remarkable progress. Unfortunately, the complexity of training
such models grows quadratically with the sequence length, making it difficult for prac-
titioners with limited GPU resources to adopt long-sequence-length pre-training. One
way to address this limitation is to allow the model to handle much longer sequences
during testing without further parameter updates. This capability, known as length
extrapolation, is nontrivial and presents several challenges.

Firstly, classic Transformer language models rely on per-position positional embed-
dings to provide positional information; this may be problematic when unseen positions
are encountered during the extrapolation stage. Secondly, models pre-trained on short
sequences struggle when directly fed with longer sequences due to the length distribu-
tional shift problem. Maintaining stable perplexities on longer sequences has proven
challenging with existing approaches. Finally, the evaluation of length extrapolation
capability often relies solely on natural language perplexity; this might not tell us the
whole story as natural language is highly localized as opposed to regular language and
downstream tasks such as long-context QA and code completion.

This thesis addressed the aforementioned challenges from three perspectives. Part
I investigates the role of positional embeddings in Transformer language models. This
thesis demonstrates that strong positional signals are still encoded in the hidden states
of a Transformer language model, even without explicit positional embeddings. To take
advantage of this, the thesis introduces a new variant of relative positional embedding
named KERPLE derived from conditionally positive definite kernels. Part II presents
a thorough analysis of existing length extrapolatable Transformers by measuring the
width of models’ receptive field. The key to successful length extrapolation on language
modeling tasks is found to be the alignment of training and testing receptive fields.
This insight leads to the proposal of a new relative positional embedding design named
Sandwich, which builds upon the originally proposed Sinusoidal positional embedding.
Part III examines the ability of Transformer’s length extrapolation beyond language
modeling and perplexity measurement. Motivated by the recently proposed long-
context retrieval tasks, this thesis provides a better understanding of the attention
mechanism and advances Transformer’s implicit retrieval capability through data-
dependent adjustment of the Softmax temperature. In addition, this thesis addresses
Transformer’s failure on formal language extrapolation tasks. Ideas from previous work
such as Weight-Sharing, Adaptive-Depth, and Sliding-Window-Attention mechanisms
collectively inspire a new Transformer variant named RegularGPT, which demonstrates
extrapolation capability on regular language.

This thesis concludes its exploration of length-extrapolatable Transformers by
suggesting various future directions. It outlines several concrete ideas that pave the way
for future Transformer length extrapolation research.
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Chapter 1

Introduction

Over the past few years, the landscape of natural language processing has undergone a transformative
revolution thanks to the development of advanced Transformer-based language models [Vaswani
et al., 2017b]. These models, powered by extensive self-supervised pretraining, have had a profound
impact on a variety of language tasks including machine translation, text generation, sentiment
analysis, and question-answering. The accuracy and fluency achieved by Transformers have reached
unprecedented heights.

At the heart of these Transformer language models is the self-attention mechanism. Self-
attention functions by computing interactions between all pairs of tokens, facilitating flexible
message exchange. This enables models to make use of contextual nuances. Despite its empirical
effectiveness, the Transformer architecture comes with a notable limitation—it demands substantial
computational resources, particularly in relation to the training sequence length. This is due to
the quadratic nature of the pairwise self-attention computations. Consequently, Transformers face
challenges when processing lengthy input sequences, such as those found in books. Providing
models trained this way is also one of the main selling points of recently released commercial
language models such as GPT-4 [Achiam et al., 2023], Gemini-1.5 [Reid et al., 2024], and Claude-
3 [Anthropic, 2024]. Unfortunately, their proprietary nature restricts researchers from understanding
the inner workings.

The effort that the research community has put into improving the long-context processing
capability of Transformer language models can be categorized into

1. Sub-quadratic Transformer. This line of research focuses on replacing the original self-
attention mechanism with its sub-quadratic counterpart through low-rank matrix approxi-
mation [Wang et al., 2020; Choromanski et al., 2021], kernel method [Tsai et al., 2019a;
Katharopoulos et al., 2020a; Choromanski et al., 2021; Peng et al., 2021], locality-sensitive
hashing [Kitaev et al., 2020], and sparsification [Beltagy et al., 2020; Zaheer et al., 2020].
Because the training cost becomes sub-quadratic, these Transformer language models can be
directly trained on very long sequences.

2. Position Interpolation. When a Transformer is fed with longer sequences, processing out-of-
distribution positional indices is inevitable. One remedy is to rescale and shrink the additional
indices back to the training positional index range [Chen et al., 2023]. A series of follow-up
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work delves deeper into this idea [Peng et al., 2023b; Liu et al., 2024; Chen et al., 2024].
However, a costly fine-tuning process is still needed when using these methods, posing a
challenge for practitioners who have limited resources.

3. Length Extrapolation. The development of length extrapolation often maintains unmodified
self-attention and focuses on the design of positional embeddings. It allows a model trained
on short sequences to handle longer sequences during inference without additional fine-
tuning. Notable methods along this line often rely on novel designs of relative positional
embeddings [Shaw et al., 2018; Dai et al., 2019b; Raffel et al., 2020a; Wennberg and Henter,
2021; Press et al., 2022b; Li et al., 2024].

Note that the above three directions are orthogonal but complementary: A linear Transformer might
be able to further adopt the specially designed length extrapolatable positional embeddings followed
by position interpolation fine-tuning to unlock even longer length extrapolation performance. Taking
into account that (i) the length extrapolation idea is potentially useful for different Transformer
language model architectures (ii) it obviates the need of a costly fine-tuning step, this thesis will
primarily focus on investigating and improving the length extrapolation capability of Transformer
language models.

1.1 Thesis Statement

Addressing the challenge of Transformer length extrapolation is the overarching goal of this thesis.
A length-extrapolatable Transformer language model achieves similar or even better performance
when fed with longer testing sequences, without the need for parameter updates. This thesis
embarks on a journey of exploration and enhancement of the length-extrapolation prowess inherent
in Transformer language models. It delves into various aspects such as positional embeddings,
receptive field, self-attention distribution analysis, and a novel Transformer architecture. The
advances made in this thesis facilitate the efficient processing of long sequences by Transformer
language models, thus opening avenues for future long-context applications.

1.2 Outline

This thesis presents our journey on how we tackled the Transformer length extrapolation challenge.
After laying the foundation of understanding positional embeddings in Chapter 2, this thesis
gradually extends its scope from recency-biased tasks (Chapter 3 and 4) to a more flexible and
holistic modeling of long input sequences (Chapter 5 and 6). Various methods, tools, and model
architectures are proposed along the way, as detailed below:

• Chapter 2 [Chi et al., 2023a] begins our exploration of the length extrapolation journey by
completely removing positional embeddings. This is motivated by the fact that positional
embeddings are the only component that is directly related to the sequence length. We find that
a Transformer language model already encompasses strong positional information without
positional embeddings due to the causal positional mask used to prevent future information
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leakage. Concretely, we measure the variance of the self-attention outputs and discover a
shrinking variance effect. This finding theoretically validates the same empirical finding
presented in prior work. Nevertheless, our experiment shows that a Transformer language
model without positional embeddings, unfortunately, does not extrapolate well, and this forces
us to turn to other solutions, such as relative positional embeddings.

• Chapter 3 [Chi et al., 2022] presents kernelizing and generalizing the existing relative
positional embeddings. We first reveal that the distance metric encoded by relative positional
embeddings can be mathematically modeled by conditionally positive definite kernels. Then
we transform the conditionally positive definite kernels into positive definite kernels relying
on the shift-invariance property of the softmax operation of self-attention computations. By
doing so, our proposed KERPLE, a new relative positional embedding, is the first to truly
utilize longer-than-training sequence information during testing.

• Chapter 4 [Chi et al., 2023b] dives deeper into the family of relative positional embeddings
and attempts to explain why only some of them are able to extrapolate well. Inspired by the
interpretability work in the computer vision field, we calculate the cumulative gradients of the
input tokens to measure the empirical receptive field size of a Transformer language model.
We find that extrapolation failure is often caused by the explosion of the empirical receptive
field of a model. With this lesson learned, we revisit the first proposed absolute positional
embedding, sinusoidal, and transform it into an extrapolatable variant named Sandwich.
Unfortunately, we also find that existing extrapolatable relative positional embeddings do not
model history tokens very effectively due to the local attention mechanism; this might hinder
the performance on tasks that require accurate processing of every input unit, which will be
addressed in the next chapter.

• Chapter 5 [Chi et al., 2024b] investigates the implicit long-context utilization capabilities of
pretrained T5 [Radford et al., 2019b] model family including Flan-T5 [Chung et al., 2022] and
T5-lm-adapt [Lester et al., 2021]. Their flexible relative positional embeddings together with
our proposed Softmax temperature adjustment strategies demonstrate superior performance
on recently proposed long context retrieval tasks [Mohtashami and Jaggi, 2023; Li et al., 2023;
Liu et al., 2023b] without any fine-tuning. In addition, our proposed method also achieves
improved length extrapolation performance on multi-document QA and long code completion
tasks. Finally, we provide empirical evidence and theoretical analysis that elucidate the
underlying dynamics of the proposed temperature adjustment strategies.

• Chapter 6 [Chi et al., 2023c] aims to design a new extrapolatable Transformer language
model that goes beyond local attention. We draw inspiration from existing Transformer
variants including Universal Transformer and Longformer and come up with the combination
of three mechanisms: Weight-Sharing, Adaptive-Depth, and Sliding-Window-Attention. Our
newly proposed model is named RegularGPT which can be viewed as an instantiation of
working memory. Working memory is a well-known concept in psychology, in discussion
of human reasoning abilities; This motivates us to rigorously benchmark RegularGPT’s
reasoning abilities, particularly on algorithmic tasks such as regular language. We observe
much better and more robust extrapolation performance on regular language compared to
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vanilla Transformer language models. Finally, RegularGPT can achieve similar language
modeling and extrapolation performance on natural language, GitHub (code completion), and
ArXiv (scientific articles) datasets.

• Chapter 7 sums up our overall contributions. We will also discuss the possible future
directions enabled by the work presented in this thesis.
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Chapter 2

Latent Positional Information is in the
Self-Attention Variance of Transformer
Language Models Without Positional
Embeddings

2.1 Introduction & Related Work

Within the Transformer architecture, there are two main categories: 1) bidirectional models, such as
BERT [Devlin et al., 2019a], that are trained using the masked language modeling objective, and 2)
(causal) language models, such as GPT [Radford et al., 2019a], that are trained using the traditional
language modeling objective. Both of these categories share the common feature of using positional
embeddings to encode token distance.

Whether positional embeddings are truly essential has been a subject of ongoing research.
Although they have been considered necessary for bidirectional Transformer models [Lee et al.,
2019; Luo et al., 2021b; Sinha et al., 2021; Haviv et al., 2022], the situation is different for
Transformer language models [Irie et al., 2019; Yang et al., 2019a; Tsai et al., 2019a; Scao et al.,
2022b; Haviv et al., 2022]. In Transformer language models, removal of positional embeddings
results in only a marginal decrease in performance, while enabling more efficient training [Haviv
et al., 2022]. In addition to empirical evidence, it has been proven [Bhattamishra et al., 2020b]
that Transformer language models without positional embeddings are Turing-complete and able to
model sequences similar to recurrent neural networks [Rumelhart and McClelland, 1987; Jordan,
1986]. Despite this, it remains an open question where positional information is stored in the
absence of positional embeddings. This motivates further investigation of individual operations
within a Transformer layer.

In this chapter, this thesis will focus on the architecture of a pre- layer normalization (LN) [Xiong
et al., 2020] multilayer Transformer language model without positional embeddings, shown in
Figure 2.1.1 We hereinafter refer to this configuration as TLM. Our primary focus is on the multi-

1Post-LN places layer norm at different positions. It is the configuration used in BERT [Devlin et al., 2019a].
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Figure 2.1: The architecture of a Pre-LN Transformer language model. All the parameters are
randomly initialized and randomly sampled input is used in this chapter.

head attention (MHA) module of a randomly initialized TLM, as it is the only module that allows
intertoken information exchange. To gain a deeper understanding, we compute the mean and
variance of MHA outputs. To our surprise, we discover that the variance already encodes latent
positional information, with later tokens in a sequence displaying smaller variance. This motivates
us to quantify the variance by deriving the output distribution after MHA operations. Finally,
through empirical validation using a fully pretrained TLM, we confirm that the same variance
shrinkage effect persists after extensive gradient updates.

To the best of our knowledge, we are the first to identify and quantify latent positional informa-
tion in TLMs. Our results provide theoretical insights into the removal of positional embeddings,
enabling more efficient pretraining of future TLMs.

2.2 Probing Experiments

Given BERT and TLM (GPT) with positional embeddings removed, prior work [Haviv et al., 2022]
shows that only TLM can maintain the same language modeling performance as its original version
with positional embeddings. The discrepancy could be explained by the fact that only TLM encodes
positional information within its layers, as shown by the position probing experiment in Haviv et al.
[2022]. Since both BERT and TLM have access to the same semantic input and the only difference
is the use of causal attention masks in TLM, we hypothesize that the positional information may be
attributed to the interaction between causal attention masks and the TLM architecture.
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Figure 2.2: We plot the positions w.r.t their mean absolute error (MAE) for input sequence length
L = 512. A naive baseline of predicting the middle point of L = 256 gives an MAE of 128. The
numbers are the average of 5 seeds.

To further explore this hypothesis, we use a randomly initialized and frozen TLM to eliminate
any semantic influence and focus solely on the architectural design. Additionally, to prevent the
model from memorizing the order of input sequences, we do not perform embedding lookups and
feed the model with randomly sampled input vectors. A trainable two-layer linear classifier with
ReLU activation in between was appended to the TLM to probe the position of each token (further
details can be found in § 2.8.1). We plot the mean absolute error (MAE) w.r.t. the number of
Transformer layers in Figure 2.2. The plot indicates that a randomly initialized and frozen TLM
with randomly sampled input vectors inherently provides positional information, with an increase
in the number of layers resulting in higher probing performance. This surprising result prompts
further investigation into the encoding of latent positional information within the TLM architecture.

2.3 Theoretical Analysis

We dissect the inner workings of a TLM by deriving the distribution of TLM operations in the hope
that they elucidate where the latent positional information is stored. The derivation is made possible
thanks to the usage of a randomly initialized and frozen TLM. We adopt the initialization settings
in accordance with those employed in GPT [Radford et al., 2019a]. WLOG, our derivation is
limited to the operations of the first layer in a TLM, and the FFN component is omitted (justified in
§ 2.3.4). The hyperparameters utilized in the simulations are: hidden dimension d = 768, number of
attention heads H = 12, head dimension d/H = 64, sequence length L = 512, standard deviation
for initialization σ = 0.02. All proofs of lemmas are deferred to § 2.8.

Given a sequence of randomly sampled input embeddings {xm}Lm=1, where each element of
xm ∈ Rd is sampled i.i.d. from N(0, σ2), a TLM consists of the following operations.

9
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Figure 2.3: We plot the positions w.r.t their cumulative attention score for L = 512 averaged over
500 samples.

2.3.1 Layer Normalization
For each input embedding xm, we compute the sample mean and (biased) sample variance:

xm,: =

∑d
i=1 xmi

d
, S(xm,:) =

∑d
i=1(xmi − xm,:)

2

d

Then each entry i of xm, denoted as xmi, is normalized by mean and variance to emi:

emi =
xmi − xm,:√
S(xm,:)

∗ γ + β

(∗)
≈ xmi − E[xmi]√

V[xmi]
∼ N(0, 1),

where V[x] denotes the variance of x. Since the initialization scheme sets γ = 1 and β = 0, (∗)
holds with sufficiently large d by the law of large numbers and the continuous mapping theorem.

2.3.2 Self Attention

Each attention head computes query, key, and value vectors in R d
H :

qm = Wqem, km = Wkem, vm = Wvem,

where Wq, Wk, Wv ∈ R d
H
×d are matrices with each element sampled i.i.d from N(0, σ2).

To be precise, most matrices (W (h)
q , W (h)

k , W (h)
v ), vectors (q(h)

m , k(h)
m , v(h)

m ), and scalars (l(h)mn,
a
(h)
mn) are associated with a head number h. For simplicity of notation, we only show the dependency

on h when necessary.
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Figure 2.4: We plot the log positions (up to L = 512) w.r.t their log variance under the assumption
of Property 2.1. The simulation aligns with the theoretical curve posited by Lemma 2.3 at the 0th

layer averaged over 500 samples.

Lemma 2.1. qm, km, and vm have zero mean and (dσ2) · I covariance matrix.
The resulting vectors are processed by the self-attention module for pre-Softmax logits:

lmn =

{
⟨qm,kn⟩, if m ≥ n

− inf, otherwise

followed by the scaled softmax normalization:

amn =
exp

(
lmn/

√
d/H

)
∑L

i=1 exp
(
lmi/

√
d/H

)
Lemma 2.2. lmn has zero mean and d3σ4

H2 variance. lmn/
√
d/H has d2σ4

H
variance.

The numerical variance of lmn/
√
d/H in our case is 7682·0.024

12
≈ 0.0079. Lemma 2.2 suggests the

following approximation:
Property 2.1. When σ4 ≪ H

d2
, lm,: has small variance, making the attention weights am,: almost

evenly distributed among all positions.2

In Figure 2.3, we verify Property 2.1 by showing that amn is almost evenly distributed in simulation.
Observe that the output vector om at position m is:

om = Wo

(
⊕H

h=1

L∑
n=1

a(h)mnv
(h)
n

)
,

2This approximation was also used in Xiong et al. [2020] except that they made a stronger assumption that Wq and
Wk have to be initialized as zero matrices.
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where⊕ denotes the concatenation of vectors from allH attention heads. Assuming that Property 2.1
is valid and that Wo ∈ Rd×d has elements i.i.d sampled from N(0, σ2), we derive the distribution
of om below.
Lemma 2.3. om has zero mean and d2σ4

m
I covariance matrix.

Figure 2.4 is a simulation that verifies Lemma 2.3 under the assumption of Property 2.1. We can
see that the variance of om already encodes the positional information m.

2.3.3 Residual Connection
As indicated by the Addition block of Figure 2.1, the residual connection sets the output as
ym = xm + om. It allows the model to pass the first MHA output to subsequent MHA modules
as well as the final classifier. As the positional information has been passed through the residual
connection, we omit the FFN part in our analysis.

2.3.4 The Final Layer Normalization
Layer normalization is an operation that could eliminate the positional information derived in
Lemma 2.3, which occurs before the MHA modules and position classifier. As mentioned in § 2.3.1,
LN(ym) gives:

y′
mi ≈

ymi − E[ymi]√
V[ymi]

≈
xmi +WoWv

∑m
n eni

m√
σ2 + d2σ4

m

,

E[ymi] = 0, V[ymi] = V[xmi] + V[omi]

= σ2 +
d2σ4

m

Lemma 2.4. The variance of the j-th dimension of LN(ym) is:

mσ2 +
∑

i(Wo,j:Wv,:i)
2

mσ2 + d2σ4
,

where Wo,j: ∈ R1×d is the j-th row of Wo. Wv,:i ∈ Rd×1 is the i-th column of Wv. As long as∑
i(Wo,j:Wv,:i)

2 ̸= d2σ4, the classifier should be able to exploit the discrepancy to derive m.
The readers might wonder why Wo,j: and Wv,:i in the numerator cannot be treated as random

variables. The reason is that we focus only on one dimension (j-th) at a time. This means that we
cannot use the law of large numbers to approximate the sample variance of ymj as we did for the
denominator.

2.3.5 Relaxing the Assumptions
We discuss possible relaxation of the assumptions used in § 2.3.2.
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Figure 2.5: We vary the value of σ and show its effect at the 0th layer. As we can see, a smaller
value of σ brings Lemma 2.3 into alignment with the corresponding simulation more closely. Note
that the two lines completely overlap when σ = 0.002. Average of 500 samples.

What if Property 2.1 does not hold? Or equivalently, σ4 ≪̸ H
d2

. This prompts us to vary the value
of σ. In Figure 2.5, we see that the smaller σ better aligns Lemma 2.3 with the simulations, which is
unsurprising as Lemma 2.3 assumes small σ. Even when σ is not too small (that is, σ = 0.2, 0.02),
the variance still encodes the positional information as the variance of om is negatively correlated
with its position m.

Other Initialization Schemes So far we assume that the weight matrices (Wq, Wk, Wv, Wo)
are initialized i.i.d. from N(0, σ2). However, we can relax the assumption to i.i.d. samples from a
distribution with zero mean and finite variance. This is because the proof in § 2.8 calculates the
covariance. The variance calculation relies on E[rir⊤

i ] = σ2I where r⊤
i is the i-th row vector of a

weight matrix. This property holds for any distribution with zero mean and σ2 variance.

2.4 Analysis of Previous Discoveries

Why are the positions of later tokens in a sequence harder to be predicted in Figure 3 of Haviv
et al. [2022]? Lemma 2.3 states that the variance is inversely proportional to the position m, so
the variance of later tokens (large m) plateaus, resulting in a more difficult numerical optimization
problem. This also suggests a potential downside of removing positional embeddings. It might be
challenging for the model to infer positional information of the later tokens in extremely long input
sequences.

Why do lower layers (closer to input) give worse probing performances in both Figure 2.2
and Haviv et al. [2022]? This can be explained by Figure 2.4. Most of the positions at the 0th
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layer have a tiny variance (exp(−10) = 4.5e−5), again presenting a difficult numerical optimization
problem.

Why does BERT fail to converge without positional embeddings? In a BERT model [Devlin
et al., 2019a], each token has access to all other tokens, causing the variance at all positions d2σ4

L
.

Therefore, a BERT model cannot utilize variance differences as its positional indicator.

2.5 Post-Training Results

Our derivations apply only to the initial stage where the TLM and input embeddings are randomly
initialized, and this may not hold true after gradient updates. It is therefore essential to verify the
existence of variance properties and lemmas on a fully pre-trained TLM on the OpenWebText2
dataset (details in § 2.8.2).

We expect that the properties of lower layers of a pre-trained TLM should align more closely
with the theoretical results for two reasons: 1) There are more steps between the lower layers
and the final language modeling loss, resulting in smaller gradients and thereby fewer parameter
updates, and 2) lower layers typically encode more low-level information dependent on positional
information [Vulić et al., 2020; de Vries et al., 2020]. Figures 2.6 and 2.7 demonstrate that the 0th

(lowest) layer exhibits a highly similar cumulative attention probability and decay-with-position
variance, as shown in the theoretical results. On the contrary, higher layers deviate from the analyses
in § 2.3. We posit that the model learns to rely more heavily on semantic rather than positional
information. This also explains why predicting positions using outputs of higher Transformer layers
is more challenging, as demonstrated in Figure 2 of Haviv et al. [2022].

2.6 Conclusion

We mathematically analyzed a randomly initialized Transformer language model without positional
embeddings. We showed that the variance of the self-attention output decreases as the position
increases, which serves as an indicator for positional information. We validated that, after extensive
gradient updates, the lower layers of a pre-trained language model still exhibit highly similar
variance-reduction behavior. Our results pave the way for the pre-training of more efficient and
positional embedding-free Transformer language models.

2.7 Limitations

The limitations of this chapter come mostly from our assumptions: 1) a randomly initialized and
frozen TLM, and 2) Input tokens are all different and randomly sampled. These two assumptions
obviously do not hold for human language and pre-trained TLMs. Therefore, we also attempt to
empirically verify the existence of lemmas and properties on a pre-trained TLM without positional
embeddings in § 2.5.
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Figure 2.6: We plot the positions w.r.t their cumulative attention probability for L = 512 of a
pre-trained TLM. We average over all heads in a layer and 500 samples.
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Figure 2.7: We plot the log positions w.r.t their log variance for L = 512 of a pre-trained TLM. We
average over 500 samples.
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That being said, several methods could be attempted to remove these assumptions. For example,
we could analyze the training dynamics of a TLM to shed light on the model parameter distribution
after pretraining. Alternately, Zipf’s law or a simple n-gram language model could be used to
quantify the degree of input token duplication in human languages. This might provide a more
accurate estimate of the variance at different positions. We leave these ideas for future work.

# Layers Hidden Size # Attention Heads Train Seq. Len. # Trainable Params.
12 64 12 512 162M

Optimizer Batch Size Train Steps Precision Dataset
Adam (lr 6e-4) 32 50,000 bfloat16 OpenWebText2

Table 2.1: Pre-trained Model Configurations.

2.8 Proofs and Experimental Details

The proof of Lemmas 2.1 and 2.2 are head-dependent, while that of Lemma 2.3 is head-independent.
For notation simplicity, in Lemmas 2.1 and 2.2, we remove the head dependency on matrices (W (h)

q ,
W

(h)
k , W (h)

v ), vectors (q(h)
m , k(h)

m , v(h)
m ), and scalars (l(h)mn, a(h)mn).

Proof of Lemma 2.1 Here, we use r⊤
i to denote the i-th row vector of Wv.

cov(vm,vn) = E[vmv
⊤
n ]

= E[Wveme
⊤
nW

⊤
v ]

= E


r

⊤
1 em

...
r⊤

d
H

em

[e⊤
n r1 . . . e⊤

n r d
H

]
=
[
E[r⊤

i eme
⊤
n rj]

] d
H

i,j=1

=
[
E[Tr(rjr⊤

i eme
⊤
n )]
] d

H

i,j=1

=
[
Tr(E[rjr⊤

i ]E[eme
⊤
n ])
] d

H

i,j=1

(∗)
=
[
Tr((1i=jσ

2) · Id · 1m=n · Id)
] d

H

i,j=1

=
[
1i=j1m=ndσ

2
] d

H

i,j=1

= (1m=ndσ
2) · Id/H

(∗) holds because ri and rj are independent when i ̸= j (similarly for em and en) and the covariance
of a Gaussian random vector is an identity matrix. Id and Id/H denote d× d and d

H
× d

H
identity

matrices.
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Proof of Lemma 2.2 Here, we use r⊤
i to denote the i-th row vector of Wq and Wk.

cov(lmn, lmp)

= E[(e⊤
mW

⊤
q Wken)(e

⊤
mW

⊤
q Wkep)

⊤]

= E[Tr(e⊤
mW

⊤
q Wkene

⊤
p W

⊤
k Wqem)]

= E[Tr(eme
⊤
mW

⊤
q Wkene

⊤
p W

⊤
k Wq)]

= Tr(E[eme
⊤
m]E[W⊤

q Wkene
⊤
p W

⊤
k Wq])

= E[Tr(ene
⊤
p W

⊤
k WqW

⊤
q Wk)]

= Tr(E[ene
⊤
p ]E[W⊤

k WqW
⊤
q Wk)])

= (1n=p)Tr(E[WqW
⊤
q ]E[WkW

⊤
k ])

(∗)
= (1n=p)Tr((

d

H
σ2 · I)( d

H
σ2 · I))

= (1n=p)
d3σ4

H2

(∗) holds since:

E[WqW
⊤
q ] = E


r

⊤
1
...

r⊤
d
H

[r1 . . . r d
H

]
=
[
E[r⊤

i rj]
] d

H

i,j=1
=

d

H
σ2 · I

Proof of Lemma 2.3 Because Wo ∈ Rd×d is applied on a concatenation of vectors at all heads,
we take vi = ⊕H

h=1v
(h)
i . vi here is head-independent while vi at Lemma 2.1 is head-dependent.

Here, we use r⊤
i to denote the i-th row vector of Wo.
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cov(om,om)

Property 2.1
≈ E

[
Wo

∑m
i=1 vi

m

∑m
j=1 v

⊤
j

m
W⊤

o

]

=
1

m2

m∑
i,j=1

E[Woviv
⊤
j W

⊤
o ]

=
1

m2

m∑
i,j=1

E


r

⊤
1 vi
...

r⊤
d vi

 [v⊤
j r1 . . . v⊤

j rd
]

=
1

m2

m∑
i,j=1

[
E[r⊤

k viv
⊤
j rl]

]d
k,l=1

=
1

m2

m∑
i,j=1

[
E[Tr(rlr⊤

k viv
⊤
j )]
]d
k,l=1

=
1

m2

m∑
i,j=1

[
Tr(E[rlr⊤

k ]E[viv
⊤
j ])
]d
k,l=1

(∗)
=

1

m2

m∑
i,j=1

[
Tr((1k=lσ

2) · I

·(1i=jdσ
2) · I)

]d
k,l=1

=
d2σ4

m
I

(∗) follows from Lemma 2.1: because cov(v(h)
i ,v

(h)
j ) = (1i=jdσ

2) · Id/H , a concatenation for all
h ∈ H gives E[viv

⊤
j ] = (1i=jdσ

2) · Id.

2.8.1 Probing Experiment Details
We train a randomly initialized and frozen TLM with 12 layers, d = 768, H = 12, L = 512, and
σ = 0.02. We use the Adam optimizer [Kingma and Ba, 2014] with learning rate 1e− 3 and 5000
gradient updates. The batch size is set to 32. We implement our model using PyTorch [Paszke et al.,
2019].

2.8.2 Pre-trained Transformer Language Model Details
We use the gpt-neox library [Andonian et al., 2021] to train a TLM with no positional embeddings.
Detailed hyperparameters are listed in Table 2.1. The pretraining takes 5 hours on one NVIDIA
A100-40GB.
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2.8.3 Scientific Artifacts
We use the gpt-neox library [Andonian et al., 2021] under Apache-2.0 license. OpenWebText2 [Gao
et al., 2020a] is released by the authors of gpt-neox. The codebase and dataset are publicly released
for research purposes. The steps taken to protect privacy and anonymization are discussed in Section
6 and 7 of Gao et al. [2020a]. The distribution and statistics of OpenWebext2 are also discussed
in Gao et al. [2020a].
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Chapter 3

Kernelizing Relative Positional Embeddings
for Transformer Length Extrapolation

3.1 Introduction

We have seen how variance can serve as the implicit positional indicator for a Transformer language
model without positional embeddings. However, § 2.4 suggests the difficulty in performing length
extrapolation due to the fact that the extrapolated tokens share similar variance. Therefore, we
turn our attention to designs of length-extrapolatable positional embeddings. While recent work
on absolute positional embeddings demonstrated the length extrapolation capability [Kiyono et al.,
2021; Likhomanenko et al., 2021], it is believed that relative positional embeddings are more robust
to input length change [Likhomanenko et al., 2021], for example, ALiBi [Press et al., 2022b] and
T5 [Raffel et al., 2020a]. Hence, we are motivated to study the inner workings of relative positional
embeddings.

Relative positional embeddings (RPE) encode the idea of shift-invariance: for any shift p,
(m+ p)− (n+ p) = m− n. It is often added directly to the self-attention matrix before Softmax
normalization [Chen et al., 2021b]. Inspired by shift-invariance and the ability of a kernel to define
a similarity function, there have been studies on shift-invariant kernels for RPE [Wennberg and
Henter, 2021] with a focus on the Gaussian kernel. However, in our preliminary experiments, the
Gaussian kernel demonstrates a limited length extrapolation ability (see § 3.7.3). Hence, a distinct
class of shift-invariant kernels is needed to achieve adequate length extrapolation.

To this end, we note a set of well-established conditionally positive definite (CPD) kernels
suitable for modeling distance metrics [Schölkopf, 2000]. However, CPD kernels do not conform
to an inner product. We can remedy this issue by transforming a CPD kernel into a PD kernel by
adding a sufficiently large constant. This constant offset is subsequently implicitly absorbed in
the Softmax normalization (see the discussion below of Eq. (3.2)). For example, ALiBi implicitly
admits a PD kernel of the form c − |m − n| (see the end of § 3.4), which is reduced to a CPD
kernel −|m− n|. The combination of CPD kernel and Softmax normalization opens the door to a
sea of possible CPD kernels. We investigate structures from this class that exhibit a strong length
extrapolation ability, such as ALiBi.
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Figure 3.1: The 3-Para-Log variant of the proposed KERPLE framework. a, b, and p are learnable
parameters in each attention head shared across layers. Since # of heads is H , there are 3 · H
learnable parameters. The learnable parameters are trained with length-3 sequences. At inference
time, the last row (in dashed squares) becomes active, and the model extrapolates to length-4
sequences. Note that we focus on causal language modeling following ALiBi, so the matrices are
triangular.

Our main result is a framework for KErnelize Relative Positional Embedding for Length
Extrapolation (KERPLE). The framework elucidates key principles that encourage the length
extrapolation property. We show that ALiBi is a particular instance within our framework. Our
subsequent experiments suggest that the proposed method yields better length extrapolation on large
datasets such as OpenWebText2, GitHub, and ArXiv.

3.2 Background and Related Work

3.2.1 Preliminary

Let {wm}Lm=1 be the input tokens to a Transformer model, where L is the total number of tokens.
Each wm is a scalar and is used to index the embedding vector em ∈ Rd as input to the Transformer.
A Transformer converts each em into query, key, and value vectors in Rd: qm = Wqem, km =
Wkem, vm = Wvem, where Wq, Wk, Wv ∈ Rd×d are learnable matrices. Then, the self-attention
module computes the scaled attention scores and generates the output vector om at position m as:

am,n =
exp(q⊤

mkn/
√
d)∑L

i=1 exp(q
⊤
mki/

√
d)
, om =

L∑
n=1

am,nvn.

Since the operation is position-agnostic, it is believed that positional information helps model token
interactions [Vaswani et al., 2017b], which we survey in the next subsection.

3.2.2 Positional Embedding
Absolute. Absolute positional embeddings assign a positional vector pm to each position m and
add pm to the embedding vector em. The very first version of which is the predefined sinusoidal
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function [Vaswani et al., 2017b]. Following the success of BERT [Devlin et al., 2019b], learnable
absolute positional embeddings have been applied to the task of masked language modeling [Devlin
et al., 2019b; Liu et al., 2019; Clark et al., 2020; Lan et al., 2020], autoregressive decoding [Radford
et al., 2018, 2019b], and sequence-to-sequence [Gehring et al., 2017; Lewis et al., 2019] settings.
Recent work studied ways to extrapolate sinusoidal positional embeddings to longer sequences
by randomly shifting absolute positions during training [Kiyono et al., 2021] or increasing with
continuous signals [Likhomanenko et al., 2021].

Relative. As opposed to the modeling of the absolute position m, relative positional embeddings
(RPE) that model the positional difference m− n have become popular in the literature [Shaw et al.,
2018; Huang et al., 2019; Dai et al., 2019b; Yang et al., 2019b; Huang et al., 2020; He et al., 2021; Ke
et al., 2021; Chen et al., 2021b]. In particular, the T5 model that considers bucketed relative distances
and log-binning has been shown to perform well on various Transformer architectures [Raffel
et al., 2020a]. Rotary positional embedding [Su et al., 2021b] encodes the position with rotations:
f(qm,m) = Rmqm whereRm is a rotation matrix with angles proportional tom. With the rotation’s
property, the query-key product exhibits a positional difference: f(qm,m)⊤f(kn, n) = q⊤

mRn−mkn.
We note that the overview above focuses on the NLP domain. Recent work has applied positional

embeddings to other domains such as vision [Wu et al., 2021c] and speech [Likhomanenko et al.,
2021]. A survey can be found in [Dufter et al., 2022].

3.2.3 Kernel and its Application in Transformer

The kernel trick is a classic approach to generalize the inner product to high dimensional spaces
[Mika et al., 1998; Schölkopf, 2000; Leslie et al., 2001; Dhillon et al., 2004; Takeda et al., 2007]. In
the context of Transformers, there has been interest in applying kernels to the self-attention structure
to enhance the performance. Examples of such work include kernel for positional embeddings [Tsai
et al., 2019b; Wu et al., 2021a; Wennberg and Henter, 2021; Luo et al., 2021a]. Another line of
research leverages the kernel’s feature map [Rahimi and Recht, 2007] to linearize the self-attention
module and reduce the computational cost [Katharopoulos et al., 2020b; Chen et al., 2021c; Xiong
et al., 2021; Peng et al., 2021; Choromanski et al., 2021; Qin et al., 2022].

3.3 Theoretical Foundations of CPD Kernels

3.3.1 PD and CPD Kernels

In this chapter, we use shift-invariant conditionally positive definite (CPD) kernels to model the
effect of relative positional differences. We propose this formulation because the notion of relative
is modeled by a shift-invariant function: a bivariate function k over two positions (m,n) such that
k(m,n) = f(m−n) for some univariate f . The notion of positional differencem−n is generalized
by the CPD kernel. We review the definitions of PD and CPD kernels below.
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Definition 3.1 (PD Kernel). A (real) symmetric function k : X × X → R is a positive definite
kernel if for any integer N and any {xi ∈ X}Ni=1, {ci ∈ R}Ni=1, the quadratic form is nonnegative:∑N

i=1

∑N
j=1 cicjk(xi, xj) ≥ 0.

Definition 3.2 (CPD Kernel). A (real) symmetric function k̃ : X × X → R is a conditionally
positive definite kernel if for any integerN and any {xi ∈ X}Ni=1, the quadratic form is conditionally
nonnegative:

∑N
i=1

∑N
j=1 cicj k̃(xi, xj) ≥ 0 for {ci ∈ R}Ni=1 with

∑N
i=1 ci = 0.

Fact 3.1 (Berg et al. [1984] and Prop. 5 of Schölkopf [2000]). Let k̃ : X ×X → (−∞, 0] be a CPD
kernel with k̃(x, x) = 0 ∀x ∈ X . Then, there exists a Hilbert spaceH and a mapping ϕ : X → H
such that ∥ϕ(x)− ϕ(x′)∥2 = −k̃(x, x′).

Fact 3.1 suggests that CPD kernels generalize distance metrics to high dimensional spaces. Since
we are interested in positional differences, we examine modeling the distance between positions
using CPD kernels.

However, Fact 3.1 also implies that CPD kernels do not encode inner products as required by
self-attention for the computation of pairwise relations. PD kernels represent inner products. To
better understand the effect of CPD kernels on self-attention, we need to establish relations between
CPD and PD kernels. As noted in Schölkopf [2000], if one takes any PD kernel and offsets it by
a constant, the result is at least a CPD kernel. In the next subsection, we show that the converse
is nearly true: if k̃ is CPD, so is c + k̃ for large enough c ∈ R (Lemma 3.1). Therefore, we may
generate the CPD kernels of interest and transform them into PD kernels if needed.

3.3.2 Constructing PD Kernels From CPD Kernels via Constant Shifts

In this subsection, we review a few properties of CPD kernels and use these to generate a variety of
CPD kernels. Then, we present a lemma that transforms CPD kernels into PD kernels via constant
shifts. This enables the production of a family of PD kernels from CPD kernels. Finally, we present
our critical observation that the exact value of the constant shift is not needed, thanks to a nice
property of Softmax normalization.

Below are some important facts about CPD kernels.
Fact 3.2 (Scaling and Summation). If k̃1 and k̃2 are CPD, then so are a · k̃1 (for a > 0) and k̃1 + k̃2.

Fact 3.3 (Berg et al. [1984] and Prop. 4 of Schölkopf [2000]). If k̃ : X × X → (−∞, 0] is CPD,
then so are −(−k̃)α for 0 < α < 1 and − log(1− k̃).
Fact 3.4 ( Schölkopf [2000], page 3). The negative squared distance −∥x− x′∥2 is CPD.

The three Facts above jointly yield a rich family of CPD kernels as shown below.
Corollary 3.1. The following are CPD kernels.

(a) k̃(x, x′) = −a∥x− x′∥p with 0 < p ≤ 2 and a > 0.
(b) k̃(x, x′) = −b · log(1 + a∥x− x′∥p) with 0 < p ≤ 2 and a, b > 0.

We note that it is possible to keep iterating between Fact 3.2 and 3.3 and generate more
complicated examples, e.g., −a∥x− x′∥p − b · log(1 + a∥x− x′∥p) or −b · log(1 + a∥x− x′∥p)c
for 0 < c < 1. However, since relative positional embeddings are of our interest, we only consider
simple CPD kernels. Those with complicated forms are deferred to future work.
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Now that Corollary 3.1 has presented a few class of CPD kernels, we prove a lemma (in § 3.7.1)
that constructs PD kernels from CPD kernels through shifting. Later in Eq. (3.2), we will see that
the shifting construction is combined neatly with the Softmax normalization of self-attention.
Lemma 3.1 (CPD Shift Lemma. Proof in § 3.7.1). Let k̃ : X × X → R be a CPD kernel. There
exists c ≥ 0 such that c+ k̃ is a PD kernel.

Lemma 3.1 implies the CPD kernels in Corollary 3.1 can be made PD if a large enough constant
is added. For example, c − ∥x − x′∥p for large enough c. Although Lemma 3.1 does not have
an explicit construction of c, thanks to the shift-invariant property of the Softmax normalization,
we can leave it as an under-determined constant in our positional embedding design (Eq. (3.1) in
section 3.4). Given a set of test points {xi}Ni=1, one can do a geometric sequence search1 to search
for a c such that the N ×N matrix [c+ k̃(xi, xj)]

N
i,j=1 ⪰ 0. Hence, we do not need the value of c ,

but we can compute it if needed, e.g., deriving the feature map of c+ k̃.

Alternative Proof of c− ∥x− x′∥pc− ∥x− x′∥pc− ∥x− x′∥p. While the CPD shift lemma is convenient, one can prove
c− ∥x− x′∥p is PD for large enough c using a kernel representation theorem in Schoenberg [1938].
See § 3.7.2 for details.

3.4 Kernelized Relative Positional Embedding

Let {qm}Lm=1 and {kn}Ln=1 be the input queries and keys. Let (r1, ..., rℓ) be learnable parameters.
We propose a kernelized relative positional embedding as follows.

am,n =
exp

(
(q⊤

mkn + k̃r1,...,rℓ(m,n))/
√
d
)∑L

i=1 exp((q
⊤
mki + k̃r1,...,rℓ(m, i))/

√
d)
, (3.1)

where k̃r1,...,rℓ(m,n) is any shift-invariant CPD kernel with ℓ parameters. Due to Lemma 3.1,
Eq. (3.1) can be reformulated into its kernel form as follows.

am,n
(∗)
=

exp
(
(q⊤

mkn + c+ k̃r1,...,rℓ(m,n))/
√
d
)∑L

i=1 exp((q
⊤
mki + c+ k̃r1,...,rℓ(m, i))/

√
d)

Lemma 3.1
=

exp
(
q⊤
mkn + kr1,...,rℓ(m,n))/

√
d
)∑L

i=1 exp(q
⊤
mki + kr1,...,rℓ(m, i))/

√
d)

=
exp

(
kcomp([qm,m], [kn, n])/

√
d
)∑L

i=1 exp
(
kcomp([qm,m], [ki, i])/

√
d
) . (3.2)

(*) is due to the shift-invariant property of the Softmax normalization: exp(xi)∑
j exp(xj)

= exp(xi+c)∑
j exp(xj+c)

for any c ∈ R. The second equality defines a bias kernel which is positive definite using Lemma 3.1:

kr1,...,rℓ = c+ k̃r1,...,rℓ . (3.3)

The last equality introduces a composite kernel kcomp : Rd+1 × Rd+1 → R as

kcomp([qm,m], [kn, n]) = q⊤
mkn + kr1,...,rℓ(m,n). (3.4)

1By geometric sequence search, we can enlarge c by 2, 4, 8, 16, and so on until we find the required large enough
constant.
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Interpretation. The proposed method can be interpreted as applying a composite kernel to self-
attention. The composite kernel combines the information from query qm, key kn, and positions
(m,n) in a way that augments the original self-attention structure by multiplicative and additive
position embeddings. The augmentation allows kcomp to not only retain the original q⊤

mkn but also
include positional information from the bias kernel kr1,...,rℓ .

Practical Choice. In section 3.5.2, we fix ℓ = 2 and experiment on two variants of the composite
kernel, Eq. (3.4), where we call these the power variant and the logarithmic variant of our proposed
KERPLE framework, Eq. (3.2). These are from a combination of Corollary 3.1 and Eq. (3.3).

(power) kcomp([qm,m], [kn, n]) = q⊤
mkn + c− r1|m− n|r2 with r1 > 0 and 0 < r2 ≤ 2.

(logarithmic) kcomp([qm,m], [kn, n]) = q⊤
mkn + c− r1 · log(1 + r2|m− n|) with r1, r2 > 0.

We note that these are not the only variants of the composite kernel. In section 3.5.3, we experiment
with two more complicated variants, but only find lower training speeds and marginal improvement
in perplexities (e.g., logarithmic variant vs. 3-para-log). Thus, based on our study, the choices above
hold advantages in both performance and speed.

Connection to Prior Work. When the bias kernel, Eq. (3.3), is a triangle kernel: c− |m− n|,
our model reduces to ALiBi [Press et al., 2022b]. Wennberg and Henter [2021] discuss the situation
where the bias kernel is a Gaussian kernel. Tsai et al. [2019b] is the case where there is no bias
kernel and the attention product q⊤

mkn is multiplied by an exponentiated inner product kernel,
exp(x⊤y). Since ALiBi is the state-of-the-art and has great input length extrapolation, we will
focus on comparison with ALiBi in our experiments.

The logarithmic variant has an implicit connection to T5 positional bias [Raffel et al., 2020a].
According to the official GitHub repository 2 and the HuggingFace Transformer [Wolf et al., 2020],
T5 bias is implemented with a log-binning strategy. For each head of the Transformer, they maintain
a bucket of 32 learnable parameters and assign the relative positional bias bm−n to these parameters
as

bm−n =

{
bucket[m− n] if 0 ≤ m− n < 16

bucket[min(31, 16 + ⌊ log((m−n)/16)
log(128/16)

· 16⌋] if m− n ≥ 16,

where ⌊·⌋ is the floor function. Note that the log factor is approximately 7.7 log m−n
16

. Therefore, T5
is using a logarithmic bucket assignment, which turns out to extrapolate to different input lengths.
Compared with T5, our logarithmic variant uses fewer parameters (2x12 vs. 32x12) but cannot learn
non-monotonic relations (the log function is monotonic). We will conduct additional comparisons
with T5 bias in our experiments.

2https://github.com/google-research/text-to-text-transfer-transformer
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3.5 Experiments

3.5.1 Dataset and Implementation Description

Dataset. We conduct experiments on OpenWebText2, GitHub, and ArXiv datasets described in
Gao et al. [2020b]. OpenWebText2 includes recent content from Reddit submissions until 2020,
content from multiple languages, document metadata, multiple dataset versions, and open-source
replication code. GitHub includes open-source repositories written in primary coding languages
such as Java, C/C++, Python, and Go. ArXiv includes papers written in LaTex in Math, Computer
Science, Physics, and some related fields. These tasks are motivated by the downstream applications
such as online chatting [Roller et al., 2021], code completion [Chen et al., 2021a], and academic
paper summarization [Zhang et al., 2020].

OpenWebText2 GitHub ArXiv
Raw Size 66.77 GB 95.16 GB 56.21 GB
Type Internet Coding Academic

Table 3.1: Dataset overview. Raw Size is the size before any up- or down-sampling.

Implementation. We adapt our model from GPT-NeoX [Black et al., 2021], a Transformer
implementation by the EleutherAI team. The codebase is based on NVIDIA Megatron Language
Model [Shoeybi et al., 2019] and further accelerated using Microsoft DeepSpeed library [Rasley
et al., 2020].

Our model is trained on a machine with one NVIDIA A100 GPU with 40 GB of memory.
We adopt almost all configurations of small GPT-NeoX3, except that we change the train-micro-
batch-size to 32, seq-length to 512, and max-position-embeddings to 512. Table 3.2 summarizes
the important configurations fixed throughout our experiments. In particular, the floating-point

# Layers Hidden Size # Attention Heads Train Seq. Len. # Trainable Params.
12 64 12 512 162M

Optimizer Batch Size Train Steps Precision # Trainable Params. for RPEs
Adam (lr 6e-4) 32 50,000 bfloat16 at most 36

Table 3.2: 162M Model Configurations.

encoding is set as bfloat16 (Brain Floating Point, developed by Google Brain) so that the training
can be accelerated by half-precision computation with reliable stability [Kalamkar et al., 2019].
Hidden size 64 means that d = 64 in Eq. (3.1).

3https://github.com/EleutherAI/gpt-neox/blob/main/configs/small_bf16.yml
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3.5.2 Experimental Results (Also c.f. § 3.7.4 to 3.7.7)
We conduct experiments to cover aspects such as input length extrapolation, application on different
domains, and comparison with the prior work. These are elaborated on below. (i) Motivated by the
input length extrapolation demonstrated in [Press et al., 2022b], we train our model with length 512
and test on lengths ranging from 512 to 16384. We hope that the emphasis on extrapolation enables
the application of Transformers to longer sequences. (ii) To evaluate the applicability of the model
in different domains, we conduct experiments on OpenWebText2, GitHub, and ArXiv datasets. (iii)
To validate the effectiveness of our method, we compare KERPLE with Sinusoidal [Vaswani et al.,
2017b], Rotary [Su et al., 2021b], T5 [Raffel et al., 2020a], and ALiBi [Press et al., 2022b].

Table 3.3 reports the perplexities at different extrapolation lengths. We perform non-overlapping
evaluation: Suppose text is segmented in a different manner for 512 and 1024 tokens, we have N
sentences and N/2 correspondingly to evaluate. We also perform a paired two-sided t-test to validate
the statistical significance (significance level p = 0.05). We compare each candidate RPE with
our proposed logarithmic variant and mark the candidate with a † if the log variant is statistically
significantly better. Table 3.4 reports the training speed. These tables lead to three conclusions.
First, within the KERPLE framework, the logarithmic variant is better than the power variant.
Secondly, the logarithmic variant is 9.7% faster than T5. In terms of extrapolation, the logarithmic
variant generally does better than T5 but could be slightly worse than T5 at shorter lengths. Third,
the logarithmic variant is slightly slower than some prior work (ALiBi, Rotary, and Sinusoidal) but
consistently outperform these methods at all extrapolation lengths. More details are given below.

Logarithmic Variant vs. Power Variant. In our proposed KERPLE framework, the logarithmic
variant is better than the power variant. To be precise, the logarithmic variant is 4.4% faster and has
lower perplexities across all extrapolation lengths and all tasks.

Logarithmic Variant vs. T5. In terms of speed, the logarithmic variant is 9.7% faster than T5. In
terms of extrapolation perplexity, the logarithmic variant is close to or slightly worse (the differences
are not statistically significant) than T5 when the extrapolation length is shorter than 2048, and
consistently excels T5 at longer extrapolation lengths. The tendency of extrapolation holds for each
of the datasets evaluated in this chapter.

Logarithmic Variant vs. ALiBi, Rotary, and Sinusoidal. The logarithmic variant is 1.6% slower,
7.5% faster, and 3.0% slower than ALiBi, Rotary, and Sinusoidal. The speed comparison makes
sense because we require only a limited amount of learnable parameters for RPEs (at most 3 ·H).
Also, the logarithmic variant consistently outperforms prior work at all extrapolation lengths and
tasks.

3.5.3 Experiments on Complicated Kernels
In addition to the practical variants (power & logarithmic) in section 3.4, we consider two compli-
cated versions of the composite kernel for the purpose of maximizing performance, Eq. (3.4), as
follows.
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OpenWebText2

Extrp.
KERPLE

ALiBi T5 Rotary Sinusoidal
(log) (power)

512 23.9 ± 0.6 23.9 ± 0.6 23.9 ± 0.6 23.7±±± 0.6 24.2 ± 0.6† 33 ± 1†

1024 22.0 ± 0.6 22.1 ± 0.7 22.4 ± 0.5† 21.9±±± 0.6 32.8 ± 1.7† 750 ± 346†

2048 21.6±±± 0.3 21.9 ± 0.2† 22.5 ± 0.2† 21.7 ± 0.2 62.4 ± 6.1† 5507 ± 2607†

4096 21.2±±± 0.4 21.5 ± 0.5† 22.2 ± 0.4† 22.5 ± 0.6† 111 ± 13.8† 14039 ± 2325†

8192 21.3±±± 0.4 21.6 ± 0.4† 22.3 ± 0.3† 25.5 ± 1.3† 185 ± 18.9† 22621 ± 1927†

16384 21.4±±± 0.6 21.6 ± 0.6 22.5 ± 0.5† 31.4 ± 3.1† 269 ± 33.0† 30046 ± 4824†

GitHub

Extrp.
KERPLE

ALiBi T5 Rotary Sinusoidal
(log) (power)

512 3.40 ± 0.20 3.42 ± 0.20 3.42 ± 0.21 3.38±±± 0.21 3.44 ± 0.20† 4 ± 0.2†

1024 3.04 ± 0.14 3.07 ± 0.16 3.15 ± 0.17† 3.02±±± 0.14 3.86 ± 0.25† 105 ± 39†

2048 2.86 ± 0.10 2.90 ± 0.08† 3.13 ± 0.10† 2.84±±± 0.09 5.94 ± 0.64† 1380 ± 404†

4096 2.74±±± 0.05 2.79 ± 0.06 3.04 ± 0.08† 2.78 ± 0.04† 11.1 ± 1.55† 5217 ± 1118†

8192 2.71±±± 0.05 2.76 ± 0.05 3.04 ± 0.03† 2.95 ± 0.13† 20.2 ± 2.75† 10081 ± 3583†

16384 2.75±±± 0.16 2.76 ± 0.13 3.02 ± 0.13† 3.35 ± 0.27† 31.3 ± 5.20† 16443 ± 8503†

ArXiv

Extrp.
KERPLE

ALiBi T5 Rotary Sinusoidal
(log) (power)

512 6.07 ± 0.26 6.10 ± 0.26 6.12 ± 0.26† 6.03±±± 0.26 6.07 ± 0.27 43 ± 44
1024 5.61 ± 0.10 5.65 ± 0.10† 5.82 ± 0.09† 5.58±±± 0.09 7.49 ± 0.34† 221 ± 136†

2048 5.22 ± 0.12 5.26 ± 0.13† 5.71 ± 0.14† 5.21±±± 0.14 14.2 ± 1.81† 730 ± 343†

4096 5.20±±± 0.10 5.25 ± 0.09 5.87 ± 0.08† 5.32 ± 0.16† 30.1 ± 4.32† 1998 ± 497†

8192 5.01±±± 0.10 5.06 ± 0.15 5.74 ± 0.13† 5.54 ± 0.39† 54.3 ± 6.22† 4228 ± 2645†

16384 5.07±±± 0.16 5.07 ± 0.19 5.78 ± 0.15† 6.25 ± 0.61† 85.4 ± 7.40† 6674 ± 5696

Table 3.3: Perplexity comparison on OpenWebText2, GitHub, and ArXiv. All models are trained for
50k steps with training length 512 and five random seeds. x† means our log variant is statistically
significantly better than x. The test used is the paired two-sided t test with α = 0.05.

KERPLE
ALiBi T5 Rotary Sinusoidal

(log) (power)
sec/step 0.307 0.321 0.302 0.340 0.332 0.298

Table 3.4: Training time comparison on the GitHub dataset. The Log variant of KERPLE runs
efficiently.

(bias+wht) bias + weight:
kcomp([qm,m], [kn, n]) = q⊤

mkn · exp(−r3|m− n|r4) + c− r1|m− n|r2
with r1, r3 > 0 and 0 < r2, r4 ≤ 2.
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(3-para-log) 3-parameter-logarithmic:
kcomp([qm,m], [kn, n]) = q⊤

mkn + c− r1 · log(1 + r2|m− n|r3)
with r1, r2 > 0 and 0 < r3 ≤ 2.

Recall the tensor product property of a kernel: if k1 is a kernel on X and k2 is a kernel on Y , then
k((x, y), (x′, y′)) = k1(x, x

′)k2(y, y
′) is a kernel on X × Y . Therefore, (bias+wht) is the setting

where we train a weight exp(−r3|m− n|r4) and a bias kernel c− r1|m− n|r2 . q⊤
mkn is multiplied

by the weight kernel and then added with the bias kernel. (3-para-log) is the setting where we
consider |m − n|r3 in the log. When r3 = 1, it is reduced to the logarithmic variant proposed in
section 3.4.

We plug in these composite kernel kcomp into our KERPLE framework, Eq. (3.2), and test the
performance of these RPE. Compared with section 3.5.2, Table 3.5 suggests that these variants do
not have clear advantage in extrapolation performance, e.g., 3-para-log is slightly better in perplexity
than the (two-parameter) logarithmic variant. Thus, enlarging the complexity of kernels does not
necessarily give better performance in the context of RPE.

Extrp.
OpenWebText2 GitHub ArXiv

(bias+wht) (3-para-log) (bias+wht) (3-para-log) (bias+wht) (3-para-log)
512 24.1 ± 0.6 23.8 ± 0.6 3.44 ± 0.21 3.40 ± 0.20 6.11 ± 0.27 6.06 ± 0.27
1024 22.2 ± 0.6 22.0 ± 0.7 3.08 ± 0.15 3.04 ± 0.13 5.66 ± 0.09 5.61 ± 0.10
2048 21.9 ± 0.4 21.6 ± 0.2 2.90 ± 0.12 2.85 ± 0.10 5.28 ± 0.12 5.21 ± 0.12
4096 21.5 ± 0.5 21.2 ± 0.4 2.79 ± 0.06 2.73 ± 0.05 5.31 ± 0.08 5.18 ± 0.09
8192 21.4 ± 0.5 21.3 ± 0.4 2.76 ± 0.03 2.68 ± 0.04 5.16 ± 0.18 5.00 ± 0.11
16384 OOM OOM OOM OOM OOM OOM

Table 3.5: Perplexity comparison for KERPLE with complicated kernels on OpenWebText2, GitHub,
and ArXiv. All models are trained for 50k steps with training length 512 and five seeds random.
OOM means out of memory.

3.5.4 Plots of Kernel Functions

We plot kernel functions including the power, log variants, and ALiBi for different heads to see their
contributions to softmax. We use the GitHub dataset for demonstration. Please see Figure 3.2, 3.3,
and 3.4. Both ALiBi and its generalized power variant quickly reach a very negative value. In
contrast, the log variant successfully discovers several flat kernels, effectively extending the window
attention. This corroborates our previous observation that KERPLE-log can utilize more distant
token information.

3.5.5 Position-wise Perplexity Evaluation

To better understand the fine-grained length extrapolation performance, we plot the position-wise
perplexity with evaluation length=4096 in Figure 3.5. Please see § 3.7.6 for similar length=16384
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Figure 3.2: Kernel functions learned by the Log variant.

Figure 3.3: Kernel functions learned by the Power variant. Note the y-axis should be multiplied by
1e8: the value is a very large negative number.

result. The evaluation is done by measuring the loss at each position in each sequence and averaging
over the sequences.

We note that PPL@512 of KERPLE-log is the lowest among all model variants. We can derive
several critical observations for evaluation length=4096 in Figure 3.5: First, KERPLE-log lies
below KERPLE-log-windowed@512, indicating its usage of more distant information than window
attention: If our model does not use more information other than a fixed-window=512, the y-values
after position=512 should overlap with the line windowed at 512. This is clearly not the case.
In addition, the PPL of KERPLE-log continues to decrease till the end of 4096 positions (Not
plateauing). Second, T5 lies below KERPLE-log-windowed@512 most of the time and fluctuates
around KERPLE-log-windowed@512 after length=3000. It is still worse than KERPLE-log. Third,
ALiBi lies above KERPLE-log-windowed@512 for almost all the positions, indicating that window
attention might be a better choice than ALiBi.

Although window attention is a strong baseline, our KERPLE-log is almost like a free lunch
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Figure 3.4: Kernel functions learned by ALiBi.

compared to window attention: With only 24 additional learnable parameters (2 parms. for each
head), the almost same training speed, and the same train length=512 as window attention, it is able
to achieve lower PPLs across different positions.
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Figure 3.5: Position-wise perplexity on GitHub at evaluation length=4096 compared to window
attention@512.
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3.6 Conclusion

A general framework, KERPLE, is proposed to kernelize relative positional embeddings for length
extrapolation. At the core of this framework is the application of CPD kernels and the derivation of
practical variants. We show that these CPD kernels can be implicitly converted to PD kernels, which
preserve the inner product interpretation of self-attention. We also demonstrate that the logarithmic
variant achieves exceptional extrapolation performance on three large language modeling datasets.
We believe our work paves the way for some interesting future directions that could resolve
the observed limitations. For instance, we can consider general kernel families and model non-
monotonic effects due to positional differences. In addition, the use of learnable parameters in
KERPLE might enable better generalization to inputs that are higher than one-dimensional. Last but
not least, there is always room for improving memory efficiency by adjusting the model architecture
and training procedure.

3.7 Proofs and Experimental Details

3.7.1 Proof of CPD Shift Lemma

Lemma 3.1 (CPD Shift Lemma). Let k : X × X → R be a conditionally positive definite (CPD)
kernel. Then, there exists c ≥ 0 such that c+ k(x, y) is a positive definite kernel.

Proof. Let K = [k(xi, xj)]
N
i,j=1 be the matrix generated by {x1, ..., xN} with N ∈ N. Consider

fc(v) = v⊤(c11⊤ +K)v = c(v⊤1)2 + v⊤Kv.

We want to show there exists a large enough c such that fc(v) ≥ 0 for all v ∈ {v : ∥v∥ = 1}.

(i) It is sufficient to consider a∗ = minv:∥v∥=1 v
⊤Kv < 0.a∗ = minv:∥v∥=1 v
⊤Kv < 0.a∗ = minv:∥v∥=1 v
⊤Kv < 0.

Let a∗ be the solution to the minimization:

a∗ = min
v:∥v∥=1

v⊤Kv.

Since v⊤Kv is continuous in v and {v : ∥v∥ = 1} is compact (i.e., closed and bounded), a∗

must exist. If a∗ ≥ 0, K is positive semidefinite and fc(v) ≥ 0 for c ≥ 0. Thus, without loss of
generality, we assume a∗ < 0.

(ii) It is sufficient to considerKKK without zero eigenvalues (i.e., full rank).
If there exists v0 such that Kv0 = 0, then c ≥ 0 is enough to satisfy fc(v0) ≥ 0. For any v1
satisfying v⊤1 v0 = 0, we have (v1 + v0)

⊤K(v1 + v0) = v⊤1 Kv1. Therefore, whether there exists
c to have fc(v) ≥ 0 doesn’t depend on the eigenvector corresponding to zero eigenvalue (if there
is such a vector). This means it is enough to consider K without zero eigenvalues.

(iii) It is sufficient to consider strict CPD.
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By definition of conditional positive definiteness (CPD), we know v⊤Kv ≥ 0 when v⊤1 = 0.
Since K has no zero eigenvalue, we cannot have v⊤Kv = 0 when v⊤1 = 04. This means the
inequality is strict here: v⊤Kv > 0 when v⊤1 = 0, and it is enough to consider strict CPD.

(iv) It is sufficient to show there exists (small enough) δ > 0δ > 0δ > 0 such that v′ ∈ Tδ ⇒ v′⊤Kv′ > 0v′ ∈ Tδ ⇒ v′⊤Kv′ > 0v′ ∈ Tδ ⇒ v′⊤Kv′ > 0.

Note Tδ is defined as

Tδ = {v′ : |v′⊤1| < δ, ∥v′∥ = 1}.

For any v′ ∈ Tδ, if v′ satisfies v′⊤Kv′ > 0, then c ≥ 0 is enough to have fc(v′) ≥ 0. Conversely,
when |v⊤1| ≥ δ and ∥v∥ = 1, observe that

fc(v) = c(v⊤1)2 + v⊤Kv ≥ c(v⊤1)2 + a∗ ≥ cδ2 + a∗

Then, fc(v) ≥ 0 when c ≥ −a∗

δ2
. Therefore, we need to prove v′ ∈ Tδ ⇒ v′⊤Kv′ > 0 for small

enough δ.

(v) Leveraging Continuity. Consider v′ satisfying ∥v′ − v∥ < δ2 with v ∈ S = {v : ∥v∥ =
1, v⊤1 = 0}. Since v⊤Kv is continuous in v and ∥K∥ < ∞, for any ϵ > 0 and any v ∈ S, a
small enough δ2 > 0 gives |v′⊤Kv′ − v⊤Kv| < ϵ.

To see this, taking v′ = v + p with ∥p∥ < δ2, we have

|v′⊤Kv′ − v⊤Kv| = |p⊤Kv + v⊤Kp+ p⊤Kp| ≤
∥v∥=1

∥K∥(2∥p∥+ ∥p∥2) ≤ ∥K∥(2δ2 + δ22).

Therefore, 0 < δ2 <
√

1 + ϵ/∥K∥ − 1 is enough to have |v′⊤Kv′ − v⊤Kv| < ϵ.

By definition of strict CPD, we know minv∈S v
⊤Kv = λ > 0. Thus, take ϵ < λ, a small enough

δ2 gives v′⊤Kv′ > v⊤Kv − ϵ >= λ − ϵ > 0. In other words, there exists a small enough δ2
such that v′⊤Kv′ > 0 for v′ ∈ Sδ2 = {v′ : ∥v′ − v∥ < δ2, v ∈ S}.

(vi) Proving ∃ δ > 0 s.t. v′ ∈ Tδ ⇒ v′⊤Kv′ > 0∃ δ > 0 s.t. v′ ∈ Tδ ⇒ v′⊤Kv′ > 0∃ δ > 0 s.t. v′ ∈ Tδ ⇒ v′⊤Kv′ > 0.

Due to (iv), we want to show ∃ δ > 0 s.t. v′ ∈ Tδ ⇒ v′⊤Kv′ > 0. We will prove by the
conclusion of (v). Let ∥v′∥ = 1, v′⊤1 = r with |r| < δ and v′′ = v′ − r

n
1. We have

v′′⊤1 = 0, ∥v′ − v′′∥ = r√
n
, ∥v′′∥ =

√
∥v′ − r

n
1∥2 =

√
1− r2

n
.

4By spectral decomposition, v⊤Kv =
∑

i λi(v
⊤ui)

2 ≥ 0. Since there is no λi = 0, the inequality is strict.
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Take v = v′′

∥v′′∥ = v′′

q
, where q =

√
1− r2

n
. We have v⊤1 = 0, ∥v∥ = 1 and

∥v′ − v∥2 =∥(1− 1

q
)v′ +

1

q

r

n
1∥2 = (1− 1

q
)2 +

r2

nq2
+ 2(1− 1

q
)
1

q

r2

n

=(1− 1

q
)2 +

r2

n
(
2

q
− 1

q2
) =

1

q2

(
(q − 1)2 +

r2

n
(2q − 1)

)
=

1

1− r2

n

(
1− r2

n
− 2q + 1 +

r2

n
2q − r2

n

)
=

1

1− r2

n

(
1− r2

n
− 2q(1− r2

n
) + 1− r2

n

)
= 2− 2q

=2(1−
√

1− r2

n
) ≈ 2(1− 1 +

1

2

r2

n
) =

r2

n
(
√
1− x ≈ 1− x

2
when |x| ≪ 1)

Thus, ∥v′ − v∥ = O( |r|√
n
) ≤ O( δ√

n
) < δ2 for small enough δ. This implies that, with a small

enough δ, for any v′ ∈ Tδ, we can find v ∈ S such that ∥v′ − v∥ < δ2. Thus, v′ ∈ Sδ2 , and by
(v), we arrive at v′⊤Kv′ > 0.

3.7.2 Shift-invariant Kernels with Bounded and Unbounded Ranges
Definition 3.1 implies a shift-invariant kernel is generated by a univariate function f : X → R. To
characterize the set of valid univariate functions, we introduce the positive definite functions as
below.
Definition 3.3 (Positive definite function). A (real) positive definite function is a function f :
X → R such that for any integer N and any set of N points {xi ∈ X}Ni=1, the N × N matrix
A = [f(xi − xj)]Ni,j=1 is positive semidefinite.

We will interchange the ideas of shift-invariant kernels and positive definite functions because
they are equivalent by definition. Any statement in positive definite functions can be translated into
shift-invariant kernels, and vice versa. Because of this, we will use some facts about the positive
definite functions to derive the shift-invariant kernels of our interest.

Generalizing Classical Bounded Shift-invariant Kernel. Applying kernels in the attention
mechanism has been described in several studies[Tsai et al., 2019b; Choromanski et al., 2021; Peng
et al., 2021]. One of the most common approaches is to consider the Gaussian kernel:

k(m,n) = exp(−γ(m− n)2), γ > 0.

Note that the Gaussian kernel is bounded (k(m,n) ∈ (0, 1] for the case above). To generalize it to
a broader class of bounded shift-invariant kernels, observe that the Gaussian kernel generated by
a positive definite function of the form f(x) = exp(−|x|2). Since there is no strong reason to be
limited to the power of 2, one may generalize it to a broader class of positive definite functions as
below.
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Fact 3.5 (Corollary 3 of Schoenberg [1938]). exp(−|x|p) is positive definite if 0 < p ≤ 2 and not
positive definite if p > 2.

Fact 3.5 implies that, if one wants to find a class of bounded shift-invariant kernel (i.e., k(m,n)
is within some fixed interval for any m,n), then k(m,n) = exp(−a|m − n|p) with a > 0 and
p ∈ (0, 2] may be of interest.

Constructing Unbounded Shift-invariant Kernels. A limitation of Fact 3.5 is that it only
generates kernels with a bounded range (here, the range is bounded in (0, 1]). In situations where
there are no explicit bounds, one might want to consider kernels with unbounded range. To construct
such kernels, we can use a kernel representation theorem presented in Schoenberg [1938]:
Fact 3.6 (Theorem 4 of Schoenberg [1938]). f(x) is bounded away from zero (f(x) > 0) and its
positive powers f(x)λ (λ > 0) are all positive definite if and only if f(x) is of the form

f(x) = exp(c+ ψ(x)),

where ψ(x) is positive definite and c is a real constant.
Since Fact 3.6 works for non-negative kernels, we combine it with Fact 3.5 and present the

following class of shift-invariant kernel with an unbounded range.
Proposition 3.1 (Kernel from Distance Powers). For any p ∈ (0, 2], there exists cmin ∈ R such that
for any c ≥ cmin,

k(m,n) = c− |m− n|p,

is a positive definite kernel. When p > 2, there is no c to make k(m,n) positive definite.

Proof. Due to Fact 3.5, we know exp(−|x|p) is positive definite when p ∈ (0, 2]. Since exp(−|x|p) >
0 and exp(−λ|x|p) is positive definite for any λ > 05, Fact 3.6 implies there exists a c′ ∈ R and a
positive definite ψ(x) such that

exp(−|x|p) = exp(c′ + ψ(x)).

In other words,−c′−|x|p is a positive definite function. Take cmin = −c′. We see that cmin−|m−n|p
is a shift-invariant positive definite kernel. Finally, let k(m,n) = c− |m− n|p with c ≥ cmin. The
N ×N matrix [k(xi, xj)]

N
i,j=1 generated by k(m,n) on points {xi ∈ R}Ni=1 obeys

[k(xi, xj)]
N
i,j=1 = [cmin − |xi − xj|p]Ni,j=1 + (c− cmin)11

⊤ ⪰ (c− cmin)11
⊤ ⪰ 0,

where ⪰ is the Loewner order and 1 = [1, ..., 1]⊤ in the N -dimensional vector with all ones. This
shows k(m,n) is a shift-invariant positive definite kernel when 0 < p ≤ 2. The conclusion on p > 2
is proved by contradiction. When p > 2, if there exists a c such that k(m,n) is positive definite,
then exp(k(m,n)) is positive definite, which contradicts to the case of p > 2 in Fact 3.5.

Prop. 3.1 introduces a kernel with unbounded range (k(m,n) ∈ (∞, c]) and is adapted from the
p-th power of the distance |m − n|. Since the distance is a notion of "dissimilarity", −|m − n|p

5exp(−λ|x|p) = exp(−|λ1/px|p) is a constant rescaling of exp(−|x|p) and therefore is positive definite.
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becomes a notion of "similarity", which gives a sense of kernel. Thereby, we can interpret the
constant c as the required value to shift−|m−n|p such that c−|m−n|p becomes a positive definite
kernel.

In fact, −|m − n|p is a conditional positive definite kernel for p ∈ (0, 2] Schölkopf [2000].
Therefore, the fact that −|m − n|p can become a positive definite kernel by shifting is not a
coincidence, as it has already had an intimate relation to positive definite kernels.

3.7.3 Experiments on Gaussian-like Kernels
Since the prior work on shift-invariant kernels mainly focuses on Gaussian kernels, we present
preliminary experiments on Gaussian-like kernels. Compared with section 3.5.2, the perplexities of
these kernels are large at every extrapolation length. This verifies our previous assertion that the
Gaussian-like kernels have limited extrapolation ability.

Because the kernel can be used as a weight or a bias, we consider four kinds of the composite
kernel (see section 3.4) as follows.

(2-para-bias) r1, r2 > 0.
kcomp([qm,m], [kn, n]) = q⊤

mkn + r1 exp(−r2|m− n|2).
(3-para-bias) r1, r2 > 0 and 0 < r3 ≤ 2.

kcomp([qm,m], [kn, n]) = q⊤
mkn + r1 exp(−r2|m− n|r3).

(1-para-wht) r1 > 0.
kcomp([qm,m], [kn, n]) = q⊤

mkn · exp(−r1|m− n|2).
(2-para-wht) r1 > 0 and 0 < r2 ≤ 2.

kcomp([qm,m], [kn, n]) = q⊤
mkn · exp(−r1|m− n|r2).

(2-para-bias) and (1-para-wht) are the settings where we put the Gaussian kernel as a bias and
a weight, respectively. (3-para-bias) and (2-para-wht) generalize these settings by considering a
learnable power between 0 and 2. Note we must constrain the power in (0,2]; otherwise, the function
is not positive definite. See Fact 3.5 for details.

These composite kernel kcomp are plugged into the KERPLE framework, Eq. (3.2), and are
evaluated on OpenWebText2, GitHub, and ArXiv datasets. Table 3.6 shows the Gaussian-like kernel
is better to be a weight instead of a bias. As discussed in §3.7.2, the Gaussian-like kernels are
bounded. To some extent, this implies that the bounded positive kernel can model a weight. However,
compared with section 3.5.2, the Gaussian-like kernels have limited advantages in extrapolation.
Although the performance might be improved if the power of exp(−|x|p) is relaxed from p = 2 to
p ∈ (0, 2], still it cannot be as good as the logarithmic variant as we demonstrate in section 3.5.2.
Therefore, while the Gaussian kernel is frequently used in the literature, we need a better class of
shift-invariant kernels to tackle the length extrapolation challenge.

3.7.4 Experiments on Large Model, Longer Training Length, and Wikitext-
103

In this subsection, we present additional experiments on (a) large models, (b) longer training length,
and (c) Wikitext-103. Below is the summary of the experiments.
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Extrp.
OpenWebText2

1-para-wht 2-para-wht 2-para-bias 3-para-bias
512 33.8 ± 1.1 24.8 ± 0.9 58.4 ± 71.6 26.4 ± 0.5
1024 32.5 ± 0.8 23.0 ± 0.8 88.7 ± 62.6 75.3 ± 37.8
2048 34.1 ± 0.6 22.7 ± 0.4 406 ± 101 2629 ± 4024
4096 35.6 ± 0.9 22.6 ± 0.6 2590 ± 3211 37557 ± 67936
8192 39.2 ± 1.1 23.2 ± 0.3 10829 ± 18855 189216 ± 369499

Extrp.
GitHub

1-para-wht 2-para-wht 2-para-bias 3-para-bias
512 7.78 ± 0.48 3.56 ± 0.23 4.08 ± 0.85 3.67 ± 0.22
1024 7.85 ± 0.40 3.19 ± 0.17 4.63 ± 0.59 4.23 ± 0.57
2048 8.08 ± 0.21 3.01 ± 0.09 18.8 ± 6.8 20.0 ± 4.8
4096 8.47 ± 0.43 2.93 ± 0.09 75.8 ± 32.2 94.0 ± 24.7
8192 9.41 ± 0.75 3.05 ± 0.20 207 ± 110 261 ± 86

Extrp.
ArXiv

1-para-wht 2-para-wht 2-para-bias 3-para-bias
512 10.6 ± 0.4 6.18 ± 0.25 6.73 ± 0.30 7.12 ± 1.43
1024 10.7 ± 0.2 5.73 ± 0.11 7.07 ± 0.63 7.27 ± 0.69
2048 10.8 ± 0.3 5.35 ± 0.15 20.4 ± 9.3 23.5 ± 8.4
4096 11.6 ± 0.3 5.44 ± 0.14 80.6 ± 49.4 131 ± 140
8192 12.1 ± 0.2 5.50 ± 0.27 220 ± 138 437 ± 591

Table 3.6: Extrapolation of Gaussian-like kernels on OpenWebText2, GitHub, and ArXiv. All
models are trained for 50k steps with training length 512 and five random seeds.

1-para-wht 2-para-wht 2-para-bias 3-para-bias
sec/step 0.326 0.327 0.324 0.351

Table 3.7: Training time comparison for Gaussian-like kernels on GitHub.

(a) The 1.3B large model is trained on a machine with two NVIDIA A100 GPU with 40 GB of
memory. We adopt almost all configurations of XL GPT-NeoX6, except that we change the
train-micro-batch-size to 16, model-parallel-size to 2, seq-length to 512, and max-position-
embeddings to 512. Table 3.8 summarizes the configurations of the 1.3B model.

(b) The 162M Model with training sequence length=1024 follows the same configurations as the
ones in Table 3.2 except that the train seq. length is changed to 1024.

(c) The Wikitext-103 model is implemented on ALiBi’s GitHub7 with exactly the same config-
urations (247M parameters), except that the function buffered_future_mask() at line 1011 of
attention_with_linear_biases/fairseq/models/transformer.py is adapted to our KERPLE-log.

6https://github.com/EleutherAI/gpt-neox/blob/main/configs/XL.yml
7https://github.com/ofirpress/attention_with_linear_biases
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# Layers Hidden Size # Attention Heads Train Seq. Len. # Trainable Params.
24 128 16 512 1.3B

Optimizer Batch Size Train Steps Precision # Trainable Params. for RPEs
Adam (lr 2e-4) 32 150,000 float16 48

Table 3.8: 1.3B model configurations.

Table 3.9 shows the results on the large model (1.3B). Compared with the small model results in
Table 3.3, we see that T5 bias becomes weaker than KERPLE-log and ALiBi, and KERPLE-log
remains stronger than ALiBi on GitHub and ArXiv datasets. This is explained by the tendency for
overfitting. Observe that both T5 and KERPLE learn the positional embeddings while ALiBi uses
fixed ones. T5 and KERPLE have a higher tendency of overfitting. A larger model (1.3B > 162M)
or a noisy dataset (OpenWebText2 > GitHub, ArXiv) presents a higher risk of overfitting. Hence,
we see that T5 bias is weak on a large model, and KERPLE-log only extrapolates well on GitHub
and ArXiv.

Again, Table 3.9 shows the results on long training length (1024). compared with the short
training length (512) in Table 3.3, KERPLE-log remains better than ALiBi and T5 bias, especially
on longer evaluation length. This shows the robustness of KERPLE-log over different training
lengths.

Table 3.10 compares KERPLE-log with ALiBi using ALiBi’s implementation and configurations.
The results show that KERPLE-log is superior to ALiBi on Wikitext-103.

3.7.5 Additional Analyses

Since the power and logarithmic variants derived from KERPLE achieve superior performance on
length extrapolation across various datasets, we investigate the underlying reason by visualizing the
effective length as shown in Figure 3.6. The visualization works in the following procedure.
1. For each training dataset, the learnable parameters (r(h)1 , ..., r

(h)
ℓ ) associated with each head h (12

in total) are extracted from the model checkpoint. The CPD kernel at head h is k̃(h) = k̃
r
(h)
1 ,...,r

(h)
ℓ
.

Both the power and the logarithmic variants in corollary 3.1 undergo a similar procedure. The
only difference is that their k̃’s are different.

2. For each head h, we compute the effective length of k̃(h) as eff(h) = min
k̃(h)(0,|m−n|)<−2

|m− n|. That

is, the relative positional difference |m− n| such that k̃(m,n) shift-inv.
= k̃(0, |m− n|) just becomes

smaller than -2. Note k̃(0, |m− n|) strictly decreases in |m− n|, so there is only one possible
value. We pick −2 here because k̃ is a bias and is followed by the Softmax normalization. A
bias of −2 or smaller can make a great impact on the output of Softmax8. eff(h) is interpreted
as the effective length because, when |m− n| < eff(h), the attenuation due to k̃(h) is not strong.
When |m− n| > eff(h), the attenuation is strong and has a large impact on q⊤

mkn + k̃(h)(m,n).

8Since Softmax is an exponentiated function, a -2 bias in the Softmax’s argument roughly gives an attenuation of
exp(−2) ≈ 0.135.
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162M Model. Train length, steps=1024, 50k.

Extrp.
GitHub

KERPLE-log ALiBi T5 bias
512 - - -
1024 2.83 ± 0.16 2.84 ± 0.16† 2.81 ± 0.16
2048 2.70 ± 0.07 2.82 ± 0.07† 2.68 ± 0.07
4096 2.53 ± 0.04 2.77 ± 0.06† 2.54 ± 0.04
8192 2.42 ± 0.03 2.74 ± 0.02† 2.57 ± 0.06†

16384 2.48 ± 0.11 2.80 ± 0.11† 3.10 ± 0.34†

Extrp.
ArXiv

KERPLE-log ALiBi T5 bias
512 - - -
1024 5.23 ± 0.09 5.26 ± 0.09 5.20 ± 0.10
2048 4.76 ± 0.12 4.98 ± 0.18† 4.74 ± 0.12
4096 4.75 ± 0.10 5.31 ± 0.13† 4.97 ± 0.27
8192 4.54 ± 0.10 5.25 ± 0.15† 6.55 ± 0.97†

16384 4.62 ± 0.15 5.35 ± 0.19† 16.0 ± 4.77†

Extrp.
OpenWebText2

KERPLE-log ALiBi T5 bias
512 - - -
1024 19.2 ± 0.1 19.3 ± 0.2 19.1 ± 0.1
2048 19.3 ± 0.2 19.5 ± 0.1 19.2 ± 0.2
4096 18.6 ± 0.3 19.0 ± 0.3† 19.2 ± 0.4†

8192 18.7 ± 0.5 19.3 ± 0.4† 24.0 ± 1.1†

16384 18.8 ± 0.5 19.2 ± 0.3† 50.8 ± 6.5†

1.3B Model. Train length, steps=512, 150k.
GitHub

KERPLE-log ALiBi T5 bias
2.88 ± 0.11 2.88 ± 0.11 2.93 ± 0.11†

2.60 ± 0.12 2.62 ± 0.11† 2.64 ± 0.11†

2.44 ± 0.05 2.58 ± 0.05† 2.47 ± 0.07†

2.46 ± 0.11 2.65 ± 0.12† 2.49 ± 0.12
2.44 ± 0.13 2.57 ± 0.13† 2.57 ± 0.13†

2.60 ± 0.07 2.61 ± 0.07 3.16 ± 0.35†

ArXiv
KERPLE-log ALiBi T5 bias
5.56 ± 0.15 5.58 ± 0.16 5.62 ± 0.15†

4.87 ± 0.07 4.94 ± 0.07† 4.92 ± 0.06†

4.50 ± 0.16 4.87 ± 0.17† 4.55 ± 0.16†

4.45 ± 0.06 4.97 ± 0.13† 4.53 ± 0.08†

4.47 ± 0.20 4.94 ± 0.16† 4.65 ± 0.15†

4.65 ± 0.24 4.94 ± 0.07 5.25 ± 0.26†

OpenWebText2
KERPLE-log ALiBi T5 bias

17.5 ± 0.3 17.5 ± 0.4 17.8 ± 0.3†

16.6 ± 0.6 16.7 ± 0.6 16.9 ± 0.6†

16.2 ± 0.4 16.4 ± 0.4† 16.7 ± 0.4†

16.4 ± 0.8 16.5 ± 0.5 18.0 ± 0.9†

16.9 ± 0.7 16.5 ± 0.1 22.7 ± 3.7†

17.8 ± 1.2 16.5 ± 0.3 37.1 ± 13.1†

Table 3.9: Perplexity comparison for large models (1.3B) and long training length (1024) on GitHub,
ArXiv, OpenWebText2. Due to the time constraint and limited computing resources, we are not
able to obtain the numbers for the large model (1.3B) on OpenWebText2 for now. All models are
trained with five random seeds. x† means our log variant is statistically significantly better than x.
The test used is the paired two-sided t-test with α = 0.05.

train length 512 train length 2048
Extrp. length 512 1024 1536 2048 3072 2048 3072
ALiBi 19.73 18.81 18.50 18.48 18.40 17.91 17.64
KERPLE-log 19.69 18.76 18.37 18.29 18.24 17.84 17.56

Table 3.10: Perplexity comparison on Wikitext-103. To ensure a fair comparison, the model (247M)
is trained on ALiBi’s codebase with exactly the same configurations except for the positional
embeddings. The results show that KERPLE-log is superior to ALiBi on Wikitext-103.
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(a) Power Variant: −a|m− n|p
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(b) Logarithmic Variant: −a log(1 + b|m− n|)

Figure 3.6: Number of heads with effective lengths≤ |m− n|≤ |m− n|≤ |m− n| for different choices of CPD kernels
and datasets. See section 3.7.5 for details.

3. Then, for each |m − n| ∈ [0, ..., 20480], we count the number of heads that satisfies eff(h) ≤
|m− n|. This gives a cumulative plot as shown in Figure 3.6, where the x-axis is |m− n| and
the y-axis is Count({h : h ∈ [1, ..., 12], eff(h) ≤ |m− n|}).

4. Repeat the above steps for other datasets and kernels.

Interpretation of Curves. For a point (x, y) on a curve, it means that there are y heads with at
least −2 bias when the token distance |m− n| is greater than x. In other words, the slower the y
converges to 12, the longer the inter-token range that the model focuses on.

The Advantage of Learnable Parameters. We observe that ALiBi [Press et al., 2022b] produces
the same curve no matter which dataset is used. The reason is that ALiBi selects a fixed parameter
r = 2

−8h
H at head h for its linear bias −r|m − n| (H heads in total) regardless of the dataset.

While this strategy is useful for extrapolation, we hypothesize that different datasets might have
different characteristics, e.g., the average distance of highly related tokens should differ among
the datasets, as shown in Figure 3.6. These characteristics can be easier adapted by learnable
parameters. Therefore, we believe that learnable parameters have more advantages in capturing the
dataset-dependent characteristics.

Trends Across Datasets. We notice that both kernels trained on OpenWebText2 tend to focus
more on distant relations. This makes sense because OpenWebText2 has the highest perplexity
scores among all datasets, implying that more context is needed to disambiguate the next predicted
token. The opposite trend holds for Arxiv and GitHub datasets, which is reasonable considering
their lower perplexity scores.

Characteristics Learned by Kernels. Under any dataset, the logarithmic variant tends to focus
more on distant relations than the power variant does. We can explain it through their functional
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forms. Because logarithm (−a log(1 + b|m− n|)) decays much slower than power (−a|m− n|p)
does, the log variant might encourage the focus on distant relations.

3.7.6 Position-wise Perplexity for Length=16384
We further increase the sequence length of Figure 3.5 to 16384 to test models’ limiting behavior.
We draw similar conclusions from Figure 3.7:

1. KERPLE-log lies below KERPLE-log-windowed@512 most of the time, indicating its usage
of more distant information than window attention.

2. The PPL of T5 explodes.

3. The PPL of ALiBi does not explode, but it is still worse than window attention, i.e. lies above
KERPLE-log-windowed@512.
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Figure 3.7: Position-wise perplexity on GitHub at evaluation length=16384 compared to window
attention@512.

3.7.7 The Choice of codebase and Hyperparameters
We adopt almost all the hyperparameters (except batch size to fit in our GPU) and all implemen-
tations of the T5 bias, ALiBi, Rotary, and Sinusoidal baselines from the GPT-NeoX codebase.
To ensure fair comparisons, we did not fine-tune hyper-parameters for KERPLE. The datasets
we used are exactly the same as the ones released with the GPT-NeoX codebase. We just ran
their prepare_data.py script to automatically download and parse the datasets. All our code was
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uploaded with the submission on openreview, and https://github.com/EleutherAI/gpt-neox
is the original GitHub repository. As a side note, we chose this codebase and adopted their parameter
settings because it is built by EleutherAI, which is a well-known and truly non-profit group of
researchers publishing various well-regarded pretrained models for academia including GPT-J-6B
and GPT-NeoX-20B.
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Part II

Analyzing and Aligning Transformer
Receptive Field
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Chapter 4

Dissecting Transformer Length
Extrapolation via the Lens of Receptive Field
Analysis

4.1 Introduction

In the previous chapter, several relative positional embeddings have been discussed including AL-
iBi [Press et al., 2022b] and KERPLE [Chi et al., 2022]. Empirically, they extrapolate to Lex ≫ Ltr

much better than other absolute and relative positional embeddings including Sinusoidal [Vaswani
et al., 2017b], Rotary [Su et al., 2021b], and T5 [Raffel et al., 2020a], resulting in the adoption of
ALiBi for the recently released Bloom [Scao et al., 2022a] model. Despite the significant empirical
success of ALiBi, there is still a lack of fundamental understanding of why it works.1

Figure 4.1 shows the temporal bias matrix of ALiBi. We hereinafter refer to the coefficient 1
2h

as slope. Intuitively, ALiBi encourages a token to focus on neighbors based on its temporal biases
matrix. When two tokens are distant, ALiBi becomes highly similar to windowed attention, shown

1https://github.com/ofirpress/attention_with_linear_biases#why-do-you-think-alibi-works
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Figure 4.1: ALiBi. For a Transformer language model with H attention heads, the range of h is
n · 8

H
, where n = {1 . . . H}. Left = self-attention matrix, right = temporal biases matrix.
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Figure 4.2: Windowed attention. This is the same design as Longformer [Beltagy et al., 2020].
We limit the context window size to w = 2 in this example. Left = self-attention matrix, right =
temporal biases matrix.

in Figure 4.2. Experiments in § 4.4 will further establish the connection between the two.
Windowed attention allows the easy derivation of a theoretical (maximum) receptive field: wR

for an R layer Transformer model with windowed attention size w. A windowed attention model
can extrapolate if Ltr > wR because 1) wR is fully covered by Ltr during the training stage, and 2)
it simply ignores the additional Lex − wR tokens during the testing stage. Surprisingly, a model
can still extrapolate when Ltr < wR which we show in § 4.4. This calls for the need for empirical
receptive field measurement and motivates our model-agnostic cumulative normalized gradient tool.
The tool we develop can be applied back on ALiBi to show that Ltr covers most of its empirical
receptive field.

Our analysis tool also provides critical context for explaining the length extrapolation fail-
ure [Press et al., 2022b; Chi et al., 2022] of Sinusoidal [Vaswani et al., 2017b] and Rotary [Su et al.,
2021b] by showing their violation of the empirical receptive field coverage principle. Sinusoidal can
be fixed by dropping the intermediate terms and keeping only the decay-with-distance biases; this
leads to the creation of Sandwich, the first parameter-free relative positional embedding that uses
information beyond Ltr. Sandwich shares a similar temporal bias pattern with trainable positional
embeddings such as KERPLE [Chi et al., 2022] and T5 [Raffel et al., 2020a], and they jointly
suggest the future design of extrapolatable Transformer positional embeddings.

4.2 Related Work

4.2.1 Length Extrapolation

In the context of language modeling, we expect token-level perplexities to remain at least the
same, if not lower (i.e., better), when Lex ≫ Ltr sequences are provided. Recurrent neural
networks [Mikolov et al., 2010; Mikolov and Zweig, 2012; Zaremba et al., 2014] can easily perform
length extrapolation. But this is not an easy task for Transformer language models, among which
only those equipped with special relative positional embeddings [Press et al., 2022b; Chi et al.,
2022] are length extrapolatable.
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4.2.2 Positional Embeddings
It is widely believed that the design of positional embeddings is the key to successful length
extrapolation of Transformer language models [Press et al., 2022b; Chi et al., 2022]. We can
roughly categorize existing positional embeddings into absolute (APE) [Vaswani et al., 2017b] and
relative (RPE) [Su et al., 2021b; Raffel et al., 2020a; Press et al., 2022b; Chi et al., 2022] variants.
APE often assigns one positional embedding per token and combines them directly with input
embeddings. In contrast, RPE adds temporal bias terms to the self-attention matrix to encode the
relative distance between token pairs. For example, the right triangular matrix in Figure 4.1 shows
the set of temporal bias terms. It is challenging for APE to extrapolate well without any further
fine-tuning since either the beyond L positional embeddings do not exist, or the model needs to
process unseen positional embeddings (e.g. unseen sinusoidal embeddings). [Press et al., 2022b;
Chi et al., 2022]. In contrast, RPE usually performs better length extrapolation since it is easier to
construct the additional temporal bias terms.

4.2.3 Windowed and Sparse Attention
We will see later that ALiBi can be viewed as imposing a windowed attention mask on the self-
attention matrix, similar to previous Transformer models with sparse attention [Beltagy et al., 2020;
Zaheer et al., 2020; Ainslie et al., 2020; Gupta and Berant, 2020]. Interpreting ALiBi from the
perspective of windowed attention allows us to easily calculate the theoretical receptive field of a
model.

4.2.4 Receptive Field
A model’s receptive field is defined as the size of the input region that contributes the most to model
outputs. It is often measured in the context of convolution neural networks [Luo et al., 2016; Dai
et al., 2017; Araujo et al., 2019; Raghu et al., 2021; Dosovitskiy et al., 2021] and their dilated
variants [Oord et al., 2016; Yu and Koltun, 2016; Chang et al., 2017; Beltagy et al., 2020] with the
ultimate goal of receptive field size maximization. Even though we focus on Transformer language
models, we borrow the idea to show that the empirical receptive field coverage of a model is crucial
to its length extrapolation performance.

4.3 Background and Notations

4.3.1 Transformer Language Model

Given a sequence of L ∈ {Ltr, Lex} input embeddings {em}Lm=1 in Rd, an R layer Transformer
language model with H attention heads converts each em into its corresponding query, key, and
value vectors in R d

H at each layer:

qm = Wqem, km = Wkem, vm = Wvem,
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where Wq, Wk, Wv ∈ R d
H
×d are learnable matrices. The resulting vectors are processed by the

self-attention module for pre-Softmax logits:

lmn =

{
⟨qm,kn⟩, if m ≥ n

− inf, otherwise

followed by the scaled softmax normalization:

am,n =
exp(lm,n/

√
d/H)∑L

i=1 exp(lm,i/
√
d/H)

(4.1)

To be precise, the matrices (W (h)
q , W (h)

k , W (h)
v ), vectors (q(h)

m , k(h)
m , v(h)

m , o(h)
m ), and scalars (l(h)mn,

a
(h)
mn) are associated with a head number h. For notation simplicity, we only show the dependency

on h when we need it. For example, the output vector o(h)
m at position m for head h is:

o(h)
m =

L∑
n=1

a(h)m,nv
(h)
n

All the H output vectors are concatenated, denoted by ⊕, and transformed by Wo ∈ Rd×d to obtain
om ∈ Rd:

om = Wo(o
(1)
m ⊕ o(2)m ⊕ · · · ⊕ o(H)

m )

A layer normalization [Ba et al., 2016] on om, i.e. LayerNorm(om), gives the input embedding
to the next layer. After R layers of propagation, the last om is transformed by V ∈ Rv×d and
normalized by Softmax to get the distribution p ∈ Rv over vocabulary size v:

p = Softmax(V om) (4.2)

For convenience, we set R = 12, H = 12, d = 768, and Ltr = 512 for all experiments reported in
this thesis.

4.3.2 ALiBi
ALiBi modifies lm,n to be:

lmn =

{
⟨qm,kn⟩ − 1

2h
(m− n), if m ≥ n

− inf, otherwise
(4.3)

The range of h is n · 8
H

, where n = {1 . . . H}.

4.3.3 Windowed Attention
If the windowed attention has a size w, then:

lmn =

{
⟨qm,kn⟩, if n+ w > m ≥ n

− inf, otherwise
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The quick brown fox jumps over the lazy dog

Figure 4.3: We always evaluate the perplexities of the 5 tokens numbered from 1 to 5. The upper
brackets represent Lex = 5. The lower brackets represent Lex = 3. This formulation ensures the
same 5 tokens are always evaluated with different numbers of previous tokens.

4.3.4 Evaluation of Length Extrapolation

We prepare N = 1000 text segments of length Lex > Ltr from the evaluation dataset. For each
segment, we alter the number of previous tokens ranging from 1 to Lex − 1 of the last token and
only calculate its perplexity:

PPL = exp

(
1

N

N∑
i=1

− log pi

)
,

where pi is the predicted probability from Eq. (4.2) of the last (Lex-th) token in the i-th segment.
This ensures that the same set of tokens is always used for perplexity calculation and only their
number of previous tokens is varied, see Figure 4.3.2

Lex
Shift all h by ∆ Same h for all heads Windowed Attention with Size w

∆:-3 0 2 4 6 8 h:0 2 4 6 8 w:40 80 100 120 160 320
512 5.76 5.57 5.50 5.63 5.70 5.70 9.45 6.65 5.85 5.60 5.70 8.27 7.28 7.04 6.77 6.41 6.04
1024 7.15 5.64 5.31 5.81 55.4 55.4 9.20 7.01 8.66 25.4 55.4 8.27 7.29 7.02 8.90 67.4 178
2048 7.15 5.94 5.89 6.92 94.4 94.4 9.21 7.08 8.66 31.7 94.4 8.27 7.29 7.03 8.90 67.5 202
4096 7.15 5.95 5.92 6.94 96.0 96.0 9.21 7.08 8.66 31.8 96.0 8.27 7.29 7.02 8.90 67.5 202
8192 7.15 5.95 5.92 6.94 96.0 96.0 9.21 7.08 8.66 31.8 96.0 8.27 7.29 7.02 8.90 67.5 202

Table 4.1: The three experiments conducted on the Arxiv dataset. The numbers are perplexities.

2There exists another evaluation protocol named non-overlapping subsequences adopted in the main experiment
tables of ALiBi [Press et al., 2022b]. It is not the most suitable protocol for length extrapolation evaluation as it suffers
from the “early token” curse. Please refer to §B of ALiBi [Press et al., 2022b] for details.
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4.4 ALiBi and Windowed Attention

Here, we alter the slope ( 1
2h

) of ALiBi to check if the length extrapolation property persists and
reveal the connection between ALiBi and windowed attention. We present three experiments on
two datasets, ArXiv and OpenWebText2 which represent two vastly different domains (§ 4.9.1), to
ensure that the observations are general, shown in Table 4.1 and 4.4.

4.4.1 Slope Shift (Shift all h by ∆)

We first investigated whether slope diversity (each attention head has one slope) is the key to
length extrapolation. We shift h by a fixed amount ∆ and find that the model, unfortunately, fails
to extrapolate beyond a certain amount of ∆. This implies that diversity itself might not be the
deciding factor, but that the actual slope value is more important.

4.4.2 Slope Equalization (Same h for all heads)

To identify the slope magnitude that enables length extrapolation, we set all slopes to be the same
instead of the original geometric sequence. We then steadily increase the slope value from 0 to 8 and
find that only large slopes ( 1

2h
), or equivalently small h, allow a model to extrapolate well. Large

slopes implicitly enforce a narrow windowed bias on the self-attention matrix such that distant
tokens cannot interact with each other.

4.4.3 Windowed Attention (Size w)

We make the implicit window effect explicit as shown by Eq. (4.3), which is also adopted by
Longformer [Beltagy et al., 2020]. We define the windowed attention size to be w. The model
underperforms at small w and diverges on long Lex at large w. The same trend holds in the first two
experiments when h is too small or large.

4.4.4 Other Observations

First, ALiBi does not in fact extrapolate since its perplexities all increase instead of staying the
same when Lex > Ltr. In contrast, windowed attention models are extrapolatable up to w = 100.
Second, we can clearly see that once Lex passes a certain threshold, the perplexity either remains
the same or explodes. This suggests that the model is either ignoring tokens beyond a certain length
(same)3 or not using it properly (explosion). In the next section, we will use the concept of receptive
field to explain these observations.

3A limited but similar observation was made in §B.2 of ALiBi [Press et al., 2022b].
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Figure 4.4: Cumulative normalized gradient on ArXiv
when predicting the next (2048-th) token.
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Figure 4.5: Cumulative normalized gradient on ArXiv
when predicting the next (2048-th) token.

4.5 Receptive Field Measurement

Following the definition of windowed attention size w, an R layer Transformer has a theoretical
receptive field (TRF) of wR, which is the maximum number of tokens that contribute to the
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prediction of the next token. In practice, a neural model often uses a subset of TRF, named empirical
receptive field (ERF). While previous work [Luo et al., 2016; Dai et al., 2017; Araujo et al., 2019;
Raghu et al., 2021; Dosovitskiy et al., 2021; Beltagy et al., 2020] aims to increase ERF to match
TRF, we show that decreasing ERF could serve as one feasible approach to enable successful length
extrapolation.

Consider the case where TRF ≤ Ltr: This model can extrapolate easily because its TRF is fully
covered and trained. Concretely, if we set R = 12, Ltr = 512 in Table 4.1 and 4.4, we know that as
long as w < 42.6 = 512/12, TRF will be fully covered by Ltr. Surprisingly, the model is still able
to extrapolate up to w = 100, leading to a TRF of 100 ∗ 12 = 1200≫ 512. This can be explained
by the ERF and TRF discrepancy discussed above; this calls for the need to quantify ERF.

4.5.1 Quantifying Empirical Receptive Field

We first calculate the normalized gradient [Luo et al., 2016] of each input token w.r.t the prediction
of the next token:

sm =
∥gm∥2∑Lex

n=1 ∥gn∥2
,

where gm is the gradient vector of the input embedding em. We then calculate the cumulative sum
as:

cm =
Lex∑
n=m

sn, 0 ≤ cm ≤ 1,

Visualizations of cm for the slope shift and windowed attention experiments are shown in Figures 4.4
and 4.5. We define the ERF of a model as:

ERF = min{m | cm > 0.99}.

Figure 4.4 demonstrates how we derive the model’s ERF when it is predicting the 2048-th token.
For models with w ∈ [40, 80, 100], the most recent Lex = Ltr = 512 (1536-th to 2047-th) covers
more than 99% of the total (1.0) normalized gradient, so their ERF is smaller than 512. In contrast,
models with w ∈ [120, 160, 320] have ERF = 768, 1024, and 1536 tokens, respectively. Since
Ltr = 512 does not fully cover their ERFs, they fail to extrapolate well.

We next focus on the more complex Figure 4.5, in which neither of the configurations reaches
0.99 within the most recent Ltr = 512 tokens. Generally, this explains why the perplexity often
bumps up when Lex goes from 512 to 1024: Models cannot perfectly process more tokens than they
were trained on. If we take a closer look, the ∆ = −3 model has the strongest windowing effect
and the smallest ERF=768 tokens, therefore its perplexity plateaus the soonest at Lex = 1024 in
Table 4.1. The remaining models all need ERF=2048 tokens to reach cm = 0.99, which explains
why their perplexities become stable only after Lex = 2048 (Table 4.1). For ∆ ∈ [6, 8] models
specifically, the difference between Ltr and ERF is too large to be handled, resulting in exploded
perplexities.
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4.5.2 Fixing Failed Cases

We fix the failed cases in Table 4.1 section 1 (varying ∆) and section 3 (varying w) by increasing
Ltr to cover their ERFs. We increase Ltr to 1024 for windowed attention with w = 160. For shifted
ALiBi with ∆ = 6, we need Ltr = 2048 tokens. Table 4.2 shows that both are now able to maintain
stable perplexities.

Lex
Shift all h by ∆ = 6

Windowed Attention
w = 160

Arxiv OpenWebText2 Arxiv OpenWebText2
2048 4.4 15.2 6.2 19.9
4096 6.2 19.8 6.2 19.9
8192 6.2 19.9 6.2 19.9

Table 4.2: Fixing failed cases with longer Ltr: Ltr = 2048 for ALiBi with ∆ = 6 and Ltr = 1024
for windowed attention with w = 160.

0 512 1024 1536 2048
Position

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Cumulative normalized gradient of Rotary on ArXiv when predicting the last (2048-th)
token with Ltr = 512.
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Figure 4.7: Cumulative normalized gradient of Sinusoidal on ArXiv when predicting the last (2048-
th) token with Ltr ∈ [128, 512].

(Wq(em + pm))
⊤(Wk(en + pn)) = (4.4)

e⊤
mW

⊤
q Wke

⊤
n︸ ︷︷ ︸

semantic info.

+ e⊤
mW

⊤
q Wkpn + p⊤

mW
⊤
q Wken + p⊤

mW
⊤
q Wkpn︸ ︷︷ ︸

mixture of semantic and positional info.

≈ e⊤
mW

⊤
q Wke

⊤
n︸ ︷︷ ︸

semantic info.

+ p⊤
mpn︸ ︷︷ ︸

positional info.

4.5.3 Analyses of Sinusoidal and Rotary
Sinusoidal [Vaswani et al., 2017b] constructs the positional embedding at position m and ∀i ∈
[1, d/2] as:

pm,2i =sin
( m

100002i/d

)
,

pm,2i+1 =cos
( m

100002i/d

)
(4.5)

They will be added with the input embeddings {em}Lm=1 followed by the query and key transfor-
mations as shown in Eq. (4.4). Unlike addition, Rotary [Su et al., 2021b] multiplies each token
embedding em with a position-specific rotation matrix Rmem.

What could cm tell us when it is applied to the non-extrapolatable Sinusoidal and Rotary
positional embeddings? As we can see in Figure 4.6 and 4.7, they both fail to focus on the most
recent Ltr tokens because neither of their formulations guarantees a Ltr-bounded receptive field.
Figure 4.7 tells additional stories: To predict the last token (2048-th), Sinusoidal focuses on the
512-th token when Ltr = 512 and the 128-th token when Ltr = 128 as indicated by the sudden jump
on their normalized gradient plots. This is because the model has only seen at most Ltr positional
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embeddings and overfitted on them, which provides explicit evidence to the Sinusoidal, or APE in
general, overfitting hypothesis made by the author of ALiBi4. It also explains why RPE is a better
choice for length extrapolatable Transformers: They cannot overfit on the positional embeddings.

4.6 A New RPE for Length Extrapolation

4.6.1 Introduction to Sandwich
We fix the overfitting issue of Sinusoidal by transforming it into a new RPE, Sandwich, shown in
Eq. (4.4). Specifically, we drop the cross terms and keep only the inner product of two positional
embeddings5 at m and n. Now p⊤

mpn with m,n ∈ [1, L] become the temporal bias terms of
Sandwich:

p⊤
mpn =

d̄/2∑
i=1

sin
( m

100002i/d̄

)
sin
( n

100002i/d̄

)
+

cos
( m

100002i/d̄

)
cos
( n

100002i/d̄

)
=

d̄/2∑
i=1

cos

(
m− n

100002i/d̄

)
A similar observation was previously made in a context different from length extrapolation [Yan
et al., 2019].

The largest value of p⊤
mpn happens at the point where m− n = 0, which gives the maximum

value of d̄/2. To align Ltr with the ERF of Sandwich, we need to further check that p⊤
mpn

demonstrates a similar windowed attention effect as ALiBi. This can be done by subtracting all
p⊤
mpn by d̄/2 and further dividing them by a set of predefined compression ratios. for the sake of

simplicity, we set the compression ratios to be the same as ALiBi’s h = n · 8
H

with n ∈ {1 . . . H}:

p⊤
mpn − d̄/2

h
(4.6)

Eq. (4.6) is added after the scaled softmax is done in Eq. (4.1). Figures 4.8 and 4.9 show a
visualization of Sandwich when h = 8. Sandwich indeed has the same decay-with-distance pattern
as ALiBi.6

Note that we deliberately decouple this d̄ from d in Eq. (4.5) since we treat d̄ as a hyperparameter
that controls the shape of Sandwich. A larger d̄ leads to a stronger windowed attention effect as
shown in Figure 4.10. We set d̄ = 128 in this chapter for all the experiments. We also experiment
with smaller and larger d̄ and only find worse performance. Finally, readers can find the reference
Python implementation in § 4.9.5.

4https://twitter.com/OfirPress/status/1435690039925567489
5We set pm,n to 2d as doing so gives better empirical performance; it only needs to be computed once before

training.
6Fun fact: We imagine different compression ratios as the ways we eat sandwiches: For a huge sandwich, we have

to squeeze it more to fit in our mouths!
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Figure 4.8: The visualization of Eq. (4.6) when the
compression ratio h = 8 and d̄ = 128.
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Figure 4.9: We plot the last row in Figure 4.8. The red curve is the least-squared fitted log function:
y = −0.825 · log(|m− n|) + 1)− 0.8 with m = 8192 in this example.

4.6.2 Experiments and Discussion

To verify the performance of Sandwich, we train a Transformer language model following previous
work [Press et al., 2022b; Chi et al., 2022]. Table 4.3 presents the results; the left part contains all
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Figure 4.10: We experiment with different d̄ following the construction of Figure 4.8 and find they
create different windowed attention effect.

models without learnable parameters, and the right part contains models with learnable parameters.
These numbers should not be compared across sections.

In general, models on the right achieve lower perplexities across the three datasets. This is
expected as they can adapt to individual datasets more easily thanks to the additional learnable
parameters. However, there is no free lunch: They often consume more GPU memory and run
much slower. For example, T5 is 10% slower than Sandwich during the training stage. Note that
Sandwich can also be equipped with learnable parameters such as learnable compression ratios
h; this is left to future work. We now shift our focus to the left section. When Lex = Ltr = 512,
Sandwich is comparable to other models except that Rotary performs a bit better on OpenWebText2.
Once we increase Lex, Sandwich begins to reveal its advantages: On ArXiv and GitHub, it is
consistently better than all the baselines but only marginally worse than ALiBi when Lex ≥ 4096
on OpenWebText2.

It is worth mentioning that Sandwich is the first parameter-free RPE that truly makes use of
distant token information beyond Ltr = 512. To see this, notice that lower (better) perplexities occur
at Lex > Ltr = 512. The gradient analysis tool in § 4.5.1 further corroborates this in Figure 4.11,
which reveals a receptive field pattern distinct from that of ALiBi and windowed attention. Even
though Sandwich allocates about 60% of the total cumulative gradient on the most recent Ltr = 512
tokens, distant tokens beyond Ltr still contribute substantially to the model prediction.

Why do ALiBi and windowed attention need to have their ERFs covered by Ltr while Sandwich
does not? To answer this question, we revisit Figure 4.9 and approximate (least-squared) the original
temporal bias pattern using a log curve, which gives a snug fit7: y = −0.825·log (1 + |m− n|)−0.8.

7In the actual implementation, we fit the curve using the most recent 50 points of Sandwich. The reason is because
the most recent tokens are more important, and we want them to be closer to the original Sandwich.
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OpenWebText2
Lex Sandwich Smoothed ALiBi Sinusoidal Rotary KERPLE T5
512 23.5 ± 3.8 23.2 ± 3.7 22.8±±± 3.3 26 ± 1† 23.0 ± 3.4∗ 22.6±±± 3.5∗ 22.6 ± 3.6∗

1024 23.0±±± 3.6 23.1 ± 3.6 23.3 ± 3.4 14168† 61† 22.0±±± 3.3∗ 22.2 ± 3.3∗

2048 23.3 ± 3.5 23.2±±± 3.2 23.5 ± 3.3 20370† 96† 21.9±±± 3.1∗ 23.0 ± 3.1
4096 23.8 ± 3.3 23.6 ± 3.0 23.5±±± 3.3∗ 42003† 232† 22.1±±± 2.9∗ 26.8 ± 3.2†

8192 24.7 ± 3.4 24.0 ± 2.9 23.5±±± 3.3∗ 67869† 343† 22.3±±± 2.9∗ 38.6 ± 7.2†

ArXiv
Lex Sandwich Smoothed ALiBi Sinusoidal Rotary KERPLE T5
512 5.27 ± 0.33 5.33 ± 0.32 5.25±±± 0.33 5.8† 5.25±±± 0.33 5.22 ± 0.37 5.16±±± 0.37∗

1024 5.05±±± 0.33 5.13 ± 0.32 5.41 ± 0.36† 1070† 16.02† 4.95 ± 0.34∗ 4.91±±± 0.35∗

2048 5.02±±± 0.34 5.15 ± 0.36 5.58 ± 0.40† 1784† 33.76† 4.83±±± 0.35∗ 4.92 ± 0.35∗

4096 5.15±±± 0.39 5.33 ± 0.39 5.58 ± 0.40† 18050† 71.96† 4.84±±± 0.34∗ 5.35 ± 0.36
8192 5.28±±± 0.44 5.45 ± 0.42 5.58 ± 0.40† 44100† 111† 4.90±±± 0.33∗ 6.74 ± 0.90†

GitHub
Lex Sandwich Smoothed ALiBi Sinusoidal Rotary KERPLE T5
512 2.88 ± 0.12 2.88 ± 0.17 2.83 ± 0.11† 4† 2.82±±± 0.11 2.81 ± 0.14∗ 2.76±±± 0.14∗

1024 2.71 ± 0.09 2.70±±± 0.07 2.97 ± 0.11† 8342† 3.86 ± 0.25† 2.67 ± 0.10∗ 2.61±±± 0.08∗

2048 2.69±±± 0.11 2.74 ± 0.08 3.01 ± 0.10† 9179† 5.94 ± 0.64† 2.65 ± 0.10∗ 2.65±±± 0.05
4096 2.73±±± 0.12 2.78 ± 0.08 3.01 ± 0.10† 11017† 11.1 ± 1.55† 2.70±±± 0.09 2.91 ± 0.12
8192 2.79±±± 0.15 2.83 ± 0.08 3.01 ± 0.10† 11270† 20.2 ± 2.75† 2.75±±± 0.08 3.68 ± 0.50†

Table 4.3: Perplexity comparison on the OpenWebText2, GitHub, and ArXiv datasets. All models
are trained for 50k steps with a training length of 512 and five random seeds. The models in the
left section have parameter-free positional embeddings. In contrast, both KERPLE and T5 are
equipped with learnable parameters. A fair comparison should only be made within the same section.
x† means sandwich is statistically significantly better than x. x∗ means sandwich is statistically
significantly worse than x. The test used is paired two-sided t-test with α = 0.05. More details
about the datasets and hyperparameters are provided in § 4.9.3 and 4.9.4.

Table 4.3 shows its language modeling performance under the “smoothed” column. Pictorially,
the log curve decays relatively fast when two tokens are nearby and plateaus when the distance
between them increases. In other words, tokens that are far away from the last one (m = 8192)
share similar temporal biases, possibly leading to beneficial averaging and denoising effects. Note
that the averaging effect does not come out of thin air during the extrapolation stage: The almost
linear segment ranging from 1536 to 1792 suggests that Sandwich was trained to perform averaging
within Ltr; it just needs to average over more historical tokens when it extrapolates to longer Lex.
In contrast, ALiBi’s linear bias lacks the middle ground to learn the averaging behavior: It either
decays so fast that distant tokens are masked out or so slow that the ERF becomes much greater
than Ltr. The averaging hypothesis also explains why Sandwich, KERPLE, and T5’s perplexities
go up in Table 4.3 instead of continuing to decrease after some Lex (4096 on ArXiv for example):
While averaging and denoising improve performance, doing so over too many historical tokens
(very large Lex) will reintroduce noises.
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Figure 4.11: Cumulative normalized gradient of Sandwich, Smoothed Sandwich, KERPLE, and T5
on ArXiv when predicting the last (2048-th) token with Ltr = 512.

4.6.3 Connection to KERPLE and T5

KERPLE [Chi et al., 2022] has the formulation of c − r1 · log (1 + r2|m− n|). The −0.8 in our
fitted log curve term can be absorbed by c, as Softmax is shift-invariant, and if we set r1 = 0.825
and r2 = 1, Sandwich becomes a special case of KERPLE. T5 [Raffel et al., 2020a] adopts the
log-binning strategy that assigns distinct bins to nearby tokens whereas distant tokens all share the
same bin. In spirit, T5 treats distant tokens similarly to Sandwich. Figure 4.11 verifies that all three
of them share a similar empirical receptive field pattern.

4.7 Conclusion

In this chapter, we first establish the connection between ALiBi and windowed attention through
their constructions and language modeling performance. We then develop a cumulative normalized
gradient tool to measure the empirical receptive field. This shows that length extrapolation of
ALiBi and windowed attention is possible when the training sequence length covers the empirical
receptive field. It also reveals the models’ limitation of not utilizing information beyond the training
sequence length. Fortunately, this is overcome by our new relative positional embedding, Sandwich,
which is simplified from the earliest proposed Sinusoidal positional embedding. Finally, Sandwich
demonstrates a log-decaying temporal bias pattern similar to that previously seen in the design
of KERPLE and T5, and such pattern is likely to be the secret to successful length extrapolation.
Together these findings supports more effective design of future extrapolatable Transformer language
models.
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4.8 Limitations

Although Sandwich, KERPLE, and T5 use information beyond training sequence length, their
receptive fields still highly favor the most recent tokens. While this recency bias is beneficial to the
modeling of human-written text, it is problematic in other scenarios.

Let us consider the task of parity prediction: A model needs to predict whether a bit string has an
even or odd number of ones. For example, the parity of [1, 1, 0, 1] is odd (or 1) and the parity of [1,
0, 1, 0] is even (or 0). Unlike human-written text, every single bit is equally important. Transformer
language models with current RPEs still struggle on this simple task [Anil et al., 2022]. Its difficulty
can be explained by the recency bias effect that we described. Devising a new positional embedding
or Transformer model architecture that solves this problem is a promising direction for future work.

4.9 Additional Experimental Detail

4.9.1 Results on OpenWebText2

Lex
Shift all h by ∆ Same h for all heads Windowed Attention Size w

∆:-3 0 2 4 6 8 h:0 2 4 6 8 w:40 80 100 120 160 320
512 18.6 19.0 19.5 20.0 20.5 20.5 32.7 22.2 19.7 19.7 20.5 25.3 23.7 23.1 24.0 22.9 21.9
1024 21.6 19.3 19.6 24.8 232 232 32.8 23.2 24.9 146 232 25.3 23.7 23.2 137 234 353
2048 21.6 19.7 20.5 29.3 299 299 32.8 23.2 24.9 165 299 25.3 23.7 23.2 137 236 408
4096 21.6 19.7 20.5 29.4 299 299 32.9 23.2 24.9 165 299 25.3 23.7 23.2 137 236 408
8192 21.6 19.7 20.5 29.4 299 299 32.9 23.2 24.9 165 299 25.3 23.7 23.2 137 236 408

Table 4.4: The three experiments on the OpenWebText2 dataset.

Table 4.4 includes the three experiments conducted in § 4.4 on OpenWebText2. Their corre-
sponding receptive field plots are shown in Figure 4.12 and 4.13.

4.9.2 Efficient Inference
Although ALiBi might not be using token information further than Ltr, it has the nice property of
efficient inference [Press, 2022]. Tables 4.1 and 4.4 show that ALiBi perplexities remain constant
when Lex ≥ 2048. This suggests a cache window size w̄ = 2048 for inference. The generation
of the first w̄ tokens remains the same, and we can still cache all qm, km, and vm vectors for
m ∈ [1, 2048]. When it comes to generating the w̄ + 1-th token, we simply discard the first cached
q1, k1, and v1 and use the rest of w̄ − 1 tokens along with the newly added token to perform
self-attention. If we want to generate a length Lex text snippet, the complexity isO(w̄×Lex) instead
of O(L2

ex). This complexity is also better than that of an APE model, which is O(w̄2 × Lex) since
an APE model needs to completely re-encode the previous w̄ vectors when generating new tokens
following the first w̄ ones.
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Figure 4.12: Cumulative normalized gradient on OpenWebText2 when predicting the last (2048-th)
token. Windowed Attention Size w = 40, 80, · · · , 320. This graph is constructed in the same way
as Figure 4.4.
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Figure 4.13: Cumulative normalized gradient on OpenWebText2 when predicting the last (2048-th)
token. Shift all h by ∆ = −3, 0, · · · , 8. This graph is constructed in the same way as Figure 4.5.

We implement the process discussed above to verify that ALiBi indeed allows for efficient
inference. The results, along with ones for Sandwich, are presented in Table 4.5. Both ALiBi
and Sandwich permit efficient inference by setting w̄ = 2048. It is worth pointing out that the
performance of Sandwich at Lex = 4096 becomes a bit worse compared to that in Table 4.3. This is
more evidence that Sandwich is using longer than Ltr token information.
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Lex
OpenWebText2 Arxiv GitHub

Sandwich ALiBi Sandwich ALiBi Sandwich ALiBi
4096 23.9 23.5 5.31 5.59 2.79 3.01
8192 24.1 23.5 5.35 5.59 2.81 3.01
16384 24.1 23.5 5.35 5.59 2.81 3.01

Table 4.5: Efficient Inference with w̄ = 2048. The numbers are perplexities.

4.9.3 Scientific Artifacts

OpenWebText2 GitHub ArXiv
Raw Size 66.77 GB 95.16 GB 56.21 GB
Type Internet Coding Academic

Table 4.6: Dataset overview. Raw Size is the size before any up- or down-sampling.

We use the gpt-neox library [Andonian et al., 2021] under Apache-2.0 license and the datasets [Gao
et al., 2020a] released by the authors of gpt-neox. The codebase and datasets (Table 4.6) are publicly
released for research purposes. The steps taken to protect the privacy and anonymization are
discussed in Gao et al. [2020a] section 6 and 7. Finally, Gao et al. [2020a] section 5 also discusses
the distribution and statistics of the datasets used in this chapter.

4.9.4 Implementation Details
The configurations and hyperparameters are outlined in Table 4.7. The pretraining takes 5 hours on
a single NVIDIA A-100 GPU. We do not tune any hyperparameters and just use the default ones.

# Layers Hidden Size # Attention Heads Train Seq. Len. # Trainable Params.
12 64 12 512 162M

Optimizer Batch Size Train Steps Precision # Trainable Params. for RPEs
Adam (lr 6e-4) 32 50,000 bfloat16 0

Table 4.7: 162M model configurations.

4.9.5 Python Implementation of Sandwich
import numpy as np

base = 1e4
heads = 12
seq_len = 8192
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positions = np.arange(seq_len)[..., None]
bar_d = 128 # This is the hyperparameter of Sandwich
i = np.arange(bar_d // 2)

pos_embs = np.concatenate([np.sin(positions / base ** (2 * i / bar_d)),
np.cos(positions / base ** (2 * i / bar_d))],
axis=-1)

sandwich = np.matmul(pos_embs, pos_embs.T)
compression_ratio = np.arange(1, heads + 1) * 8 / heads
multi_head_sandwich = sandwich[None, ...] \\

/ compression_ratio[..., None, None]
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Part III

Length Extrapolation Beyond Natural
Language Modeling
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Chapter 5

Attention Alignment and Flexible Positional
Embeddings Improve Transformer Length
Extrapolation

5.1 Introduction

So far, all the length-extrapolatable Transformer designs are tailored for natural language modeling,
a task known to have strong recency bias, and they often do not perform well on other seemingly
simple tasks such as passkey, topic, and line retrieval [Mohtashami and Jaggi, 2023; Li et al., 2023].
To circumvent the recency bias, we sift through the positional embeddings of existing open-source
large pre-trained Transformer language models, shown in Table 5.2, to find a flexible design, and the
T5 family [Raffel et al., 2020b] comes to our attention. As visualized in Figure 5.1, the flexibility of
T5’s positional embeddings allows it to encourage recency bias on one head and discourage that
on another head. However, there is no free lunch: T5 suffers from the dispersed attention issue as
shown in Table 5.1. That is, the attention distributions of long input sequences tend to be flatter than
those of short input sequences. As a remedy, we propose two fine-tuning-free attention alignment
strategies via Softmax temperature scaling [Yao et al., 2021; Su, 2021] to mitigate the dispersed
attention issue: maximum probability (Pmax) and entropy (H) alignment.

Retrieval Tasks

Criteria
Topic Line Passkey

512 15k 512 15k 512 15k
Pmax 0.28 0.12 0.27 0.11 0.32 0.24
H 3.47 6.63 3.47 7.04 3.09 5.97

Table 5.1: The dispersed attention issue of Flan-T5-XL encoder. Pmax is the average maximum
probability and H is the average entropy. After increasing the sequence length from 512 to 15k,
we observe larger entropy and smaller maximum probability, implying a flatter self-attention
distribution.
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Models T5 2020b OPT 2022 ChatGLM 2022 LLaMA 2023 Falcon 2023 Pythia 2023 XGen 2023 BLOOM 2022a MPT 2023

PE. Learned Learned Rotary Rotary Rotary Rotary Rotary ALiBi ALiBi
Relative Absolute Relative Relative Relative Relative Relative Relative Relative

Table 5.2: Positional embeddings of open-source Transformer language models. T5 is the only
model equipped with learnable relative positional embeddings, which enable its long-context
utilization capability.

We validate the effectiveness of our alignment strategies on tasks including language modeling,
retrieval, multi-document question answering, and code completion. We also provide a theoretical
analysis of how the alignment strategies work under the hood by investigating the relation between
the Softmax temperature and data distribution.

(a) 1st Attention Head (b) 27nd Attention Head

Figure 5.1: Visualization of T5 positional embeddings. To plot figures of bm,n, we set m = 7500
and vary the value of n from 0 to 15k. Each attention head of a Flan-T5-XL encoder learns a set of
positional embeddings that capture different attention bias. For example, the positional embeddings
in the left figure encourage the model to focus on nearby tokens. In contrast, the ones in the right
figure let the model focus on only remote tokens.

5.2 Related Work

Transformer Positional Embeddings Transformer-based models rely on positional embeddings
to encode positional information. We summarize open-source large pre-trained Transformer lan-
guage models and their positional embeddings in Table 5.2. The relative variants are widely adopted
due to their better empirical performance [Su et al., 2021a] and possible length-extrapolation capa-
bility [Press et al., 2022a]. In this chapter, we place special focus on the T5 positional embeddings
due to their flexibility as shown in Figure 5.1.
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Transformer Length Extrapolation Existing research on Transformer length extrapolation is
mostly confined to the task of natural language modeling [Press et al., 2022a; Chi et al., 2022, 2023b].
Unfortunately, the reported positive results do not carry over to long-context retrieval [Mohtashami
and Jaggi, 2023; Li et al., 2023]. This contrastive observation can be explained by models’ short
empirical receptive field [Chi et al., 2023b]. Specifically, the strong decaying prior of positional
embeddings prevents models from accessing distant tokens that may be necessary for retrieval tasks.
In this chapter, we improve the flexible positional embeddings of T5 to get around this limitation.

Transformer Position Interpolation Instead of performing direct length extrapolation, a different
line of research conducts model fine-tuning on long input sequences [Chen et al., 2023], where
the main focus is to identify the most efficient fine-tuning scheme that can improve long-context
utilization. Positive results have been reported on retrieval tasks [Li et al., 2023]. However, we argue
that fine-tuning incurs additional costs since it needs 1) GPU resources to perform long sequence
fine-tuning with large models and 2) a pre-defined target sequence length, which still imposes a
sequence length upper limit. Our proposed methods can circumvent these two limitations.

Retrieval Tasks with Transformers Transformer-based approaches often consist of a retriever
and a reader to overcome the context length restriction [Guu et al., 2020; Lewis et al., 2020; Izacard
and Grave, 2021; Borgeaud et al., 2022]. The retriever retrieves relevant text snippets from a very
large database and the reader digests the retrieved information to generate the correct output. Our
proposed attention alignment strategy can be used to significantly increase the input sequence length
of the reader, thereby allowing more retrieved information to participate in the decision process.
For small-scale retrieval problems, our methods even obviate the need for context segmentation and
the external key-value store used in prior work [Mohtashami and Jaggi, 2023], serving as a more
elegant approach.

Softmax Temperature Scaling To increase the length extrapolation capability of Transformers,
previous work [Yao et al., 2021; Su, 2021; Peng et al., 2023b] scales the temperature of Softmax
logarithmically w.r.t the sequence length. Our entropy alignment strategy is also inspired by this line
of research except that we adopt a different procedure outlined below in Algorithm 1. Interestingly,
our results in § 5.7 show that the logarithmic temperature scaling scheme is more similar to our
proposed maximum probability alignment strategy.

5.3 Long-context Retrieval Tasks with T5

5.3.1 Why Retrieval?
As suggested by recent work [Mohtashami and Jaggi, 2023; Li et al., 2023], the task of long-context
retrieval serves as a controllable benchmark to measure how well a Transformer language model
utilizes long-context inputs. One prominent characteristic of retrieval tasks is that only a subset of
the input is of interest, requiring a model to accurately pick up the necessary information. The other
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characteristic is that the key information can sit anywhere in an input, requiring a model to attend
flexibly. Finally, the controllable aspect allows us to gradually increase the input sequence length to
test the models’ length extrapolation capability.

5.3.2 Why T5?

To solve retrieval tasks using Transformer language models, it is necessary to choose a positional
embedding design that permits accurate and flexible length-extrapolatable attention. After checking
through the existing positional embeddings in Table 5.2, we find that the T5 family [Raffel et al.,
2020b] fits our needs. As for other candidates, learnable absolute positional embeddings [Vaswani
et al., 2017b; Zhang et al., 2022] must be evaluated within the training length. ALiBi [Press et al.,
2022a] and Rotary [Su et al., 2021a] have a recency bias; they cannot extrapolate easily without
fine-tuning.

For each attention head, T5 encoder maintains a bucket (B) of 32 learnable parameters and
assigns the relative positional bias (rpe bias) bm,n as1

bm,n =
B[m− n], if 0 ≤ m− n < 8

B[n−m+ 16], if − 8 < m− n < 0

B[min(15, 8 + ⌊ log((m−n)/8)
log(128/8) · 8⌋)], if 8 ≤ m− n

B[min(31, 24 + ⌊ log((n−m)/8)
log(128/8) · 8⌋)], if m− n ≤ −8,

where 0 ≤ m < L and 0 ≤ n < L are two position indices. bm,n will be added to the (m,n)-th
entry of the L×L self-attention matrix. The summation becomes the input to the temperature-scaled
Softmax. We plot the learned rpe bias of a T5 encoder in Figure 5.1. We can tell that its attention
heads encode rich attention patterns. For example, head 1 learns to focus on the nearby tokens
whereas head 27 learns to ignore the nearby tokens and allow access to faraway tokens.

5.3.3 The Dispersed Attention Issue of T5 Encoder

Unfortunately, directly applying T5 models on retrieval tasks does not yield perfect results. Upon
inspecting the intermediate model states, we find that a longer input sequence consists of more
tokens competing for the same amount (i.e., Softmax sums to 1) of attention, resulting in the
dispersed attention issue. In Table 5.1, we see that the longer the input sequence, the flatter the
self-attention distribution. The situation is not hopeless if the desired information still attains a
higher attention weight than the remaining tokens. Our proposed solution in § 5.4 will let the key
information stand out.

1https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/t5/
modeling_t5.py#L390
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Algorithm 1 Attention Alignment Strategies
Require: A short sequence of length Ltr and a long sequence of length Lex > Ltr. Encoder E. Alignment

mode M .
Ensure: The Softmax temperature τ

function FINDS(τ , M )
Set temperature of all Softmax to τ
s← [ ]
for operation in E do

Perform the operation
if operation is Softmaxτ (l) then

if M is Maximum Probability then
Append max(Softmaxτ (l)) to s

else if M is Entropy then
Append H(Softmaxτ (l)) to s

end if
end if

end for
return avg(s)

end function
Str(1)← FINDS(1.0,M)
for τex = 1.0, 0.95, 0.9, · · · , 0.5 do

Sex(τex) = FINDS(τex,M)
end for
return τex s.t. Sex(τex) ≈ Str(1)
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5.4 Proposed Methods

A natural solution to the dispersed attention issue described in § 5.3 is to sharpen the self-attention
distribution. This can be achieved by reducing the temperature τ during extrapolation. We set the
extrapolation temperature τex such that the sharpness during training with τtr = 1 and that during
extrapolation with τex < 1 are roughly the same. As a measurement of sharpness, we explore the
maximum probability or entropy of a distribution. In other words, our proposed solution is to align
the maximum probability or entropy of training and extrapolation distributions by adjusting τex.

Concretely, let l(i) ∈ RL be the i-th pre-Softmax logit vector of a T5 encoder, where L ∈
{Ltr, Lex} is the sequence length. The post-Softmax distribution of l(i) is P(i)(τ) = Softmaxτ (l

(i)).
The maximum probability and entropy of P(i)(τ) are P

(i)
max(τ) and H(i)(τ), respectively.

Take the maximum probability alignment strategy as an example: We first run the forward
pass and compute the average maximum probability under temperature τ over all logit vectors:
Pmax(τ) = (1/N)

∑
i P

(i)
max(τ) whereN = R×H×L is the number of logit vectors in a T5 encoder

with R layers, H heads, and length-L sequences. Since the temperature is 1 during training and τex
during extrapolation, we denote the average maximum probability during training as Ptr

max(1) and
that during extrapolation as Pex

max(τex). Finally, to align the maximum probabilities, we adjust τex
s.t. Pex

max(τex) ≈ Ptr
max(1). In practice, we do a grid search on τex from 1.0 to 0.5. We outline the

procedure of the alignment strategies in Algorithm 1.
Note that our proposed methods do not require any model fine-tuning or gradient computations.

The only overhead is estimating the temperature τex using Algorithm 1 and a few length Lex

sequences. Once the temperature is decided, it will be held fixed, rendering our methods simple and
efficient. In addition, our fine-tuning free methods do not lead to performance regression on short
Ltr sequences commonly observed on long-context fine-tuned models [Roziere et al., 2023].

5.5 Experiments

We compare the two alignment strategies against the length-only Softmax temperature scaling
scheme τ = logLex

Ltr [Yao et al., 2021; Su, 2021] and LongChat-13B-16K [Li et al., 2023]. Note
that LongChat-13B-16K [Li et al., 2023], the best baseline, was fine-tuned from LLaMA [Touvron
et al., 2023] on long sequences of length 16k while our proposed methods do not need any fine-
tuning. Our experiments are conducted on an A6000 GPU.

5.5.1 Language Modeling

We use the LM-Adapted T5 models for this experiment2. We set Ltr = 512. Following previous
work on Transformer length extrapolation, we perform an intrinsic evaluation on language model-
ing [Press et al., 2022a; Chi et al., 2022, 2023b]. Ideally, our proposed methods should alleviate
the perplexity explosion problem during extrapolation. As we can see in Table 5.3, both alignment

2https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_
checkpoints.md#lm-adapted-t511lm100k
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Language Modeling

Models
Sequence Length (Lex)

1024 2048 4096 8192 15000 Avg.
T5-Large-LM 35.9 40.1 >1k >1k >1k > 1k
w/ Pmax 34.7 45.5 45.2 45.5 52.7 44.7
w/ H 40.2 43.9 45.6 54.6 56.0 48.1
w/ logLex

Ltr 39.8 38.2 47.4 45.3 55.9 45.3
T5-XL-LM 28.3 >1k >1k >1k >1k > 1k
w/ Pmax 30.2 36.0 31.6 41.7 50.0 37.9
w/ H 30.4 36.8 38.4 53.3 63.4 44.4
w/ logLex

Ltr 27.3 29.4 31.7 39.3 45.8 34.7
T5-XXL-LM 109 >1k >1k >1k >1k > 1k
w/ Pmax 32.2 29.7 29.5 36.6 44.3 34.5
w/ H 26.8 28.1 34.2 37.8 43.8 34.1
w/ logLex

Ltr 27.1 36.1 33.9 246 43.8 77.5

Table 5.3: Language modeling performance. We report the average perplexity of 500 sequences.
The lower the better.

Retrieval Tasks

Models
Topic, # of topics Line, # of lines Passkey, # of sentences

Avg.
5 10 15 20 25 200 300 400 500 600 680 20k 30k 40k 50k 55k

Flan-T5-Large 99 100 97 97 83 97 100 92 96 93 92 62 47 31 16 9 76
w/ Pmax 96 90 86 94 98 99 98 98 98 98 100 84 90 85 79 85 92
w/ H 59 32 16 0 3 97 90 94 83 93 88 29 25 21 15 22 48
w/ logLex

Ltr 88 79 75 61 55 99 99 98 99 97 98 74 63 51 41 35 76
Flan-T5-XL 100 100 100 100 100 96 90 77 57 45 26 100 100 100 100 100 87
w/ Pmax 100 100 100 100 100 97 90 89 80 70 62 100 99 100 100 100 93
w/ H 99 98 97 96 96 95 87 88 79 70 71 100 100 100 100 100 92
w/ logLex

Ltr 99 100 100 100 100 98 88 81 86 60 67 100 100 100 100 99 92
Flan-T5-XXL 100 100 100 99 99 100 100 98 95 84 82 100 100 100 100 100 97
w/ Pmax 100 100 100 99 99 97 99 96 97 94 95 100 98 100 100 100 98
w/ H 100 100 97 98 94 99 92 92 76 58 58 100 100 100 100 100 92
w/ logLex

Ltr 100 100 99 98 92 100 98 94 93 84 90 100 100 100 100 100 97
LongChat 100 100 100 99 89 100 91 93 83 78 59 100 100 99 100 99 93

Table 5.4: Performance of retrieval tasks. Each number is the averaged accuracy computed over
100 sequences. The LongChat model corresponds to LongChat-13B-16K [Li et al., 2023]. It is a
LLaMA-13B [Touvron et al., 2023] model fine-tuned on sequences of length 16k using positional
interpolation [Chen et al., 2023]. Flan-T5-XXL has 11B parameters. The maximum sequence
lengths (Lex) of the three tasks are around 14.5k to 15.5k tokens.

strategies dramatically improve (lower) the perplexity. We also observe that scaling the temperature
solely based on sequence lengths is not the optimal strategy, as indicated by the sudden perplexity
increase of the logLex

Ltr strategy. We will provide an in-depth discussion on this topic in § 5.7.
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Note that perplexity is not our primary focus since it often cannot accurately reflect the long-context
utilization capability of Transformers on practical tasks [Li et al., 2023].

5.5.2 Long-context Retrieval
The tasks are formulated in the Question Answering (QA) format; therefore, we use the Flan-T5
models to leverage their instruction-following capability. We set Ltr = 512. Inspired by recently
proposed retrieval tasks, we evaluate the proposed alignment strategies on three of these. Topic
retrieval requires a model to retrieve the first topic in a long and multi-topic conversation [Li et al.,
2023]. Line retrieval has a long series of key-value pairs, and a model needs to retrieve the value
corresponding to the given key [Li et al., 2023]. Passkey retrieval hides a passkey in a long junk
text snippet, and a model needs to return that passkey [Mohtashami and Jaggi, 2023].

As we can see in Table 5.4, the retrieval performance is greatly boosted after the Flan-T5
models are equipped with our proposed attention alignment strategies. In particular, the maximum
probability alignment strategy provides better results across the board. Other baselines such as
MPT [Team, 2023] and ChatGLM2 [Du et al., 2022] perform worse than LongChat. Please refer
to Li et al. [2023] for more details. We also present the optimal temperature given by Algorithm 1 in
Table 5.9 in § 5.10.5. In short, the temperature decreases when the input sequence length increases.
We will provide additional temperature analysis below, in §5.7.

Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs, golden doc at different positions

Avg. Avg. 0 4 9 14 19 24 29 Avg.
Flan-T5-Large 52.4 43.3 52.6 42.0 36.5 34.0 33.9 33.9 37.9 38.7
w/ Pmax 53.1 44.2 50.8 44.5 39.5 36.4 35.9 35.8 37.0 40.0
Improvement +0.7 +0.9 -1.8 +1.5 +3.0 +2.4 +2.0 +1.9 -0.9 +1.3
w/ H 52.1 43.2 47.6 41.1 35.2 33.5 32.2 33.3 34.2 36.7
w/ logLex

Ltr 53.2 44.5 50.6 44.1 39.3 36.3 35.8 35.8 37.2 39.9
Flan-T5-XL 59.4 51.2 58.4 44.6 40.0 39.9 41.7 46.4 54.8 46.5
w/ Pmax 61.1 53.6 60.9 49.1 46.0 44.9 46.3 49.1 55.7 50.3
Improvement +1.7 +2.4 +2.5 +4.5 +6.0 +5.0 +4.6 +2.7 +0.9 +3.8
w/ H 60.5 52.4 52.4 43.5 42.1 40.3 42.0 42.9 51.3 44.9
w/ logLex

Ltr 60.9 53.6 61.0 49.1 46.1 44.7 46.1 48.7 55.4 50.2
Flan-T5-XXL 63.6 56.9 58.9 49.1 48.1 47.5 48.9 53.1 61.2 52.4
w/ Pmax 63.7 57.7 60.4 52.5 51.0 50.2 51.3 53.5 59.1 54.0
Improvement +0.1 +0.8 +1.5 +3.4 +2.9 +2.7 +2.4 +0.4 -2.1 +1.6
w/ H 63.6 57.1 61.0 53.4 50.8 50.3 50.7 51.9 55.7 53.4
w/ logLex

Ltr 63.9 57.6 61.5 53.3 51.3 50.3 51.1 53.0 57.2 54.0

Table 5.5: Performance of multi-document QA. Numbers are accuracy. Full score is 100. The
maximum sequence length (Lex) of 30 documents is around 5k. The improvement row represents
the absolute accuracy improvement after a Flan-T5 model is equipped with our proposed maximum
probability alignment strategy. For the full performance breakdown, please refer to Table 5.14 in
§ 5.10.7.
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5.5.3 Multi-document Question Answering

We again use the Flan-T5 models to leverage their instruction-following capability. We setLtr = 512.
We follow the multi-document question-answering task settings and data splits detailed in Liu et al.
[2023b]. In short, the input consists of a question Q and multiple documents extracted from
NaturalQuestions [Kwiatkowski et al., 2019] related to Q, where one of the documents (golden doc)
contains the ground truth answer to Q. As shown in Table 5.5, when a model is equipped with the
proposed maximum probability alignment strategy, it consistently outperforms the original model
across model sizes and number of input documents.

Apart from the better task performance, we believe that the attention dispersed attention issue
discussed in § 5.3 can help demystify the lost-in-the-middle phenomenon [Liu et al., 2023b] of this
task: Transformer models tend to perform worse when the ground truth sits near the middle of the
input context. Let us recall the relative positional embedding of head 27 learned in Figure 5.1, if the
ground truth answer sits in the middle, it will have long contexts from both sides competing for
the attention weight. If this hypothesis is correct, we can expect the performance boost to be more
prominent when the answer appears near the middle. We reveal the performance breakdown when
the number of input documents is 30. As we can see in the improvement row, those cases indeed
achieve greater improvements.

Our strategies are not always perfect: The performance drops if the ground truth answer is at
position 29. We believe T5 might have already handled this case pretty well due to the recency bias
learned on some attention heads, and our additional temperature scaling sharpens the distribution
too aggressively.

5.5.4 Code Key Retrieval and Completion

To test the generalizability of the alignment strategies, we apply our methods to the CodeT5+
model [Wang et al., 2023] that was pre-trained on code data with 770M parameters.3 We set
Ltr = 768. We do not experiment with larger CodeT5+ models since they do not follow the
T5 architecture, but use other positional embeddings. We conduct two experiments on the LCC
dataset [Guo et al., 2023], which is highly similar to the classic PY150 dataset [Raychev et al.,
2016] except that the input context length is much longer.

For the code key retrieval experiment, we sample several code files from LCC along with a
special function that only returns an integer from 1 to 100. We concatenate them and ask a model to
generate the returned integer at the end [Roziere et al., 2023]. Considering that this is essentially a
passkey retrieval task in the code domain, we briefly report the average accuracy of 100 test cases
when the input sequence length is around 16k: 0 (Original CodeT5+), 87 (w/ Pmax), 80 (w/ H), and
85 (w/ logLex

Ltr). We can see that the maximum probability alignment strategy performs the best.
For the code completion experiment, a model needs to generate the next line of code given some

prior code as the context. The metrics are Exact Match (EM) and Edit similarity (ES) on a per
line basis [Svyatkovskiy et al., 2020]. We report the results in Table 5.6 using the context length
bucketing format. While both alignment strategies improve the performance substantially, Pmax is

3https://huggingface.co/Salesforce/codet5p-770m-py
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better; however, its EM performance lags behind logLex
Ltr when the sequence length increases. We

additionally include an extrapolation-free baseline, truncation, that truncates the long input context
to the most recent Ltr = 768 tokens. Both Pmax and logLex

Ltr perform better than this baseline
when Lex < 6000, indicating that they can indeed benefit from longer (6000/768 = 7.8x) contexts
without any fine-tuning.

Code Completion Exact Match

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k
CodeT5+ 19.6 19.0 11.3 2.6 0.1 0.0
w/ Pmax 21.1 22.5 21.7 21.5 19.3 22.7
w/ H 19.5 18.7 13.7 9.0 7.9 9.0
w/ logLex

Ltr 21.6 23.0 22.1 22.0 20.6 24.3
w/ truncation 20.0 19.2 19.3 19.2 17.1 21.4

Code Completion Edit Similarity

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k
CodeT5+ 62.4 59.6 53.1 38.9 18.3 10.4
w/ Pmax 65.9 65.7 65.3 65.6 63.1 64.9
w/ H 64.8 62.5 54.1 43.0 43.0 44.8
w/ logLex

Ltr 66.3 66.1 65.2 66.4 63.0 66.1
w/ truncation 65.3 64.2 64.2 65.6 62.2 66.9

Table 5.6: Code completion performance. Full score is 100. We set Ltr = 768. The bucket nk
contains the data with length in [nk, (n+1)k), n ∈ [1, 6]. For example, the bucket 3k contains data
with length in [3000, 4000). See Table 5.12 and 5.13 in § 5.10.6 for the full performance breakdown
of Lex up to 16k tokens.

5.5.5 Overall Observations

First, the maximum probability alignment strategy is the most reliable and best-performing method
across most tasks and settings, echoing our discussion in § 5.3.1: For most data, only a subset of the
input is useful for a model process at a time. The maximum probability alignment strategy captures
this characteristic naturally, thereby outperforming the entropy alignment strategy that cares more
about the holistic distribution.

Second, deciding the optimal temperature solely based on sequence lengths, e.g. τ = logLex
Ltr,

is not robust enough. For example, the perplexity of logLex
Ltr suddenly increases (worse) on

T5-XXL-LM, in Table 5.3, while the other strategies maintain stable results. As another example, it
fails to improve the retrieval performance on the Flan-T5-Large model, shown in Table 5.4.

5.6 Theoretical Analysis

5.6.1 Assumptions

To shed more light on the underlying mechanisms of the two alignment strategies, we establish
the connection between the softmax temperature τ and data distribution under empirically verified
assumptions. We focus on the 0-th layer (closest to the input embeddings) and take the average over
all logit vectors across attention heads. Note that this is just a crude approximation of Algorithm 1
for analysis purposes since 1) a Transformer language model typically encompasses multiple layers,
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and 2) in Algorithm 1, we take the maximum probability or entropy of individual logit vectors as
opposed to the average one.

Assumption 5.1. The length L average logit vector is normally distributed, i.e., its entry li ∼
N(0, σ2).

To compute the average logit vector, we start with a input sequence of length L. Using a
Transformer model with H attention heads (specifically, a T5 Encoder in our context), we generate
H × L pre-softmax logit vectors, each with a length of L. Here, the number of layers is 1 because
we focus on the 0-th layer. These logit vectors are then individually sorted, and we subsequently
calculate the average of all H ×L sorted logit vectors, resulting in the average logit vector of length
L.

To assess whether the average logit entries follow a Gaussian distribution, we make use of QQ
plots, as illustrated in Figure 5.2. The linearity of the plot serves as an indicator – the closer the
points are to the identity line, the more Gaussian the distribution.

Figure 5.2: QQ plots of Flan-T5-XL. We experiment with short and long sequences. The red
reference line is y=x. We use sequences of length around 512 for this plot. The plot for sequences
of length around 15k looks highly similar. Please refer to § 5.10.1 for details.

Assumption 5.2. The largest logit entry of the average logit vector during training and extrapolation
is the same: lexmax = ltrmax. See Table 5.7.
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Retrieval Tasks

Criteria
Topic Line Passkey

512 15k 512 15k 512 15k
lmax 8.61 8.80 8.71 8.97 8.75 8.85

Table 5.7: Largest logit entry of Flan-T5-XL. lmax is the largest logit entry of the average logit
vector.

5.6.2 Maximum Probability Alignment
Proposition 5.1. Under Assumption 5.1 and 5.2, we can adjust the temperature τ to align the
maximum probability Ptr

max = Pex
max

τ ≈ logLtr + log Ptr
max + σ2

tr/2

logLex + log Ptr
max + σ2

ex/(2τ
2)
.

=
B

A+ C
τ2

=
Bτ 2

Aτ 2 + C
.

Assuming τ ̸= 0, we solve the quadratic equation Aτ 2 −Bτ + C = 0 to get τ . We pick the larger
root as our final solution. See proof in § 5.10.2.

5.6.3 Entropy Alignment
Proposition 5.2. Under Assumption 5.1, we can adjust the temperature τ to align the entropy
Htr = Hex

τ ≈ σex√
σ2
tr + 2 log Lex

Ltr

See proof in § 5.10.3.

5.7 Discussion

The objective of this section is to explain the observations made in § 5.5 through the lens of
temperature analysis. We visualize Proposition 5.1 and 5.2 by plotting the temperature curves in
Figures 5.3 and 5.4. We evaluated Ptr

max and σtr at the training length and σex at every extrapolation
length considering only the 0-th layer. You may find the temperature curves for the other tasks in
§ 5.10.4.

First, while both proposed strategies lower the temperature when the input sequence length
increases, the entropy alignment strategy does so more aggressively, possibly leading to its inferior
performance observed in Tables 5.4 and 5.5 (w/ H). This can be seen by comparing the curves from
Propositions 5.1 and 5.2 or the dots from Algorithm 1.

Second, deciding the optimal temperature based on sequence lengths, e.g. τ = logLex
Ltr, is not

the most robust method. It gives too high of a temperature in Figure 5.3 compared to Algorithm 1.
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Figure 5.3: Language modeling temperature analysis. Curves are from Proposition 5.1 & 5.2. Dots
and crosses are from Algorithm 1.

Figure 5.4: Topic retrieval temperature analysis. Curves are from Proposition 5.1 & 5.2. Dots and
crosses are from Algorithm 1.
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In other words, it does not sharpen the distribution enough, possibly explaining its perplexity spike
in Table 5.3. On the other hand, it overly lowers the temperature in Figure 5.4, thus failing to
improve the retrieval performance of Flan-T5-Large in Table 5.4.

5.8 Conclusion

In this chapter, we show that the T5 model family has great potential when it comes to Transformer
length extrapolation. We propose the maximum probability and entropy alignment strategies to
fix T5’s dispersed attention issue without model fine-tuning. We conduct experiments on natural
language modeling, retrieval, multi-document question answering, and code completion tasks to
demonstrate the effectiveness of our proposed methods. Finally, we present a simplified theoretical
analysis to elucidate how the temperature is scaled to achieve attention alignment. We hope that our
work can inspire future length-extrapolatable Transformer designs.

5.9 Limitations

We base our theoretical analysis on a simplified Transformer language model, which might be
further improved by taking all the layers and their interactions into account. In addition, we find that
different layers have different degrees of distribution flatness, which could be leveraged in future
work to perform per-layer fine-grained attention alignment. Finally, our temperature scaling scheme
sometimes sharpens a distribution too aggressively in the multi-document question-answering and
code-completion experiments. This drawback could possibly be improved by designing a more
fine-grained attention alignment strategy.

5.10 Proofs and Experimental Details

5.10.1 QQ Plots for Assumption 5.1

A QQ plot [Wilk and Gnanadesikan, 1968] is a graphical technique used for comparing two
probability distributions by plotting their quantiles against each other. A point (x, y) corresponds
to a quantile from the second distribution (y-coordinate) plotted against the same quantile from
the first distribution (x-coordinate). When the two distributions under comparison are similar, the
points in the QQ plot will roughly align with the identity line, y = x. In our case, where we aim to
determine the degree of Gaussian behavior in the average logit vector, the linearity of the plot serves
as an indicator – the closer the points are to the identity line, the more Gaussian the distribution.

We present the QQ plots for two lengths, 512 and 15k, on the three retrieval tasks in Figure 5.5.
They are all close to the red reference line, indicating that their form is highly Gaussian.
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(a) Short sequences around 512 (b) Long sequences around 15k

Figure 5.5: QQ plots of Flan-T5-XL. We experiment with short and long sequences. The red
reference line is y=x. The more closely the scatter plots follow the red reference line, the more
Gaussian they are.

5.10.2 Detailed Derivation of Proposition 5.1
Let lmax be the largest value in the logit vector l. Let τ be the temperature of the Softmax function.
The probability of the largest entry is

Pmax =
elmax/τ∑L
i=1 e

li/τ
.

Since Softmax is shift-invariant, the logit vector can always be made zero-mean:
∑

i li = 0. Next,
according to Assumption 5.1, the denominator of Softmax can be approximated as

L∑
i=1

eli/τ ≈ L · E[eli/τ ] = L · eσ2/(2τ2) (5.1)

This implies Pmax is approximately

Pmax ≈
elmax/τ

Leσ2/(2τ2)

During the training stage, the temperature τ is 1

Ptr
max ≈

el
tr
max

Ltreσ
2
tr/2

,

which gives an expression of the largest logit entry during the training stage

ltrmax ≈ log
(
Ptr
maxLtre

σ2
tr/2
)

(5.2)
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According to Assumption 5.2, the largest probability during the extrapolation stage can be simplified
as

Pex
max ≈

el
ex
max/τ

Lexeσ
2
ex/(2τ

2)

A. 5.2
=

el
tr
max/τ

Lexeσ
2
ex/(2τ

2)

(5.2)
≈

(
Ptr
maxLtre

σ2
tr/2
)1/τ

Lexeσ
2
ex/(2τ

2)

Since τ is a free parameter during extrapolation, we adjust it to carry out the maximum probability
alignment strategy. Rearranging the terms gives Proposition 5.1.

5.10.3 Detailed Derivation of Proposition 5.2
The entropy of a discrete probability computed by Softmax is

H = −
∑
i

eli/τ

D
log

eli/τ

D
= logD −

∑
i
li
τ
eli/τ

D
,

where D =
∑

i e
li/τ is the denominator of Softmax, which can be approximated using Eq. (5.1).

On the other hand, we note that
∑

i lie
li ≈ LE[lel]. When l ∼ N(0, σ2), E[lel] is approximated as

E[lel] =
∫ ∞

−∞

lel

σ
√
2π
e−

l2

2σ2 dl

=

∫ ∞

−∞

l

σ
√
2π
e

2σ2l−l2

2σ2 dl

=

∫ ∞

−∞

l

σ
√
2π
e−

(l−σ2)2−σ4

2σ2 dl

= eσ
2/2

∫ ∞

−∞

l

σ
√
2π
e−

(l−σ2)2

2σ2 dl

= eσ
2/2σ2

(5.3)

Thus, combining Eq. (5.1) and (5.3), the entropy H is approximated as

H ≈ logL+
σ2

2τ 2
−
Leσ

2/(2τ2) σ2

τ2

Leσ2/(2τ2)

= logL− σ2

2τ 2

Since τ is set to 1 during the training stage, we have Htr ≈ logLtr − σ2
tr

2
. During extrapolation, we

align the entropy (i.e., Hex = Htr) by adjusting τ .

logLex −
σ2
ex

2τ 2
≈ Hex = Htr ≈ logLtr −

σ2
tr

2
.

Since τ is a free parameter during extrapolation, we adjust it to apply the entropy alignment strategy.
Rearranging the terms gives Proposition 5.2.
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5.10.4 More Real-world Temperature Plots

We verify Proposition 5.1 and 5.2 on the remaining tasks by plotting the temperature curves in
Figure 5.6, 5.7, 5.8, and 5.9. We empirically evaluate σtr at the training length and σex every
extrapolation length considering only the 0-th layer.

The real temperatures given by Algorithm 1 are usually higher than those derived from the two
propositions. After checking the per-layer attention distributions, we find that the 0-th layer has
flatter distributions compared to higher layers. Because the two propositions are derived based on
the 0-th layer and a flatter distribution needs a lower temperature to correct, the temperatures given
by them tend to be lower than the ones given by Algorithm 1 that takes the average of temperatures
across all layers.

Figure 5.6: Line retrieval temperature analysis. Curves are given by Proposition 5.1 and 5.2. Cross
signs and dots are given by Algorithm 1. logL 512 is given by Yao et al. [2021]; Su [2021].

5.10.5 Detailed Temperature Breakdown

We report the temperatures for all tasks across model sizes given by Algorithm 1 in Table 5.8, 5.9, 5.10,
and 5.11.

5.10.6 Performance Breakdown of Code Completion

We report the performance breakdown of Exact Match and Edit Similarity across lengths in
Table 5.12 and 5.13.
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Figure 5.7: Passkey retrieval temperature analysis. Curves are given by Proposition 5.1 and 5.2.
Cross signs and dots are given by Algorithm 1. logL 512 is given by Yao et al. [2021]; Su [2021].

Figure 5.8: Multi-doc QA temperature analysis. Curves are from Proposition 5.1 & 5.2. Dots and
crosses are from Algorithm 1.
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Figure 5.9: Code completion temperature analysis. Curves are given by Proposition 5.1 and 5.2.
Cross signs and dots are given by Algorithm 1. logL 768 is given by Yao et al. [2021]; Su [2021].

Language Modeling

Models
Sequence Length (Lex)

1024 2048 4096 8192 15000
T5-Large-LM
w/ Pmax 0.9 0.85 0.8 0.75 0.7
w/ H 0.8 0.7 0.6 0.5 0.5
T5-XL-LM
w/ Pmax 0.9 0.85 0.75 0.7 0.6
w/ H 0.85 0.7 0.55 0.5 0.5
T5-XXL-LM
w/ Pmax 0.9 0.85 0.65 0.55 0.5
w/ H 0.85 0.7 0.7 0.55 0.5
w/ logLex

Ltr 0.9 0.82 0.75 0.69 0.65

Table 5.8: Temperatures of language modeling. We search the optimal temperature from 1.0, 0.95,
0.9, · · · , 0.5. We set Ltr = 512.

5.10.7 Performance Breakdown of Multi-document Question Answering

We report the performance breakdown of different numbers of input documents in Table 5.14.
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Retrieval Tasks

Models
Topic, # of topics Line, # of lines Passkey, # of sentences

5 10 15 20 25 200 300 400 500 600 680 20k 30k 40k 50k 55k
Flan-T5-Large
w/ Pmax 0.85 0.8 0.75 0.75 0.75 0.85 0.8 0.8 0.75 0.75 0.75 0.85 0.80 0.80 0.75 0.75
w/ H 0.7 0.6 0.55 0.5 0.5 0.65 0.55 0.55 0.5 0.5 0.5 0.6 0.55 0.5 0.5 0.5
Flan-T5-XL
w/ Pmax 0.8 0.75 0.7 0.65 0.65 0.8 0.75 0.75 0.7 0.70 0.7 0.85 0.8 0.75 0.75 0.75
w/ H 0.7 0.55 0.55 0.5 0.5 0.6 0.55 0.55 0.5 0.5 0.5 0.7 0.65 0.6 0.6 0.6
Flan-T5-XXL
w/ Pmax 0.85 0.8 0.75 0.75 0.75 0.8 0.8 0.75 0.75 0.75 0.75 0.85 0.8 0.8 0.75 0.75
w/ H 0.75 0.65 0.6 0.55 0.55 0.65 0.6 0.6 0.55 0.55 0.55 0.65 0.6 0.55 0.55 0.5
w/ logLex

Ltr 0.79 0.72 0.69 0.67 0.65 0.74 0.71 0.69 0.67 0.66 0.65 0.73 0.69 0.67 0.66 0.65

Table 5.9: Temperatures of retrieval tasks. We search the optimal temperature from 1.0, 0.95, 0.9,
· · · , 0.5. The maximum lengths of the three tasks are all around 14.5k to 15.5k tokens (Lex). We set
Ltr = 512.

Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs

Lex = 1700 Lex = 3300 Lex = 5000

Flan-T5-Large
w/ Max. 0.9 0.85 0.8
w/ Ent. 0.75 0.65 0.6
Flan-T5-XL
w/ Max. 0.85 0.75 0.75
w/ Ent. 0.75 0.65 0.55
Flan-T5-XXL
w/ Max. 0.9 0.8 0.8
w/ Ent. 0.75 0.7 0.65
w/ logLex

Ltr 0.84 0.77 0.73

Table 5.10: Temperatures of multi-document question answering. We search the optimal temperature
from 1.0, 0.95, 0.9, · · · , 0.5. Different golden document positions have the same temperature. We
set Ltr = 512.

5.11 Scientific Artifacts

The pretrained models we used belong to the T5 model family, which is released under the Apache
2.0 license. The models are used in this chapter for research purposes only. For the data used to
train T5 models, please refer to Raffel et al. [2020b]; Lester et al. [2021]; Chung et al. [2022] for
details. Except for the LCC Python data, other task data is written in English. We already report the
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Code Completion

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k 16k
CodeT5+
w/ Pmax 0.95 0.8 0.75 0.75 0.7 0.7 0.6 0.6 0.6 0.6 0.55 0.55 0.55 0.55 0.5 0.5
w/ H 0.85 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
w/ logLex

Ltr 0.96 0.87 0.83 0.8 0.78 0.76 0.75 0.74 0.73 0.72 0.71 0.71 0.7 0.7 0.69 0.69

Table 5.11: Temperatures of code completion. We search the optimal temperature from 1.0, 0.95,
0.9, · · · , 0.5. The maximum length is around 16k tokens (Lex). We set Ltr = 768.

Code Completion Exact Match

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k
CodeT5+ 19.6 19.0 11.3 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w/ Pmax 21.1 22.5 21.7 21.5 19.3 22.7 16.1 14.4 13.4 20.6 16.0 15.3 12.3 16.7 4.5
w/ H 19.5 18.7 13.7 9.0 7.9 9.0 10.3 8.8 10.8 12.1 11.7 10.2 9.2 11.1 2.3
w/ logLex

Ltr 21.6 23.0 22.1 22.0 20.6 24.3 20.7 18.6 19.1 22.4 13.8 20.3 15.4 19.4 11.4
w/ truncation 20.0 19.2 19.3 19.2 17.1 21.4 21.1 18.0 19.1 25.2 18.1 20.3 16.9 27.8 15.9

Table 5.12: Full exact match breakdown of code completion edit similarity. We set Ltr = 768.
Numbers in red are higher than their counterpart in the w/truncation row. The bucket nk contains
the data with length in [nk, (n+1)k), n ∈ [1, 15].

Code Completion

Models
Sequence Length (Lex)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k
CodeT5+ 62.4 59.6 53.1 38.9 18.3 10.4 6.1 4.0 4.5 5.0 6.7 5.1 6.4 4.4 3.5
w/ Pmax 65.9 65.7 65.3 65.6 63.1 64.9 60.0 60.0 58.1 57.5 56.2 56.0 52.1 56.9 39.9
w/ H 64.8 62.5 54.1 43.0 43.0 44.8 47.7 47.0 47.6 51.2 44.3 49.7 50.3 57.4 42.0
w/ logLex

Ltr 66.3 66.1 65.2 66.4 63.0 66.1 61.9 58.8 61.6 57.8 54.2 57.9 48.7 52.2 48.6
w/ truncation 65.3 64.2 64.2 65.6 62.2 66.9 66.8 61.8 64.1 65.1 63.5 63.9 61.5 67.6 60.8

Table 5.13: Full edit similarity breakdown of code completion. We set Ltr = 768. Numbers in red
are higher than their counterpart in the w/truncation row. The bucket nk contains the data with
length in [nk, (n+1)k), n ∈ [1, 15].

number of data instances in § 5.5 for the language modeling and retrieval tasks. As for the multi-doc
QA and code related tasks, we follow the original data splits.
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Multi-document Question Answering

Models
10 Docs 20 Docs 30 Docs

0 4 9 0 4 9 14 19 0 4 9 14 19 24 29
Flan-T5-Large 60.6 48.5 48.0 54.5 44.0 39.6 38.0 40.2 52.6 42.0 36.5 34.0 33.9 33.9 37.9
w/ Max. 60.9 49.8 48.6 53.5 45.6 40.8 39.7 41.3 50.8 44.5 39.5 36.4 35.9 35.8 37.0
w/ Ent. 58.9 50.1 47.3 52.4 45.2 40.4 38.0 40.0 47.6 41.1 35.2 33.5 32.2 33.3 34.2
w/ logLex

Ltr 60.2 51.1 48.4 53.8 46.0 41.4 39.4 41.7 50.6 44.1 39.3 36.3 35.8 35.8 37.2
Flan-T5-XL 64.0 55.4 58.9 60.6 47.9 45.1 47.3 55.3 58.4 44.6 40.0 39.9 41.7 46.4 54.8
w/ Max. 65.3 57.3 60.8 62.2 51.6 49.0 49.4 56.0 60.9 49.1 46.0 44.9 46.3 49.1 55.7
w/ Ent. 64.7 56.7 60.0 59.3 50.1 47.9 49.8 55.1 52.4 43.5 42.1 40.3 42.0 42.9 51.3
w/ logLex

Ltr 65.1 57.0 60.6 62.2 51.7 48.8 49.5 56.0 61.0 49.1 46.1 44.7 46.1 48.7 55.4
Flan-T5-XXL 65.1 61.0 64.6 61.1 53.9 52.4 54.7 62.4 58.9 49.1 48.1 47.5 48.9 53.1 61.2
w/ Max. 66.2 61.8 63.2 62.8 55.9 54.4 55.6 59.6 60.4 52.5 51.0 50.2 51.3 53.5 59.1
w/ Ent. 67.3 62.1 61.3 63.2 56.1 54.1 54.3 57.6 61.0 53.4 50.8 50.3 50.7 51.9 55.7
w/ logLex

Ltr 66.7 61.9 63.1 63.1 56.0 54.7 55.1 59.0 61.5 53.3 51.3 50.3 51.1 53.0 57.2

Table 5.14: Full performance breakdown of multi-document question answering. The numbers are
accuracy. Full score is 100. 0, 4, 9... indicate the position of the golden document that contains the
answer to a question.
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Chapter 6

Transformer Working Memory Enables
Regular Language Reasoning and Natural
Language Length Extrapolation

6.1 Introduction

In preceding chapters, we delved into various natural language tasks and explored different de-
signs of positional embeddings. In this chapter, we extend our scope beyond natural language to
encompass the family of regular languages. This expansion enables us to investigate the compo-
sitional capabilities of Transformer language models Valvoda et al. [2022], a pivotal benchmark
for evaluating the models’ capacity to combine primitives in modeling complex scenarios. Our
proposed Transformer model architecture draws inspiration from the concept of working memory,
demonstrating proficiency in accurately modeling regular language structures.

It has long been believed that Working Memory (WM), a term coined in the 1960s to liken
human minds to computers, plays an important role in human reasoning ability and the guidance of
decision-making behavior [Baddeley and Hitch, 1974; Baddeley, 1992; Ericsson and Kintsch, 1995;
Cowan, 1998; Miyake et al., 1999; Oberauer, 2002; Diamond, 2013; Adams et al., 2018]. Although
no single definition encompasses all applications of WM [Adams et al., 2018], the following one
should be shared by all theories of interest:

Working memory is a system of components that holds a limited amount of information
temporarily in a heightened state of availability for use in ongoing processing. - Adams
et al. [2018]

WM is instantiated in the two major driving forces of sequence modeling: Recurrent neural
networks’(RNN) [Elman, 1990; Jordan, 1997; Hochreiter and Schmidhuber, 1997] short term
memory modulated by their recurrent nature and gate design [Rae and Razavi, 2020b; Nematzadeh
et al., 2020; Armeni et al., 2022], and Transformers’ [Vaswani et al., 2017a] salient tokens heightened
by self-attention.

In reality, self-attention often attends broadly [Clark et al., 2019], violating the limited amount
of information notion of WM. Our hypothesis is that such violation is to blame for Transformers’
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Figure 6.1: This is the divide-and-conquer approach that solves the PARITY problem. Lightly
shaded blue cells represent M (l)

mn in eq. (6.1). The darkened blue cells represent the routing path to
specifically solve the result for the last bit. As we can see, this approach requires at most log2 T
layers to obtain the result for a length T input sequence, making it a more efficient approach
compared to the combination of scratchpad and recency biases.

failure on algorithmic reasoning of regular languages [Deletang et al., 2023; Liu et al., 2023a]
such as PARITY, a seemingly simple task that checks if the number of 1s in a bit string is even.
Surprisingly, a Transformer can only correctly count the number of 1s when the sequence length is
kept fixed at the training sequence length Ttr, and it fails miserably when the test sequence length
is extrapolated to Tex > Ttr [Hahn, 2020; Bhattamishra et al., 2020a; Chiang and Cholak, 2022;
Deletang et al., 2023; Liu et al., 2023a]. In contrast, an RNN can be perfectly extrapolated.

The goal of this chapter is therefore to improve Transformers’ WM by limiting the amount of
accessible information at a time. Existing attempts that use a combination of scratchpad and recency
biases [Wei et al., 2022; Nye et al., 2022; Anil et al., 2022; Liu et al., 2023a] are not optimal as
they completely forego the parallelization property of a Transformer, making it as computationally
inefficient as an RNN.

This begs the question: Does there exist a more efficient Transformer working memory design?
The answer is affirmative thanks to the proposed RegularGPT, which boils down to the three
design choices: Weight-Sharing, Adaptive-Depth, and Sliding-Dilated-Attention; Each of them has
been proposed previously, but it is the unique combination that sparks the successful and efficient
learning of regular languages. We will further demonstrate its: 1) similar recursive parallel structure
as linear RNN [Orvieto et al., 2023b], resulting in log Ttr or log Tex layers, and 2) generalizability by
showing strong performance on the task of Transformer natural language length extrapolation [Press
et al., 2022a; Chi et al., 2022, 2023b].

6.1.1 Regular Language and Algorithmic Reasoning
The Chomsky hierarchy [Chomsky, 1956b] classifies formal languages into different hierarchies
based on their increasing complexity. Each hierarchy represents a family of formal languages that
can be solved by the corresponding automaton. At the lowest level, there lies the family of regular
languages, which can be expressed using a finite state automaton (FSA), a computational model
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comprising a set of states and transitions connecting them.
PARITY, or the family of regular languages in general, is a type of language that strictly follows

certain rules, like grammar. The successful modeling of a regular language is important, since it
implies a model’s ability to learn the underlying rules of the data. In terms of generalization, there
is also the task of modular arithmetic within the same language family. Concretely, if the training
data consists of arithmetic operations such as 1 + 2× 3, a model should learn the rules of a + b,
a × b, and that × has a higher priority than +. Learning unambiguous rules behind the data is a
critical step toward sequence modeling with regulated output.

Our primary objective is to enhance the algorithmic reasoning of the Transformer model in
regular languages by testing its language transduction capability under the extrapolation setting.
Concretely, the model is trained only to predict desired outputs on a set of short length-T se-
quences with T ≤ Ttr. It must also predict the correct output for longer testing sequences of
length Tex ≫ Ttr. It is worth noting that we evaluate our model through language transduction
following recent work [Deletang et al., 2023; Liu et al., 2023a], instead of the conventional language
recognition protocol. Both settings are equally hard as they are underpinned by the same finite state
semiautomaton. Interested readers may refer to Deletang et al. [2023] for further details regarding
the two evaluation protocols. We also reveal the connection between RegularGPT and finite state
semiautomaton later in § 6.6.

6.1.2 Failure Mode and An Inefficient Fix
The PARITY task involves a length T bit string σ1σ2 · · ·σT where each bit σi is randomly sampled
from a Bernoulli distribution with P(σi = 1) = 0.5. The goal is to determine whether the sequence
contains an even or odd number of 1s.

It has been observed that a Transformer is incapable of performing length extrapolation on
PARITY, but what could be its potential failure mode? Previous work sheds light on this by showing
that a Transformer might settle on the naive-summation approach [Anil et al., 2022; Deletang et al.,
2023; Liu et al., 2023a]. Concretely, it sums up all the bits and outputs the summation modulo 2.
This approach fails since unseen summations will be produced when the model takes sequences of
length Tex > T as input or P(Si) deviates from 0.5.

To the best of our knowledge, the existing remedy [Liu et al., 2023a; Anil et al., 2022] is to use
scratchpad [Wei et al., 2022; Nye et al., 2022] along with recency biases [Press et al., 2022a] to
enforce the correct learning: They create a scratchpad that interleaves the sequence of input bits and
intermediate answers (σ1, q1, σ2, q2, · · · , σT , qT ), where qi = solve(σ1 · · ·σi). The model is trained
to predict all the σi∈[T ]. Recency biases play the role of limiting a Transformer’s receptive field to
only a few most recent σ and q at every timestep i. This is to prevent self-attention from ignoring q
and giving the same naive-summation solution.

Scratchpad and recency biases jointly create the notion of WM along the temporal dimension
similar to RNNs, thereby enabling successful extrapolation on regular languages. Nevertheless,
we note that this fix is inefficient during inference since all the intermediate answers qi have to be
generated sequentially before reaching the final answer qT . A desirable fix should only take in the
input bits (σ1, σ2, · · · , σn) and directly generate the final answer qT . In other words, our goal is to
find an efficient WM design for a Transformer.
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6.1.3 A Desirable Fix for PARITY (Figure 6.1)
An alternative solution to the PARITY problem is based on the spirit of divide-and-conquer, where
we first divide the sequence into T/C chunks with each chunk of length C < T , and we compose
the final answer by recursively merging the chunk outputs. This approach does not suffer from the
unseen summation issue as the model was trained to handle a fixed amount of C bits at a time in its
WM (chunk). It then recursively applies the already-seen results to compose the final solution when
it encounters longer sequences during inference. More importantly, it is more efficient than the
scratchpad and recency biases approach since it only requires logC T layers of parallel computations
instead of 2T steps of sequential decoding.

6.2 Proposed Architecture of RegularGPT

In this chapter, we use [N ] to denote the list of non-negative integers [0, . . . , N−1]. The Transformer
model used in this chapter is always causal. It takes an input sequence of T ≤ Ttr units (can be
tokens or bits) σi∈[T ], passes them through a fixed number of L Transformer layers, and finally
computes the distribution over the vocabulary V through the prediction head Wo. We present our
modifications to the vanilla Transformer below. Only the related operations will be expanded, and
we follow all the other details of GPT2 [Radford et al., 2019b].

6.2.1 Sliding-Dilated-Attention

A Transformer layer at layer l consists of a self-attention operation denoted as SA(l) and feed-
forward network denoted as FFN(l). Originally, SA(l) computes the inter-token relationships across
all T units. Instead, we set the chunk size to C and produce T/C non-overlapping chunks;1 Only
the units within the same chunk inter-attend with each other. In practice, this can be achieved by an
attention mask M (l) ∈ RT×T at layer l. M (l) shares the same shape as the self-attention matrix (see
Figure 6.1) and is defined as:

M (l)
mn =

{
r(m−n)/Cℓ , if m−n

Cl ∈ [C]

− inf, otherwise
(6.1)

Note that M is a lower triangular matrix due to the causal nature of our model. ri’s with i ∈ [C]
are learnable relative positional scalars. To be precise, each attention head has a different set of
learnable biases ri’s. Here, we drop the dependency on the head for notational simplicity.

The use of ri’s is similar to the positional scalars of T5 [Rae and Razavi, 2020b] except that
we do not use the log-binning strategy over m − n. It is to facilitate the extraction of global
information instead of enforcing the windowed-attention effect [Raffel et al., 2020b; Press et al.,
2022a; Chi et al., 2022, 2023b]. M will then be added to the original self-attention matrix, creating
the proposed Sliding-Dilated-Attention effect. The output of SA(l) will be transformed by the
positional-independent FFN(l) to produce o(l)i∈[T ].

1Whenever T is not divisible by C, we pad the input sequence such that its length is a multiple of C.
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The case ofC = 2 is used as a possible construction of Theorem 1 in Liu et al. [2023a]. However,
their focus is not on length extrapolation, hence lacking the below two proposed modifications.

6.2.2 Adaptive-Depth and Weight-Sharing

Since our Sliding-Dilated-Attention limits the number of accessible tokens at a time, we need an
adaptive depth L̄ = logC T so that the final output can utilize every single piece of input information.
However, when Tex > Ttr, the depth during inference will be higher than that during training. The
simplest way to solve this challenge without further parameter updating is to perform Weight-
Sharing across layers. To account for the possible performance loss due to Weight-Sharing, we
first thicken the model by K times, resulting in a total number of K · L̄ layers. Next, we share the
weights across the K · L̄ layers in the following way for k ∈ [K]:

SA(l·K+k) =SA(k) for l ∈ [L̄]

FFN(l·K+k) =FFN(k) for l ∈ [L̄]

It can be equivalently interpreted as stacking more SA and FFN components within every Trans-
former layer, and the same thickened layer is reused L̄ times. This layer thickening design is only
used in the natural language modeling experiments in § 6.5.

6.2.3 Where is the WM Notion?

Instead of instantiating WM along the temporal dimension as the combination of scratchpad and
recency biases, RegularGPT limits the amount of information along the depth dimension. As we have
seen, the idea of breaking T units into several chunks limits the amount of accessible information
at each layer, thereby enabling the WM notion. A similar argument was made by Yogatama et al.
[2021] in a sense that they categorized Longformer [Beltagy et al., 2020], a Transformer variant with
local attention pattern, as a model of working memory. Finally, thanks to modern accelerators such
as GPU, all chunks at a layer can be processed concurrently, and this further makes RegularGPT
more favorable over the scratchpad and recency biases approach.

6.2.4 Complexity Analysis

The sparse attention pattern of RegularGPT suggests it might enjoy the same speedup provided
by sparsified Transformers. The complexity of our model is O(TCK logC T ) where TC is the
complexity of each self-attention module and K logC T is the total number of layers. On the other
hand, the vanilla Transformer follows O(T 2L). To illustrate the possible speedup, if T = 512 and
C = 128, then 512 · 128 ·K log128 512 < 5122L when K < 512L

128 log128 512
≈ 3.11L. Namely, as long

as K < 3L, our model is likely to be more efficient than a vanilla Transformer.

95



𝑣! 𝑣" 𝑣# 𝑣$

𝐴𝑣! + 𝑣" 𝐴𝑣# + 𝑣$

𝐴" 𝐴𝑣! + 𝑣" + 𝐴𝑣# + 𝑣$

𝐴#𝑣! + 𝐴"𝑣" + 𝐴𝑣# + 𝑣$ 𝐴$ +
𝐴#𝑣% + 𝐴"𝑣& + 𝐴𝑣' + 𝑣(

𝑣% 𝑣& 𝑣' 𝑣(

𝐴𝑣% + 𝑣& 𝐴𝑣' + 𝑣(

𝐴" 𝐴𝑣% + 𝑣& + 𝐴𝑣' + 𝑣(

Figure 6.2: This is the parallel scan algorithm that can accelerate a linear RNN. In this example, we
visualize the routing path for computing x8. Blocks at the same layer can be computed in parallel
on GPUs.

6.3 Connection to Prior Work

Sliding-Dilated-Attention This special attention pattern dates back to pre-Transformer era such
as Wavenet [van den Oord et al., 2016] with dilated convolution. It can also be viewed as a special
form of Longformer attention pattern with systematic dilation [Beltagy et al., 2020].2 Limiting the
range of attention in lower layers of a Transformer is also corroborated in Rae and Razavi [2020a],
where they find such design does not deteriorate the performance.

Adaptive-Depth and Weight-Sharing ALBERT [Lan et al., 2020] and Universal Transformer [De-
hghani et al., 2019] share the parameters across layers. The weight sharing design makes them
compatible with the idea of Adaptive Computation Time [Graves et al., 2014] and Dynamic Halt-
ing [Dehghani et al., 2019; Elbayad et al., 2020], which allocate different computational budget
depending on the complexity of tasks [Simoulin and Crabbé, 2021; Csordás et al., 2022]. However,
they lack the special Sliding-Dilated-Attention design that is necessary for ruling out naive solutions.

Linear RNN Given x0 = 0 ∈ RN and the input vectors u1 · · ·uT , a linear RNN [Orvieto et al.,
2023b] for k ∈ [T ] can be written as:

xk = Axk−1 +Buk =
k−1∑
j=0

AjBuk−j

=
k−1∑
j=0

Ajvk−j,

where we set vk−j = Buk−j . The operation can be accelerated by the parallel scan algorithm
that permits efficient cumulative sum [Ladner and Fischer, 1980; Blelloch, 1990; Lakshmivarahan

2The original Longformer also adopts dilated attention on a few heads at higher layers but without the systematic
pattern used in this chapter.
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and Dhall, 1994; Martin and Cundy, 2018; Liu et al., 2023a; Smith et al., 2023b]. As we can
see in Figure 6.2, the routing path specified by the parallel scan algorithm is the same as our
Sliding-Dilated-Attention illustrated in Figure 6.1.

Task RNN Transformer
RegularGPT

C = 2 C = 3
1) Deletang et al.
Even Pairs 100.0 / 100.0 99.7 / 73.2 100.0 / 89.3 100.0 / 96.6
Modular Arithmetic 100.0 / 100.0 21.9 / 20.3 96.4 / 82.6 21.2 / 20.5
Parity Check 100.0 / 98.9 52.3 / 50.1 100.0 / 100.0 100.0 / 88.7
Cycle Navigation 100.0 / 100.0 21.7 / 20.6 100.0 / 100.0 100.0 / 78.6
2) Bhattamishra et al.
D2 100.0 / 100.0 100.0 / 80.1 100.0 / 100.0 99.8 / 96.5
D3 100.0 / 100.0 100.0 / 77.8 100.0 / 99.7 98.6 / 93.0
D4 100.0 / 100.0 100.0 / 82.6 100.0 / 98.7 97.7 / 91.6
D12 100.0 / 100.0 100.0 / 80.3 100.0 / 99.8 94.1 / 90.4
Tomita 3 100.0 / 100.0 100.0 / 94.4 100.0 / 99.7 100.0 / 99.9
Tomita 4 100.0 / 100.0 100.0 / 70.0 100.0 / 99.8 100.0 / 99.3
Tomita 5 100.0 / 100.0 74.5 / 74.5 100.0 / 99.8 98.2 / 84.1
Tomita 6 100.0 / 100.0 50.0 / 50.0 100.0 / 98.5 100.0 / 65.7

Table 6.1: Length generalization results on regular languages (Max/Avg). All models in the first
section (Deletang et al.) are trained on sequences of length 40. The reported numbers are the
average of length extrapolation results from 41 to 500. Each result is an average over 3 seeds. All
models in the second section (Bhattamishra et al.) are trained on sequences of length 50. The
reported numbers are the average of length extrapolation results from 51 to 100. Each result is an
average over 3 seeds. Please refer to § 6.9.1 for the detailed hyperparameters.

6.4 Regular Language Experiments

6.4.1 Task Descriptions

We focus on the four tasks in section 1) [Deletang et al., 2023] of Table 6.1 as they will also be
used in our analysis in § 6.6. For tasks in section 2), please refer to Bhattamishra et al. [2020a] for
details.

Even Pairs A model needs to predict whether the total count of "ab" and "ba" pairs is even. In the
example of "aabba", there is one "ab" and one "ba", resulting in a total count of 2, which is even.
This task is equivalent to checking whether the first and last characters in a string are identical.
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Modular Arithmetic Given a sequence of numbers in {0, 1, 2, 3, 4} and operations in {+, -, ·}, a
model needs to compute the result modulo 5. For example, x = 1 + 2− 4 evaluates to y = 4.

Parity Check A model needs to compute whether the number of bs in a given binary string is
even. For example, the sequence x = aaabba contains 2 bs, which is even.

Cycle Navigation Given a sequence of movements on a cycle of length 5, a model needs to
compute the end position. The possible movements are STAY, INCREASE, DECREASE encoded
as {0, 1, 2}. The agent always starts at position 0. For example, 010211 means the agent stops at
position 2 = 0 + 1 + 0− 1 + 1 + 1.

6.4.2 Language Transduction and Extrapolation
First, we want to know if endowing a Transformer with the notion of WM really improves its length
extrapolation capability on regular languages. We test RegularGPT and all the baselines on two
sets of regular languages from prior work [Deletang et al., 2023; Bhattamishra et al., 2020a].3 Prior
work often reports the maximum score across different hyperparameter settings and random seeds
because their goal is to know if a model can extrapolate at all. We additionally report the average
scores since we want to know if the model can consistently obtain good performance. The baseline
models we compare against are an RNN and vanilla Transformer with Transformer-XL style relative
positional embedding [Dai et al., 2019a]. Table 6.1 shows that RegularGPT with C = 2 acheives
similar performance as an RNN and substantially outperforms a vanilla Transformer.

6.4.3 The Effect of Chunk Size C
We vary the chunk size C of RegularGPT to see its impact on the performance. The motivation for
using a larger C is to reduce the number of layers (i.e., L̄ = logC T decreases in C) and increase
the degree of parallelization. However, in Table 6.1, a larger C seems to pose a challenge to
RegularGPT on the Modular Arithmetic task. Modular Arithmetic is a hard task with far more states
and complicated state transitions. Increasing C is likely to increase the task difficulty by composing
more state transitions at once. We will have an in-depth discussion of the theoretical reasons in
§ 6.6.

6.4.4 Robust to Probability Changes
Other than the length extrapolation experiment, we alter the probability of sampling 1s of PARITY,
i.e., set P(σi) ̸= 0.5. The results in Table 6.2 show that RegularGPT is robust to different sampling
probabilities, indicating its successful modeling of the underlying regular language grammar. In
contrast, a vanilla Transformer model struggles to achieve good performance even for the same

3Our implementation is based on the codebase of Deletang et al. [2023] at: https://github.com/deepmind/
neural_networks_chomsky_hierarchy. We additionally implement the regular languages in the second section of
Table 6.1.
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Settings Probability P(σi = 1)
0.1 0.3 0.5 0.7 0.9

1) Same Length
RegularGPT 100 100 100 100 100
RNN 100 100 100 100 100
Transformer 98.4 99.8 99.6 97.8 77.2
2) Extrapolation
RegularGPT 100 100 100 100 100
RNN 100 100 100 100 100
Transformer 50.1 49.7 50.3 49.9 50.0

Table 6.2: We alter the probability P(σi = 1) used to sample 1s of PARITY. The same length setting
is 40. The extrapolation setting is from 41 to 500. Each entry is an average over 3 seeds.

length setting, again validating the fact that it only finds the naive-summation solution as discussed
in § 6.1.2.

Tex KERPLE T5 ALiBi
RegularGPT (C/K)

32 / 6 64 / 6 128 / 6 128 / 12 256 / 6
512 24.71 24.50 24.53 32.06 30.17 28.80 26.37 27.90
1024 24.42 24.38 24.90 32.03 30.30 28.94 26.91 34.38
2048 24.21 25.01 25.08 791.74 30.56 29.14 27.08 34.85
4096 24.53 28.91 25.08 812.00 30.80 29.25 27.28 35.11
8192 24.74 39.08 25.08 818.49 1175.91 29.41 27.39 35.42

Table 6.3: Natural language extrapolation results on OpenWebText2. The training length is 512.
The numbers are averaged over three random seeds. Please refer to § 6.9.2 for the detailed
hyperparameters. The numbers for KERPLE, T5, and ALiBi deviate from the ones reported in
Table 4.3 since the implementation was based on nanoGPT instead of GPT-Neox. nanoGPT is more
flexible compared to GPT-Neox, making it a more suitable option when it comes to implementing
the depth-wise recursive computations of RegularGPT.

6.5 Natural Language Experiments

Given that RegularGPT has been battle-tested on the main experiment of regular languages, we now
shift gear to benchmark its performance in the natural language scenario. Given a model trained on
sequences of length Ttr, we test it on much longer sequences of length Tex ≫ Ttr during inference,
and the goal is to observe similar perplexities. To optimize efficiency, we employ a random selection
process to extract 1,000 chunks, each with Tex tokens from the testing set. Subsequently, we
calculate the average perplexity of the last tokens within these chunks to ensure each of them has
Tex−1 tokens as the context, thereby avoiding the issue of early token curse [Press et al., 2022a; Chi
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Tex KERPLE T5 ALiBi
RegularGPT (C/K)

32 / 6 64 / 6 128 / 6 128 / 12 256 / 6
512 2.66 2.59 2.68 3.96 3.80 3.63 3.22 3.17
1024 2.61 2.53 2.88 3.87 3.76 3.49 3.24 3.38
2048 2.61 2.55 2.94 4.37 3.78 3.50 3.25 3.37
4096 2.67 2.78 2.94 4.33 3.79 3.50 3.26 3.38
8192 2.70 3.29 2.94 4.28 4.14 3.50 3.25 3.37

Table 6.4: Natural language extrapolation results on GitHub. The training length is 512. The num-
bers are averaged over three random seeds. Please refer to § 6.9.2 for the detailed hyperparameters.
The numbers for KERPLE, T5, and ALiBi deviate from the ones reported in Table 4.3 since the
implementation was based on nanoGPT instead of GPT-Neox. nanoGPT is more flexible compared
to GPT-Neox, making it a more suitable option when it comes to implementing the depth-wise
recursive computations of RegularGPT.

et al., 2023b]. We compare our model against the existing methods that are known to demonstrate
the ability of length extrapolation including T5 [Raffel et al., 2020b], ALiBi [Press et al., 2022a],
and KERPLE [Chi et al., 2022].4 To counteract the loss of expressive power due to weight sharing,
we thicken each layer of RegularGPT to K as detailed in § 6.2.

In Table 6.3, we first observe exploding perplexities for C = 32 after Tex ≥ 2048. RegularGPT
might only learn to model ⌈log32 512⌉ = 2 layers during training, hence it fails to recursively model
more than 322 = 1024 tokens during inference. This is validated by C = 64 since this time it is
able to extrapolate until 64⌈log64 512⌉ = 4096. While the above argument seems to suggest large C,
setting C = 256 also deteriorates the performance. This might be due to the limited number of
chunks (512/256 = 2) and ri’s (in Eq. (6.1)) observed at the second layer, making the learning
of ri’s harder. We observe similar trends in Table 6.4, where we apply the same RegularGPT
model on the GitHub dataset. Overall, C is a hyperparameter that needs to be carefully decided
for RegularGPT on natural languages. We also observe that 128/12 performs better than 128/6,
implying RegularGPT’s performance could be improved by stacking more layers to counteract the
performance loss due to Weight-Sharing.

Overall, Tables 6.3 and 6.4 show different sequence lengths that RegularGPT favors. In particular,
RegularGPT performs the best when the chunk size is set to 128 on OpenWebText2, whereas a
chunk size of 256 gives us the best performance on GitHub. This is reasonable as OpenWebText2
comes mainly from Internet forums such as Reddit with mostly short contextual dependencies.

It is worth noting that 128/12 performs relatively well and is close to previous methods designed
specifically for the task of natural language extrapolation. We will analyze its inner workings
in depth in Figure 6.4 and § 6.6, in which we find that RegularGPT learns the similar local
receptive field as prior work, which is likely the key to its successful natural language extrapolation
performance.

4We use the nanoGPT codebase: https://github.com/karpathy/nanoGPT, and the OpenWebText2 dataset:
https://huggingface.co/datasets/the_pile_openwebtext2.
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6.6 Discussion and Analysis

6.6.1 Regular Language and Finite State Semiautomaton
Regular language is the type of formal language recognized by an FSA [Chomsky, 1956a], which is
a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite non-empty set
of symbols, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a transition function; F ⊆ Q is a set of
final states. However, some of our tasks are better modeled by a finite-state transducer (FST) as
discussed in § 6.1.1. To underpin both FSA and FST, we consider a semiautomation A = (Q,Σ, δ)
(i.e., an FSA without q0 and F ) and establish its connection to a Transformer model.

Let σa:b be the sequence from position a (inclusive) to b (exclusive) out of a length T input
sequence (i.e., 0 ≤ a < b ≤ T ). We define A(σa:b) : Q → Q as the (b − a)-step state transition
relation after receiving σa:b.

A(σa:b) = δ(·|σb−1) ◦ · · · ◦ δ(·|σa),
where f(·) ◦ g(·) = f(g(·)) denotes function composition. With abuse of notation, we define
Aq(σa:b) ∈ Q as the state after receiving σa:b if starting at q ∈ Q

Aq(σa:b) = δ(·|σb−1) ◦ · · · ◦ δ(·|σa), q0 = q.

(a) PARITY. (b) Cycle Navigation.

Figure 6.3: Clustering of FFN output vectors across all layers via PCA on the tasks of PARITY and
Cycle Navigation.

6.6.2 Modeling Transition Composition
We want to show that the layers of RegularGPT with chunk size C = 2 can model the composition
of two transition functions:

A(σa:b) = A(σi:b) ◦ A(σa:i) for i ∈ [a+ 1, . . . , b).
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This way, the regular language problem can be solved recursively using the construction outlined in
§ 6.2 and Figure 6.1. To formalize the statement, we first observe that A(σa:b), A(σa:i), and A(σi:b)
can be represented in R|Q|2:

A(σa:b) =


OneHot|Q|(Aq0(σa:b))
OneHot|Q|(Aq1(σa:b))

· · ·
OneHot|Q|(Aq|Q|−1

(σa:b))

 ∈ R|Q|2 , (6.2)

where OneHot|Q|(i) is a one-hot vector of length |Q| with the i-th index being 1.
The next step is to mix A(σa:i) and A(σi:b) together and get A(σa:b). We show in Lemma 6.1

that a 2-layer ReLU network can learn (and so can a Transformer layer) the composition. The proof
of Lemma 6.1 is deferred to § 6.9.3.
Lemma 6.1 (Approximation for Binary Matrix Product). Let A,B ∈ {0, 1}n×n be binary matrices
of dimension n× n. Then, there exists a two-layer ReLU network such that

fmlp([Flat(A),Flat(B)]) = Flat(AB),

where Flat(X)(i−1)n+j = Xi,j for i, j ∈ [n] is the operation that flattens a matrix into a vector.
Now, we can relate Lemma 6.1 to the FFN layers in RegularGPT. Following § 6.2, when chuck

size C = 2 and thickness K = 1, the output vector o(l)i depends on input sequence σi−2l+1+1:i+1.
Also, o(l)i is computed from o

(l−1)

i−2l
and o(l−1)

i , which depend on input sequences σi−2l+1+1:i−2l+1 and

σi−2l+1:i+1, respectively. This observation implies that o(l)i likely models the transition function
A(σi−2l+1+1:i+1), which we denote as o(l)i ∼ A(σi−2l+1+1:i+1). We will verify this assumption in
§ 6.6.3.

If o(l)i ∼ A(σi−2l+1+1:i+1) is true, Lemma 6.1 implies that RegularGPT’s FFN models the
transition function composition. This is immediate by setting o(l−1)

i−2l
∼ Flat(A(σi−2l+1+1:i−2l+1)),

o
(l−1)
i ∼ Flat(A(σi−2l+1:i+1)) and recognizing the fact that function composition is a matrix product

under the representation of Eq. (6.2).
The next step is to explain the use of self-attention layers in RegularGPT. Although Lemma 6.1

has established a composition, it is unclear how the transitions are concatenated in the first place
(i.e., [Flat(A),Flat(B)]). With a two-head self-attention and the learnable relative positional scalars,
it is possible to adjust them so that the attention output contains the concatenated information
[Flat(A),Flat(B)].

Recall in Eq. (6.1), each head has a different set of scalars ri’s. One concrete construction for
concatenation is setting r0 = 0 and the remaining −∞ for the first head; r1 = 0 and the remaining
−∞ for the second head. In other words, each head is only responsible for capturing one state
transition. After the multi-head self-attention operation, we obtain the concatenation of two state
transitions.

Finally, when the prediction head reads out the answer, the operation is equivalent to a mapping
from A(σ0:T ) ∈ R|Q|×|Q| to Aq0(σ0:T ) = A(σ0:T ) ◦ q0 ∈ R|Q|. Since we assume that o(l)T−1 models
A(σ0:T ), the transduction readout is performed by a linear map on o(l)T−1 as Woo

(l)
T−1. Our tree-

structured construction also guarantees that the final answer could be derived using log2 T layers.
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6.6.3 Verification of Transition Modeling
To verify whether our model learns the dynamics of a semiautomaton, we perform a clustering
experiment to demystify the FFN output representations on the tasks of PARITY and Cycle
Navigation. The two tasks are chosen as we can easily derive their state transition functions.
For example, there are only two state transitions in PARITY:[

1 0
0 1

]
or

[
0 1
1 0

]
and five state transitions in Cycle Navigation5:

OneHot5((0 + k)mod 5)
OneHot5((1 + k)mod 5)
OneHot5((2 + k)mod 5)
OneHot5((3 + k)mod 5)
OneHot5((4 + k)mod 5)

 , for k ∈ [0, ..., 4].

e.g., k = 2 gives


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

.

Given a testing input sequence of length 500 that is much longer than the training length 40,
we extract the output o(l)i of all layers l, perform dimension reduction using PCA, and plot the
dimension-reduced points on a 2D plane. Ideally, we want to see a limited number of clusters across
all layers, indicating the model learns to capture the state transition function. As we can see in
Figure 6.3, PARITY has 2 clusters and Cycle Navigation has 5 clusters. The clear clustering effect
demonstrates RegularGPT’s correct learning of state transition functions. This is in contrast to the
naive-summation approach learned by a vanilla Transformer as shown in Figure B.4 of Deletang
et al. [2023].

6.6.4 Receptive Field Analysis
We resort to the gradient analysis tool [Chi et al., 2023b] to inspect the receptive field of RegularGPT
on regular and natural languages. It computes a cumulative sum of the gradient norms starting from
the most recent token to the earliest one. A large magnitude of slope at a position means the most
recent token has a high dependency on that position. Ideally, we would like to see the receptive field
covering the whole input sequence for the case of regular languages because every single bit in the
input sequence is important for the final results. This is equivalent to a slanted line going from the
lower right to the upper left, which is validated in Figure 6.4a. As for natural language, we discover
something interesting in Figure 6.4b in that RegularGPT settles on the local windowed-attention

5Cycle Navigation (§ 6.4.1) has 3 one-step transitions (i.e., |A(σa:a+1)| = 3). Composing these transitions yields 5
different multi-step state transitions (i.e., |A(σa:b)| = 5 if b− a ≥ 5).

103



0 100 200 300 400 500
Position

0.2

0.4

0.6

0.8

1.0

(a) Regular Language - PARITY

0 500 1000 1500 2000
Position

0.2

0.4

0.6

0.8

1.0

(b) Natural Language - OpenWebText2

Figure 6.4: Receptive field of RegularGPT via the cumulative gradient analysis tool [Chi et al.,
2023b].

pattern as those enforced manually in prior work [Press et al., 2022a; Chi et al., 2022, 2023b]. This
suggests the task of natural language modeling mostly needs only local context to achieve good
performance, which aligns with the common belief.

6.6.5 RegularGPT Exploits Natural Language Structures

The recursive composition nature of RegularGPT can be likened to how humans process long
context texts. We break it down following inherent structures such as chapters and paragraphs, then
the final outcome is derived by recursively merging partial information. Taking summarization as
an example, prior work [Wu et al., 2021b] also hinges on the same recursive decomposition idea to
summarize inputs as long as books.

6.7 Conclusion

This chapter introduces RegularGPT, a novel variant of the Transformer architecture inspired by
the notion of working memory that can effectively model regular languages with high efficiency.
Theoretical explanations and accompanying clustering visualizations are presented to illustrate how
RegularGPT captures the essence of regular languages. Moreover, RegularGPT is evaluated on
the task of natural language length extrapolation, revealing its intriguing rediscovery of the local
windowed attention effect previously observed in related research. Notably, RegularGPT establishes
profound connections with various existing architectures, thereby laying the groundwork for the
development of future Transformer models that facilitate efficient algorithmic reasoning and length
extrapolation.
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6.8 Limitations

Currently, this thesis sets the chunk size C of RegularGPT to a constant. Can we make the chunk
size more flexible? A flexible and data-driven C could further boost its performance in natural
languages, as they often demonstrate diverse patterns unlike regular languages underpinned by
simple grammars. This might also improve the performance of RegularGPT when C ̸= 128.

Naively applying RegularGPT to instruction following tasks such as QA might be suboptimal,
since the question or instruction will be undesirably merged with the input context. One potential
solution is to modify RegularGPT into an encoder-decoder architecture, where the encoder keeps
the current design, and the decoder is trained to predict continuations. The modified architecture
allows practitioners to put the question or instruction at the beginning of the decoder, so that it can
stand out from the long encoder input context.

6.9 Proofs and Experimental Details

6.9.1 Hyperparameters for the Regular Language Experiments
We report the hyperpamaters used in the regular language experiments (Table 6.1) in Table 6.5.

6.9.2 Hyperparameters for the Natural Language Experiments

# Layers logC T
Hidden Size 256

# Attention Heads 8
Train Seq. Len. 40 or 50

# Trainable Params. 4.3 M
Optimizer Adam (lr 1e-4, 3e-4, 5e-4)
Batch Size 128
Train Steps 100,000

Precision float32
Dataset Regular Languages

Table 6.5: Hyperparameters for the regular language experiments.

We report the hyperpamaters used in the natural language experiments (Table 6.3) in Table 6.6.

6.9.3 Proof of Lemma 6.1

Lemma 6.1 (Approximation for Binary Matrix Product). Let A,B ∈ {0, 1}n×n be binary matrices
of dimension n× n. Then, there exists a two-layer ReLU network such that

fmlp([Flat(A),Flat(B)]) = Flat(AB),
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# Layers K logC T
Hidden Size 768

# Attention Heads 12
Train Seq. Len. 512

# Trainable Params. 81M (K = 6) or 123M (K = 12)
Optimizer Adam (lr 6e-4)

Batch Size 32
Train Steps 50,000

Precision bfloat16
Dataset OpenWebText2

Table 6.6: Hyperparameters for the natural language experiments.

where Flat(X)(i−1)n+j = Xi,j for i, j ∈ [1, ..., n] is the operation that flattens a matrix into a
vector.

Proof. Observe that a ReLU operation can perfectly approximate the multiplication of two binary
scalars:

ReLU(a+ b− 1) = a · b, for a, b ∈ {0, 1}.

The binary matrix product AB is composed of n3 binary scalar products of the form:

AikBkj = x(i−1)n+kx(n+k−1)n+j

for i, j, k ∈ [1, .., n],

where x = [Flat(A),Flat(B)] is the concatenated flattened input. Our goal is to construct two neural
network layers. The first layer computes all n3 binary scalar products. The second layer sums these
products into the form of matrix product; i.e.,

∑n
k=1AikBkj.

The first layer’s binary weight matrix W (1) ∈ {0, 1}2n2×n3 is constructed as:

For z ∈ [1, ..., 2n2], i, j, k ∈ [1, ..., n],

W
(1)

z,(i−1)n2+(j−1)n+k ={
1 if z = (i− 1)n+ k or (n+ k − 1)n+ j

0 otherwise.

(6.3)

Then, the first layer computes all n3 binary scalar products as follows:

ReLU([Flat(A),Flat(B)]W (1)−1⊤
n3)(i−1)n2+(j−1)n+k

= AikBkj for i, j, k ∈ [1, ..., n].

To sum these n3 products into n2 results, the second layer’s binary weight matrixW (2) ∈ {0, 1}n3×n2
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is constructed as:

W (2) = In2 ⊗ 1n =


1n 0n 0n . . . 0n
0n 1n 0n . . . 0n
...

...
0n . . . 0n 1n


∈ {0, 1}n3×n2

,

where In2 is an n2 × n2 identity matrix, ⊗ is the Kronecker product, 0n is an n-dimensional column
vector of all zeros, and 1n is an n-dimensional column vector of all ones. We arrive at a two-layer
ReLU network that perfectly approximates the multiplication of two binary matrices:

fmlp([Flat(A),Flat(B)])

=ReLU([Flat(A),Flat(B)]W (1)−1⊤
n3)W (2)

= Flat(AB).

6.9.4 Illustration of Lemma 6.1

6.9.5 Illustration of the Binary Weight Matrices

We illustrate W (1) and W (2) of Lemma 6.1 as follows:

import numpy as np

def get_W1 ( n ) :
n2 = n*n
W1 = np . z e r o s ( ( 2 * n*n , n * * 3 ) , d t y p e = i n t )
f o r i in range ( n ) :

f o r j in range ( n ) :
f o r k in range ( n ) :

W1[ i *n+k , i *n2+ j *n+k ] = 1
W1[ n2+k*n+ j , i *n2+ j *n+k ] = 1

re turn W1

def get_W2 ( n ) :
eye = np . eye ( n*n , d t y p e = i n t )
ones = np . ones ( ( n , 1 ) , d t y p e = i n t )
W2 = np . kron ( eye , ones )
re turn W2

get_W1(2) gives:

[ [ 1 0 1 0 0 0 0 0]
[0 1 0 1 0 0 0 0]

107



[0 0 0 0 1 0 1 0]
[0 0 0 0 0 1 0 1]
[1 0 0 0 1 0 0 0]
[0 0 1 0 0 0 1 0]
[0 1 0 0 0 1 0 0]
[0 0 0 1 0 0 0 1 ] ]

get_W2(2) gives:

[ [ 1 0 0 0]
[1 0 0 0]
[0 1 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 1 0]
[0 0 0 1]
[0 0 0 1 ] ]

6.9.6 An Illustrative Example for n = 2

Suppose the input matrices are:

A =

[
1 0
1 0

]
, B =

[
0 1
1 0

]
.

The concatenated flattened input becomes:

x = [Flat(A),Flat(B)] = [1 0 1 0 0 1 1 0].

Then, Lemma 6.1 is verified as follows:

ReLU
(
xW (1) − 1

⊤
n3

)
W (2)

=ReLU ([1 1 2 0 1 1 2 0]− 1)W (2)

=[0 0 1 0 0 0 1 0]W (2)

=[0 1 0 1]

=Flat
([

0 1
0 1

])
= Flat (AB) .

Here is the Python code for the above example:

A = np . a r r a y ( [ [ 1 , 0 ] , [ 1 , 0 ] ] ) . r e s h a p e ( −1)
B = np . a r r a y ( [ [ 0 , 1 ] , [ 1 , 0 ] ] ) . r e s h a p e ( −1)
x = np . c o n c a t e n a t e ( [ A, B ] ) . r e s h a p e (1 , −1 )
W1 = get_W1 ( 2 )
W2 = get_W2 ( 2 )
f l a t_AB = np . maximum ( x @ W1 −1 ,0) @ W2
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

Sequence length has a significant impact on transformer model computations; it is quadratic w.r.t
input sequence length. This is a known weakness of such models and makes it difficult for them
to model longer sequences, which is important for many tasks. This thesis presents an analysis of
sequence properties and then uses it to propose several new techniques that address the consequences
of length.

Chapter 2 establishes the foundational role of positional embeddings in Transformers. The
shrinking variance effect, while crucial for indicating positions, fails to differentiate positions effec-
tively as sequence length extends, underscoring the need for positional embeddings such as ALiBi,
a state-of-the-art relative positional embedding design. Chapter 3 therefore generalizes ALiBi
via the help of conditionally positive definite kernels. The resulting KERPLE relative positional
embedding design is the first to truly make use of longer-than-training sequence information during
inference.

With a plethora of length-extrapolated positional embeddings proposed, it becomes imperative
for the research community to monitor the progress of developed techniques. Chapter 4 addresses
the needs by quantitatively measuring the empirical receptive field size of a Transformer using
the proposed gradient analysis tool. In addition, the tool also helps elucidate the failure of length
extrapolation: the explosion of empirical receptive field size. This finding prompts us to revisit the
earliest proposed Sinusoidal positional embedding and transform it into an extrapolatable variant
named Sandwich.

This thesis then recognizes the constraints of previously explored recency-biased positional
embeddings and pivots toward a broader array of applications. Chapter 5 proposes two attention
alignment strategies, optimized through softmax temperature scaling, enhancing task performance
where dynamic and flexible access to contextual information is crucial, such as in retrieval, multi-
document QA, and code completion. Chapter 6 finally extends the exploration to scenarios
demanding global context awareness, exemplified by the PARITY task. This thesis proposes a
new Transformer language model, RegularGPT, that achieves length-extrapolatable performance
via local input composition. Its three critical design choices, Weight-Sharing, Adaptive-Depth,
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and Sliding-Window-Attention, jointly enables global context understanding and more robust
extrapolation performance on regular and natural languages.

7.2 Recipe for Practitioners

Depending on the actual amount of context information required by a task, this thesis provides the
following recipe and the corresponding inference cost of a length L sequence for practitioners.

• For tasks that require recent tokens, use the proposed KERPLE positional embedding design
(generalized ALiBi). Alternatively, one can follow the receptive field alignment principle to
design a new type of positional embeddings that suits their needs. Since this thesis maintains
the original Transformer self-attention computation and only modifies the construction of
relative positional embeddings, the inference complexity stays the same, which is L2. Note
that this line of research requires pretraining a Transformer language model from scratch,
which can be costly.

• For tasks that require flexible access to parts of the whole input context, use T5 with the
proposed softmax temperature scaling strategy. The inference cost is also L2. Note that there
are several large T5-based pre-trained models available such as Flan-T5-XXL, obviating the
need to pretrain a new Transformer language model from scratch.

• For tasks that require global context understanding, use the proposed RegularGPT to combine
local and chunked primitives. The inference complexity is LC logC L, where C is the chunk
size of RegularGPT. As long as C logC L < L, RegularGPT will be more efficient than a
vanilla Transformer. This line of research also requires the pre-training of a model from
scratch.

Although task dependent, the methods proposed in this thesis in general can achieve better
performance on sequences 10x longer than the training sequence length (512∼768). For tasks such
as long-context retrieval in § 5.3, the proposed method can give nearly perfect performance on
sequences up to 30k on an A6000 GPU. We can expect the same level of performance on even longer
sequences, provided that there is sufficient GPU memory. The relevant information is detailed in
the chapters that present the different techniques.

7.3 Comparison to Recent Long Context Language Models

Apart from pure Transformer-based language models, there has recently been a surge in linear
recurrent neural networks (LRNN) [Gu et al., 2022; Gupta et al., 2022; Hasani et al., 2023; Smith
et al., 2023a; Orvieto et al., 2023a; Peng et al., 2023a] due to their constant inference cost. There
is no free lunch: evidence shows that pure LRNNs have a hard time representing basic arithmetic
operations [Chi et al., 2024a] and recalling early information in long sequences, hindering their
in-context learning and retrieval capabilities [Emami et al., 2021; Wen et al., 2024; Jelassi et al.,
2024]. Our proposed length-extrapolated Transformers suffer less from the aforementioned issues
as they still maintain the original self-attention mechanism and are further equipped with greatly
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enhanced long context processing power.
To combine the best of both worlds, recent models have begun to adopt a hybrid architecture that

blends the self-attention mechanism with LRNNs. This trend is manifested by the release of several
large pre-trained LRNNs such as Griffin [De et al., 2024], Jamba [Lieber et al., 2024], Zamba1, and
Megalodon [Ma et al., 2024]. We foresee that the proposed length extrapolation improvements can
function as an extension to these models, particularly on their self-attention components, further
bolstering their long context processing capabilities.

7.4 Future Work

Each chapter of this thesis paves the way for exciting future work. We outline several concrete ideas
below:

• Chapter 2 reveals that the shrinking variance effect can be a hidden source of positional
information for a Transformer language model on its own, without explicit positional em-
beddings. Variance is unlikely to be the only useful statistic; there might be other geometric
information [Song and Zhong, 2023] encoded in the model. Such discovery will deepen our
understanding of Transformer’s inner workings and possibly lead to better length extrapolation
performance.

• Chapter 3 experiments with training a Transformer language model equipped with KERPLE
from scratch. However, to preserve computational resources, KERPLE might also be used as
a post-hoc length extending technique during the fine-tuning stage. There is evidence that
suggests combining ALiBi [Press et al., 2022a], a special case of KERPLE, with position
interpolation [Al-Khateeb et al., 2023] helps boost the length extrapolation performance. We
believe using the more general KERPLE might lead to further improvements.

• Chapter 4 hypothesizes that the log-decaying trend imposed on input contexts is helpful
for the length extrapolation performance of T5, Sandwich, and KERPLE. While this hy-
pothesis was corroborated by some follow-up work [Li et al., 2024], little is still known as
to why log-decay is more effective than other decaying trends. Mechanistically analyzing
the compositional effect of self-attention and log-decay might help elucidate the underlying
dynamics [Han et al., 2023].

• Chapter 5 focuses on extending the input context length of the T5 models. Considering
that rotary [Su et al., 2021a] is widely adopted nowadays, devising a rotaty-compatible
temperature scaling method will make our findings more impactful. Some concurrent work
by others has scratched the surface of this idea [Peng et al., 2023b] by adjusting rotary’s
softmax temperature followed by long-context fine-tuning; however, a) they did not explain
the underlying dynamics of temperature scaling, and b) long-context fine-tuning is a costly
process. The method proposed in this thesis might shed light on potential remedies.

• Chapter 6 delves into the realm of regular languages, leaving aside the more complex formal
languages in the Chomsky hierarchy. Adapting the Transformer architecture to integrate

1https://www.zyphra.com/zamba
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memory modules, e.g. a stack, could potentially enhance the model’s ability to extrapolate
longer sequences, particularly in dealing with complex formal languages. Although efforts
have been made to train Transformers to grasp context-free languages [Allen-Zhu and Li,
2023], this aspect of length extrapolation remains largely unexplored. We consider this to be
an essential test to assess the efficacy of grammar learning.

We hope that these ideas can be explored in the future and that they yield new insights into the
design of Transformer language models.
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Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022a.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari,
Stella Biderman, Hady Elsahar, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen,
Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Beltagy. What language
model to train if you have one million GPU hours? In Challenges & Perspectives in Creating
Large Language Models, 2022b. URL https://openreview.net/forum?id=rI7BL3fHIZq.

Isaac J Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44(3):522–536, 1938.

Bernhard Schölkopf. The kernel trick for distances. In T. Leen, T. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Antoine Simoulin and Benoit Crabbé. How many layers and why? An analysis of the model depth in
transformers. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing: Student Re-
search Workshop, pages 221–228, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-srw.23. URL https://aclanthology.org/2021.acl-srw.23.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela.
Masked language modeling and the distributional hypothesis: Order word matters pre-training
for little. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 2888–2913, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.230. URL
https://aclanthology.org/2021.emnlp-main.230.

125

https://openreview.net/forum?id=rI7BL3fHIZq
https://aclanthology.org/2021.acl-srw.23
https://aclanthology.org/2021.emnlp-main.230


Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Jiajun Song and Yiqiao Zhong. Uncovering hidden geometry in transformers via disentangling
position and context. arXiv preprint arXiv:2310.04861, 2023.

Jianlin Su. Scaling attention via the lens of entropy invariance, Dec 2021. URL https://spaces.
ac.cn/archives/8823.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021a.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021b.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 1433–1443, 2020.

Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel regression for image processing and
reconstruction. IEEE Transactions on image processing, 16(2):349–366, 2007.

The MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially
usable llms. https://www.mosaicml.com/blog/mpt-30b, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the lens
of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4344–4353, Hong Kong, China, November 2019a. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1443. URL https://aclanthology.org/D19-1443.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the
lens of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4344–4353, Hong Kong, China, November 2019b. Association for
Computational Linguistics.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmarking
compositionality with formal languages. In Proceedings of the 29th International Conference on

126

https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
https://spaces.ac.cn/archives/8823
https://spaces.ac.cn/archives/8823
https://aclanthology.org/D19-1443


Computational Linguistics, pages 6007–6018, 2022.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alexander
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. In Arxiv, 2016. URL https://arxiv.org/abs/1609.03499.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017b.
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