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Abstract

Deep learning hasmade significant progress to analyze an unprecedented amount

of rich visual information from the real world to enable applications such as robotics,

surveillance, and public safety monitoring. The successful deployment of deep

learning techniques highly relies on the availability of large-scale domain-specific

annotated data. However, these constraints are unlikely to be met in many real-

world scenarios. In practice, various domain gaps exist between the training and

test data. Test data are typically drawn from out-of-domain distributions, encom-

passing novel viewpoints, varied noise conditions, and diverse scenes. In addition

to the diversity in visual representations, deep learning models trained on fixed,

closed-set labels may not meet the query requirements of arbitrary text prompts

from users. Additionally, novel vocabularies may not be accessible during training.

To enable the deployment of a robust visual perception system, learning general-

ized feature representations during training is crucial.

In this thesis, with the goal of developing systems which can generalize to novel

viewpoints, scenes and vocabularies, we explore different representation learning

methods based on Siamese learning, masked visual modeling, and generatively pre-

training. This thesis consists of three parts. The first part conducts robust semantic

instance segmentation for videos and 3D data. We aim to learn feature represen-

tations that are invariant to various viewpoints and noise conditions via Siamese

learning. We propose to leverage temporal consistency for videos and spatial con-

sistency for 3D volumetric images, such that the learned feature representations

have strong generalization ability. In the second part, we tackle the problem of

human action analysis, which requires the model to learn from dynamic cues. We

propose representation learning techniques based onmasked visual modeling, such

that the model can learn better spatial-temporal context. We also exploit both RGB

videos and 3D human meshes for robust multi-modal action analysis. Finally, in

the third part, we leverage generatively pre-trained vision-language models and

develop systems that can handle novel vocabularies and text prompts. Our final

goal is to build a robust system that can generalize to novel viewpoints, scenes, and

vocabularies.
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Chapter 1

Introduction

1.1 Motivation of Research

Deep learning has made significant progress in analyzing an unprecedented amount of rich

visual information from the real world. This progress enables applications such as robotics,

surveillance, and public safety monitoring. The successful deployment of deep learning tech-

niques highly relies on the availability of large-scale domain-specific annotated data [103, 332].

However, these constraints are unlikely to be met in many real-world scenarios. In practice,

various domain gaps exist between the training and test data. Test data are typically drawn

from out-of-domain distributions, encompassing novel viewpoints [159, 167, 349], varied noise

conditions [224, 305, 348], and diverse scenes [350, 352]. In addition to the diversity in visual

representations, deep learning models [62, 243] trained on fixed, closed-set labels may not meet

the query requirements of arbitrary text prompts from users, and novel vocabularies may not

be accessible during training. To enable the deployment of robust visual perception system, it

is crucial for the system to learn generalized feature representations towards novel viewpoints,

scenes and vocabularies during the training stage.

However, it is challenging to develop systems that can achieve robust performance given

unexpected diversities in both vision and language spaces for the following reasons:

Collecting sufficient in-domain data sometimes is unfeasible. To perform scene un-

derstanding and human action analysis, it is necessary to collect sufficient and well-annotated

data to train a robust system. However, collecting such data is not feasible in most cases, espe-

cially in complex, rare or violent scenarios.

Fine-grained annotations for videos and 3D data are costly. Comparing to images,
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videos and 3D data involve an extra dimension, which makes the label annotation process time-

consuming and expensive. Based on the published statistics [116, 204, 270], it takes about 114

s to annotate a 3D instance in a fully manual manner [270], and 30s if extra assistance of a 3D

object detector is available [116]. For 3D biomedical images, annotating all structures on one

tomogram takes about a month by a structural biology expert [348]. These extensive annotation

efforts significantly hinder the performance of perception models.

The lack of paired text-video, text-3D data comparing to text-image data. There

are large-scale image-caption pairs available in the Internet to train vision-language foundation

models. For example, LAION-5B is a dataset of 5,85 billion CLIP-filtered image-text pairs [252].

The largest dataset with paired text and 3D data is Objaverse-XL [61], which contains around

10M 3D Objects. The paired text-3D dataset is 500x smaller than the text-image dataset.

Considering the aforementioned challenges, we investigate how to design effective models

that can learn generalizable feature representations in both vision and language space. Our path

is orthogonal to simply scaling the data and model size. The first part of this thesis conducts

robust semantic instance segmentation for videos and 3D data. We aim to learn feature repre-

sentations that are invariant to various viewpoints and noise conditions via Siamese learning.

We propose to leverage temporal consistency for videos and spatial consistency for 3D volu-

metric images, such that the learned feature representations have strong generalization ability.

In the second part, we tackle the problem of human action analysis, which requires the model

to learn from dynamic cues. We propose representation learning techniques based on masked

visual modeling, such that the model can learn better spatial-temporal context. We also exploit

both RGB videos and 3D human meshes for robust multi-modal action analysis. Finally, in the

third part, we leverage generatively pre-trained vision-language models and develop systems

that can handle novel vocabularies and text prompts. Our final goal is to build a robust system

that can generalize to novel viewpoints, scenes, and vocabularies.

1.2 Thesis Overview

In this thesis, with the goal of developing systems which can generalize to to novel view-

points, scenes and vocabularies, we explore different representation learning methods based on

Siamese learning, masked visual modeling, and generatively pre-training. A detailed overview

of each part is as follows:
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Figure 1.1: Overview of our representation learning methods. We explore four typical represen-

tation learning methods: (1) Siamese learning without negative samples; it forces the model to

make consistent predictions between the input x and its positive view x’; (2) Siamese learning

with both positive and negative samples; it forces the model to learn representations that will

minimize the feature distance between x and its positive view x’, and maximize the distance be-

tween x and the negative sample y; (3) masked visual modeling; it incorporates masked views

x’ of the input x into the model training. We explore two training objectives: (3a) mask and

reconstruction; and (3b) mask and consistency prediction. (4) maximum log likelihood; it is

used for text-to-image generative pre-training to learn unified representations for vision and

language.

Part I Siamese Learning for Robust Semantic Instance Segmentation In this part, we

aim at developing robust systems based on Siamese learning to understand "things" in videos

and 3D volumetric images. We propose a model namedMSNet to perform viewpoint-invariant

instance segmentation in aerial videos (chapter 2). For 3D volumetric images, we force the

model to learn spatially-consistent representation which are robust to variant noise conditions

(chapter 3).

Part II Masked Visual Modeling for Generalized Human Action Analysis In this part,

we focus on analyzing human behavior from temporal cues based masked visual modeling. We

explore different modalities for human action analysis, including videos, 3D skeletons, point

clouds, and meshes. We first propose to leverage adversarially masked consistency for scene-

invariant action recognition (chapter 4). We then propose a masked vertex modeling technique

for 3Dmesh-based action recognition (chapter 5). Finally, we conduct generalized human action
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Figure 1.2: Thesis roadmap: Generalizable visual representation learning for novel viewpoints,

scenes and vocabularies.

recognition by jointly modeling videos and 3D meshes (chapter 6).

Part III Generatively Pretrained Foundation Models for Open-Vocabulary Perception

In the last part, we leverage generatively pre-trained vision-language models and develop sys-

tems that can handle novel vocabularies and text prompts. We evaluate the model on the

open-vocabulary 3D scene understanding tasks including 3D semantic segmentation and vi-

sual grounding (chapter 7).

1.3 Thesis Contributions

The study in this thesis demonstrates the effectiveness of representation learning techniques

for increasing generalization of deep learning models. The specific findings are as follows:

Siamese learning leads to more generalized representations. Forcing the model to

make consistent predictions across the temporal [349] (chapter 2) and spatial [348] (chapter 3)

domains leads to more generalized and robust representations.

Masked visualmodeling learns scene-invariant representations. By incorporatemasked

visual modeling into the model design, the model is able to learn scene-invariant representa-

tions in both "mask and consistent learning" [352] (chapter 4) and "mask and reconstruct" [351]

4



(chapter 5).

The 2D and 3D representations are complementary to each other, even when the

3D representations are noisy estimations. We prove that noisy 3D body pose estimations

are helpful for domain-invariant representations learning in videos [350, 353] (chapter 6).

Generatively pretrained multi-modal representations are beneficial for visual per-

ception. We aim at leveraging text-to-image diffusion models for open-vocabulary perception

task [354] (chapter 7). This demonstrates the effectiveness of generatively-pretrained models

are also beneficial for the perception task.
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Part I

Siamese Learning for Robust Semantic
Instance Segmentation
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In this part, we aim at developing robust systems based on Siamese learning to understand

"things" in videos and 3D volumetric images. We propose a model named MSNet to perform

viewpoint-invariant instance segmentation in aerial videos. For 3D volumetric images, we force

the model to learn spatially-consistent representation which are robust to variant noise condi-

tions (chapter 3).
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Chapter 2

Temporal consistency learning for video
instance segmentation

In this chapter, we explore the benefit of temporal consistency for viewpoint-invaraint feature

representation learning, and the model could perform well on instance segmentation task with

sharp viewpoint changes.

Multilevel 
Consistency

Hierarchical Region Proposal Network

Aerial Video Collection MSNet Building Damage Assessment

Natural Disasters: 
Hurricanes, Tornadoes

House Box Damage Box

Figure 2.1: Illustration of the natural disaster damage assessment pipeline. Aftermaths of nat-

ural disasters are recorded by drones. Our model is able to detect damage masks and damage

scales in different locations. The damage detections along with drones’ GPS trajectory could

generate a damage assessment location heatmap to aid timely disaster relief efforts.

2.1 Overview

In recent years, natural disasters have impacted many vulnerable areas around the world. In

2019, there have been ten natural disaster events with damages of more than 1 billion dollars

each across the United States [81]. Timely response to natural disasters plays a crucial role
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in disaster relief. However, current damage assessments are mostly based on manual damage

detection and documentation, which is slow, expensive and labor-intensive work [217].

With the increasing availability of consumer-grade drones, a large number of aerial videos

are recorded and shared across social media [166]. After a natural disaster, like a hurricane

or a flood, people frequently share drone footage of the district, or the authorities could dis-

patch drones themselves to assess the damage of the area. These videos could serve as valuable

resources for automatic damage assessment. Compared with satellite imagery used in previ-

ous damage assessment task works [39, 95, 240], drone videos have the advantage of capturing

detailed observations of each building from different angles other than just from a top-down

perspective. Valuable structural information of the buildings could be extracted from drone

videos for further damage evaluation, i.e., whether the buildings are going to collapse.

Consider the example in Figure 7.2, there are three challenges for automatic building dam-

age assessment. The first is the diversity of buildings, the level of damages and the location of

damages. Buildings could include homes, schools, coastal buildings, factories, and other facili-

ties. Some might be slightly damaged, and others might be completely damaged. Some might

only have severe damage on the roof. The second challenge is the detection of small objects and

debris. The drone videos are usually recorded from a high altitude where many of the damaged

parts are only represented by a few dozen pixels (See Section 2.3). The third challenge is the

changes of viewpoints as the drone flies over the area. The damage of a building might only be

visible from a certain viewpoint. This leads to problems like missed detection and inconsistent

detections by a single image-based detector.

To overcome the aforementioned challenges, we have collected the first dataset with aerial

videos for natural disaster damage assessment. Our dataset, namely ISBDA (Instance Segmen-

tation in Building Damage Assessment), consists of fine-grained building damage bounding box

andmask annotations of different damage levels. This provides the first quantitative benchmark

for evaluating building damage assessment models. Our second contribution is to propose a

new neural network model, MSNet, to address the difficulties of accurately detecting damages

in buildings with aerial videos. Our model makes use of the hierarchical relationship between

building and damage, and inter-frame spatial consistency of multiple viewpoints to train more

robust representations. To summarize, our contribution is fourfold:

• We present the first natural disaster building damage assessment dataset, namely ISBDA,

using aerial drone videos. It is annotated with fine-grained instance-level building and

damage bounding boxes and masks. It provides the first quantitative benchmark for as-

sessing damage assessment in aerial videos.
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• We propose a novel neural model termed Hierarchical Region Proposal Network (HRPN),

which explores the hierarchical spatial relationship among different objects, and thus

significantly improving the model performance.

• We propose an unsupervised score refinement model named Score Refinement Network

(SRN) based on inter-frame consistency to tackle the challenges of detections using drone

videos.

• Weempirically validate ourmodel on the proposed ISBDAdataset for damage assessment,

in which our model achieves the best results compared to state-of-the-art object detection

models.

2.2 Related Work

Natural Disaster Damage Assessment Datasets. Existing damage assessment dataset can

be roughly categorized into two types: ground-level images and satellite imagery. The ground-

level images were mostly collected from social media [215]. Those datasets only have image-

level labels available, because the scene captured by a single ground-level image is highly lim-

ited. Besides, due to the lack of geo-tags in social media, ground-level images may not be

suitable for large-scale damage assessment. Another disaster data source is satellite imagery

based on remote sensing [39, 95, 128, 240, 246]. However, the main limitation of satellite im-

agery is that it could not provide detailed damage information due to the long distance to the

captured buildings and its limited vertical viewpoint. We are the first to propose a dataset from

drone video viewpoints (typically about forty-five degrees) for damage assessment tasks with

instance-level damage annotations.

Damage Detection Approaches. Current damage detection approaches can be put into

three categories. The first category is using supervised machine learning methods which in-

clude pixel-based relevant change detection [27] and object-based local descriptors [291]. The

second category includes unsupervised methods [91, 206, 216] that generally refer to outlier

detection in scene changes. The third category, a recent trend on damage assessment is us-

ing semi-supervised approaches [92] aimed at using less human-labeled data and maintaining

higher accuracy. Other literature also proposed deep learning frameworks such as Convolu-

tional Neural Networks (CNN) [8, 215] to predict the damage level of each image. However,

existing models only worked on building bounding box prediction tasks, which lack specific
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locations of damaged parts.

Anchor-basedRegionProposalNetworks. Existing literature on anchor-based region pro-

posal networks mostly adopted dense anchoring scheme, where anchors are sampled densely

over the spatial feature space with predefined scales and aspect ratios. The most representative

work is Region Proposal Network (RPN) introduced in Faster R-CNN [238], which designed a

light fully convolutional network to map sliding windows to a low-dimensional feature space.

This framework has been widely adopted in later research [54, 101]. Some research [324] fo-

cused on using meta-learning to dynamically generate anchors from the arbitrary customized

prior boxes. Other research works [26, 36, 335] adopted cascade architecture to regress bound-

ing boxes iteratively for progressive anchor refinement. Some researchers [301] tried to remove

the iteration process by predicting the center of objects of interest. However, there is still a lack

of region proposal networks that could utilize spatial hierarchical relationships among objects

which could potentially improve detection accuracy.

Figure 2.2: Visualization of our ISBDA dataset. The green, yellow and red polygons denote

damages in Slight, Severe and Debris levels, respectively. The rectangles composed of solid

lines represent damaged building bounding boxes. The polygons with dotted lines represent

segmentation masks of damaged parts.

Detection Score Refinement. Current research in detection score refinement can be catego-

rized into two streams, bounding box score refinement and mask score refinement. In bound-

ing box score correction, most works focused on making modifications on the basis of Non-

maximum Suppression (NMS) algorithm, such as Fitness NMS [289] and SoftNMS [21]. Jiang

et al. [124] proposed IoU-Net that directly predicted box IoU, and the predicted IoU was used

for the bounding boxes refinement. In terms of score refinement in mask level, Mask Scoring

14



R-CNN [118] was proposed by adding a MaskIoU head to regress the IoU between the predicted

mask and its ground truth mask. One limitation of this approach is that it can only refine the

mask scores, which nearly has no impact on the bounding box branch. Our proposed score re-

finement algorithm based on inter-frame consistency is able to achieve consistent improvement

in both bounding box and mask branches.

2.3 The ISBDA Dataset

2.3.1 Data Collection

In order to fully assess building damages in different scenarios and locations, we have collected

ten videos from social media platforms, which recorded severe hurricane and tornado disaster

aftermaths in recent years. Specifically, the aerial videos were recorded after Hurricane Harvey

in 2017, Hurricane Micheal and Hurricane Florence in 2018 and other three tornadoes (EF-2 or

EF-3) in 2017, 2018 and 2019, respectively. The affected areas recorded in the videos include

Florida, Missouri, Illinois, Texas, Alabama and North Carolina in the United States. The total

length of the collected videos is about 84 minutes.

To get individual frames, we first obtain video clips from the ten videos that: (1) do not have

apparent camera rotations; and (2) fly with moderate and stable speed. To further improve the

annotation efficiency and cover different scenarios, we extract one frame out of every ten frames

from these video clips. Overall, we have collected 1,030 frames for instance-level building and

damage annotation.

One important problem is to define damage scale and corresponding standards which can

cover various types of damages in different scenes. Following the damage assessment prac-

tice, Joint Damage Scale [95], we divide building damages into three levels: Slight, Severe and

Debris. Slight refers to visible cracks or appearance damages. Severe refers to partial wall or

roof collapse, which are apparent structural damages. Debris refers to completely collapsed

buildings.

2.3.2 Hierarchical Instance-level Annotation

To provide fine-grained localization information of individual damages, we formulate the dam-

age assessment task as an instance segmentation problem. We annotate both the polygons of

damaged buildings and the specific damaged parts of the buildings. In order to explore the hier-
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archical relationships between building and damaged part instances (i.e., specific damaged parts

are within corresponding damaged building boxes), we also include the mappings between each

damaged part ID and its corresponding damaged building ID. The dataset is annotated by three

experienced annotators, and one pass of verification is performed for each annotation to ensure

accuracy.

2.3.3 Dataset Statistics

Overall, 1,030 images sampled from 10 videos are annotated with instance-level building masks

and damaged part masks. The dataset has 2,961 damaged part instances which are divided into

three levels: Slight, Severe, and Debris. Following Microsoft COCO’s [172] size definition, we

calculate the number of damaged part instances in different sizes for each damage scale, shown

in Table 2.1.

Damage Scale Small Medium Large Total

Slight 204 1169 746 2119

Severe - 120 440 560

Debris - 54 228 282

Table 2.1: Distribution of annotation sizes. Small: area less than 32× 32; Medium: area greater

than 32× 32 and less than 96× 96; Large: area greater than 96× 96. Area is measured as the

number of pixels in the segmentation mask.

We also analyze the distribution of the area of damage segmentation in the ISBDA dataset,

shown in Figure 2.3. We observe that the majority of the damage segmentation are relatively

small. Visualization of the ISBDA dataset and annotations is shown in Figure 2.2.

2.4 Method

2.4.1 Overview

To provide fine-grained localization information, similar to some of the existing works [95],

we formulate the damage assessment task as an instance segmentation problem. Moreover,

our model will predict damage-level instance masks instead of building-level, which is a more

challenging task due to the high damage variance and small damaged area. We propose a new

16



Figure 2.3: The distribution of the area of damage segmentation in our ISBDA dataset. We only

show the distribution of areas below 90th percentile of the whole dataset for better visualization

purpose. Area is measured as the number of pixels in the segmentation mask.

model named MSNet in order to learn more robust representations in different scenarios with

different viewpoints. It includes two types of supervision: supervision of building bounding

boxes for low-level damage anchor sampling and mask segmentation; and supervision of tem-

poral and spatial relationships between adjacent video frames. In summary, it has the following

key components:

Pyramid Backbone Network uses ResNet-50 based Feature Pyramid Network (FPN) [173] to

extract spatial features of input images.

Hierarchical Region Proposal Network first generates high-level building proposals and

then uses them to supervise low-level anchor sampling and damage proposals generation.

Score Refinement Network is proposed to calibrate the confidence scores of instances in ad-

jacent frames which share common appearance features but have confidence score variances.

Mask R-CNN Head includes the R-CNN head for bounding box and class prediction, and the

Mask head for mask prediction [101].

In the rest of this section, we will introduce the above components and the learning objec-

tives in details.
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Pyramid Backbone 
Network

Mask R-CNN Head and
Score Refinement

Score Refinement Network

Hierarchical Region Proposal Network

0.25
0.35

0.75

0.85

0.60.5

Figure 2.4: Network architecture ofMSNet. The left part contains a pyramid backbone network

to extract features in multi-scale levels. The backbone network is shared in the two neural

network’s training. The first neural network (Bottom) is for generating instance segmentation

results. Specifically, for each image, Hierarchical Region Proposal Network takes the encoded

features to generate proposals for damaged buildings. The building proposals are used to give

supervision on damage proposals generation (Yellow Arrow). The second branch (Top) is for

the training of Score Refinement Network. The adjacent frames (images with green and blue

edges) along with one negative sample (image with red edges) are firstly fed into the Pyramid

Backbone Network, then Score Refinement Network is trained with the proposed Multi-scale

Consistency Loss to learn feature similarity. These two branches are joined at the end, where

Mask R-CNNHead generates bounding box and mask predictions. Finally, the score refinement

algorithm is performed to calibrate the confidence scores.

2.4.2 Hierarchical Region Proposal Network

Traditional Region Proposal Network (RPN) treats all objects in the same spatial level, and uni-

formly generates dense anchors over the feature space. If we adopt a conventional RPN scheme

and train the RPN with building and damage proposals simultaneously, the hierarchical rela-

tionship between buildings and damaged parts will not be utilized. Therefore, we propose a new

model, termed Hierarchical Region Proposal Network (HRPN), to address the aforementioned

problems.

In HRPN, there are two RPNs sharing the same backbone network: a high-level RPN and

a low-level RPN. The high-level RPN is trained with damaged building boxes with binary la-
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bels indicating whether the proposal is a damaged building or not. The low-level RPN utilizes

building proposal outputs from the high-level RPN for anchor sampling. We sample anchors

based on one of the two metrics: Intersection over Union (IoU) and Inner Intersection (II) be-

tween high-level region proposals and low-level anchors. For each low-level low-level (damage)

anchor Aã, we define its sampling score as:

SIoU (Aã, Ap) = max
Ap∈P

Aã

⋂
Ap

Aã

⋃
Ap

(2.1)

SII(Aã, Ap) = max
Ap∈P

Aã

⋂
Ap

Aã
(2.2)

where P is a set of high-level (building) region proposals. For each anchor, we compute its

sampling score and only keep anchors with scores larger than a certain threshold S. Then the

sampled anchors are used for damage proposals generation.

2.4.3 Score Refinement Network

In previous works [22], the confidence scores are determined by single-frame detection, while

correspondence between two adjacent frames is not utilized. We propose a score refinement

model based on inter-frame temporal and spatial correspondence termed Score Refinement Net-

work (SRN). The input of the model is randomly generated triplets and each triplet is composed

of one frame and its adjacent frame as a positive frame and another random frame as a negative

frame. By incorporating multi-scale features from the FPN backbone, we design a multi-scale

consistency loss to force SRN to learn feature representations such that one sample’s distance

to its positive sample is closer than its distance to the negative one. We aim to refine the scores

of instances in adjacent frames which share common appearance features but have confidence

score variances.

Inspired by [307], we use patch mining to build triplets and each is composed of one sample

Pi, its relative adjacent frame P+
i and its random sample P−

i . The triplets are sampled based

on the fact that the average drone speed is 50 mph and thus the frame variances within half

seconds are small. Therefore, given a frame xt at time t and the video frame rate r, the positive

sample is defined as the frame in range [xt− 0.5r, xt+0.5r]. The negative sample is defined as

the frame in range [0, xt− 10r]
⋃

[xt +10r, T ]. T is the maximum frame number of the video.

Multi-scale features usually demonstrate significant performance improvement in object

detection tasks [101, 173]. Therefore, we propose Multi-scale Consistency Loss (MCL) which

makes use of multi-scale feature maps. For two image patches Xi, Xj , we firstly obtain the
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feature maps of each image from the last four layers of the FPN backbone, namely Pik, Pjk,

where k ∈ [1, 2, 3, 4]. These feature maps are used as input to SRN. For an input feature P , we

can obtain its feature from the last SRN layer as f(P ), where f is a feature encoder which is

composed of three fully connected layers. Then, we propose a spatial-wise similarity metric of

two feature maps Pik, Pjk in FPN level k using:

Sim(Pik, Pjk) =

W∑
w=0

H∑
h=0

f(Pwh
ik ) · f(Pwh

jk )

∥f(Pwh
ik )∥∥f(Pwh

jk )∥
(2.3)

D(Pik, Pjk) = 1− Sim(Pik, Pjk) (2.4)

Given a set of triplets and each triplet is denoted as (X , X+
, X−

) , we aim to train SRN

which can learn feature representations such that D(X,X−) > D(X,X+) using the Multi-

scale Consistency Loss (MCL):

Lmcl(X,X+, X−) =

L∑
i=1

max{0, D(Xi, X
+
i )−D(Xi, X

−
i ) +m} (2.5)

where m is a margin constraint parameter, and L is the number of multi-scale layers.

2.4.4 Training

In this section, we provide detailed descriptions of the training procedure. The first part of the

loss function is the HRPN loss, which is defined as:

Lhrpn = Lh
rpn + Ll

rpn. (2.6)

Here, Lh
rpn and Ll

rpn represent the loss of high-level RPN and low-level RPN, respectively.

The low-level RPN conducts anchor sampling and proposal generation under the supervision of

high-level RPN. As described in Section 2.4.2, the losses of damage proposals which are filtered

out under the supervision of high-level building proposals are not computed in the HRPN loss.

The definition of RPN loss follows [238]. Lcls, Lbox, and Lmask follow the definitions in [101].

Lmcl is computed using Equation 2.4.3.

The final multi-task loss of our proposed approach is calculated using:

L = Lhrpn + Lcls + Lbox + Lmask + Lmcl. (2.7)
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Method AP AP25 AP50 AP
bb

AP
bb
25 AP

bb
50

PolarMask+D 22.3 29.1 15.4 24.4 29.6 18.2

Mask R-CNN+D 34.4 40.6 26.9 35.9 40.9 29.4

Mask R-CNN+B+D 32.2 39.5 23.3 34.0 40.3 25.7

Ours 37.2 44.2 28.8 38.7 44.4 31.5

Table 2.2: Cross scene evaluation results. We report detection and instance segmentation re-

sults. AP denotes instance segmentation results and AP
bb
denotes bounding box detection re-

sults. In the results area, rows 1 and row 2 use the PolarMask and Mask R-CNN frameworks

with only damage masks (D) as input; row 3 uses Mask R-CNN co-trained with damaged build-

ings (B) and damages (D) as the baseline model. The results show that our proposed method

gains significant improvements compared to state-of-the-art models.

The HRPN and Mask R-CNN Head can be trained end-to-end together with SRN. However,

in that case, the model training and inference would be heavy due to the multi-scale feature

similarity calculation. Therefore, we only calibrate confidence scores of the model which has

the best instance segmentation performance.

2.4.5 Inference

In test time, we use HRPN to generate building region proposals. Then the building proposals

are used as supervision for damage anchor sampling and proposal generation, as described in

Section 2.4.2. In the second stage, the model extracts features using RoIAlign for each damage

proposal and performs proposal classification, bounding box regression and mask prediction.

During the inference of SRN, given two adjacent frames P and Q, we firstly extract the

last four layers from the Pyramid Backbone Network for each frame. The four layers are used

as input for SRN described in Section 2.4.3 to extract similarity feature maps. Then we use

RoIAlign to align the extracted features with each bounding box. For each prediction (including

bounding box and mask) in frame P , we calculate its similarity score with each prediction in

frame Q, using equation 2.3 with the aligned feature maps as input. Then we can obtain the

prediction in frame Q that has the highest similarity score with it. The average of these two

confidence scores is used as their final scores. Note that we only refine confidence scores that

fall within the range of [C0, C1].
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2.5 Experiments
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Figure 2.5: Visualization of the predicted damage segmentation. This figure demonstrates that

our proposed model can alleviate the following errors: (1) label misclassification (first column,

left to right); (2) false positive segmentation in the complex scenario with cars and buildings

(second column); (3) incompleted masks in noisy video scenario (third column); and (4) missed

masks (fourth column).

In this section, we compare ourMSNetmodel with state-of-the-art baselines on the proposed

ISBDA dataset. We randomly split the dataset into subsets with no overlapping scenes. We train

our model using 80% of the dataset, and test on the rest 20% dataset. We repeat the split and

experiments 3 times and report the results in Table 2.2. The final reported results are the average

over the evaluation results of all splits.

We report the standard COCO instance segmentation metric [172] including AP (averaged

over all IoU thresholds), AP@0.25, AP@0.5, and APS , APM , APL (AP at different scales). Unless

noted, AP is evaluating using mask IoU.
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Model AP AP25 AP50 AP
bb

AP
bb
25 AP

bb
50

Baseline 35.0 41.9 27.8 36.8 42.9 29.9

Baseline + HRPN 39.3

(+4.3)

46.6

(+4.7)

31.0

(+3.2)

41.4

(+4.6)

47.1

(+4.2)

33.7

(+3.8)

Baseline + HRPN + SRN 40.0

(+5.0)

47.7

(+5.8)

31.3

(+3.5)

42.1

(+5.3)

48.1

(+5.2)

33.9

(+4.0)

Table 2.3: Effect of HRPN and SRN. We use Mask R-CNN co-trained with building and damage

instances as the baseline model. The results show that HRPN component gains significant

improvement by 4.3% AP compared with the baseline model. Combined with HRPN, the SRN

component also gets consistent improvement in both bounding box and mask branches.

2.5.1 Implementation Details

We compare our model with two recent state-of-the-art instance segmentation models, Po-

larMask [316] and Mask R-CNN [101]. All models use ResNet-50 based FPN as a backbone

network. We train all the networks for 100 epochs, with a starting learning rate of 0.003 then

we decrease it to 0.001 after 10 epochs. Mini-batch SGD is used as the optimizer with batch size

equals 8. We initialize all the backbone networks with the weights pre-trained on COCO [172].

The input images are resized to have the shorter side being 800 and the longer side less or equal

to 1333. For testing, an NMS with threshold 0.5 is used and top 100 detections are retained for

each image.

For the score refinement procedure, SRN is trained using hard negative mining. We firstly

generate 1,000 (X, X
+
) pairs from different videos, and randomly extract 5 negative samples for

each (X, X
+
) pair as described in Section 2.4.3. We calculate the loss of 5 negative samples, and

choose the topK ones with the highest losses as in [307] to optimize. For the experiments, we

use K = 1. Adam optimizer [135] is used for network training with learning rate 0.001, and

each batch is composed of one (X, X
+
) pair and 5 negative samples. For testing, we choose C0

= 0.2, and C1 = 0.7 for the range described in Section 2.4.5.

2.5.2 Comparison to state-of-the-art

Baseline methods. We compare our method with state-of-the-art models and their variants

customized for the damage instance segmentation problem. PolarMask [316] is a single shot

23



instance segmentation model with damage masks as input only. Mask R-CNN [101] is one of

the state-of-the-art instance segmentation models. Two variants of Mask R-CNN are used as

baselines: (1) Mask R-CNN with damage bounding boxes and masks as input; and (2) Mask R-

CNN co-trained with damaged buildings and damages. Damaged building bounding boxes are

used for RPN and R-CNN head training, and damage masks are used for the training of Mask

head.

Quantitative results. Table 2.2 lists the damage instance segmentation results. Compared

with PolarMask, ourmodel is able to obtain significant improvement, e.g., an absolute increment

of 14.9% mask AP. For the Mask R-CNN baselines, we observe that Mask R-CNN trained with

damage masks could be confused by the high variance of damage masks in different locations

and scenarios. When the Mask R-CNNmodel is trained with building boxes and damage masks,

the errors in building detection will impact the damage detection in the second stage. Also, the

model could not precisely predict the damage masks from large building bounding boxes. Our

proposed model utilizes the hierarchical nature of the damaged buildings and damaged parts,

and outperforms the baseline with 5.0% AP in the segmentation branch and 4.7% AP in the

bounding box branch.

Qualitative analysis. We qualitatively demonstrate the advantages of our model in Fig-

ure 3.4, showing that our proposed model can alleviate the following errors: (1) label misclas-

sification (first column); (2) false positive segmentation in the complex scenario with cars and

buildings (second column); (3) incompleted masks in noisy video scenario (third column); and

(4) missed masks (fourth column). Thanks to the HRPN module and the inter-frame supervi-

sion, our model is able to generate accurate and robust detections even in very noisy scenarios

like the third column of Figure 3.4.

2.5.3 Ablation Study

We evaluate our method on the ISBDA dataset. We use ResNet-50 FPN as a backbone network

for ablation study. All experiments in this section are performed on one split.

Different IoU and II thresholds. In Figure 2.6, we compare the effects of different thresh-

olds for IoU and II on the model performance using equations in Section 2.4.2. We train our

model with IoU and II from 0.0 to 0.5 in steps of 0.1. For the model with IoU as metrics, the
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Figure 2.6: mAP of bounding box and segmentation using different IoU and II thresholds. The

blue and red lines denote IoU and II metrics, respectively.

model gets the best performance when IoU equals 0.4. For the model with II as metrics, the

model achieves the best performance when it equals 0.1.

Choices of IoU and II metrics. In Table 2.4, we report the best performance model among

different IoU and II thresholds, respectively, where IoU equals 0.4 and II equals 0.1. We observe

that II metric gains 2.7% AP improvement compared with IoU metric. By analyzing the AP in

different sizes, we find that the small objects get the most significant improvement for 7.1%

absolute value. This is probably because in IoU calculation, small damage anchors only occupy

a small portion of its union with a large building bounding box. Therefore, small damage in-

stances may not be well detected. On the other hand, II could properly handle such cases as it

performs anchor sampling by calculating the intersection within the damage anchors.

Effect of HRPN and SRN. In Table 2.3, we experiment with the effect of HRPN and SRN.

We observe that the HRPN component gains significant improvement by 4.3% AP compared

with the baseline model. The SRN component further improves the model performance in both

bounding box and mask branches.
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M AP AP25 AP50 APS APM APL

IoU 36.6 42.5 30.1 47.4 41.1 38.6

II 39.3 46.6 31.0 54.5 38.0 42.0

Table 2.4: Results of different anchor sampling metrics.

2.6 Conclusion

In this paper, we investigate the problem of conducting damage assessment using user-generated

aerial video data. We provide the first benchmark, namely ISBDA, for quantitative evaluation

for models to assess building damage in aerial videos. Also, our proposed MSNet is able to

explore the hierarchical spatial relationship among different objects and calibrate confidence

scores to improve the model performance in both bounding box and mask branches. We empir-

ically validate our model on the proposed ISBDA dataset, in which our model achieves the best

results compared to state-of-the-art object detection models. We believe our dataset, together

with our models, will facilitate future research in remote sensing and damage assessment for

better and faster natural disaster relief.
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Chapter 3

Spatial consistency learning for 3D
semantic segmentation

In this chapter, we explore the benefit of spatial consistency for robust feature representation

learning, and the model could generalize well towards variant noise conditions for semantic

segmentation in 3D volumetric images.

(1) (2) (3) (4) (5)

Figure 3.1: Illustration of 3D semantic segmentation using image-level class labels as supervi-

sion. This figure shows: (1) input 3D cryo-ET image; (2) ground truth segmentation; (3) se-

mantic segmentation generated by Grad-CAM baseline. It only covers the most discriminative

area; (4) Grad-CAM results augmented by our cross-image co-occurrence learning module. It is

able to cover more integral areas; (5) segmentation generated by our CIVA-Net, which utilizes

inter-voxel affinity relations to predict segmentation with accurate class boundaries. We do not

visualize noise for better visualization purposes.

3.1 Overview

Recently, there has been an increasing interest in semantic segmentation for 3D images [33,

281]. 3D semantic segmentation methods that rely on point-wise annotations have been suc-
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cessfully developed and achieved promising performance [33, 233, 281]. However, the full seg-

mentation methods are generally data-hungry. To alleviate the time and labor-intensive data

annotation process, weakly-supervised methods have been widely developed for two popular

3D data representations: point clouds [202, 220, 311, 319] and meshes [15, 267]. As the dom-

inant 3D representation for biomedical images, voxel grids have not figured prominently in

these developments, especially in the area that uses image-level class labels as supervision for

full semantic segmentation. Existing weakly-supervised volumetric segmentation approaches

still highly rely on the supervision of 2D slices [25], bounding boxes [320, 342] or sparse point

annotations [235].

In this paper, we introduce a weakly supervised learning approach using image-level la-

bels for 3D volumetric segmentation, with the focus on cryo-electron tomography (cryo-ET).

In recent years, cryo-ET emerges as a revolutionary in situ 3D structural biology imaging tech-

nique for studying macromolecular complexes and virus structures in single cells [31]. Cryo-ET

captures the 3D native structure and spatial distribution of all macromolecular complexes and

other subcellular components without disrupting the cell [143]. During the COVID-19 pan-

demic, cryo-ET serves as a powerful imaging technique to study the structures of individual

viruses and their interaction with host cells [132, 175]. Nevertheless, cryo-ET data is heavily

affected by a low signal-to-noise ratio (SNR) due to the complex cytoplasm environment and

missing wedge effects. Moreover, the cryo-ET based COVID-19 analysis is greatly impeded by

the lack of ground truth data for model training. The ground truth masks of cryo-ET tomo-

grams are generally obtained by template matching or human annotation. Template matching

takes about 81 days to obtain the ground truth masks of one structure on one tomogram using

one CPU core. If we use human annotation, annotating all structures on one tomogram takes

about a month by a structural biology expert. To help the timely understanding of the virus

infection, accurate semantic segmentation for 3D structures needs to be performed with fewer

annotation efforts required.

Therefore, we propose a weakly-supervised 3D volumetric segmentation method based on

image-level class labels. In our setting, image-level labels only indicate the classes that appeared

in our input samples. Consider the example in Figure 7.2, there are three main challenges re-

garding semantic segmentation on cryo-ET images with image-level supervision. First, the

cryo-ET images suffer from severe imaging limits such as noise and missing wedge effects (See

Figure 3.3). Such limits greatly impede robust and accurate 3D semantic segmentation. Second,

most of the advanced weakly supervised semantic segmentation (WSSS) methods on 2D im-

ages are based on class activation maps (CAM). However, the CAMs can only cover the most
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discriminative area of the object and sometimes can incorrectly activate background regions,

which can be summarized as under-activation and over-activation problems. The model thus

cannot predict segmentation with accurate class boundaries. Third, the volumetric segmenta-

tion problem would be more challenging in 3D images due to the complex spatial structures,

where semantic segmentation requires accurate boundary prediction.

To overcome the aforementioned challenges, we present a novel framework that utilizes

both cross-image consensus and inter-voxel affinity relations. To address the under-activation

and over-activation issues brought by CAM, we utilize the cross-image consensus among the

same image group (i.e. images with the same class labels) to generate more consistent and in-

tegral object regions. This design provides high-quality supervision for the segmentation net-

work. To detect accurate segmentation boundaries of complex 3D structures with only image-

level labels available, we utilize the fine-grained inter-voxel affinity relations for the training

of the segmentation network. Our framework can yield robust segmentation as it utilizes both

cross-image and inter-voxel relations. To the best of our knowledge, we are the first to propose a

3D volumetric semantic segmentation model based on image-level supervision. To summarize,

the contributions of this paper are three-fold:

• Wepropose a cross-image co-occurrence learningmodule to tackle the challenges brought

by CAM and imaging limits.

• We propose an inter-voxel affinity learningmodule to predict segmentation with accurate

boundaries of complex 3D structures with only image-level class labels available.

• Our experiments show that our method, namely CIVA-Net, achieves comparable perfor-

mance to state-of-the-art models trained with stronger supervision.

3.2 Related Work

Weakly Supervised Semantic Segmentation on 2D Images. Recent studies [19, 133, 171,

269] presented promising results in 2D semantic segmentation with weak labels. Different

kinds of supervision have been studied to reduce the labor cost for dense annotations, such

as bounding box [133, 269], scribble [171], and point annotation [19]. Among those types of

supervision, the image label is more popular as it requires the cheapest labor cost. The general

framework for image-level tasks was firstly generating pixel-level seeds by using CAM-based

methods [344] and then using these seeds as pseudo-supervision to train a full segmentation

network. However, as CAM often failed to find the integral object region, several works [9,
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Figure 3.2: Network architecture of CIVA-Net. The left part includes the initial seeds generation

module, which is combinedwith a cross-image co-occurrence learningmodule to generatemore

integral seed areas. For the initial seed generation, Grad-CAM is used to take single images as

input to train a classification network. For the cross-image co-occurrence learning module, it

takes group image as input to generate the co-occurrence map by utilizing group consensus

embedding. Those two branches are combined at the end to produce the final localization

map. The right part contains the inter-voxel affinity learning module. It utilizes the voxel

affinity pairs sampled from the localization map to train a full segmentation network. During

inference time, the inter-voxel affinity learning module will take raw 3D images as input to

predict semantic segmentation results.

10, 137] were proposed to improve the accuracy of pseudo-labels. Compared to 2D weakly-

supervised methods, 3D volumetric segmentation is more challenging as it involves imaging

limits and more complex 3D spatial structures.

Object Co-Segmentation on 2D Images. Object co-segmentation aims to predict the seg-

mentation of common objects for an image group [77, 78, 109]. Many 2D co-segmentation

approaches were trained with strong pixel-level masks [34, 153]. Some weakly supervised

methods used co-segmentation for initial seeds generation or incorporated the co-segmentation

module to an end-to-end framework [77, 262]. However, 3D object co-segmentation has not

been fully explored. We propose a novel cross-image co-occurrence learning module to gener-

ate consistent and integral object areas.
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Semantic Segmentation on 3D Images. Current 3D semantic segmentation approaches can

be put into three categories: supervised, semi-supervised, and unsupervised learning. Super-

vised learning approaches have gained popularity in recent years [51]. Cicek et al. proposed

3D U-Net [51] which extended previous U-Net architecture by replacing all 2D operations with

their 3D counterparts. Chen et.al proposed VoxResNet [33] which was inspired by deep resid-

ual learning in 2D image recognition tasks. To reduce the need for large-size densely-labeled

training data, some researchers proposed semi-supervised approaches for biomedical image

segmentation [235]. For example, 2D slices were proposed as supervision to predict full ob-

ject segmentation [51]. Point annotations were also adapted to reduce human annotation costs

[235]. Other research proposed a network that was optimized by the weighted combination of

a common supervised loss for labeled inputs and used a regularization loss for both labeled and

unlabeled data [157]. Several unsupervised learning methods were based on learning anatomi-

cal prior [55] or training adversarial networks [127]. However, there is still a lack of volumetric

segmentation methods based on image-level class labels, which can greatly reduce the anno-

tation time and cost. Therefore, we propose a novel framework in order to predict accurate

semantic segmentation with only image-level supervision.

3.3 Method

3.3.1 Overview

In this section, we describe our model for 3D semantic segmentation using image-level class

labels as supervision, which we call CIVA-Net. The input of our model includes a single image

and its class label c; and an image group that shares the same class label c. Our model contains

two novel designs: (1) a cross-image co-occurrence learning module for integral region genera-

tion; (2) an inter-voxel affinity learning module that explores voxel affinity relations for precise

semantic segmentation. In summary, it has the following four key components:

Initial Seed Generation takes a single image as input to train a classification network and

generates pseudo voxel-level label.

Cross-Image Co-Occurrence Learning (CO) first obtains group consensus embedding from

the image group. Then, it turns back to segment the common areas for the single image through

co-occurrence learning. The co-occurrence map is combined with the initial seeds to produce

the final localization map.

Inter-Voxel Affinity Learning (IVA) is proposed to explore the fine-grained inter-voxel re-
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lations from the localization map for voxel affinity pairs generation.

Semantic Segmentation under Affinity Supervision is to predict the full image segmenta-

tion under the supervision of voxel affinity pairs.

See Figure 3.2 for a high-level summary of the model, and the sections below for more

details.

3.3.2 Initial Seed Generation

Following previousweakly-supervisedmethods [77, 117, 311], we choose the CAM-basedmethod

to generate initial localization clues on 3D volumetric data. We use the Grad-CAM [254] with

a 3D convolutional neural network as the model backbone. Grad-CAM plays three essential

roles in our model. First, the localization map produced by Grad-CAM is used to define seed

areas of objects. Second, the 3D CNN backbone of Grad-CAM is used as a feature encoder to

produce group consensus, as described in Section 3.3.3. Third, Grad-CAM is used to produce

image-level class labels during model inference.

Grad-CAMfirst trains a classification network using the image-level labels, and then obtains

the pseudo segmentation label for certain classes. Specifically, given an image, in order to obtain

the class-discriminative localization map Gc ∈ RT×U×V
of depth T , width U , and height V for

class c, we first compute the gradient of the score for class c, yc (layer before the softmax), with

respect to feature map activations Am
of a convolutional layer, i.e. y

c

Am . These gradients flowing

back are global-average-pooled over the width, height and depth dimensions (indexed by i, j

and k respectively) to obtain the neuron importance weights αc
m:

αc
m =

1

Z

∑
i

∑
j

∑
k

∂yc

∂Am
ijk

. (3.1)

We perform a weighted combination of forward activation maps followed by a ReLU to

obtain the localization map:

Gc
s = ReLU

(∑
m

αc
mA

m

)
. (3.2)

Then we perform spline interpolation [96] to resize the T × U × V localization map to the

original image sizeD×H×W , whereD,H , andW denote the image depth, height, and width,

respectively.
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3.3.3 Cross-Image Co-Occurrence Learning

Unlike most of the existing weakly-supervised methods which learned from independent im-

ages [9, 10, 311], we propose a model to utilize cross-image relations to generate a more integral

and consistent object area. The model aims to tackle the over-activation and under-activation

challenges brought by Grad-CAM. The model first receives a group of images as input for the

generation of a consensus representation [337] in a high-dimensional space with a learned fea-

ture encoder. The representation describes the common patterns of the image group that shares

the same class label. Then, it turns back to segment the common areas for each sample by com-

puting a co-occurrence map.

Specifically, given a group of images I = {In}Nn=1 with the same class label c, we first

obtain its group consensus embedding. We employ the 3D convolutional network of Grad-

CAM by removing the last fully connected layers as the 3D feature encoder F . Our proposed
method first extracts latent features en = F(In) of each single image In. The group consensus

representation ê of image group I can be calculated by:

ê = Softmax

(
N∑

n=1

en

)
. (3.3)

ê describes the common attributes of this image group. We aim to obtain the co-occurrence

matrix between individual image feature en ∈ RC×D×H×W
and the consensus embedding ê ∈

RC×D×H×W
, where C , D, H , W represent channel size, image depth, height and width. We

first reshape en and ê to RC×N
, and then perform a matrix multiplication between en transpose

and ê. The result is an N ×N matrix. Then we apply the max pooling operation to the second

dimension of the matrix and get an N × 1 matrix. Finally, we shape the N × 1 matrix back

to the input image shape, which is D ×H ×W . This matrix represents the co-occurrence

relations between the individual image and group consensus embedding in voxel-level. The

final co-occurrence map for class c is denoted as P c
.

To generate a consistent and integral segmentation for each individual image, we combine

the co-occurrencemapP c
and class-discriminative localizationmapGc

obtained in Section 3.3.2

by:

M c
ijk = w1G

c
ijk + w2P

c
ijk, (3.4)

where M c
ijk is the voxel-level element in the merged localization map M c

. Note that we apply

rank normalization [276] to Gc
and P c

before the combination.
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Figure 3.3: Semantic segmentation under the supervision of voxel affinity pairs. The figure

shows: (1) the input biomedical image with heavy noise; (2) pseudo labels generated by lo-

calization map M c
; (3) voxel affinity pairs (S

-
) sampled from M c

; (4) semantic segmentation

generated by CIVA-Net. We only show one of the 2D slices for better visualization purposes.

3.3.4 Inter-Voxel Affinity Learning

Most of the existing weakly-supervised learning work directly trained a full segmentation net-

work using the augmented voxel-wise pseudo labels [311, 313]. However, as the pseudo labels

are not accurate, especially at the object boundaries, the model may not be able to learn from

those inaccurate labels in a ordinary full segmentation manner. Therefore, we aim to utilize

inter-voxel relations to force themodel to predict object segmentation with precise class bound-

aries. We will first sample the voxel affinity pairs from the coarse localization map obtained in

Section 3.3.3. Then, the model will train a segmentation network using the affinity pairs as

supervision.

Inter-VoxelAffinityMining. Because semantic segmentation requires precise object bound-

ary prediction, inspired by [10], we propose a method to explore fine-grained inter-voxel rela-

tions of the localization map. Therefore, we carefully examine the merged localization mapM c

to sample voxel affinity pairs. We first convert each voxel to a foreground or background class

based on a threshold of Ŝ. For foreground voxels, we further construct a class-map fromM c
by

choosing the class with the best score for each voxel. We obtain the pseudo class-map M̂ where

each voxel denotes the most probable class including a background class. Finally, we sample

pairs of neighboring voxels from the pseudo class-map M̂ , and categorize them into two sets

S−
and S+

bg according to their class equivalence by:

S =
{
(p, q) | ∥xp − xq∥ < γ, ∀p ̸= q

}
, (3.5)
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S− =
{
(p, q) | M̂(xp) ̸= M̂(xq), (p, q) ∈ S

}
, (3.6)

S+bg =
{
(p, q) | M̂(xp) = M̂(xq) = 0, (p, q) ∈ S

}
, (3.7)

where (p, q) is the index of voxel affinity pair, and both xp and xq are of the form (i, j, k). γ is

a radius limiting the maximum distance of a pair. 0 in Eqn 3.7 represents the background class.

S represents the voxel pairs in which the distance of each pair is less than the radius γ. S−

represents a set of voxel pairs in which p and q have different class labels. S+
bg represents a set

of voxel pairs in which p and q have the same background class labels.

Semantic Segmentation with Voxel Affinity Supervision. We propose an inter-voxel

affinity network (IVA) which predicts semantic segmentation with precise class boundaries.

The input of the network is the 3D volumetric image and its voxel affinity pairs which are

used as supervision for the network training. The network structure is shown in Figure 3.2. It

uses VoxResNet [33] as the backbone network. Similar to the network structure used in [10],

we first apply 1×1 convolution to each input feature map, and then the results are resized,

concatenated, and fed into the last 1×1 convolution layer. The network output is object seg-

mentation denoted by O ∈ [0, 1]D×H×W
. Because no ground-truth segmentation is available

for training, we utilize the voxel affinity pairs to generate precise segmentation boundaries.

The key assumption is that a class boundary exists somewhere between a pair of voxels with

different class labels. Specifically, any path between negative pairs in Eqn. 3.6 must contain at

least one foreground voxel (denotes as 1); any path between positive pairs in Eqn. 3.7 should

only contain background voxels (denote as 0). The pair distance is limited by radius γ. As the

3D object could have visible holes, we do not sample foreground voxel pairs to supervise the

model training. We propose the following 3D affinity matrix. For each pair of voxels xp and xq,

we define their semantic affinity apq as:

apq = 1− max
k∈Πpq

O(xk), (3.8)

where Πpq is a set of voxels on the path between xp and xq.

We utilize class equivalence relations between voxels as supervision for learning aij . The

affinity is learned byminimizing cross-entropy between the one-hot vector of the binary affinity

label and the predicted affinity in Eqn. 3.8:

LO = −
∑

(p,q)∈S−

log(1− apq)

2|S−|
−

∑
(p,q)∈S+

bg

log apq
2|S+

bg
|
.
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3.3.5 Training

During the training of Grad-CAMbackbone, we use cross-entropy loss for class label prediction:

LB =
N∑
i=1

CE(clsi, cls∗i), (3.9)

where clsi is the predicted label and cls∗i is the ground truth label. After obtaining the class-

discriminative map generated by Grad-CAM, the 3D convolutional neural network is used as

a feature encoder for image groups in co-occurrence learning. We get the merged localization

map M c
by combining the Grad-CAM map and co-occurrence map. We then sample voxel

affinity pairs by exploring affinity relations in M c
. These pairs are used as supervision for the

training of the inter-voxel affinity network using loss LO described in Section 3.3.4. The final

loss of our proposed approach is calculated using:

L = LB + LO. (3.10)

3.3.6 Inference

To predict the semantic segmentation for each image, we first use Grad-CAM to predict its class

label c. Then we obtain the Grad-CAM map of class c and convert it to binary map Ḡc
. The

3D biomedical image is used as input for the inter-voxel affinity network to predict object seg-

mentation. Because a single image could contain multiple target objects, we first retrieve the

segmentation boundary proposals O1
b ,O2

b , ...,On
b and choose the proposal that has the highest

mIoU with Ḡc
as the final segmentation. To further leverage the low-level contextual infor-

mation, we implement 3D-CRF which replaces the original CRF [141] with 3D counterparts to

refine the segmentation results.

3.4 Experiment

In this section, we compare our CIVA-Net with the state-of-the-art baselines on both simulated

and real datasets of cryo-ET at different signal-to-noise ratios (SNR). We randomly split each

dataset into training, test, and validation set, with ratios 70%, 15%, and 15%, respectively. We

train our model on the training set, choose hyper-parameters of CIVA-Net based on the valida-

tion set, and report our results on the test set.
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SNR003 SNR005

Method mIoU 1bxn 1f1b 1yg6 covid mIoU 1bxn 1f1b 1yg6 covid

Respond-CAM 15.2 27.0 12.4 2.31 19.1 9.9 6.6 11.9 1.9 19.0

Grad-CAM 14.8 20.3 15.3 1.44 22.3 9.7 11.1 0.2 24.6 24.0

CIVA-Net 20.6 29.2 12.4 6.89 34.1 24.4 16.9 11.7 38.6 30.5

CIVA-Net (3D-CRF) 39.9 48.2 28.7 52.6 30.0 38.8 46.4 24.3 55.8 28.7

Table 3.1: Comparison of CIVA-Net and the image-level baselines on two realistically simulated

datasets.

3.4.1 Dataset

Figure 3.4: Visualization of the semantic segmentation results. We use Grad-CAM as the visu-

alization baseline.

We follow common practice in cryo-ET analysis to evaluate our method on subtomograms

[330, 331]. A subtomogram from a tomogram is a small cubic volume generally containing one

macromolecule structure. To test the robustness and generalization of CIVA-Net, we process

both simulated and real datasets to obtain submotograms containing one major structure and

its neighbor structures.
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Simulated Datasets. The subtomogram dataset simulation utilizes a standard procedure in

work [71], which takes into account the tomographic reconstruction process with missing

wedges and contrast transfer function. Besides the COVID-19 structural class, we also choose

three representative macromolecule complexes in our simulated datasets (1bxn, 1f1b, and 1yg6).

We simulate two datasets close to experimental conditions for all four classes, with SNR 0.03 and

0.05. Each dataset consists of 1,000 samples for each structure. Following prior work [170, 330],

we resize each subtomogram to 323 due to GPU memory constrains. The simulated dataset

contains 8,000 samples in total.

Real Dataset. To validate ourmodel in experimental conditions, we use the publicly available

Poly-GA dataset as our real dataset [94]. This dataset contains 756 subtomograms with unbal-

anced classes. It consists of 617 Ribosome subtomograms, 58 26S subtomograms, and 81 TRiC

subtomograms. Such unbalanced class distribution is common in biomedical image processing.

Each subtomogram is rescaled to size 323.

3.4.2 Evaluation Metrics

Following prior work [7, 309], we use the standard metrics of the mean intersection of union

(mIoU) in these experiments. We also compute the class-specific mIoU to measure the model

performance for each class.

3.4.3 Baseline Methods

Image-level Baselines. Following existing work [311], CAM-based methods are chosen as

image-level baselines when there are no existing literature on 3D segmentation using image-

level supervision. We choose Grad-CAM [254] and Respond-CAM [339] with the 3D CNN

backbone as our baselines. We use the open-source implementation from [1].

State-of-the-art Baselines with Stronger Supervision. We also compare CIVA-Net with

two of the state-of-the-art 3D segmentation models, 3D U-Net and VoxResNet using the open

source code from [2] and [3]. For 3D segmentation trained with 2D slice supervision, 3D U-Net

is one of the state-of-the-art models. We train 3D U-Net with the ground truth segmentation

of one 2D slice, which covers 6.8% ground truth voxels. VoxResNet is trained with 3D full

segmentation. Specifically, 2D slice supervision means the network learns from one 2D slice

annotation and predicts a dense 3D segmentation. Full segmentation supervision is used when

the full 3D masks are available, and the network densely segments new volumetric images.
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Method mIoU ribo 26S TRiC

Respond-CAM 12.8 14.5 6.1 2.7

Grad-CAM 19.0 22.8 0.4 0.0

CIVA-Net 36.1 37.1 25.4 36.3

CIVA-Net (3D-CRF) 67.8 74.2 32.3 39.9

Table 3.2: Comparison of CIVA-Net and the image-level baselines on the real dataset.

3.4.4 Implementation Details

Grad-CAM and Respond-CAM use the same network structure in [339] and share the same

hyper-parameter settings and training configurations. The models are trained with a learning

rate of 0.001. Adam [135] is used as the optimizer with batch size 32. The networks converge

at about 20 epochs. 3D U-Net is trained with a learning rate of 0.0002. Adam [135] is used as

the optimizer with batch size 1. We use the same hyper-parameter settings and training con-

figurations for the experiments with 2D slices and full segmentation supervision. The network

converges after about 50 epochs. For the training of VoxResNet, the learning rate is initially set

to 0.001 and decreases at every iteration with exponential decay [255]. Adam [135] is used as

the optimizer with batch size 16. The model converges after about 200 epochs.

For our CIVA-Net, it directly uses the Grad-CAM baseline as a part of its backbone network.

The inter-voxel affinity network is trained from scratch and uses Stochastic Gradient Descent

for network optimization with batch size 1. The learning rate is initially set to 0.0001 and

decreases at every iteration with polynomial decay [184]. The model converges after about 3

epochs. The radius γ used in affinity pairs sampling is set to 2, and other hyper-parameters are

determined by the validation set for each dataset. The model trained on 4,000 subtomograms

takes 8 hours to converge with a single GTX 1080 Ti machine.

3.4.5 Quantitative Results

Comparison to Image-Level Baselines. Table 4.6 lists the evaluation results on two simu-

lated datasets. Aswe can see, ourmodel outperforms two image-level baselines in all classes and

performs significantly better in the averagemIoUmetric. We report themIoU evaluation results

on the real dataset in Table 3.2. Our model also achieves superior performance on both aver-

age mIoU and class mIoU. For some classes with significantly fewer samples (26S and TRiC),

our model can also generalize to these unbalanced classes and predict precise segmentation.
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Method mIoU
003
snr mIoU

005
snr mIoUreal

Supervision: Voxel-level

3D U-Nets 30.3 34.2 52.7

VoxResNetf 77.0 78.5 89.8

Supervision: Image-level

Ours 39.9 38.8 62.7

Table 3.3: Comparison of CIVA-Net and the state-of-the-art semantic segmentation models on

both simulated and real datasets. 3D U-Nets is 3D U-Net trained with 2D slices. VoxResNetf is

VoxResNet model trained with full segmentation supervision.

Grad-CAM CO IVA 3D-CRF mIoU
003
snr mIoU

005
snr mIoUreal

✓ 14.8 9.7 19.0

✓ ✓ 17.9 18.3 20.5

✓ ✓ ✓ 20.6 24.4 36.1

✓ ✓ ✓ ✓ 39.9 38.8 62.7

Table 3.4: Performance of ablated versions of our model.

With the post-processing of our 3D-CRF module, the model can achieve better performance by

leveraging low-level contextual information.

Comparison to State-of-the-Art Segmentation. In Table 3.3, we compare our final result

with the existing state-of-the-art segmentation models that rely on stronger supervision. Sim-

ilar to other state-of-the-art weakly supervised methods using image-level labels [311], there

is still a performance gap between our proposed model and the state-of-the-art fully segmen-

tation methods, but our weakly supervised approach achieves better performance to 3D U-Net

models trained with stronger supervision.

3.4.6 Qualitative Analysis

We qualitatively demonstrate the advantages of our model in Figure 3.4. The first row is the

input image. We can see it contains a major macromolecule and neighbor structures. The

second row is the ground truth segmentation. The third and fourth rows are the semantic

segmentation predicted by the baseline method (Grad-CAM) and our CIVA-Net. Compared with

the baseline method, our CIVA-Net can alleviate the following errors: (a) wrong segmentation;

(b) incomplete segmentation brought by heavy noise; (c) false-positive segmentation in complex

40



scenarios with neighbor structures; (d) segmentation with wrong class boundaries. Due to the

cross-image co-occurrence and inter-voxel affinity learning designs, our model can generate

accurate and robust segmentation in different scenarios.

3.4.7 Ablation Study

Ablation Study of CIVA-Net. We test various ablations of our model on both simulated and

real datasets to substantiate our design decisions. The mIoU evaluation results are shown in

Table 3.4. We observe that each component of our model gains consistent improvements on all

datasets.

Ablation Study ofCo-Occurrence LearningModule. We test the effects of differentweights

used in combining Grad-CAMmap and co-occurrence map. The experiments are performed on

the dataset with SNR 0.03. We report the mIoU evaluation results in Figure 3.5 with Grad-CAM

map weight from 0 to 1 in steps of 0.1. Assuming the weight of Grad-CAM is w1, then the

weight of the co-occurrence map is 1 − w1. We observe that the model gets significant per-

formance improvements from combining Grad-CAM map with the co-occurrence map. The

model gets the best performance when the Grad-CAMweight equals 0.3 and the co-occurrence

weight equals 0.7.

Figure 3.5: Ablation Study of Co-Occurrence Learning.

Ablation Study of Inter-Voxel Affinity Learning Module. To demonstrate the effective-

ness of our inter-voxel affinity learningmodule, we compare our module with ordinary VoxRes-

Net that directly takes the pseudo segmentation label as ground truth to train a full segmenta-

tion network using cross-entropy loss [33]. The results are reported in Table 3.5. The first row

shows the mIoU of the pseudo segmentation labels. The second row shows the performance of
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Setting mIoU
003
snr mIoU

005
snr mIoUreal

Pseudo Label 17.9 18.3 20.5

Seg. w/o IVA 18.1 20.3 22.7

Seg. w/ IVA (Ours) 20.6 24.4 36.1

Table 3.5: Ablation Study of Inter-Voxel Affinity Learning.

VoxResNet trained with cross-entropy loss. The third row shows the model trained with voxel

affinity pairs. We can see that the model can achieve better performance with our inter-voxel

affinity learning module.

3.5 Conclusion

In this paper, we propose a novel weakly supervised approach for 3D semantic segmentation on

cryo-ET images. Unlike most existing methods that require voxel-wise densely labeled training

data, our weakly-supervised CIVA-Net is the first 3D model that only needs image-level class

labels as guidance to learn accurate volumetric segmentation. Our model utilizes cross-image

co-occurrence for integral and consistent region generation, and explores inter-voxel affinity

relations to predict segmentation with accurate boundaries. Our experiments show that CIVA-

Net can achieve comparable performance to the models trained with stronger supervision. Our

model can be easily generalized to other 3D biomedical images. Moreover, our work funda-

mentally relates to COVID-19 research. We experiment on two simulated datasets containing

the COVID-19 class and achieve superior performance. As a result, our model will assist the

analysis of the 3D native structure of COVID-19 under the cryo-electron microscope, to benefit

the design of effective therapeutics against COVID-19.
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Part II

Masked Visual Modeling for Generalized
Human Action Analysis
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In this part, we focus on analyzing human behavior from temporal cues based masked vi-

sual modeling. We explore different modalities for human action analysis, including videos, 3D

skeletons, point clouds, and meshes. We first propose to leverage adversarially masked con-

sistency for scene-invariant action recognition (chapter 4). We then propose a masked vertex

modeling technique for 3D mesh-based action recognition. Finally, we conduct generalized

human action recognition by jointly modeling videos and 3D meshes (chapter 5).
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Chapter 4

Adversarially masked consistency for
video-based action recognition

In this chapter, we explore the benefit of adversarially learned masks for the unsupervised

video domain adaptation task. The model is able to perform generalized human action analysis

towards novel scenes across different geo-locations.

Figure 4.1: Visualization of the feature space for unsupervised domain adaptation methods.

Existing state-of-the-art video domain adaptation models [38, 84, 290] used full-view input data

to perform domain alignment as shown in (b). In this work, we propose amodel that learns from

adversarially masked samples, which can lead to the learning of effective domain-invariant and

class-discriminative representations.
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4.1 Overview

Egocentric vision [90, 126, 150, 164, 182, 186, 212, 214, 273, 275, 333] has attracted increasing at-

tention in the computer vision community. It serves as key elements for various research fields,

such as human-object interaction [186, 333], action recognition [212, 273], action anticipation

[182, 214], social interaction analysis [150], and augmented reality [126, 164, 275]. Besides,

egocentric vision has been popular in many real-world applications, among which egocentric

action recognition is an important and challenging task compared to third-person action recog-

nition, due to the presence of ego-motion caused by the action performer. Such camera motion

introduces heavy noises that complicate the extraction of visual representation from the video

frames [212]. Moreover, egocentric action recognition task usually requires high-fidelity mod-

eling of human behaviors [333], such as cut a vegetable instead of coarse-grained actions such

as cook. This requires the model to effectively recognize small objects and their mutual interac-

tion. To train a discriminate model that is robust to sharp domain gaps, supervised approaches

rely on collecting and annotating a large number of videos, which is expensive and may not be

feasible in practice.

To address the lack of fine-grained data annotations, Unsupervised Domain Adaptation

(UDA) setting is commonly used to transfer a model learned on a labeled source domain to

an unlabelled target domain. However, existing unsupervised domain adaptation benchmarks

for egocentric action recognition are limited to a single environment [56, 57] (i.e. kitchens),

with small domain variances (i.e. different kitchens are treated as different domains). As a first

step in this direction, we propose a new unsupervised domain adaptation benchmark, named U-

Ego4D. We leverage the massive-scale Ego4D dataset [90]. It records daily-life activity videos

spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.). The proposed

U-Ego4D treats actions in different regions as different domains, which is more challenging.

Moreover, the same action can happen in the same or different scenarios. For example, the

action cut, can happen in a kitchen such as cut dough and cut a vegetable, or happen outdoors

such as cut grass.

There are several challenges in training a model that is robust to various scenarios with

only labeled source data available. First, there are multiple factors that could lead to domain

gaps, including different backgrounds, lighting conditions, viewpoints, interacted objects, and

motion variances. To bridge the domain gap, most of the existing state-of-the-art methods use

adversarial learning to align two domains based on the full-view data. However, it might lead to

trivial solutions (i.e. themodel might be over-fitted to differentiate the source and target domain
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only based on lighting differences, while other factors are neglected). Second, the decision

boundary learned on labeled source videos may generalize poorly to the target domain. The

model may overfit the source data well but is less discriminative for the target.

To tackle the aforementioned challenges, we propose a transformer-based model that uti-

lizes masked data to avoid trivial solutions and learns more generalizable representations. This

is different from existing state-of-the-art methods, which only take full-view data as inputs,

as illustrated in Figure 4.1. Our model consists of two novel designs: Generative Adversar-

ial Domain Alignment Network (GADAN) and a Masked Consistency Learning (MCL) mod-

ule. GADAN simultaneously learns a masking generator and a domain-invariant encoder in

an adversarial way. The domain-invariant encoder is trained to minimize the feature distance

between the source and target domain. Themask generator, conversely, aims at producing chal-

lengingmasks bymaximizing the domain distance. To increase themodel’s class-discriminative

ability, MCL enforces the prediction consistency between the masked target videos and their

full forms, and enhances the understanding of spatial-temporal context. We show the efficacy

of our model on the Epic-Kitchen and the proposed U-Ego4D benchmarks. Our contributions

are three-fold:

• Wepropose the U-Ego4D benchmark, to enable the evaluation of video domain adaptation

models in a more challenging and practical scenario.

• We introduce a new transformer-based model, which contains the Generative Adversar-

ial Domain Alignment Network and the Masked Consistency Learning module to learn

effective domain-invariant and class-discriminative representations.

• Our method outperforms existing state-of-the-art models on Epic-Kitchen and U-Ego4D

benchmarks.

4.2 Related Work

Egocentric Vision. Egocentric vision is more complicated compared to third-person percep-

tion. It brings various challenges, such as sharp viewpoint movement, object occlusions, and

environmental bias [134, 160, 211, 227, 228, 249, 271]. To help the model focus on the regions

of interest and better recognize different actions, Sudhakaran [273] proposed to use both long-

term and short-term attention mechanisms to recognize fine-grained actions. Lu [191] intro-

duced a two-stream deep neural network which consists of an appearance-based stream and a

motion-based stream for action recognition. Another stream focuses on leveragingmulti-modal
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information, such as RGB, depth, audio, and event camera [131, 156, 228]. [131] introduced a

novel architecture for multi-modal temporal-binding. It is able to combine multiple modalities

within a range of temporal offsets. The proposed framework combined three modalities (i.e.

RGB, Flow and Audio) for egocentric action recognition. [156] proposed a transformer-based

method which includes inter-frame attention encoder and mutual-attentional fusion block. The

model consumes both RGB and depth images as inputs. [228] proposed to use event-camera data

to distill optical flow information. Leveraging event-camera data is demonstrated to be effec-

tive and can improve performance of up to 4% with respect to RGB only information. However,

those methods need extra sensors and increase the computational cost, as multiple backbone

networks are needed to encode different modalities. To tackle the challenges brought by ego-

centric videos, we propose a masked consistency learning module to help the model learn the

spatial-temporal context.

Video Domain Adaptation. Video domain adaptation has been studied to bridge domain

gaps from different perspectives. One of the important tasks is cross-viewpoint domain adap-

tation [138, 151, 181, 236, 268, 350]. These works focused on learning geometric transforma-

tions of a camera but neglected other domain shifts such as environment differences. To learn

viewpoint-invariant representations, 3D representations such as skeletons and human meshes

are used as model inputs [181, 268]. The other stream for video domain adaptation focuses

on environmental changes. Some of the recent works applied adversarial training for domain

alignment [37, 120, 219]. Specifically, Gradiant Reverse Layer [151] was adapted to C3D [286],

TRN [345] or both [219] architectures. Chen et al. [37] proposed an attention-based model to

attend to the temporal dynamics of videos. Pan et al. [219] introduced a cross-domain atten-

tionmodel to learn relevant information. In contrast to previous literature which used complete

videos as model inputs, we propose a model which leverages adversarially generated masks to

better align the source and target domain.

Masked Visual Modeling. Masked visual modeling has gained attention in both Natural

Language Processing and Computer Vision. It learns effective representations by masking and

reconstruction. Some early works[298] treated the masks as a noise type [297] or missing re-

gions and used inpainting objectives [221]. More recently, transformer backbones becamemore

andmore popular due to their flexibility tomask different patches [16, 66, 102, 310, 317, 346, 351].

BEiT [16] followed the success of BERT [63] and proposed methods to learn visual representa-

tions by predicting the discrete tokens [237]. He [102] proposed an encoder-decoder architec-
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Figure 4.2: Overview of the proposed framework. There are two training stages to learn domain-

invariant and class-discriminative representations. The goal of stage one (denoted by solid lines)

is to align the source and target domains. As directly aligning the two domains using full views

may lead to trivial solutions, we propose an adversarial mask generator to produce masked

samples. This module is trained with the domain-invariant encoder in an adversarial way. For

the training of stage two (denoted by dashed lines), we propose a Masked Consistent Learning

module to enhance themodel’s understanding of the spatial-temporal context, and thus increase

the class-discrimination ability. We first initialize the class-discriminative visual encoder using

weights learned in stage one. Then we force the visual encoder to have consistent predictions

on the full and masked views of the same target video. Our two-stage training framework

learns effective domain-invariant and class-discriminative representations, with robustness to

large domain gaps.

ture for masked image modeling. [265] proposed to adversarially learn the masks for masked

visual modeling and performed evaluation on the image classification task. VideoMAE [283]

was inspired byMAE [102] and adaptedmask and reconstruction strategies to the video domain.

One of the recent works applied the masked image modeling strategy for unsupervised domain

adaptation on the image classification task [108]. In contrast to previous methods which use

random masking strategies, we propose to generate challenging masks for the domain adap-

tation task in an adversarial way. Moreover, we do not use any reconstruction objectives and

simply force the masked and unmasked views to have consistent predictions.

51



4.3 Method

4.3.1 Overview

In this section, we introduce our model for unsupervised video domain adaptation. Contrast to

previous methods [38, 84, 212, 249, 290] which take full data views as inputs to train a domain-

alignment or class-discriminative loss, we aim at developing a model that can benefit from

the masked forms for better domain alignment and context understanding. Following previ-

ous works for unsupervised domain adaptation [211, 249, 290], we adopt a multi-stage training

schema. Our model consists of two stages. For stage one, We train the Generative Adver-

sarial Domain Alignment Network. Specifically, the adversarial mask generator and domain-

invariant visual encoder are trained in an adversarial way. The adversarial mask generator aims

at producing challenging samples to maximize the distance between the source and target do-

main. Conversely, the domain-invariant visual encoder is trained with those masked samples

to minimize the domain distance. For stage two, we further fine-tune the domain-invariant en-

coder by forcing the label predictions between the masked and full unlabeled videos to be con-

sistent. As there are no ground truth labels for the target samples, we generate the pseudo-labels

using complete videos. In summary, our proposed method has the following key components:

• Adversarial Mask Generator is trained to generate challenging masks that will maxi-

mize the domain gap between masked source and target samples.

• Domain-Invariant Visual Encoder is trained to minimize the domain gap between the

masked source and target samples. It is trained with Adversarial Mask Generator in an

adversarial way.

• Masked Consistency Loss enforces the masked target videos and their full forms to

have consistent label predictions.

• Class-DiscriminativeVisual Encoder is initializedwith theweights of Domain-Invariant

Visual Encoder trained in stage one, and is fine-tuned using the masked consistency loss.

See Figure 7.3 for a high-level summary of the model, and the sections below for more

details.

4.3.2 Unsupervised Domain Adaptation

Given a set of labeled source videos DS = {(Vi{s}, yi)}NS
i=1 and unlabelled target videos DT =

{Vi{t}}NT
i=1, the goal of UDA task is to learn a model H which minimizes the task risk ϵDT

(H)
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in the target domain, i.e. ϵDT
(H) = PDT

[H(x) ̸= H∗(x))], where DT is the unlabeled target

samples, and H∗
is the ideal model in all model space. The model H consists of a feature

extractor F and a classification head G, i.e.H(x) = G(F(x)).

4.3.3 Generative Adversarial Domain Alignment Network

To align the source and target domains, adversarial adaptive learning methods [84, 212, 290]

are used to regularize the source and target representations, so as to minimize the distance

between the empirical source and target mapping distributions: H(xs) andH(xt). Adversarial

domain alignment is one of the commonly used strategies. A domain discriminator is trained

along with the gradient reverse layer (GRL) [84] to minimize the domain distance. The gradient

reversal mechanism ensures that the distributions over the two domains are forced to be similar

(as indistinguishable as possible for the domain classifier), thus resulting in domain-invariant

representations. Given an ideal model that is domain-invariant, the source classification model

can be directly applied to classify the samples from the target domain. Given a binary domain

label, d, indicating if an example x ∈ S or x ∈ T, the domain discriminator is defined as,

Ld =
∑

x∈{S,T}

−d log(D(F(x)))− (1− d) log(1−D(F(x))) (4.1)

Where F is the visual encoder and D is the domain classification head. However, there

are multiple factors that could lead to domain gaps, including different backgrounds, light-

ing conditions, viewpoints, interacted objects, and motion variances. Existing state-of-the-art

methods [38, 84, 249, 290] directly use Eqn. 4.1 to align two domains based on the full input

data. However, it might lead to trivial solutions. To tackle this problem, we propose to mini-

mize the distance between the empirical source and target mapping distributions learned from

themasked forms: h(ms⊙xs) and h(mt⊙xt), wherems andmt are element-wise masks and

⊙ is the Hadamard product. The model can learn from samples that are adversarially masked

based on domain classification loss. The masked domain discrimination loss Lm
d is defined as:

Lmd =
∑

x∈{S,T}

−d log(D(F(x⊙m)))− (1− d) log(1−D(F(x⊙m))) (4.2)

There are multiple video masking options, such as pixel-wise masking, tube masking, and

frame-wise masking. Another important aspect is the masking ratio. He et. al [102] demon-

strated that large mask ratios are essential for effective self-supervised learning. In contrast

to previous methods, we propose to learn the mask in an adversarial way. The learned masks

53



save the efforts to adjust masking hyper-parameters, and can produce challenging samples for

domain-invariant learning. Given an RGB video x ∈ Rt×c×w×h
, the adversarial mask genera-

tion modelM produces an element-wise maskm =M(x), which is in the shape of Rt×c×w×h

with values in [0, 1]. The generation model is trained with the objective of maximizing the

distribution shifts between the two domains. On the other hand, the domain-invariant visual

encoder F takes the masked videos from the source and target domains as inputs, and tries to

minimize the mapping distributions. The two models are jointly learned using the following

function:

M⋆,F⋆ = argmin
F

max
M
Dm(xs, xt;F ,M) . (4.3)

Where Dm
denotes the masked feature distance. To stabilize the training process, inspired

by Generative Adversarial Network (GAN) [88], we first freeze the mask generator and train

the visual encoder using masked domain discrimination loss with GRL. In this way, the visual

encoder learns domain-invariant representations that are as indistinguishable as possible for

the domain classifier. Then we freeze the visual encoder and train the mask generator with

masked domain discrimination loss only (without GRL). The mask generator learns to generate

challenging masked videos which will maximize the domain distance (i.e, the masked views of

the source and target videos are as distinguishable as possible for the domain classifier). The

adversarial mask generatorM consists of a U-Net architecture [243] and a pixel-wise softmax

layer σ to ensure that the sum of the generated mask equals one.

4.3.4 Masked Consistency Learning

The goal of theGenerativeAdversarial DomainAlignmentNetwork is to learn domain-invariant

representations using masked views. However, the models learned on labeled source videos

may overfit the source domain but are less discriminative for the target [129]. To help the

model learn effective class-discriminative features, we enforce the model to make consistent

predictions on the full and masked videos.

Specifically, we use an Adversarial Mask Generator trained in stage one to generate masked

samples for unlabeled target videos. Moreover, we take the full video forms as inputs to generate

pseudo-labels, and force themodel to have consistent predictions on themasked and full videos.

The proposed consistency learning module has two purposes: (1) Using the masked samples as

a type of strong data augmentation. Based on [338], the unlabeled target samples can be divided

into two groups: source-like samples and target-specific samples. The source-like samples can
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already be easily classified after the domain alignment; the target-specific samples, however,

are more likely to confuse the video classification model. We aim to apply the adversarial

mask generation model in Sec 4.3.3 to generate more target-like samples. (2) Enforcing the

model to have consistent predictions for better context learning. To recognize a human action,

a model can utilize clues from different parts of the video. This can be local spatial information,

which originates from the same region as the corresponding cell in the feature map, or context

information, which comes from nearby patches in the spatial-temporal domain that can belong

to different parts of the object or its background [107, 108]. The proposed Masked Consistency

Learning (MCL) can help the model learn context relations on the unlabeled target domain,

which will further improve the class-discriminative ability.

Specifically, MCL first generates adversarial masks using the mask generator trained in

stage one, and then applies an element-wise multiplication of mask and video. In this way, the

masked target prediction ŷM can only rely on the limited information of the remaining video

pixels:

ŷM = G(F(x⊙m)) (4.4)

This makes the prediction more difficult. The masked consistency loss Lm
c can be represented

as

Lm
c =

∑
x∈{T}

−pT log ŷM (4.5)

where pT denotes a pseudo-label. The proposed model uses pseudo-labels as there is no ground

truth available for the target domain. The pseudo-label is the prediction of the visual encoder

and classification head of the complete target video x.

pT = argmaxG(F(x)) . (4.6)

4.3.5 Training

Themodel training includes two stages. For the first stage, we train the domain-invariant visual

encoder using the masked domain discrimination loss Lm
d and the supervised classification loss

LS . Training with supervised classification loss expects the presence of labels and thus can only

be applied to the labeled source input. The supervised classification loss can be represented as:

LS =
∑N

i=1 CE(cls
i, cls∗i), where clsi is the predicted label and cls∗i is the ground truth label,

and N is the number of labeled source videos. To stabilize the training, the mask generator

and visual encoder training proceed in alternating periods. In stage two, we freeze the mask

generator and train the visual backbone using the masked consistency loss Lm
c .
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Figure 4.3: Left: Class distributions per domain for the U-Ego4D benchmark. Right: Videos

collected from different regions are treated as different domains. Different from the Epic-

Kitchen dataset which is limited to the kitchen scenario, the same action in the U-Ego4D bench-

mark can happen in totally different environments.

4.4 Experiment

4.4.1 Datasets

Epic-Kitchen. We evaluate our model on the commonly-used Epic-Kitchen dataset [56].

Epic-Kitchen contains egocentric videos for fine-grained activities in the kitchen environment.

It has three domains (D1, D2, and D3), and each domain is a different kitchen. The task is

to adapt between each pair of kitchens, which have different visual appearances. This bench-

mark contains 8 verb action classes, which occur in combination with different nouns. We use

the standard training and test splits provided by the previous works [56, 249] to conduct our

experiments.

U-Ego4D. We construct a new unsupervised domain adaptation benchmark called U-Ego4D.

It builds on the massive-scale Ego4D dataset [90], which records daily-life activity videos span-

ning hundreds of scenarios (e.g. household, outdoor, workplace, leisure). We select two regions

with the largest number of videos, North America and West Asia as two different domains (i.e.

domain NA and domain WA). In this way, we can analyze the domain gaps between different

regions. Moreover, in U-Ego4D, the same action can happen in the same or different scenarios

(e.g. indoors and outdoors), which increases the action diversities. For example, in Figure 4.3,

the action "interact" can happen indoors (during a meal) or happen outdoors. For the action

categories, we select the 8 largest classes: (use, interact, clean, put_away, cut, throw_away, stir,
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and fill). The class distributions are shown in Figure 4.3. The in-balanced class distributions

bring additional challenges for the domain adaptation task. Besides, U-Ego4D is 3x larger than

Epic-Kitchen in terms of video length and clip number. Specifically, U-Ego4D has 35.67 hours

of video with 35,937 video clips in total, while Epic-Kitchen only has 7.98 hours with 10,094

clips. Please refer to supplementary materials for data pre-processing details.

4.4.2 Implementation Details

We use the transformer-based architecture, ViT-Small[283], as our visual encoder. Following

previous works [38, 84, 249, 290], the model is initialized with Kinetics-400 [130] pre-trained

weights. Our model uses the same visual encoder and initialization strategies as the baselines

with ViT backbones for a fair comparison. Following previous works for unsupervised domain

adaptation [211, 249, 290], we adopt a multi-stage training schema. The adversarial mask gen-

erator and domain-invariant encoder are trained in stage one. The class-discriminative visual

encoder is trained using the masked consistency loss in stage two. We use a clip length of 16

with a spatial size of 224 × 224 to train all the models. AdamW [190] is used with β equals

(0.9, 0.999) as the model optimizer with a learning rate 1e-4. We use batch size 8 for all the

experiments. For the implementation of the mask generator, we use a U-Net structure with a

depth of 4. For inference, we use 16 randomly sampled frames per video and use the visual

encoder along with the classification head to recognize the action. For more details, please see

the supplementary material.

4.4.3 Baselines

We compare our model with state-of-the-art unsupervised domain adaptation models. ADDA

[290] is a general framework which combined discriminative modeling, untied weight sharing,

and a GAN loss for unsupervised domain adaptation. DANN [84] proposed gradient reverse

layer (GRL) for domain-invariant representation learning. TA
3
N [38] adapted attention mech-

anisms to explicitly attend to the temporal dynamics using domain discrepancy for effective

domain alignment. CoMix is a contrastive learning framework which leveraged background

mixing to produce augmented samples [249]. TransVAE [312] combines seven different loss

functions [38, 84, 345] for spatial-temporal disentanglement and domain gap minimization. All

of those models were originally implemented with the I3D backbone. We also run experiments

for DANN [84] and CoMix [249] by replacing I3D with the same ViT backbone as our proposed

model for a fair comparison. Note that it is not feasible to replace the backbone of TransVAE
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Method Backbone
Epic-Kitchens

Average
D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3

Supervised Source I3D 35.4 34.6 32.8 35.8 34.1 39.1 35.3

ADDA [290] I3D 36.3 36.1 35.4 41.4 34.9 40.8 37.4

DANN [84] I3D 38.3 38.8 37.7 42.1 36.6 41.9 39.2

TA
3
N [38] I3D 40.9 39.9 34.2 44.2 37.4 42.8 39.9

CoMix [249] I3D 38.6 42.3 42.9 49.2 40.9 45.2 43.2

TranSVAE [312] I3D 50.3 48.0 50.5 58.0 50.3 58.6 52.6

Supervised Target I3D 57.0 57.0 64.0 64.0 63.7 63.7 61.5

Supervised Source ViT 44.7 45.6 53.3 55.6 46.7 47.8 49.0

DANN [84] ViT 49.8 47.5 58.9 57.3 53.8 52.4 53.3

CoMix [249] ViT 46.3 47.3 56.7 59.3 51.4 52.3 52.2

Ours ViT 50.7 48.2 64.6 60.8 55.5 56.6 56.1

Supervised Target ViT 57.6 57.6 66.5 66.5 67.2 67.2 63.8

Table 4.1: Experimental Results on Epic-Kitchens Dataset. Our model achieves the best average

performance among all state-of-the-art methods.

with ViT, as some of the loss functions in TransVAE are specifically designed for its architec-

ture. All of thesemodels use single modality features as our proposedmethod. There are several

recent works conducting video-based unsupervised domain adaptation using multi-modal data

which combines RGB and Flow. Although our method solely uses RGB information, we still

take this set of methods into account following the previous work [312]. Specifically, we con-

sider MM-SADA [211], STCDA [271], CMCD [249], CleanAdapt [59], MixDANN [327] and CIA

[323].

4.4.4 Main Results

Results on Epic-Kitchen. We compare our model with state-of-the-art unsupervised video

domain adaptation models on the Epic-Kitchen dataset and report the results in Table 4.1. Our

model achieves the best performance on the 5 of 6 splits as well as the best average performance

of 56.1%. Besides, we observe that the performance gap between our method and the supervised

target model has been reduced to 7.7%, which demonstrates the potential to close the domain

gap using masked video modeling methods.

Compare to Multi-Modal Methods. We further compare our model with recent video-

based unsupervised domain adaptation methods that use multi-modalities, i.e., RGB features
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Method
Epic-Kitchens

Average
D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3

Supervised Source 43.0 43.0 43.2 55.5 42.5 48.0 45.9

MM-SADA [211] 48.2 50.9 49.5 56.1 44.1 52.7 50.3

STCDA [271] 49.0 52.6 52.0 55.6 45.5 52.5 51.2

CMCD [249] 49.5 48.7 50.3 56.3 46.3 52.0 51.0

CleanAdapt [59] 46.2 47.8 52.7 54.4 47.0 52.7 50.3

MixDANN [327] 50.3 51.0 56.0 54.7 47.3 52.4 52.0

CIA [323] 49.8 52.2 52.5 57.6 47.8 53.2 52.2

Ours 50.7 48.2 64.6 60.8 55.5 56.6 56.1

Table 4.2: Experimental Results on Epic-Kitchen with comparisons to approaches using multi-

modality data as the input. Our model, which only uses RGB videos, achieves the best average

performance among all state-of-the-art methods.

and optical flows, although our model only uses RGB features. The results are reported in

Table 4.2. We observe that our method achieves the best average result among all of the six

multi-modal methods.

Results on U-Ego4D. We compare our model with state-of-the-art unsupervised video do-

main adaptation models on the proposed U-Ego4D benchmark and report the results in Ta-

ble 4.3. Our model achieves the best performance including the best average performance of

53.9%. Although our model achieves promising performance, there is still a large performance

gap between our method and the supervised target model, which is 15.5%. This shows the great

potential for further improvement to bridge the large domain gap caused by different regions.

Besides, we observe that on Epic-Kitchen, all the methods can help increase the performance

from Supervised-Source by at least an absolute 3.2% (CoMix) to 7.1% (ours), while on U-Ego4D

we are only seeing an increase of 2.5% (CoMix) to 3.6% (ours). Low-bound (Supervised-Source)

methods on both datasets have similar performance (49.0% v.s. 50.3%), while U-Ego4D has a

higher upper bound (supervised-target) 69.4% compared to Epic-Kitchen which is 63.8%. This

suggests that there is still a larger domain gap after applying the state-of-the-art domain adap-

tation methods and thus the proposed U-Ego4D dataset is more challenging.
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Method Backbone
U-Ego4D

Average
NA→WA WA→NA

Supervised Source ViT 52.5 48.1 50.3

DANN [84] ViT 56.9 48.6 52.8

CoMix [249] ViT 56.3 48.9 52.6

Ours ViT 58.4 49.4 53.9

Supervised Target ViT 67.5 71.3 69.4

Table 4.3: Experimental Results on the proposed U-Ego4D Dataset. Different from Epic-Kitchen

which specifically focuses on domain transfer among different kitchens, U-Ego4D focuses on a

more practical setting: domain adaptation between different regions. Our model achieves the

best performance compared to state-of-the-art models.

Method Backbone
Epic-Kitchen

Average
D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3

S.O. ViT 44.7 45.6 53.3 55.59 46.7 47.8 49.0

S.O.+GADAN ViT 50.2 47.9 61.0 56.8 54.3 53.3 53.9

S.O.+GADAN+MCL ViT 50.7 48.2 64.6 60.8 55.5 56.6 56.1

Table 4.4: Ablation Studies on Epic-Kitchen. Each of our proposed modules brings stable per-

formance improvement in all tasks. S.O. stands for the source-only model, GADAN stands for

Generative Adversarial Domain Alignment Network, and MCL stands for Masked Consistency

Learning.

4.4.5 Ablation Studies and Analysis

Effectiveness of Different Components. We test various ablations of our model on the

Epic-Kitchen dataset to substantiate our design decisions. The results are shown in Table 4.4.

We observe that each component of our model brings consistent improvements in all six splits.

Overall, compared to the source-only baseline, Generative Adversarial Domain Alignment Net-

work improves the average accuracy from 49.0% to 53.9%, and Masked Consistency Learning

can further improve the accuracy to 56.1%.

Comparison of Different Loss Functions and Masking Strategies for GADAN. We test

our Generative Adversarial DomainAlignmentNetworkwith different loss functions andmask-

ing strategies. The results are shown in Table 4.5. We perform all the experiments with the same
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Method Top-1 (%)

S.O. 53.3

S.O.+DL 58.9

S.O.+MDL + random tube (r=0.5) 59.8

S.O.+MDL + random tube (r=0.75) 59.6

S.O.+MDL + random tube (r=0.9) 59.3

S.O. + AMG (GADAN) 61.0

Table 4.5: Comparison of Different Loss Functions and Masking Strategies. DL stands for the

domain discrimination loss (with full-view inputs). MDL stands for the masked domain dis-

crimination loss. AMG stands for our adversarial mask generator.

Method Top-1 (%)

GADAN 61.0

GADAN + naive pseudo labeling 62.2

GADAN +MCLCE + random tube 63.4

GADAN +MCLMSE + AMG 62.8

GADAN + MCLCE + AMG 64.6

Table 4.6: Comparison of Different Loss Functions and Masking Strategies. DL stands for the

domain discrimination loss (with full-view inputs). MDL stands for the masked domain dis-

crimination loss. AMG stands for our adversarial mask generator.

hyper-parameters on the D1→D2 split of Epic-Kitchen for a fair comparison. Row 1 shows the

performance of the source-only baseline. Row 2 shows the performance of the source-only

baseline with the domain discrimination loss (DL) and gradient reverse layer. For rows 3-5, we

replace the masks produced by the Adversarial Mask Generator in GADAN with random tube

masks. We test three mask ratios: 0.5, 0.75 and 0.9. The last row is the result of our full GADAN

model. We observe that the proposed adversarial mask generator can bring 1.2% performance

improvement compared to the best model that is trained with random masks. Moreover, as our

masks are directly learned using the mask generation objective, it saves the efforts to adjust the

hyper-parameters, such as mask types and mask ratios.
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Figure 4.4: Visualizations of the Adversarially-Learned Masks.

Comparison of Different Loss Functions and Masking Strategies for MCL. We test

MCL with different consistency losses and masking strategies. We perform all the experiments

with the same hyper-parameters on Epic-Kitchen’s D1→D2 split. The results are shown in

Table 4.6. Row 1 shows the performance of GADAN. Row 2 shows the performance of GADAN

with the naive pseudo-labeling method. Row 3 shows the performance of GADAN with MCL.

Here we replace masks produced by AMGwith random tubes. Comparing row 3 and row 5 (our

full model), we find that adversarially generated masks lead to better performance for masked

consistency learning. We also test different consistency losses including the cross-entropy loss

(MCLCE) and mean squared error loss (MCLMSE ). For the cross-entropy loss, we force the hard

labels predicted from masked and full views to be consistent. For the mean squared error loss,

we force the soft logits of masked and full views to be consistent. Comparing row 4 and row

5, we find that cross-entropy loss leads to better performance compared to mean squared error

loss.

Visualizations of theAdversarially-LearnedMasks. Wevisualize the adversarially-learned

masks in Figure 4.4. We observe that after applying the learned masks, only the key instances

are kept for each frame. Specifically, in (a) and (b), the regions that describe human-object in-

teraction (person’s hands, green board, sink) are retained. In (c) and (d), some of the key objects

are preserved, such as bananas and refrigerators. In this way, the model is able to use the gen-
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erated hard samples for domain-invariant and class-discriminative feature learning, and thus

further improve performance.

4.4.6 Discussion

Although our model is trained and evaluated on eight different splits, potential dataset biases

can still cause negative societal impact in a real-world deployment. For example, due to the

small size of the action datasets, theymay not properly represent actions performed byminority

groups. Therefore, themodels trained on these datasets (whether domain-adapted or not) might

still under-represent some groups of people in the real world applications.

4.5 Conclusion

We have presented a novel transformer-based model for unsupervised domain adaptation in

egocentric videos. We are the first to show that masked video modeling can benefit both

domain-invariant and class-discriminative feature learning. Our method also establishes new

state-of-the-art performance on Epic-Kitchen and U-Ego4D. We believe our dataset, together

with our models, will facilitate future research in the domain adaptation and generalization

field.
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Chapter 5

Masked vertex modeling for 3D
mesh-based action recognition

In this chapter, we propose the first work that leverages 3D mesh representations for general-

ized human action recognition. We propose two pre-training objectives, namely masked vertex

modeling and future frame prediction, to help the model learn better spatial-temporal context.

The model is able to perform generalized human action analysis towards novel viewpoints and

scenes, thanks to the robust 3D mesh representations.

Figure 5.1: Current state-of-the-art MoCap-based action recognitionmethods first convert body

markers into a human body mesh, which is used to predict a standardized 3D skeleton. The 3D

skeleton is used as input for action recognition models (dashed line). We propose a method

that directly models the dynamics of raw mesh sequences (solid line). Our method saves the

manual effort to derive skeleton representation, and achieves superior recognition performance

by leveraging surface motion and body shape knowledge from meshes.
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5.1 Overview

Motion Capture (MoCap) is the process of digitally recording the human movement, which en-

ables the fine-grained capture and analysis of human motions in 3D space [194, 231]. MoCap-

based human perception serves as key elements for various research fields, such as action recog-

nition [73, 210, 213, 218, 231, 256], tracking [213], pose estimation [5, 136], imitation learning

[341], and motion synthesis [213]. Besides, MoCap is one of the fundamental technologies to

enhance human-robot interactions in various practical scenarios including hospitals and man-

ufacturing environment [100, 142, 195, 201, 205, 347]. For example, Hayes [100] classified au-

tomotive assembly activities using MoCap data of humans and objects. Understanding human

behaviors from MoCap data is fundamentally important for robotics perception, planning, and

control.

Skeleton representations are commonly used to model MoCap sequences. Some early works

[18, 154] directly used body markers and their connectivity relations to form a skeleton graph.

However, the marker positions depend on each subject (person), which brings sample vari-

ances within each dataset. Moreover, different MoCap datasets usually have different numbers

of body markers. For example, ACCAD [218], BioMotion[287], Eyes Japan [73], and KIT [197]

have 82, 41, 37, and 50 body markers respectively. This prevents the model to be trained and

tested on a unified framework. To use standard skeleton representations such as NTU RGB+D

[259], Punnakkal et al. [231] first used Mosh++ to fit body markers into SMPL-H meshes, and

then predicted a 25-joint skeleton [179] from the mesh vertices [242]. Finally, a skeleton-based

model [263] was used to perform action recognition. Although those methods achieved ad-

vanced performance, they have the following disadvantages. First, they require several manual

steps to map the vertices from mesh to skeleton. Second, skeleton representations lose the in-

formation provided by originalMoCap data (i.e., surfacemotion and body shape knowledge). To

overcome those disadvantages, we propose a mesh-based action recognition method to directly

model dynamic changes in raw mesh sequences, as illustrated in Figure 7.1.

Though mesh representations provide fine-grained body information, it is challenging to

classify high-dimensional mesh sequences into different actions. First, unlike structured 3D

skeletons which have joint correspondence across frames, there is no vertex-level correspon-

dence in meshes (i.e., the vertices are unordered). Therefore, the local connectivity of every

single mesh can not be directly aggregated in the temporal dimension. Second, mesh rep-

resentations encode local connectivity information, while action recognition requires global

understanding in the whole spatial-temporal domain.
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To overcome the aforementioned challenges, we propose a novel Spatial-Temporal Mesh

Transformer (STMT ). STMT leverages mesh connectivity information to build patches at the

frame level, and uses a hierarchical transformer which can freely attend to any intra- and inter-

frame patches to learn spatial-temporal associations. The hierarchical attention mechanism

allows the model to learn patch correlation across the entire sequence, and alleviate the re-

quirement of explicit vertex correspondence. We further define two self-supervised learning

tasks, namely masked vertex modeling and future frame prediction, to enhance the global in-

teractions among vertex patches. To reconstruct masked vertices of different body parts, the

model needs to learn prior knowledge about the human body in the spatial dimension. To

predict future frames, the model needs to understand meaningful surface movement in the

temporal dimension. To this end, our hierarchical transformer pre-trained with those two ob-

jectives can further learn spatial-temporal context across entire frames, which is beneficial for

the downstream action recognition task.

We evaluate ourmodel on commonMoCap benchmark datasets. Ourmethod achieves state-

of-the-art performance compared to skeleton-based and point-cloud-based models. The contri-

butions of this paper are three-fold:

• We introduce a new hierarchical transformer architecture, which jointly encodes intrinsic

and extrinsic representations, along with intra- and inter-frame attention, for spatial-

temporal mesh modeling.

• Wedesign effective and efficient pretext tasks, namelymasked vertexmodeling and future

frame prediction, to enable the model to learn from the spatial-temporal global context.

• Our model achieves superior performance compared to state-of-the-art point-cloud and

skeleton models on common MoCap benchmarks.

5.2 Related Work

Action Recognition from Depth and Point Cloud. 3D action recognition models have

achieved promising performance with depth [180, 250, 251, 304, 315] and point clouds [75, 185,

233, 308]. Depth provides reliable 3D structural and geometric information which character-

izes informative human actions. In MVDI [315], dynamic images [20] were extracted through

multi-view projections from depth videos for 3D action recognition. 3D-FCNN [250] directly

exploited a 3D-CNN to model depth videos. Another popular category of 3D human action

recognition is based on 3D point clouds. PointNet [232] and PointNet++ [233] are the pioneer-
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ing works contributing towards permutation invariance of 3D point sets for representing 3D

geometric structures. Along this avenue, MeteorNet [185] stackedmulti-frame point clouds and

aggregates local features for action recognition. 3DV [308] transferred point cloud sequences

into regular voxel sets to characterize 3D motion compactly via temporal rank pooling. PST-

Net [75] disentangled space and time to alleviate point-wise spatial variance across time. Action

recognition has shown promising results with 3D skeletons and point clouds. Meshes, which

are commonly used in representing human bodies and creating action sequences, have not been

explored for the action recognition task. In this work, we propose the first mesh-based action

recognition model.

MoCap-Based Action Recognition. Motion-capture (MoCap) datasets [73, 203, 210, 213,

218, 231, 256] serve as key elements for various research fields, such as action recognition

[73, 203, 210, 213, 218, 231, 256], tracking [213], pose estimation [5, 136], imitation learn-

ing [341], and motion synthesis [213]. MoCap-based action recognition was formulated as a

skeleton-based action recognition problem [231]. Various architectures have been investigated

to incorporate skeleton sequences. In [68, 178, 336], skeleton sequences were treated as time-

series inputs to RNNs. [106, 303] respectively transformed skeleton sequences into spectral

images and trajectory maps and then adopted CNNs for feature learning. In [322], Yan et al.

leveraged GCN to model joint dependencies that can be naturally represented with a graph. In

this paper, we propose a novel method to directly model the dynamics of raw mesh sequences

which can benefit from surface motion and body shape knowledge.

Masked Autoencoder. Masked autoencoder has gained attention in Natural Language Pro-

cessing and Computer Vision to learn effective representations using auto-encoding. Stacked

denoising autoencoders [298] treated masks as a noise type and used denoising autoencoders

to denoise corrupted inputs. ViT [67] proposed a self-supervised pre-training task to recon-

struct masked tokens. More recently, BEiT [16] proposed to learn visual representations by

reconstructing the discrete tokens [237]. MAE [102] proposed a simple yet effective asymmet-

ric framework for masked image modeling. In 3D point cloud analysis, Wang et al. [299] chose

to first generate partial point clouds by calculating occlusion from random camera viewpoints,

and then completed occluded point clouds using autoencoding. Point-BERT [328] followed the

success of BERT [63] to predict the masked tokens learned from points. However, applying

self-supervised learning to temporal 3D sequences (i.e. point cloud, 3D skeleton) has not been

fully explored. One probable reason is that self-supervised learning on high-dimensional 3D
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Figure 5.2: Overview of the proposed framework. (a) Overview of STMT. Given a mesh se-

quence, we first develop vertex patches by extracting both intrinsic (geodesic) and extrinsic

(euclidean) features using surface field convolution. The intrinsic and extrinsic features are de-

noted by yellow and blue blocks respectively. Those patches are used as input to the intra-frame

offset-attention network to learn appearance features. Then we concatenate intrinsic patches

and extrinsic patches of the same position. The concatenated vertex patches (green blocks) are

fed into the inter-frame self-attention network to learn spatial-temporal correlations. Finally,

the local and global features are mapped into action predictions by MLP layers. (b) Overview

of Pre-Training Stage. Wedesign two pretext tasks: masked vertexmodeling and future frame

prediction for global context learning. Bidirectional attention is used for the reconstruction of

masked vertices. Auto-regressive attention is used for the future frame prediction task.

temporal sequences is computationally-expensive. In this work, we propose an effective and

efficient self-supervised learning method based on masked vertex modeling and future frame

prediction.

5.3 Method

5.3.1 Overview

In this section, we describe our model for mesh-based action recognition, which we call STMT.

The inputs of ourmodel are temporalmesh sequences:M = ((P1,A1), (P2,A2), · · · , (Pt,At)),

where t is the frame number. Pi ∈ RN×3
represents the vertex positions in Cartesian coordi-

nates, where N is the number of vertices. Ai ∈ RN×N
represents the adjacency matrix of the

mesh. Element Amn
i ∈ Ai is one when there is an edge from vertex Vm to vertex Vn, and zero
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when there is no edge. The mesh representation with vertices and their adjacent matrix is a

unified format for various body models such as SMPL [189], SMPL-H [242], and SMPL-X [222].

In this work, we use SMPL-H body models from AMASS [194] to obtain the mesh sequences,

but our method can be easily adapted to other body models.

Mesh’s local connectivity provides fine-grained information. Previous methods [98, 261]

proved that explicitly using surface (e.g., mesh) connectivity information can achieve higher

accuracy in shape classification and segmentation tasks. However, classifying temporal mesh

sequences is a more challenging problem, as there is no vertex-level correspondence across

frames. This prevents graph-based models from directly aggregating vertices in the temporal

dimension. Therefore, we propose to first leverage mesh connectivity information to build

patches at the frame level, then use a hierarchical transformer which can freely attend to any

intra- and inter-frame patches to learn spatial-temporal associations. In summary, it has the

following key components:

• Surface Field Convolution to form local vertex patches by considering both intrinsic

and extrinsic mesh representations.

• Hierarchical Spatial-Temporal Transformer to learn spatial-temporal correlations of

vertex patches.

• Self-Supervised Pre-Training to learn the global context in terms of appearance and

motion.

See Figure 5.2 for a high-level summary of the model, and the sections below for more

details.

5.3.2 Surface Field Convolution

Because displacements in grid data are regular, traditional convolutions can directly learn a

kernel for elements within a region. However, mesh vertices are unordered and irregular. Con-

sidering the special mesh representations, we represent each vertex by encoding features from

its neighbor vertices inspired by [232, 233]. To fully utilize meshes’ local connectivity infor-

mation, we consider the mesh properties of extrinsic curvature of submanifolds and intrinsic

curvature of themanifold itself. Extrinsic curvature between two vertices is approximated using

Euclidean distance. Intrinsic curvature is approximated using Geodesic distance, which is de-

fined as the shortest path between two vertices on mesh surfaces. We propose a light-weighted

surface field convolution to build local patches, which can be denoted as:
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F
′(x,y,z)
V G =

∑
(δx,δy ,δz)∈G(x,y,z)

W (δx,δy ,δz) · F (x+δx,y+δy ,z+δz)
(5.1)

F
′(x,y,z)
V E =

∑
(ζx,ζy ,ζz)∈E(x,y,z)

W (ζx,ζy ,ζz) · F (x+ζx,y+ζy ,z+ζz)
(5.2)

G andE is the local region around vertex (x, y, z). In this paper, we use k-nearest-neighbor

to sample local vertices. (δx, δy, δz) and (ζx, ζy, ζz) represent the spatial displacement in geodesic

and euclidean space, respectively. F (x,y,z)
denotes the feature of the vertex at position (x, y, z).

5.3.3 Hierarchical Spatial-Temporal Transformer

We propose a hierarchical transformer that consists of intra-frame and inter-frame attention.

The basic idea behind our transformer is three-fold: (1) Intra-frame attention can encode con-

nectivity information from the adjacency matrix, while such information can not be directly

aggregated in the temporal domain because vertices are unordered. (2) Frame-level offset-

attention can be used to mimic the Laplacian operator to learn effective spatial representations.

(3) Inter-frame self-attention can learn feature correlations in the spatial-temporal domain.

Intra-Frame Offset-Attention

Graph convolution networks [24] show the benefits of using a Laplacian matrix L = D−E to

replace the adjacency matrixE, whereD is the diagonal degree matrix. Inspired by this, offset-

attention has been proposed and achieved superior performance in point-cloud classification

and segmentation tasks [93]. We adapt offset-attention to attend to vertex patches. Specifi-

cally, the offset-attention layer calculates the offset (difference) between the self-attention (SA)

features and the input features by element-wise subtraction. Offset-attention is denoted as:

Fout = OA(Fin) =ϕ(Fin − Fsa) + Fin. (5.3)

where ϕ denotes a non-linear operator. Fin−Fsa is proved to be analogous to discrete Laplacian

operator [93], i.e. Fin − Fsa ≈ LFin. As Laplacian operators in geodesic and euclidean space

are expected to be different, we propose to use separate transformers to model intrinsic patches

and extrinsic patches. Specifically, the aggregated feature for vertex V is denoted as:

F
′(x,y,z)
V = OAG(F

′(x,y,z)
V G )⊕OAE(F

′(x,y,z)
V E ) (5.4)
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Here F
′(x,y,z)
V G ∈ RN×dg

and F
′(x,y,z)
V E ∈ RN×de

are local patches learned using Equ. 5.1 and

Equ. 5.2. F
′(x,y,z)
V ∈ RN×d

denotes the local patch for position (x, y, z), where d = dg + de. The

weights of OAG and OAE are not shared.

Inter-Frame Self-Attention

Given F ′
V which encodes local connectivity information, we use self-attention (SA) [295]

to learn semantic affinities between different vertex patches across frames. Specifically, let

Q,K,V be the query, key and value, which are generated by applying linear transformations

to the input features F ′
V ∈ RN×d

as follows:

(Q,K,V ) = F ′
V · (Wq,Wk,Wv)

Q,K ∈ RN×da , V ∈ RN×d

Wq,Wk ∈ Rd×da , Wv ∈ Rd×d
(5.5)

whereWq,Wk andWv are the shared learnable linear transformation, and da is the dimension

of the query and key vectors. Then we can use the query and key matrices to calculate the

attention weights via the matrix dot-product:

A = (α̃)i,j = softmax(
Q ·KT

√
da

). (5.6)

Fsa = A · V (5.7)

The self-attention output features Fsa are the weighted sums of the value vector using the

corresponding attention weights. Specifically, for a vertex patch in position (x, y, z), its aggre-

gated feature after inter-frame self-attention can be computed as: F
(x,y,z)
sa =

∑
A(x,y,z),(x′,y′,z′)×

V (x′,y′,z′)
, where (x′, y′, z′) belongs to the Cartesian coordinates of F ′

V .

5.3.4 Self-Supervised Pre-Training

Self-supervised learning has achieved remarkable results on large-scale image datasets [102].

However, self-supervised learning for temporal 3D sequences (i.e. point cloud, 3D skeleton)

remains to be challenging and has not been fully explored. There are two possible reasons:

(1) self-supervised learning methods rely on large-scale datasets to learn meaningful patterns

[52]. However, existing MoCap benchmarks are relatively small compared to 2D datasets like

ImageNet [62]. (2) Self-supervised learning for 3D data sequences is computationally expensive

in terms of memory and speed. In this work, we first propose a simple and effective method to
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augment existing MoCap sequences, and then define two effective and efficient self-supervised

learning tasks, namely masked vertex modeling and future frame prediction, which enable the

model to learn global context. The work that is close to us is OcCO [299], which proposed to use

occluded point cloud reconstruction as the pretext task. OcCO has a computationally-expensive

process to generate occlusions, including point cloud projection, occluded point calculation,

and a mapping step to convert camera frames back to world frames. Different from OcCO, we

randomly mask vertex patches or future frames on the fly, which saves the pre-processing step.

Moreover, our pre-trainingmethod is designed for temporal mesh sequences and considers both

bi-directional and auto-regressive attention.

Data Augmentation through Joint Shuffle

Considering the flexibility of SMPL-H representations, we propose a simple yet effective ap-

proach to augment SMPL-H sequences by shuffling body pose parameters. Specifically, we

split SMPL-H pose parameters into five body parts: bone, left/right arm, and left/right leg. We

use Ibone, I
left
leg , Irightleg , I leftarm, I

right
arm to denote the SMPL-H pose indexes of the five body parts.

Then we synthesize new sequences by randomly selecting body parts from five different se-

quences. We keep the temporal order for each part such that the merged action sequences

have meaningful motion trajectories. The input to Joint Shuffle are SMPL-H pose parameters

θ ∈ Rb×t×n×3
, where b is the sequence number, t is the frame number, and n is the joint num-

ber. We randomly select the shape β and dynamic parameters ϕ from one of the five SMPL-H

sequences to compose a new SMPL-H body model. Given b SMPL-H sequences, we can syn-

thesize

b

C5 = b!
5!(b−5)!

number of new sequences. We prove that the model can benefit from

large-scale pre-training in Section 5.4.6.

Masked Vertex Modeling with Bi-Directional Attention

To fully activate the inter-frame bi-directional attention in the transformer, we design a self-

supervised pretext task named Masked Vertex Modeling (MVM). The model can learn human

prior information in the spatial dimension by reconstructing masked vertices of different body

parts. We randomly mask r percentages of the input vertex patches, and force the model to

reconstruct the full sequences. Moreover, we use bi-directional attention to learn correlations

among all remaining local patches. Each patch will attend to all patches in the entire sequence.

It models the joint distribution of vertex patches over the whole temporal sequences x as the

following product of conditional distributions, where xi is a single vertex patch:
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Algorithm 1 Pseudocode of STMT Joint Shuffle

1: function stmt_joint_shuffle(θ ∈ Rb×t×n×3, Ibone, I
left
leg , Irightleg , I leftarm, I

right
arm )

2: θs← random_sample(θ, 5) ▷ θs ∈ R5×t×n×3
, randomly sample five SMPL-H

sequences

3: tmax← get_max_length(θs) ▷ compute the maximum sequence length in θs

4: θnew ← Initialize(tmax, n, 3)

5: P ← {Ibone, I
left
leg , Irightleg , I leftarm, I

right
arm }

6: for i in 0, 1, 2, 3, 4 do

7: θs← repeat(θs[i], (tmax, n, 3)) ▷ pad each sequence to the max length using

repeating

8: θnew[P [i]]← θs[i][P [i]] ▷ assign the body-part sequence

9: return θnew

p(x) =
N∏
i=1

p(xi|x1, .., xi, ..., xN). (5.8)

WhereN is the number of patches in the entire sequence x after masking. Every patch will at-

tend to all patches in the entire sequence. In this way, bi-directional attention is fully-activated

to learn spatial-temporal features that can accurately reconstruct completed mesh sequences.

Future Frame Prediction with Auto-Regressive Attention

The masked vertex modeling task is to reconstruct masked vertices in different body parts. The

model can reconstruct completed mesh sequences if it captures the human body prior or can

make a movement inference from nearby frames. As action recognition requires the model to

understand the global context, we propose the future frame prediction (FFP) task. Specifically,

we mask out all the future frames and force the transformer to predict the masked frames.

Moreover, we propose to use auto-regressive attention for the future frame prediction task,

inspired by language generation models like GPT-3 [23]. However, directly using RNN-based

models [49] in GPT-3 to predict future frames one by one is inefficient, as 3D mesh sequences

are denser compared to language sequences. Therefore, we propose to reconstruct all future

frames in a single forward pass. For auto-regressive attention, we model the joint distribution

of vertex patches over a mesh sequence x as the following product of conditional distributions,

where xi is a single patch at frame ti:
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p(x) =
N∏
i=1

p(xi|x1, x2, ..., xM). (5.9)

Where N is the number of patches in the entire sequence x after masking. M = (ti −
1) × n, where n is the number of patches in a single frame. Each vertex patch depends on all

patches that are temporally before it. The auto-regressive attention enables themodel to predict

movement patterns and trajectories, which is beneficial for the downstream action recognition

task.

5.3.5 Training

In the pre-training stage, we use PCN [329] as the decoder to reconstruct masked vertices and

predict future frames. The decoder is shared for the two pretext tasks. Since mesh vertices are

unordered, the reconstruction loss and future prediction loss should be permutation-invariant.

Therefore, we use Chamfer Distance (CD) as the loss function tomeasure the difference between

the model predictions and ground truth mesh sequences.

CD(Mpred,Mgt) =
1

|Mpred|
∑

x∈Mpred

min
y∈Mgt

||x− y||2+

1

|Mgt|
∑

y∈Mgt

min
x∈Mpred

||y − x||2

(5.10)

CD (5.10) calculates the average closest euclidean distance between the predicted mesh se-

quences Mpred and the ground truth sequences Mgt. The overall loss is a weighted sum of

masked vertex reconstruction loss and future frame prediction loss:

L = λ1CD(MMVM
pred ,Mgt) + λ2CD(MFFP

pred ,Mgt) (5.11)

In the fine-tuning stage, we replace the PCN decoder with an MLP head. Cross-entropy loss

is used for model training.

5.4 Experiment

5.4.1 Datasets

Following previousMoCap-based action recognitionmethods [231, 274], we evaluate ourmodel

on the most widely used benchmarks: KIT[197] and BABEL [231]. KIT is one of the largest
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Method Input

KIT

Top-1 (%) Top-5 (%)

2s-AGCN-FL [264] (CVPR’19) 3D Skeleton 42.44 75.60

2s-AGCN-CE [264] (CVPR’19) 3D Skeleton 57.46 81.54

CTR-GCN [42] (ICCV’21) 3D Skeleton 64.65 87.90

MS-G3D [188] (CVPR’20) 3D Skeleton 65.38 87.90

PSTNet[75] (ICLR’21) Point Cloud 56.93 88.21

SequentialPointNet[158] (arXiv’21) Point Cloud 59.75 88.01

P4Transformer[74] (CVPR’21) Point Cloud 62.15 88.01

STMT(Ours) Mesh 65.59 90.09

Table 5.1: Experimental Results on KIT and BABEL Dataset.

MoCap datasets. It has 56 classes with 6,570 sequences in total. (2) BABEL is the largest 3D

MoCap dataset that unifies 15 different datasets. BABEL has 43 hours of MoCap data performed

by over 346 subjects. We use the 60-class subset from BABEL, which contains 21,653 sequences

with single-class labels. We randomly split each dataset into training, test, and validation set,

with ratios of 70%, 15%, and 15%, respectively. Note that existing action recognition datasets

with skeletons only are not suitable for our experiments, as they do not provide full 3D surfaces

or SMPL parameters to obtain the mesh representation.

MotionRepresentation. BothKIT and BABEL’sMoCap sequences are obtained fromAMASS

dataset in SMPL-H format. A MoCap sequence is an array of pose parameters over time, along

with the shape and dynamic parameters. For skeleton-based action recognition, we follow pre-

vious work [231] which predicted the 25-joint skeleton from the vertices of the SMPL-H mesh.

The movement sequence is represented as X = (x1, · · · ,xL), where xi ∈ RJ×3
represents the

position of the J joints in the skeleton in Cartesian coordinates. For point-cloud-based action

recognition, we directly use the vertices of SMPL-H model as the model input. The point-cloud

sequence is represented as P = (p1, · · · ,pL), where pi ∈ RV×3
, and V is the number of ver-

tices. For mesh-based action recognition, we represent the motion as a series of mesh vertices

and their adjacent matrix over time, as introduced in Section 5.3.1. See Sup. Mat. for more

details about datasets and pre-processing.
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Figure 5.3: Visualization of inter-frame attention. Red denotes the highest attention.

5.4.2 Baseline Methods

We compare our model with state-of-the-art 3D skeleton-based and point cloud-based action

recognition models, as there is no existing literature on mesh-based action recognition. 2s-

AGCN [264], CTR-GCN [42], and MS-G3D [188] are used as skeleton-based baselines. Among

those methods, 2s-AGCN trained with focal loss and cross-entropy loss are used as benchmark

methods in the BABEL dataset [231]. For the comparison with point-cloud baselines, we choose

PSTNet [75], SequentialPointNet[158], and P4Transformer [74]. Those methods achieved top

performance on common point-cloud-based action recognition benchmarks.

5.4.3 Implementation Details

For skeleton-based baselines, we use the official implementations of 2s-ACGN, CTR-GCN, and

MS-G3D. For point-cloud-based baselines, we use the official implementations of PSTNet, Se-

quentialPointNet, P4Transformer. We pre-train STMT for 200 epochs with a batch size of 32.

The model is fine-tuned for 50 epochs with a batch size of 64. Adam optimizer [135] is used

with a learning rate of 0.0001 for both pre-training and fine-tuning. See Sup. Mat. for more

implementation details.

5.4.4 Main Results

Comparisonwith State-of-the-ArtMethods. As indicated in Table 5.1, STMT outperforms

all other state-of-the-art models. Our model can outperform point-cloud-basedmodels by 3.44%
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Intrinsic Extrinsic MVM FFP Top-1 (%)

✓ 63.40

✓ ✓ 64.03

✓ ✓ ✓ 64.96

✓ ✓ ✓ 64.13

✓ ✓ ✓ ✓ 65.59

Table 5.2: Performance of ablated versions. Intrinsic and Extrinsic stand for the intrinsic

(geodesic) and extrinsic (euclidean) features in surface field convolution. MVM stands for

Masked Vertex Modelling. FFP stands for Future Frame Prediction.

and 4.11% on KIT and BABEL datasets in terms of top-1 accuracy. Moreover, compared to

skeleton-based methods which involve manual efforts to convert mesh vertices to skeleton rep-

resentations, our model achieves better performance by directly modeling the dynamics of raw

mesh sequences.

We visualize the inter-frame attention weights of our hierarchical transformer in Figure 5.3.

We observe that the model can pay attention to key regions across frames. This supports the

intuition that our hierarchical transformer can take the place of explicit vertex tracking by

learning spatial-temporal correlations.

5.4.5 Ablation Study

Ablation Study of STMT. We test various ablations of our model on the KIT dataset to

substantiate our design decisions. We report the results in Table 6.3. Note that Joint Shuffle

is used in all of the self-supervised learning experiments (last three rows). We observe that

each component of our model gains consistent improvements. The comparison of the first two

rows proves the effectiveness of encoding both intrinsic and extrinsic features in vertex patches.

Comparing the last three rowswith the second row, we observe a consistent improvement using

self-supervised pre-training. Moreover, the downstream task can achieve better performance

with MVM compared to FFP. One probable reason is that the single task for future frame pre-

diction is more challenging than masked vertex modeling, as the model can only see the person

movement in the past. The model can achieve the best performance with both MVM and FFP,

which demonstrates that the two self-supervised tasks are supplementary to each other.
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Method Top-1 (%)

w/o pre-training 64.03

pre-training w/o JS 64.13

pre-training w/ JS 65.59

Table 5.3: Comparison of Different Pre-Training Strategies. JS stands for Joint Shuffle.

r Pre-Train Loss (× 104) Fine-Tune Accuracy (%)

0.1 0.39 64.44

0.3 0.41 64.55

0.5 0.40 65.59

0.7 0.43 64.19

0.9 0.48 65.07

Rand 0.43 64.75

Table 5.4: Effect of Different Masking Ratios.

5.4.6 Analysis

Different Pre-Training Strategies. Wepre-train ourmodel with different datasets and sum-

marize the results in Table 5.3. The first row shows the case without pre-training. The second

shows the result for the model pre-trained on the KIT dataset (without Joint Shuffle augmenta-

tion). The third shows the result for the model pre-trained on KIT dataset (with Joint Shuffle).

We observe our model can achieve better performance with Joint Shuffle, as it can synthesize

large-scale mesh sequences.

DifferentMasking Ratios. We investigate the impact of different masking ratios. We report

the converged pre-training loss and the fine-tuning top-1 classification accuracy on the test set

in Table 5.4. We also experiment with the random masking ratio in the last row. For each for-

ward pass, we randomly select one masking ratio from 0.1 to 0.9 with step 0.1 to mimic flexible

masked token length. The model with a random masking ratio does not outperform the best

model that is pre-trained using a single ratio (i.e. 0.5). We observe that as the masking ratio in-

creases, the pre-training loss mostly increases as the task becomes more challenging. However,

a challenging self-supervised learning task does not necessarily lead to better performance.

The model with a masking ratio of 0.7 and 0.9 have a high pre-train loss, while the fine-tune

accuracy is not higher than the model with a 0.5 masking ratio. The conclusion is similar to
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Figure 5.4: Effect of Different Number of Mesh Sequences.

Method Input Top-1 (%)

2s-AGCN-FL [264] 3D Skeleton 58.67

2s-AGCN-CE [264] 3D Skeleton 57.49

CTR-GCN [42] 3D Skeleton 62.25

MS-G3D [188] 3D Skeleton 60.01

PSTNet[75] Point Cloud 51.48

SequentialPointNet[158] Point Cloud 60.60

P4Transformer[74] Point Cloud 57.84

STMT(Ours) Mesh 64.04

Table 5.5: Experimental results on body poses estimated by VIBE [136] on NTU RGB+D dataset.

The skeleton, point cloud, and mesh representations are derived from the same noisy body

estimations.

the comparison of MVM and FFP training objectives, where a more challenging self-supervised

learning task may not be optimal.

Different Number of Mesh Sequences for Pre-Training. We test the effect of different

numbers of mesh sequences used in pre-training. We report the fine-tuning top-1 classification

accuracy in Figure 5.4. We observe that a large number of pre-training data can bring substantial

performance improvement. The proposed Joint Shuffle method can greatly enlarge the dataset

size without any manual cost, and has the potential to further improve model performance.

Experimental Results on Noisy Body Pose Estimations. Body pose estimation has been

a popular research field [125, 136, 161], but how to leverage the estimated 3D meshes for down-

stream perception tasks has not been fully explored. We apply the state-of-the-art body pose

estimation model VIBE [136] on videos of NTU RGB+D dataset to obtain 3D mesh sequences.

Skeleton and point cloud representations are derived from the estimated meshes to train the
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baseline models (see Sup. Mat.). We report the results in Table 5.5. We observe that STMT can

outperform the best skeleton-based and point cloud-based action recognition model by 1.79%

and 3.44% respectively. This shows that STMT with meshes as input, is more robust to input

noise compared to other state-of-the-art methods with 3D skeletons or point clouds as input.

5.5 Conclusion

In this work, we propose a novel approach for MoCap-based action recognition. Unlike exist-

ing methods that rely on skeleton representation, our proposed model directly models the raw

mesh sequences. Our method encodes both intrinsic and extrinsic features in vertex patches,

and uses a hierarchical transformer to freely attend to any two vertex patches in the spatial

and temporal domain. Moreover, two self-supervised learning tasks, namely Masked Vertex

Modeling and Future Frame Prediction are proposed to enforce the model to learn global con-

text. Our experiments show that STMT can outperform state-of-the-art skeleton-based and

point-cloud-based models.

81



82



Chapter 6

Generalized human action recognition
by jointly modeling videos and 3D
meshes

In this chapter, we propose a generalized human action recognition framework by jointly con-

sidering RGB videos and estimated 3Dmeshes. We demonstrate that 2D and 3D representations

are complementary to each other, even when the 3D representations are noisy estimations. The

model is able to perform generalized human action analysis and bridge challenging domain

gaps, such as sim-to-real transfer.

6.1 Overview

Recent advancements in action recognition using deep learning have shown promising results

[29, 99, 285]. However, the efficacy of these methods heavily depends on the availability of

extensive labeled data specific to the target domain, which is often unfeasible in real-world

scenarios. For instance, identifying novel actions can be costly due to the necessity of hiring

actors to perform predefined actions. Furthermore, in order to achieve reliable performance,

it is necessary to ensure the consistency between the training and test data in terms of the

environment, subjects, and camera perspectives. This adds further complexity [211, 284] to

the data collection efforts. These limitations make the data collection process time-consuming,

labor-intensive, and sometimes unattainable, particularly in cases involving harmful or violent

activities.
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Incorporating synthetic data brings significant advantages, including reducing data collec-

tion efforts, producing well-aligned training data across multiple modalities, and facilitating

the recognition of rare or violent actions. Despite the practical benefits associated with syn-

thetic data, there are several challenges in training a model that can effectively handle diverse

scenarios when only labeled synthetic data are available. Primarily, domain gaps may arise due

to various factors such as different backgrounds, lighting conditions, viewpoints, interacted

objects, and motion variances.

To address these challenges, research in video domain adaptation has explored various

strategies to mitigate domain gaps from multiple perspectives. One of the main streams is

cross-viewpoint domain adaptation [138, 151, 181, 236, 268], and the research efforts have

concentrated on learning geometric transformations of camera viewpoints. However, these

work often overlooked other domain shifts, such as environmental differences. In pursuit of

viewpoint-invariant representations, some studies utilized 3D representations such as skeletons

and human meshes as model inputs [181, 268, 351]. Another line of research in video domain

adaptation focuses on addressing environmental changes. Recent works in this domain have

employed adversarial training methods for domain alignment [37, 120, 219, 352]. Notably, tech-

niques such as the Gradient Reverse Layer [151] have been adapted to architectures like C3D

[286], TRN [345], or both [219]. Chen et al. [37] proposed an attention-based model to capture

temporal dynamics in videos, while Pan et al. [219] introduced a cross-domain attention mech-

anism to discern relevant information. In contrast to previous methodologies that relied solely

on complete videos as model inputs, we propose a novel approach that integrates both 2D RGB

videos and 3D meshes to learn viewpoint-invariant representations.

To this end, we propose a multi-modal action recognition model which jointly takes RGB

videos and 3D meshes as inputs to learn domain-invariant representations. There are two par-

allel action recognition branches based on RGB and mesh respectively. For RGB-based ac-

tion recognition, we use a light-weighted student model (i.e. I3D) for its real-time inference

speed. For mesh-based action recognition, we leverage a spatial-temporal transformer named

STMT, which is proposed in our previous work [351]. It consumes meshes as inputs to learn

domain-invariant representations and serves as a strong teacher model. The student model dis-

tills the pseudo-labels produced by the teacher model, and thus achieves better performance

while maintaining the real-time inference speed. We evaluate our proposed method on the

Mixamo→Kinetics dataset dataset, which consists of a variety of real and synthetic videos of

human actions. We show that our model achieves superior performance compared to other

state-of-the-art baselines. In short, our contributions are three-fold:
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• We propose a novel unsupervised video domain adaptation model which consumes RGB

videos and estimated 3D meshes to learn generalized feature representations.

• Wepropose amulti-modal distillation frameworkwhere the light-weighted studentmodel

can learn from the strong teacher model to achieve reliable performance.

• Our model, achieves superior performance compared to other domain adaptation base-

lines while maintaining real-time inference speed. This enables our model to be deployed

in practice.

6.2 Related Work

Data-Efficient Action Recognition. The effectiveness of human action recognition signif-

icantly relies on the availability of sufficient training data, which is not always feasible in real-

world scenarios. Considering the real-world data limitations, various data-efficient learning

methodologies [4, 28, 85, 196, 208, 349] have been proposed which achieved promising perfor-

mance. Zero-shot action recognition approaches [85, 196, 208] were proposed to learn semantic

representations from word vectors or annotated attributes to identify unseen action categories.

However, a notable performance gap exists between zero-shot models and those trained with

real videos, due to the inherent ambiguity present in texts. Few-shot action recognition models,

on the other hand, [4, 28] have employed episodic training to acquire a metric [65, 225, 326] or

an optimizer [80, 247] from a set of base tasks, enabling learning of novel categories with only a

few real videos available. Recently, weakly- and webly-supervised approaches have raised con-

siderable research interest [35, 278, 296, 314]. Common practices in thesemethodologies include

outlier removal [314] and label correction [278, 296]. Chen et al. [35] proposed a method to de-

noise unannotated web training data by transferring learned similarities from a clean set of

base categories. While traditional few-shot learning approaches necessitate annotated videos

in base categories and genuine videos in novel categories, we diverge by leveraging synthetic

videos, which can be generated indefinitely with minimal annotation costs.

Video Domain Adaptation. Video domain adaptation has been studied to bridge domain

gaps from different perspectives. One of the important tasks is cross-viewpoint domain adap-

tation [138, 151, 181, 236, 268]. These works focused on learning geometric transformations of a

camera but neglected other domain shifts such as environment differences. To learn viewpoint-

invariant representations, 3D representations such as skeletons and human meshes are used as
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model inputs [181, 268]. The other stream for video domain adaptation focuses on environ-

mental changes. Some of the recent works applied adversarial training for domain alignment

[37, 120, 219]. Specifically, Gradiant Reverse Layer [151] was adapted to C3D [286], TRN [345]

or both [219] architectures. Chen et al. [37] proposed an attention-based model to attend to

the temporal dynamics of videos. Pan et al. [219] introduced a cross-domain attention model

to learn relevant information. In contrast to previous literature which used complete videos

as model inputs, we propose a model which leverages both 2D RGB videos and 3D meshes as

inputs to learn viewpoint-invariant representations.

Action Recognition using 3D Representations. To learn generalized feature representa-

tions, various models for 3D action recognition have been proposed, leveraging multiple 3D

modalities. These can be broadly categorized into depth-based approaches [180, 250, 251, 304,

315], skeleton-based methods [68, 106, 178, 263, 303, 322, 336], and point-cloud-based tech-

niques [75, 185, 233, 308]. Depth-based models utilize depth representations to capture reliable

3D geometric cues that remain robust across different viewpoints. For instance, MVDI [315]

extracted multi-view images from depth videos for 3D action recognition. Meanwhile, skeleton

sequences, capturing spatial-temporal information, have demonstrated resilience against scene

and viewpoint variations. Various architectures have been explored for incorporating skeleton

representations. Some methods treated skeleton sequences as time-series inputs to Recurrent

Neural Networks (RNNs) [68, 178, 336], while others transformed them into spectral images and

trajectory maps for feature learning with Convolutional Neural Networks (CNNs) [106, 303].

Additionally, Yan et al. [322] utilized Graph Convolutional Networks (GCNs) to model joint

dependencies naturally encoded within graphs. Another popular approach in 3D human action

recognition involves point clouds. Pioneering works like PointNet [232] and PointNet++ [233]

encoded 3D point sets in a permutation-invariant manner. In this study, we propose leveraging

our previous work on mesh-based action recognition [351] to learn domain-invariant repre-

sentations. 3D mesh representations offer viewpoint-invariant characteristics compared to 2D

RGB representations, enhancing the generalization ability of our model, which jointly learns

from 2D and 3D synthetic motion sequences.

Synthetic Humans. Synthetic humans have been widely used across various computer vi-

sion tasks, including body pose estimation [41, 86, 177, 226, 266, 293], depth estimation [292],

pedestrian detection [198, 226], trajectory forecasting [168, 169], person re-identification [234],

and face recognition [140, 199]. Despite these applications, the utilization of synthetic data for

action recognition remains relatively unexplored. Previous methodologies predominantly re-
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lied on pre-made 3D models sourced from platforms like the Unity Asset Store, encompassing

human models, object models, and texture models, to generate synthetic data [60, 83, 244]. De

Souza et al. [60] proposed a model capable of jointly predicting real and synthetic action classes

within a multi-task framework, while [230] utilized the Unity3D game engine to programmat-

ically define synthetic activities. More recently, Varol et al. [294] extracted motion sequences

from genuine data and augmented the estimated sequences with novel viewpoints to address

the challenge of cross-view action recognition.

6.3 Method

In this section, we describe our domain-adaptive action recognitionmodel. We illustrate the dif-

ference between our proposed method and previous action recognition models in Figure 7.3. (a)

shows one of the most popular action recognition model (i.e. I3D [29]). I3D is a light-weighted

model which jointly takes RGB and estimated flows as model inputs. The model can achieve

real-time inference speed. However, it suffers from domain generalization problems caused by

novel viewpoints and scenes. (b) is a multimodal domain generalization model [350]. It has

two branches. The first is an I3D model. The second is a Spatial-Temporal Mesh Transformer,

namely STMT [351]. It takes the 3D meshes estimated from RGB videos as model inputs. Those

three branches are jointly trained. During inference, the model takes RGB, flows, and estimated

3D meshes as inputs. The model can generalize well to novel viewpoints and scenarios, thanks

to the robust 3D representations. (c) The proposed method. We aim at developing a model

that can generalize to novel scenes and achieve real-time inference speed. There are two par-

allel action recognition branches based on RGB and mesh respectively. For RGB-based action

recognition, we use a light-weighted student model (i.e. I3D) for its real-time inference speed.

For mesh-based action recognition, we leverage a spatial-temporal transformer named STMT,

which is proposed in our previous work [351]. It consumes meshes as inputs to learn domain-

invariant representations and serves as a strong teacher model. The student model distills the

pseudo-labels produced by the teacher model. During inference, only the student model (I3D)

is used and thus achieves better performance while maintaining the real-time inference speed.

See Figure 1 for a high-level summary of the model, and the sections below for more details.
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Figure 6.1: Overview of previous action recognition methods [29, 350] and the proposed

method. (a) RGB-based action recognition model (i.e. I3D [29]). I3D is a light-weighted model

which jointly takes RGB and estimated flows as model inputs. The model can achieve real-time

inference speed. However, it suffers from domain generalization problems caused by novel

viewpoints and scenes. (b) is a domain generalization model [350]. It has two branches. The

first is an I3D model. The second is a Spatial-Temporal Mesh Transformer, namely STMT [351].

It takes the 3D meshes estimated from RGB videos as model inputs. Those three branches are

jointly trained. During inference, the model takes RGB, flows, and estimated 3D meshes as in-

puts. The model can generalize well to novel viewpoints and scenarios, thanks to the robust 3D

representations. (c) The proposed method. We aim at developing a model that can generalize to

novel scenes and achieve real-time inference speed. There are two parallel action recognition

branches based on RGB and mesh respectively. For RGB-based action recognition, we use a

light-weighted student model (i.e. I3D) for its real-time inference speed. For mesh-based action

recognition, we leverage a spatial-temporal transformer named STMT, which is proposed in our

previous work [351]. It consumes meshes as inputs to learn domain-invariant representations

and serves as a strong teacher model. The student model distills the pseudo-labels produced by

the teacher model. During inference, only the student model (I3D) is used and thus achieves

better performance while maintaining the real-time inference speed.

6.3.1 Action Recognition from RGB Videos

We use I3D [29] as our encoder of RGB videos, considering its real-time inference speed. The

architecture of I3D is shown in Figure 7.3 (a). It leverges two parallel branches to encoder RGB

frames and optical flow respectively. The final predictions are fused at the end to get the final

action label. While I3D achieves real-time inference speed, it is not able to generalize well to
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novel domains.

6.3.2 Action Recognition from 3D Meshes

Considering the limitation of RGB-based action recognition, we propose to leverage an extra

modality: 3D meshes. 3D meshes can either be exported from game simulators without costs,

or be obtained from body pose estimation models when the MoCap sensors are not availble.

Specifically, we represent the 3D meshes as: M = ((P1,A1), (P2,A2), · · · , (Pt,At)), follow-

ing [350, 351]. Where t is the frame number. Pi ∈ RN×3
represents the vertex positions, where

N is the number of vertices. Ai ∈ RN×N
represents the adjacency matrix of the mesh. This

is a unified format for various body models such as SMPL [189], SMPL-H [242], and SMPL-

X [222]. In this paper, we use the body pose estimation model named VIBE [136] to obtain

the 3D meshes, but it can be easily adapted to other body pose estimation models. We lever-

aged a spatial-temporal transformer for mesh-based action recognition, which was inspired by

our previous work STMT[351]. It consumes mesh sequences as inputs, and predicts the ac-

tion labels. we first develop vertex patches by extracting both intrinsic (geodesic) and extrinsic

(euclidean) features using surface field convolution [351]. Those patches are used as input to

the intra-frame attention network to learn appearance features. Then we concatenate intrinsic

patches and extrinsic patches of the same position. The concatenated vertex patches are fed

into the inter-frame self-attention network to learn spatial-temporal correlations. Finally, the

local and global features are mapped into action predictions by MLP layers.

6.3.3 MultimodalKnowledgeDistillation forRGBVideos and 3DMeshes

Different from previous work [350], which requires 3D meshes for both training and inference

stages, we propose a multimodal knowledge distillation framework which only relies on RGB

videos during inference. For the model training, we first extract the 3D meshes using a body

pose estimation model. We use the mesh-based action recognition model as the teacher model

because of its viewpoint-invariant representations. The mesh-based model is supervised by the

labeled source videos. Then we leverage the I3D model as the student model. The I3D model

takes the source videos as well as the unlabeled target videos as inputs. The pseudo labels of

the unlabeled target videos come from the teacher model.

We use the cross-entropy loss to supervise the training of mesh-based action recognition
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(teacher model) with labeled source data:

Lm =
N∑
i=1

CE(clsimesh, cls
∗i), (6.1)

where clsimesh is the predicted label and cls∗i is the ground truth label. N is the number of

training data in the labeled source domain. Once the teacher model finishes training, we obtain

pseudo labels from the teacher model for the unlabeled target data. Then we use the cross-

entropy loss to supervise the training of the RGB-based action recognition model with labeled

source data as well as the pseudo-labeled target data:

Lr =
N∑
i=1

CE(clsirgb, cls
∗i) +

M∑
i=1

CE(clsirgb, cls
i
mesh), (6.2)

where clsimesh and clsirgb are the predicted label and cls∗i is the ground truth label. During

inference, we only keep the I3D student model to ensure real-time inference speed.

6.4 Experiments

6.4.1 Dataset

Weevaluate ourmodel on the sim-to-real domain adaptation benchmark, namedMixamo→Kinetics

[288]. The synthetic dataset (Mixamo) consists of 24, 533 videos which are generated using the

3D characters fromMixamo. The target dataset contains 11, 662 videos from 14 action categories

extracted from the Kinetics dataset [130]. The overlapping actions between the two datasets are

swing dancing, breakdancing, salsa dancing, throwing, capoeira, jogging, shouting, side kick,

clapping, texting, golf putting, squat, punching and backflip.

6.4.2 Baselines

We compare our proposed model with state-of-the-art models in different settings. (1) Domain

adaptation baselines. We compare our model with video domain adaptation models. Those

models are trained with labeled source videos and unlabeled target videos. The domain adapta-

tion baselines include ADDA [290], TA
3
N [37], and CO

2
A [288] as well as their variants. Some

of those models are also trained with extra supervision. Those baselines considering a weakly

supervised setting, i.e. assuming that annotations are available for 5 randomly selected tar-

get instances per class, following [288]. (2) Domain generalization methods. We compare our
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Method Backbone Weak Supervision Val Accu (%)

ADDA[290] I3D 11.2

ADDA[290] I3D ✓ 17.0

TA
3
N[37] I3D-TRN 10.0

TA
3
N[37] Resnet101-TRN 7.0

TA
3
N[37] I3D-TRN ✓ 19.1

TA
3
N[37] Resnet101-TRN ✓ 13.0

CO
2
A[288] I3D 16.4

CO
2
A[288] I3D ✓ 20.1

MMKD (Ours) I3D 19.4

Table 6.1: Comparison with Video Domain Adaptation Baselines. We report the experimental

results on the Mixamo→Kinetics Dataset. The baselines with weak supervision assume that

annotations are available for 5 randomly selected target samples per class.

Method Modality Backbone Val Accu (%)

2s-AGCN 3D Skeleton CNN 9.6

MS-G3D 3D Skeleton CNN 17.0

CTR-GCN 3D Skeleton CNN 16.7

STMT 3D Mesh Transformer 21.3

MMKD (Ours) RGB I3D 19.4

Table 6.2: Comparison with Video Generalization Baselines. We report the experimental results

on the Mixamo→Kinetics Dataset.

model with domain generalization models, which are trained with labeled source videos only

and without access to any target videos. One promising direction is leveraging 3D represen-

tations, such as skeletons and meshes. Therefore, we compare our model with state-of-the-art

3D action recognition methods, including 2s-AGCN [264], MS-G3D [188], CTR-GCN [42] and

STMT [351].
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Setting Pre-training Dataset Backbone Val Accu (%)

- - ViT-S 7.6

Unsupervised Kinetics ViT-S 15.8

Supervised SomethingSomethingV2 ViT-S 18.4

Supervised UCF-101 ViT-S 9.1

Supervised ImageNet I3D 19.4

Table 6.3: Ablations of Different Pre-training Settings.

6.4.3 Quantitative Results

Comparison with Video Domain Adaptation Baselines. We compare our model with

video domain adaptation baselines and report the experimental results in Table 6.1. We observe

that our model significantly outperforms all the video domain adaptation baselines under the

same setting (without access to the labeled target videos). Besides, our model also outperforms

some of the baselines which are trained with extra labeled target videos.

ComparisonwithVideoDomainGeneralization Baselines. We compare ourmodel with

domain generalization baselines and report the experimental results in Table 6.2. We observe

that while our model does not require the 3D body pose estimation step during inference, it

still achieves comparable performance to the best 3D action recognition model (STMT ), which

is 19.4 v.s. 21.3. This suggests that the light-weighted student model (I3D) can learn meaningful

feature representations from the stronger teacher model.

Ablation Studies of Different Pre-training Settings. We explore different pre-training

settings and report the results in Table 6.3. We observe that the I3D model pre-trained with

ImageNet [62] achieves the best performance. Besides, the ViT-based [67] methods are sensitive

to different pre-training settings, and transformer-based methods need a large amount of data

to make the model converge.
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6.5 Conclusion

Wepropose amultimodal knowledge distillationmodel for domain-adaptive action recognition.

The model distills the strong 3D mesh-based action recognition model into the light-weighted

I3D model. We empirically validate our model on the Mixamo→Kinetics dataset, which con-

sists of a variety of real and synthetic videos of actions. We show that our model significantly

outperforms the state-of-the-art video domain adaptation models. In the future, more work can

be done to improve pose estimation quality and explore implicit 3D representations.
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Part III

Generatively Pretrained Foundation
Models for Open-Vocabulary Perception
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In the last part, we leverage generatively pre-trained vision-language models and develop

systems that can handle novel vocabularies and text prompts. We propose to evaluate the model

on the open-vocabulary 3D scene understanding tasks including 3D semantic segmentation and

visual grounding.
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Chapter 7

Text-to-image diffusion models for
open-vocabulary 3D scene
understanding

“This backpack is alongside a 
square green chair.”

“Find the white sneakers that 
are closer to the desk chair.”

Figure 7.1: Illustration of open-vocabulary 3D semantic scene understanding. We pro-

pose Diff2Scene, a 3D model that performs open-vocabulary semantic segmentation and visual

grounding tasks given novel text prompts, without relying on any annotated 3D data. By lever-

aging discriminative-based and generative-based 2D foundation models, Diff2Scene can handle

a wide variety of novel text queries for both common and rare classes, like “desk” and “soap

dispenser”. It can also handle compositional queries, such as “find the white sneakers that are

closer to the desk chair.”

7.1 Overview

3D semantic scene understanding, with the task of assigning semantics to every 3D point, plays

a fundamental role in many computer vision applications, such as robotics [321], autonomous
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driving [119], human-computer interaction [76], and augmented reality [97]. Traditional stud-

ies in this field usually target solving this problem in a closed-set fashion [50, 253], resulting in

models that can only be used to make predictions within the predefined label space.

Recent progress in computer vision havewitnessed the emerging interests in solving seman-

tic understanding tasks in open-vocabulary settings [115, 223, 239, 277]. In contrast to closed-set

setting, models targeting open-vocabulary tasks must make predictions for any semantics de-

scribed in text, including object category and fine-grained attributes (e.g., shape, color, material,

property) as well as their complicated compositions. However, this is a challenging task due

to the wide diversity and complexity of possible queries. Motivated by the advance of aligning

text and image embeddings with large-scale foundationmodels [11, 72, 123, 152], existingmeth-

ods mitigate this challenge by lifting the image features from foundation models such as CLIP

[72] or their descendants [87, 149] to 3D. These lifted feature representations for 3D points can

then be used to query with open-vocabulary descriptions, achieving semantic understanding in

3D. Despite these achievements, contrastively trained CLIP-based models exhibit limitations in

handling fine-grained classes [72] and novel compositional text queries [193], restricting their

performance in open-vocabulary 3D semantic understanding.

The recently developed text-to-image diffusion models have shown outstanding abilities

for image generation even with challenging text prompts [183, 241, 252], such as combina-

tional descriptions with multiple attributes (e.g., A bucket bag made of blue suede with intricate

golden paisley patterns.) The internal visual representation of these models, entangled with

text embedding through cross-attention, have proven correlate well with semantic concepts

described by language [145, 207, 209, 325]. On the other hand, CLIP-based foundation mod-

els have been shown to struggle with compositionality [193]. Moreover, compared with the

CLIP model which is optimized for global representation, diffusion models have proven to be

superior at local representation [279], which is a key for dense prediction tasks. Specifically,

ODISE [318] applied the internal representations of Stable Diffusion [241] to open-vocabulary

2D semantic understanding tasks and achieved promising results.

One of the key challenges in 3D perception is the severe scarcity of point clouds and their

dense labels. Several existing methods have been proposed to solve the lack of data issue in

a zero-shot fashion by leveraging the CLIP model pre-trained on large-scale text-image data

[121, 223, 277]. The prior art [223] extracts dense CLIP features from 2D images and distill the

knowledge of their lifted 3D counterpart into a 3D mask predictor. However, CLIP features,

as discussed above, struggle to handle fine-grained classes [72] and show worse localization

capability compared with diffusion features. We leverage diffusion model as feature backbone
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along with a mask-based segmentation head (e.g., Mask2Fromer [44]) for its intrinsic nature

that decouples mask and its semantic representations. This is intuitively suitable for leveraging

semantically-rich embeddings from 2D foundation models and further learning geometrically-

accurate masks from the 3D branch. However, performing multi-modal distillation with mask-

based segmentation head is a non-trivial task. The frozen features extracted from the decoder of

the U-Net in the diffusion model are trained with generative objectives, and cannot be directly

used for the perception task. Therefore, directly distilling knowledge from these features as

normally done in prior art [144, 187, 223] is infeasible. Another intuitive way is to leverage

a supervised 3D mask proposal network and pool the feature representations from 2D CLIP

features for each mask [277]. However, the training of 3D mask proposal network requires

labeled 3D data, which may not be feasible in practice.

To mitigate these issues, we propose a novel mask distillation method tailored to distill

knowledge from the Mask2Former style 2D branch [44, 318] to the 3D branch, which is shown

in Fig. 7.2. Specifically, we design our 3D branch to take a 3D point cloud as input and to

predict their 3D features. The semantically meaningful mask embeddings produced from our

2D branch are used as linear classifiers to assign class probability to these 3D features. Their

corresponding 2Dmasks are lifted to 3D based on pixel-point correspondence and used to force

the consistency learning of the 2D and 3D branch.

We evaluate Diff2Scene quantitatively on ScanNet [53], ScanNet200 [245], Matterport 3D

[30] and Replica [272] for open-vocabulary 3D semantic segmentation and qualitatively on

Nr3D [6] for visual grounding tasks. Our experimental results show that Diff2Scene outper-

forms state-of-the-art models [223] on all the four semantic segmentation datasets and achieves

promising results on visual grounding tasks. In summary, wemake the following contributions:

• To the best of our knowledge, we are the first to leverage text-image diffusion to perform

open-vocabulary 3D semantic segmentation.

• We propose a novel mask distillation method to train a 3D mask prediction model by

distilling knowledge from the Mask2Former style 2D segmentation model.

• The proposed method achieves state-of-the-art performance on several open-vocabulary

3D semantic segmentation and visual grounding benchmarks.
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3D Mask 
Proposal Network 

CLIP Point-based 
Seg.Head

 Tuned 3D Model

zf

zg

LPD

Stable 
Diffusion

Mask-based 
Seg.Head

 Tuned 3D Model

zmf

zgf

LMD

M2D

M3D

(a) Feature-based Distillation 
w/o labeled 3D data 

(c) Mask-based Distillation 
w/o labeled 3D data  (Ours)

CLIP

zf

M3D

(b) Mask-based Feature Pooling 
w/ labeled 3D data

Mask Pooling

Figure 7.2: Illustration of open-vocabulary 3D perceptionmethods. LPD andLMD denote

point-based distillation loss and mask-based distillation loss. M3D denote a set of predicted

3D masks; M2D and Zmf denote a set of predicted 2D masks and their semantic embeddings;

Zgf denote the high-resolution 3D feature map. (a) Directly minimizing the per-point feature

distance between the CLIP-based model and the tuned 3D model [223]. (b) Directly using a 3D

mask proposal network trained on labeled 3D data to produce class-agnostic masks, and then

pool corresponding representations from the CLIP feature map [277]. (c) The proposed mask

distillation approach, namely Diff2Scene, that uses Stable Diffusion and performs mask-based

distillation. Diff2Scene leverages the semantically-rich mask embeddings from 2D foundation

models and geometrically accurate masks from the tuned 3D model, and thus achieves superior

performance compared to previous methods.

7.2 Related Work

Closed-vocabulary 3D semantic segmentation. In 3D semantic segmentation, a semantic

category is assigned for each 3D point. It has been long studied [12, 13, 14, 69, 70, 89, 111,

112, 139, 147, 155, 192, 232, 233, 281, 306, 348] due to its importance in computer vision and

robotics applications. One challenge of this task is that 3D point clouds are not in a regular

structured format; network architectures that work well for 2D tasks cannot handle 3D point

clouds effectively. As a result, most of the early studies focus on designing effective and efficient

network architectures that are suitable for 3D point clouds [50, 69, 70, 89, 111, 112, 147, 232,

233, 282]. This line of work achieved great success and significantly improves the results of

3D semantic segmentation. Another challenge is the lack of large scale data with ground truth

annotations. Due to the intensive labeling effort and high cost of data annotation [245], the

available datasets for 3D semantic segmentation are usually small in scale. In the absence of
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large scale data, early studies usually target solving this problem in a closed-vocabulary setting,

where the trained model can only predict categories that appear during training. To mitigate

the scale limitation of existing datasets, a handful of works [45, 46, 47, 48, 174, 207, 334] have

applied zero-shot learning in 3D scene understanding tasks. [45, 46, 47, 48, 334] focused on 3D

point classification task and [174, 207] tried to address the 3D semantic segmentation problem.

However, these zero-short methods still require ground truth annotations for a certain amount

of 3D point clouds.

Open-vocabulary 3D segmentation. The recent progress of large-scale vision and language

representation learning [11, 72, 123, 152] has advanced the study of semantic and instance seg-

mentation in an open-vocabulary setting. [87, 149, 163] first explored open-vocabulary 2D

semantic segmentation. They proposed aligning per-pixel features [149] or features from mask

regions [87, 163] with the corresponding text embedding. Following these works, [32, 64, 82,

113, 121, 200, 223, 257, 258] focus on 3D semantic segmentation in an open-vocabulary setting.

Among them, [32, 82, 113, 121, 200, 248, 257] project 3D points to 2D images and solve the 3D

problem in the 2D space, instead of targeting the 3D open-vocabulary semantic segmentation

directly. As [64] pointed out, the projection from 3D to 2D has information loss and the solution

is suboptimal.

To make better use of information from the 3D point cloud, [64, 223] proposed to directly

applying semantic segmentation on the 3D point cloud. [64] and its extension [123] proposed

associating captions generated for 2D images to corresponding 3D point clouds to build the

pseudo-ground truth captions for 3D point clouds. A neural network is trained to associate

the 3D point cloud with these pseudo labels through contrastive loss. Similar to the zero-shot

setting, [64] evaluated their model in a leave-one-out fashion, which still requires annotations

for 3D point cloud. Inspired by the strong open-vocabulary ability of large-scale vision and

language models, Peng et al. [223] proposed distilling knowledge to a 3D point cloud model.

They trained 3D semantic segmentation model by only distilling the knowledge from a CLIP-

style [72] 2D open-vocabulary semantic segmentation model [87, 149]. They demonstrated

that without training with any ground truth labels, the model can achieve great performance

on many open-vocabulary tasks. However, we observe that [223] is strongly limited by the 2D

open-vocabulary semantic segmentation models used as the teacher. Its performance on rare

classes that are not used in training these models are not satisfactory. Our method follows this

idea by distilling the knowledge of 2D open-vocabulary semantic segmentation model to a 3D

model. In constrast to the approach in [223], we use a diffusion-based 2D open vocabulary

semantic segmentation model [318] as the teacher model.
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Figure 7.3: Overviewof ourmethod. WeproposeDiff2Scene, an open-vocabulary 3D semantic

understanding model. Diff2Scene contains two branches. The 2D branch is designed to be a

diffusion-based 2D semantic segmentation model. It accepts a 2D image as input and predicts a

set of 2D probabilistic masks with corresponding semantically-rich mask embeddings. The 3D

branch utilizes the point cloud and 2D mask embeddings as input. The 2D mask embeddings

are used as “semantic queries” to generate corresponding 3D probabilistic masks. The model

learns salient patterns from the RGB images and geometric information from the point clouds.

Diffusion models for scene understanding. The last few years have witnessed the success

of diffusion models in image generation [241, 248]. Recent studies also observed the diffusion

models are strong representation learners [145, 207, 209, 325]. As a result, researchers have

applied it to many understanding tasks such as image classification [148], object detection [40],

image semantic segmentation [17, 122, 318], instance segmentation [162], human pose estima-

tion [79, 104, 260], action segmentation [176], camera pose estimation [300], to name a few, and

achieved great success. Especially, [318] and [162] showed that Stable Diffusion [241], whose

internal representation being well correlated with text embedding, has strong open-vocabulary

abilities for understanding tasks. Inspired by this, we are the first to apply text-to-image diffu-

sion models to open vocabulary 3D semantic segmentation task.

7.3 Method

We introduce Diff2Scene, an open-vocabulary 3D semantic understanding method. Similar to

[223], our proposed model operates in a zero-shot fashion, where no ground truth 3D annota-

tions are needed during training.
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7.3.1 Overview

An overview of Diff2Scene is shown in Fig. 7.3. It takes posed RGB images and the recon-

structed 3D point cloud as model inputs. The model predicts the semantic label for each 3D

point. Diff2Scene has two branches. The 2D branch is designed to be an open-vocabulary 2D

semantic segmentation model. It leverages text-to-image generative model [241] which is pre-

trained on massive text-image pairs. The model takes a 2D image as input to predict a set of 2D

probabilistic masks with their corresponding 2D mask embeddings. Thanks to the generative

pre-training process with large-scale text-image pairs, the 2D mask embeddings are semanti-

cally rich. The model leverages the salient patterns in RGB images to produce the 2D salient

masks. The 3D branch takes the point cloud and the 2D mask embeddings as inputs. The 2D

mask embeddings are used as linear classifiers to assign class probabilities to each of 3D features

output from the 3D branch, resulting in a 3D probabilistic mask termed as geometric masks. To

predict the per-point semantic class, the model first computes the per-mask category logits for

both salient and geometric masks. Then we ensemble the per-mask logits for those two types

of masks. In the way, the model can learn salient patterns from the RGB images and geometric

information from the point clouds.

7.3.2 2D Semantic Understanding Model

One challenge of 3D semantic understanding is the severe scarcity of 3D point clouds with

groundtruth labels. To tackle the challenge brought by limited training data, vision-language

foundation models have been used to transfer semantically-rich 2D features into the 3D space

[121, 223, 277]. [277] used on a model trained on labeled 3D data to produce class-agnostic

masks, and then pooled the corresponding 2D representations as the mask embeddings. On

the other hand, [223] proposed to leverage a pre-trained 2D semantic segmentation model as

feature extractor to perform open-vocabulary 3D segmentation, and no ground truth 3D anno-

tations are needed during training. In this work, we follow the setting in [223] to reduce the

3D annotation efforts.

The 2D segmentation model consists of an image backbone ϕ which is a foundation model

pretrained on large-scale text-image pairs; and a segmentation head σ to predict the semantic

embedding. There are multiple design options for the 2D backbone ϕ and segmentation head σ.

(1) The 2D backbone could either be contrastively pretrained or generatively pre-trianed.

The popular frameworks for contrastive representation learning include CLIP [72] and ALIGN
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[123]. On the other hand, a few works [302, 318, 340] have demonstrated promising perfor-

mance by using generatively pre-trained representations for perception task. The feature rep-

resentations from Diffusion U-Net blocks are extracted for different downstream tasks.

Once feature representations from text-image foundation models are extracted, a segmen-

tation head is added upon those features to predict the per-point semantic classes. The seg-

mentation problem could be formulated as pixel-based classification ormask-based classi-

fication. For pixel-based classification [87, 149], the intermediate output of segmentation head

is of shape H ×W × C , where H and W is image height and width, and C is the dimension

of feature embedding. For mask-based classification [43, 44, 318], the segmentation head takes

the 2D feature map F2d
and N fixed mask queries {qi}Ni=1 as input. The intermediate output is

N 2D probabilistic masks {B2d
i }Ni=1 and their corresponding mask embeddings {f 2d

i }Ni=1.

In this work, we choose diffusion model as the feature backbone ϕ, considering its strong

localization ability brought by generative pre-training. Besides, we leverage mask-based seg-

mentation head for its intrinsic nature that decouples mask and its semantic representations.

This is intuitively suitable for leveraging semantically-rich embeddings from 2D foundation

models, and further learn geometrically-accurate masks from the 3D branch.

7.3.3 Geometry-Aware 3D Mask Model

While mask-based segmentation has achieved promising performance in fully-supervised set-

ting [43, 44, 253], it has been rarely explored to transfer the learned mask-level representations

into another domain. On the other hand, the point-based feature representations from 2D foun-

dationmodel can be naively distilled byminimizing the per-point feature distance. For example,

[223] proposed to train a 3D model to predicts 3D semantic meaningful features by distilling

pixel aligned 2D features. However, similar methods are not applicable in our proposedmethod.

First of all, our 2D semantic understanding model uses a mask-based segmentation head which

does not provide semantically-rich features in the pixel level. Secondly, the backbone of our

2D semantic understanding model is a frozen stable diffusion model [241] which is designed to

generate realistic images with rich details and not tuned for semantic segmentation tasks. The

per-pixel features extracted from it are not feasible to supervise the training of our 3D mask

model
†
.
1
In the following, we introduce our proposed mask distillation which is tailored to

distill knowledge from the mask-based 2D foundation model to the geometry-aware 3D mask

model.

1
†The 3D mask model trained to distill these features does not converge.
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The mask-based 2D foundation model predictsN 2D probabilistic masks {B2d
i }Ni=1 and their

corresponding mask embeddings {f 2d
i }Ni=1. Specifically, B2d

i represents a probabilistic map

whose elements represent the probability of the corresponding pixel being foreground. We

first compute the pixel-point correspondence following [223]. Subsequently, a set of 3D prob-

abilistic masks {B3d
i }Ni=1 can be generated by lifting the 2D masks {B2d

i }Ni=1 to 3D space based

on the pixel-point correspondence. We proposed a novel mask distillation which distills infor-

mation from both 3D probabilistic masks {B3d
i }Ni=1 and the corresponding semantic rich mask

embeddings {f 2d
i }Ni=1 generated from the 2D branch. Specifically, we train a Minkowski net-

work [50] as the 3D mask prediction model to generate geometry-aware 3D masks. The 3D

point cloud is quantized into voxels by averaging the pixels within each voxel to save memory

and reduce computes. The 3D mask prediction model generates a 3D feature to represent each

voxel and this feature is assigned to all points within the voxel. This produces a full feature map

F3d ∈ RM×D
for the point cloud, where D is the dimension of the 3D feature. The semantic

rich 2D mask embeddings {f 2d

i }Ni=1 are used as linear classifiers to compute the logits Si ∈ RM

of a 3D feature belonging to the corresponding class:

Si = ⟨F3d, f 2d
i ⟩, (7.1)

where ⟨·, ·⟩ denotes inner product. The 3D probabilistic maskB′3d
i is then generated by applying

the sigmoid function onSi. We propose amultimodal mask distillation loss to train our 3Dmask

generator:

L =
N∑
i=1

1− cos(B′3d
i ,B3d

i ). (7.2)

The distillation loss aims at forcing the 2D and 3D branch to make consistent predictions. It

serves as an implicit distillation objective tomake the 3Dmodel learn high-resolution, semantically-

rich feature representations.

7.3.4 Open-Vocabulary Inference

During inference, Diff2Scene takes a 3D point cloud and its multiview 2D images as inputs.

The 2D semantic understanding model consumes the 2D images and generates a set of 2D

probabilistic masks {B2d
i }Ni=1 with their correspondingmask embeddings {f 2d

i }Ni=1, where f
2d
i ∈

RD
. The 3D mask model takes the 3D point cloud and the mask embeddings {f 2d

i }Ni=1 as inputs

to predict the 3D probabilistic mask {B′3d
i }Ni=1. To ground a semantic label c to the 3D point

cloud, we first apply the same idea from [318] to compute the geometric mean (denoted as pci ) of
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label probabilities from diffusion and discriminative models for each 2D mask {B2d
i }Ni=1. Next,

the label probabilities pc
are assigned to 3D points via the following equation:

pc = λ

N∑
i=1

pci ∗ B3d
i + (1− λ)

N∑
i=1

pci ∗ B′3d
i , (7.3)

where λ = 0.5. When multiple labels can be assigned to a 3D point, the label with the highest

probability from Eq. 7.3 is taken.

7.4 Experiment

We conduct a series of experiments to demonstrate the effectiveness of Diff2Scene on a variety

of zero-shot 3D scene understanding benchmarks. We first evaluate the proposed model on

zero-shot open-vocabulary semantic segmentation tasks following the evaluation protocol of

[223]. We then perform comprehensive ablation studies to validate our designs. Finally, we

qualitatively demonstrate the strong ability of the proposed model for open-vocabulary 3D

segmentation and grounding complicated compositional text queries.

7.4.1 Datasets

We use ScanNet [53], Matterport3D [30], ScanNet200 [245] and Replica [272] for the open-

vocabulary 3D semantic segmentation task. We provide qualitative analysis of the visual ground-

ing task on Nr3D [6]. Except for Replica, point clouds and multi-view images in the training

split without ground truth annotations are used for model training. As Replica does not provide

the training data, we perform training on ScanNet and perform evaluation on Replica, following

the setting in [277].

ScanNet is one of the largest 3D semantic segmentation dataset. It provides 80,554 images

from 1201 scans for training and 21,300 images from 312 scans for testing with 20 semantic

labels.

Matterport3D is a large scale RGB-D dataset containing 10,800 panoramic views from 194,000

RGB-D images of 90 building-scale scenes. It splits 61 scenes for training, 11 scenes for vali-

dation and 18 for testing. We train our 3D branch using the images in the training splits and

report the results on test split.
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ScanNet200 has 200 semantic labels with long-tailed classes. It also provides a grouping of

the 200 categories based on the number of labeled surface points in the training set, resulting in

3 subsets: head, common, and tail. This enables us to evaluate the performance of our method

on the long-tail distribution, making ScanNet200 a natural choice as an evaluation dataset. We

report the mean intersection over union (mIoU) metric on the validation set consisting of 312

scenes following the split in [223, 245, 277].

Replica contains 51 categories, and we further split those categories into head and tail sets

based on their appearance frequency. We report the mIoU on the office0, office1, office2, office3,

office4, room0, room1, and room2.

Nr3D is a 3D visual grounding dataset which contains diverse text prompts. To further eval-

uate the ability of our model to distinguish between objects in the same class but with different

attributes, we perform qualitative evaluation on the visual grounding dataset Nr3D [6]. We

perform zero-shot evaluation on the validation set without training on any labeled data for the

visual grounding task.

7.4.2 Baseline Methods

We compare Diff2Scene with the current state-of-the-art fully-supervised 3D semantic segmen-

tation models including TangentConv [280], TextureNet [114], SFSS-MMSI [50], CSC-Pretrain

[105], SupCon [343], LGround [245] and MinkowskiNet [50] on the 3D semantic segmentation

benchmark. We also compare our model against OpenScene [223] and ConceptFusion [121], the

recently proposed open-vocabulary 3D semantic understanding model. For OpenScene [223],

we compare with its OpenSeg [87] variant which has the same feature and pre-trained datasets

for a fair comparison. We also compare our model with its three different variants (2D Fusion,

3D Distill, and 2D/3D Ensemble). Besides, we adapt the state-of-the-art 3D instance segmenta-

tion model OpenMask3D [277] for comparison on the 3D semantic segmentation benchmark.

7.4.3 Implementation Details

We use posed multi-view RGB images and 3D point clouds for all the datasets. ODISE [318],

which consists of a diffusion backbone andmask-based segmentation head, is used as the model

in our 2D branch. It uses a stable diffusion model [241] pre-trained on Laion-5B [252] as the
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Table 7.1: Comparison to state-of-the-art models. We report mIoU for all benchmarks. Best

results in zero-shot, open-vocabulary setting are shown in bold.

ScanNet Matterport3D ScanNet200 Replica

All All Head Common Tail All Head Tail All

Fully-supervised

TangentConv [280] 40.9 - - - - - - - -

TextureNet [114] 54.8 - - - - - - - -

SFSS-MMSI [50] - 35.9 - - - - - - -

CSC-Pretrain [105] - - 45.5 17.1 7.9 24.9 - - -

SupCon [343] - - 48.6 19.2 10.3 26.0 - - -

LGround [245] - - 48.5 18.4 10.6 27.2 - - -

MinkowskiNet [50] 69.0 54.2 46.3 15.4 10.2 25.3 - - -

Zero-shot, open-vocabulary

MSeg Voting [146] 31.0 33.4 - - - - - - -

ConceptFusion [121] 33.3 - 17.5 6.3 2.8 8.8 11.6 3.5 4.6

OpenMask3D [277] 34.0 - 19.6 7.5 4.5 10.5 13.2 3.4 4.8

OpenScene (2D) [223] 41.4 32.4 21.9 10.8 5.5 12.7 33.4 11.5 14.5

OpenScene (3D) [223] 46.0 41.3 17.6 0.0 0.0 6.3 32.6 7.7 11.1

OpenScene (2D/3D) [223] 47.5 42.6 20.0 9.7 5.1 11.6 34.2 11.9 14.9

Diff2Scene (Ours) 48.6 45.5 25.6 11.5 6.9 14.2 46.2 12.9 17.5

feature backbone. The dimensions for diffusion and CLIP features are 256 and 768 respec-

tively. The number of queries of Mask2Former [44] is 100. Similar to OpenScene [223], we

use MinkowskiNet18A [50] as the model in our 3D branch to extract 3D features from the 3D

point clouds. Our 3D model is trained for 200 epochs with a batch size of 8. Adam optimizer

[135] is used with a learning rate of 0.0001 and polynomial learning rate policy is used as the

learning rate scheduler with power 0.9. During inference, text-embeddings are computed by

the ViT-L/14 CLIP model [72] for each of the semantic categories and grounding queries. We

use the same pre-processing step and pre-trained dataset as OpenScene [223] (OpenSeg [87])

for a fair comparison.

7.4.4 Quantitative Results

Evaluation on zero-shot 3D semantic segmentation. We first compare our method with

the state-of-the-art open-vocabulary scene understanding models and fully-supervised 3D seg-
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Table 7.2: Effectiveness of Different Distillation Settings. We report mIoU of different

methods on the Replica [272] dataset.

Setting Distillation Type Head Tail All

fine-tuned CLIP feature [223] Point-based 32.6 7.7 11.1

frozen diffusion feature Point-based Divergence

multimodal mask distillation (ours) Mask-based 43.3 8.0 12.8

mentation models. We report the mIoU for Scannet, Matterport3D, Scannet200, and Replica

in Table 7.1. We find that our method achieves better results than the state-of-the-art open-

vocabulary models and their variants on all the benchmarks. Besides, although our zero-shot

model has noticeable performance drop compared with fully-supervised model, the gap of tail

categories between the proposedmethod and thosemethods are relatively small (e.g.6.9 7.9 from

CSC-Pretrain) on Scannet200. This demonstrates the strong potential of the proposed method

for long-trailed 3D semantic segmentation tasks.

Generalization to unseen dataset. To test the generalization ability of our proposed model,

we evaluate it on an unseen dataset Replica [272] and report the results in Table 7.1. The

results shown that our proposed method significantly outperforms the state-of-the-art models

on head, tail and all categories in Replica. This demonstrates the strong generalization ability

of the proposed model on novel datasets.

Effectiveness of Different Distillation Settings. We compare our mask-based distillation

method with point-based ones under different settings and report the performance of the 3D

branch on Replica [272] in Table 7.2. The supervisions for point-based method include: (1)

Fine-tuned CLIP feature, which follows the same setting as OpenScene [223]; (2) Frozen diffu-

sion feature extracted from the last layer of diffusion U-Net block. We observe that distilling

frozen diffusion features does not converge. Our proposedmethod, by introducing the semantic

meaningful mask embedding output from the 2D branch as a fixed classifier, significantly boost

the performance of the 3D branch.

Ablation studies. We conduct ablation studies using the Replica dataset [272] and show the

results in Table 7.3. We first analyze the effectiveness of combining 2D and 3D masks using

equation 7.3. We observe that compared with using salient or geometric mask only, using both

types of masks achieves the best performance. This is intuitive as both salient patterns and

geometric information are helpful to segment accurate class boundaries. We then analyze the

effectiveness of different semantic features. We find that discriminative and diffusion features
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Table 7.3: Performance of different model ablations. We observe that each component of

our model gains consistent improvements.

Method mIoU

Our full model 17.5

Without 2D (salient) mask 12.8

Without 3D (geometric) mask 16.5

Without discriminative (CLIP) features 15.5

Without generative (Stable Diffusion) features 15.3

serve as strong complementary to each other. We also observe that using those two types of

semantic features jointly can significantly outperform using any of them alone.

7.4.5 Qualitative analysis

Visualizations of zero-shot semantic segmentation. In Fig. 7.4, we provide qualitative

analysis of our approach and OpenScene for the zero-shot 3D semantic segmentation task.

Compared with OpenScene, our model generates coherent and consistent masks (e.g., the table

mask in first column and the bed mask in third column) thanks to the mask-instance represen-

tations. It predicts accurate semantic labels for both head and tail categories by leveraging both

CLIP and diffusion features.

Visualizations of visual grounding results. We provide qualitative analysis of our approach

and OpenScene for the zero-shot visual grounding task in Fig. 7.5. We observe that our model

can accurately identify objects given complicated text queries. It demonstrates that the pro-

posed method, Diff2Scene, has good capability at the following types of queries. Fig. 7.5 (a)

describes object shape and color, and even in comparative degree (It’s the shorter, red box);

Fig. 7.5 (b) describes a rare object (rack) and its surrounded object with surface appearance de-

scriptions (wrinkled towel); Fig. 7.5 (c) describes the relative location of the object (next to the

desk); Fig. 7.5 (d) describes the usage of the object (recycling). In addition, we can see that given

vague usage descriptions without common category names like trash bin in the text prompts,

the model can still accurately identify the object.
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Figure 7.4: Qualitative results from our model and OpenScene on zero-shot semantic

segmentation. Wevisualize the segmentation results on the validation set of ScanNet200 [245].

We observe that our model can predict coherent masks with accurate semantic labels compared

to OpenScene for both head and tail categories.

7.5 Conclusion

In this chapter, we investigate the problem of leveraging frozen representations from large text-

to-image diffusion models for open-vocabulary 3D semantic understanding. Diff2Scene sets a

new state-of-the-art in the zero-shot 3D semantic segmentation task and shows promising per-

formance in the visual grounding task. Our method also shows outstanding generalization abil-

ity towards unseen datasets and novel text queries. It provides a newway to effectively leverage

generative text-to-image foundation models for 3D semantic scene understanding tasks.

There are several limitations of the proposed model. First, while our model achieves better

performance compared to existing methods in small objects, it still misclassified some small

and rare categories (e.g.rail). Second, we observe that the model can be easily confused by
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Text Query

“It’s the shorter

red box”

“The rack with the

smaller, more

wrinkled towel”

“It is the trash can

next to the desk”

“A blue waste

basket possibly

for recycling”

(a) (b) (c) (d)

Figure 7.5: Qualitative results from our model and OpenScene on zero-shot visual

grounding. Our open-vocabulary semantic understanding model is capable of handling differ-

ent types of novel and compositional queries. Novel object classes as well as objects described

by colors, shapes, appearances, locations, and usages are successfully retrieved by our method.

Note that the located points are colored in yellow.

fine-grained categories that with similar semantic meaning. For example, the model sometimes

wrongly classifies points of windowsill to thewindow class. In futurework, it will be interesting

to design models that can accurately distinguish between fine-grained categories in the open-

vocabulary setting.
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Part IV

Conclusions and Future Directions
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Chapter 8

Conclusions

In this thesis, we explore different representation learning methods based on Siamese learning,

masked visual modeling, and generatively pre-training to develop systems that can generalize

to novel viewpoints, scenes and vocabularies. This thesis consists of three parts. The first part

conducts robust semantic instance segmentation for videos and 3D data. We aim to further

learn feature representations that are invariant to various viewpoints and noise conditions via

Siamese learning. We propose to leverage temporal consistency for videos and spatial consis-

tency for 3D volumetric images, such that the learned feature representations have strong gen-

eralization ability. In the second part, we tackle the problem of human action analysis, which

requires the model to learn from dynamic cues. We propose representation learning techniques

based on masked visual modeling, such that the model can learn better spatial-temporal con-

text. We also exploit both RGB videos and 3D human meshes for robust multi-modal action

analysis. Finally, in the third part, we leverage generatively pre-trained vision-language mod-

els and develop systems that can handle novel vocabularies and text prompts. Our final goal

is to build a robust system that can generalize to novel viewpoints, scenes, and vocabularies.

Below, we first summarize the contributions of each part of our work, and then discuss the

limitations of the thesis, as well as the short term goals. We provide key insights and long-term

future goals in the final part based on all the works we have done.

117



8.1 Contributions

8.1.1 Part I: Robust Semantic Instance Segmentation

• We propose a novel method that exploits inter-frame consistency for robust instance seg-

mentation from drone videos. From practical perspective, We are the first work that study

how we could utilize social media drone videos for natural damage assessment. Our sys-

tem was deployed by Federal Emergency Management Agency.

• We explore Siamese learning method for semantic segmentation from 3D volumetric

images, which is also the first work for leveraging image-level class labels for weakly-

supervised 3D segmentation.

8.1.2 Part II: Generalized Human Action Analysis

• We develop a novel masked visual modeling method for recognizing human actions from

3D meshes. This is also the first model that is able to encode temporal mesh sequences.

• We propose a novel generalized system that jointly takes RGB videos and estimated

3D meshes for human action analysis. It achieves the top performance among research

projects funded by U.S. Army Research Lab for 2 years.

8.1.3 Part III: Open-Vocabulary Perception

• We are the first to leverage text-image diffusion to perform open-vocabulary 3D semantic

segmentation.

• We propose a novel mask distillation method to train a 3D mask prediction model by

distilling knowledge from the Mask2Former style 2D segmentation model.

8.2 Limitations

8.2.1 Limitations of High-Quality 3D Datasets

Based on our experiments on 3D datasets like Scannet [53] and Replica [272], we have noticed

that those datasets are limited by the scene diversities. This could bring the following problems.

First, the model evaluation doesn’t comprehensively cover the real-world scenarios. This may
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bring extra bias during model deployment. (2) It is not feasible to incorporate the 3D modality

in the large-scale pre-training stage, especially when involving multiple modalities. Consid-

ering that the paired text-image data is exponentially greater than the number of 3D datasets,

directly introducing 3D modality may only bring marginal improvement for 3D perception.

Considering the cost of collecting high-quality 3D data, one of the potential solution is lever-

aging 3D reconstruction models for images and videos. In chapter 6, we find that it is helpful

to incorporate estimated 3D meshes during the fine-tuning stage. It will be interesting to see if

noisy 3D estimations are helpful for large-scale multimodal pre-training as well.

8.2.2 Limitations of Model Efficiency

In Part II, we have proposed transformer-based architectures formodeling videos and 3Dmeshes.

However, the computational cost of transformers is expensive, particularly when handling

high-dimensional mesh representations. Therefore, model distillation or quantization methods

are essential for deploying our model on edge devices. In Part III, we apply Stable Diffusion,

based on the U-Net architecture [243], for the open-vocabulary 3D perception task. While our

model improves segmentation accuracy, we observe that the inference speed becomes a bot-

tleneck. Specifically, inference with Stable Diffusion [241] is significantly slower compared to

CLIP-based methods [72]. To meet real-time deployment requirements, one potential approach

is to transition to transformer-based diffusion models and adopt optimization techniques such

as Flash Attention [58] and KV Cache [229] to improve speed.

8.2.3 Limitations of Efficient 3D Representations Under Limited GPU

Constrains

Due to the constrain of GPU memories, it is not feasible to use the entire 3D scene as model

input. Therefore, in chapter 7, we split the input 3D scenes into several sub-scenes, and perform

model predictions on each of the individual sub-scenes. However, this may lead to inaccurate

predictions on the boundaries of the sub-scenes. Besides, for text prompts that require reason-

ing of the spatial locations, the model needs to jointly consider multiple sub-scenes. Therefore,

how to represent the 3D scene in a memory-efficient way is an important problem.
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8.2.4 Trade-OffBetween Specialized Expertmodels andGeneral-Purpose

Foundation Models

In this thesis, we have explored specialized expert model in chapter 2 and chapter 3. In these

chapters, we train a single-purpose segmentation model on domain-specific datasets. On the

other hand, we also explored how to fine-tune a general-purpose foundation models for open-

vocabulary segmentation task in chapter 7. There are several computation-accuracy trade-offs

between specialized models and general-purpose foundations models. In this thesis, we do not

provide trade-off analysis for expert models and foundation models in a unified benchmark due

to constrains of computational resources. We believe it will be interesting to see the accuracy-

cost analysis for expert models and different fine-tuning techniques for foundation models (e.g.

parameter-efficient fine-tuning, LoRA adapters [110], etc). We believe a well-defined trade-off

between computational efficiency and accuracy would be helpful for real-world deployment.

8.2.5 Generalization Ability Towards Novel Tasks

In this thesis, we have investigated the generalization ability of computer visionmodels towards

novel viewpoints (Part I), scenes (Part II), and vocabularies (Part III). While our systems achieve

substantial performance improvement compared to state-of-the-art models, it still fails behind

considering the generalization ability of Large Language Models (LLMs). Specifically, LLMs

demonstrate impressive performance in terms of generalization towards novel tasks. This is

mainly due to the NLP tasks can be represented in a unified format (i.e. next token prediction).

In the future, more work can be done to train different vision tasks (including both perception

and generation) in a unified format, and investigate the model’s generalization ability towards

novel tasks.

8.3 Key Insights and Future Directions

8.3.1 Graphics Engines for Generative Models

In this thesis, we have investigated the use of graphics engines for visual perception tasks in

Part II. Specifically, we have explored how 2D and 3D data generated from graphics engines can

be utilized to learn domain-invariant feature representations. Futurework could further explore

the potential of graphics engines in generative models, which is also a key area in the computer
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vision field. We present the results of our initial exploration below. Given an input image

and a text description specifying the object movement and its destination, we first estimate

the 3D scene from the image and use a graphics engine to render the movement trajectory

of the object. A pre-trained video generative model is then employed to generate the video

conditioned on the trajectory predicted by the physics engine. Our results shown in Figure 8.1

demonstrate that incorporating physics priors into video diffusion models improves text-video

alignment, physical realism, and photorealism. Building on this approach, future research could

utilize graphics engines to generate synthetic datasets, enabling a single diffusion model to

learn directly from physics-realistic videos in an end-to-end manner. This would represent a

significant advancement in the field of physics-aware video generation.

(a)

(b)

Figure 8.1: Visualizations of (a) physics simulation of ball bouncing from the graphics engine

and (b) video generated from diffusion model which conditions on the object motion.

8.3.2 Language-Driven Graphics Engines

One of the fundamental differences between visual and text data lies in the complex composi-

tions inherent in visual representations, which pose additional challenges for model learning.

For example, videos consist of intricate combinations of textures, styles, object movements,

and camera dynamics over time. The diversity of these inputs makes it difficult for models to

consistently capture the underlying patterns needed for various downstream tasks. A potential

solution is to leverage 3D graphics engines to render realistic videos by arranging 3D assets in

accordance with physical laws. However, current graphics engines require substantial human

effort to create even a single scene. Future research could focus on developing language-driven

graphics engines, where users simply provide textual descriptions of the spatial relationships

between key objects, and the engine autonomously arranges and renders the scene. Addition-

ally, such systems could be extended to simulate dynamic scenarios, such as object and human

movements within a 3D environment, ensuring natural and plausible motions. By doing so,
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graphics engines could become a powerful tool for scaling up datasets used to train founda-

tional models, especially as real-world datasets become increasingly scarce.

8.3.3 Self-Improved Computer Vision System and Embodied AI

In this thesis, we focus primarily on visual perception tasks, which serve as foundational com-

ponents for various downstream applications, such as robotics. Looking ahead, it would be

valuable to explore the system’s generalization ability on real robots. Specifically, if it is able to

generalize towards novel tasks specified by users. Additionally, we anticipate that the system

could improve over time through a self-learning process. For example, if a user provides a new

task, such as "fold the wheelchair," the system could employ a policy generator to control the

robot, alongside a discriminator to assess the success of the task. The underlying idea is that

while collecting real-world manipulation data for every possible task is impractical, it is feasi-

ble to use a discriminator—such as a multimodal large language model—that evaluates the final

manipulation results (e.g., video) and determines whether the task was successfully completed.

If the task is not deemed successful, the policy generator could then generate a new policy.

Through this iterative process, the system could gradually develop the ability to generalize to

new tasks via self-learning.
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