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Abstract

Large language models have brought about a shift towards constructing large, general purpose computational
models of language, moving away from task-specific architectures. These models, trained on massive
unstructured data, are opaque and challenging to control by design. Consequently, such data-driven models
tend to overfit to spurious artifacts, perform poorly on underrepresented data, and fail in unpredictable
ways. Thus, a paradigm shift towards developing trustworthy systems to ensure fairness, accountability, and
robustness in their outcomes is essential. In this thesis, I argue that leveraging language structures to design
trustworthy systems can facilitate this shift.

This thesis presents methods and solutions that leverage language structure to improve the trustworthiness,
transparency, and reliability of large-scale, data-driven language generation models, across various stages of
the model pipeline. The thesis is divided into three parts. The first part introduces semantically grounded
evaluation measures and analysis to assess the factual reliability of trained language generation models. The
second part presents model designs that incorporate inter-sentence structures to promote inductive biases and
transparency. Finally, the third part presents techniques that use syntactic structures to generate synthetic,
general, high-quality datasets for training robust and factual systems. The thesis highlights the challenges in
developing trustworthy language generation models and proposes solutions that utilize language structure to

improve their interpretability and factual reliability by design.
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Chapter 1

Introduction

Human language has a rich, hierarchical structure that facilitates effective communication between
individuals and contributes to the diversity of human culture and expression. In linguistics, this structure has
been a critical element in developing general theories for studying and representing languages (Harris, 1963;
Gruber, 1965; Fillmore et al., 1976; Talmy, 1983), as well as gaining insights into how different languages
reflect various cultures and modes of thinking (Biber et al., 1998; Haspelmath et al., 2005; Lupyan and Dale,
2010).

For decades, Computational Linguistics (CL) and Natural Language Processing (NLP) research has
leveraged various levels of language structure like morphology, syntax, semantics, discourse or pragmatics,
to computationally process human language. Early years of CL research focused on constructing rule-based
grammars to represent sentences using structures like constituency parses or dependency trees (Bach, 1967;
Schank et al., 1970; Berwick, 1980). These models enabled the creation of many NLP applications such as
translation and information extraction (Bar-Hillel, 1960; Mauldin, 1984; Sondheimer and Weischedel, 1980;
Kaji, 1988). As statistical and neural approaches have become more prevalent in NLP, language structure has
primarily provided inductive biases for designing models focused on specific tasks and domains (Brown et al.,
1990; Pereira and Schabes, 1992; Sarawagi and Cohen, 2004; Hajishirzi et al., 2012; Dyer et al., 2015; Yang
et al., 2016; Seo et al., 2016; Strubell et al., 2018).

Recently, with the creation of transformer architectures (Vaswani et al., 2017) and self-supervised training
paradigms (Devlin et al., 2019; Liu et al., 2019a), there has been a shift in NLP towards building large,
general-purpose computational models of language. These models replace task-specific architectures and
inductive biases with a single transformer architecture that is pre-trained on large volumes of unstructured
internet data, allowing for direct adaptation to any target task without significant modifications. The advent of
large language models (LLMs; Brown et al., 2020; Chowdhery et al., 2022; Zhang et al., 2022a) capable of
generating text with human-like fluency, coherence, and realism (Zellers et al., 2020; Ippolito et al., 2020)
has significantly improved the performance of several language based applications (chatbots, summarizers,
information extractors), impacting fields such as education (Schulten, 2023; Gleason, 2022), healthcare (Patel
and Lam, 2023), law (ChatGPT and Perlman, 2022) and science (Stokel-Walker, 2023).

However, these advancements also come with certain challenges. Popular language models are currently
trained on large unstructured datasets without grounding in any language structure, knowledge or inductive
biases, which makes them difficult to understand (Lipton, 2018; Vellido, 2020; Belinkov et al., 2020) and
control (Ziegler et al., 2019; Dathathri et al., 2020) by design. Their design does not incorporate inductive

biases regarding the task requirements or intended behavior. Consequently, the resulting models tend to overfit



to spurious artifacts (Lipton, 2018; Doshi-Velez and Kim, 2017), exhibit lower accuracy for underrepresented
data (Hooker et al., 2019; Chang et al., 2019; Hooker, 2021) and fail unpredictably with minor distribution
shifts (Belinkov and Bisk, 2017; Recht et al., 2019). Especially when considering large-scale text generation
models, they have been demonstrated to produce biased text (Sheng et al., 2021; Dhamala et al., 2021),
containing hallucinations and factual errors (Xiao and Wang, 2021; Maynez et al., 2020). As a result, they
are ripe for misuse by inadvertently propagating misinformation, bias and discrimination, especially against
disadvantaged users (Barocas and Selbst, 2016), leading to reduced trust in model based applications. To
address these issues, a shift towards designing trustworthy systems that are fair, accountable, and robust in

their outcomes is imperative.

Such unintended behavior in large language models cannot be attributed to a single source in the model
development process. A typical machine learning pipeline involves several stages, including data processing,
model design, training, inference, and evaluation, and each stage involves design decisions that can contribute
to these issues. In order to scale these pipelines to handle large volumes of data and train models with billions
of parameters, inductive biases and specialized designs at each stage are often sacrificed, resulting in models
that lack transparency and reliability. For example, unfiltered internet data used for training have been shown
to contain toxic text and stereotypes, leading to biased model outputs (Han and Tsvetkov, 2021), and black-box
neural models with minimal insight into the model decision making process has hindered their deployment in
high-stakes applications (Lipton, 2018). It is necessary to develop solutions that introduce transparency and
control at each stage of the model pipeline, though it is unclear whether current data-driven approaches are
sufficient for achieving this. I believe that leveraging language structures to design for the required model
behavior through inductive biases plays a vital role towards developing trustworthy models with transparency
and control.

Structure inherently provides a framework or organization to understand, analyze, and manipulate complex
concepts easily and effectively. Such benefits can be realized in NLP models by leveraging language structure
as a principled, hierarchical framework to understand model behavior and ensure desired outcomes. Incorpo-
rating language structure can allow for the interpretation and control of model behavior yielding benefits of
interpretability, robustness, fairness and factuality, without compromising performance and generalizability.
Grounding models in language structure has already shown initial potential towards this goal through designing
interpretable model components aligned with linguistic theories (Silva et al., 2019; Bastings, 2020; Zhang et al.,
2021), using hierarchical concepts for human understandable interpretations (Jin et al., 2019; Kim et al., 2018),
analysing data to uncover spurious artifacts (Udomcharoenchaikit et al., 2022; Eisenstein, 2022), controlling
factuality of outputs at structured unit level (Balachandran et al., 2022; Mao et al., 2022; Chen et al., 2022)
and more. Aggregating these independent strands of research, I identify that within the context of a typical
data-driven model pipeline, the use of linguistic structure can offer the following benefits: 1) breaking down
complex concepts like "bias" or "factuality" into fine-grained linguistic concepts for improved understanding
of system requirements ii) using linguistic structure to analyze and construct datasets, enabling the correction
of imbalances at scale iii) incorporating inductive biases in model design to align with task definitions, and (iv)

utilizing linguistic theories for fine-grained evaluation to measure intended system functionality.

Driven by this belief, this thesis aims to bring linguistic theories and language structure into the world
of large-scale NLP, highlighting how language structure can aid in incorporating inductive biases about
expected model behavior to produce transparent and dependable NLP systems. Focusing on transparency and
factual reliability, I present methods and frameworks, grounded in language structure, to directly address the

limitations in existing ways of developing and training text generation systems. At each stage of a NLP model



development, I identify critical challenges and present solutions which leverage language structure to improve
the interpretability and factual reliability of models.

Developing transparent and factual text generation models requires addressing multiple technical challenges.
First, different NLP applications require different types of interpretability to understand their output. For
example, while interpretability in text summarization involves understanding the choice of content selection,
in dialog modeling it is understanding grounding in dialog history, it is tracing content to source knowledge.
One solution fits all approaches often fall short of providing such application specific requirements. Thus, I
propose application-specific solutions grounded in various forms of language structure to address the unique
requirements of different NLP applications.

Second, the subjective nature of these problems makes it challenging and costly to develop solutions that
rely on large annotated data. Collecting human annotations on explanations or factual inconsistencies in text is
time-consuming and expensive, and the resulting data often exhibits low agreement among annotators(Pagnoni
et al., 2021). Further, such annotations are task-specific and therefore not useful to transfer to different settings
(Devaraj et al., 2022). Therefore, the solutions I present here are designed to be data-efficient focusing on
unsupervised or distantly-supervised techniques for incorporating interpretability and factual consistency in
NLP models.

1.1 Thesis Statement

The central goal of this thesis is to demonstrate that grounding large-scale, data-driven language generation
models in language structure can facilitate the development of transparent and reliable models. I present
methods and solutions that use different language structures in novel ways to introduce application-specific
inductive biases and support the design and evaluation of trustworthy language generation systems. I identify
challenges in designing such systems and propose solutions which incorporate various structures, such as
sentence-level syntax and semantics, as well as longer document structures and pragmatics, in diverse tasks and
applications. The thesis is divided into three parts. The first part introduces semantically grounded analysis and
evaluation measures to assess the factual reliability of trained language generation models. The second part
presents model designs that incorporate inter-sentence structures to promote inductive biases and transparency.
Finally, the third part presents techniques that use syntactic structures to generate synthetic, high-quality
datasets for training robust and factual systems. This thesis contributes i) new research directions critical for
the design of trustworthy language generation systems; ii) new models that effectively combine benefits from
large data and language structure to quantitatively and qualitatively improve their transparency and reliability;

and iii) new evaluation protocols and resources for the responsible development of such systems.

1.2 Thesis Overview:

Each stage of a typical machine learning pipeline can contribute to unfair and unreliable model outcomes. It
is therefore important to identify issues leading to this behavior and consider responsible ML development
principles at each stage (Toreini et al., 2020). At the data level, it is important to analyze and construct datasets
that contain only relevant artifacts for the model to learn. At the model level, it is critical to design architectures
that facilitate an understanding of the model process and allow verification of desired behavior. While
evaluating models, it is important to include diverse measures that can provide fine-grained understanding of

limitations of the model in addition to an aggregate measure of reliability.
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Figure 1.1: Overview of Thesis Outline. Each part focuses on a stage in model development and proposes
solutions which leverage structure for improving transparency and factual reliability of language generation
models.

Following this, the thesis is organized around different stages of the model pipeline—data analysis,
construction, model design and evaluation—and presents research problems and novel solutions in each
stage. In the first part of the thesis, I begin with model evaluation of popular trained models, and use the
semantic structure of sentences for the analysis and evaluation of the factual reliability of trained language
generation models. Using semantic components as fine-grained fact units, I present chapters that i) define
evaluation protocols for measuring the factual accuracy of model generated text and ii) describe two fine-
grained benchmarks to quantitatively measure the factual accuracy across error types, domains and tasks. This
helps set up a common understanding and vocabulary of challenges with reliable generation and provides
a platform for presenting and evaluating solutions aimed to address them. Building on the findings, in the
second part of the thesis I leverage language structure to incorporate inductive biases and transparency in
model design and enable tracing of incorrect model outputs to the source of the issue. To demonstrate the
generalizability of the idea, I present prototypes in two settings i) abstractive summarization using discourse
structure and ii) dialog modeling using conversation structure. In the final part of the thesis, I go back to the
data to develop methods to generate synthetic datasets with intended artifacts. I demonstrate how the syntactic
structure of sentences can facilitate the construction of datasets that are controlled for specific features, thereby
enabling the training of robust and factual systems. I present two techniques for synthetic data construction i)
transforming specific units of sentence for generating adversarial data and ii) constructing entire sentences

from structured knowledge for generating pretraining data. These chapters are summarized in detail below:

Part 1 - Language Structure for Trained Model Analysis and Evaluation

I begin by studying current NLP models and presenting fine-grained evaluation techniques, designed using
semantic frame, rhetoric discourse structure and pragmatic theories, for measuring the factual reliability of
model generated text. Developing computational methods to detect factual errors in any model generated
text is a crucial part of a model’s evaluation pipeline. Additionally, this can contribute to understanding
model limitations and improving them. Initial approaches to develop such methods focused primarily on
building binary classifiers to identify factual errors in text. But since they present aggregate binary accuracy

their usefulness towards understanding the kinds of factual errors and what impact they have on applications



is limited. Pre-trained language generations models are highly fluent and grammatical, and do not make
simple syntax based errors. Instead, they often generate syntactically accurate sentences conveying inaccurate
meaning. To study them, I leverage higher level semantic and discourse structure to design a fine-grained
taxonomy of errors. I use semantic frame, rhetoric discourse structure and pragmatic theories to define factual
errors in text and organize them into fine-grained error categories for systematic evaluation. In the two chapters
in this part, I introduce the fine-grained error categories and evaluation measures for text summarization
(Chapter 2) and extend the taxonomy for studying more complex hallucinations in open-ended generation
(Chapter 3).

As a first step towards studying and detecting factual errors in text, we require a general definition of
factual errors in text. In Chapter 2 (Relevant Paper: (Pagnoni et al., 2021)), I present a taxonomy of factual
errors grounded in grounded in frame semantics (Fillmore et al., 1976; Palmer et al., 2005) and linguistic
discourse theory (Brown and Yule, 1983) to enable analysis and evaluation of such fine-grained errors. I
collect a human-annotated benchmark to facilitate further research in this direction. Through this collected
benchmark, I present a study of factual errors in summarization across different error types, as well as evaluate
how well existing factual error detection systems are able to detect such error types. To summarize, this
chapter outlines fine-grained evaluation and analysis of factual errors in the task of Document Summarization

grounded in Semantic Frames and Rhetoric Discourse Structure.

A more complex setting for studying the factuality in model generated text is open-ended generation where
model generates text or answers questions based on internal knowledge without access to a specific document
for grounding. In Chapter 3 (Relevant Paper: (Mishra et al., 2024)), I present a taxonomy for fine-grained
evaluation of open-ended generation systems to study the accuracy of their generated content and identify
limitations in existing evaluation measures. I extend the previous error taxonomy to include more complex
pragmatic errors like invented concepts and unverifiable errors which are more prevalant in this setting. Based
on the new taxonomy, I collect a benchmark of human annotated judgements for model generated text across
many diverse information seeking queries and propose a detection model to identify such fine-grained errors
in generated text. To summarize, this chapter outlines fine-grained evaluation measures, detection models and
analysis of factual errors in Open-Ended Generation grounded in Semantic Frames, Pragmatics and Discourse

Structure.

Part 2 - Language Structure for Transparent Model Design

To mitigate the generation of non-factual text, it is essential to verify the correct functioning of the model by
analysing model interpretations and attributing model predictions to their source. In the next part, I focus
on model design and introduce model components to ensure such transparency by design. Existing work
on interpretability focuses mostly on generic post-hoc explanations which have been shown to be counter-
intuitive and unfaithful (Feng et al., 2018; Jain and Wallace, 2019), and often not useful for specific domain
applications (Ehsan et al., 2021). In this part, I present model architectures that incorporate broader discourse
and pragmatic knowledge of the end task to design transparent model components. The models are therefore
equipped to provide explanations, grounded in domain knowledge, for model decisions which. Using two
diverse, challenging tasks—abstractive summarization and negotiation dialog modeling, I identify language
structures that are critical for each task—discourse structure and conversation dependency structure—and
design model components that use them as inductive biases. These solutions, though application-oriented,

serve as prototypes for designing similar solutions for other applications.



In Chapter 4 (Relevant Paper: (Balachandran et al., 2021)), I present a study on using document structure to
introduce content selection interpretability in text summarization. Selecting the right content to summarize is a
critical model decision for effective summarization and requires understanding the narrative structure of input
(Barzilay and McKeown, 2005). To model this, I introduce a framework that introduces structured document
representations into summarization models by: (1) inducing latent sentence graphs to learn discourse structure
and (2) incorporating external linguistic structure (e.g., coreference links). We show that incorporating such
linguistic structure as inductive biases helps improve the summarization quality as well as provide a means to
interpret content selection decisions made by the model. To summarize, this chapter outlines an interpretable
model for Text Summarization leveraging Discourse Structure for introducing transparency.

In Chapter 5 (Relevant Paper: (Joshi et al., 2021)), I consider the task of negotiation dialog and present a
study on using dependency structures to introduce dialog and negotiation strategy interpretability in dialog
modeling. Learning how to negotiate effectively involves deep pragmatic understanding and planning the
dialogue strategically (Thompson, 2001). I present an end-to-end negotiation dialogue system that leverages
Graph Attention Networks to model complex negotiation strategies while providing interpretability for the
model via intermediate structures. This enables the model to learn complex utterance and negotiation structure,
tailored for the particular negotiation task, and leverage it for predicting the next sequence and for interpreting
the learnt dependencies for verification. To summarize, this chapter outlines an interpretable model for Dialog
Modeling leveraging pragmatic structures like Negotiation Strategies and Utterance Graphs for introducing

transparency.

Part 3 - Language Structure for Controlled Dataset Construction

Finally, in the last part I focus on data pipelines to mitigate unintended artifacts in datasets. By leveraging
syntactic structures in text, I construct synthetic datasets that allow for control over the features that the model
is expected to learn. With the large scale data used to train language models, it becomes impossible to analyze
and verify the artifacts and content being provided as input to models (Liang et al., 2022). Consequently,
models pick up and amplify unintended biases and toxic content from such training data. A popular emerging
direction of research to alleviate this problem is the generation of synthetic data, which can be controlled to
have certain specific features and properties (Marzoev et al., 2020; Wu et al., 2022a; Krishna et al., 2021).
Most approaches use logical or template based methods to construct such data, limiting the usefulness and
generalizability of data. Instead, I propose to leverage the syntactic structure of language along with the
flexibility of language models to construct natural and realistic synthetic data, increasing their generalizability
while still maintaining control in design. In the two chapters in this part, I present two data generation
techniques, where I use syntactic units to carefully edit sentences (Chapter 6) and use sentence syntax structure
to construct entire sentences (Chapter 7) producing realistic data which closely resembles human-language
structure, but with the ability to control the features present in the dataset.

Curating training data for factual error correction models is challenging as collecting human-annotations is
subjective and expensive (Pagnoni et al., 2021) and constructing heuristic synthetic data is not generalizable
(Cao et al., 2020). In Chapter 6 (Relevant Paper: (Balachandran et al., 2022)), I present a new approach for
generating diverse synthetic data for this task. By decomposing existing reference summaries into their smaller
syntactic units, I use infilling language models to replacing each factually correct syntactic unit in a reference
summary, producing a set of plausible, likely, and fluent, incorrect synthetic summaries. In this way, I combine
the benefits of language structure and capabilities of large language models for fine-grained transformation of

summaries. I experimentally show how this diverse training data improves factual error correction across a



wide range of settings. To summarize, this chapter outlines a training data generation method for the task of
Factual Error Correction leveraging the Syntactic Structure of language to introduce control and quality in the
generation process.

In Chapter 7 (Relevant Paper: Feng et al. (2023a)), I propose a fact-aware pretraining approach trained on
synthetically generated data to improve representing fact units for error detection. Using external knowledge
bases as a repository of world facts, I aim to leverage the syntactic structure of sentences to construct entire
natural language like sentences from structured knowledge triples. I propose a fact-aware pretraining approach,
describing multiple factuality based objectives to pretrain language models using the synthetic corpus and
improve fact representation for tasks like error detection and fact checking across news and scientific domains.
To summarize, this chapter outlines a pre-training data generation method for the setting of Factual Error
Detection leveraging the Syntactic Structure of language to introduce control and quality in the generation

process.
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Chapter 2

Definition and Analysis of Factual Errors in

Summarization with Semantic Frame Structure

Model Evaluation is an extremely important component of the model development pipeline. Thorough
evaluation enables understanding capabilities and limitations of models, charting of progress towards certain
goals as a community and guiding effective efforts towards addressing limitations of models. Today, model
evaluation is predominantly done via benchmarks which provide high level aggregate measures on various
tasks, which is useful for model comparison but does not provide useful feedback on model limitations or to
guide model development work. In this context, fine-grained model analysis and evaluation plays an important
role to fill this gap. But such fine-grained evaluations are often done via manual inspections or qualitative
analysis which are not scalable. In this section of the thesis, I propose to leverage language structure as an
inductive bias to develop scalable fine-grained evaluation protocols and I demonstrate this by evaluating factual

consistency in language generation as a use case.

Modern text generation models generate highly fluent but often factually unreliable outputs. This chapter
considers the task of automatic text summarization and describes a typology of error types drawn from
semantic frame theory and rhetoric discourse structure theory to support studying and characterizing the range
of factual errors in summarization models. Based on the typology, the chapter presents a benchmark of human
annotated factuality judgements of model generated summaries and presents a study identifying the proportion
of different categories of factual errors in various summarization models and benchmark factuality metrics,
showing their correlation with human judgement as well as their specific strengths and weaknesses. Research
described in this chapter was conducted in collaboration with Artidoro Pagnoni and Yulia Tsvetkov and was
presented in a NAACL 2021 publication (Pagnoni et al., 2021).

2.1 Introduction

Factuality is defined as a measure of “whether eventualities are characterized as corresponding to facts,
possibilities, or situations that do not hold in the world” (Sauri, 2008; Sauri and Pustejovsky, 2012). In
summarization, this “world” is the article, which is taken as ground-truth, and the output summary must
be faithful to the article’s facts. Despite advancements in neural abstractive summarization (Narayan et al.,
2018; Liu and Lapata, 2019; Lewis et al., 2019), ~30% of summaries have factual inconsistencies (Cao et al.,
2018a). With summarization being an integral component of information consumption, this highlights a need

for ensuring summarization systems are factually consistent and developing methods for evaluating them.
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Figure 2.1: We propose a linguistically grounded typology of factual errors. We select crowd workers to
annotate summaries from two datasets according to this typology achieving near perfect agreement with experts.
We collect FRANK, the resulting dataset, to benchmark factuality metrics and state-of-art summarization
systems.

Common evaluation metrics for summarization based on n-gram overlap — BLEU, ROUGE, and METEOR
(Papineni et al., 2002; Lin, 2004; Lavie and Agarwal, 2007) — are insufficient to measure the factual correctness
of summaries and fail to correlate with the human judgements of factuality (Falke et al., 2019; Kryscinski
et al., 2019). More recent metrics proposed to improve the evaluation of summarization factuality (Kryscinski
et al., 2020; Durmus et al., 2020; Wang et al., 2020a; Maynez et al., 2020) cannot be compared due to the lack
of common benchmarks. More critically, while these approaches differ in the way they model factuality, they
all consider factuality as a binary concept, labeling summaries of any length as factual or non-factual. They do
not provide any fine-grained understanding of the factual errors made by different systems that could serve as
an actionable feedback on a system’s limitations.

The binary factuality of a text can be difficult to determine. Falke et al. (2019) show relatively low
crowd—expert agreement, indicating the presence of subjectivity in the annotation process. Moreover, not all
factual errors are equally important and the number of errors can have a significant impact on the perceived
factuality of a text. This suggests that non-factuality should be modeled as a multi-dimensional construct and
not a label.

In this chapter, we propose a linguistically motivated typology of factual errors for fine-grained analysis
of factuality in summarization systems (§2.2). Our typology is theoretically grounded in language structure:
frame semantics (Fillmore et al., 1976; Palmer et al., 2005) and linguistic discourse theory (Brown and Yule,
1983) and provides several benefits. First, we find that decomposing the concept of factuality in (relatively)
well-defined and grounded categories makes the final binary decision more objective leading to significantly
high agreement between crowd and expert annotators (x = 0.86). Second, this approach provides some
measure of the degree of non-factuality both in terms of the quantity and the category of factual violations
that appear in the text. This typology also provides us with the means to categorize the types of errors made
by summarization systems, helping us gain deeper insights than simply categorizing content as factual or
hallucinated.

We define an annotation protocol of factuality based on our typology and collect a benchmark of human
annotated judgements — FRANK — over a diverse set of model generated summaries on the CNN/DM (Hermann
et al., 2015) and XSum (Narayan et al., 2018) datasets (§2.3). Through this dataset, we aim to both assess the
factuality of summarization systems and benchmark recently proposed factuality metrics. In §2.4 we discuss
various state-of-art models and show a detailed analysis of the factual errors they make. Finally, in §2.5 we
evaluate multiple summarization metrics against our benchmark and show their strengths and weaknesses in

detecting specific types of factual errors. Figure 2.1 shows an overview of this work. '

1Code, data, and online leaderboard will be available at https://github.com/artidoro/frank
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Category Description Example

PredE Relation Error The predicate in the summary statement  The Ebola vaccine was rejected by the FDA
is inconsistent with the source article. in 2019.

EntE Entity Error The primary arguments (or their at- The COVID-19 vaccine was approved by
tributes) of the predicate are wrong. the FDA in 2019.

CircE Circumstance Error  The additional information (like loca-  The first vaccine for Ebola was approved by

tion or time) specifying the circumstance the FDA in 2014.
around a predicate is wrong.

CorefE  Coreference Error A pronoun/reference with wrong or non-  The first vaccine for Ebola was approved in
existing antecedent. 2019. They say a vaccine for COVID-19 is

unlikely to be ready this year.

LinkE Discourse Link Er- Error in how multiple statements are 7o produce the vaccine, scientists have to

ror linked together in the discourse (for ex-  show successful human trials, then sequence
ample temporal ordering/causal link). the DNA of the virus.
OutE Out of Article Error  The statement contains information not  China has already started clinical trials of
present in the source article. the COVID-19 vaccine.

GramE  Grammatical Error ~ The grammar of the sentence is so wrong ~ The Ebola vaccine accepted have already

that it becomes meaningless. started.

Table 2.1: Typology of factual errors. Original text for the examples: The first vaccine for Ebola was approved
by the FDA in 2019 in the US, five years after the initial outbreak in 2014. To produce the vaccine, scientists
had to sequence the DNA of Ebola, then identify possible vaccines, and finally show successful clinical trials.
Scientists say a vaccine for COVID-19 is unlikely to be ready this year, although clinical trials have already
started.

2.2  Frame-Centric Factual Error Benchmark - FRANK

Previous studies of factuality in summarization only distinguish factual and hallucinated content (Kryscinski
etal., 2019; Maynez et al., 2020) and provide limited insights on the fine-grained types of factual errors. In
the simplest case, factual errors appear within a single proposition. However, as summaries include several
sentences, discourse markers describe relations across propositions. These cross-sentence links, such as
causality or temporal ordering, can introduce inconsistencies with the article. Furthermore, information in
the summary should be verifiable given the article. This understanding outlines different levels of linguistic
structure where factual mistakes can arise in summaries: at the semantic frame level, at the discourse level,
or because the content cannot be verified. Below we define a typology of factual errors further detailing
these three levels. This typology is theoretically grounded in frame semantics (Fillmore et al., 1976; Baker
et al., 1998; Palmer et al., 2005) and linguistic discourse analysis (Brown and Yule, 1983). Examples for each
category are shown in Table 2.1.

2.2.1 Semantic Frame Errors

A semantic frame is a schematic representation of an event, relation, or state, which consists of a predicate and
a list of participants, called frame elements Baker et al. (1998). A semantic frame has both core and non-core
frame elements (FE). Core frame elements are essential to the meaning of the frame, while non-core (e.g.
location, time) provide additional descriptive information. Our first three categories capture factual errors in

each of these components (frame, core and non-core FE) respectively.
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Predicate Error (PredE): Category PredE encompasses errors where the predicate in a summary statement
is inconsistent with the source text. More generally, this represents cases where the frame from a summary

statement does not align with what is expressed in the source text.

Entity Error (EntE): Category EntE captures errors where the primary arguments (like entities) of the
predicate are wrong or have the wrong attributes, although the relation was expressed in the original text. More
generally, these account for cases where the core frame elements in a frame are wrong. This also captures

directionality errors where the elements are interchanged (similar to agent-patient swap).

Circumstance Error (CircE): In additional to the core arguments, predicates can be further specified using
additional information or attributes that describe the circumstance in which the arguments and predicates
interact (e.g. location, time, manner, direction, modality). Category CircE captures errors where one or more

such attributes (non-core frame elements within a frame) are wrong.

2.2.2 Discourse Errors

The communicative intent of an author is also expressed through relations that hold between parts of the text.
Factual errors in summarized text can often extend beyond a single semantic frame introducing erroneous
links between discourse segments. Below we outline such categories of errors which are grounded in discourse
analysis and rhetorical structure theory (RST) (Brown and Yule, 1983; Mann and Thompson, 1988). RST is an
elaborate system for annotating coherence relations in discourse. Some examples of such relations include:
“Elaboration”, “Background”, “Motivation”, and “Volitional Cause”. Here we depart from semantic frame

terminology as its rooting in a single frame does not allow us to represent such errors.

Coreference Error (CorefE): Category CorefE accounts for errors where pronouns and other types of
references to previously mentioned entities either are incorrect or have no clear antecedents, making them

ambiguous.

Discourse Link Error (LinkE): Category LinkE encompasses errors involving a discourse link between
different statements. These include errors of incorrect temporal ordering or incorrect discourse links (e.g. RST

relations, discourse connectors) between statements.

2.2.3 Content Verifiability Errors

Facts should be be verifiable given the article: the information should be contained in the article, and they
should be well formed. Often statements in a summary cannot be verified against the source text due to

difficulty in aligning them to the source. Below we outline two categories of errors for such cases.

Out of Article Error (OutE): Since summaries of a document should only contain information that can
be deduced from the original text, we include a category for such errors OutE (prior work refers to this as

extrinsic hallucinations (Maynez et al., 2020)).
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Grammatical Error (GramE): We use GramkE to categorize statements that are not well formed. When
grammatical mistakes make the meaning of a statement incomprehensible or ambiguous, it cannot be verified
against the source and is thus considered trivially wrong. Minor grammatical errors are acceptable.

Finally, for completeness in our annotation exercise, we add two additional categories Others (OthE) for
factually errors that do not correspond to any of the above categories and Not an Error (NE) for statements

that do not contain any errors.

2.3 Dataset Creation

Beyond theoretical grounding, we empirically verify our typology through large scale human annotations of
five abstractive summarization models on the CNN/DM dataset and four on the XSum dataset. Through our
dataset, we aim to have a broad coverage of different types of errors made by neural summarization systems,

with human judgements on their fine-grained factuality errors.

Annotation Data For the annotation, we include model summaries from CNN/DM and XSum datasets as
they present different characteristics. CNN/DM summaries are longer, with three sentences on average, while
XSum has only single sentence summaries. Having longer summaries is crucial to identify discourse level
errors. On the other hand, XSum summaries are more abstractive and include more factual errors on average
(Maynez et al., 2020). For a diverse set of model summaries, we collect publicly available model outputs from
different summarization models with differing factuality capabilities.

On the CNN/DM (Hermann et al., 2015) dataset we use five different models. We use the preprocessed
model outputs provided by Fabbri et al. (2020).
S2S: an LSTM based Sequence-to-Sequence with attention model (Rush et al., 2015)
PGN: an LSTM based Pointer-Generator Network with Copy Mechanism (See et al., 2017)
BUS: Bottom-Up Summarization (Gehrmann et al., 2018) - a Pointer-Generator model with a data-efficient
content selector to over-determine phrases in a source document that should be part of the summary.
BERTSum: summarization with pretrained encoders (Liu and Lapata, 2019)
BART: pretrained transformer based encoder-decoder model (Lewis et al., 2019)

On the XSum dataset (Narayan et al., 2018) we use four different models. All model outputs for this
dataset are taken from (Maynez et al., 2020).
PGN: pointer-generator network from above (See et al., 2017)
TConvS2S: Topic-Aware Convolution Sequence-to-Sequence (Narayan et al., 2018)
TranS2S: A randomly initialized Transformer (Vaswani et al., 2017) encoder-decoder model fine-tuned on the
XSum dataset
BERTS2S: Transformer encoder-decoder model with parameter sharing (Rothe et al., 2020) where both en-
coder and decoder are initialized with the BERT-Base checkpoints (Devlin et al., 2019) and fine-tuned on XSum

Annotation Collection Using the above model generated summaries, we collect human annotations from
three independent annotators for 250 articles from each dataset (with a total of 1250 model outputs on
CNN/DM and 1000 on XSum). We annotate each sentence of a summary to break the judgement of factuality
into smaller units. We present sentences in the context of the entire summary to identify discourse errors

spanning multiple sentences. Annotations are a two step process: for each sentence in the summary, the
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annotator first selects whether the sentence is factual, and if marked not factual, identifies the category of each
error based on our typology. > A sentence can be annotated with more than one category of errors to account
for multiple errors within a sentence.

We conduct the annotation task on the Amazon Mechanical Turk (MTurk) platform. To achieve high
quality crowd-sourced annotations, we build an intuitive interface®. Screenshots of the interface are shown in
Appendix 1.1.1. We outline specific highlights of our annotation protocol below:

1. Clear Instructions: We explain the annotation scheme without assuming linguistic knowledge and give
several examples for each category. We also provide a practical step-by-step to determine the category
of the errors.

2. Training: Every first-time user has to go through a tutorial which exercises the comprehension of the
annotation scheme. The tutorial presents an article and several hand-crafted summaries of the article
that need to be annotated. It is designed to be very similar to the actual annotation task and to contain
at least one occurrence of each category of error. Feedback is provided when a user selects the wrong
category of error. This tutorial is not used to evaluate users, only to help them understand the different
categories in a practical setting.

3. Qualification test: To participate in the annotation, users have to obtain a minimum score of 85% on a
qualification test. The test comprehends an article and several summaries to be annotated. It contains at
least one instance of each category of error. We use this test to verify that users can effectively recognize
error categories. This ensures that users are able to perform the task correctly, but does not enforce that
high standards of work quality are maintained throughout the annotation task.

4. Continuous evaluation: We continuously evaluate a user by verifying that they read the text. For every
article that is annotated, we ask to identify one of three entities that was not present in the article. We
also monitor the annotations on artificially altered sentences that are randomly inserted at the end of
summaries. Wrong sentences contain one of the following errors: negation of declarative sentences
(PredE), pronoun swap (CorefE), sample sentence from another article (OutE), word scrambling (GramE).
We immediately block users that fail the entity test or perform poorly on these sentences (less than 50%
of correct answers on altered sentences) to ensure high quality annotations.

5. Fair pay and Bonuses: All workers are paid 50% more than the average American minimum wage
but we offer bonuses for scores of 60% or above on the continuous evaluation, and for completion
a sequences of 10 annotations. We observe that bonuses increase the percentage of users with high

continuous evaluation scores (<10% blocked users with bonuses versus 30% without bonuses).

Inter-Annotator Agreement: = We report inter-annotator agreement in terms of Fleiss Kappa « (Fleiss,
1971). Following Durmus et al. (2020), we report the percentage p of annotators that agree with the majority
class. Each datapoint in our dataset corresponds to a sentence in a summary. We compute agreement on all
4942 annotated sentences. On the annotation of whether a sentence is factual or not we obtain Kk = 0.58,
with p = 91% of annotators agreeing with the majority class. As a comparison, Durmus et al. (2020) reports
p = 76.7% average agreement. When all three annotators agree that a sentence is not factual, we obtain
k = 0.39 with p = 73.9% of annotators agreeing with the majority class on the eight category annotation

(seven categories of errors and “other””) which indicate a moderate agreement.

2We experimented with Likert scale evaluation of full summaries in a pilot study. Such an annotation would not provide precise
information about where in the summary an error appears and also resulted in lower agreement. Hence, we opted for sentence level
judgements.

3We make the interface available for future human annotations that follow our typology
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Agreement with Domain Expert: We measure agreement between the majority class of the three annotators
and one expert annotator on 201 datapoints (10 summaries from CNN/DM and 10 summaries from XSum).
We find a Cohen Kappa of x = 0.86 indicating nearly perfect agreement. Previous work found agreement of
+ = 0.65 between three crowd annotators and expert annotations of factuality (Falke et al., 2019). Even with
more than nine workers, they report agreement with expert annotations of at most x = 0.74. This improvement

validates the robustness of our annotation interface and protocol which achieves higher agreement with fewer

workers.
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Figure 2.2: Proportion of summaries with factual errors based on collected annotations, with breakdown of the
categories of errors within. Full specification of categories of errors in Table 2.1.

2.4 Summarization Model Analysis

We evaluate the performance of different summarization models in terms of factuality. Figure 2.2 visualizes
the percentage of summaries with factual errors for each category model and dataset, with a breakdown of
proportion of different error types within each. A summary is considered incorrect if it contains at least one
sentence with a factual error. A sentence contains a factual error if the majority of annotators indicate the

presence of an error (here we do not consider annotations where all three annotators disagree on the category).

How factual are generated summaries across different datasets?  From our annotations, we observe that
60% of the summaries that were annotated contain at least one factual error. From Figure 2.2, we see that
the XSum dataset has more factually incorrect model summaries (92%) than CNN/DM (43%). It poses more
significant challenges in terms of factuality as all models produce > 80% summaries with factual errors, with
the best model (BertS2S) producing 83% wrong summaries. On the CNN/DM dataset, while state-of-the-art
pretrained models like BERTSum and BART have better factuality numbers, the percentage of factually
incorrect summaries is still high (23% for BERTSum and 27% for BART). The proportion of errors across
different categories vary widely between the two datasets. For the CNN/DM dataset, the most frequent classes
of errors are Entity Error (EntE) and Coreference Error (CorefE). For the XSum dataset they are Out of Article
Error (OutE) and Entity Error (EntE). Note that there are no discourse errors (CorefE, LinkE) in the XSum
dataset because the data only contains single sentence summaries. Additionally, we observe that OthE makes
up a very small percentage (~ 1%) of errors overall showing that our typology is nearly complete with most

errors being mapped to one of our existing categories.
How factual are generated summaries across different models?  From Figure 2.2, we observe that LSTM

based models like S2S and BUS generate many incorrect summaries. Interestingly, PGN on CNN/DM has
fewer summaries with factual errors (26%) compared to S2S (74%) and BUS (62%) potentially due to the
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extractive nature of CNN/DM and the copy based objective in PGN. PGN has been previously shown to
produce highly extractive summaries on CNN/DM copying large portions of text (often entire sentences)
(Gehrmann et al., 2018; Balachandran et al., 2021). On the more abstractive dataset XSum, PGN produces
> 96% factually incorrect summaries. We also observe that large-scale pretrained models improve factuality on
both datasets, as also noted by Durmus et al. (2020), with more significant gains on CNN/DM. On CNN/DM,
BERTSum and BART display half the error rate of BUS. In contrast, on XSum, BertS2S improves over
non-pretrained models by ~ 10% only, showing that XSum poses a significant challenge for factuality even in
pretrained models.

Different models also exhibit different distributions in the error categories. LSTM based models have
higher proportion of Grammatical Errors (GramE) while transformer and CNN based models have a lower
proportion. For pretrained transformer models, we observe that the improved error-rate on the CNN/DM
dataset can be attributed to improvements at the frame level (PredE, EntE, CircE) while the discourse level
errors still remain a challenge. Errors CorefE, LinkE account for a higher proportion of errors in BERTSum
and BART compared to the other models.

2.5 Factuality Metric Evaluation

We propose the FRANK dataset resulting from the human annotation study as a common benchmark to assess
different factuality metrics. We provide an evaluation protocol of factuality metrics, which controls for dataset

biases, and a fine grained analysis of the strengths of each metric.

2.5.1 Benchmark

The FRANK benchmark provides a diverse dataset for evaluating various metrics on their ability to capture
factual errors. Notably, our benchmark has factual error diversity, as it covers all types of errors described in
the typology in §2.2, and data diversity as it combines 2250 summaries from different systems and datasets.
Our annotations go beyond binary labels of factuality on a summary by providing fine-grained category
annotations for every sentence. This allows us to determine how well each metric can capture each type of
error. Furthermore, through averaging of sentence level judgements, we can also obtain a factuality scores
(0 to 1 range) for a summary. To measure the degree that automated metrics capture a certain characteristic,
we compute their correlation with human judgements and report Pearson correlation and Spearman rank
correlation along with their p-values.

We evaluate different classes of metrics against the FRANK benchmark. We select four general summa-
rization metrics. ROUGE, BLEU, and Meteor are n-gram based metrics and computed with respect to the

reference summary. We also select the following model based metrics focused on factuality:

BERTScore (Zhang et al., 2020b): We report BERTScore Precision, Recall, and F1 between the model
output and the article being summarized. Our experiments show that recall and F1 do not correlate as well

with the human judgement of factuality for BERTScore.

OpenlE : We use a simple baseline based on OpenlE (Banko et al., 2007) and Sentence-BERT (Reimers
and Gurevych, 2019). We use OpenlE (Banko et al., 2007) to extract subject-relation-object triplets from the

article, reference summary, and model generated summary. We consider binary relations only and thus use the
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Figure 2.3: Correlation between metrics and human judgement on subsets of data. The x and y axis represent
the human judgement the metric scores respectively. The red line is a linear regression fitted on full data. Each
dotted line is a linear regression fitted on a model-dataset subset. Each colored point has coordinates equal to
average factuality judgement, and metric score for its corresponding partition.

first two arguments of the relation.* After replacing corefering entity mentions with the main mention of the
cluster’, we use BERT base Sentence-BERT (Reimers and Gurevych, 2019) to obtain embeddings of each
element of the subject-relation-object triplets extracted by OpenlE. Two relation triplets are considered to
be equivalent if their embeddings have cosine similarity higher than a threshold for all three elements of the

triplet (we use 0.6 as threshold after a grid search between 0.5 and 0.9 on data from our pilot study).

FEQA Durmus et al. (2020): FEQA is a question generation and answering (QGA) factuality metric. We
relied on the original implementation of the authors for this metric as well as their pre-trained model weights.

We used the full summary to generate questions and we answer them both using the summary and article text.

QAGS Wang et al. (2020a): QAGS is another QGA metric. The authors kindly provided outputs on the

FRANK benchmark generating 10 questions for each summary.

DAE Goyal and Durrett (2020): DAE is an entailment classification metric that operates on dependencies.
The authors kindly provided outputs on the FRANK benchmark. We note that the model was trained with a
max length of 128 after concatenating both article and summary. The CNN/DM articles can be significantly
longer, thus the results reported for this metric involve truncating parts of the article.

FactCC Kryscinski et al. (2020):  FactCC is an entailment classification metric. We use the sentences
of the model generated summary as input claims to the entailment classifier FactCC. For each sentence we

obatain a binary factuality label. We take the average of these labels as the factuality score for the summary.

2.5.2 Controlling for Dataset Biases

Since our benchmark contains diverse summaries from different datasets and models, dataset biases can
hamper accurate reporting. In Figure 2.3, we visually show correlations between two factuality metrics (FEQA
and FactCC) and human judgement on the entire data and on partitions of the data. For both metrics, we
notice that the slope (an unscaled measure of correlation) of the line fitted through the entire data (red line) is
significantly larger. In FEQA, the dotted lines (fitted on subsets of the data of each model and dataset) are

almost horizontal. This likely indicates the presence of a confounding variable associated with the properties

4We use the model and implementation from Stanovsky et al. (2018) for OpenlE extraction.
Shttps://github.com/huggingface/neuralcoref
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All data CNN/DM XSum

. Pearson Spearman Pearson Spearman Pearson Spearman
Metrics

p p-val r p-val p p-val r p-val p p-val r p-val

BLEU 0.10 0.00 0.07 0.00 | 0.08 0.01 0.08 001 | 0.14 0.00 020 0.00

METEOR | 0.14 0.00 0.11 0.00 | 0.12 000 0.10 0.00 | 015 0.00 0.10 0.00
Rouge-1 0.14 0.00 0.10 0.00 | 0.12 0.00 0.10 0.00 | 0.15 0.00 0.09 0.01
Rouge-2 0.12 0.00 0.08 0.00 | 008 0.00 0.07 0.01 | 017 000 0.14 0.00
Rouge-L 0.13 0.00 0.09 0.00 | 0.11 0.00 0.09 0.00 | 0.16 0.00 0.10 0.00

OpenlE 0.11 0.00 002 036 | 0.16 0.00 0.15 0.00 | 000 093 -045 0.00
BERTSP | 0.27 000 024 0.00 | 035 000 029 000 | 018 0.00 0.09 0.00
BERTSR | 0.14 0.00 0.13 0.00 | 021 0.00 0.17 0.00 | 0.07 0.03 003 038
BERTS F1 | 0.24 0.00 0.21 0.00 | 032 0.00 026 0.00 | 0.15 0.00 0.06 0.05

FEQA 0.00 0.83 001 060 |-001 076 -001 0.72 | 002 045 0.07 0.04
QAGS 0.06 0.00 008 0.00 | 0.13 0.00 0.09 0.00 |-002 048 0.01 0.65
DAE 0.16 0.00 0.14 0.00 | 025 0.00 0.24 0.00 | 0.04 0.16 0.28 0.00

FactCC 020 0.00 030 000 | 036 0.00 033 0.00 | 007 002 025 0.00

Table 2.2: Partial Pearson correlation and Spearman rank correlation coefficients and p-values between human
judgements and metrics scores. Comparisons should be made along with the pairwise Williams test found in
Table 2.3.

of each system and dataset. This can lead to false measures of high correlation if not accounted for. To address
this, we suggest to control for confounding variables using partial correlations.

Partial correlation measures the degree of association between two random variables, with the effect of a
set of controlling random variables removed. Although we are unaware of the exact confounding variable, we
use the categorical variable C' of which system and dataset the summary was generated from.

Let Mj, represent the output of metric k£ on the summaries. To compute partial correlation between
M, and human judgements H which we treat as random variables, we solve the two regression problems
My |C = ¢ ~ wy,cand H|C = ¢ ~ wpyc and get the residuals:

AM,, = My, — 1y, C

AH = My —wgC

And then calculate the correlation between these residuals p(AMj, AH) instead of the original random
variables. Since partial correlations are proper correlations between random variables, we can apply statistical
significance tests without any modification. In this case, both the system and the dataset are taken to be

confounding variables.

2.5.3 Results

In Table 2.2, we report the partial Pearson correlation and Spearman rank correlation coefficients with human

judgements for each metric, along with their p-values indicating statistical significance.

How do different metrics correlate with human judgements? From Table 2.2 we observe that all metrics
exhibit low correlations with human judgements of factuality. The best metrics overall are FactCC with 0.20
Pearson and 0.30 Spearman correlation and BERTScore P with 0.27 Pearson and 0.35 Spearman correlation.

Interestingly, we observe that general summarization metrics BLEU, Rouge, and METEOR, and the OpenlE
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B MET R-1 R-L BS-P OplE FEQA QAGS DAE FCC

BLEU - 0.25 -0.02

METEOR - 0.87 0.85 0.27 0.09
Rouge-1 0.87 - 0.89 0.21 0.09
Rouge-L 0.85 0.89 - 0.21 0.08
BERTS P -

OpenlE 025 027 021 021 -

FEQA -

QAGS -0.02 -

DAE 0.09 0.09 0.08 - 0.10
FactCC 0.10 -

Table 2.3: Pearson correlation between metrics. If value is in green, the metrics are not the same significant to
the 0.05 threshold with the Hotelling Williams test.

baseline have statistically significant correlations with factuality, close to FactCC (p = 0.14 for Rouge-1 and
METEOR versus p = 0.20 for FactCC). The entailment metrics (FactCC and DAE) and contextual embedding
method (BERTScore) have the highest correlations and are statistically significant. The two QGA metrics have
lower overall correlation. FEQA'’s correlation is not statistically significant. QAGS has low, but significant

correlation of p = 0.06.

How well do different metrics capture errors in different datasets? In Figure 2.4, we observe that
entailment metrics have significantly higher partial Pearson correlation on the CNN/DM dataset than XSum
where their correlation is reduced by a factor of four. QAGS and the OpenlE baseline have similar behavior.
This suggests that these metrics capture the error types from CNN/DM better that those from XSum. Specif-
ically, XSum has uniquely high Out of Article (OutE) errors which they might not capture well. This also
highlights the importance of data diversity in building and benchmarking factuality metrics to avoid overfitting
to certain types of errors. The correlation numbers in Table 2.2 should be read in combination with the pairwise
Hotelling-Williams test Graham (2015) results in Table 2.3. The highlighted numbers indicate pairs of models
for which the difference in correlation is statistically significant. We use partial correlations to run the test and

compute metric-metric correlations.

How well do different metrics capture errors from pretrained and non-pretrained models? On the
CNN/DM dataset we observe that entailment metrics and QAGS perform significantly better on non-pretrained
models. This indicates that the artificial factual errors on which entailment metrics are trained on are closest to
the mistakes that non-pretrained models make. This also suggests that the errors made by pretrained models
might be more difficult to capture by these metrics. These trends are less clear on the XSum dataset which we
again attribute to high Out of Article (OutE) errors in the pretrained and non-pretrained models (Figure 2.2)

2.5.4 Error Analysis

Figure 2.4 shows partial Pearson correlation on six subsets of the data. To understand capabilities of metrics
across the broad categories of errors (semantic frame errors, discourse errors, and content verifiability errors)
we perform an ablation study. For each category, we compute the variation in partial correlation with errors

from that category omitted. In Figure 2.5, we visualize the influence of a given type of error using the variation
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Figure 2.4: Partial Pearson correlation on different partitions of the data. Entailment metrics have highest
correlation on pretrained models in the CNN/DM dataset. Their performance degrades significantly on XSum.
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Frame Errors

Discourse Errors
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Verifiability Erros
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Figure 2.5: Variation in partial Pearson correlation when omitting error types. Higher variation indicates
greater influence of an error type in the overall correlation.

for each metric and category. A higher positive bar indicates that the error type was a significant contributer to

the overall correlation (or metric highly correlates with error) causing the correlation without it to drop.

General Summarization metrics Unsurprisingly, we observe that Rouge L is best correlated with content
verifiability errors (which contains Out of Article Errors) as n-gram matches detect them. Rouge L has negative
correlation with semantic frame errors and low correlation with discourse level errors indicating that n-gram
matching fails to capture them. We observe that OpenlE is more correlated with semantic frame errors. The
metric matches entities and verifies the predicate that relates them and hence is able to capture semantic
frame errors. We observe that BERTScore’s high correlation is primarily due to its ability to capture content

verifiability errors while it has low correlation on semantic frame errors.

QGA metrics Both QGA metrics have negative correlation with discourse errors suggesting that QGA
metrics are not able to capture coreference errors or discourse link errors potentially due to the entity oriented
questions in their training data. FEQA additionally is also negatively correlated with semantic frame errors
and has low positive correlation with content verifiability errors. In contrast QAGS is best correlated with
semantic frame errors.

Entailment metrics Both entailment metrics correlate well with semantic frame and content verifiability
errors. DAE has the highest correlation of all metrics with discourse errors suggesting that entailment at the
dependency level can help model discourse errors (CorefE and LinkE). FactCC is nearly uncorrelated in this
category, indicating that artificially generated factual errors need to go beyond simple pronoun swaps to train

models to capture discourse errors. FactCC is best at capturing semantic frame among all metrics evaluated.
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Figure 2.6: Confusion matrix of different types of errors. Entry at row ¢, column j corresponds to the frequency
of annotations that have Fi as the majority class and for which disagreeing annotator selected Fj.

2.5.5 Mutual Exclusiveness of Typology

To understand if our annotations are mutually exclusive, we study cases where two annotators agree on the
error category (majority class) and one disagrees (minority class). In Figure 2.6, we report the confusion
between majority and minority classes. For each category as majority, we report the distribution of other
categories as minority.

We observe that all categories with the exception of OutE are frequently confused with NE which stands
for no factual error. This primarily due to the noise in the annotations collected by crowd workers. However,
for category CorefE (coreference errors) the confusion is significantly higher with 69.7%. We have noticed
the same trend in practice tutorials: crowd annotators easily overlook situations where the correct pronoun
is used (in terms of number and gender) but no antecedent appears in the summary. Intuitively after reading
the article, unless paying particular attention, it is easy to subconsciously associate referring expressions with
entities in the article without noticing their absence in the summary. The error persists despite stating the
scenario explicitly in the instructions. This indicates an issue with annotators rather than annotation scheme.

The other trend that we observe is that categories PredE (wrong relation) and CircE (wrong modifier) are
often confused with OutE (outside information). In our definition of QutE, outside information corresponds
to the presence of entities not mentioned in the article or relations that cannot be verified based on the article.
The confusion with PredE indicates that annotators can have different judgements on whether a relation is
verifiable based on the article. Similarly, but to a lesser degree, wrong circumstantial information might be
considered unverifiable given the article.

Finally, there were relatively few discourse context errors LinkE, so the analysis is less statistically
significant. Discourse context errors correspond to using a wrong connectors between different facts, for
example different logical links. These were confused with PredE and EntE (wrong relation). The distinction
between the two errors lies in the confusion between what an entity and a fact are, since PredE occurs at the
frame level while LinkE at the discourse level. Note, that there was no confusion in the other direction (PredE
being confused with LinkE).
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2.6 Related Work

Kryscinski et al. (2019) and Fabbri et al. (2020) find that standard n-gram based metrics have low correlation
with human judgements of factuality. Motivated by this, several automated metrics falling in two paradigms
were proposed to improve the evaluation of factuality.

Entailment Classification: Goodrich et al. (2019); Kryscinski et al. (2020); Maynez et al. (2020); Goyal
and Durrett (2020) model factuality as entailment classification breaking down the summary into smaller
units, such as sentences, which are verified against the original article. However, modeling factuality as a
classification task requires supervision on factual and hallucinated data. FactCC (Kryscinski et al., 2020) is
trained on the CNN/DM dataset augmented with four types of artificial mistakes as supervision.

Question Generation and Answering (QGA): FEQA (Durmus et al., 2020) and QAGS (Wang et al., 2020a)
are two metrics which reduce factuality evaluation to question generation and answering. These methods use a
question generation model to obtain questions from the output summary and a question answering model to
answer them, separately using the article and the output summary.

Prior Efforts on Factuality Annotations of Summaries: Fabbri et al. (2020) and Maynez et al. (2020) have
collected annotations on the CNN/DM and XSum dataset respectively. In this work we cover both datasets to
ensure greater data diversity. Other efforts (Kryscinski et al., 2020; Wang et al., 2020a; Durmus et al., 2020)
were smaller in scale Durmus et al. (2020) and Kryscinski et al. (2020) annotated 200 and 503 sentences while
Wang et al. (2020a) annotated 470 summaries (we collect judgements on 2250 summaries). Crucially, all

previous efforts portray factuality as a binary label without variations in degree or type of factual errors.

2.7 Conclusions and Future Work

In this work we provide a linguistically grounded typology of factual errors which we use to collect FRANK,
a dataset of human annotations of 2250 summaries covering both CNN/DM and XSum datasets. We use
FRANK to assess the factuality of summarization systems and benchmark recently proposed factuality metrics
highlighting the types of errors they can capture. With the FRANK benchmark we have started moving away
from a summary-level binary understanding of factuality.

Our work leveraged human annotators for extensive annotations which is both expensive and time-
consuming, and hence not scalable. An interesting avenue to explore in future is to leverage effective
human-model collaboration strategies to conduct more broad and scalable evaluations (Laban et al., 2023).
While such collaboration strategies reduce cost and can help effectively scale, incorporating them for evaluation
needs to be done carefully to ensure fair and unbiased results. Additionally, this work uses the fine-grained
typology to evaluate summarization models and metrics. But such work can able so enable the design and
development of automatic metrics for fine-grained error detection, which can enable such fine-grained analysis

to be conducted for new summarization models.

Ethical Considerations
This work involved using human annotators for annotating data. We have collected crowd annotations using

the Amazon Mechanical Turk platform. Workers were paid 50% more than the average American minimum

wage and offered additional bonuses as an incentive to maintain high quality work. Further, all data used for

22



annotation were public news documents and summaries. No information about the workers will be released
and worker IDs will be anonymized.

While this work presents an evaluation protocol for fine-grained analysis of summarization models and
metrics, it only presents the analysis for specific models and metrics which were state-of-the-art at the time
of the publication. Care should be taken to not generalize the results to artifacts which were not evaluated
here and rather the evaluation should be redone with the specified protocol to understand limitations of any
model/metric of interest. Finally, while evaluation protocols and analysis are guidelines to understand models
and their limitations, they are not gold-standard certifications of a model. Thorough evaluations and testing of

models need to done across diverse parameters before using them in different applications.
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Chapter 3

Evaluation of Factual Consistency in Open-Ended

Generation with Semantic Frame Structure

Our findings from Chapter 1 indicate that factual errors in model generated text persist even with additional
model pretraining. Particularly entity and hallucination errors are significantly high in cases where the model
is expected to generate abstractive text. This issue is further exacerbated in the case of open-ended generation,
where models generate text based on pretrained knowledge without being grounded in any specific document.
As LMs are increasingly being used with information seeking intent and being incorporated into information
access systems, developing evaluation measures to study the factual accuracy of such open-ended language
generation systems is important. Conducting such an evaluation is challenging. As information is vast,
evaluation measures need to be general and comprehensive to be truly useful. Currently, LMs are evaluated for
their memorization capabilities using question answering and slot-filling benchmarks (Mallen et al., 2023;
Petroni et al., 2019). Findings from such evaluations are limited and do not transfer to open-ended generation,
where information is produced in long passages, motivating the need fine-grained measures to target and
evaluate each unit of information.

This chapter addresses the problem of hallucinations in open-ended generation and extends the previous
typology to describe more complex factual errors in this setting. First, it describes a taxonomy of hallucination
categories drawn from semantic frame theory and pragmatics to support evaluation of hallucinations. Based on
the typology, the chapter presents a benchmark of human annotated factuality judgements of model generated
text and proposes a model for fine-grained hallucination detection and editing. Research described in this
chapter was conducted in collaboration with Abhika Mishra, Akari Asai, Yizhong Wang, Graham Neubig,
Yulia Tsvetkov and Hannaneh Hajishirzi and is under review at ACL 2024 (Mishra et al., 2024).

3.1 Introduction

Large language models (LMs; Brown et al. 2020) can generate highly fluent and plausible text. However,
these models are prone to produce hallucinations—factually incorrect generations—which often impedes their
deployment in real-world applications (Mallen et al., 2023). Prior work on hallucinations in natural language
generation often assumes the presence of a specific reference text and focuses on studying faithfulness to the
references (Ji et al., 2023). On the contrary, escalating apprehensions have been articulated with respect to LM
generations that are not grounded in any specific source text, but rather in world knowledge and facts (Zhang
et al., 2023; Huang et al., 2022).
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Figure 3.1: Overview of taxonomy for LM hallucinations and our model, FAVA, a fine-grained detection
system.

Several recent work studies automatic hallucination detection (Min et al., 2023) or editing outputs (Gao
et al., 2022) to address such LM hallucinations. Similar to work in summarization, these systems typically
categorize hallucinations into simplistic binary distinctions like factual or not factual (Figure 3.1 top). We
argue that hallucinations in open-ended generation also manifest in diverse forms, each requiring varying
degrees of careful assessments to verify factuality. Entity-level contradictions are usually evident and can be
easily rectified with a single reference. Conversely, errors involving fabricated entities (e.g., The Messi Diaries
in Figure 3.1) demand thorough verification across multiple sources. This underscores the need for a more
fine-grained approach to detect hallucination for model development and human verification.

In this work, we propose automatic fine-grained hallucination detection (Figure 3.1 bottom) for
open-ended generation, a new task requiring a system to provide precise identification of hallucination
sequences, discern different types of hallucinations based on a taxonomy, and suggest refinements. We
focus on hallucinations in information-seeking scenarios, where grounding to world knowledge matters. Our
taxonomy (Figure 3.2) hierarchically classifies hallucinations in LM generations into six categories, based on
careful pilot studies with NLP experts.

We construct a new fine-grained hallucination benchmark, FAVABENCH, by carefully annotating ap-
proximately 1,000 responses of three widely used LMs (Llama2-Chat 7B, 70B and ChatGPT') to diverse
knowledge-intensive queries. Each response is annotated at the span level to identify hallucinations, including
erroneous subspace, types, and potential refinements. Our analysis reveals all models include at least one
hallucination in the majority of their responses (e.g., 70.2% in Llama2 7B and 59.8% in ChatGPT). In addition
to the widely-studied entity-level errors, other error types like unverifiable sentences make up over 60% of
LM-generated hallucinations, highlighting the urgent need to study and detect such diverse types.

We introduce FAVA, a new retrieval-augmented LM that can identify and mark hallucinations at the span
level using a unified syntax (Figure 3.1, left bottom). Due to the annotation costs, we design an LM-based

synthetic data generation process, and train FAVA on the 35k resulting instances. We compare FAVA with

'We use gpt -3.5-turbo-0301 throughout this work.
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Figure 3.2: An overview of our fine-grained hallucination taxonomy. We identify 6 fine-grained types
representing diverse hallucinations in LM-generated text.

state-of-the-art LMs on fine-grained hallucination detection in LM outputs. FAVA significantly outperforms

ChatGPT with and without external knowledge by 23.7% on fine-grained hallucination detection.”

3.2 Related Work

Hallucinations in natural language generation. Taxonomies of hallucinations in certain downstream
tasks such as summarization (Pagnoni et al., 2021), text simplifications (Devaraj et al., 2022), or knowledge-
grounded dialogues (Dziri et al., 2022) have been studied. Such prior taxonomies often assume the existence
of specific source text and focus on faithfulness to the source (Ji et al., 2023), which is qualitatively different
from LMs’ factual hallucinations grounded in world knowledge. In addition, prior taxonomies include many

task-specific categories that cannot be directly adapted to describe hallucinations in LM generations.

Detecting and editing hallucinations in LMs. Several recent works study methods to predict factuality
by giving binary labels of a statement being factual or not (Manakul et al., 2023; Min et al., 2023), or
focusing on entity-level factual errors editing (Gao et al., 2022; Chen et al., 2023a). Recent surveys have
attempted to categorize hallucinations in LM generations, but such categorizations often stretch the definition
of hallucinations to broad error types in LM-generated text, which cannot be traced to specific spans in text
(Huang et al., 2023; Zhang et al., 2023; Rawte et al., 2023). In this work, we propose a fine-grained taxonomy
for fact-conflicting hallucinations in long-form text generation to improve factual consistency. While prior
work often develops factuality verification systems on top of proprietary LMs (Chern et al., 2023), we introduce
a carefully designed training pipeline for a smaller yet more competitive fine-grained detection system. Unlike
prior qualitative analysis on hallucinations in LM responses on certain knowledge-intensive queries (e.g.,
open-domain QA, biography generation; Liu et al., 2023b; Min et al., 2023), we annotate responses to diverse

queries in multiple domains and reveal hallucination distributions vary across domains.

Fact verification. While research on hallucination detection focuses on identifying errors in model-generated
text, a related area of research focuses on identifying factual inaccuracies in human written claims (Bekoulis

etal., 2021). Thorne et al. (2018) introduce a large scale dataset based on Wikipedia documents for the training

2Qur code, data, and demo are available at https://fine-grained-hallucination.github.io/
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Type Example ChatGPT  Llama2-7b  Llama2-70b

Entity Lionel Andrés Messi was born on June 42 24, 1987. 42.7% 48.6% 55.7%
Relation Lionel Messi aequired was acquired by Paris Saint-Germain. 4.7% 3.4% 2.8%
Contradictory | Messi has yet to be captain for the Argentina football team. 18.9% 15.7% 19.9%
Invented Messi is known for his famous airplane kick technique. 14.2% 17.4% 9.5%
Subjective Lionel Messi is the best soccer player in the world. 9.9% 8.6% 5.8%
Unverifiable In his free time, Messi enjoys singing songs for his family. 9.6% 6.3% 6.3%

Table 3.1: Distribution of different errors across ChatGPT, Llama2-Chat-7B and Llama2-Chat-70B outputs
and examples of hallucinations for each type from our human-annotated data

and evaluation of fact verification systems. Other datasets in information-dense domains like fact-checking
against scientific articles (Wadden et al., 2020) and news documents (Wang, 2017) have been proposed.
Several systems have been developed for fact-checking in these settings (Thorne and Vlachos, 2018; Schuster
et al., 2021; Nakov et al., 2021), but have not been tested for LM-generated text. While our work focuses on

hallucination detection in LM generations, FAVA can be adapted to fact-check human written claims as well.

3.3 Semantic Frame based Hallucination Taxonomy

3.3.1 Focus and Definitions

In this work, we focus on open-ended text generation given information-seeking queries which often require
factual knowledge. We define hallucinations as factually incorrect or unverifiable statements given external
world knowledge. We operationalize world knowledge as documents from the web that are most relevant to

the given statement/query according to a search algorithm.’

3.3.2 Hallucination Taxonomy

Based on our definition of hallucinations, we build a hierarchical taxonomy grounding in language structure
to categorize them into fine-grained error types. To develop a hallucination taxonomy for open-ended LM
generations, we draw inspiration from error categories in prior task-specific taxonomies from Chapter 2
and (Devaraj et al., 2022) and introduce new categories to describe more complex errors surfacing in LM
generations. We conducted a pilot annotation with 9 NLP experts to discuss and refine our taxonomy to ensure
good coverage across diverse error types.

Figure 3.2 shows our taxonomies to classify LM hallucinations and Table 3.1 shows examples of each
type of hallucination. We group hallucinations into two major categories: statements that contradict world
knowledge at a semantic frame level (Type 1) and unverifiable statements based on knowledge and context

(pragmatics) (Types 2, 3, and 4).

Semantic Frame Contradictions: These categories of errors are an extension of Semantic Frame errors
from Chapter 2 and account for contradictions at a frame level. These are cases where a component of a
particular semantic frame (Subjects, Relations, Arguments, etc) directly contradict the evidence that exists in
world knowledge. They can be fine-grained (a core or non-core component being wrong) or coarse (the entire

frame is contradictory).

3Errors in common sense, numerical, or logical reasoning are out of the scope of this work.
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(1a) Entity : Contradictory entity errors are a sub-category within contradictory statement errors where an
entity in a statement is incorrect and changing that single entity can make the entire sentence factually correct.
(1b) Relation : Contradictory relation errors are another sub-category within contradictory statements where a
semantic relationship described in a statement is incorrect. While (1a) often involves errors in nouns, (1b)
involves verbs, prepositions, or adjectives, and can be fixed by correcting the incorrect relation.

(1c) Contradictory : Contradictory statement errors refer to statements that entirely contradict relevant evidence
from the web. These are cases where the full sentence is refuted by the information provided in a given

reference.

Coarse Pragmatic Contradictions: These categories of errors are introduced to specifically address more
complex errors that manifest in open-ended generation. These errors are broad and may span different levels
of structure (entities, semantic frames, sentences, discourse units) and are a consequence of generated text
being inaccurate based on multiple pragmatic elements like context, external knowledge or subject background.
(2) Invented : Invented errors refer to statements with concepts that do not exist based on context and world
knowledge. These are cases when the LM generates a non-existent or entirely fabricated entity that doesn’t
occur in any relevant evidence. This does not include fictional characters in creative work such as books or
movies.

(3) Subjective : Subjective errors refer to an expression or proposition that lacks universal validity and is
often influenced by personal beliefs, feelings, opinions, or biases and hence cannot be judged as factually
correct. Specifically, this represents cases where the LM generates a statement without any factual proposition
grounded in relevant evidence or conversation structure.

(4) Unverifiable : Unverifiable errors refer to statements that contain factual propositions but cannot be
grounded in world evidence. These are cases where the LM generates statements with facts, but none of the
retrieved evidence from the web or background knowledge can directly support or contradict the fact (e.g.,

personal or private matters).

While Entity or Relation are often phrase-level and can be fixed by minimal editing erroneous phrases,
other error types can be an entire sentence or part of a sentence and should be removed from a response to
make it factual.

3.3.3 Tasks and Metrics

We introduce a new task of identifying fine-grained factual errors in LM outputs. Given an input query
x and a corresponding LM output y, our tasks require systems to identify all of the factual errors. Each
error e consists of (e!*®t, e'¥P¢) indicating the factually incorrect text spans and their error types among our
taxonomies, respectively. We evaluate systems’ abilities concerning identifying fine-grained error types in the
model-generated text e?¥Pe,

Task: Fine-grained hallucination detection. In the first fine-grained error detection task, the system is
expected to identify fine-grained errors in an LM output. Due to the subjectivity of span-level annotations,
for automatic evaluation, we evaluate systems’ abilities to detect whether an error type ¢ exists in a sentence
s; € y. Given an output y consisting of L sentences, we assume the availability of gold error type annotations
ef' € {TRUE, FALSE}, which is a binary label of an error type ¢ existing in the ith sentence (TRUE) or not
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Figure 3.3: Distribution of hallucination types in ChatGPT, Llama2-Chat-7B and Llama2-Chat-70B outputs

across four datasets of diverse information-seeking queries based on our human annotated benchmark.

Error Count Error Count

(FALSE). For each type, a system predicts e/ and we evaluate precision and recall as follows:

ZieL Llef == e;']
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ZieL e} == e;]
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3.2)

Precision indicates how many of the model’s predictions of an error type ¢ existing in the ith sentence is
correct, while recall indicates how many of the error sentence TRUE is identified by the model. For final score,

we compute the F1 scores averaged over six error types as follows:

2PrectRecall?

1
— T E————— 33
I€] Z Prec’ + Recall’ (3-3)

Fine-grained error detection can be simplified into a binary classification task, in which a system predicts if a
sentence s; includes any factual errors or not. This is similar to FActScore (Min et al., 2023), where we predict

and evaluate factuality at the sentence level without extracting atomic facts.

3.4 Benchmark

We create FAVABENCH to facilitate model development and evaluation in fine-grained hallucination detection
and understand how prevalent those different types of hallucinations are. FAVABENCH consists of multi-way

fine-grained annotations on three LM responses to queries in multiple domains.

Source prompts. The source prompts include a collection of 200 information-seeking queries, spanning

four different data sources. See examples in Table 3.2.

* Knowledge-intensive queries sampled from the Open Assistant dataset Kopf et al. (2023), by prompting
GPT-4 to judge whether each query from the dataset requires world knowledge.

* A sample of Open QA prompts from the No Robots dataset Rajani et al. (2023).
* Instruction-following prompts requiring more reasoning and knowledge curated by the authors.

* Synthetically-created prompts 50 prompts that require more fine-grained knowledge, by converting data-to-
text WebNLG dataset Gardent et al. (2017) using a template.
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Dataset

Example

WebNLG
Instruction-following
Open-Assistant

No Robots

Explain A.C. Cesena, including information about ground, league.
Explain the differences between New York cheesecakes and Basque cheesecakes in detail.
Can you tell me how tall the burj khalifa is?

‘When was Samsung founded?

Part 1: Generate Passage

‘Retrieve Wikipedia Documem‘

Lionel Andrés Messi (born 24
T ) June 1987) is an Argentine...
} professional footballer... (]

Prompt ChatGPT to Diversify

Write a blog article given only the
)

info in the following passage: °

Lionel Messi, revered as one of
football's greatest...relocated to
Spain from Argentina at 13...

Table 3.2: Examples of source prompts.

Part 2: Error Insertion

Prompt LM to Insert Errors One by One‘

Insert a relation error, wrapped in

<relation> tags in the following

passage: e
|

Lionel Messi, revered as one of
football's greatest...relocated
<relation>from-to</relation>
Spain at 13... (5]

I
Insert an unverifiable error,

)| wrapped in <unverifiable> tags in

the following passage: e

Lionel Messi, revered as one of
football's greatest...relocated
<relation>from-+s </relation>

Part 3: Post Processing Data to Train Fava -"e

‘Remove tags + deleted portion from @ ‘

‘Reverse Deletion And Marking fromo‘

Lionel Messi, revered as one of
football's greatest...relocated from
Spain at 13...He trains with his
physical therapist every
Wednesday.

Erroncous Input

+

~ Lionel Andrés Messi (born 24
) June 1987) is an Argentine
professional footballer... @)

Reference

Lionel Messi, revered as one of
football's greatest....relocated
<relation>fem o </relation>
Spain at 13...<unverifiable>He-

th

B M‘]‘.,l,‘ )
</unverifiable>

Tagged Output

Spain at 13...<unverifiable>He
trains with his physical therapist o

every Wednesday.

</unverifiable> @
Figure 3.4: Overview of high-quality synthetic data generation process in FAVA. FAVA leverages powerful
instruction-tuned models to carefully insert errors into factually accurate statements and produces diverse error
types based on our proposed taxonomy.

Annotation details and quality. We obtain responses to the collected source prompts using ChatGPT
(gpt-3.5-turbo-0301; Ouyang et al. 2022), Llama2-Chat 7B and Llama2-Chat 70B (Touvron et al.,
2023) in a zero-shot manner and collect 600 responses to our diverse information-seeking prompts. We
recruited 20 students (ten undergraduate and ten NLP graduate students) to annotate the factual accuracy of
the responses based on our proposed taxonomy. Each instance is annotated by two annotators who completed
45-minute in-person and virtual training sessions.* Our annotation interface and details are in Appendix 1.2.1.
To validate our annotation quality, we calculated inter-annotator agreement using Cohen kappa scores and
found that our annotators had high agreement in detection across passages, with 75.1% agreement in detection
at the sentence level and 60.3% agreement in exact error type detection at the sentence level across passages.

Appendix Table 1.2 shows examples of our annotation results.

Analysis on annotated data. Figure 3.3 presents a detailed breakdown of distributions across fine-grained
categories in the three domains. 59.8%, 70.2% and 64.9% of the responses of ChatGPT, Llama2-Chat 7B
and Llama2-Chat 70B include at least one hallucination, respectively. |Entity is the most widely recognized
error type, making up 48.3% of the detected errors. Yet, there are diverse types of errors prevalent like
invented statements or contradictory statements, which make up 14.1% and 18.1% of the detected errors,
respectively. The error distributions vary across different source prompts and LMs. Invented are more
common in Llama2-Chat models. Fewer errors in No Robots subsets than other subsets may be because their
seed prompts are less knowledge-intensive, or ask about popular factual knowledge (e.g., How long was the

Revolutionary War?), which is often memorized by LMs (Mallen et al., 2023).

4Annotating each response takes approximately 10 minutes, and we pay USD 3.5 for each annotation.
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3.5 Model: FAVA

To automatically detect such diverse fine-grained hallucinations, we introduce a new retrieval-augmented LM,
FAvA (FAct Vericaton with Augmentation). FAVA is trained on high-quality synthetic training data, and at

inference, it identifies and fixes fine-grained hallucinations, incorporating retrieved knowledge.

3.5.1 Overview

FAVA consists of two components: a retriever M,..; and an editing LM M.4;¢. M.¢; takes the original output
LM y and optionally input prompt x (if applicable), and retrieves top relevant documents: C = M,..;(z, y).
Subsequently, the editing model detects and if possible edits factual errors in y given the retrieved context:
9 = Meair(x,y,C). ¢ is an augmented output y interleaved by the error edits with hallucination types as
shown in Figure 3.1.

While M,4;+ can be any LM, in our preliminary experiments, we find that making a state-of-the-art
proprietary LM such as ChatGPT to perform fine-grained editing via prompting only is challenging (ref
Table 3.5). Reliance on black-box proprietary API models also hurt reproducible. Therefore, we generate
high-quality synthetic training data with minimal human efforts (§3.5.2) and fine-tune a powerful expert LM
consisting of 7 billion parameters (§3.5.3).

3.5.2 Training Data Creation

To train our M. 4;; model, we require a large number of erroneous LM outputs y paired with edited versions
y* with fine-grained error types and edits. Inspired by prior work that leverages LMs to generate synthetic
training data (Balachandran et al., 2022; Wang et al., 2023c; Asai et al., 2023), we introduce a new data
creation method grounded on our fine-grained hallucination taxonomies. We prompt GPT-4 (Achiam et al.,
2023) and ChatGPT to diversify and noise a Wikipedia passage by inserting different types of hallucinations.

In particular, our data creation pipeline consists of three steps: seed passage generations, error insertions,
and postprocessing. The first two processes create an input sequence with perturbed diverse error annotations,
and postprocessing remaps those special tokens to generate the erroneous output y and output with fine-grained
detection results y*. We use the original Wikipedia passage as well as passages retrieved by an off-the-shelf

system as C. Figure 3.4 shows the overview of the pipeline.

Seed passage generation. We randomly sample a Wikipedia article c and use it as our gold reference passage.
To produce model-generated seed passages, we diversify the sampled article by paraphrasing and transferring
the text to another genre via an LM. Specifically, we randomly sample one of the pre-specified genre types
(e.g. blog article, question answer pair, tweet, etc.) for each passage and prompt ChatGPT to rephrase the
text ¢ in the style of the new genre, specifying to include information only found in the Wikipedia article c to
maintain factuality. To further diversity in the dataset, we also add examples of question answering (QA) data.
In particular, we prompt ChatGPT with two demonstrations from the NaturalQuestions (Kwiatkowski et al.,
2019) dataset to generate 5,000 queries and correct answers using the information in the sampled Wikipedia

articles. See the full list of the genres, instructions, and final ChatGPT-generated text in Appendix Table 1.3.

Error insertion. In our pilot studies, we found that asking ChatGPT to insert multiple error types at the

same time easily makes the model misunderstand or get confused with different error types (e.g., swapping or
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incorrectly identifying an error type). We also found while ChatGPT is capable of generating more simple
types of errors such as |Entity , it struggles with generating plausible and difficult perturbations for more
nuanced types. Therefore, we use ChatGPT and GPT-4 interchangeably for six different types.’ In particular,
given an instruction and few-shot demonstrations of an error type €*¥?¢, GPT-4 or ChatGPT inserts new errors
while retaining previously inserted errors and original text. The model was specifically instructed to mark
phrases or sentences for deletion along with their error type and insert phrases and sentences along with
insertion tags, allowing us to verify the error types and control their distribution. After this process, we have
an erroneous text y, which inserts multiple errors into the original factual text t.

Post processing.  We then post-process data, by swapping and removing the error tags and edits to form a
clean erroneous text y as the input and use the original correct passage y* as the output with edits, for training
Mqir. At this stage, we also filter out the examples violating our editing rules (e.g., inserting or removing
errors without marking them up with tags and error types). As a result, we have a training instance (¢, y, y*),
consisting of the gold context (original Wikipedia paragraph) c, erroneous LM output y, and output with
error tags and correct editing y*. We also retrieve additional four relevant paragraphs from Wikipedia using
Contriever (Izacard et al., 2022), and randomly mix the order of the references, forming the final references C.
As this process does not involve human annotations, we can easily scale up training instances under an API

cost budget.

Statistics of data. = We generated a total of 35,074 training instances, 30,0074 of which are based on
Wikipedia passages, and 5,000 are based on QA pairs described above. All of the error types are almost equally
distributed (roughly 15% each). We present the error distributions in Table 3.3. We conduct a detailed human
evaluation in §6.5. On average, 3.1 errors are inserted for the Wikipedia passage-based subsets, and 1.4 errors

are inserted for the QA pairs.

Percentage
Entity 21.2%
Relation 19.9%
Contradictory | 15.3%
Invented 14.6%
Subjective 14.1%
Unverifiable 14.9%

Table 3.3: Statistics of generated training data

3.5.3 Training and Inference

We train a smaller LM on the generated large-scale training data. In particular, given a training instance
(C,y,y*), our model M.g4;; takes (C, y) as input and learns to predict the edited outputs with tags to represent
error type y* using standard language modeling objective. Our base model is Llama2-Chat 7b trained using
4xA40 GPUs. Our training code is based off Open-Instruct (Wang et al., 2023b)°. Table 3.4 shows the training

hyperparameters.

SWe use ChatGPT for the Type 1 and Type 3 while using GPT-4 for other types and insert factual errors one by one into our diversified
text.

Shttps://github.com/allenai/open—-instruct/blob/main/scripts/finetune_with_
accelerate.sh
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Precision = Epochs = Weight Decay =~ Warmup Ratio = Learning Rate | Max. Seq. Length =~ Batch Size
BFloat16 2 0 0.03 2e-5 2048 128

Table 3.4: Training hyperparameters.

Generator: ChatGPT Generator: Llama2-Chat 70B
Editor ent rel con inv |subj unv OA Bi ent rel con inv subj unv OA Bi

ChatGPT 19.5 28.6 40.0 11.8 7.7 0.0 18.8 || 50.1 | 24.7 156 26.7 11.0 17.6 128 || 24.1 684
Rt+ChatGPT | 28.1 19.2 255 54 377 155 244 | 648|337 242 240 222 178 4.7 27.8 728
GPT4 386 166 179 222 500 172 342 60.8|555 60.0 212 154 2.0 250 || 425 742
FAVA (ours) | 545 25.0 66.7 16.7 70.5 353 48.1 ||79.6 |573 345 27.7 522 3125 434 | 47.2 803

Table 3.5: Fine-grained detection F1. OA and Bi indicates overall and binary predictions.

At inference time, we retrieve the top five documents from Wikipedia,7 using Contriever-MSMARCO (Izac-
ard et al., 2022), and insert them together with an LM output that may include factual errors. The model
identifies factual errors, marks phrases or sentences for deletion, and suggests edits for improving the factuality

of the text.

3.6 Experiments

We evaluate FAVA and state-of-the-art LMs with and without retrieval on the fine-grained hallucination

detection (§3.6.1). We further conduct human evaluations on our best models (§3.6.2).

3.6.1 Experiments for Hallucination Detection

Evaluation data. We use our new benchmark, consisting of 364 annotated passages,® as our test data.
We measure the models’ detection performance based on sentence-level per-category classification task as
formulated in §3.3.3.

Baselines. For fine-grained hallucination detection tasks, we test three baselines. ChatGPT prompts
ChatGPT (gpt—-3.5-turbo-0301) with a carefully designed prompt describing all six categories with
two demonstrations. Rt-ChatGPT uses the same prompt and demonstrations but also includes the top five

retrieved documents by Contriever at test time to augment the original prompt.’

3.6.2 Human Evaluations

Our automatic evaluations may not fully capture the models’ abilities to detect annotated data and editing
errors due to the potential subjectivity of annotations and may be affected by the performance of factuality
evaluation metrics. We evaluate randomly sampled 50 outputs from FAVA as well as the baseline with the
highest automatic evaluation score, namely Rt-ChatGPT. We ask human annotators to verify how many of
the detection are indeed correct based on the provided retrieved documents. This is similar to our automatic

precision evaluation, but instead of coarsely evaluating detection performance at the sentence level, we evaluate

TWe use English Wikipedia data from January 2023 and generate embeddings using the Contriever encoder.

8In total we collected 471 annotated passages including our experimental batches, and we excluded earlier batches for evaluations.

9While we also tested strong white box LMs including Llama2-Chat 13B, we found their predictions often show confusion among
different categories or struggle to output predictions in the expected format.
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Model avg. |E| | Detect (%)

Rt+ChatGPT 1.9 23.9
FAVA (ours) 2.4 55.7

Table 3.6: Human evaluation results. We show the average number of detected errors and the correctness (%)
of the fine-grained types.

the model performance at the individual detection level. Due to the cost of evaluating the factuality of all

verification-worthy statements (Min et al., 2023), we do not evaluate recall.

3.7 Results and Analysis

3.7.1 FAvA Evaluation Results

Detection results.  Table 3.5 shows the fine-grained detection accuracy of FAVA and baselines. We provide
the full precision and recall scores in Appendix Tables 1.5 and 1.6, respectively. We also provide binary
prediction performance.

Table 3.5 shows that while ChatGPT-based baselines show relatively good binary predictions of existence of
factual errors, their fine-grained error type detection performance is significantly lower. FAVA shows its strong
capabilities of conducting fine-grained error detection, resulting in significant performance improvements
from ChatGPT or Ret-ChatGPT on both fine-grained error detection and binary error detection. Specifically,
FAVA shows high accuracy on error types such as Contradictory , [Subjective , Entity . On the other hand, its
performance on Invented and Unverifiable are still limited. Those two error types often require intensive search
over many web documents beyond top few passages, while FAVA by default only considers top five documents.
Our inter-annotator agreements also show that there are more disagreements in those two categories, which

might also deflate the performance.

Human evaluation results. Our human evaluation results are shown in Table 3.6. As in automatic evalu-
ations, our method shows significantly better performance than Rt+ChatGPT on both editing and detection
and recognizes more errors than retrieval-augmented ChatGPT. These results further demonstrate the strong
capabilities of FAVA detecting factual errors in LM outputs.

3.7.2 Ablation and Analysis

Effects of scale. We evaluate our model trained on varying numbers of model-generated training data.
In particular, we train three FAVA variants trained on 10k, 20k, and 30k training instances, and evaluate
their performance on fine-grained error detection tasks. Figure 3.5 shows the results of each variant and
demonstrates that FAVA variants with a larger number of training instances perform significantly better at

detecting fine-grained errors.

Human evaluation of generated data. = We conduct human evaluations on 50 generated data to assess the
automatic data creation quality. We evaluate a generated instance from two aspects: (1) validity—whether the
model edits do not violate our annotation scheme; (2) quality—the inserted errors are feasible and realistic and
notably different from provided few-shot samples. We ask human annotators to score each category for each

passage either 0, 1, or 2 (higher is better; see the detailed criteria in our Appendix).
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Figure 3.5: Detection scores across different training instance values.

Our analysis revealed that the data generated by our system with iterative insertion obtained an average
score of 1.66 for validity assessment and 1.36 for quality assessment. Meanwhile, data generated by one-shot
prompting scored an average of 1.1 for validity and 0.9 for quality. Our human evaluation reveals that our
LM-generated edits are indeed of higher quality than the one-shot data creation, and provide realistic factual

€ITOrS.

3.8 Conclusions and Future Work

This work introduces a new task of automatic hallucination detection, built upon our newly introduced
taxonomy, which hierarchically classifies hallucinations in LMs into six categories. We collect the first human-
annotated fine-grained hallucination benchmark, consisting of span-level hallucination types, hallucination
text, and edits for two LM outputs across multiple domains. As the first step, we introduce a new retrieval-
augmented LM trained on synthetically generated fine-grained error detection data following our taxonomies.
Empirical results show that FAVA significantly outperforms strong baselines by a large margin on fine-grained
detection tasks, while still large room for improvements for automated fine-grained error detection.

This work focuses on evaluating LLM generations for open-ended generation settings and targetted towards
information seeking contexts. While we have presented the strengths and weaknesses of models in these
settings, an open-question of interest for the community is how the factual accuracy in different styles varies.
In future work, we plan to expand the evaluations to include more diverse settings like retrieval-augmented
generation (Lewis et al., 2020), summarization (Laban et al., 2023; Chang et al., 2023) or text editing (Dwivedi-
Yu et al., 2022). Additionally, exploring the application of such a taxonomy for specialized domains like
finance, legal or healthcare would also be interesting, potentially requiring adapting the typology to the domain

of interest.

Ethical Considerations

This chapter also involved using human annotators for annotating data. Here, we have collected annotations
using voluntary undergraduate students and graduate NLP students. Annotators were fairly compensated above
average American minimum wage. No personal information about the annotators were collected and the data

will anonymized in the public release.
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While care was taken to develop a general and robust evaluation framework and detection model, it is not
perfect and should not be considered as a gold-standard factuality evaluation for broad deployment. Instead,
based on our taxonomy and recommendations, tailored evaluations for the application and domain of interest
should be conducted before any model is released or deployed for user consumption. Further, our work has
only been extensively tested for general information-seeking contexts and therefore our findings might not
apply to other applications like finance, legal or healthcare. When using our framework for such domain

specific applications, we recommend adapting and testing the taxonomy and model before deployment.
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Part 11

Language Structure for Transparent
Model Design
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Chapter 4

Interpretable Text Summarization by Leveraging

Document Structure

In previous chapters we discussed evaluation measures for quantifying factual inconsistencies in model
generated text. A critical piece towards mitigating such inconsistencies and supporting more reliable language
generation is increasing the transparency of our language generation models to enable tracing and attribution of
outputs. Though a predominant set of research focuses on post-hoc interpretation and analysis of models, there
have been concerns of their evaluation and general applicability (Madsen et al., 2022; Han et al., 2023), and
their potential to mislead users (Dinu et al., 2020). Here, we explore an alternative view towards interpretability
by developing interpretable-by-design models based on task-based linguistic knowledge. Part 2 comprising of
two chapters proposes approaches to designing transparent language generation models, grounded in language
structure, for two diverse and challenging applications.

This chapter considers the task of automatic text summarization and describes novel approaches to
incorporate the source document structure as inductive biases for content selection. The designed module can
support transparency in the content selection decisions, potentially helping in tracing hallucinations to content
not present in the source document. Research described in this chapter was conducted in collaboration with
Artidoro Pagnoni, Jay Yoon Lee, Dheeraj Rajagopal, Jaime Carbonell and Yulia Tsvetkov and was presented
in an EACL 2021 publication (Balachandran et al., 2021).

4.1 Introduction

Text summarization aims at identifying important information in long source documents and expressing it in
human readable summaries. Two prominent methods of generating summaries are extractive (Dorr et al., 2003;
Nallapati et al., 2017), where important sentences in the source article are selected to form a summary, and
abstractive (Rush et al., 2015; See et al., 2017), where the model restructures and rephrases essential content

into a paraphrased summary.

State of the art approaches to abstractive summarization employ neural encoder-decoder methods that
encode the source document as a sequence of tokens producing latent document representations and decode
the summary conditioned on the representations. Recent studies suggest that these models suffer from several
key challenges. First, since standard training datasets are derived from news articles, model outputs are
strongly affected by the layout bias of the articles, with models relying on the leading sentences of source

documents (Kryscinski et al., 2019; Kedzie et al., 2018). Second, although they aim to generate paraphrased
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summaries, abstractive summarization systems often copy long sequences from the source, causing their
outputs to resemble extractive summaries (Lin and Ng, 2019; Gehrmann et al., 2018). Finally, current methods
do not lend themselves easily to interpretation via intermediate structures (Lin and Ng, 2019), which could be
useful for identifying major bottlenecks in summarization models.

To address these challenges, we introduce STRUCTSUM: a framework that incorporates structured doc-
ument representations into summarization models. STRUCTSUM complements a standard encoder-decoder
architecture with two novel components: (1) a latent-structure attention module that adapts structured repre-
sentations (Kim et al., 2017; Liu and Lapata, 2017) for the summarization task, and (2) an explicit-structure
attention module that incorporates an external linguistic structure (e.g., coreference links). The two com-
plementary components are incorporated and learned jointly with the encoder and decoder, as shown in
Figure 4.1.

Encoders with induced latent structures have been shown to benefit several tasks including document
classification, natural language inference (Liu and Lapata, 2017; Cheng et al., 2016), and machine translation
(Kim et al., 2017). Our latent structure attention module builds upon Liu and Lapata (2017) to model
the dependencies between sentences in a document. It uses a variant of Kirchhoff’s matrix-tree theorem
(Tutte, 1984) to model such dependencies as non-projective tree structures(§4.2.2). The explicit attention
module is linguistically-motivated and aims to incorporate inter-sentence links from externally annotated
document structures. We incorporate a coreference based dependency graph across sentences, which is then
combined with the output of the latent structure attention module to produce a hybrid structure-aware sentence
representation (§4.2.3).

We test our framework using the CNN/DM dataset (Hermann et al., 2015) and show in §4.4.1 that it
outperforms the base pointer-generator model (See et al., 2017) by up to 1.1 ROUGE-L. We find that the
latent and explicit structures are complementary, both contributing to the final performance improvement. Our
modules are also orthogonal to the choice of an underlying encoder-decoder architecture, rendering them
flexible to be incorporated into other advanced models.

Quantitative and qualitative analyses of summaries generated by STRUCTSUM and baselines (§4.4), reveal
that structure-aware summarization mitigates the news corpora layout bias by improving the coverage of
source document sentences. Additionally, STRUCTSUM reduces the bias of copying large sequences from the
source, inherently making the summaries more abstractive by generating ~15% more novel n-grams than a
competitive baseline. We also show examples of the learned interpretable sentence dependency structures,

motivating further research for structure-aware modeling.

4.2 Structured Representations in LSTMs: STRUCTSUM

Consider a source document & consisting of n sentences { s} where each sentence s; is composed of a sequence
of words. Document summarization aims to map the source document to a target summary y of m words
{y}. A typical neural abstractive summarization system is an attentional sequence-to-sequence model that
encodes the input sequence x as a continuous sequence of tokens {w} using a standard encoder (Hochreiter
and Schmidhuber, 1997; Vaswani et al., 2017). The encoder produces a set of hidden representations {h}. A
decoder maps the previously generated token g; 1 to a hidden state and computes a soft attention probability
distribution p(a; | @, y1..—1) over encoder hidden states. A distribution p over the vocabulary is computed at

every time step ¢ and the network is trained using the negative log likelihood loss: loss; = —log p(y;).

Code and data available at: https://github.com/vidhishanair/structured_summarizer

39


https://github.com/vidhishanair/structured_summarizer

Encoder Word  gggeessss ... eeseseesee ... ssseeesee
Representations  hwi1 ls1 e«
A

Encoder Sent : Token
Representations 000000 000000 000000 - 00000 : Attention
A A :
oy - Bs1 1
LS Aware Sent 00 00 080 - oee ES Aware Sentges eee ooe  .--..-.. (11}
Vectors Vectors
Latent-Structure (LS) Attention Explicit-Structure (ES) Attention
a1z aij
200 00 L 1 1 BEEEEEEEE [ 1]]
f ‘ ‘ ‘ ‘ ‘ " ‘ Yo 1 Yz
Sent ha eee ooe (11) Decoder
Vectors I T ‘l :
Sentence Encoder
Word ' 1 1 1
Vectors — h, % e e o

I
Word Encoder

oo

Wi Wiz Wik

Figure 4.1: STRUCTSUM incorporates Latent Structure (LS) §4.2.2 and Explicit Structure (ES) §4.2.3 Attention
to produce structure-aware representations. Here, STRUCTSUM augments the Pointer-Generator model, but
the methodology that we proposed is general, and it can be applied to other encoder-decoder summarization
systems

STRUCTSUM modifies the above architecture as follows. We aggregate the token representations from the
encoder to form sentence representations as in hierarchical encoders (Yang et al., 2016). We then use implicit-
and explicit-structure attention modules to augment the sentence representations with sentence dependency
information, leveraging both a learned latent structure and an external structure from other NLP modules. The
attended vectors are then passed to the decoder, which produces the output abstractive summary. In the rest of

this section, we describe our framework architecture, shown in Figure 4.1, in detail.

4.2.1 Sentence Representations

We consider an encoder which takes a sequence of words in a sentence s; = {w} as input and produces
contextual hidden representation for each word h,,,, , where w;y, is the k" word of the i*" sentence, k = 1 : q
and q is the number of words in the sentence s;. The word hidden representations are max-pooled at the
sentence level and passed through a sentence-encoder, which produces new hidden sentence representations
for each sentence hg,. The sentence hidden representations are then passed as inputs to the latent and explicit

structure attention modules.

4.2.2 Latent Structure (LS) Attention

‘We model the latent structure of a source document as a non-projective dependency tree of sentences and
force a pairwise attention module to automatically induce this tree. We denote the marginal probability of a
dependency edge as a,;; = p(z;; = 1) where z;; is the latent variable representing the edge from sentence ¢

to sentence j. We parameterize the unnormalized pairwise scores between sentences with a neural network
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and use the Kirchoff’s matrix tree theorem (Tutte, 1984) to compute the marginal probability of a dependency
edge between any two sentences.

Specifically, we decompose the representation of a sentence s; into a semantic vector gs, and structure
vector dg; as hs, = [gs,; ds,]. Using the structure vectors ds;, dsj , we compute a score f;; between sentence
pairs (i, j) (where sentence i is the parent node of sentence j) and a score r; (where the sentence s; is the root

node):

fij = Fp(dsi)TWaFC(dsj) and r; = Fy.(ds,)

where F),, F,; and F, are linear-projection functions that build representations for the parent, child and root
nodes respectively, and W, is the weight for bilinear transformation. Here, f;; is the edge weight between
nodes (i, ) in a weighted adjacency graph F and is computed for all pairs of sentences. Using f;; and r;, we
compute normalized attention scores a;; and a; using a variant of Kirchhoff’s matrix-tree theorem where a;;
is the marginal probability of a dependency edge between sentences (4, j) and a is the probability of sentence
1 being the root.

Using these probabilistic attention weights and the semantic vectors {gs}, we compute the attended
sentence representations as:

n
§ : r

Ps; = ajigSj + Q; &root
Jj=1

n
Cs;, = Z Qi;j8s;

=1
lsi = tanh(WT [gsi, Ps; > csi])

where pg, is the context vector gathered from possible parents of sentence 4, c;, is the context vector gathered
from possible children, and g,,.: is a special embedding for the root node. Here, the updated sentence

representation /s, incorporates the implicit structural information.

4.2.3 Explicit Structure (ES) Attention

Following Durrett et al. (2016), who showed that modeling coreference knowledge through anaphora con-
straints leads to improved clarity or grammaticality, we incorporate cross-sentence coreference links as the
source of explicit structure. First, we use an off-the-shelf coreference parser” to identify coreferring mentions.
We then build a coreference based sentence graph by adding a link between sentences (s;, s;), if they have
any coreferring mentions. This graph is converted into a weighted graph by incorporating a weight on the edge
between two sentences that is proportional to the number of unique coreferring mentions between them. We
normalize these edge weights for every sentence, effectively building a weighted adjacency matrix K where

k;; is given by:

count(m; (\m;) + €
o 22:1 count(my; () my)

“4.2)

2https://github.com/huggingface/neuralcoref/
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where m; denotes the set of unique mentions in sentence s;, (m; [ m;) denotes the set of co-referring
mentions between the two sentences, and z is a latent variable representing a link in the coreference sentence
graph. ¢ = 5¢~* is a smoothing hyperparameter.

Given contextual sentence representations {h} and our explicit coreference-based weighted adjacency

matrix K, we learn an explicit structure-aware representation as follows:
us, = tanh(Fy, (hy,))

P

tsi = Z kijusj
j=1

es, = tanh(F.(ts,))

where F), and F, are linear projections and e, is an updated sentence representation which incorporates

explicit structural information.

Finally, to combine the two structural representations, we concatenate the latent and explicit sentence
vectors as: hg, = [lg,;es,] to form encoder sentence representations of the source document. To provide
every token representation with the context of the entire document, the token representations are concatenated
with their corresponding structure-aware sentence representation: h,,,; = [hy,;;hs,] where s; is the sentence
to which the word w;; belongs. The resulting structure-aware token representations can be used to directly

replace previous token representations as input to the decoder.

4.3 Experiments

Dataset: We evaluate our approach on the CNN/Daily Mail corpus® (Hermann et al., 2015; Nallapati et al.,
2016) and use the same preprocessing steps as in See et al. (2017). The CNN/DM has 287226/13368/11490
train/val/test samples respectively. The reference summaries have an average of 66 tokens (o = 26) and 4.9
sentences. Differing from See et al. (2017), we truncate source documents to 700 tokens instead of 400 in
training and validation sets to model longer documents with more sentences. All our experiments were trained
on Nvidia GTX Titan X GPUs.

Base Model: Although STRUCTSUM framework can be incorporated in any encoder-decoder framework
with structure-aware representations, for our experiments we chose the pointer-generator model (See et al.,
2017) as the base model, due to its simplicity and ubiquitous usage as a neural abstractive summarization
model across different domains (Liu et al., 2019b; Krishna et al., 2020). The word and sentence encoders are
BiLSTM and the decoder is a BILSTM with a pointer based copy mechanism. We re-implement the base
pointer-generator model and augment it with the STRUCTSUM modules described in §4.2 and hence our model

can be directly compared to it.

Baselines: In addition to the base model, we compare STRUCTSUM with the following baselines:
Tan et al. (2017): This is a graph-based attention model that is closest in spirit to the method we present in this
work. A graph attention module is used to learn attention between sentences, but it cannot be easily used to

induce interpretable document structures, since its attention scores are not constrained to learn structure. On

3https://cs.nyu.edu/~kcho/DMQA/
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Model ROUGE1 ROUGE2 ROUGEL

Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
Graph Attention (Tan et al., 2017) 38.10 13.90 34.00
Pointer-Generator + DiffMask (Gehrmann et al., 2018) 38.45 16.88 35.81
Pointer-Generator (Re-Implementation) 35.55 15.29 32.05
Pointer-Generator + Coverage (Re-Implementation) 39.07 16.97 35.87
Latent-Structure (LS) Attention 39.52 16.94 36.71
Explicit-Structure (ES) Attention 39.63 16.98 36.72
LS + ES Attention 39.62 17.00 36.95

Table 4.1: Evaluation of summarization models on the CNN/DM dataset.Published abstractive summarization
baseline scores are on top. STRUCTSUM results that incorporate latent and explicit document structure into the
base models. STRUCTSUM’s utility is on par with the base models, while introducing additional benefits of
better abstractiveness and intrepretability shown in §4.4.

top of latent and interpretable structured attention between sentences, STRUCTSUM introduces an explicit
structure component to inject external document structure, which distinguishes it from Tan et al. (2017).
Gehrmann et al. (2018): This work introduces a separate content selector which tags words and phrases to be
copied. The DiffMask variant is an end-to-end variant like ours and hence is included in our baselines. We
compare STRUCTSUM with the DiffMask experiment.*

Hyperparameters: Our encoder uses 256 hidden states for both directions in the one-layer BiLSTM, and
512 for the single-layer decoder. We use the Adagrad optimizer (Duchi et al., 2011) with a learning rate of
0.15 and an initial accumulator value of 0.1. We do not use dropout and use gradient-clipping with a maximum
norm of 2. We selected the best model using early stopping based on the ROUGE score on the validation
dataset as our criteria. We also used the coverage penalty during inference as shown in Gehrmann et al. (2018).
For decoding, we use beam-search with a beam width of 3. We did not observe significant improvements with
higher beam widths.

4.4 Results

A standard ROUGE metric does not shed meaningful light into the quality of summaries across important
dimensions. As a recall-based metric it is not suitable for assessing the abstractiveness of summarization;
it is also agnostic to layout biases and does not facilitate intrepretability of model decisions. We thus adopt
automatic metrics tailored to evaluating separately each of these aspects. We compare STRUCTSUM to our
base model, the pointer-generator network with coverage (See et al., 2017) and the reference.

4.4.1 Automatic Metrics

We first conduct a standard comparison of generated summaries with reference summaries using ROUGE-1,2

and L (Lin, 2004) F1° metric. Table 4.1 shows the results. We first observe that introducing the latent structures

4The best results from Gehrmann et al. (2018) outperform DiffMask experiment, but they use inference-time hard masking which can
be applied on ours. Our baselines also exclude Reinforcement Learning (RL) based systems as they are not directly comparable, but our
approach can be introduced in an encoder-decoder based RL system. Since we do not incorporate any pretraining, we do not compare
with recent contextual representation based models (Liu and Lapata, 2019).

Shttps://pypi.org/project/pyrouge/
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and explicit structures independently improves our performance on ROUGE-L. It suggests that modeling
dependencies between sentences helps the model compose better long sequences compared to baselines. We
see small improvements in ROUGE-1 and ROUGE-2, hinting that we retrieve similar content words as the
baseline but compose them into better contiguous sequences. As both ES and LS independently get similar
performance, the results show that LS attention induces good latent dependencies that make up for pure
external coreference knowledge.

Finally, our combined model which uses both Latent and Explicit structure performs the best with an
improvement of 1.08 points in ROUGE-L and 0.6 points in ROUGE-1 over base pointer-generator model
(statistically significant for 11490 samples at p=0.05 using Wilson Confidence Test). It shows that the
latent and explicit information are complementary and a model can jointly leverage them to produce better
summaries. Additionally, we find that structural inductive bias helps a model to converge faster. The combined
LS+ES Attention model converges in 126K iterations in comparison to ~230K iterations required for the
pointer-generator network.

While ROUGE is a popular metric used for evaluating summarization models, it is limited to only evaluating
n-gram overlap while ignoring semantic correctness. Hence, we compared our method with the baseline
Pointer-Generator model using the BERTScore metric (Zhang et al., 2020b). We observe that our model
improves BERTScore by 9 points (12.3 for Pointer-Generator v/s 21.7 for StructSum) showing that our model
is able to generate semantically correct content.

4.4.2 Abstractiveness

Despite being an abstractive model, the pointer-generator model tends to copy very long sequences of words
including whole sentences from the source document (also observed by Gehrmann et al. (2018)). We use two

metrics to evaluate the abstractiveness of the model:

Copy Length:  Table 4.2 shows a comparison of the average length (Copy Len) of contiguous copied
sequences from the source document (greater than length 3). We observe that the pointer-generator baseline on
average copies 16.61 continuous tokens from the source which shows the extractive nature of the model. This
indicates that pointer networks, aimed at combining advantages from abstractive and extractive methods by
allowing to copy content from the input document, tend to skew towards copying, particularly in this dataset.
A consequence of this is that the model fails to interrupt copying at desirable sequence length. In contrast,
modeling document structure through STRUCTSUM reduces the length of copied sequences to 9.13 words on
average reducing the bias of copying sentences entirely. This average is closer to the reference (5.07 words)
in comparison, without sacrificing task performance. STRUCTSUM learns to stop when needed, while still

generating coherent summaries.

Novel N-Grams:  The proportion of novel n-grams generated has been used in the literature to measure the
degree of abstractiveness of summarization models (See et al., 2017). Figure 4.2 compares the percentage of
novel n-grams in STRUCTSUM as compared to the baseline model. Our model produces novel trigrams 21.0%
of the time and copies whole sentences only 21.7% of the time. In comparison, the pointer-generator network
has only 6.1% novel trigrams and copies entire sentences 51.7% of the time. This shows that STRUCTSUM on

average generates 14.7% more novel n-grams in comparison to the pointer-generator baseline.
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Figure 4.3: Coverage of source sentences in summary. Here the x-axis is the sentence position in the source
article and y-axis shows the normalized count of sentences in that position copied to the summary.

4.4.3 Coverage

A direct outcome of copying shorter sequences is being able to cover more content from the source document
within given length constraints. We observe that this leads to better summarization performance. We compute
coverage by computing the number of source sentences from which contiguous sequences greater than length
3 are copied in the summary. Table 4.2 shows a comparison of the coverage of source sentences in the
summary content. While the baseline pointer-generator model only copies from 12.1% of the source sentences,
STRUCTSUM copies content from 24.0% of the source sentences. Additionally, the average length of the
summaries produced by STRUCTSUM remains mostly unchanged at 66 words on average compared to 61 of
the baseline model. This indicates that STRUCTSUM produces summaries that draw from a wider selection of

sentences from the original article compared to the baseline models.

4.4.4 Layout Bias

Neural abstractive summarization methods applied to news articles are typically biased towards selecting

and generating summaries based on the first few sentences of the articles. This stems from the structure of
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Copy Len Coverage

PG+Cov 16.61 12.1 %
STRUCTSUM 9.13 24.0 %
Reference 5.07 16.7 %

Table 4.2: Results of analysis of copying and coverage distribution over the source sentences on CNN/DM test
set. Copy Len denotes the average length of copied sequences; Coverage — coverage of source sentences.

Coref NER Coref+NER

precision 0.29 0.19 0.33
recall 0.11 0.08 0.09

Table 4.3: Precision and recall of ES and LS shared edges

news articles, which present the salient information of the article in the first few sentences and expand in
the subsequent ones. As a result, the LEAD 3 baseline, which selects the top three sentences of an article,
is widely used in the literature as a strong baseline to evaluate summarization models applied to the news
domain (Narayan et al., 2018). Kryscinski et al. (2019) observed that the current summarization models learn

to exploit the layout biases of current datasets and offer limited diversity in their outputs.

To analyze whether STRUCTSUM also holds the same layout biases, we compute a distribution of source
sentence indices that are used for copying content (copied sequences of length 3 or more are considered).
Figure 4.3 shows the distributions of source sentences covered in the summaries. The coverage of sentences
in the reference summaries shows a high proportion of the top 5 sentences of any article being copied to the
summary. Additionally, the reference summaries have a smoother tail end distribution with relevant sentences
in all positions being copied. It shows that a smooth distribution over all sentences is a desirable feature. We
notice that the pointer-generator framework have a stronger bias towards the beginning of the article with a
high concentration of copied sentences within the top 5 sentences of the article. In contrast, STRUCTSUM
improves coverage slightly having a lower concentration of top 5 sentences and copies more tail end sentences
than the baselines. However, although the modeling of structure does help, our model has a reasonable gap

compared to the reference distribution. We see this as an area of improvement and a direction for future work.

4.5 Analysis of Induced Document Structures

Similar to Liu and Lapata (2017), we also look at the quality of the intermediate structures learned by the
model. We use the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) to extract the maximum
spanning tree from the attention score matrix as our sentence structure. Table 4.4 shows the frequency of
various tree depths. We find that the average tree depth is 2.9 and the average proportion of leaf nodes is 88%,
consistent with results from tree induction in document classification (Ferracane et al., 2019). Further, we
compare latent trees extracted from STRUCTSUM with undirected graphs based on coreference, on NER, or on
both. These are constructed similarly to our explicit coreference based sentence graphs in §4.2.3 by linking
sentences with overlapping coreference mentions or named entities. We measure the similarity between the
learned latent trees and the explicit graphs through precision and recall over edges. The results are shown

in Table 4.3. We observe that our latent graphs have low recall with the linguistic graphs showing that our
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Document Latent Structures Summaries

1. leicester city have rejected approaches for striker tom lawrence Reference:
from an astonishing nine clubs . bournemouth , ipswich , wolves , blackburn , charlton,
2. the former manchester united forward has barely played for leeds , bolton , rotherham and wigan have all asked
leicester since arriving from old trafford in the summer but about tom lawrence . the 21-year-old is poised to make
manager nigel pearson wants to have all options available as he 1 his full international debut for wales . leicester manager
battles against the odds to keep leicester in the premier league . nigel pearson wants to have options available .
3. lawrence , 21, is poised to make his full international debut for @ @
wales in their european championship qualifier with israel on StructSum:
saturday but has only figured in four games for leicester this leicester city have rejected approaches for tom
season and three as a substitute . lawrence . lawrence is poised to make his debut for
4. leicester city have rejected approaches for striker tom lawrence wales in their european championship qualifier with
from an astonishing nine clubs . israel on saturday . leicester city are looking at other
5. championship promotion chasers bournemouth , ipswich and @ options in last-gasp bid to bolster their squad .
wolves have all asked about lawrence . @ @ lawrence from old trafford has only figured in four
6. blackburn , charlton , leeds , bolton , rotherham and wigan have games for leicester this season and three as a
also made contact . substitute . the former manchester united star has
7. however , they are now looking at other options in a last-gasp bid barely
to bolster their squad .
1. andrew henderson celebrated landing the london broncos
coaching job on a permanent basis as halifax were beaten
22-18 . Reference:
2. henderson was given the nod by the london hierarchy this week andrew henderson won his first game as broncos full-
after a mixed spell in caretaker charge since the departure of time coach . daniel harrison , matt garside , iliess
joey grima . macani and brad dwyer all scored . james saltonstall ,
3. his weakened side put on a fine show to crown his appointment , ben heaton and mitch cahalane scored for halifax .
though , scoring four tries through daniel harrison , matt garside ,
iliess macani and brad dwyer , whose score was the winning StructSum:
one . andrew henderson celebrated landing the coaching job
4. iliess macani, pictured last year , scored one of london broncos ' @ @ @ on a permanent basis .henderson was given the nod
four tries in the 22-18 win over halifax . by london hierarchy this week after a mixed spell in the
5. james saltonstall , ben heaton and mitch cahalane scored for / \ 22-18 win over halifax . his weakened side put on fine
halifax . @ @ show to crown his appointment , though he felt
6. henderson had spoken earlier in the week about how he felt broncos were moving in the right direction . the win
broncos were moving in the right direction , and their narrow was their third in six in the press championship having
victory put some substance to his words . been relegated
7. the win was just their third in six in the kingstone press
championship having been relegated from super league at the
end of last season .

Figure 4.4: Examples of induced structures and generated summaries.

Depth 2 3 4 5+
StructSum  29.3% 53.7% 14.4% 2.6%

Table 4.4: Distribution of latent tree depth.

latent graphs do not capture the coreference or named entity overlaps explicitly, suggesting that the latent and

explicit structures capture complementary information.

Figure 4.4 shows qualitative examples of induced structures along with summaries from the STRUCTSUM.
The first example shows a tree with sentence 3 chosen as root, which was the key sentence mentioned in the
reference. In both examples, the sentences in the lower level of the dependency tree contribute less to the
generated summary. Similarly, in the examples source sentences used to generate summaries tend to be closer
to the root node. In the first summary, all source content sentences used in the summary are either the root node
or within depth 1 of the root node. In the second example, 4 out of 5 source sentences were at depth=1 in the
tree. In both examples, generated summaries diverged from the reference by omitting certain sentences used in
the reference. These sentences are in the lower section of the tree, providing insights on which sentences were
preferred for the summary generation. We also see in example 1 that the latent structures cluster sentences
based on the main topic of the document. Sentences 1,2,3 differ from sentences 5,6,7 in the topic discussed

and our model clustered the two sets separately.
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4.6 Related Work

Data-driven neural summarization falls into extractive (Cheng et al., 2016; Zhang et al., 2018b) or abstractive
(Rush et al., 2015; See et al., 2017; Gehrmann et al., 2018; Chen and Bansal, 2018). Pointer-generator (See
et al., 2017) learns to either generate novel in-vocabulary words or copy from the source. It has been the
foundation for much work on abstractive summarization (Gehrmann et al., 2018; Hsu et al., 2018; Song et al.,
2018). Our model extends it by incorporating latent/explicit structure, but these extensions are applicable to
any other encoder-decoder architecture. For example, a follow-up study has already shown benefits of our
method in multi-document summarization (Chowdhury et al., 2020).

In the pre-neural era, document structure played a critical role in summarization (Leskovec et al., 2004;
Litvak and Last, 2008; Liu et al., 2015; Durrett et al., 2016; Kikuchi et al., 2014). More recently Song
et al. (2018) infuse source syntactic structure into the pointer-generator using word-level syntactic features
and augmenting them to decoder copy mechanism. In contrast, we model sentence dependencies as latent
structures and explicit coreference structures; we do not use heuristics or salient features. Li et al. (2018)
propose structural compression and coverage regularizers incorporating structural bias of target summaries
while we model the structure of the source document. Frermann and Klementiev (2019) induce latent structures
for aspect based summarization, Cohan et al. (2018) focus on summarization of scientific papers, Isonuma
et al. (2019) reviews unsupervised summarization, Mithun and Kosseim (2011) use discourse structures to
improve coherence in blog summarization and Ren et al. (2018) use sentence relations for multi-document
summarization. These are complementary directions to our work. To our knowledge, STRUCTSUM is the first

to jointly incorporate latent and explicit document structure in a summarization framework.

4.7 Conclusions and Future Work

In this work, we propose the framework STRUCTSUM for incorporating latent and explicit document structure
in neural abstractive summarization. We introduce a novel explicit-attention module which incorporates
external linguistic structures, instantiating it with coreference links. We show that our framework improves
the abstractiveness and coverage of generated summaries, and helps mitigate layout biases associated with
prior models. We present an extensive evaluation of STRUCTSUM- along abstractiveness, coverage, and layout
quantitatively.

In this work, we explored inducing and extracting model interpretations for summarization. An important
next step is to close the loop towards model development by leveraging findings from model explanations to
improve the model design. In Ahia et al. (2023), we explored this for classification by improving models via
supervising model explanations. Further research in this direction would be very fruitful to identify and address
model limitations. An interesting direction for future work would be to investigate the role of document
structures in pretrained language models (Lewis et al., 2019; Liu and Lapata, 2019). Initial studies on such
language models have found that pretrained models implicitly learn language structure in their parameters
(Tenney et al., 2019). Expanding on this finding, exploring how such learned knowledge could be used to
produce model interpretations and understanding in such pretrained models would be extremely beneficial.
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Chapter 5

Interpretable Dialog Modeling by Leveraging

Conversational Structure

This chapter considers the task of dialog modeling for negotiation and describes novel approaches that
incorporate pragmatic strategies in a negotiation dialogue using graph neural networks. The model explicitly
incorporates dependencies between sequences of strategies to enable improved and interpretable prediction
of next optimal strategies, given the dialogue context. Research described in this chapter was conducted in
collaboration with Rishabh Joshi, Shikhar Vashishth, Alan Black and Yulia Tsvetkov and was presented in an
ICLR 2021 publication (Joshi et al., 2021).

5.1 Introduction

Negotiation is ubiquitous in human interaction, from e-commerce to the multi-billion dollar sales of companies.
Learning how to negotiate effectively involves deep pragmatic understanding and planning the dialogue

strategically (Thompson, 2001; Bazerman et al., 2000; Pruitt, 2013).

Modern dialogue systems for collaborative tasks such as  Buyer (Human)

Family,
informal

I’'m looking to buy a vinyl player.

Propose |I'm asking 40 for it.

Damn. That's too much for a
student like me. How about 30?.

restaurant or flight reservations have made considerable progress ~ % My younger bro loves old classics.
by modeling the dialogue history and structure explicitly using “
the semantic content, like slot-value pairs (Larionov et al., 2018;

Negative,
Propose

Young, 2006), or implicitly with encoder-decoder architectures

(Sordoni et al., 2015; Li et al., 2016b). In such tasks, users « W/oStratesy Not possible. | can do 35.

. e . . g You'll have to pick it up.
communicate explicit intentions, enabling systems to map the §
utterances into specific intent slots (Li et al., 2020). However, ~  ~ Aved]

. . . . / Strat
such mapping is less clear in complex non-collaborative tasks v:am”r: o8 I can do 38 and Il throw a couple K
. .. . informal, :
like negotiation (He et al., 2018) and persuasion (Wang et al., & popose, —ociesrecordsforyourbro ( f )
. . . . g trade-in Seller (Bot

2019), where user intent and most effective strategies are hid- ° (8o

den. Hence, along with the generated dialogue, the strategic Figure 5.1: Both options are equally plausible
and fluent, but a response with effective prag-

choice of framing and the sequence of chosen strategies play .. strategies leads to a better deal

a vital role, as depicted in Figure 5.1. Indeed, prior work on
negotiation dialogues has primarily focused on optimizing dia-
logue strategies—from high-level task-specific strategies (Lewis et al., 2017), to more specific task execution

planning (He et al., 2018), to fine-grained planning of linguistic outputs given strategic choices (Zhou et al.,
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2019). These studies have confirmed that it is crucial to control for pragmatics of the dialogue to build effective
negotiation systems.

To model the explicit dialogue structure, prior work incorporated Hidden Markov Models (HMMs) (Zhai
and Williams, 2014; Ritter et al., 2010), Finite State Transducers (FSTs) (Zhou et al., 2020) and RNNs
(He et al., 2018; Shi et al., 2019). While RNN-based models lack interpretability, HMM- and FST-based
approaches may lack expressivity. In this paper, we hypothesize that Graph Neural Networks (GNNs) (Wu
et al., 2020) can combine the benefits of interpretability and expressivity because of their effectiveness in
encoding graph-structured data through message propagation. While being sufficiently expressive to model
graph structures, GNNs also provide a natural means for interpretation via intermediate states (Xie and Lu,
2019; Pope et al., 2019).

We propose DIALOGRAPH, an end-to-end negotiation dialogue system that leverages Graph Attention Net-
works (GAT) (Velickovi¢ et al., 2018) to model complex negotiation strategies while providing interpretability
for the model via intermediate structures. DIALOGRAPH incorporates the recently proposed hierarchical
graph pooling based approaches (Ranjan et al., 2020) to learn the associations between negotiation strategies,
including conceptual and linguistic strategies and dialogue acts, and their relative importance in predicting
the best sequence. We focus on buyer—seller negotiations in which two individuals negotiate on the price
of an item through a chat interface, and we model the seller’s behavior on the CraigslistBargain dataset (He
et al., 2018)." We demonstrate that DIALOGRAPH outperforms previous state-of-art methods on strategy
prediction and downstream dialogue responses. This paper makes several contributions. First, we introduce a
novel approach to model negotiation strategies and their dependencies as graph structures, via GNNs. Second,
we incorporate these learned graphs into an end-to-end negotiation dialogue system and demonstrate that
it consistently improves future-strategy prediction and downstream dialogue generation, leading to better
negotiation deals (sale prices). Finally, we demonstrate how to interpret intermediate structures and learned

sequences of strategies, opening-up the black-box of end-to-end strategic dialogue systems.’

5.2 Conversational Graphs via Structured Transformers - DIALO-
GRAPH

We introduce DIALOGRAPH, a modular end-to-end dialogue system, that incorporates GATs with hierarchical
pooling to learn pragmatic dialogue strategies jointly with the dialogue history. DIALOGRAPH is based on
a hierarchical encoder-decoder model and consists of three main components: (1) Hierarchical Dialogue
Encoder, which learns a representation for each utterance and encodes its local context; (2) Structure Encoder
for encoding sequences of negotiation strategies and dialogue acts; and (3) Utterance Decoder, which
finally generates the output utterance. Formally, our dialogue input consists of a sequence of tuples, D =
[(u1,day, ST1), (ua, das, STs), ..., (un, day, ST, )] where w; is the utterance, da; is the coarse dialogue act
and ST; = {st; 1,8t 2,...,st; 1} is the set of k fine-grained negotiation strategies for the utterance u;.> The
dialogue context forms the input to (1) and the previous dialogue acts and negotiation strategies form the input
to (2). The overall architecture is shown in Figure 5.2. In what follows, we describe DIALOGRAPH in detail.

"'We focus on the seller’s side following Zhou et al. (2019) who devised a set of strategies specific to maximizing the seller’s success.
Our proposed methodology, however, is general.

2Code, data and a demo system is released at ht tps: //github.com/rishabhjoshi/DialoGraph_ICLR21

3For example, in an utterance Morning! My bro destroyed my old kit and I'm looking for a new pair for $10, the coarse dialogue act is
Introduction, and the finer grained negotiation strategies include Proposing price, Being informal and Talking about family for building
rapport.
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Figure 5.2: Overview of DIALOGRAPH. At time ¢, utterance u; is encoded using BERT and then passed to
the Dialogue Context Encoder to generate the dialogue representation. This representation is enriched with the
encodings of explicit strategy and dialogue act sequences using the Structure Encoders which is then used to
condition the Utterance decoder. Please refer to §5.2 for details.

5.2.1 Hierarchical Dialogue Encoder

A dialogue context typically comprises of multiple dialogue utterances which are sequential in nature. We
use hierarchical encoders for modeling such sequential dialogue contexts (Jiao et al., 2019). To encode
the utterance wu; at time ¢, we use the pooled representations from BERT (Devlin et al., 2019) to obtain the
corresponding utterance embedding e;. We then pass the utterance embeddings through a GRU to obtain the

dialogue context encoding till time ¢, denoted by hY.

5.2.2 Structure Encoder

Our Structure Encoder is designed to model the graph representations of the strategies and dialogue acts using
GATs and output their structural representations. These structural representations are used to predict the next
set of strategies and dialogue acts and enrich the encoded dialogue representation. Below we describe the
Structure Encoder for negotiation strategies.

We model the sequence of negotiation strategies, ST = [ST}, STb, . .., ST] by creating a directed graph,
where ST; is the set of k fine-grained negotiation strategies for the utterance u;. Formally, we define a graph
G(V, &, X) with |€| edges and N = |V| nodes where each node v; € V represents a particular negotiation
strategy for an utterance and has a d-dimensional feature representation denoted by z;. Z € Nd denotes the
feature matrix of the nodes and A € N N represents the adjacency matrix, where [V is the total number of
nodes (strategies) that have occurred in the conversation till that point. Therefore, each node represents a

strategy-utterance pair.

We define the set of edges as € = {(a,b)}; a,b € V where a and b denote strategies at utterances u, and
up, present at turns ¢, and ¢, such that ¢, > t,. In other words, we make a directed edge from a particular

node (strategy in an utterance) to all the consecutive nodes. This ensures a direct connection from all the
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previous strategies to the more recent ones.* In the same way, we form the graph out of the sequence of
dialogue acts. These direct edges and learned edge attention weights help us interpret the dependence and
influence of strategies on each other.

To get the structural representations from the strategy graphs, we pass them through a hierarchical graph
pooling based encoder, which consists of [ layers of GAT, each followed by the Adaptive Structure Aware
Pooling (ASAP) layer (Ranjan et al., 2020). As part of the ASAP layer, the model first runs GAT over the input
graph representations to obtain structurally informed representations of the nodes. Then a cluster assignment
step is performed which generates a cluster assignment matrix, .S, which tells the model which nodes come in
a similar structural context. After that, the clusters are ranked and then the graph is pooled by taking the top
few clusters as new nodes and forming edges between them using the existing graph. This way the size of the
graph is reduced at every step which leads to a structurally informed graph representation. We take advantage
of the cluster formulation to obtain the associations between the negotiation strategies, as identified from
the cluster assignment matrix, S. These association scores can later be used to interpret which strategies are
associated with each other and tend to co-occur in similar contexts. Moreover, we also use the node attention
scores from GAT to interpret the influence of different strategies on the representation of a particular strategy,
which essentially gives the dependence information between strategies.

In this way, the structure representation is learned and accumulated in a manner that preserves the
structural information (Ying et al., 2018; Lee et al., 2019). After each pooling step, the graph representation is
summarized using the concatenation of mean and max of the node representations. The summaries are then
added and passed through fully connected layers to obtain the final structural representation of the strategies
h?T. We employ a similar Structure Encoder to encode the graph obtained from the sequence of dialogue acts,
to obtain h{.

5.2.3 Utterance Decoder

The utterance decoder uses the dialogue context representation and structural representations of dialogue
acts and negotiation strategies to produce the dialogue response (next utterance). We enrich the dialogue
representation by concatenating the structural representations before passing it to a standard greedy GRU
(Cho et al., 2014) decoder. This architecture follows Zhou et al. (2020), who introduced a dynamic ne-
gotiation system that incorporates negotiation strategies and dialogue acts via FSTs. We thus follow their
utterance decoder architecture to enable direct baseline comparison. For the j*" word of utterance w1,
wi 11> we condition on the previous word wiﬁ to calculate the probability distribution over the vocabulary
as pyiq = softmax(GRU(ht,'w{_:l1 )) where hy = [h¥; h7T; h{%] and [;] represents the concatenation
operator. For encoding the price, we replace all price information in the dataset with placeholders representing
the percentage of the offer price. For example, we would replace $35 with < price — 0.875 > if the original
selling price is $40. The decoder generates these placeholders which are then replaced with the calculated

price before generating the utterance.

5.2.4 Model Training

We use h77 to predict the next set of strategies ST} 1, a binary value vector which represents the k-hot
representation of negotiation strategies for the next turn. We compute the probability of the ;" strategy

occurring in w41 as p(sti41,5|h?T) = o(hyT). where o denotes the sigmoid operator. We threshold the

4Appendix 1.3.1 shows an example of the graph obtained from a sequence of strategies.
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probability by 0.5 to obtain the k-hot representation. We denote the weighted negative log likelihood of
strategies L gt as the loss function of the task of next strategy prediction Lg = — 3, d; log(p(ste+1,5)) —
> i log(1 — p(sti41,,)) where the summation of j are over the strategies present (st;HJ = 1) and not
present (st; 41,5 = 0) in the ground truth strategies set, ST'. Here d; is the positive weight associated with
the particular strategy. We add this weight to the positive examples to trade off precision and recall. We set
d; = # of instances not having strategy j /# of instances having strategy j.

Similarly, we use h{® to predict the dialogue act for the next utterance da; . Given the target dialogue
act da; 11 and the class weights pg, for the dialogue acts, we denote the class-weighted cross entropy loss
over the set of possible dialogue acts, £Lp4 = —pgq log(softmax(hi®)) . We pass hy = [h¥; h7T; hi?]
through a linear layer to predict the negotiation success, which is denoted by the sale-to-list ratio r =
(sale price — buyer target price)/(listed price — buyer target price) (Zhou et al., 2019). We split the ratios into 5
negotiation classes of equal sizes using the training data and use those to predict the success of negotiation.
Therefore, given the predicted probabilities for target utterance u; 41 from §5.2.3, target ratio class y; and the
learnable parameters W,. and b,., we use the cross entropy loss as the loss for the generation task (£ pg)
as well as the negotiation outcome prediction task (Lg), thus Lypg = — ij el log(pﬁl) and Lr =
- e y, log(softmax(W,.h; +b,.)). The L loss optimizes for encoding negotiation strategies to enable
accurate prediction of negotiation outcome.

We use hyperparameters «, 3 and vy to optimize the joint loss L ;,n¢, of strategy prediction, dialogue act
prediction, utterance generation and outcome prediction together, using the Adam optimizer (Kingma and Ba,
2014), to get Ljoins = Lnra +alst + BLpA + VLR.

5.3 Experimental Setup

Dataset:  We use the CraigslistBargain dataset® (He et al., 2018) to evaluate our model. The dataset was
created using Amazon Mechanical Turk (AMT) in a negotiation setting where two workers were assigned
the roles of buyer and seller respectively and were tasked to negotiate the price of an item on sale.The buyer
was additionally given a target price. Both parties were encouraged to reach an agreement while each of the
workers tried to get a better deal. We remove all conversations with less than 5 turns. In Table 5.1 we provide
the CraiglistBargain dataset statistics along with data sizes after filtering conversations with less than 5 turns.
The maximum and average number of turns in any conversation is 47 and 9.2 respectively. Also, the maximum

and average number of strategies in an utterance is 13 and 3 respectively.

Data split Size
Train conversations 5383
Valid conversations 643
Test conversations 656
Filtered train conversations 4828
Filtered valid conversations 561
Filtered test conversations 567
Vocabulary size 13339

Table 5.1: Dataset statistics.

Shttps://github.com/stanfordnlp/cocoa/tree/master/craigslistbargain
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We extract from the dataset the coarse dialogue acts as described by He et al. (2018). This includes a list of
10 utterance dialogue acts, e.g., inform, agree, counter-price. We augment this list by 4 outcome dialogue acts,
namely, (offer), (accept), (reject) and {(quit), which correspond to the actions taken by the users. Negotiation
strategies are extracted from the data following Zhou et al. (2019). These include 21 fine-grained strategies
grounded in prior economics/behavioral science research on negotiation (Pruitt, 2013; Bazerman et al., 2000,?;
Fisher et al., 2011; Lax and Sebenius, 2006; Bazerman et al., 2000), e.g, negotiate side offers, build rapport,

show dominance.

Meaning Dialogue Act Example Detector
Greetings intro I would love to buy rule

Ask a question inquiry Sure, what’s your price rule
Propose the first price init-price I’'m on a budget so i could do $5 rule
Proposing a counter price counter-price ~ How about $15 and I’ll waive the deposit rule
Unknown unknown Hmm, let me think rule

Agree with the proposal agree That works for me rule
Disagree with a proposal disagree Sorry I can’t agree to that rule
Answer a question inform This bike is brand new rule

Using comparatives with existing price ~ vague-price That offer is too low rule

Insist on an offer insist Still can I buy it for $ 5. 'm on a tight budget  rule

Offer the price (offer) agent action
Accept the offer (accept) agent action
Reject the offer (reject) agent action
Quit the session (quit) agent action

Table 5.2: The list of dialogue acts that we use to annotate the data.

We provide the details about the dialogue acts that we have used to annotate the utterances in Table 5.2.
10 are taken from He et al. (2018) and 4 are based on the actions taken by the users. The rule based acts are
extracted using the code provided by them®.

We provide the details about the 15 Negotiation Strategies (Zhou et al., 2019) and 21 Negotiation Strategies
(Zhou et al., 2020) in Tables 5.3 and 5.4.

High level Negotiation Rules Sub Strategy Example Detector
Describe Product The car has leather seats classifier
Rephrase product 45k miles — less than 50k miles classifier
Focus on interests, not positions ~ Embellish product a luxury car with attractive leather seats classifier
Address concerns I’ve just taken it to maintenance classifier
Communicate interests  1'd like to sell it asap. classifier
Propose Price How about 9k? classifier
Invent options for mutual gain Do not propose first wa rule
Negotiate side offers I can deliver it for you rule
Hedge I could come down a bit rule
Communicate Politely ~ Greetings, gratitude, apology, please rule
Build Trust Build rapport My kid really liked this bike, but he outgrew it  rule
Talk informally Absolutely, ask away! rule
Show dominance The absolute highest I can do is 640 rule
Insist on your position Negative Sentiment Sadly, I simply cannot go under 500 rule
Certainty words It has always had a screen protector rule

Table 5.3: The details of 15 Negotiation Strategies proposed by Zhou et al. (2019).

Shttps://github.com/stanfordnlp/cocoa/
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Negotiation Strategies Train set frequency

first_person_singular_count 26,121
pos_sentiment 24,862
number_of_diff_dic_pos 18,610
third_person_singular 17,000
hedge_count 12,227
number_of_diff_dic_neg 10,402
personal_concern 9,135
propose 8,449
politeness_greet 6,639
assertive_count 4,437
neg_sentiment 3,680
factive_count 3,429
politeness_gratitude 3,171
first_person_plural_count 2,876
liwc_certainty 2,530
liwc_informal 2,396
third_person_plural 1,721
trade_in 883
politeness_please 372
family 201
friend 149
<start> 5,383

Table 5.4: The details of 21 Negotiation Strategies (<start> added by us) used by Zhou et al. (2020). These are
used to operationalize the 15 strategies using a rule based system (https://github.com/zhouyihengll/
augmenting-non-collabrative-dialog/). The frequency statistics on the train set (5383 conversations) is
given. A detailed description regarding the rules used by prior work to extract these are out of scope of this work, however,
we intend to provide the code and extracted strategies, along with the rule based mapping to the 15 strategies upon
acceptance of this work.

Training Setup: We use most of the hyperparameters from Zhou et al. (2020). Each training run took at most
3 hours on a single Nvidia GeForce GTX 1080Ti GPU and all the models were saved based on Strategy Macro
F1 performance. For experiments for Table 5.5 and 5.6 we saved the best models on best Strategy Macro F1
performance (HED being saved on outcome class prediction). This is because we wanted to prioritize and
optimize our final model to capture sequence-structural information owing to our focus on interpretability.
While performing ablation studies for Table 5.7, not all models have structure encoders, and hence for a fair
comparison we chose a metric independent of the different modules for all the models in ablations. We use
the negotiation outcome class prediction (RC-Acc) scores as that optimizes the dialogue for good negotiation
outcome, which indirectly helps train the model to capture the sequence of strategies.

Baselines: DIALOGRAPH refers to our proposed method. To corroborate the efficacy of DIALOGRAPH,
we compare it against our implementation of the present state-of-the-art model for the negotiation task: FST-
enhanced hierarchical encoder-decoder model (FeHED) (Zhou et al., 2020) which utilizes FSTs for encoding
sequences of strategies and dialogue acts.” We also conduct and ablation study, and evaluate the variants
of DIALOGRAPH with different ways of encoding negotiation strategies, namely, HED, HED+RNN, and
HED+Transformer. HED completely ignores the strategy and dialogue act information, whereas HED+RNN
and HED+Transformer encode them using RNN and Transformers (Vaswani et al., 2017) respectively. While

TWe replace the utterance encoder with BERT for fair comparison. This improved slightly the performance of the FeHED model
compared to results published in Zhou et al. (2020).
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HED+RNN is based on the dialogue manager of He et al. (2018), HED+Transformer has not been proposed
earlier for this task. For a fair comparison, we use a pre-trained BERT (Devlin et al., 2019) model as the
utterance encoder (§5.2.1) and a common utterance decoder (§5.2.4) in all the models, and only vary the
Structure Encoders as described above. The strategies and dialogue acts in RNN and Transformer based
encoders are fed as sequence of k-hot vectors.

Evaluation Metrics: For evaluating the performance on the next strategy prediction and the next dialogue act
prediction task, we report the F1 and ROC AUC scores for all the models. For these metrics, macro scores tell
us how well the model performs on less frequent strategies/dialogue acts and the micro performance tells us
how good the model performs overall while taking the label imbalance into account. Strategy prediction is a
multi-label prediction problem since each utterance can have multiple strategies. For the downstream tasks
of utterance generation, we compare the models using BLEU score (Papineni et al., 2002) and BERTScore
(Zhang et al., 2020b). Finally, we also evaluate on another downstream task of predicting the outcome of
negotiation, using the ratio class prediction accuracy (RC-Acc) (1 out of 5 negotiation outcome classes, as
described in §5.2.4). Predicting sale outcome provides better interpretability over the progression of a sale
and potentially control to intervene when negotiation has a bad predicted outcome. Additionally, being able
to predict the sale outcome with high accuracy shows that the model encodes the sequence of negotiation

strategies well.

5.4 Results

We evaluate (1) strategy and dialogue act prediction (intrinsic evaluation), and (2) dialogue generation and
negotiation outcome prediction (downstream evaluation). For all metrics, we perform bootstrapped statistical
tests (Berg-Kirkpatrick et al., 2012; Koehn, 2004) and we bold the best results for a metric in all tables (several
results are in bold if they have statistically insignificant differences).

Strategy and Dialogue Act Prediction: We compare DIALOGRAPH’s effectiveness in encoding the explicit
sequence of strategies and dialogue acts with the baselines, using the metrics described in §5.3. Table 5.5
shows that DTALOGRAPH performs on par with the Transformer based encoder in strategy prediction macro
scores and outperforms it on other metrics. Moreover, both significantly outperform the FST-based based
method, prior state-of-the-art. We hypothesize that lower gains for dialogue acts are due to the limited
structural dependencies between them. Conversely, we validate that for negotiation strategies, RNNs are
significantly worse than DTALOGRAPH. We also observe that higher macro scores show that DTALOGRAPH
and Transformers are able to capture the sequences containing the less frequent strategies/dialogue acts as
well. These results supports our hypothesis of the importance to encode the structure in a more expressive
model. Moreover, DTALOGRAPH also provides interpretable structures which the other baselines do not. We
will discuss these findings in §5.5.

Automatic Evaluation on Downstream tasks: In this section, we analyze the impact of DIALOGRAPH on
the downstream task of Negotiation Dialogue based on the automatic evaluation metrics described in §5.3.
In Table 5.6, we show that DIALOGRAPH helps improve the generation of dialogue response. Even though
DIALOGRAPH attains higher BLEU scores, we note that single-reference BLEU assumes only one possible
response while dialogue systems can have multiple possible responses to the same utterance. BERTScore
alleviates this problem by scoring semantically similar responses equally high (Zhang et al., 2020b). We
also find that both Transformer and DIALOGRAPH have a comparable performance for negotiation outcome
prediction, which is significantly better than the previously published baselines (FEHED and HED+RNN). A
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Negotiation Strategies Dialogue Acts

F1 ROC AUC F1 ROC AUC
Model Macro Micro Weighted Macro Micro Weighted Macro Micro Weighed Macro Weighed
FeHED 17.6 25.6 36.3 55.8 61.7 54.7 20.6 37.4 30.6 76.9 79.2
HED+RNN 23.2 26.7 42.4 65.3 65.3 60.4 33.0 46.2 42.8 83.1 84.2
HED+Transformer  26.3 32.1 43.3 68.2 71.8 61.8 325 44.6 42.0 85.6 85.1
DIALOGRAPH 26.1 34.1 43.5 68.1 73.0 61.8 334 45.8 43.7 85.6 854

Table 5.5: Performance of the next strategy and dialogue-act prediction of various models. We report the F1
and ROC AUC scores. Significance tests were performed as described in §5.4 and the best results (along with
all statistically insignificant values) are bolded.

Generation Outcome

BERTScore Prediction Model BERT Score F1
Model BLEU Precision Recall Fl RC-Acc DIALOGRAPH 27.4
HED 209 218 223 221 352 wlo Strategy (ST) 26.8
FeHED 23.7 27.1 268 270 423 w/o ST, Dialogue Acts (DA) 26.3
HED+RNN 225 229 27 228 479 w/o ST, DA, BERT 22.7
HED+Transformer 244 274 28.1 27.7 53.7 - -
DIALOGRAPH 247 278 283 281 i1 Table 5.7: DIALOGRAPH ablation analysis.

This shows that all the different components
Table 5.6: Downstream evaluation of negotiation dialogue  provide complementary benefits. We also eval-
generation and negotiation outcome prediction. The best  uate without BERT for comparison with previ-
results (along with all statistically insignificant values to  ously published works.

those) are bolded.

higher performance on this metric demonstrates that our model is able to encode the strategy sequence better
and consequently predict the negotiation outcome more accurately. Additionally, ablation results in Table 5.7
show that both strategy and dialogue act information helps DIALOGRAPH in improving dialogue response.
The difference in BERTScore F1 scores in Tables 5.6 and 5.7 arises due to different metrics chosen for early
stopping. More details in Appendix 1.3.2.

Although, both HED+Transformer and DIALOGRAPH are based on attention mechanisms, DIALOGRAPH
has the added advantage of having structural attention which helps encode the pragmatic structure of negotiation
dialogues which in turn provides an interpretable interface. The components in our graph based encoder such
as the GAT and ASAP layer provide strategy influence and cluster association information which is useful to
understand and control negotiation systems. This is described in more detail in §5.5. Though transformers
have self attention, the architecture is limited and doesn’t model the structure/dependence between strategies
providing only limited understanding. Further, our results show that DTALOGRAPH maintains or improves
performance over strong models like Transformer and has much more transparent interpretability. We later
show that DIALOGRAPH performs significantly better than HED+Transformer in human evaluation.
Human Evaluation: Since automatic metrics only give us a partial view of the system, we complement our
evaluation with detailed human evaluation. For that, we set up DIALOGRAPH and the baselines on Amazon
Mechanical Turk (AMT) and asked workers to role-play the buyer and negotiate with a single bot. After
their chat is over, we ask them to fill a survey to rate the dialogue on how persuasive (My task partner was
persuasive.), coherent (My task partner’s responses were on topic and in accordance with the conversation
history.), natural (My task partner was human-like.) and understandable (My task partner perfectly understood
what I was typing.) the bot was ®. Prior research in entailment has shown that humans tend to get better

8We use the setup of https://github.com/stanfordnlp/cocoa/. Screenshots in Appendix 1.3.4.
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Figure 5.3: Visualization of the learnt latent strategy sequences in DIALOGRAPH where bolder edges represent
higher influence. Here we present only a few edges for brevity and visualize min-max normalized attention
values as edge weights to analyze the relative ranking of strategies. For example, for family at u;, informal
of us has the most influence followed by propose. We present the full attention map for this example in
Figure 5.4.

Model Persuasive Coherent Natural Understandable Sale Price Ratio Avg Turns Avg words/turn
HED 2.50 2.50 4.50 2.50 -2.13 11.00 4.25
FeHED 3.30 3.75 3.70 3.69 0.25 14.30 5.76
HED+RNN 2.81 3.27 3.36 3.27 -3.68 13.90 3.61
HED+Transformer 3.50 3.50 3.70 3.40 -0.07 11.40 4.36
DIALOGRAPH 3.58 3.94 3.75 3.70 0.49 15.72 5.84

Table 5.8: Human evaluation ratings on a scale of 1-5 for various models. We also provide the average sale
price ratio (§5.2.4). Negative ratio means that average sale price was lower than the buyer’s target.

as they chat (Mizukami et al., 2016; Benus et al., 2011) and so we restrict one user to chat with just one
of the bots. We further prune conversations which were incomplete potentially due to dropped connections.
Finally, we manually inspect the conversations extracted from AMT to extract the agreed sale price and remove

conversations that were not trying to negotiate at all.

The results of human evaluations of the resulting 90 dialogues (about 20 per model) are presented in
Table 5.8. We find that baselines are more likely to accept unfair offers and apply inappropriate strategies.
Additionally, DIALOGRAPH bot attained a significantly higher Sale Price Ratio, which is the outcome of
negotiation, showing that effectively modeling strategy sequences leads to more effective negotiation systems.
Our model also had a higher average total number of turns and words-per-turn (for just the bots) compared to all
baselines, signifying engagement. It was also more persuasive and coherent while being more understandable
to the user. From qualitative inspection we observe that the HED model generates utterances that are shorter
and less coherent. They are natural responses like “Yes it is", but generic and contextually irrelevant. We
hypothesize that this is due to the HED model not being optimized to encode the sequence of negotiation
strategies and dialogue acts. We believe that this is the reason for the high natural score for HED. From manual
inspection we see that HED is not able to produce very persuasive responses. We provide an example of a
dialogue in Appendix 1.3.3. We see that although HED+Transformer model performs well, DIALOGRAPH
achieves a better sale price outcome as it tries to repeatedly offer deals to negotiate the price. We see that the
HED is unable to understand the user responses well and tends to repeat itself. Both the FeHED and HED
baselines tend to agree with the buyer’s proposal more readily whereas HED+Transformers and DIALOGRAPH

provide counter offers and trade-ins to persuade the user.
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Figure 5.4: Visualization of the attention map learned by DIALOGRAPH for the example depicted in Figure 5.3
in the main paper. We only show it for a few turns for brevity. Here the axis labels represent the turn and the
strategy.

Negotiation Strategy , Least associative strategies Highly associative strategies

concern certainty (0.1759), trade in (0.228) politeness please (0.7072), politeness gratitude (0.5859)
hedge trade in (0.4367), pos sentiment (0.4501) | propose (0.5427) friend (0.6218)

propose factive count (0.3878), family (0.416) politeness gratitude (0.5048), trade in (0.5223)

negative sentiment trade in (0.3089), informal (0.3644) family (0.6363), propose (0.6495)

Table 5.9: Examples of strategies and their least / highly associated strategies based on association scores
extracted using the cluster attention scores given by the ASAP layer.

5.5 Interpreting Learned Strategy Graphs

We visualize the intermediate attention scores generated by the GATs while obtaining the strategy node
representations. These attention scores tell us what strategies influenced the representation of a particular
strategy and can be used to observe the dependence between strategies (cf. Xie and Lu, 2019; Norcliffe-Brown
etal., 2018). We show an example in Figure 5.3 where for brevity, we present a subset of few turns and only the
top few most relevant edges in the figure. For visualization, we re-scale the attention values for all incoming
edges of a node (strategy) using min-max normalization. This is done because the range of raw attention
values would differ based on the number of edges and this allows us to normalize any difference in scales and
visualize the relative ranking of strategies (Yi et al., 2005; Chen and Liu, 2004). We notice that as soon as
the first propose at us happens, the strategies completely change and become independent of the strategies

before the propose point. From Figure 5.3, we see that the edge weight from u4 to ug is 0.01, signifying very
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low influence. We noticed this trend in other examples as well, wherein, the influence of strategies coming
before the first propose turn to strategies coming after that, is very low. A similar phenomenon was also
observed by Zhou et al. (2019) who study the conversations by splitting into two parts based on the first
propose turn. Another interesting thing we note is that the trade-in and propose strategies at us seem to be
heavily influenced by informal from us. Similarly, the informal of us was influenced by positive sentiment
from u4. This indicates that the seller was influenced by previous informal interactions to propose and trade-in
at this turn, and that sellers tend to be more informal if the conversation partner is positive. In other examples,
we see that at a particular utterance, different strategies depend on separate past strategies and also observe
that the attention maps usually demonstrate the strategy switch as soon as the first propose happens, which is
similar to what has been observed by prior work. These examples demonstrate that DIALOGRAPH can model
fine-grain strategies, learn dependence beyond just utterances and give interpretable representations, which
previous baselines, including the FSTs, lack. Specifically, each state of the FST is explicitly represented by an
action distribution which can only be used to see the sequence of strategies and not observe associations or
dependence information which DIALOGRAPH provides.

We utilize these cluster attention scores from the ASAP pooling layer to observe the association between
various strategies which can help us observe strategies with similar contextual behaviour and structural co-
occurrence. We take the average normalized value of the cluster attention scores between two strategies to
obtain the association score between them. In Table 5.9, we show some examples of strategies and their
obtained association scores. We observe that negative sentiment tends to be most associated to propose. We
hypothesize that this is because that people who disagree more tend to get better deals. We observe that people
do not tend to associate negative sentiment with trade-in, which is in-fact highly associated with positive
sentiment, because people might want to remain positive while offering something. Similarly, people tend to
give vague proposals by hedging, for instance, I could go lower if you can pick it up, than when suggesting
trade-in. Concern also seems to be least associated with certainty, and most with politeness-based strategies.
Thus, we observe that our model is able to provide meaningful insights which corroborate prior observations,

justifying its ability to learn strategy associations well.

5.6 Related Work

Dialogue Systems: Goal-oriented dialogue systems have a long history in the NLP community. Broadly,
goal-oriented dialogue can be categorized into collaborative and non-collaborative systems. The aim of agents
in a collaborative setting is to achieve a common goal, such as travel and flight reservation (Wei et al., 2018)
and information-seeking (Reddy et al., 2019). Recent years have seen a rise in non-collaborative goal-oriented
dialogue systems such as persuasion (Wang et al., 2019; Dutt et al., 2020, 2021), negotiation (He et al., 2018;
Lewis et al., 2017) and strategy games (Asher et al., 2016) due to the challenging yet interesting nature of the
task. Prior work has also focused on decision-making games such as Settlers of Catan (Cuayéhuitl et al., 2015)
which mainly involve decision-making skills rather than communication. Lewis et al. (2017) developed the
DealOrNoDeal dataset in which agents had to reach a deal to split a set of items. Extensive work has been
done on capturing the explicit semantic history in dialogue systems (Kumar et al., 2020; Vinyals and Le, 2015;
Zhang et al., 2018a). Recent work has shown the advantage of modeling the dialogue history in the form of
belief span (Lei et al., 2018) and state graphs (Bowden et al., 2017). He et al. (2018) proposed a bargaining
scenario that can leverage semantic and strategic history. Zhou et al. (2020) used unsupervisedly learned FSTs

to learn dialogue structure. This approach, however, although effective in explicitly incorporating pragmatic
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strategies, does not leverage the expressive power of neural networks. Our model, in contrast, combines the
interpretablity of graph-based approaches and the expressively of neural networks, improving the performance
and interpretability of negotiation agents.

Graph Neural Networks: The effectiveness of GNNs (Bruna et al., 2013; Defferrard et al., 2016; Kipf and
Welling, 2017) has been corroborated in several NLP applications (Vashishth et al., 2019), including semantic
role labeling (Marcheggiani and Titov, 2017), machine translation (Bastings et al., 2017), relation extraction
(Vashishth et al., 2018), and knowledge graph embeddings (Schlichtkrull et al., 2018; Vashishth et al., 2020).
Hierarchical graph pooling based structure encoders have been successful in encoding graphical structures
(Zhang et al., 2019). We leverage the advances in GNNs and propose to use a graph-based explicit structure
encoder to model negotiation strategies. Unlike HMM and FST based encoders, GNN-based encoders can be
trained by optimizing the downstream loss and have superior expressive capabilities. Moreover, they provide
better interpretability of the model as they can be interpreted based on observed explicit sequences (Tu et al.,
2020; Norcliffe-Brown et al., 2018). In dialogue systems, graphs have been used to guide dialogue policy and
response selection. However, they have been used to encode external knowledge (Tuan et al., 2019; Zhou et al.,
2018) or speaker information (Ghosal et al., 2019), rather than compose dialogue strategies on-the-fly. Other
works (Tang et al., 2019; Qin et al., 2020) focused on keyword prediction using RNN-based graphs. Our work
is the first to incorporate GATs with hierarchical pooling, learning pragmatic dialogue strategies jointly with
the end-to-end dialogue system. Unlike in prior work, our model leverages hybrid end-to-end and modularized
architectures (Liang et al., 2020; Parvaneh et al., 2019) and can be plugged as explicit sequence encoder into
other models.

5.7 Conclusions and Future Work

We present DIALOGRAPH, a novel modular negotiation dialogue system which models pragmatic negotiation
strategies using Graph Attention Networks with hierarchical pooling and learns an explicit strategy graph jointly
with the dialogue history. DIALOGRAPH outperforms strong baselines in downstream dialogue generation,
while providing the capability to interpret and analyze the intermediate graph structures and the interactions
between different strategies contextualized in the dialogue. However, more work is still required in negotiation
study to understand negotiation strategies better and improve dialogue system performance.

As future work, we would like to extend our work to discover successful (e.g.: good for the seller) and
unsuccessful strategy sequences using our interpretable graph structures. This would play an important role
in strategy recommendations for human negotiations. Negotiation-coach systems can effectively use such
knowledge to provide interpretable strategy recommendations for human negotiations. Our model which learns
interpretable latent strategy sequences for better outcomes could directly impact such negotiation systems.
Additionally, exploring the application of graph-based modules with large pretrained language models would

enable generation of more coherent negotiation dialogue.

61



Part I11

Language Structure for Controllable

Dataset Construction

62



Chapter 6

Adversarial Data Generation for Error

Correction by Leveraging Syntactic Structure

Transparency in models allow tracing and attributing incorrect model outputs to the source of the errors like
issues with training data or limitations in model design. Training data at different stages of model development
can lead to overfitting and spurious correlations due to several factors such as noisy data, confounding variables,
and annotation errors (Wu et al., 2022b; Eisenstein, 2022; Han et al., 2020). Predominant efforts in training
data (especially in pre-training) collection and annotation involve ad-hoc scraping (Rana, 2010; Gao et al.,
2020; Hamborg et al., 2017), filtering and and blending (Longpre et al., 2023b; Jennings et al., 2023) which
require manual trial and error to ensure high quality and desired features. As a consequence, there is a need for
more controllable data design and collection strategies which can ensure high quality data leading to desired
features in trained models.

In the final part of this thesis, I propose novel techniques for generating synthetic data that facilitate control
over specific features during the training process. This chapter focuses on the task of factual error correction,
and proposes an approach that uses infilling language models to modify constituent units in a sentence.
Through this, I generate adversarial data that can be used for training purposes. The proposed approach enables
controlled modification of a sentence to introduce diverse factual errors, producing challenging adversarial
data. Research described in this chapter was conducted in collaboration with Hannaneh Hajishirzi, William
Cohen and Yulia Tsvetkov and was presented in an EMNLP 2022 publication (Balachandran et al., 2022).

6.1 Introduction

While modern summarization models generate highly fluent summaries that appear realistic (Lewis et al.,
2019; Zhang et al., 2020a), these models are prone to generating non-factual and sometimes entirely fabricated
content (Cao et al., 2018a; Goodrich et al., 2019; Maynez et al., 2020). With the increasing adoption of
language generation tools in user-facing products, such unreliability poses severe risks, including the spread of
misinformation, panic and other potentially harmful effects (Ranade et al., 2021; Hutson et al., 2021).

Since it is difficult to control for factuality at training or inference time (Huang et al., 2021; Dreyer et al.,
2021), a popular approach to fix the factual inconsistencies is via post-editing generated summaries (Cao et al.,
2020; Dong et al., 2020). This allows summarization models to focus on fluency and content-relevance while
improving factual consistency. However, there is no suitable data for training post-editing models to directly

“translate” an incorrect summary to a correct one. Prior work constructed synthetic training data by introducing
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simple heuristic errors like replacing entities or numbers in reference summaries (Cao et al., 2020), but it is not
clear whether such synthetic errors have sufficient coverage and accurately represent the types and distribution
of actual errors made by language models. Further, with increasing language generation capabilities, models
make more complex factual errors involving discourse structures and paraphrasing which cannot be easily
captured with heuristics (Pagnoni et al., 2021). The goal of our work is to develop post-editing models that
generalize over a wider range of factual errors (example in figure 6.1) in generated summaries from diverse

summarization model types.

We propose FACTEDIT—a novel approach to Source
post-editing text, to control for content factuality in The first vaccine for Ebola was approved by the FDA in
generated summaries. Rather than manually defin- 2019 in the US, five years after the initial outbreak in
) . o o 2014. To produce the vaccine, scientists had to sequence
ing a list of heuristic errors, it incorporates a new the DNA of Ebola, then identify possible vaccines, and

finally show successful clinical trials. Scientists say a

algorithm to generate adversarial (non-factual) exam- vaccine for COVID-19 is unlikely 1o be ready this year,

plCS using 1nﬁll1ng language models (Donahue et al., although clinical trials have already started.
2020). We use lower ranked beam-search candidates o )
] Scientists believe a Scientists believe a

from the language model as a source for potentially  |,correct ...vaccine for Ebola Error  vaccine for Covid-19

. . Entity might not be ready  Correction  mjght not be ready
factually-incorrect summary facts, thereby producing this year. The first this year. The first

. . . ine for Ebola took i

a set of plausible, likely, and fluent, incorrect syn- ‘Sla;;?:mo;e o1a foo ‘;a;(:;?ftg)[)st'a took
thetic summaries for a particular correct reference produced by the CBP. approved by the FDA.
summary. In this way, we leverage the capabilities :;‘;ZT;::; Hallucination
of large language models to produce multiple can- Generated Corrected
didates of alternative, erroneous summaries. These Summary Summary

examples, along with factually correct references, Figure 6.1: Model generated summaries often produce

are then used to train a sequence-to-sequence fact- content which is factually inconsistent w.r.t. to the source.
FACTEDIT rewrites these summaries by maintaining the ab-

correction model that aims at generating a factually . .
stractiveness but correcting factual errors.

consistent version of the candidate summary (§6.2).

We evaluate FACTEDIT on two datasets - CNN/DailyMail (Hermann et al., 2015) and XSum (Narayan
et al., 2018) and across nine summarization models with the FRANK benchmark (Pagnoni et al., 2021)
from Chapter 2 for evaluating various categories of factual errors in generated summaries (§6.3). The two
summarization datasets represent varied distributions of factual errors in models trained on them and hence
constitute a good test bed to evaluate the generalizability of our model. We show that FACTEDIT substantially
improves factuality scores across two metrics - Ent-DAE (Goyal and Durrett, 2021) and FactCC (Kryscinski
et al., 2020). On the Ent-DAE metric, FACTEDIT improves results by ~11 points (CNN/DM) and ~31 points
(XSum), and on the FactCC metric we show improvements of ~6 points (CNN/DM) and ~24 (XSum) points
on average across models (§6.4). Further, our analysis shows that FACTEDIT effectively corrects diverse error
categories without the need for special heuristics or annotations (§6.5). An important application of FACTEDIT
is to audit summarization systems and facilitate their reliability.'

'Code and data are available at ht tps://github.com/vidhishanair/FactEdit
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Figure 6.2: Architecture framework for FACTEDIT. Using masked versions of existing reference summaries,
we use an infilling language model to produce alternative candidates for the mask position. We construct
factually incorrect summaries by replacing the mask with the lower ranked candidates. Finally, we train a
sequence-to-sequence model for fact correction using the synthetically constructed data.

6.2 Phrase-Centric Fact Correction - FACTEDIT

Assume a summarization model trained to process a document d and generate a coherent and fluent summary?
¢’ which has been shown to often misrepresent facts from the document. FACTEDIT is a fact correction model
M which takes the generated summary ¢’ and document d, identifies factual errors and generates a rewritten
summary g by correcting them (as outlined in figure 6.2).

We present an adversarial data generation approach which combines the power of pre-trained language
models and control from fine-grained syntactic units to produce fluent and high-quality factually incorrect
summaries. We train an infilling language model M using documents from summarization training data and
use the model to introduce diverse factual errors in sentences from them (§6.2.1). Using the trained model,
we introduce factual errors in reference summaries of the training data r producing an incorrect summary
r’ resulting in a synthetic dataset {r’, r, d}¢yqin Of erroneous summaries mapped to their corrected versions
(pink section in figure 6.2). We train a sequence-to-sequence model M for factual error correction using the
generated synthetic data (§6.2.2). Finally, we use the trained correction model to rewrite model generated

summaries g’ producing a corrected version g (§6.2.3 - green section in figure 6.2).

6.2.1 Infilling Data Generator M

Our data generation process leverages infilling language models (Donahue et al., 2020) to produce candidates
to fill masked syntactic units (phrases) in a summary sentence. We mask parts of the input and use the infilling

model to generate multiple candidates for the masked position. We then use lower order beam candidates as

2We denote incorrect input (to fact correction model) summaries using ’ and corrected output (from fact correction model) without the
" throughout this paper. For E.g: g’ is incorrect summary, r’ is the incorrect reference summary while g is the corrected summary and 7’/
is the corrected reference summary.
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potential incorrect candidates to generate an incorrect version of the input. We hypothesize that, given the
relevant context of a source document, a strong language model generates relevant and factual sequences at
higher probabilities, compared to lower probability sequences. For the infilling model, we hypothesize that the
lower ranked candidates are often alternative phrases of similar types (in case of entities) or parts-of-speech
which are plausible but often not factually correct. Motivated by prior work (Goyal and Durrett, 2020) using
lower ranked beam search candidates as a source for adversarial data, we use the lower ranked candidates to
construct erroneous summaries from reference summaries.

masked and its relevant context ctx

Training: Our infilling model M is trained to take a masked sentence s
as input and generate a correct phrase to fill in the masked span. To train M ;, we construct a dataset using
documents d from the training data of existing summarization datasets. For each sentence s in the first-k
(k=5) positional sentences of a document d, we identify the subjects, objects and relations {sub, obj, rel} in
them using OpenlE (Banko et al., 2007). By iteratively masking each phrase p in {sub,obj,rel}, we create a
masked query s™%*#¢? and its corresponding context ctz by removing the masked sentence from the document,
resulting in our training data {s™?*¢d p ctx}, where p is the masked span text. We train a sequence-to-
sequence model M on this data which takes s™%*k¢? [SEP] ctx as input and learns to generate p as the
output. We intentionally use only sentences from the document as masked queries and do not use sentences
from the reference summaries, to ensure that the model does not memorize phrases from the references. Thus,
when applied to unseen reference sentences during inference, the model will produces richer beam search

candidates.

Adversarial Data Generation: We use the trained infilling model to generate the synthetic dataset for fact
correction using the document reference pairs {d, r }4,qin from the summarization training data. For each
sentence in the reference s,., we use OpenlE to extract {sub, obj, rel} and iteratively mask one phrase at a
time to construct masked sentences s”**#°? from the references. We provide this masked reference summary
sentence and document d as input to the model and perform beam-search decoding for generation. We then
consider lower ranked beam candidates (rank=[5,15])* as non-factual alternatives for the corresponding masked
phrase. We then use these candidates as the replacements for the mask producing an erroneous summary 7.
Running this on the {d, 7 }¢,qin training data, we construct a synthetic data {r’, r, d} 4., of factually incorrect
summaries paired with their correct version where ’ and r differ by an incorrect phrase. To train the model to
not perform any corrections on factual summaries, we keep original reference summaries for 20% of the data

points (r' = 7).

6.2.2 Fact Correction Model M~

Using the parallel data {r’, r, d}trqin produced by the above infilling method, we train models for factual error
correction. In contrast to prior work (See et al., 2017) which used pointer based models to copy phrases from
the source document, we use a sequence-to-sequence model — BART (Lewis et al., 2019) — to preserve the
abstractive content in the input. The model M is trained with an erroneous reference summary sentence s,
produced by the infilling data generator and the corresponding document d as input and the correct reference
summary sentence s, as output. A straightforward option is to provide s,, d concatenated as inputs to the

model. But we hypothesize that providing the right context can help the model better correct the errors. Below

3We chose this range of ranks based on a manual analysis of 500 generated adversarial examples where our method produced factually
incorrect replacements over 90% of the time.
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we outline input structures that provide better context in the input:

Relevant Supporting Passages: To help the model better connect the relevant facts in the source document
to the summary sentence being corrected, we experiment with providing only the most relevant parts of the
document as input context instead of the entire document. Using a scoring function (ROUGE), we identify
sentences from the document which have high overlap with the generated summary sentence and extract the
top-k (k=3 for our work) such sentences. We provide these sentences along with a window of wy, (wg=2)
sentences before and after each as the input context to the model.

Surrounding Summary Context: While simple errors like incorrect entities can be detected and corrected
with only the context of the current sentence being corrected, more complex discourse level errors like incorrect
pronouns require the context of the rest of the sentences of the summary. To enable this, we additionally give
the complete generated summary (other sentences from the summary) as additional context. For single sentence
summaries like headline generation, this does not change the original setting, but for longer summaries this
setting helps with discourse level errors.

In essence, our model M takes the input as Incorrect Reference Sentence (s,») [SEP] Full Reference

Summary (r') [SEP] Relevant Passages and generates the corrected summary r as output.

6.2.3 Inference

Our trained fact correction model M can be directly applied to any model-generated summaries ¢’, without
access to the underlying model. For each sentence in a generated summary, we identify the relevant passages
using ROUGE and provide it as an input to the model (in the form Generated Summary Sentence (sg) [SEP ]
Generated Full Summary (g') [ SEP] Relevant Passages).

6.3 Experiments and Data

6.3.1 Datasets

We use two news summarization datasets CNN-DailyMail (Hermann et al., 2015) and XSum (Narayan et al.,
2018). The two datasets have been extensively studied for the factual consistency in their generated summaries
across a variety of models (Goodrich et al., 2019; Cao et al., 2018a). Reference summaries from CNN/DM are
longer, having on average three sentences, and more extractive in nature. XSum on the other hand has shorter,
single sentence summaries and is significantly more abstractive in nature. The summaries in these datasets
are qualitatively different, and hence models trained on the two datasets present varied levels of challenges in
maintaining factual consistencies.

Prior work have studied summaries generated from different language models and characterized the factual
errors in them (Pagnoni et al., 2021). Generated summaries on the CNN/DM dataset are more extractive
in nature and hence are more factual (~70% of summaries are factual) than the more abstractive generated
summaries of XSum (~20% of summaries are factual). The longer summaries in CNN/DM display discourse
level inconsistencies while summaries from XSum often hallucinate content which is not supported by the
source document. Hence, the two datasets present a varied setting for evaluating the efficacy of our model
across different kinds of errors. For our main evaluation, we evaluate the overall capability of FACTEDIT in
correcting errors in summaries generated by a BART model.

We further evaluate our model on the FRANK benchmark (Pagnoni et al., 2021) which contains generated

summaries obtained using multiple language models for both datasets annotated with human judgements on
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Dataset Method R1 R2 RL FactCC | Ent-DAE
Bart (Lewis et al., 2019) 44.07 | 21.08 | 41.01 75.78 74.85

CNN/DM | Cao et al. (2020) 42.72 | 20.59 | 39.92 49.98 74.83
FACTEDIT 42.17 | 20.22 | 39.37 75.49 75.71
FACTEDIT + FactCC Filter (FF) | 42.53 | 20.48 | 39.74 76.03 75.36
Bart (Lewis et al., 2019) 3471 | 15.04 | 27.40 21.93 20.03

XSum Cao et al. (2020) 33.64 | 14.71 | 26.49 7.01 20.03
FACTEDIT 33.58 | 14.68 | 26.71 2391 20.13
FACTEDIT + FactCC Filter (FF) | 33.58 | 14.68 | 26.71 23.91 20.13

Table 6.1: FACTEDIT performance for correcting BART outputs (best performance in bold). FACTEDIT
ourperforms factuality related baselines on FactCC and DAE scores, while maintaining competitive summa-
rization quality.

their factuality and the category of factual error. As different language models have different distribution of
factual error types, this evaluation helps us study the generalizability of FACTEDIT in correcting errors across
them.* For the CNN/DM dataset, it contains model outputs from an LSTM Seq-to-Seq model (S2S) (Rush
et al., 2015), a Pointer-Generator Network (PGN) model (See et al., 2017), a Bottom-Up Summarization (BUS)
model (Gehrmann et al., 2018), a Bert based Extractive-Abstractive model (BertSum) (Liu and Lapata, 2019)
and a jointly pretrained transformer based encoder-decoder model BART (Lewis et al., 2019). For the XSum
dataset, it contains model outputs from a Topic-Aware CNN Model (Narayan et al., 2018), a Pointer-Generator
Network (PGN) model, a randomly initialized (TransS2S) (Vaswani et al., 2017) and one initialized with
Bert-Base (BertS2S) (Devlin et al., 2019).

6.3.2 Experimental Settings and Evaluation

Setup: We use OpenlE (Banko et al., 2007) to pre-process each summary and extract subject, object, predicate
triples for each summary sentence. We use BART-base (Lewis et al., 2019) as our sequence-to-sequence model
for the infilling based data generator and the fact correction model. Both models were trained with a batch size
of 48, a learning rate of 3e-5, and warm-up of 1000 for 1 epoch. The maximum input sequence length was
512 and maximum output sequence length was 128. Using the infilling data generator, we generate 1233329
negative, 308332 positive examples for CNN/DM and 724304 negative, 181076 positive, examples for XSum
as training data for fact correction. Models were trained on 4 Nvidia GeForce GTX TITAN X GPUs and each
training run took ~15 hours. All hyperparameters were chosen based on generated dev set ROUGE-L (Lin,
2004) on each dataset.

Evaluation Setup: Evaluating factual consistency of generated summaries is challenging, with relatively recent
metrics developed to detect it. These metrics unfortunately do not correlate highly with human judgements yet.
We therefore evaluate our model using two metrics - FactCC (Kryscinski et al., 2020) and Ent-DAE (Goyal
and Durrett, 2021); each captures different error types. FactCC is a binary classifier, trained on a synthetic,
heuristic error dataset, which is better at detecting simple semantic errors like incorrect entities or numbers.
Ent-DAE is a classifier trained on synthetic data constructed using the dependency structure of the text. In
addition to semantic errors, it is better at detecting more complex discourse-level errors (Pagnoni et al., 2021).
We also report ROUGE (Lin, 2004) to evaluate if our model maintains the fluency of summaries. While
ROUGE is less correlated with factuality (Pagnoni et al., 2021; Maynez et al., 2020), it helps evaluate if the

4As the benchmark has publicly available model outputs, the summaries across different datasets are from different models owing to
their availability.
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corrected summary is fluent and aligned with the reference summary. However, with factual corrections of
outputs we expect small drops in ROUGE, since generation models were specifically optimized to maximize
ROUGE presumably at the expense of factuality.

Our evaluation has two settings: i) FACTEDIT - correct all generated summaries in the test set and ii)
FACTEDIT + FactCC Filter (FF) - using the FactCC metric we identify factually incorrect summaries, and
only correct the incorrect ones.

Baselines: We compare our approach with Cao et al. (2020) as the baseline. The baseline uses a heuristic set
of rules proposed by Kryscinski et al. (2020) to introduce simple errors (Entity, Number, Date, and Pronoun)
in reference summaries and trains a BART-base model for error correction. Comparing our model with (Cao

et al., 2020) helps us evaluate the benefit of our Infilling LM based adversarial data generator. >

6.4 Results

6.4.1 Factuality Results

We first evaluate FACTEDIT’s ability to correct errors in summaries generated by a BART-base summarization
model on the entire test set. We first generate summaries using a BART-base model finetuned on each dataset
and then provide the generated summaries and their corresponding source documents as inputs to FACTEDIT
for correction.

Table 6.1 shows results for this experiment. Our results show that correcting factual errors using our model
improves the factuality results. The baseline model performs poorly with the FactCC metric showing lower
scores than the BART model generated summaries, especially in the more abstractive XSum setting. The DAE
metric for the baseline model is slightly lower than the BART model scores in the CNN/DM setting and has
no improvement in the XSum setting showing that it does not perform corrections on complex errors. These
results confirm our hypothesis that the baseline model trained on adversarial data based on heuristic errors
does not transfer well to real errors in model generated summaries. In contrast, our model improves both
metrics across both datasets. On the more challenging XSum dataset, our model has a ~17 point improvement
on FactCC and ~0.1 improvement on DAE over the baseline model. The BART generated summaries on
CNN/DM are ~70% factual and hence using the FactCC Filter to correct only non-factual summaries helps
improve results on FactCC. As XSum has more than 80% non-factual summaries, the FactCC filter does not
change results and correcting all generated summaries is beneficial. In Table 1.13 we present examples of
corrections made by FACTEDIT and present a discussion in §1.4.1.

Prior works have shown that improving factual consistency in summaries leads to a drop in ROUGE scores
(Maynez et al., 2020; Cao and Wang, 2021; Cao et al., 2020). Our ROUGE results do not drop significantly and
are consistent with prior work. These results show that our model does not significantly change the summaries

and the corrected summaries contain the relevant information w.r.t. to the source.

6.4.2 Factuality Results across Model Types

Table 6.2 shows results of using FACTEDIT to correct summaries generated by different types of language
models using the FRANK benchmark (Pagnoni et al., 2021). We provide the generated summaries collected
in the benchmark along with their source document as input to our trained fact corrector. This setting

evaluates the generalizability of our adversarial training data in handling different error distributions from

SWhile Dong et al. (2020) is also a factual error correction method, we were unable to reproduce it as no public code was available.
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Method | RL | FactCC | Ent-DAE

CNN/DM
Bart 41.53 46.29 72.57
FACTEDIT 37.73 42.29 78.86
FacTEDIT (FF) | 37.73 53.14 81.71
BertSum 38.74 58.86 82.29
FACTEDIT 35.6 55.43 79.43
FacTEDIT (FF) | 35.6 61.71 82.86
BUS 38.59 49.71 70.28
FACTEDIT 33.79 48.00 76.00
FacTEDIT (FF) | 33.79 56.57 80.00
PointGen 35.62 80.57 93.14
FACTEDIT 32.54 75.43 90.29
FacTEDIT (FF) | 32.54 78.29 90.86
Seq2Seq 27.15 19.43 29.71
FACTEDIT 24.78 2343 48.00
FACTEDIT (FF) | 24.78 24.00 54.29
XSum
BertS2S 29.05 22.29 05.71
FACTEDIT 28.93 50.43 40.00
FAcTEDIT (FF) | 28.95 50.43 40.00
TConvS2S 25.69 17.71 04.00
FACTEDIT 25.64 47.16 29.14
FacTEDIT (FF) | 25.64 47.16 29.14
PointGen 23.12 18.29 00.57
FACTEDIT 23.02 43.75 32.00
FacTEDIT (FF) | 23.04 43.75 32.00
TranS2S 23.93 18.86 2.86
FACTEDIT 23.86 31.73 36.00
FacTEDIT (FF) | 23.86 31.73 36.00

Table 6.2: Performance of FACTEDIT across different model generated summaries in the FRANK setting.
Best performance is indicated in Bold. FACTEDIT model vastly improves factuality across multiple models on
both FactCC and DAE scores.

Performance across Error Types on CNN/DM Performance across Error Types on XSum
Baseline FactEdit Baseline FactEdit
100 100

75 75
50

50

25 25

% factually correct summaries
% factually correct summaries
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Semantic_Frame_Errors Discourse_Errors  Content_Verifiability_Errors Semantic_Frame_Errors Discourse_Errors  Content_Verifiability_Errors.

Figure 6.3: Performance of FactEdit across different error categories in comparison to baseline (Cao et al.,
2020). FACTEDIT improves the percentage of factual summaries across diverse types of factual errors.

different summarization models. Our results show our model significantly improves the factuality in generated
summaries across 8 out of 9 test models. The FactCC Filter helps improves results in CNN/DM setting but
does not change results in XSum similar to results in §6.4.1. In the more extractive CNN/DM setting, fact
correction improves FactCC scores by ~5.3 points and DAE scores by ~10.9 points on average across models.
In the more challenging and abstractive XSum dataset, we improve FactCC scores by ~24 points and DAE

scores by ~31 points on average. Our results show that our model trained using Infilling LM based adversarial
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data is able to generalize and correct errors in generated summaries across different model types. Further, the
significant improvement in XSum suggests that using LMs to generate factually incorrect candidates produces
rich negative examples which help correct errors in more abstractive summaries.

Pretrained models like BART, BertSum and BertS2S have improved generation capabilities and make
lesser mistakes in generating the right entity or predicate and more mistakes in discourse structuring (Pagnoni
et al., 2021). FACTEDIT correspondingly shows larger improvements in DAE scores than FactCC scores
in these pretrained models. The Pointer-Generator model being highly extractive in nature scores highly in
factuality metrics in the CNN/DM setting and FACTEDIT reduces results in this setting showing that our
model is not beneficial in copy-based model settings. On the other hand, in the XSum setting, the base Pointer-
Generator model scores poorly and correcting factual errors in them improves factuality scores. Non-pretrained
sequence-to-sequence models like Seq2Seq and TransSeq2Seq score poorly in both ROUGE and Factuality
scores due to their limited language generation capabilities. By correcting factual errors in them, we improve
factuality metrics significantly without changes in ROUGE, indicating that the gains are due to fact correction

and not just rewriting the summary using a strong language model.

6.5 Analysis

6.5.1 Performance across Error Categories

The FRANK benchmark from Chapter 2 proposes a typology of three coarse categories of error types and
collects human annotations on the error category: i) Semantic Frame Errors - This category covers factual
errors in a sentence due to incorrect entity or predicate being generated ii) Discourse Errors - This covers
discourse level factual errors like incorrect pronouns or sentence ordering iii) Content Verifiability Errors -
This category is for errors whose factuality cannot be judged either due to grammatical errors or hallucinated
content. We evaluate our model on its ability to correct different types of errors. We use the generated
summaries from the best pretrained model in FRANK for each dataset - BART for CNN/DM and BertS2S for
XSum. For each subset of summaries of a particular error type, we correct the summaries using FACTEDIT and
report the percentage of factual summaries in the output as predicted by Ent-DAE. We compare FACTEDIT
with the baseline to study whether our model improves error correction for each type.

From Figure 6.3, we see that across both datasets FACTEDIT increases the percentage of factual summaries
across all three error categories, showing that the data generation process in FACTEDIT can generalize across
multiple error types without the need for special heuristics or annotations. We see the largest improvements in
the Semantic Frame Error category with an increase of ~ 8 points on CNN/DM and ~ 13 points on XSum.
On the more complex Discourse Errors we see an improvement of ~ 5 points on both datasets. Finally, on
Content Verifiability Errors, we see a ~ 8 point improvement on CNN/DM and ~ 2 point improvement on
XSum. XSum has a high proportion of hallucination errors and our results highlight the challenge in correcting

this error type.

6.5.2 Transferrability across Datasets

It is not always feasible to train specialized fact correction models for each dataset or style of summaries. While
CNN/DM and XSum contain documents of the news domain, they both have different summary characteristics.
Certain applications might benefit from a single model which can generalize to different summary styles. We
evaluate the ability of FACTEDIT trained on CNN/DM data (FACTEDIT FF - CNN Model) to transfer and
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Method FactCC | Ent-DAE
BertS2S 22.29 05.71
FACTEDIT (FF) - CNN Model 33.71 22.29
TConvS2S 17.71 04.00
FACTEDIT (FF) - CNN Model 30.29 22.29
PointGen 18.29 00.57
FACTEDIT (FF) - CNN Model 28.57 19.43
TranS2S 18.86 2.86
FACTEDIT (FF) - CNN Model 18.86 21.14

Table 6.3: Transfer results of FACTEDIT. FACTEDIT trained using CNN/DM data transfers well to summaries
generated for documents in XSum.

correct summaries generated for XSum documents using FRANK benchmark. Table 6.3 shows results for
this experiment. Our results show significant improvement in factuality scores across all model types in this
setting, showing that our data generation process produces rich and diverse factually incorrect examples which
can generalize to factual errors in other data settings. By using only the source documents, our training data is
agnostic of the styles, lengths and characteristics of reference summaries and hence is able to generalize to the
headline style abstractive summaries of XSum.

6.5.3 Human Evaluation

To further study whether the factuality corrections performed by our model align with human expectations
of automated summaries, we conduct a human study (Table 6.4). Two annotators evaluated 20 randomly
sampled summaries generated from the test set of the XSum dataset using the BertS2S model and corrected
by FACTEDIT and the baseline. The annotators were shown the entire source document and one corrected
summary at a time and asked to rate the fluency and factuality of the summary on a 1-5 Likert scale. In manual
evaluation, annotators rated FACTEDIT an average of 3.3 on factuality and 4.8 on fluency, compared to the
baseline which was rated 3.1 and 4.6 scores respectively, showing that FACTEDIT improves on both factuality

and fluency.

6.5.4 Ablation Study

Our model corrects each sentence in a summary given context of the rest of the summary and relevant passages
in the source document. We ablate this setup by removing parts of the context one at a time. In Table 6.5 we
present the results. We observe a a drop in results when using the entire summary as context (-RelevPass) and
when removing the context of the summary in which the sentence occurs (-SummCtxt). Our results show the

importance of having the appropriate context to enable the model to perform fact correction well.

6.6 Related Work

Factuality Evaluation Standard n-gram based metrics do not correlate well with human judgements of
factuality and are unsuitable for evaluating factuality (Kryscinski et al., 2019; Fabbri et al., 2020). Several
automated metrics were proposed to detect factual errors in generated summaries. They primarily fall in two
paradigms—Entailment based and QA based metrics. Goodrich et al. (2019); Kryscinski et al. (2020); Maynez
et al. (2020); Goyal and Durrett (2021) model factuality as an entailment verifying whether the summary
is entailed by the source. Lee et al. (2022b) use similar masked infilling to generate training data for such

metrics. QA models can be used to answer questions about the document, separately using the article and
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Method | FactCC | E-DAE

CNN/DM
FACTEDIT 76.03 75.36
. FACTEDIT -SummCitxt 75.73 74.23
Method | Fluency | Factuality g\ pn e SummCix-RelevPass | 75.89 | 75.03
Cao et al. (2020) 4.58 3.10 <

FACTEDIT 4.75 333 sum
) i FACTEDIT 2391 20.13
Figure 6.4: Results of Human Evaluation on g\ ~rEpIT -SummCtxt 22.89 20.06
Fluency and Factuality of corrected summaries. FACTEDIT -SummCtxt-RelevPass 2348 20.08

Human judges rate summaries corrected by
FACTEDIT higher in fluency and factuality Figure 6.5: Results of Ablation study with components of fact

than the baseline. correction pipeline removed. SummCitxt includes the generated
summary as additional context. RelevPass includes relevant
passages from the source as additional context. FACTEDIT
setup ourperforms the ablated versions on FactCC and DAE
scores.

the output summary as context and compare the answers to score the factuality of summaries (Durmus et al.,
2020; Wang et al., 2020a). To evaluate these metrics, recent work collec human judgements for factuality
(Fabbri et al., 2020; Maynez et al., 2020; Pagnoni et al., 2021). Additionally, (Pagnoni et al., 2021) also obtain
annotations on factual error categories, which we use for our evaluations. This paper considers the problem of
improving factuality, not measuring it. While this is a different task, it is related: e.g., measuring the number
of corrections made by FACTEDIT might be useful as a factuality measure.

Improving Factuality of Summaries: There are two paradigms of work to ensure generated summaries
are factually consistent: i) imposing factuality constraints during training or generation and ii) post-editing
generated summaries to correct factual errors. Wan and Bansal (2022) add factuality contraints during
pretraining by using factually consistent summaries. Model designs and factuality specific objectives help
optimize for factuality during training (Gabriel et al., 2019; Cao and Wang, 2021; Dong et al., 2022; Rajagopal
et al., 2022). During decoding beam search candidates can be ranked based on factuality measures (King et al.,
2022; Zhao et al., 2020). Work on correcting factual errors post generation is relatively nascent. Cao et al.
(2020) and Lee et al. (2022a) train fact correction models on synthetic data based on heuristic errors which
we show is less effective than LM based error generation (Table 6.1). Dong et al. (2020) use a QA model
to replace phrases in the summary with spans in the source text. This requires multiple inference iterations,
making them very expensive for correction. In contrast our approach corrects errors in one iteration, making it
a faster and more practical approach for error correction. Tangentially, work on correcting errors in reference
summaries to make the training data more reliable has also been explored Adams et al. (2022); Wan and Bansal
(2022). In dialog generation, Gupta et al. (2021) explore using mask-fill approaches to generate synthetic data
for response ranking, showing that using language models to generate adversarial data might be applicable

beyond summarization.

6.7 Conclusions and Future Work

We present an adversarial data generation process to generate rich synthetic data for a post editing model,
which can be applied to correct factual errors generated summaries. Our data generation process leverages
Infilling Language Models to produce alternative candidate summaries. Using the generated data, we train

models to rewrite summaries by correcting factual errors in them. Through extensive experiments across
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two datasets and nine models, we show that our fact corrector model improves the factual consistency of the
summaries, making them more reliable.

Future work can explore extending our work to design fact correction systems for open-ended generation.
As error types are more complex for open-generation models as discussed in Chapter 3, our data generation
process could be expanding to include broad sentence level error types as well. Further, while our methodology
trains the model to make a single edit, correcting open-ended generations would potentially require multiple

suggested edits as there could be multiple accurate versions of a text.

Ethical Considerations

Our model is trained to rewrite generated summaries by correcting factual errors in them. A limitation in our
current setup is accurate detection of factual errors. We rely on off-the-shelf metrics for identifying summaries
with factual errors to correct. Our model does not perform detection and correction together and often rewrites
correct summaries as well if fed to the model. Therefore for settings like CNN/DM, it’s beneficial to filter
summaries using a factuality metric before giving summaries to our model as input. As our fact corrector is a
sequence-to-sequence model, it could potentially introduce new factual errors in the summaries. It is essential
to use factually detectors to ensure summaries are factual before real world usage of any corrected summary.

State-of-the-art language generation models, including summarization, are not yet powerful enough to
facilitate fine-grained control over generated content. This leads to problems with content fidelity and safety;
our work aims to ameliorate issues related to factual reliability of the models. However, existing approaches,
including ours, cannot guarantee this yet. Furthermore, there is a risk of dual use, since the same techniques
can be used to post-edit models to produce non-factual, harmful content to mislead, impersonate, or manipulate
opinions. Future research should focus on developing better defenses methods against mis-using language

generators maliciously.
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Chapter 7

Pretraining Data Generation by Leveraging

Syntactic Structure

Chapter 8 describes a method to synthetically generate a large training dataset for supervising a task. With
large pretrained language models, we are moving to using large amounts data for pretraining models and
a much smaller training data to adapt models for a specific task by finetuning or in-context learning. Here,
models learn complex behaviour like learning language style and structure, knowledge or reasoning during
pretraining and hence the data used for pretraining influences model behaviour significantly. A big concern
though is that due to the scale of data used in pretraining, it is hard to control the kind of data being fed to
models and this often results in models exhibiting unintended behaviour which it learnt from the pretraining

data. In this chapter, I explore a new direction of synthetically generating data for pretraining models.

Here, I consider the task of factual error detection and proposes an approach for pretraining language
models for improving factual knowledge representation. I leverage language syntax to convert structured
knowledge to natural language sentences and use multiple novel approaches to pretrain language models and
improve their ability to represent facts. Research described in this chapter was conducted in collaboration with
Shangbin Feng, Yuyang Bai and Yulia Tsvetkov and was presented in an EMNLP 2023 publication (Feng
et al., 2023a).

7.1 Introduction

Generating factually accurate document summaries in addition to fluent and informative ones is critical to the
adoption of summarization models (Kryscinski et al., 2020; Goyal and Durrett, 2020). However, evaluating the
factual consistency of summaries is still challenging, especially in specialized domains like scientific or legal
(Cachola et al., 2020; Goldsack et al., 2022; Polsley et al., 2016; Kanapala et al., 2019). The key reason is
that the majority of existing approaches employ neural classifiers trained on synthetic data constructed from a
relatively small set of documents (Kryscinski et al., 2020; Goyal and Durrett, 2020). These factuality classifiers
are thus not robust to ever-growing information, in which the distribution of entities, events, and their relations
changes greatly across time and domains (Elsahar and Gallé, 2019; Laparra et al., 2020). Pagnoni et al. (2021)
highlighted this limitation, finding that over 50% of factuality errors in the XSUM (Narayan et al., 2018)
summarization dataset stem from semantic frame errors, namely entities, events, and relations between them,

as illustrated in Figure 7.1.
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To address these issues, we develop a new factuality evaluation model with improved factual knowledge
representation, specifically focusing on entities and relations. Entity-oriented pretraining objectives have been
shown to improve QA and reasoning tasks (Yasunaga et al., 2022; Liu et al., 2022b); we thus hypothesize
that similar objectives can aid factuality evaluation in better detecting semantic frame errors in generated

summaries.

We propose FACTKB, a novel factuality evaluation model

. . Article:
built upon language models (LMs) augmented with factual |7, "o~ got past the elephant's fence and a ditch

knowledge (§72) The LMs are pretrained with knowledge- separating the animal and visitors... Scientific Director of
the Amboseli Trust for Elephants, says that targeted

focused objectives using text synthesized from external knowl- |throwing of stones and branches by elephants is very
unusual. "It can happen when elephants are frustrated or

edge bases (KBs) which store high-quality facts about entities  |bored... The moments after the girl was struck at Rabat
Zoo on Tuesday were filmed by a bystander and uploaded

and relations. We propose three types of complementary pre- |onto YouTube ..

training strategies: (1) entity wiki, with a focus on improving

. . . . . . Gold: Not Factual
entity understanding; (2) evidence extraction, with a focus on ~ [Summary:
An elephant has been hit by a stone at a zoo in western

incorporating supporting evidence from surrounding context; |France after it was hit by a tree.

and (3) knowledge walks, with a focus on augmenting compo-

sitional reasoning about entities. For factuality evaluation, we ~ QAGS:Factual ' DAE: Factual * " FactCC: Factual

first pretrain a language model using these three entity-centric  Figure 7.1: Existing factuality models strug-
pretraining strategies, and then fine-tune the enhanced LM on ~ gle to identify semantic frame errors encom-
passing entities and relations. In the exam-
ple, they fail to identify an error in the gen-

We evaluate FACTKB’s correlation with human factuality —erated summary about who was hit by the
stone.

a factual error detection dataset.

judgments across three settings (§7.3). In in-domain (news)
summarization, FACTKB significantly outperforms baselines by
2-7 balanced accuracy (BACC) points on the FactCollect dataset (Ribeiro et al., 2022) and 10—12 correlation
points on the FRANK benchmark (Pagnoni et al., 2021), particularly showing marked improvements in
semantic frame errors. In out-of-domain experiments, FACTKB consistently outperforms existing approaches
by 3-5 BACC points on three datasets in biomedical and scientific domains (Saakyan et al., 2021; Sarrouti
etal., 2021; Wadden et al., 2020), demonstrating stronger generalizability to unseen documents in new domains.
Further analysis shows that FACTKB is compatible with different LMs and KBs while presenting a lightweight

and easy-to-use approach to factuality evaluation. '

7.2 Pretraining on Knowledge-Centric, Syntax based Synthetic Data -
FACTKB

FACTKB aims to improve the robustness and generalizability of factuality evaluation by a simple factuality
pretraining, which improves entity and relation representations in LMs. We first propose three pretraining
strategies (§7.2.1). We then describe the training process to (1) pretrain an LM using the proposed strategies
and (2) fine-tune the fact-enhanced LM on a factuality error detection dataset, resulting in FACTKB (§7.2.2).

Figure 7.2 presents an overview of our approach.

Code and data are available at https://github.com/BunsenFeng/FactKB.
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Figure 7.2: Overview of FACTKB. FACTKB pretrains LMs using three entity-centric pretraining strategies to
improve fact representations. The objectives are designed to fill masked entities/relations in KB facts using i)
Entity Wiki - direct facts about entities ii) Evidence Extraction - auxiliary knowledge about entities and iii)
Knowledge Walk - compositional knowledge from the KB. The pretrained LMs are then fine-tuned for robust
factuality evaluation.

7.2.1 Factuality Pretraining

Knowledge bases are rich reservoirs of facts about entities and relations (Vrandeci¢ and Krotzsch, 2014;
Pellissier Tanon et al., 2020), and we explore the possibility of leveraging external KBs as “fact teachers” to

enhance an LM’s representation of entities and relations.

Let KB = (&, R, A,¢,¢), where £ = {ey, ..., en} represents the entities in the KB, R = {r1,...,7nm}
denotes the relations in the KB, A denotes the adjacency matrix where a;; = k indicates relation r;, connecting
entities e; and e; (e;, 71, €;) € KB, €(-) : £ — strand ¢(-) : R — str map the entities and relations to their

textual names. We propose three novel types of factuality pretraining strategies that leverage the KB.

Strategy 1: Entity Wiki Entities in KBs often have multiple edges connecting them to other entities via
relations, each representing a distinct but related fact about the entity. Inspired by the task of knowledge
base completion (Bordes et al., 2013; Vashishth et al., 2020) to predict missing connections in KBs based
on available KB facts, we propose the entity wiki factuality pretraining, where an LM is pretrained with the
task of predicting masked entities or relations in KB facts. Specifically, for each entity e; € £, we retrieve its
one-hop neighborhood in the KB as &, = {e; | Iy s.t. a;; = k}. Leveraging the syntactic structure of

sentences, we then synthesize a new sentence using entity e; and its connected one-hop facts:
d; = concate, ce, [e(e;)p(ri|ai; = k)e(e;)[SEP]]

where concat denotes string concatenation and [SE P] denotes the special token. Repeating this generation
process for all e € £, we produce a corpus of entity facts as {dl}lle1 with the max size being the number
of entities |£|. We use this entity wiki corpus to pretrain an LM for better factual reasoning by randomly
masking entities and relations in it and training the LM to predict the mask given the surrounding facts about
an entity. We randomly mask the corpora with probability p and pretrain LMs with the masked language
modeling objective. We expect this objective to train LMs to infer facts from surrounding knowledge and

penalize unsupported hallucinations about entities and relations.
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Factuality Pretraining Corpus Size Bound  # Tokens Example

ENTITY WIKI x |&] 5.4M Johannes Kepler is born in Italy. Jo-
hannes Kepler is an [MASK]. [SEP] Jo-
hannes Kepler is the author of Astrono-
mia nova. .. .

EVIDENCE EXTRACTION o ||Allo 12.2M Hillary Clinton party affiliation [MASK]
Hillary Diane Rodham Clinton is an
American politician, ... Member of the
Democratic Party, she was the nominee

KNOWLEDGE WALK x |E|( Hé“‘ o)k 2.TM University of Edinburgh located in Scot-
land located in [MASK] is a continent

Table 7.1: Summary of the three factuality pretraining strategies.

Strategy 2: Evidence Extraction The goal of this pretraining strategy is to enhance the model’s ability
to evaluate facts based on relevant evidence. We begin by randomly selecting a triple (e;, %, €;) € KB and
use the first paragraph of the Wikipedia description of e; as the auxiliary knowledge. We synthesize a new

sentence using the two as:
d; = e(e;) p(ry) [MASK] Wikipedia(e;)

where we mask out €(e;) and [MASK] denotes the special token and Wikipedia(-) : £ — str maps entities
to the first paragraph of their Wikipedia description. Repeating this process N times with randomly selected
triples, we obtain a corpus of triples paired with auxiliary knowledge {d;}¥ ;. The corpus size is bounded by
all KB triples represented as the Ly norm of the adjacency matrix ||A||o. We use this corpus for the evidence
extraction factuality pretraining and train the LM to predict the mask by using relevant evidence in the auxiliary
paragraph. Through this, we aim to augment FACTKB’s ability to implicitly select evidence from the document

to support its factuality evaluation.

Strategy 3: Knowledge Walk Natural language documents often include compositional statements about
entities and relations (Feldman and El-Yaniv, 2019; Wang and Pan, 2022), but pretrained LMs struggle with
such compositional reasoning (Press et al., 2022). To improve FACTKB'’s ability to understand multi-hop
claims, we propose the knowledge walk factuality pretraining strategy. Specifically, we randomly select a

starting entity e gy and randomly select an entity e(;) from its direct neighborhood &, , resulting in a one-hop

Ok
triple {e(0), 7(0,1), €(1)} Where 7(o 1) denotes the relation between e gy and e(1). Now, from e(1), we randomly
select an entity from it’s direct neighborhood to take the next step. We repeat this process for K times, and
obtain a K-hop random walk of triples beginning at e(q): {ew), T(0,1)s €(1)y "5 T(K=1, K)> ex)}- We then

produce a sentence based on the K-hop walk:

d; = e(e()) concat ' [ o(rait1)) €leisn) ]

Repeating this C-hop walk N times with different randomly selected starting entities, we obtain {d;}2¥ ; as
the corpus for the knowledge walk factuality pretraining, whose size is bounded by the number of all possible
KC-hop walks as |€] (%)k . In this corpus, we randomly mask entities or relations in each group of facts with
probability p and train an LM to predict the masked element using the compositional facts around it using the
masked language model objective. Through this pretraining, we expect FACTKB to improve in compositional

fact understanding about entities and relations appearing in the summary and the input document.
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We briefly summarize the three factuality pretraining strategies and provide examples in Table 7.1.

7.2.2 FACTKB Training

We initialize FACTKB with encoder-based LMs and pretrain FACTKB separately with each of the three
factuality pretraining corpora using the masked language modeling objective to study the effectiveness
of each strategy. This results in fact-enhanced LMs with the ability to better represent facts, entities, and
relations. Finally, we fine-tune FACTKB on human-annotated factual error detection datasets with the sequence
classification setting, taking SUMMARY [SEP] DOCUMENT as input and produce FACTUAL or NON-FACTUAL
labels. The [CLS] token is adopted for classification. As a result, we obtain FACTKB, our entailment-based

factuality evaluation model that classifies machine-generated summaries as factual or non-factual.

7.3 Data and Experiment Settings

7.3.1 Training

Data We use YAGO (Pellissier Tanon et al., 2020), an encyclopedic knowledge base based on Wikidata
(Vrandeci¢ and Krotzsch, 2014), to construct the three types of factuality pretraining corpora, while we discuss
FACTKB’s compatibility with different KBs in Section 7.5.2. For finetuning, we use the FactCollect dataset
(Ribeiro et al., 2022), a dataset for factual error detection that gathers human annotations from different sources
(Wang et al., 2020a; Kryscinski et al., 2020; Maynez et al., 2020; Pagnoni et al., 2021) and consolidates them
into a single dataset. It mainly focuses on the news media domain, covering summaries and articles from CNN,
Daily Mail, and BBC. FactCollect follows a binary classification setting where each (SUMMARY, ARTICLE)
pair has a FACTUAL or NON-FACTUAL label. We present more details about the FactCollect dataset in Table
7.3.

Settings We use a ROBERTA-BASE (Liu et al., 2019a) checkpoint and continue pretraining separately
on each of the three factuality pretraining corpora. We discuss FACTKB’s compatibility with different LM
initializations in Section §7.5.2. We assign corpus size parameter N = 1e5, masking probability p = 0.15, and
knowledge walk length K = 5 in the experiments, while we discuss the effect of corpus size and knowledge
walk length in Appendix 7.5.3. We use a learning rate of 2e — 5 for pretraining, 1e — 4 for fine-tuning, a batch
size of 32, and the RAdam optimizer. Pretraining is conducted for 5 epochs and fine-tuning has 50 maximum

epochs with early stopping.

Hyperparameters: We propose to further pretrain LM checkpoints with three types of factuality pretraining
and fine-tune on factuality evaluation datasets. We present hyperparameters for the pretraining and fine-tuning
stage in Table 7.2. We mostly follow the hyperparameters in Gururangan et al. (2020) for the pretraining stage.
The default hyperparameters on Huggingface Transformers are adopted if not included in Table 7.2.

Computational Resources: We used a GPU cluster with 16 NVIDIA A40 GPUs, 1988G memory, and 104
CPU cores for the experiments. Factuality pretraining with the default hyperparameters takes around 1.5 hours,

while fine-tuning language models on the FactCollect dataset takes around 30 minutes.
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Pretraining Stage Fine-Tuning Stage

Hyperparameter  Value Hyperparameter  Value

LEARNING RATE 2e-5 LEARNING RATE le-4
WEIGHT DECAY le-5 WEIGHT DECAY le-5
MAX EPOCHS 5 MAX EPOCHS 50
BATCH SIZE 32 BATCH SIZE 32
OPTIMIZER ADAM OPTIMIZER RADAM
ADAM EPSILON le-6

ADAM BETA 0.9, 0.98

WARMUP RATIO 0.06

EVIDENCE: NV leb

WALK: N led

WALK: IC 5

Table 7.2: Hyperparameter settings of FACTKB.

7.3.2 Evaluation

To study the robustness of FACTKB, we perform both in-domain and out-of-domain evaluation.

In-Domain Evaluation Since most research and resources on summarization and factuality are in the
news media domain, we leverage the FactCollect dataset (Ribeiro et al., 2022) and the FRANK benchmark
(Pagnoni et al., 2021) for in-domain factuality evaluation. We evaluate FACTKB on the held-out test set of the
FactCollect dataset. FRANK (Pagnoni et al., 2021) is a factuality evaluation benchmark with human judgments
on the factual consistency of model-generated summaries collected across 9 summarization models along with
human annotations on the category of factual errors. Following the FRANK benchmark guidelines, we use
two correlation measures (Pearson (Benesty et al., 2009) and Spearman (Myers and Sirois, 2004)). FRANK
(Pagnoni et al., 2021) does not explicitly have binary labels such as { FACTUAL, NOT FACTUAL}. It also does
not have a training set due to its nature as an evaluation benchmark. Following previous work (Ribeiro et al.,
2022), we train FACTKB on the FactCollect dataset without the FRANK subset for the FRANK evaluation.

Generalizable Factuality Evaluation Summarization systems are used in diverse domains in the real world,
including but not limited to news media (Liu et al., 2022c; Eyal et al., 2019; Li et al., 2016a), social media
(Syed et al., 2019; Kano et al., 2018; He et al., 2020), and scientific literature (Cachola et al., 2020; Lev et al.,
2019). Consequently, factuality metrics should also provide reliable factuality scores in the face of shifting
domains. To study this, we perform an out-of-domain evaluation using unseen documents and summaries from
the scientific domain. To establish a test bed for generalizable factuality evaluation, we make use of three

datasets in the scientific literature domain:

* CovidFact (Saakyan et al., 2021) collects claims from the r/COVID19 subreddit and verifies them against
relevant scientific literature and Google search results, resulting in a binary classification setting that is

similar to the FactCollect dataset.

* HealthVer (Sarrouti et al., 2021) consists of claims sourced from TREC-COVID (Voorhees et al., 2021) and
verified against the CORD-19 (Wang et al., 2020b) corpus. While HealthVer originally follows a three-way
classification setting (SUPPORT, REFUTE, NOT ENOUGH INFORMATION), we remove the examples in the
"NOT ENOUGH INFORMATION" category to evaluate models as they are trained on the binary classification

setting (factual, non-factual).
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Dataset # Datapoint # Class Class Distribution Train/Dev/Test Split Proposed In

FACTCOLLECT 9,567 2 4994 /4573 8667 /300 / 600 Ribeiro et al. (2022)
FRANK 2,246 / / 0/671/1575 Pagnoni et al. (2021)
COVIDFACT 1,257 2 401/ 856 846 /94 /317 Saakyan et al. (2021)
HEALTHVER 4,447 32 2,758 /1,689 3,340 /508 /599 Sarrouti et al. (2021)
SCIFACT 773 32 508 /265 508 /56 /209 Wadden et al. (2020)

Table 7.3: Statistics of the datasets and benchmarks adopted in this work.

¢ SciFact (Wadden et al., 2020) includes claims sourced from citation sentences in biomedical literature and
verified against the cited paper’s abstract. While SciFact uses three-way classification that includes "NOT

ENOUGH INFORMATION", we similarly remove them in this work.

We leverage the well-organized version of the three datasets in Wadden et al. (2022). HealthVer (Sarrouti
et al., 2021) and SciFact (Wadden et al., 2020) originally had NOT ENOUGH INFORMATION labels, while
we removed such examples in the out-of-domain factuality evaluation to ensure their compatibility with
FactCollect. We train and validate FACTKB with the FactCollect dataset from the news domain and evaluate
on the test set of these datasets for zero-shot transfer learning.

We present more details about the adopted datasets in Table 7.3.

Baseline Details We compare FACTKB with different types of existing factuality evaluation models and
factuality evaluation measures trained on both synthetic data and human annotated data:

* BERTScore (Zhang et al., 2020b) is a general metric for text generation evaluation based on pretrained
BERT (Devlin et al., 2019).

* QAGS (Wang et al., 2020a) is a QA-based factuality metric, asking questions about summaries and articles

while examining whether the answers are consistent.

* QUALS (Nan et al., 2021) is a QA-based factuality metric that uses QAGen (Shakeri et al., 2020) to generate

both questions and answers from the summary.

* DAE (Goyal and Durrett, 2020) leverages the dependency structure of the summary and article to design a
factuality metric.

e SummaC (Laban et al., 2022) proposes to revisit and repurpose NLI models for detecting factual inconsis-

tencies in text summarization.

* FalseSum (Utama et al., 2022) augments NLI training data with controllable text generation for better

factuality evaluation.

» FactCC (Kryscinski et al., 2020) is an entailment-based factuality metric trained on synthetic data evaluating
factuality with binary classification. FactCC+ is a variant of FactCC providing explanations. FactCC+ is an

enhanced version trained with human-annotated data.

» FactGraph (Ribeiro et al., 2022) is an entailment-based factuality metric based on jointly analyzing the
textual content and AMR graphs of the summary and article. FactGraph-adapters is an enhanced version
with pretrained adapters for both the text and graph modules.

We follow the same train/dev/test dataset split and experiment settings so that the results are directly compara-
ble.
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All Data CNN/DM XSUM

Model
BACC F1 BACC F1 BACC F1

QAGS 79.8 79.7 64.2 76.2 59.3 85.2
QUALS 78.3 78.5 60.8 76.2 57.5 82.2
ROBERTA 76.1 76.5 62.5 76.2 62.1 78.3
FALSESUM 78.9 78.2 53.7 34.6 61.1 64.3
FALSESUM+ 84.2 83.7 64.2 77.1 67.4 82.1
SuMMAC 86.6 86.2 75.4 83.5 71.9 90.4
FAcTCC 76.0 76.3 69.0 77.8 55.9 73.9
FACTCC+ 83.9 (£0.4) 84.2 (+0.4) 68.0 (£1.0) 83.7 (£0.5) 58.3 (£2.2) 84.0 (£1.0)
FACTGRAPH 86.3 (£1.3) 86.7 (£1.1) 73.0 (£2.3) 86.8 (£0.8) 68.6 (£2.3) 86.6 (£2.0)
FACTGRAPH-ADAPTERS  87.6 (£0.7)  87.8 (£0.7) 76.0 (£2.8) 87.5(+0.4) 69.9 (+£2.3) 88.4 (£1.2)
FACTKB-WIKI 89.3 (£0.4)* 89.5 (£0.5)* 77.3(£0.3)* 88.2(£0.6)* 77.3(£1.3)* 91.8(£1.2)*
FACTKB-EVIDENCE 89.4 (£0.2)* 89.5(+0.3)* T7.7(£1.49)* 87.9(+0.7) 76.8(£1.9* 90.8 (+0.8)*
FACTKB-WALK 89.1 (£0.4)* 89.3 (£0.5)* 783 (£1.2)* 87.7(£0.4) 76.4(£0.3)* 90.4 (+1.4)*

Table 7.4: Performance of FACTKB on the FactCollect dataset. We report average performance and standard
deviation across 5 random seeds. Best performance is shown in bold, while * indicates statistical significance.
FACTKB significantly outperforms existing factuality evaluation approaches on in-domain evaluation.

7.4 Results

In-Domain Results We evaluate FACTKB and baselines on the FactCollect dataset using the entire held-out
test data, the CNN/DM subset and the XSUM (BBC) subset, and report balanced accuracy scores and micro
F1 scores. We run each method five times with different random seeds and report the average performance as
well as the standard deviation and compute statistical significance using the student ¢-test. Specifically, the
t-test calculator for 2 independent means > was adopted for the calculations.

Table 7.4 demonstrates that FACTKB significantly (*) outperforms all baseline factuality evaluation meth-
ods by 3.8 BACC points on average across the three dataset settings. This demonstrates that the introduction
of KBs and factuality pretraining is beneficial for factuality evaluation. Among the three factuality pretrain-
ing strategies, all of them outperform baseline models, suggesting that FACTKB’s general methodology is

compatible with different types of KB utilization.

Human Correlation We evaluate FACTKB and baselines on the FRANK benchmark to study how well
FACTKB correlates with human judgments. We use the official script * to report the Pearson (p) and Spearman
(r) correlation and p-values. Results in Table 7.5 show that classification-based metrics (FactCC, FactGraph,
and FACTKB) generally outperform QA-based metrics (QAGS and QUALS). FACTKB significantly advances
the state-of-the-art on the FRANK benchmark, resulting in the improvement of 5-15 correlation points across
multiple settings. Our results show that FACTKB is highly correlated with human judgments, making it a

practical approach for evaluating the factual consistency of generated news summaries.

Out-of-Domain Results We evaluate FACTKB and existing factuality evaluation models on out-of-domain
scientific literature datasets in a zero-shot manner. Results are presented in Table 7.6, which demonstrate that
while existing factuality evaluation models previously achieve good performance in the in-domain setting,
they exhibit severe performance drops on the three out-of-domain datasets, performing only slightly better
than random factuality scores (RANDOM). This suggests that existing approaches are not generalizable to
other domains, limiting their applicability. On the contrary, FACTKB significantly (*) outperforms existing

factuality metrics by 4.1 BACC points on average across the three out-of-domain datasets. Our results suggest

’https://www.socscistatistics.com/tests/studentttest/default2.aspx
3https://github.com/artidoro/frank
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All Data CNN/DM XSUM

Model
p pval r pwval p pwval r pwval p pwval r  p-val

QAGS 22 00 23 .00 .34 .00 27 .00 .07 .05 .06 .09
QUALS 22 .00 .19 .00 .31 .00 27 .00 .14 .00 .07 .03
DAE 17 00 20 .00 27 .00 .22 .00 .03 .38 .33 .00
ROBERTA 35 .00 .41 .00 .43 .00 .31 .00 .23 .00 .15 .00
FALSESUM .05 .00 .04 11 .07 .05 .07 .03 .04 .28 .04 .35
FALSESUM+ .22 .00 .26 .00 27 .00 .33 .00 .24 .00 27 .00
SuMMAC 33 00 3 .00 42 .00 .36 .00 .24 .00 .25 .00
FAcTCC 20 00 29 00 36 .00 .30 .00 .06 .07 .19 .00
FACTCC+ 32 00 38 .00 40 .00 .28 .00 .24 .00 .16 .00
FACTGRAPH 35 .00 42 00 45 .00 34 .00 .30 .00 .49 .00
FACTKB-WIKI 46 00 52 00 57 00 49 00 29 .00 .39 .00
FACTKB-EVIDENCE .43 .00 .49 .00 .53 .00 .45 .00 .31 .00 37 .00
FACTKB-WALK 47 .00 .52 .00 .57 .00 .45 .00 .35 .00 .36 .00

Table 7.5: Correlation of FACTKB with human judgments of factuality on the FRANK benchmark. Best
performance is shown in bold. FACTKB has the highest correlation with human judgments across five of the
six settings.

Model CovidFact HealthVer SciFact

BACC F1 BACC F1 BACC F1
RANDOM 52.7 41.3 46.8 53.0 49.0 57.5
FacTCC 52.3 49.2 51.8 51.9 42.7 45.9
FACTCC+ 51.1 50.5 49.5 51.6 48.6 55.2
FACTGRAPH 57.6 53.5 55.1 24.3 61.0 42.2
FACTGRAPH-EDGE 50.6 48.4 50.6 53.5 56.7 68.2
FALSESUM 50.6 41.6 56.8 51.2 45.7 65.3
FALSESUM+ 50.1 41. 57.3 51.6 51.9 65.4
SUMMAC 57.6 53.4 52.5 41. 59.8 46.9
ROBERTA 59.0 (£3.2)  46.4 (£4.3) 55.0(£2.2) 50.0(£3.9)  58.1(£4.0) T1.3(%3.5)
FACTKB-WIKI 64.8 (£0.3)° 54.4 (£0.7)* 60.1 (£0.4)* 71.6 (£2.9* 62.9 (£0.4)* 72.3 (£1.1)*
FACTKB-EVIDENCE 63.9 (£0.6)* 53.3 (£1.7) 59.0 (£1.0)* 70.8 (£0.9)* 61.4 (£0.5)* 74.1 (£1.6)*
FACTKB-WALK 63.7 (£1.0)*  53.1 (£1.6) 58.5(£0.5)* 68.7 (£1.7)* 63.1 (£1.1)* 67.6 (£4.1)

Table 7.6: Performance of FACTKB on out-of-domain scientific datasets. We report average performance and
standard deviation across 5 random seeds. Best performance is shown in bold, while * indicates statistical
significance. FACTKB exhibits better generalization to new domains across all three datasets.

that the factuality pretraining strategies enable FACTKB to better represent facts (entities and relations) in a

new domain, making the factuality evaluation model more robust to shifting domains.

7.5 Analysis and Discussion

7.5.1 Where did FACTKB Improve?

To better understand FACTKB’s improvement over existing approaches, we leverage the factual error typology
in the FRANK benchmark (Pagnoni et al., 2021) and examine FACTKB’s performance on the three error
categories: semantic frame, discourse, and content verifiability errors. Using the official script in the FRANK
benchmark, we remove each category of errors and report changes in correlation scores. Higher variation
indicates a greater influence on a model’s ability to handle a certain type of error. Figure 7.4 demonstrates
that FACTKB is significantly better at identifying semantic frame errors, which focus on entities and relations.
This indicates that our KB-based factuality pretraining strategies successfully result in a better understanding

of the facts regarding entities and relations. FACTKB also has good performance in other categories, resulting
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Figure 7.3: Compatibility of FACTKB across various LMs and KBs. We report BACC scores of different
setups on the FactCollect dataset. FACTKB is a general method compatible with various LM and KB settings.
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Figure 7.4: Correlation of FACTKB and baselines with human judgments across error categories. FACTKB
shows significant improvement in capturing semantic frame errors and has slightly better or on-par performance
on discourse and content verifiability errors.

in a factuality evaluation model that captures diverse types of errors and advances the state-of-the-art across
the board. We conduct further qualitative analysis in Appendix 1.5.2.

7.5.2 KB and LM Compatibility

FACTKB uses pretrained LMs for initialization, leverages external KBs for factuality pretraining, and
trains on factuality evaluation datasets to result in a factuality metric. Our general methodology to lever-
age knowledge bases as fact teachers for generalizable factuality evaluation could work with different LM
and KB combinations. To study whether out approach works across different settings. For LMs, we used the
ROBERTA-BASE, GOOGLE/ELECTRA-BASE-DISCRIMINATOR, FACEBOOK/BART-BASE, ALBERT-BASE-V2,
MICROSOFT/DEBERTA-V3-BASE, DISTILROBERTA-BASE LM checkpoints on Huggingface Transformers. For
the six KBs, we used their organized versions: YAGO15k at Lacroix et al. (2019), WikidataSM at Wang et al.
(2021), Atomic at West et al. (2022), ConceptNet at Zhang et al. (2022¢), KGAP at Feng et al. (2021), and
UMLS at Zhang et al. (2022c). For each combination, we initialize a particular LM and pretrain it using the
proposed three pretraining strategies based on a particular KB. For each setting, we evaluate the resulting

model using the FactCollect dataset and report the BACC scores. We present the performance of different
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Figure 7.5: Parameter analysis of pretraining corpus size, epoch, and knowledge walk length.

settings in Figure 7.3, which illustrates that regardless of which LM and KB, FACTKB generally results
in improved factual error detection capabilities compared to the vanilla LM checkpoints without factuality
pretraining. In addition, certain LMs (RoBERTa and DeBERTa) and KBs (YAGO, KGAP, and UMLS) are
better than others, suggesting that the choice of the base LM and external KB warrants further research. Our
results demonstrate that FACTKB is a general pretraining approach that can be applied to various LM-KB
combinations to improve fact representations and develop better factuality evaluation models.

7.5.3 Parameter Analysis

Corpus size. For evidence extraction and knowledge walk, the pretraining corpus size N is controllable and
governs the amount of information towards augmenting FACTKB’s ability towards factual errors regarding
entities and relations. While we adopted N = 1e5 in the main experiments, we further explore the effect
of factuality pretraining corpus size in Figure 7.5. It is illustrated that N = le4 or N = le5 are generally
desirable settings, while factuality pretraining with too large Ns might be counterproductive. This could in

part be attributed to catastrophic forgetting (Ramasesh et al., 2021), which warrants further research.

Pretraining epoch. FACTKB further pretrains LM checkpoints on the three factuality pretraining corpora,
while the training epoch governs the intensity of such exercises. We adopted 5 epochs of continued pretrain-
ing in the main experiments, while we further explore the effect of pretraining epochs in Figure 7.5. it is

demonstrated that 1 to 10 epochs are generally desirable while exercising too much might be counterproductive.
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Metric Pearson Spearman  Usage Steps

QAGS .22 .23 1) extract answer candidates 2) generate the questions 3) answer
the generated questions 4) compare the answers to obtain the
QAGS factuality score

QUALS .22 .19 1) generating question and answer pairs from summaries 2) fil-
ter the generated question and answer for high-quality pairs 3)
evaluate the generated question and answer pairs using the source
document as input, compute QUALS scores for each summary

DAE 17 .20 1) preprocess summaries and documents with dependency parsing
2) run the pretrained model to get DAE scores

FacTCC .20 .29 1) run the pretrained model to get FactCC scores

FACTGRAPH .35 42 1) build abstract meaning representation graphs 2) run the pre-

trained model to get FactGraph scores

FACTKB 47 52 1) run the pretrained model to get FACTKB scores

Table 7.7: Usage steps of factuality metrics and their performance on the FRANK benchmark. FACTKB
(WALK) presents a state-of-the-art factuality metric with minimum hassle when evaluating new summaries and
articles.

Knowledge walk length. An important aspect of the knowledge walk factuality pretraining is the generated
walk length I, which governs the degree of compositionality in the pretraining corpus. While we adopted
K = 5 in the main experiments, we further explore the effect of /C in Figure 7.5. It is illustrated that IC = 5

performs best by providing a moderate amount of compositionality in the factuality pretraining corpora.

7.5.4 Simplicity Study

While existing factuality evaluation approaches require additional processing (such as computing the depen-
dency structure (Goyal and Durrett, 2020) and AMR graphs (Ribeiro et al., 2022) or running multiple iterations
of question generation (Fabbri et al., 2022)) in the face of new data, FACTKB requires no preprocessing and
only uses a fine-tuned RoBERTa for sequence classification. We summarize the steps involved in using existing
approaches and their performance on the FRANK benchmark in Table 7.7, which demonstrates that FACTKB
not only has state-of-the-art performance but is also a lightweight and simple factuality evaluation model.

7.6 Related Work

Factuality Evaluation Recent advances in text summarization have presented models and systems that are
capable of generating increasingly fluent, controllable, and informative summaries of documents (Liu and
Lapata, 2019; Balachandran et al., 2021; Meng et al., 2022; Tang et al., 2022; Goldsack et al., 2022; Peng
et al., 2021; Aharoni et al., 2023; Liu et al., 2022d; Rothe et al., 2021; Narayan et al., 2021; Bhattacharjee
et al., 2023; Chen et al., 2023c; He et al., 2023; Liu et al., 2023d; Chen et al., 2023b). However, they suffer
from hallucination and might not be factually faithful towards the source document (Cao et al., 2018b; Pagnoni
et al., 2021; Balachandran et al., 2022; Tang et al., 2023; Liu et al., 2023c; Luo et al., 2023), leading to
increased research in factuality evaluation. QA-based approaches (Wang et al., 2020a; Nan et al., 2021;
Scialom et al., 2021; Fabbri et al., 2022) attempt to generate and answer questions based on summaries and
documents and judge the factuality by comparing answers. Later approaches are generally entailment-based
(Kryscinski et al., 2020; Goyal and Durrett, 2020, 2021; Laban et al., 2022; Ribeiro et al., 2022), proposing to
classify (summary, document) pairs into FACTUAL or NON-FACTUAL labels. Among them, FactCC (Kryscinski
et al., 2020) is one of the first entailment-based metrics and is trained on synthetic data; DAE (Goyal and
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Durrett, 2020, 2021) proposes to leverage the dependency structure of summaries and documents; FactGraph
(Ribeiro et al., 2022) builds abstract meaning representation graphs and adopts graph neural networks for joint
representation learning along the textual content. In addition, hypothesis re-ranking (Garneau and Lamontagne,
2021), counterfactual estimation (Xie et al., 2021), NLI models (Utama et al., 2022), phrase-level localization
(Takatsuka et al., 2022), and weighting facts in the source document (Xu et al., 2020) were also explored in
factuality evaluation. Moving beyond a binary concept of factuality, FRANK (Pagnoni et al., 2021) promotes a
fine-grained understanding of factuality and proposes a typology of factuality errors. Inspired by its analysis
that semantic frame errors, errors regarding entities and relations, are a major source of factuality errors yet
under-explored by existing factuality metrics, we propose FACTKB to leverage external KBs for factuality
pretraining and help enforce better factuality towards entities and relations discussed in summaries and

documents.

Knowledge Bases in NLP Knowledge base is a standard format for structured knowledge representation.
One application of KBs in NLP is to inject knowledge and augment LMs, where different approaches focused
aspects such as pretraining (Chen et al., 2020; Agarwal et al., 2021; Rosset et al., 2020; Li et al., 2022),
document graphs (Hu et al., 2021; Zhang et al., 2022b), KB structure (Yasunaga et al., 2021; Zhang et al.,
2022c), and long documents (Feng et al., 2023b). KB-enhanced approaches also advanced numerous NLP
tasks, ranging from question answering (Mitra et al., 2022; Bosselut et al., 2021; Oguz et al., 2022; Feng et al.,
2022; Heo et al., 2022; Ma et al., 2022), text generation (Rony et al., 2022; Dognin et al., 2021; Yu et al.,
2021), and commonsense reasoning (Kim et al., 2022; Jung et al., 2022; Amayuelas et al., 2021; Liu et al.,
2022a). In this work, we tap into KBs’ nature as high-quality reservoirs of factual information and construct
factuality pretraining objectives to augment factuality evaluation.

7.7 Conclusions and Future Work

We propose FACTKB, a simple and novel approach to factuality evaluation using language models pretrained
on facts from external KBs to improve entity and relation representations. Specifically, we leverage KBs
to construct three factuality pretraining objectives: entity wiki, evidence extraction, and knowledge walk.
FACTKB pretrains an LM using the three objectives and fine-tunes the resulting model on factuality evaluation
datasets. Extensive experiments demonstrate that FACTKB advances the state-of-the-art in both in-domain and
out-of-domain factuality evaluation, better correlates with human factuality annotations, and better detects
semantic frame errors. FACTKB presents an easy-to-use and generalizable factuality metric, facilitating
research on factually-consistent summarization.

An important focus of this work is out-of-domain factuality evaluation: Summarization systems face
input documents from varying domains, which requires factuality metrics to also generalize to different
document domains. Existing metrics struggle with semantic frame errors and such struggle is exacerbated by
the domain shift of entities and relations, while FACTKB offers a stronger and more generalizable factuality
metric. However, in this work, we mainly focused on the additional domain of scientific literature, while
other potential domains remain underexplored such as social media (Syed et al., 2019; Kano et al., 2018; He
et al., 2020). We leave it to future work the exploration of FACTKB and existing factuality metrics on more
document domains that are present in summarization systems. Further, in FACTKB we focus on constructing
natural-language like statements by using surface forms of KB triples. An interesting direction for future work

would be to construct more realistic natural sentences by leveraging language models. This would enable
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us to pretrain the model on more diverse and realistic statements while still controlling for data source and

knowledge mix.

Ethical Considerations

While Section 7.5.2 offers empirical evidence that FACTKB is compatible with 6 language models and
6 external knowledge bases, it remains unclear upfront which LM and KB combination would be most
desirable. While empirical performance could be a good guide, there are several unaddressed possibilities: For
language models, it is possible to leverage an ensemble of FACTKBs seeded with different LM checkpoints
and architectures. This might result in better factuality evaluation, but would also dramatically increase the
computation costs when evaluating on new data. For knowledge bases, it is possible to leverage domain
expertise and select an external knowledge base that would be most helpful for the domain adaptation of
factuality evaluation. It is also possible to leverage a combination of existing knowledge bases for FACTKB’s
factuality pretraining, while the specific combination and how to apply different factuality pretraining to
different KBs are hard to determine. All in all, FACTKB presents a general KB-enhanced factuality metric with
numerous possibilities, while we leave some of these considerations to future work. FACTKB is initialized
with pretrained language model checkpoints and leverages knowledge-base-based factuality pretraining.
Consequently, FACTKB might pick up the biases of the adopted language models (Liang et al., 2021; Nadeem
et al., 2021; Shaikh et al., 2023a; Tan and Celis, 2019) and knowledge bases (Fisher et al., 2020; Mehrabi
etal., 2021). As a result, FACTKB might leverage these biases in judging the factuality of summaries, further
reinforcing the bias in text summarization systems. We leave it to future work on understanding and mitigating
the bias of factuality metrics.

FACTKB leverages high-quality and factual knowledge bases to generate factuality pretraining corpora
and augment LM’s ability to stay factual with respect to entities and relations discussed in the summary and
document. On the contrary, if non-factual and misleading knowledge is leveraged for the three factuality
pretraining strategies, it might jeopardize the factuality of FACTKB and make it insensitive to misinformation
and falsehoods in summaries and documents. As a result, we encourage the responsible use of FACTKB and

the factuality pretraining methodology.
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Chapter 8

Conclusions

This thesis demonstrates the role of language structure in building trustworthy large-scale, data-driven language
models. It present solutions that incorporate language structure in novel ways to design and evaluate transparent
and reliable language generation systems. The first part of the thesis introduces semantically grounded analysis
and evaluation measures to assess the factual reliability of trained language generation models. The second part
of the thesis presents model designs that incorporate inter-sentence structures to promote inductive biases and
transparency. Finally, the third part of the thesis presents techniques that use syntactic structures to generate
synthetic, general datasets for training robust and factual systems. Overall, this thesis presents ideas and
methods for incorporating trustworthiness and reliability in the design of each stage of ML pipelines for

language model development.

8.1 Summary of Contributions

* I develop comprehensive frameworks for fine-grained evaluation of factual errors or hallucinations in
language generation by leveraging semantic, discourse and pragmatic structure in language. I use this
framework and evaluate a variety of models to quantitatively show the range of factual inaccuracies in

model generated text, even with the current state-of-art large language models.

* T design a novel interpretable by design model architecture for document summarization which not only

improves summary quality but also allows interpreting latent model decisions for summarizing.

» I design a novel interpretable by design model architecture for negotiation dialog which incorporates
conversation and strategy structure resulting in improved negotiation capabilities as well as interpretation

of latent negotiation strategies employed by the model.

* Iintroduce a new method for high-quality synthetic training data generation to fine-tune models for

error correction showing improved error correction capabilities across diverse error types and models.

¢ I introduce a new method for synthetic data generation for pretraining language models on high-
quality factual knowledge. I demonstrate that the resulting models have improved factual knowledge

representation capabilities, resulting in improved factual error detection across diverse domains.
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8.2 Future Work

8.2.1 Task-Agnostic Reliability

Recently, there has been increased interest in general NLP models that are pre-trained on large volumes data
and useful for various downstream tasks. As a consequence, there is a need to improve reliability in such
general models by addressing limitations in data, model and evaluation. While this thesis demonstrates this
idea using different NLP tasks as use-cases, the core ideas presented are applicable beyond individual tasks to

address language model reliability in a task-agnostic manner.

Dynamic, Fine-Grained Evaluations: Evaluation in large language model era is dominated by static
benchmarks which provide an aggregate measure of a model’s performance on a broad range of tasks. These
benchmarks though useful for model comparisons lack any visibility into fine-grained model capabilities
and do not provide any feedback on model limitations. As an initial step to address this, I developed fine-
grained evaluation frameworks for factuality in language generation in Chapter 2 and Chapter 3. Though
these frameworks are specific to factuality, their design protocols can be extended to develop fine-grained
evaluations for complex settings like dialog modeling, mathematical reasoning, low-resource translation and
to new capabilities emerging with increasing model complexities. For example, following the structure based
taxonomy from Chapter 2, evaluation for mathematical reasoning can be decomposed into different hierarchical
types like induction, geometric reasoning, algebraic reasoning and each reasoning type can be further evaluated
via fine-grained categories which evaluate the correctness, coherence, notations or efficiency. Extending ideas
presented in this thesis, language structure could also potentially help in decomposing and categorizing such
complex evaluations. Based on the taxonomies designed, targeted evaluation data can be collecting using
human annotators or by using language models to generate such data. Research presented in this thesis and
other independent studies have shown that such decomposition and taxonomies can help human annotators
provide high-quality annotations (Pagnoni et al., 2021; Krishna et al., 2023) as well as help models generate
high-quality diverse data (Mishra et al., 2024; Wang et al., 2023a), demonstrating how fine-grained evaluation
can be conducted while maintaining quality and efficacy (Yin et al., 2023). Such evaluation frameworks will
enable a much deeper understanding of models and their limitations.

In an adjacent axis, another concern with current approaches towards evaluation is the increasing risk of
benchmark contamination (Sainz et al., 2023; Yang et al., 2023) and overfitting (Zhou et al., 2023; Golchin and
Surdeanu, 2023) due to models being trained on large, unfiltered internet data. Public test sets or data highly
relevant to the test set can potentially be inadvertently included in pretraining corpora, leading models to pick
up on spurious artifacts or shortcuts and resulting in unfair evaluations that are extremely hard to diagnose
(Oren et al., 2023). In Chapter 6 and Chapter 7, I presented data generation methods for producing synthetic
training and pretraining data. An interesting direction to explore would be to combine the ideas of synthetic
data generation with fine-grained evaluation taxonomies to develop dynamic, evolving and comprehensive
benchmarks. A fine-grained taxonomy for a task or problem would ideally enumerate all the aspects that need
to be evaluated like correctness or coherence from the example above. Based on the taxonomy, we can devise
a synthetic data generation method that would generate diverse evaluation candidates to targetedly evaluate
each aspect of the taxonomy. Such a benchmark can be re-generated with different parameters every time
the evaluation protocols change or new domains or control variables need to be added providing a highly
dynamic way to evaluate model capabilities. Dynamic evaluations are becoming increasingly popular as static

benchmarks are hard to update with constantly changing model capabilities (Gehrmann et al., 2021), but are
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critiqued for their lack of diversity and quality. A taxonomy grounded dynamic benchmark would enable us to

produce a continually updating dynamic benchmark while still retaining control, diversity and quality.

Model Interpretability: The transformer architecture has been adopted widely for training and deploying
language models recently. While there has been a lot of interest in improving the architecture to address
the speed and efficiency concerns, the models are still black-box in nature and do not enable any form
of interpretability or verifiability of their functioning. Probing and understanding how models represent
knowledge, make latent decisions or how data influences model training are still open questions. In Chapter 4
and Chapter 5, I proposed architecture designs for a new kind of interpretable-by-design or self-explaining
models that not only model tasks but also produce interpretations or provide a means to understand latent
model decisions. While these initial ideas have been demonstrated with task-specific designs, future research
to design general and interpretable models can enable big strides in improving the reliability of NLP systems,
especially in high-stakes settings. Recent explorations of augmenting general LLMs with the ability to explain
their decisions focus on eliciting such explanations via prompting like chain-of-thought (Wei et al., 2022),
tree-of-thought (Yao et al., 2023) or analogical prompting (Anonymous, 2024). While effective in improving
model performance, augmenting models to explain in such post-hoc ways during inference has also been
shown to be biased or unfaithful (Shaikh et al., 2023b; Turpin et al., 2023). Therefore, expanding the ideas
presented in this thesis and exploring ways to augment transparency and explanation generation by design
during model design and development would be crucial to address such issues. Following work in this thesis,
language structure can play a role in developing these models by either supporting the design of interpretable
architectures or introducing explanation-based training paradigms.

Additionally, there is also the need to close the loop in interpretability research to effectively leverage
the findings from model interpretability and understanding to address limitations and effectively improve
models. Most of interpretability research in NLP is primarily focused of producing human understandable
explanations (Ehsan and Riedl, 2020; Marasovi¢ et al., 2021; Ehsan et al., 2022) or understanding model
behavior as a function of training dynamics (Koh and Liang, 2017; Grosse et al., 2023). But one of the
most promising and sought after use of transparency and model explanations is identifying limitations and
improving model development. In (Ahia et al., 2023) and (Balachandran et al., 2023a), we demonstrated that
leveraging self-explaining classifiers to supervise model explanations can enable models to learn the training
data better and results in improved performance and reduced reliance on spurious correlations. Future work
could explore supervising model explanations or training with diverse explanations to mitigate concerns of
spurious correlations, generation of unsafe or incorrect text or to even improve language understanding and

generation across the board.

Synthetic Pretraining Data: The large performance improvements and impressive capabilities of large
language models are often credited to the vast volumes of internet data used in pretraining. While this large
data does lead to improved language understanding capabilities, they also often cause undersirable behaviours
in models like generation of toxic text (Balachandran et al., 2023b), unsafe text (Wang et al., 2023d), inaccurate
or outdated information (Mishra et al., 2024) or low performance for tail-end information or low-resource
settings (Mallen et al., 2023). It is extremely challenging to process large pretraining corpora to separate useful
data and problematic data. Current data processing methods are often ad-hoc and require manual inspection and
heuristics (Longpre et al., 2023a; Computer, 2023). Further, even when subsets of good sources are identified

it is challenging to ensure the optimal blend of data and the right curriculum to be provided to models. There
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is an increasing need to develop better strategies for controlling and ensuring good quality pretraining data for
model training.

In Chapter 7, I presented initial ideas towards generating high-quality synthetic data for pretraining. We
showed that having a controllable, synthetic data can improve factual knowledge representations resulting in
improved performance on factuality related tasks. Expanding this idea beyond factuality and knowledge, a
promising direction is to generate a broad but controllable synthetic data for general-purpose pretraining. Using
existing sources of high-quality data like knowledge bases, books, news reports as a base, a pretrained language
model can be employed to augment the dataset using various diversification techniques like paraphrasing
(Okur et al., 2022), backtranslation (Li et al., 2023a), targeted editing (Balachandran et al., 2022; Mishra et al.,
2024) or controllable generation (Liu et al., 2020). Extending ideas from Chapter 6, using language structure
to ground the diversification process can additionally also allows us fine-grained control and flexibility in the
process allowing us to control the data mixtures and varying different sources of data as required. While such
synthetic generation measures is a good start, we will potentially need more extensive research on how to
effectively and ethically use large public data to ensure that the language models we develop are safe and

accountable.

8.2.2 Human-Centered Reliability

The recent rise in real-world use and deployments of LLMs has resulted in model generated text being directly
shown to users, without significant research on the impact on them. Especially with models often generating
incorrect and false information or hallucinating content, there’s an increasing need to empower human users
to understand, appropriately trust and ethically use model generated content from various ML/LLM tools.
Predominant work on fact-checking, misinformation and detecting model generated text focus on assigning
binary labels to text (true v/s false, model generated v/s human written) (Guo et al., 2022; Mitchell et al.,
2023). While such classification enable building scalable safety measures, they are not sufficient for enabling
humans to have agency over the content they use. Here, there is a need to bridge ML, NLP and HCI research
to identify best ways to bring users into the model and application designs and provide them with the agency
to understand the accuracy, reliability and provenance of generated content.

In Chapter 2 and Chapter 3, I explored initial ways to provide fine-grained reliability constructs for better
transparency and evaluation. Such fine-grained error types provide an understanding of the reliability of
specific spans of text and understanding what specific errors are present in the text. While this is the first step,
it is still insufficient towards empowering humans to analyse and judge model generated text. Future work
should explore more channels of information that can be provided to human consumers of model outputs like
diverse provenance or evidence for each fact in the generated text, ability to control sources of evidence to
include peronally trusted websites and sources of knowledge, model uncertainity measures and more. Further,
producing these in independent strands of research will still make the reliability assessment process extremely
overwhelming for users. Hence, studying how to bring them together and visualize them via custom tools in an
accessible manner will bring enable any LLM tool user to assess the reliability of the model generated content

they use and empower them to understand and appropriately use the content.

8.2.3 Reliability in Multimodal Era

This thesis entirely focuses on studying and mitigating concerns with reliability in language based models. But

reliability is not a concern only in NLP. As large-scale pretrained models are being expanded in their input and
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output modalities, they are being exposed to diverse sources of knowledge and information and are producing
more sophisticated generated content along multiple axes of modality. Today, the development, training and
deployment of image generation, video generation and general-purpose large scale multimodal modals is
being done in breakthrough speeds (Bavishi et al., 2023; Liu et al., 2023a; Team et al., 2023). Though the
current models can generate realistic music, translate audio in various languages and produce high-quality
videos, they also produce images with wrong representations of world knowledge, wrong translations and
videos which do not accurately follow instructions (Li et al., 2023b; Liu et al., 2024; Yao and Wan, 2020).
The issue of reliability in such multimodal large scale models is further amplified due to the computational
challenges in representing and conducting detailed evaluations to even identify concerns of factual inaccuracy,
harmful biases or spurious correlations. There has been initial research in studying these concerns in context
of multimodal research (Sun et al., 2023; Li et al., 2023b; Liu et al., 2024; Koh et al., 2023), but they only
scratch the surface of these issues. Therefore, it’s becoming increasingly important to expand research on
reliability to multimodal settings. Research presented in this thesis, though focused on language settings, can
be adapted to address some of these challenges. Fine-grained factuality evaluations presented in Chapter 2,
Chapter 3 and research on improving the factual consistency in model outputs presented in Chapter 6 can
be extended to study concerns with factuality and control in multimodal models. Transparent model designs
presented in Chapter 4 and Chapter 5 can provide inspiration to design interpretable models in multimodal
settings. While these work leverage language structure to introduce transparency and control at various stages
of the ML pipeline, future research can incorporate broader structured knowledge and theories from acoustics

and vision to ground the large scale multimodal models.

8.3 Ethical Considerations

State-of-the-art language generation models are not yet powerful enough to facilitate fine-grained understanding
and control over generated content. This leads to problems with trust, content fidelity and safety; this work
aims to ameliorate issues related to transparency and factual reliability of the models. However, existing
approaches, including work presented here, cannot guarantee this yet. Furthermore, there is a risk of dual
use, since the same techniques used to control language model outcomes can be used to produce non-factual,
harmful content to mislead, impersonate, or manipulate opinions. Future research should focus on developing

better defenses methods against misusing language generators maliciously.

93



Appendix A

Appendices

1.1 Appendix for Chapter 2

1.1.1 Annotation Interface

‘We include screenshots of the annotation interface which we will make available.

Identifying Wrong Facts in Summaries of News Articles

Toggle Instructions

Instructions

In this task you will read a news article and several summaries of the article. Afterward, you will be asked to report on whether the facts in these
summaries are correct, and what kind of mistakes, if any, are present. You will have to identify specific sentences in the summary where
information is inaccurate.

In the following passage we highlight entities. An entity is generally a thing, a person, an organization, a place, a number, etc. To help us
identify wrong facts in the summaries, you will have to find out if the relationships between entities are sound. In other words, whether all the

facts are correct.

Passage: The first vaccine for Ebola was approved by the FDA in 2019 in the US, five years after the initial outbreak in 2014. To produce the
vaccine, scientists had to sequence the DNA of Ebola, then identify possible vaccines, and finally show successful clinical trials. Scientists say a
vaccine for COVID-19 is unlikely to be ready this year, although clinical trials have already started. Over 200,000 people have died of COVID-19 in
the US.

What is an error

Below, we list the potential errors present in the passage above as examples of types of errors. These errors are placed into categories
depending on the type of error that is present. Later, you will be asked to identify the types of errors in other passages.

* Information not in article:

The summary contains either an entity that was not in the article or a relation that cannot be verified using the article.

Example 1: China has already started clinical trials of the COVID-19 vaccine.

Example 2: The FDA is researching the COVID-19 vaccine.

Explanation 1: The entity "China" was never mentioned in the article. Even though the information might be true, since it was not contained
in the article the fact should be considered wrong.

Explanation 2: Both entities "The FDA" and "the COVID-19 vaccine" appear in the article. However, the relation "is researching" cannot be
verified based on the article (even though the information might be true) so the fact should be considered wrong.

Grammatically meaningless:

The grammar of the sentence is so wrong that it becomes meaningless. Minor grammar errors should not be penalized if the meaning of
the sentence is still clear.

.

Example: The Ebola vaccine accepted have already started.

Figure 1.1: Instructions can be toggled.
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Directions

Main Task Part 3: Find Mistakes

Using the article as ground-truth, find mistakes in the highlighted sentence in the summary, and categorize the mistakes.
To help you, we underline the sentences in the article that are likely to contain relevant information. However, this is for guidance only: you should not

when ing the

restrict yourself to the hi
Question

Are the facts in the highlighted sentence in the summary correct?

Yes
No

Article Text

Gaioz Nigalidze, the current Georgian champion, was expelled from the Dubai Open Chess
tournament when he was found using_his smartphone in the middle of a match A chess

grandmaster has been thrown out of an international tournament and faces a 15-year ban after he

was caught sneaking to the toilet to check moves on his mobile phone. Gaioz Nigalidze, the current

using_his phone in the middle of a match. The two-time national champion was exposed when his

opponent lodged a complaint when he grew suspicious about his frequent trips to the lavatory,.

Tournament organisers found Nigalidze had stored a mobile phone in a cubicle, covered in toilet

paper. They announced their decision to expel Nigalidze on Sunday morning on their Facebook
page. The complaint was made by Nigalidze's opponent in their sixth-round match in the
tournament, Armenia's Tigran Petrosian. He said: 'Nigalidze would promptly reply to my moves and
then literally run to the toilet. I noticed that he would always visit the same toilet partition, which
was strange, since two other partitions weren't occupied. * | informed the chief arbiter about my

Figure 1.2: The sentences being annotated is highlighted in yellow. Relevant text is underlined in the article

plain text.

Question

Are the facts in the highlighted sentence in the summary correct?

T  about which catego

Summary

UNK UNK was expelled from the dubai open chess tournament . the two-time national champion
was expelled from the dubai open chess tournament when he was found using his phone in
the middle of a match . the two-time national champion was expelled from the dubai open chess
tournament when he was found using his phone in the middle of a match .

What kind of mistakes are present in the highlighted sentence? Select all that apply.

Information not in article: entity or relation were not mentioned in the text.
Grammatically meaningless: very wrong grammar cannot be understood.

Misuse of pronoun: wrong pronoun ("he,

she”, etc) or referring expression ("the former”, etc).

Wrong relationship between entities: what happened is wrong (typically described by the verb).

Wrong entities in the relation: the "who", "what",

to whom", etc. is wrong. Relationship appears in the text but with different entities.

Wrong circumstance: wrong location, time, date, goal, manner, adverbs etc.
Wrong relationship between facts: logical or temporal link of facts is wrong.

Other

Article Text

Gaioz Nigalidze, the current Georgian champion, was expelled from the Dubai Open Chess
g_his smarty i
grandmaster has been thrown out of an international tournament and faces a 15-year ban after he

was caught sneaking to the toilet to check moves on his mobile phone. Gaioz Nigalidze, the current

Tournament organisers found Nigalidze had stored a mobile phone in a cubicle, covered in toilet
paper. They announced their decision to expel Nigalidze on Sunday morning on their Facebook
page. The complaint was made by Nigalidze's opponent in their sixth-round match in the

Summary

time national

UNK UNK was expelled from the dubai open chess tournament . the tv
was expelled from the dubai open chess tournament when he was found using his phone in
the middle of a match . the two-time national champion was expelled from the dubai open chess
tournament when he was found using his phone in the middle of a match

Figure 1.3: After selecting that the sentence is not factual annotators choose the category of error.

95



Directions

Main Task Part 1: Article

Read the following article fully. Note: article could take some time to load.
We will ask a simple question to check you read it and you will not have access to the article.

Finished Reading

Article Webpage

Feedback ® baiywai

MailOnline .. Y L Football

ROV 5 A0 JYTTN < OOV

Home ‘ UK. ‘ News m us. ShOWbI; ‘ Australia ‘ Femail | Health ‘ Science ‘ Money

‘ Video ‘ Travel ‘ Columnists

Soccer ‘ Transfer News ‘ Premier League ‘ Football ‘ Boxing ‘ UFC ‘ Golf ‘ Tennis ‘ F1 ‘ Racing ‘ Rughy‘ Cricket
More ‘ Fantasy Football

Login

- N - N e Site =

Figure 1.4: Articles web pages are provided.

Identifying Wrong Facts in Summaries of News Articles

Toggle Instructions

Directions

Main Ta

Answer th

sk Part 2: Article Question

e question below about the article that you just read.

Question

Which of the following was not mentioned in the article?

 Olivier Giroud

 Arsenal

Nairobi-born Mr Kantaria

Figure 1.5: Entity question to ensure annotators read the text.
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1.2 Appendix for Chapter 3

1.2.1 Details of Human Annotations

Annotation interface. Figure 1.6 shows the interface of our annotations.

Annotation Interface

SELECT ERROR TYPE AND TYPE SUGGESTED EDIT IF APPLICABLE:
EDIT TRACKER:

2000 -> 1989 (ENTITY)
Subjective Sentence = Edit n

The majority of V8s were sold as coupes,
TEXT TO EDIT - HIGHLIGHT TOKEN(S] TO ADD EDIT TOfANNOTATE AS ERROR: R o e

The Aston Martin V8 is a range of luxury sports cars produced by the British automaker Aston Martin from 1969 to 2000 stylish design, as well as their
. . . . exceptional handling and performance.
<mark=>1989</mark> ENTITY. The V8 name refers to the engine that powers these vehicles, a V8 engine which is known for it

high performance and smooth power delivery. The Aston Martin V8 was offered in various body styles over the years, including ;oo ji:j:i:?:m SETEL) m
coupes, convertibles, and sedans. The majority of V8s were sold as coupes, which were known for their sleek and stylish 5.6-liter V8 that produced around 400
design, as well as their exceptional handling and performance. UNVERIFIABLE The V8s also had a number of notable features, horsepower. (CONTRADICTORY)
including power windows, air conditioning, premium sound systems, leather upholstery, and more. The V8 engine used in the 4 ->3 (ENTITY) m
Aston Martin V8 was a powerful and refined motor. It was initially a 5.3-liter V8 engine that produced around 370 harsepower,

and it was laler upgraded to a more powerful 5.8-liter V8 that produced around 400 horsepower. CONTRADICTORY Both
engines were paired with either a 5-speed manual or a 4 <mark>3</mark> ENTITY-speed automatic transmission. Qverall, the
Aston Martin V8 was a high-perfarmance luxury vehicle that offered a thrilling driving experience and exceptional style
SUBJECTIVE. While it is no longer in production, it remains a sought-after classic car for enthusiasts and collectors alike.

that offered a thrilling driving experience Delete
and exceptional style (SUBJECTIVE)

REFERENCES FOR ANNOTATION:

Check if Wikipedia Source is used for annotation
Wikipedia Reference:

Aston Martin V8 Tn, 14 languages
Contents [ride] Aicle Telk Aeed Edit View hisiory Tacla v
(Top) Fram Wikipedia. 1he irée encyclopedia
v DES V8

Ses also: Aston Martin V8 (disambiguation)

DBS V8 by Ogle Design
Mot to b cantused with Aston Martin V8 sngine.

vV The Aston Martin V8 is a grand tourer manufactured by Asion Martin in the Uniied
Kingdom from 1969 o 1969, As with all raditional Aston Marting, it was antirely
Series 3 handbuill - with each car requifing 1,200 man-nours 1o finish.™*!
Saries 4 ' Osear India’)

AM VB

Aston Martin were lsoking o replace ine DG model and had designed a larger,
Saries 5 more madern looking car. The engine was not ready, however, 5o in 1967 the
Lagonda company released the DBS with the straight-six Vantage engine from the DEG. Two
‘years later, Tadek Marek's V8 was ready, and Aston released the DBS VB, With the
«demise of the straight-six Vantage in 1973, the DBS V8, now restyled and called
simply the Aston Martin V8, became the company’s mainatream car for neary two
Refarences @6cades. I was evenTualy 1elifed In 1AVOUr of the Virage In 1989

Production figures

1872 Aston Martin V3 coupé
Overview
MBRUEACIUrer Aston M

James Bond

Figure 1.6: Annotation interface.

Details of annotations. We hired 10 undergrads studying computer science to complete annotations. Each
annotator was assigned 60 passages to annotate and had to undergo a 45 minute one on one training session to
understand the task and how to navigate the annotation platform. The training session covered an in depth
explanation of the six different hallucination types in our taxonomy, included a walk through of how to
annotate a passage, and allowed time for annotators to ask any questions.

Annotators were given an instruction document outlining the task, details on the hallucination type, details
on how to navigate the annotation platform, and payment details which they looked over during their training
session before starting annotation work. Figure 1.7 shows the instructions on using the annotation platform
and payment details provided to annotators.
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Instructions

1. Read through the passage provided and scan for errors or hallucinations present. You can
use the references provided below to help with this.
2. For any error or hallucination you identify. Select the hallucination/error type you think

corresponds to the text you detected as erroneous from the drop down menu.

a. For entity and relational errors, type in a proposed edit to the erroneous text you

identified to make the statement factually correct.

3. Highlight the text in the passage you want to annotate.
4. Click the add button to insert your annotation.

5. If you use the wikipedia reference provided, please select the checkbox above the article.

a. If you use the top 10 google search articles or any other articles from the first page of
google, please copy and paste the urls used in the textbox provided at the bottom.
b. For any unverifiable error types, please add the top 10 urls you looked through to

determine it was unverifiable.

6. Click the next button to submit your annotation and move on to the next one.

Here is a link to a detailed walkthrough of the platform.

Payment Details

You will be assigned 60 annotations with the expectation that each annotation takes 10 minutes.
For the 600 minutes or 10 hours that you give towards annotations, we will compensate you
$200 ($20/ hr)

Figure 1.7: Annotation instructions and payment details provided to annotators.
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Examples of annotated results.

annotations. Table 1.2 shows list of annotated examples from each of our annotation datasets - WebNLG,

OpenAssistant, and Instruction Following dataset.

Type Percentage
Entity Errors 28.4%
Relation Errors 2%
Contradictory Statements | 6.1%
Invented Statements 3%
Subjective Statements 20.2%
Unverifiable Statements 40.3%

Table 1.1: Hallucination percentages in our human-annotated data.

Dataset

Annotated Passage Example

WebNLG

OpenAssistant

Instruction Following

A Long Long Way is a novel written by Sebastian Barry. It was first published in 2005 by
<entity>Faber-and Faber viking press</entity>, a <entity>British American</entity>
publishing company. The novel tells the story of Willie Dunne, an Irish soldier who has
a strong sense of loyalty to his country, but also feels torn between his Irishness and his
loyalty to the British army during World War I. The novel was critically acclaimed and
received several literary awards, <contradictory>ineliding-the 2005-Dublin Literary

Award </contradictory> and was shortlisted for the Man Booker Prize in the same year.
<subjective>The most luxurious airline flying within the continental United States is

generally regarded as JetBlue Airways</subjective>, particularly for its Mint business
class service. Mint offers a private suite experience, featuring fully lie-flat seats, ample
legroom and storage, premium food and beverage options, access to onboard WiFi and live
TV streaming, and turn-down service complete with duvets and pillows.

Some of Afghanistan’s secondary cricket home grounds include:
1.<contradictory>Kandahar-Cricket Stadivm, Kandahar </contradictory>
2.<invented>Mis Ainak Cricket Ground, Logar</invented>
3.<invented>Bost University Cricket Gr()und Helmand</invented>

Table 1.2: Examples from our human annotations for each dataset.

1.2.2 More Details of Synthetic Data Creation and Training

Text diversification results. Table 1.3 shows the diversified text results.
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Seed Passage Diversification Examples

Genre

Topic

Output

Article

Essay

Blog Post

Social Media
Post

News Report

Summary

Speech

Presentation
Intro

Brochure

Text Message

Community
Reinvestment Act

National Dodgeball
League

Red Channels

Sandman

1 Don’t Mind

(James Brown song)

Robert Lui

George Sperling

Blissful Ignorance

Effect

Nidulariaceae Fungi

Ashes and Diamonds

The Community Reinvestment Act (CRA) is a federal law that encourages commer-
cial banks and savings associations to help meet the needs of borrowers in low- and
moderate-income neighborhoods. The Act was passed in 1977 by Congress to reduce
discriminatory credit practices against low-income neighborhoods.

The National Dodgeball League is the only professional dodgeball league in the US, and
was founded in 2004. It is headed by Commissioner Edward Prentiss out of Hopkins,
MN and is composed of 24 professional teams that are divided into the National and
American Dodgeball Conferences. In the past, the tournament has featured teams from

Canada, Denmark, UK, Japan, New Zealand and Australia.
In the beginning of the 1950s, the "Counterattack” journal published a document,

"Red Channels," which named 151 individuals in the entertainment industry who were
believed to be under Communist manipulation or association. Many of these individuals
were being denied employment or had their careers negatively impacted due to their
political beliefs or history. "Red Channels" effectively created a blacklist of those named
in the document, further limiting their opportunities in the industry.

Check out The Sandman - a semi-retired American professional wrestler! He is best
known for his career with Extreme Championship Wrestling (ECW), where he held
the ECW World Heavyweight Championship a record five times. He also had stints in
World Championship Wrestling (WCW), Total Nonstop Action Wrestling (TNA), and
World Wrestling Entertainment (WWE). #Wrestling #ECW #WCW #TNA #WWE
James Brown’s "I Don’t Mind" has made its way up the R&B "Billboard" charts, hitting
number four. The track was released in 1961 and also reached number 47 on the Pop
"Billboard" charts. Fans will also be able to hear the song on Brown and the Famous

Flames album Live at the Apollo.
Robert Lui was born on February 23, 1990, and is a professional rugby league foot-

baller from Australia. He plays either as a halfback or five-eighth for the Townsville

Blackhawks in the Queensland Cup.
Dear fellow Americans, I am here to propose a solution to improve American Sign

Language communication. George Sperling suggests that with a sevenfold reduction
in the bandwidth for video transmission, we can achieve this. He even argued that the
telephone was originally created for the hearing impaired but it became popularized by
the hearing community. Let us not forget our roots and make a change for the better.

Have you ever wondered why sometimes people who know less about a product seem
to enjoy it more than those who have researched it thoroughly? This phenomenon is
called the Blissful Ignorance Effect and it’s a fascinating topic in consumer behavior

studies. Our presentation today will explore this effect and why it happens.
Explore the fascinating world of Nidulariaceae fungi! This family, found in most eco-

logical regions, includes five different genera, each with its own unique characteristics.

With their tiny egg-filled structures, these fungi are a wonder to behold!
Just found out about this book called Ashes and Diamonds by Jerzy Andrzejewski.

It’s set during the last few days of WWIIL. The main character, Maciek, has to kill a
Communist soldier. Sounds intense!

Table 1.3: Text diversification prompts. Instructions for diversification follow the following format: "Given a
passage, create a(n) [genre] of 3-6 sentences using only the information present in the passage. Do not include

any new information not presented in the passage. Passage: [sampled wikipedia paragraph]”
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1.2.3 Detection Results

Llama2-Chat 7B F1 results Table 1.4 reports the detection results for the Llama2-Chat 7B generations on

our curated datasets.

Generator: Llama2-Chat 7B
Editor ent rel con inv subj unv OA Bi

ChatGPT 252 12,6 16.1 150 124 128 265 || 634
Rt+ChatGPT | 355 17.5 132 222 109 14.6 329 || 704
GPT4 454 23.1 288 154 34 286 473 | 72.1
FAVA (ours) | 58.3 387 242 589 3125 444 39.6 || 799

Table 1.4: Fine-grained detection F1. OA and Bi indicates overall and binary predictions.

Overall precision and recall. Tables 1.5 and 1.6 report the precision and recall on our curated datasets.

ChatGPT Generations Llama2-Chat 70B Generations
Model ent rel con inv subj unv OA Bi. ent rel con inv [subj unv OA Bi.

CGPT 12.1 250 500 67 7.7 0.0 13.0 ]| 35.1 | 175 132 364 155 188 95 19.3  59.2

R+CGPT | 19.5 125 206 33 286 119 1721497 (252 167 188 257 149 32 21.0 60.0
Ours 354 200 462 10.0 750 30.0 40.1 || 69.1 | 56.8 31.3 237 396 706 464 || 46.1 80.0

Table 1.5: Fine-grained detection task (Precision). CGPT indicates ChatGPT. “OA” indicates overall accuracy
and “Bi.” indicates binary predictions accuracy.

ChatGPT Generations Llama2-Chat 70B
Model ent rel con inv subj unv OA Bi. ent rel con inv [subj unv OA Bi.

CGPT 51.3 333 333 500 7.7 00 336 | 874|418 192 21.1 &85 167 20.0 || 324 8l.1

R+CGPT | 499 41.7 333 143 556 224 417 93.1 |509 458 333 19.6 222 88 41.0 925
Ours 552 333 750 500 66.7 429 555 90.0|555 385 333 30.6 637 40.6 | 468 81.2

Table 1.6: Fine-grained detection task (Recall). CGPT indicates ChatGPT. “OA” indicates overall accuracy
and “Bi.” indicates binary predictions accuracy.

1.2.4 Benchmark Prompts

Figure 1.2.4 shows the prompt used for baseline models when evaluating on the detection benchmark.
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Given a passage with factual errors, identify any <entity>, <relation>,
<contradictory>, <subjective>, <unverifiable> or <invented> errors in the passage and
add edits for <entity> and <relation> errors by inserting additional <mark></mark> or
<delete></delete> tags to mark and delete. If there are no errors, return the passage
with no tags. Any changes to the original passage should be marked in <> tags. Below
are the error definitions followed by examples of what you need to follow.
Definitions:

1. entity errors (<entity>): a small part of a sentence, often an entity (e.g.,
location name), is incorrect (usually 1-3 words). Entity errors often involve

noun phrases or nouns.

2. relational error (<relation>): a sentence is partially incorrect as a small part
(usually 1 - 3 words). Relational errors often involve verbs and are often the
opposite of what it should be.

3. contradictory sentence error (<contradictory>): a sentence where the

entire sentence is contradicted by the given reference, meaning the sentence

can be proven false due to a contradiction with information in the passage.

4. invented info error (< invented >): these errors refer to entities that are

not known or do not exist. This does not include fictional characters in books or movies.
invented errors include phrases or sentences which have unknown entities or

misleading information.

5. subjective sentence (<subjective>): an entire sentence or phrase that is subjective
and cannot be verified, so it should not be included.
6. unverifiable sentence (<unverifiable>): a sentence where the whole sentence or

phrase is unlikely to be factually grounded although it can be true, and the sentence
cannot be confirmed nor denied using the reference given or internet search, it is
often something personal or private and hence cannot be confirmed.

Follow the given example exactly, your task is to create the edited completion

with error tags <>:

#4#

Passage: Marooned on Mars is a science fiction novel aimed at a younger audience.

It was written by Andy Weir and published by John C. Winston Co. in 1952, featuring
illustrations by Alex Schomburg. It ended up having a readership of older boys despite
efforts for it to be aimed at younger kids. The novel inspired the famous Broadway
musical "Stranded Stars," which won six Tony Awards. The novel tells a story of being
stranded on the Purple Planet. I wish the novel had more exciting and thrilling plot
twists.

Reference: Marooned on Mars is a juvenile science fiction novel written by American
writer Lester del Rey. It was published by John C. Winston Co. in 1952 with illustrations
by Alex Schomburg.

Edited: Marooned on Mars is a science fiction novel aimed at a younger audience.

It was written by <entity><mark>Lester del Rey</mark><delete>Andy Weir</delete></entity>
and published by John C. Winston Co. in 1952, featuring illustrations by Alex Schomburg.
<contradictory>It ended up having a readership of older boys despite efforts for it to be
aimed at younger kids .</contradictory>. <invented>The novel inspired the famous Broadway
musical "Stranded Stars," which won six Tony Awards.</invented> The novel tells a story
of being stranded on the <entity><mark>Red</mark><delete>Purple</delete></entity> Planet.
<subjective>I wish the novel had more exciting and thrilling plot twists.</subjective>

#4#

Now detect errors and include edits in the following passage like done in the example above.
Include error tags <> for ANYTHING YOU CHANGE IN THE ORIGINAL PASSAGE.

Passage: [PASSAGE_TO_VERIFY]
Reference: [REFERENCE]
Edited:
Table 1.7: Prompt used for baseline models for detection benchmark. We insert the retrieved context at the

[Reference: ] portion for retrieval-augmented baselines. For non-retrieval-augmented baselines, we do
not insert [Reference: ] component.
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1.2.5 Manual Analysis on Generated Data for FAVA training

We conduct human evaluations on 50 generated data to assess the automatic data creation quality. Prior work

introduces entity-centric synthetic data creation Longpre et al. (2021) and often results in unrealistic edits

that powerful LMs can easily identify which are synthetically perturbed. Therefore, we evaluate not only

validity but also quality. In particular, we evaluate a generated instance from two aspects: (1) validity—whether

the model edits violate our annotation scheme; (2) quality—the inserted errors are feasible and realistic and

notably different from provided few-shot samples. We ask human annotators to score each category for each

passage either 0, 1, or 2 (higher is better; see the detailed criteria in our Appendix).

Our analysis revealed that the data generated by our system with iterative insertion obtained an average

score of 1.66 for validity assessment and 1.36 for quality assessment. Meanwhile, data generated by one-shot

prompting scored an average of 1.1 for validity and 0.9 for quality. Our human evaluation reveals that our

LM-generated edits are indeed of higher quality than the one-shot data creation, and provide realistic factual

€ITOrS.

Table 1.8 shows examples of generated erroneous data from our synthetic data creation pipeline. We

ask human annotators to score each category for each passage either 0, 1, or 2. These scores were defined

as follows: a score of 0 indicated that less than half of the inserted errors aligned with the given criteria, a

score of 1 signified that at least half of the errors met the established criteria, and a score of 2 indicated that all

inserted errors met the criteria. As a comparison, we also generate training data with one-shot generation.

Original Passage

Automatic Data Generations for Training

“Solvalou,” the hyper-entertainment machine known
for its sit-down cabinet design and 3D shooting game-
play, has gained critical acclaim. Although it failed
to find commercial success, the game recently made
a comeback with a digital re-release for the Japanese
Wii Virtual Console in 2009 as one of the first titles
under the Virtual Console Arcade brand. Despite an an-
nounced home port for the 3DO Interactive Multiplayer
in 1994, the release was ultimately canceled and never
reached the market.

“Solvalou,” the hyper-entertainment machine known for its sit-down cabinet
design and 3D shooting gameplay, has gained critical acclaim. <invented>
The game won the Shooting Star Award in 2020 for its innovative
concept.</invented> Although it failed to find commercial success, the game
recently made a comeback with a digital re-release for the Japanese Wii Virtual
Console in 2009 as one of the first titles under the Virtual Console Arcade brand.
Despite an announced home port for the 3DO Interactive <entity> <delete>
Multiplayer</delete> <mark> Singleplayer </mark> </entity> in 1994, the
release was ultimately canceled and never reached the market. <subjective>
The game is a masterpiece that revolutionized the arcade industry and will always
be remembered as a classic.</subjective>

The knapsack problem is a problem in combinatorial
optimization where the goal is to determine the optimal
selection of items to maximize the total value within a
given weight constraint.

The knapsack problem is a problem in <entity> <delete> combinatorial
optimization</delete>> <mark> sequential search</mark> </entity > where
the goal is to determine the optimal selection of items to maximize the total
<entity> <delete> value</delete>> <mark> weight</mark> </entity> within
a given weight constraint.

Table 1.8: Examples of generated data from automatic data creation.
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1.3 Appendix for Chapter 5

1.3.1 Strategy-Graph Visualization

A visualization of a strategy sequence graph. Refer to §5.2.2 for more details. We also provide additional

details regarding the number of nodes and edges in our strategy graphs in Table 1.9.
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i oo ; Build
C: - (&) Polite & Rapport
o o AN \ =—> \ﬂt;r‘ Thanks
= — (&) Appeal (@9) sentiment .

Uy uz

Seller (Bot)
Figure 1.8: Visualization of a strategy sequence graph. The graph connects each strategy with all previously
occurring strategies. Here we present only a few edges for brevity. For example, there would be two more
additional edges from uy4 to the strategies of us.

Feature Value
Max no. of nodes in graph (total strategies) 86
Avg no. of nodes in graph 21
Max no. of edges in graph 3589
Avg no. of edges in graph 308

Table 1.9: We report the number of nodes and edges in our strategy-graphs. Each node corresponds to a
particular utterance-strategy pair.

1.3.2 Hyperparameter Search

We present the hyper-parameters for all the experiments, their corresponding search space and their final values
in Table 1.10.

1.3.3 Example Conversations

We present example conversations in Table 1.11 and Table 1.12.

1.3.4 Human Evaluation Interface

Screenshots of the human evaluation interface are presented in Figure 1.9, Figure 1.10 and Figure 1.11.
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Model Hyper-parameter Search space Final Value
All BERT - bert-base-uncased no fine tuning
All BERT Dropout - 0.3
All Dialogue context embedding - 300
All Dialogue context dropout - 0.1
All learning-rate (Ir) 5e-3, le-3, Se-4 le-3
All max utterances in batch 64,128,256 128
All weighted strategy loss True,False True
All decay rate (12) - le-3
All loss alpha 1,5 1
All loss beta - 10
All loss gamma - 10
All projection layers for strategy - 64
All projection layers for DA - 64
HED+RNN hidden size 64, 300 64
HED+Transformer  hidden size 64,300 300
HED+Transformer  decoder layers - 6
HED+Transformer attention heads 1,2 2
HED+Transformer  dropout 0.0, 0.1 0.0
DIALOGRAPH ASAP pooling ratio 0.2,0.5,0.8 0.8
DIALOGRAPH hidden dim 64,128 64
DIALOGRAPH Graph layers 1,2,3 2
DIALOGRAPH Graph dropout 0.0,0.2 0.0

Negotiation scenario!

You have to negotiate with another user for the price of an item. You are the buyer. Negotiate well!

Instructions

* Please use natural sentences as much as possible
o Do: Would $10 work for you?

e Don'tdo: 10?7

You can look at the product description at the right and use points from it.
Use the chat box to chat.
Do not press enter / return key more than once after typing an utterance. Wait for the response from the bot. That might take a few seconds.
If you run out of time while doing the chat, we will still award you money for the HIT if you made a good effort to complete the task.

If you chat continuously, the chat will most likely end in a few minutes, in about 10 turns.
At the end of the chat, after you have come to a conclusion on what to offer, type "<offer> xyz", where xyz is the amount in the chat itself.

After this, either you or the bot can decide to end the conversation by writing one of "<accept>", "<reject>", or "<quit>" (with brackets) in the chat itself.
Note that the chat window will close as soon as either party writes the above and you will reach the survey page.

Please close the browser tab after you are done with the HIT.
You can resize the chat window by dragging it from the bottom right corner. You can also scroll up and down to see the chat history.

Table 1.10: Here we describe the search-space of all the hyper-parameters used in our experiments.

Figure 1.9: Screenshot of the introduction for the human evaluation interface.
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Listing Price: 40
Buyer’s Target Price: 36
Title: 2017 NEW Stans 24 and 26 Tubeless Tire Kit

R ~
): DIALOGRAPH &&: Human

N ~
: HED+Transformer &&: Human

D Hello

~

&4: Hi. Is the tire kit new?
D1 Yes it is.

: Great. My bro destroyed my old kit and I'm looking for new tires.

. T am asking 40 for it.

~
a4: That’s too much for a student like me. How about 35?7
2: T can’t go that low. I could do 38.8 and I will deliver it to you.

>

a4: I can come pick it up for 36.

: I can do 37.2 and you have a deal.

Q: Okay great. Thanks. < offer > 37.2

@ Hello

~

a4 Hi. Is the tire kit new?

D Yes it is.

~

g: Great. My bro destroyed my old kit and I'm looking for new tires.
: Tam asking 40 for it.

~
a4: That’s too much for a student like me. How about 35?
€2: I can’t go that low. I could do 38 and throw in a warranty.

i.‘: I can come pick it up for 36.
211 can do that.

~
a4: Okay great. Thanks. < offer > 36

N ~
): FeHED a4: Human

5 ~
) HED a4: Human

C) Hello

~

a4: Hi. Is the tire kit new?

(1 Hi there! Are you interested in the bike?

: I am asking 40 for it.

~
a4: That’s too much for a student like me. How about 35?
: I can do that.

~
a4: Okay great. Thanks. < offer > 35

~
a4 Great. My bro destroyed my old kit and I'm looking for new tires.

C) Hello

~

ad: Hi. Is the tire kit new?

D1 Yes it is.

~

X‘: Great. My bro destroyed my old kit and I'm looking for new tires.
D1 Yes it is.

~

&4: That’s too much for a student like me. How about 35?
911 can do that.

~

a4: Okay great. Thanks. < offer > 35

Final Deal: Graph = 37.2, Trans = 36, FeHED = 35, HED = 35

Table 1.11: Examples of the generated dialogues of various models when we keep the buyer utterances same.
We see that DIALOGRAPH gets the best deal for the same dialogue context and is more persistent. The FeHED
and HED models accept offers more readily. We provide more examples of DIALOGRAPH in Table 1.12.

Negotiation scenario!
You have to negotiate with another user for the price of an item. You are the buyer. Negotiate well!

Instructions

* Please use natural sentences as much as possible.

© Do: Would $10 work for you?

© Don'tdo: 10?
* You can look at the preduct description at the right and use points from it
* Use the chat box to chat.

« Do not press enter / return key more than once after typing an utterance. Wait for the response from the bot. That might take a few

seconds.

The Negotiation Scenario

Category : Bike

Craigslist post id : 6118695547

uuid : S_sAk3UrLZEZWragJ6é

Your Target Price : 36

Price : 40

Description : | have a NEW Stan's Tubeless tire Conversion kit for sale for 24" AND 26" wheels/tires.
Title: 2017 NEW Stans 24" & 26" Tubeless Tire Kit

= If you run out of time while doing the chat, we will still award you money for the HIT if you made a good effort to complete the

task.
« If you chat continuously, the chat will most likely end in a few minutes, in about 10 turns.

+ Atthe end of the chat, after you have come to a conclusion on what to offer, type "<offers xy2", where xyz is the amount in the

chat itself.

+ After this, either you or the bot can decide to end the conversation by writing one of "<accept>", "<reject", or "<quit>" (with

brackets) in the chat itself.

* Note that the chat window will close as soon as either party writes the above and you will reach the survey page.

« Please close the browser tab after you are done with the HIT.

* You can resize the chat window by dragging it from the bottom right corner. You can also scroll up and down to see the chat

history.

Time: 5:44

[11/17/20 22:07:54] <You entered the room.>
[11/17/20 22:07:55] Partner: Hellol!

Enter your message here

Figure 1.10: Screenshot of the chat window for the human evaluation interface.
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Listing Price: 40
Buyer’s Target Price: 36
Title: 2017 NEW Stans 24 and 26 Tubeless Tire Kit

Q : DIALOGRAPH & : Human

@ : Hello

~

X.‘ : Hi.

2 : Are you interested in the kit?

~

:.; : Yes I am interested.

€2 : T am looking for 40 for it.

~

a4 : No I am willing to pay 35 for it.

¢ : Tcan’t go that low

: What can you take?

: I could do 38.8 and I will deliver it to you.
: I only have 36 please.

: I can do 37.2 and you can pick it up yourself.
: Sorry i only have 36

: I can do that.

: Okay thank you.
1 < offer > 37.2

: Hello

: Hi how are you.

: I am good.

: Is the kit good?

1 yes itis.

: are you sure?

: yes. i am willing to negotiate the price.

: okay how much you willing to sell.
: it is in great condition. i am asking 40 for it.

;1 will give you 25.
:1can do 38.8 and you can pick it up.

35
=} :1can do 37.2 and you can pick it up.

-~
Z.‘ : 36 last
2 : ok i can do that.

~

ad : < offer > 36

@ ¢ Hello

~

z.‘ :Hi

() : Hi i see you are interested in my apartment

YN Yol "o e Yol " e YA FaN "o e Yol "oy

@

)

a4 : i was interested in the tire kit
€2 : i m asking 40 for it.

: would you be able to do 35?7

: i m willing to negotiate a little bit. what is your budget?
: the highest i can go is 36

: 1 cant go that low i could do 38.8

¢ JHY -¢ JEH -¢)

: okay that works
¢ 1 < offer > 38.8

Table 1.12: More examples of the generated dialogues of DTALOGRAPH.
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Instructions

In order to complete this HIT, please answer the following guestions about the dialogue that you just completed. Please do not include any
personally identifying information about yourself (or any other person) in any open text questions on the survey.

Part 1: To what extent do you agree with these statements?

1. l understood the task perfectly.
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

2. My task partner was persuasive.
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

3. My task partner was human-like (natural).
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

4. My task partner perfectly understood what | was typing.
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

5. My task partner's responses were on topic and in accordance with the conversation history. (Coherent)

Strongly Disagree
Disagree

Neutral

Agree

Strongly Agree

Figure 1.11: Screenshot of the survey for the human evaluation interface.
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1.4 Appendix for Chapter 6

1.4.1 Qualitative Analysis

In Table 1.13 we present examples of corrections made by our models. In the first example, the generated

summary contains an entire sentence which is unsupported by the source document. FACTEDIT chooses to

remove the entire sentence instead of rewriting or correcting it. In the second example, the generated summary

contains hallucinated entities of reporter names which are not present in the source. Here, the FACTEDIT

rewrites by replacing the incorrect entity with the correct ones.

Source

Generated Summary

Corrected Summary

An endangered bottlenose dolphin has died off the coast of Spain

It had lost its mother and become stranded in shallow waters

off the coast of Mojacar in Andalucia. Tourists then began touching
and photographing the animal rather than seeking help for it.
Equinac, a local NGO, said "selfishness" caused the dolphin
"suffering and stress." The organisation, which works to protect
marine wildlife in the area, wrote in a Facebook post (in Spanish):
"The animal was subjected to the curious who wanted to photograph
and touch it." "These animals are highly protected; to disturb them, to
harm them, to manipulate them and to harass them is prohibited

by law, and we always ask for respect and consideration."

An endangered bottlenose dolphin has died

off the coast of Spain after being harassed by tourists
who wanted to take pictures of it, an animal welfare
group has said in a Facebook post, in part because
of their "selfish" behaviour.774,000 people have
visited the animal since it was stranded.

An endangered bottlenose dolphin has died

off the coast of Spain after being harassed by tourists
who wanted to take pictures of it, an animal welfare
group has said in a Facebook post, in part because
of their "selfish" behaviour.

BBC Wales Sport understands the Gills made an enquiry for Byrne

, before Edinburgh changed his mind over a player he brought

to Rodney Parade. Edinburgh opted to end the pursuit out of respect
for his old club, who he managed from 2011-2015, so as not to weaken
their battle against relegation. They are currently 20th in League Two,
seven points above the relegation zone. Meanwhile, Newport

have confirmed the release of defender Matt Taylor. The 34-year

old joined from Cheltenham in the summer
but made just five appearances for the south Wales club.

"Further to recent discussions, we can confirm that Matt Taylor

will leave the Club with immediate effect having mutually

agreed to terminate his contract," a statement from the club read.

Newport County manager Justin Edinburgh has ended

his interest in signing Gillingham midfielder Luke Byrne,
BBC Wales Sport has learned, after talks between the two
clubs ended in stalemate on Tuesday

night, reports BBC Radio Wales’ Mark McGhee

and BBC Radio Newport’s Steve Davies.

Newport County manager Justin Edinburgh has ended

his interest in signing Gillingham midfielder Luke Byrne,
BBC Wales Sport has learned, after talks between the two
clubs ended in stalemate on Tuesday night,

reports BBC Wales Sport.

Table 1.13: Examples of corrections made by our fact corrector.
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1.5 Appendix for Chapter 7

1.5.1 Merging the three strategies

We also tried combining the three factuality pretraining strategies to obtain FACTKB-COMBINED. We evaluate
it on the FactCollect dataset and present results in Table 1.14. It is demonstrated that FACTKB-COMBINED is
not significantly better than using a single factuality pretraining strategy, while we will make all versions of
FACTKB publicly available.

1.5.2 Qualitative Analysis

We present examples of (summary, article) pairs and their factuality scores in Table 1.15 and 1.16, where
FACTKB is significantly closer to human judgment than existing factuality metrics. It is demonstrated that
while existing factuality metrics are insensitive to major errors in entities and relations, FACTKB is capable of

identifying inconsistencies and enforcing strict factuality standards.

Model All Data CNN/DM XSUM

BACC F1 BACC F1 BACC F1
FACTKB-WIKI 89.3 (£0.4) 89.5(4£0.5) T77.3(£0.3) 88.2(£0.6) 77.3(£1.3) 91.8(£1.2)
FACTKB-EVIDENCE  89.4 (£0.2) 89.5(£0.3) 77.7(£1.4) 87.9(£0.7) 76.8(£1.9 90.8 (£0.8)
FACTKB-WALK 89.1 (£0.4) 89.3 (£0.5) 78.3(£1.2) 87.7(£0.4) 76.4(£0.3) 90.4 (£1.4)
FACTKB-COMBINED 89.0 89.7 76.0 88.1 74.2 89.1

Table 1.14: Performance of various FACTKB settings on the FactCollect dataset.
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QAGS

Article

DAE FactCC FactKB Gold Summary
0.3000 0.9990 1.0000 0.0035 0O plans to
build a new

generation

of royal

navy frigates
on the isle of
wight have
been submit-
ted to the
government.

The decommissioned Type 22 frigates HMS Cumberland, HMS Campbeltown, HMS Chatham
and HMS Cornwall are currently moored in Portsmouth Harbour.Bidders had until 23 January
to register an interest in the former Devonport-based ships.The BBC understands no proposals
to preserve the ships have been submitted. Those who have registered an interest are finalising
their bids with viewings set to take place in late February and March.A final decision is not
expected until the spring.The government’s Disposal Services Authority, which is handling
the sale, wants to award at least one of the frigates to a UK ship recycler to determine the
capacity of the UK’s industry in the field.Penny Mordaunt, Conservative MP for Portsmouth
North, said it was important UK recyclers had the chance to prove themselves in the field but
she was also keen to see at least one of them saved from the scrapyard.She added: "For anyone
that has served on a ship it’s your home, you’ve literally been through the wars with it... and
you want them to have a noble second life."My preference is to go for the reef and diving
attraction."We’ve got to get best value for the budget but a reef would also generate income
for part of the country through tourism."The Ministry of Defence has previously said it will
"consider all options" for the frigates to ensure "best financial return for the taxpayer".A
spokeswoman would not comment on the number or nature of the bids received due to
"commercial sensitivity".Originally designed as a specialist anti-submarine ship, the Type 22
frigate evolved into a powerful surface with ial anti-surface, anti-submarine
and anti-aircraft weapons systems.They were also known for having excellent command and
control, and communication facilities, making them ideal flagships on deployments, with a
complement of about 280 crew.Last year, the aircraft carrier HMS Ark Royal was sold as
scrap for £3m.

0.5333 0.9296 1.0000 0.0043 0

an elephant
has been hit
by a stone
at a zoo
in  western
france after
it was hit by
a tree.

The stone got past the elephant’s fence and a ditch separating the animal and visitors, the
00 said in a statement.The girl was taken to hospital and died within a few hours, the zoo
added.The zoo statement said the enclosure met international standards and said "this kind of
accident is rare, unpredictable and unusual”.Africa Live: More on this and other storiesThe
statement went on (in French) to point out two other recent incidents in the US:Phyllis Lee,
Scientific Director of the Amboseli Trust for Elephants, says that targeted throwing of stones
and branches by elephants is very unusual."It can happen when elephants are frustrated or
bored. In my opinion, it’s unlikely the elephant was directly targeting the girl - but exhibiting
frustration. You can’t predict what animals in captivity will do."The moments after the girl was
struck at Rabat Zoo on Tuesday were filmed by a bystander and uploaded onto YouTube.The
video shows the elephant waving its trunk behind a fence and swerves round to show a stone
on the ground.Metres away people are gathered around the girl, holding her head and stroking
her leg.

0.6000 0.9994 1.0000 0.0037 0 a

woman
has been
arrested
after a fire
broke out in
a restaurant
in  greater
manchester
city centre,
police have
said.

The victim was queuing for food at the branch in St George’s Street, Canterbury at about
02:15 GMT on Friday when the assault occurred.Investigating officers said three men entered
the restaurant and began being noisy and bumping into people.It is believed one of the group
then set light to the woman’s hair.Officers have released CCTV images of three men they are
keen to speak to regarding the attack.Det Sgt Barry Carr said: "Fortunately the fire was put
out quickly and the victim was not seriously hurt, but things could clearly have turned out
much worse."This was a nasty and extremely dangerous thing to do, and I urge anyone who
recognises the men in the CCTV images to contact me as soon as possible.”

0.8000 0.9974 1.0000 0.0044 O

tata steel has
confirmed
it is in talks
with the
company
about selling
its long
products
division.

The firm said it had signed a Letter of Intent to enter into exclusive negotiations with Liberty
House Group.More than 1,700 people are employed in the division, which has factories in
Rotherham and Stocksbridge.Steel union Community said it welcomed news of negotiations
following "months of unnecessary stress and concern".More on this and other South Yorkshire
storiesThe union’s general secretary Roy Rickhuss said: "This is a positive step for the UK
steel industry; however there remain huge challenges which government must address."The
union said it would be seeking urgent talks with Liberty House Group and would be asking
what their plans were for investment, protecting jobs and providing decent pensions for
members in retirement.Tata Steel’s UK boss Jha said the was "an
important step forward"."We now look forward to working with Liberty on the due diligence
and other work streams so that the sale can be successfully concluded," he said.The Speciality
Steels unit makes high-end components for the automotive, aerospace and oil industries.In
April, Tata sold its long-products division, based in Scunthorpe, to Greybull Capital, a UK-
based investment firm.

0.3000 0.9990 1.0000 0.0058 0 the site

of a new
burial site
in  oxford
has been
approved

by the city
council.

Oxford City Council said the money had mostly been used for "ground investigations of
possible sites" but nowhere suitable had been found.Two cemeteries still have space, in
‘Wolvercote and Botley, but they are expected to be full by 2018 and 2021.The council said it
had not given up and was "still exploring options".Linda Smith, board member for leisure,
parks and sport, said the council has been "searching for a suitable new burial site for many
years".She added: "But ultimately, as with new housing sites, we have run out of suitable
land within Oxford."So far all the council-owned sites that we have identified have, following
ground investigations and surveys, had to be discounted."Either due to the size of the site,
the ground conditions, a high water table or a covenant restricting the use of the site."After
the two remaining cemeteries are full the council said only the reopening of family plots, the
use of a few reserved plots, and the interment of ashes would be possible.The last increase in
burial space in Oxford was in 1932.

Table 1.15: Qualitative analysis of FACTKB and existing factuality metrics, part 1.
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QAGS

DAE

FactCC FactKB Gold Summary

Article

0.6000 0.9886 1.0000 0.0037 0

plans to
demolish

and demol-
ish parts of
a seaside
resort and
build more
than 1, 000
old buildings
have been
approved.

Three Victorian hotels will go to make way for a six-storey, four star hotel and two assisted-
living apartment blocks, at East Cliff in Bournemouth.English Heritage strongly objected
to the scale of the development in what is a designated conservation area.But, councillors
voted seven to three in favour saying it would help tourism.Chair of the planning board and
Conservative ward councillor David Kelsey, said the buildings earmarked for demolition
were nice but no longer "necessarily functional"."They’ve come to the end of their working
lives, we need to preserve the tourism aspect while improving living for older people in the
town," he said."The loss of buildings and trees are always regrettable but we can’t stand
still, we need to move forward."The site on Grove Road and East Overcliff Drive will get a
90-room hotel along with a nine-storey and seven-storey building, comprising 122 assisted-
living apartments.Applicants The East Cliff Project LLP will demolish Bay View Court,
The Cottonwood and the Ocean View hotels.The council received 246 letters supporting
the plans.Forty-nine residents and the Ancient Monuments Society wrote to object to the
demolition, stating that despite being altered, they still "give a sense of the historic character
of the area".English Heritage said the scale of the development would cause "severe harm" to
the conservation area.

0.7000 0.9984 1.0000 0.0047 0O a

19-year-
old man
has been
arrested in
connection
with the
fatal shoot-
ing of an
18-year-old
student in
the southern
indian state
of

The shooting occurred at a hostel attached to the private Pragati Residential School in
Bangalore city.Police say the alleged gunman, identified as Mahesh, was working as an office
assistant in the school.Incidents of gun crime at schools and colleges in India are very rare.
It is not clear what prompted the shooting.Police said on Thursday that Mahesh had been
remanded until 12 April. Mahesh is alleged to have barged into the room of 18-year-old
Gautami and shot her in the head with a pistol on on Tuesday evening.He then shot another
student, Sirisha, who suffered severe injuries but is believed to be out of danger, say police.He
was arrested on Wednesday after a manhunt.India has strict control laws, although a large
number of feuds are settled with firearms.In 2007, a 14-year-old schoolboy was shot dead by
two fellow students at a school campus near the capital, Delhi.

0.5000 0.9995 1.0000 0.0036 0

police have
appealed
for help to
trace  two
men  who
threatened a
woman with
a knife at
a quarry in
fife.

The men entered the Post Office in Quarrywood Avenue, in the Barmulloch area, at 07:55 on
Friday. They threatened a member of staff with a knife and demanded money before escaping
with the cash.The 27-year-old worker was said by police to have been badly shaken but
otherwise unharmed by the ordeal.Both suspects are white, and one of them was about 35-40
years old with short brown hair and wearing a black jumper.Det Sgt Raymond Hunter said
officers had been carrying out door-to-door inquiries and were in the process of collecting
CCTV images from the surrounding area.He added: "There are a number of other shops in
this area and people may have seen the two men prior to or after the incident."I am therefore
appealing to anyone who was in the area or any local residents to contact us - any information
you have could assist our enquiry.”

0.5000 0.9999 1.0000 0.0063 0O

the number
of  people
using plastic
carrier bags
in england
has reached
a record
high.

The Department for Environment, Food and Rural Affairs found the number had gone up
by 200 million since 2013.There has been a big problem with plastic carrier bags in the
last few years, many of them can’t be recycled and are often thrown away after they have
been used.The bags end up in rubbish dumps and even rivers causing big problems for the
environment.From October people in England will have to pay 5p for their plastic bags in
a bid to encourage them to reuse the ones that they already have.Supermarkets in Wales,
Scotland and Northern Ireland, where people are charged for carrier bags, have all seen a
decrease in bags used.Campaigners are hoping the charge in England will lessen the amount
of bags being thrown away, helping the environment.

Table 1.16: Qualitative analysis of FACTKB and existing factuality metrics, part 2.
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