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Abstract

Automatic speech recognition (ASR) is an essential technology which facilitates effective human-
computer interaction. With the rapid progress in deep learning techniques, end-to-end (E2E) neural
network-based ASR has brought significant advancements with remarkable performance. The
success of ASR models have inspired various applications such as virtual assistants and automatic
transcription services. Despite these achievements, recognizing conversational speech remains
a challenging task, especially in the presence of environmental noise, room reverberations and
speech overlaps.

This thesis aims to address the challenges of recognizing everyday conversation speech in ASR
systems using E2E neural networks. The proposed research will explore techniques and method-
ologies to enhance the performance of ASR in challenging real-word conversational scenarios. We
divide the problem into several sub-problems focusing on speech overlaps, noise, and reverbera-
tions, where each of these factors will be individually analyzed and addressed. In addition, we
conduct diverse investigations on E2E neural network architectures to leverage the benefits of joint
training to handle these challenges. Specifically, we build E2E ASR models by integrating ad-hoc
modules, including speech enhancement, feature extraction and speech recognition.

We begin with the fundamental task of speech recognition using single-channel input contain-
ing a single speaker. Environmental noises and room reverberations significantly degrade speech
recognition performance in such scenarios. To address this challenge, we propose a novel model
architecture, integrating speech enhancement, self-supervised learning, and ASR models into a
single neural network with an efficient training strategy. This integration has led to notable per-
formance improvements, demonstrating the feasibility and effectiveness of employing end-to-end
(E2E) neural networks for speech recognition with complex acoustic and linguistic properties. We
then extend our approach to accept multi-channel speech input with a single speaker. Inspired by
recent advancements in large speech foundation models, we expand the capabilities of a model
trained on thousands of hours of single-channel speech data to handle multi-channel input. This
extension significantly enhances performance, particularly evident in real meeting transcription
data. Furthermore, we address the challenge of speech overlaps, an area that has been under-
explored. Overlapping speech poses difficulties in accurately decoding and aligning individual
utterances. To tackle this, we propose several end-to-end (E2E) models designed specifically to
recognize overlapping speech within single-channel input. Finally, we turn our attention to multi-
channel speech input with speech overlaps present in the signal. We introduce a model capable
of processing multi-channel input from multiple speakers, leveraging spatial information for im-
proved performance. We also integrates various approaches proposed earlier, further enhancing its
effectiveness in challenging scenarios.
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Chapter 1

Introduction

Human-spoken language represents one of the most natural and effective means of communication,
serving as a convenient interface for interacting with machines. This has spurred significant inter-
est in the development of Automatic Speech Recognition (ASR) systems, driven by the numerous
benefits of accurate ASR technology. Firstly, ASR plays a critical role in transcribing and analyz-
ing large volumes of spoken data, including telephone calls, meetings, interviews, and chats. This
capability enables efficient data retrieval, analysis, and decision-making across various domains.
Secondly, ASR enhances accessibility by providing an alternative mode of interaction for individ-
uals who prefer spoken communication over written text. This empowers users with disabilities or
those seeking hands-free interaction with technology. Thirdly, ASR facilitates intuitive and seam-
less interaction between humans and machines, allowing users to communicate with devices using
natural spoken language rather than traditional input methods like keyboards or touchscreens. This
natural interface enhances user experience and simplifies human-computer interaction.

As ASR technologies continue to advance, new applications and services are emerging in
voice-controlled systems, virtual assistants, and hands-free applications across diverse domains.
Improved ASR capabilities pave the way for more sophisticated voice-driven technologies that
enhance productivity, accessibility, and convenience for users.

Despite its transformative potential, current Automatic Speech Recognition (ASR) systems
face substantial challenges when applied to everyday conversational speech due to inherent vari-
abilities. These include diverse speech patterns (pace, rhythm, intonation), speaker characteris-
tics (accent, speaking style, vocal qualities), transcription complexities (context, fillers, disfluen-
cies), and challenging acoustic conditions (background noise, reverberations, overlapping speech).
Among these, the complexity of acoustic conditions poses a particularly formidable obstacle that
can significantly impact ASR system performance.

Efforts have been focused on mitigating these challenges, including addressing environmental
noise, room reverberations, and speech overlaps. Environmental noise degrades speech signal
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quality, leading to reduced recognition accuracy, while room reverberations introduce additional
distortions. Moreover, the presence of overlapping speech presents a unique challenge, requiring
ASR systems to accurately distinguish and transcribe multiple speakers’ voices concurrently.

Successfully addressing these challenges is crucial for enhancing the accuracy and robustness
of ASR in real-world conversational settings. Innovative approaches and advancements in sig-
nal processing, machine learning, and neural network architectures are key to overcoming these
obstacles and improving ASR performance under diverse and challenging conditions.

This thesis aims to enhance the performance of ASR in everyday conversational scenarios
where the intelligibility of speech signals may be significantly degraded by speech overlaps, envi-
ronmental noise, and room reverberations. To achieve this goal, we propose to develop E2E neural
network models specifically tailored to handle these complex acoustic environments.

1.1 Background

The development of Automatic Speech Recognition (ASR) models has undergone significant evo-
lution over the years. Prior to the advent of deep learning, the dominant ASR models relied on
Gaussian mixture models (GMMs) and hidden Markov models (HMMs) (Young, 1996). The foun-
dational concepts of ASR, dating back to the work of Dr. Jelinek and colleagues at IBM over half a
century ago, are rooted in statistical modeling involving three key components: 1) acoustic model-
ing (AM) to model the likelihood of input features: P (Acoustics|Phoneme), where Acoustics is the
acoustic feature and Phoneme is the phoneme sequence; 2) lexicon modeling: P (Phoneme|Word);
3) language modeling for the word sequence: P (Word). The ASR process involves computing the
most likely word sequence given the input acoustic feature, which can be expressed as:

ˆWord = argmax
Word

P (Word|Acoustics) (1.1)

= argmax
Word

∑
Phoneme

(P (Acoustics|Phoneme)P (Phoneme|Word)P (Word)) , (1.2)

where HMMs were used for the AM to model P (Acoustics|Phoneme). The likelihood of acous-
tic features used in the HMM is provided by the GMM. With the rapid advancements in deep
learning techniques, GMMs have been replaced by deep neural networks (DNN) for acoustic mod-
eling in ASR (Hinton et al., 2012; Qian et al., 2016; Chiu et al., 2018). DNN-based AMs have
demonstrated substantial improvements in recognition accuracy and efficiency compared to tradi-
tional approaches based on GMM-HMM, ushering in a new era of robust and data-driven speech
recognition systems. This shift towards neural network-based ASR also intrigued interests in end-
to-end (E2E) speech recognition, discarding the intermediate phoneme states and lexicon models.
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E2E-ASR directly maps input acoustic features to transcription sequences, further simplifying the
pipeline. Multiple E2E-ASR approaches have been proposed, including the connectionist temporal
classification (CTC) (Graves et al., 2006), recurrent neural network Transducer (RNN-T) (Graves,
2012) and attention-based encoder-decoder (AED) (Chorowski et al., 2014).

While ASR, particularly End-to-End (E2E) models, has achieved significant success, enhanc-
ing robustness and generalization to handle complex acoustic conditions remains a key area of
research interest (Kinoshita et al., 2013; Vincent et al., 2017a; Watanabe et al., 2020). Numer-
ous approaches have been proposed to improve robustness against noise, such as data augmenta-
tion (Ko et al., 2017; Park et al., 2019; Zhang et al., 2020b; Cornell et al., 2023) techniques and the
development of novel model architectures (Ochiai et al., 2017a; Heymann et al., 2019). Addition-
ally, addressing overlapping speech signals has led to the proposal of specialized models tailored
for this purpose (Seki et al., 2018; Kanda et al., 2020b,a). These ongoing research efforts aim to
enhance ASR performance under challenging real-world conditions, ensuring more accurate and
reliable speech recognition systems.

As is well known, deep neural networks are quite data-hungary. The success of prominent prod-
ucts from large technology companies relies heavily on training their ASR models with thousands
of hours of speech data, underscoring the importance of large-scale training. In recent years, nu-
merous large-scale speech models have emerged, categorized into two types: unsupervised training
and supervised training. The primary distinction lies in the supervision signal used during training.
Supervised training relies on labeled data for supervision, whereas unsupervised training leverages
the inherent structure of the input data itself. Notable examples of unsupervised learning methods
include Wav2Vec 2.0 (Wang et al., 2021b), HuBERT (Hsu et al., 2021b), WavLM (Chen et al.,
2021b), and BEST-RQ (Chiu et al., 2022). On the other hand, prominent supervised learning
methods include SpeechStew (Chan et al., 2021), Whisper (Radford et al., 2023), and OWSM
(Peng et al., 2023). These advancements in both unsupervised and supervised training techniques
have significantly contributed to the development of robust and effective speech foundation mod-
els, driving progress in ASR technology.

In this thesis, our goal is to advance the state of the art in recognizing everyday conversational
speech by employing innovative techniques and models. We aim to address the challenges posed
by complex acoustic environments, overlapping speech, and varying speaker characteristics. By
leveraging the end-to-end models and cutting-edge techniques, we strive to enhance the robustness,
accuracy, and generalization capabilities of automatic speech recognition systems.
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1.2 Problem formulation

There have been numerous existing studies dedicated to addressing the challenges posed by com-
plex acoustic environments in automatic speech recognition (ASR) (Du et al., 2016; Vincent et al.,
2017b; Barker et al., 2018; Chen et al., 2018a). These environments encompass various factors
such as speech overlaps, environmental noise, and room reverberations, which significantly impact
the performance of ASR systems. Researchers have recognized the importance of improving ASR
accuracy and robustness in real-world conversational scenarios, where speech signals often suffer
from degradation due to these complex acoustic conditions.

One area of research focuses on tackling environmental noise (Du et al., 2016; Menne et al.,
2016). Noise signals are common in everyday life. We can represent the waveform of a noisy
signal in mathematical form, x = [x1, x2, . . . , xT ] ∈ RT , where T is the length of the signal. For
each data point at a discrete time t observed by a microphone, it can be denoted as

xt = st + nt, (1.3)

where st ∈ R and nt ∈ R are clean speech source and noisy signals at time t, respectively. The
recording device may contain more than one microphone. When we collect the signals with C

microphones, the notation remains the same, except that the signal at each timestep t contains C
data points: xt, st,nt ∈ RC .

Room reverberations caused by sound reflections in enclosed spaces also pose a considerable
challenge to ASR systems (Delcroix et al., 2015). These reverberations introduce additional dis-
tortions to the speech signals st, further degrading recognition accuracy. In this case, a reverberant
signal can be represented as

xt = ht ∗ st + nt, (1.4)

where ∗ is a convolution operator. ht is the room impulse response (RIR), corresponding to the
propagation of speech caused by the reflections from surfaces in the room.

Another significant challenge in ASR is the presence of speech overlaps (Yu et al., 2017b,c;
Kanda et al., 2020b), where multiple speakers’ voices are simultaneously present in the recorded
audio. If the number of speakers to be K, the noisy signals can be denoted as

xt =
K∑
k=1

hk
t ∗ skt + nt, (1.5)

where skt is the clean speech of k−th speaker at time t. Recognizing and transcribing individual
utterances in such scenarios is a challenging task, as the overlapping speech leads to a mixture of
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multiple speakers’ voices.
To address the challenges of complex acoustic environments, end-to-end (E2E) neural networks

have garnered significant attention in the ASR community. E2E models offer a holistic approach
by directly mapping acoustic features to transcriptions, eliminating the need for intermediate pro-
cessing stages. In E2E-ASR models, a single neural network directly maps the input speech sig-
nals to the target transcriptions. In this case, the task is to recognize the transcription sequences,
{Yk, 1 ≤ k ≤ K} , for all speakers of interest. Given the speech signals x, the E2E-ASR model
learns to generate {Y1,Y2, . . . ,YK} = E2E-ASR(x). For each speaker k, Yk = [yk1 , y

k
2 , . . . , y

k
Lk
]

has length Lk, and yki ∈ V , where V represents the vocabulary.

1.3 Approach

It is challenging to attempt to solve all complex acoustic challenges simultaneously due to their
inherent complexities. Therefore, in this thesis, we adopt a systematic approach by breaking down
the overall problem into manageable sub-problems. Starting from conventional sub-problem for
ASR, we aim to propose effective solutions that collectively contribute to the improvement of ASR
performance in real-world conversational scenarios.

Figure 1.1: Illustration depicting the sub-problems in everyday conversation speech recognition,
characterized by the number of input channels and output sequences.

We design sub-problems according to characteristics, namely the number of input channels and

16



that of output sentences, shown in Fig. 1.1. Firstly, we consider the difference of single-channel
and multi-channel scenarios. In the multi-channel case, the geometry difference between multiple
microphones can provide spatial information, which is useful in speech denoising and separation.
This spatial information can be leveraged to enhance the performance of ASR systems in challeng-
ing acoustic environments. Secondly, we consider the presence of speech overlaps, where multiple
speakers’ voices overlap in the recorded audio. Recognizing and transcribing individual utterances
accurately in such scenarios is a significant challenge. To this end, we describe the sub-problems
in the following.
Single-channel Input Single-speaker Output (SISO) The objective of SISO is to recognize the
speech of a single speaker from a single-channel input, representing a common research focus. This
scenario poses challenges due to environmental noise and room reverberations, which have been
extensively studied. However, recent advancements in self-supervised learning (SSL), exemplified
by Wav2Vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021b), and WavLM (Chen et al.,
2021b), introduce a new paradigm and potential to elevate performance. By integrating speech
enhancement, SSL, and ASR into a unified model, we achieved highly promising results.
Multi-channel Input Single-speaker Output (MISO) In the MISO sub-problem, the goal is to
recognize the speech of a single speaker from a multi-channel input. While there is no overlapping
speech involved, the availability of multiple channels offers spatial information that can be lever-
aged to enhance the performance of ASR systems. Similar to SISO, we explore the E2E model that
incorporates the strong speech enhancement and SSL models. Through extensive experimentation,
we aim to demonstrate the effectiveness of our proposed techniques for MISO-ASR.
Single-channel Input Multi-speaker Output (SIMO) In the SIMO case, the task is to recog-
nize speech from multiple speakers using only a single-channel input. Unlike SISO, SIMO in-
volves overlapping speech composed of homogeneous signals that may become misaligned during
recognition. This task is notably challenging, demanding the separation and transcription of in-
dividual speakers’ utterances from a blend of voices. The absence of spatial information in the
single-channel input further complicates accurate distinction and decoding of overlapping speech.
To tackle this challenge, we propose several new model architectures specifically designed for
SIMO-ASR. These approaches aim to exploit the inherent characteristics of the overlapping speech
and leverage advanced signal processing techniques to improve separation and recognition perfor-
mance.
Multi-channel Input Multi-speaker Output (MIMO) In the MIMO scenario, the objective is
to recognize overlapping speech from multiple speakers using a multi-channel input. Unlike the
SIMO case, where only a single-channel input is available, the presence of multiple channels of-
fers valuable spatial information that can facilitate speech separation and recognition. However,
modeling presents challenges due to the complexity of multi-channel signals. Our proposed ar-
chitecture comprises several modules designed to collectively address speech separation, feature
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extraction, and speech recognition tasks, all jointly trained from scratch to optimize performance.

1.4 Corpora

In order to verify the proposed methods, we conducted experiments using several diverse speech
corpora. This section provides an overview of the major speech corpora employed throughout this
thesis. These corpora are essential for training, validating, and testing the proposed models, ensur-
ing their robustness and effectiveness across various acoustic environments and speech scenarios.
Detailed information about each corpus is provided below, aligned with the divisions of the ASR
tasks as described in the above sections.

1.4.1 Corpora for SISO-ASR

In the Single-channel Input Single-speaker Output (SISO) scenario, we utilized the CHiME-4 cor-
pus (Vincent et al., 2017b), which was employed in the 4th Computational Hearing in Multisource
Environments (CHiME) challenge. This dataset comprises both real and simulated noisy record-
ings of speech derived from the Wall Street Journal (WSJ0) corpus, at 16 kHz sampling rate.
The recordings span four challenging noisy environments: bus, cafe, pedestrian area, and street.
The original CHiME-4 corpus contains audio recordings captured by six microphones arranged in
a specific configuration to simulate real-world multi-source environments. To evaluate the ASR
performance in the single-channel case, we extracted each individual channel separately, treating
each as a standalone input audio stream. This approach allowed us to focus on the SISO sce-
nario, assessing the models’ ability to handle noisy and reverberant conditions without the benefit
of multi-channel information. There are 1,600 real and 7,138 simulated utterances for training,
1,640 real and 1,640 simulated utterances for development, and 1,320 real and 1,320 simulated
utterances for test. The CHiME-4 corpus is crucial for testing the robustness of ASR systems in
noisy environments. By using this dataset, we aimed to ensure that our proposed models could
effectively mitigate the adverse effects of environmental noise and improve speech recognition
accuracy under challenging conditions.

1.4.2 Corpora for MISO-ASR

In the Multi-channel Input Single-speaker Output (MISO) scenario, we conducted all experiments
using real-world English meeting recordings from the AMI meeting corpus (Carletta, 2006). The
AMI corpus is an extensive dataset that includes recordings captured by both close-talking and far-
field microphones. The former is made using individual headset microphones (IHM) worn by each
participant. While our focus is on the far-field scenario, where an 8-channel microphone array,
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commonly referred to as multiple distant microphones (MDM), was employed. Conventionally,
the 1

st channel of the MDM is selected to create an individual monaural condition known as a
single distant microphone (SDM). The AMI corpus provides approximately 100 hours of meeting
recordings, with human-annotated transcriptions. The AMI corpus also provides the segmentation
information at the utterance level to construct individual training samples. The diverse acoustic
conditions and the presence of spontaneous conversational speech in these recordings make the
AMI corpus an ideal choice for evaluating the robustness of ASR systems in real-world settings.
Despite the CHiME-4 data also containing multi-channel recordings, it has been extensively stud-
ied in our previous work and falls outside the scope of this thesis. The AMI corpus, with its focus
on meeting scenarios and its rich annotation, offers a more suitable and challenging dataset for
advancing our MISO ASR research.

1.4.3 Corpora for SIMO-ASR

To evaluate our proposed methods in the Single-channel Input Multi-speaker Output (SIMO) case,
we used artificially generated single-channel multi-speaker mixed signals, where utterances from
different speakers overlap. Three benchmark corpora commonly used in SIMO-related studies
were employed:

1. WSJ0-Mix. This dataset is simulated based on the Wall Street Journal (WSJ) corpus de-
veloped by NIST, specifically using source utterances from the WSJ0 section1. WSJ0-Mix
includes two primary categories: the 2-speaker scenario and the 3-speaker scenario. In the
2-speaker scenario, we use the common benchmark called WSJ0-2mix dataset introduced
by (Hershey et al., 2016a) with a sampling rate of 16 KHz. The training and validation sets
are generated by randomly selecting two utterances from different speakers from the WSJ0
si_tr_s partition, containing around 30 h and 10 h speech mixture, respectively. To mix the
utterances, various signal-to-noise ratios (SNRs) are uniformly chosen from [0, 10] dB. For
the test set, the mixture is similarly generated using utterances from the WSJ0 validation set
si_dt_05 and evaluation set si_et_05, resulting in 5 h speech mixtures. For the 3-speaker
case, similar methods are adopted except the number of speakers is three.

2. WSJ-Mix. Similar to the WSJ0-Mix corpus, WSJ-Mix is also derived from the Wall Street
Journal (WSJ) speech corpus. Introduced by Seki et al. (Seki et al., 2018), this dataset uses
the full WSJ corpus, which includes WSJ0 and WSJ1 . The generation process mirrors that
of WSJ0-Mix, using the tool released by MERL2, but with source utterances chosen from

1WSJ0 is also known as LDC93S6A
2http://www.merl.com/demos/deep-clustering/create-speaker-mixtures.zip
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the full WSJ corpus (comprised of WSJ0 and WSJ13). We used WSJ_SI284, to generate
the training data, Dev93 for development and Eval92 for evaluation. The durations for the
training, development and evaluation sets of the mixed data are 98.5 hr, 1.3 hr, and 0.8
hr respectively. Note that WSJ_SI284, Dev93 and Eval92 are the training, validation and
evaluation sets for the WSJ, respectively.

3. LibriMix. Our methods are additionally tested on LibriMix, a recent open-source dataset
for multi-speaker speech processing. The LibriMix data is created by mixing the source
utterances randomly chosen from different speakers in LibriSpeech (Panayotov et al., 2015)
and the noise samples from WHAM! (Wichern et al., 2019). The SNRs of the mixtures are
normally distributed with a mean of 0 dB and a standard deviation of 4.1 dB. LibriMix is
composed of 2-speaker or 3-speaker mixtures, with or without noise conditions. For fast
evaluation, we conducted our experiments on the train-100 subset from Libri2Mix, which
contains around 100 h of 2-speaker mixture speech.

By utilizing these diverse and challenging datasets, we ensured that our proposed SIMO-ASR
methods were rigorously tested and validated across various overlapping speech scenarios, en-
hancing their robustness and applicability in real-world conditions. However, the major drawback
of these corpora is that they are not real spontaneous conversational overlapping speech signals,
which will be left in future studies.

1.4.4 Corpora for MIMO-ASR

To evaluate the effectiveness of our proposed end-to-end model for the Multi-channel Input Multi-
speaker Output (MIMO) scenario, we conducted experiments on several benchmark datasets. These
datasets were specifically designed for multi-speaker, multi-channel speech recognition and sepa-
ration tasks. The detailed information about each corpus is provided below:

• Spatialized WSJ0-2Mix. According to the name, it is obvious that this corpus is an exten-
sion of the single-channel WSJ0-2Mix used in the SIMO case. The specialization process
is described in (Wang et al., 2018), using a room impulse response (RIR) generator4, where
the characteristics of each two-speaker mixture are randomly generated including room di-
mensions, speaker locations, and microphone geometry5. Room impulse responses were
simulated and convolved with dry source signals from WSJ0-2mix (Hershey et al., 2016a).
The signal-to-distortion ratio (SDR) (Vincent et al., 2006) with respect to the input mixture

3WSJ1 is also known as LDC94S13A
4Available online at https://github.com/ehabets/RIR-Generator
5The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/
spatialize_wsj0-mix.zip
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is 0.07 dB in spatialized WSJ0-2mix. After spatializing, the training, validation, and test
sets of both datasets contain 20,000, 5,000, and 3,000 mixtures, respectively.

• Spatialized WSJ-2Mix. Similar to the spatialized WSJ0-2Mix, we simulated the special-
ization process for the single-channel multi-speaker dataset, WSJ-2Mix as described in the
SIMO case. We use the same random RIR generator and the specialization process as the
WSJ0-2Mix.

• WHAMR!. WHAMR! (Maciejewski et al., 2020) is one of the most challenging datasets
for speech separation, as it contains two-channel real-recorded environmental noise. For
WHAMR!, the SDR with respect to the input mixture is -4.61 dB.

For all datasets, we used the 16 kHz version in our experiments.

1.5 Thesis Statement

In everyday conversational settings, automatic speech recognition (ASR) models face formidable
challenges posed by degraded signal quality. Achieving precise recognition of such degraded
speech signals is crucial for attaining human-level intelligence. Leveraging the efficiency and
efficacy of end-to-end neural networks, we can markedly enhance ASR recognition accuracy, thus
overcoming the hurdles inherent in conversational speech recognition.

1.6 Thesis Organization

We outline the structure of the thesis and provide an overview of the main topics covered in each
chapter.

Chapter 1 provides a comprehensive overview of the thesis. In Chapter 2, we delve into the
methodological background of the problem, laying a solid foundation for the approaches explored
in this research. We present a detailed overview of the various approaches employed, discussing
their theoretical underpinnings, implementation strategies, and the rationale behind their selection.
Additionally, we highlight the general findings and insights gained from these methodologies,
setting the stage for the in-depth discussions and analyses in the later chapters. This background is
essential for understanding the innovative techniques and solutions proposed in this thesis.

Part I of this thesis focuses on Single-Channel Input, Single-Output (SISO) ASR models. While
the SISO scenario does not involve speech overlaps, it presents challenges due to environmental
noise and room reverberations. In Chapter 3, we propose innovative approaches leveraging self-
supervised learning (SSL) to extract features efficiently, enhancing performance through speech
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enhancement processing. We also discuss effective training strategies to optimize model perfor-
mance.

Transitioning to the Part II of the thesis, we extend the model to process multi-channel speech
signals. Drawing inspiration from the success of large speech foundation models, Chapter 4 intro-
duces a multi-channel extension of the foundation model. This extension demonstrates significant
improvements in recognition performance using real meeting recordings from the AMI meeting
corpus.

In the Part III, we focus on Single-Channel Input, Multiple-Output (SIMO) ASR models. Chap-
ter 5 introduces End-to-End (E2E) ASR for multi-speaker overlapping speech, demonstrating fea-
sibility and efficiency in recognizing overlapping speech with known speaker counts. Chapter 6
delves into conditional-chain models to handle varying speaker counts in speech overlaps, while
Chapter 7 proposes a flexible model for transcribing partially overlapping speech encountered in
real-world scenarios.

In the Part IV, we focus on the MIMO-ASR models, where the model handles multi-channel
input speech signals with multi-speaker overlaps. Chapter 8 and 9 introduce a novel E2E model
that incorporates a masking-based neural beamformer with multiple speech sources and a ASR
model. The neural beamformer aims to enhance the target speaker’s speech while suppressing
interference from other speakers and background noise. The enhanced speech is then fed into an
ASR model for transcription. The whole model is jointly trained from scratch solely on the ASR
criterion. We also propose to use transformer as the backbone in the masking estimation network.
To improve the computation efficiency and reduce the quadratic memory cost in self-attention,
local self-attention is used. In Chapter 10, we incorporate some of the techniques mentioned in
earlier sections, bolstering robustness in handling overlapping speech.

Finally, Chapter 11 summarizes the main conclusions of this thesis and proposes directions for
future research in the area.
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Chapter 2

Methodological Foundations and Design
Principles for ASR Models

Summary

Conversational speech recognition aims to accurately transcribe spoken interactions in real-life
scenarios, where conversations often occur in diverse and unpredictable acoustic environments.
A crucial aspect is the ability to understand and process speech captured from a distance, com-
monly known as distant automatic speech recognition (DASR). Unlike traditional close-talking
microphone setups, DASR deals with speech recorded by microphones placed at a distance from
the speaker, which introduces significant challenges such as background noise, reverberation, and
multiple overlapping voices.

Modern DASR models can generally be categorized into three different types:

• Modular-based. This approach involves building the model by concatenating several sepa-
rate components, each tackling a sub-task towards the final target. A typical modular-based
model consists of components for speech separation and enhancement (SE), feature extrac-
tion (FE), and speech recognition (ASR).

• Non-modular-based. Contrary to modular-based models, non-modular-based models are
monolithic and directly recognize the input speech. These models usually consist of a large
neural network that takes raw speech signals or features as input.

• E2E modular-based. E2E modular-based models share similar designs with modular-based
models but are optimized jointly to reduce the discrepancy between different modules, aim-
ing to achieve optimal performance.
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All the methods proposed in this thesis fall into either the non-modular-based or E2E modular-
based categories. Understanding these concepts is crucial for grasping the methodology and mod-
els discussed in the following sections. Therefore, the purpose of this chapter is to introduce these
methodologies and provide the necessary background on these approaches.

Xuankai Chang, Shinji Watanabe, Marc Delcroix, Tsubasa Ochiai, Wangyou Zhang,
Yanmin Qian. "Modular-based End-to-End Distant Speech Processing: a case study
of far-field ASR", submitted to Signal Processing Magzine 2024.

2.1 Introduction

Human listening abilities enable us to capture and understand various sources of information from
complex sound scenes. This allows us, e.g., to follow a conversation at a cocktail party or notice
various sounds occurring in our surroundings. The goal of speech and audio processing research
has been to design technologies that could approach such human listening abilities. In this chapter,
we focus on the example of distant automatic speech recognition (DASR) (Haeb-Umbach et al.,
2021), which consists of transcribing the speech signals captured by microphones that are rela-
tively far from the speakers so that it captures ambient noise, multiple speakers’ voices, and room
reverberation. DASR is one of the most important downstream applications in speech and audio
signal processing (Haeb-Umbach et al., 2021).

The classical approach to tackle complex problems such as DASR has been to divide it into
simpler sub-tasks, and design specific modules for each sub-task. We can then build a complex
modular system by combining the individual “simple” modules. For example, the DASR problem
usually builds on a model of the microphone signal consisting of speech corrupted by noise and
interference speakers, etc. The speech signal carries the speech content uttered by the speaker,
which can be modeled as a phoneme or word sequence. Consequently, the DASR problem can be
divided into (1) a speech separation and enhancement (SSE) front-end that extracts speech from
the interference speakers and noise, (2) a feature extraction (FE) module that generates an in-
formative representation of the speech signal, and (3) an ASR back-end that converts the feature
sequence into a word sequence. Each of the modules can be designed using either (1) a model-
based approach, which leverages mathematical designs based on, e.g., physical consideration of
the problem, (2) a data-driven approach such as deep learning, or (3) a combination of these ap-
proaches, which we call here mixed approach. Note that each of these modules can themselves
also be composed of even more specific sub-modules.

There are several nice properties of such a modular approach. First, we can exploit information-
theoretic models or physical knowledge about the sub-problems or from domain-specific data to
design and optimize effective models independently for each sub-task. It is easy to interpret and

24



evaluate each module because the output at each module has its own definition. Modular ap-
proaches are also advantageous in terms of flexibility. After deployment, each module can flexibly
be modified without affecting other components of the system. An illustrative example of such
modular design is showcased in (Haeb-Umbach et al., 2019), where it played a key role in de-
veloping a smart home assistant. At that time, modular systems were a better solution, given the
limited exploration of end-to-end models. However, modular systems composed of many mod-
ules are complex and often cumbersome to optimize. Indeed, integrating multiple components,
each with its own set of parameters and learning criteria, leads to discrepancy between them and
suboptimal results (Yoshioka et al., 2015a).

Recently, progress in deep learning and the availability of a larger amount of data has allowed
us to take an extremely data-driven approach, consisting of building a non-modular system to solve
a complex task end-to-end (E2E) directly. A simple example consists of replacing the modular
DASR system described above with a single neural network that accepts the microphone speech
signal as input and outputs the transcription without any explicit SSE process. Such non-modular
approaches have become increasingly popular because of their simple system design and possibil-
ity for E2E optimization, i.e., optimizing the whole system for the final task objective. However,
such a black-box approach lacks the interpretability, possibility of introducing expert knowledge,
and flexibility benefits of modular systems.

E2E Modular systems have emerged as a solution to combine the advantages of modular sys-
tems while allowing joint optimization of all modules. Such E2E modular systems are often real-
ized by combining model-based and data-driven methods for SSE, FE, and ASR. E2E optimization
is possible when each module of a modular system is differentiable. Therefore, we can represent
the whole pipeline of a modular system with a single computational graph. The learnable parame-
ters of the modules can then be optimized by back-propagation with a downstream objective, e.g.,
the ASR loss. Initial ideas for such DASR systems emerged in the early 2000s(Seltzer et al., 2004),
but complexities and discrepancies between modules, such as the use of different optimization
schemes, hindered practical implementation. However, the recent development of deep learning
allowed us to re-formulate a modular DASR system as a unified neural network. This paradigm
shift enabled joint optimization of the SSE front-end, FE, and ASR back-end (Narayanan and
Wang, 2014; Chang et al., 2019c).
Problem formulation
This chapter discusses the design of modular, non-modular, and modular E2E systems by using the
DASR problem as an example. The DASR consists of converting speech recorded at a microphone
device into a word sequence for each active speaker. The microphone device can be an array
composed of C microphones or a single microphone, i.e., C = 1. The microphone signal, denoted

25



as x, is based on an audio signal processing model and can be expressed as:

X =
K∑
k=1

Sk +N ∈ RC×T . (2.1)

Here, Sk ∈ RC×T represents the waveform of the speech signal of the k-th speaker, K is the num-
ber of active speakers, and N ∈ RC×T denotes the background noise. The variable T represents
the signal duration (number of samples). For simplicity in the discussions, we ignore the room
reverberation in our notations.

Depending on the application, the goal of DASR can be to recognize a single speaker or all
speakers talking in the recording. We introduce here the latter more general case. Let Y =

{Y k}k=1,...,K , be the set of all transcriptions of the speakers in the recording, where Y k = [yk1 , . . . , y
k
Lk
],

is the sequence of tokens ykl ∈ V associated with the k-th speaker with a total sequence length of
Lk. V represents the set of all possible tokens, which depending on the systems can be words,
characters or other intermediate units. We can formalize the DASR problem as Ŷ = GDASR

θ (X),
where GDASR

θ (·) represents the function of a DASR system with parameters θ, and Ŷ is the set of
predicted token sequences.

Table 2.1 shows a conceptual comparison of modular, non-modular and E2E modular systems,
which we will use to guide our discussion. A modular system (first row of Table 2.1) can be
expressed as the composition of modules’ functions as GDASR

θ = GASR
α ◦GFE

β ◦GSSE
γ , where GASR

α ,
GFE

β and GSSE
γ represent the functions of the ASR, FE and SSE modules with parameters, α, β and

γ, respectively. ◦ represents the function composition. Each of the modules can be designed using
either a model-based approach, a data-driven approach such as deep learning, or a mixed approach.
In contrast, a non-modular system (Second row of Table 2.1) uses a single module, such as a single
neural network for GDASR

θ , and is optimized E2E. An E2E modular system (third row of Table 2.1)
is modular, but its parameters are optimized E2E.

In this chapter, we illustrate our discussion with promising examples of approaches to design
modular and non-modular ones. We emphasize the design of the SSE, FE, and ASR modules and
how to optimize them jointly within an E2E modular system.

Although the discussion focuses on DASR, the combination of an SSE front-end with a back-
end system and their joint optimization is also relevant to other problems. For example, replacing
the ASR back-end with a speech translation or summarization module is a direction to realize
meeting translation or summarization systems. Besides, acoustic event detection systems can in-
clude a sound separation front-end to allow better sound recognition(Turpault et al., 2020), which
is a pipeline similar to modular/non-modular DASR systems in audio signal processing.

26



Table 2.1: Conceptual comparison of modular, non-modular and E2E modular schemes in terms
functional representation, optimization problem and training data. L and D represent the training
losses and training data for the different modules, respectively.

Function Optimization Training data

Modular GASR
α ◦GFE

β ◦GSSE
γ α̂ = argmin

α

∑
{Y,X}∈DASR

LASR(X,GASR
α (X)) Microphone signals X

(Section 2.2) β̂ = argmin
β

∑
{X}∈DFE

LFE(X,GFE
β (X)) Clean signals S

γ̂ = argmin
γ

∑
{S,X}∈DSSE

LSSE(S,GSSE
γ (X)) Transcriptions Y

Non-modular GDASR
θ θ̂ = argmin

θ

∑
{Y,X}∈DDASR

LDASR(Y,GDASR
θ (X)) Microphone signals X

(Section 2.3) Transcriptions Y

E2E Modular GASR
α ◦GFE

β ◦GSSE
γ θ̂ = argmin

θ={α,β,γ}

∑
{Y,X}∈DDASR

LASR(Y, (GASR
α ◦GFE

β ◦GSSE
γ )(X)) Microphone signals X

(Section 2.4) Transcriptions Y

Figure 2.1: The pipeline of the modular-based distant ASR systems. It consists of three compo-
nents: SSE, FE and ASR. Each component is configurable with various methods. In an end-to-end
modular-based system, the final ASR loss can backpropagate through all modules when the whole
pipeline is differentiable. In this illustration, the output is presented for a single speaker; however,
the SSE module can generate outputs for multiple speakers, with the same FE and ASR processes
applied accordingly.
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2.2 Modular-based distant ASR with Model-based and Data-
driven approaches

We first introduce the modular system, which is based on the expert knowledge that DASR could
be decomposed into individual components with different functions. It consists of a cascade of
modules that can be designed independently, allowing to use loss functions and training data spe-
cific to each problem. For example, as shown in the middle of Table 2.1 and in Fig 2.1, we can build
a DASR system by combining SSE, FE, and ASR modules independently optimized as follows,

γ̂ = argmin
γ

∑
{S,X}∈DSSE

LSSE(S,GSSE
γ (X)), (2.2)

β̂ = argmin
β

∑
{X}∈DFE

LFE(X,GFE
β (X)), (2.3)

α̂ = argmin
α

∑
{Y,X}∈DASR

LASR(Y,GASR
α (X)). (2.4)

Eqs (2.2)-(2.4) emphasizes that different datasets DSSE, DFE and DASR, and also different losses,
LSSE, LFE and LASR are used to design the SSE, FE and ASR modules. Here, S represents the clean
speech reference used to optimize the SSE module. Note that the loss computation may include
a transformation of the reference, such as applying the short-time Fourier transform (STFT) for
SSE losses in the spectral domain or performing clustering for self-supervised learning (SSL)-
based FE. Here, some model-based approaches (e.g., simple feature extraction such as FBank) do
not involve an optimization problem as shown in Eqs (2.2)-(2.4). Other model-based approaches
involve optimization of the parameter of a physical model, but the optimization is performed at the
inference stage only using the actual observation, i.e., D = {X}, instead of at the training stage
using training data resources.

Clearly, with such a modular approach, the output of each module is well-defined, making
the whole system more interpretable and controllable than non-modular approaches introduced in
Section 2.3.

We present here some representative approaches for the SSE, FE, and ASR modules, which
can be combined to form a modular DASR system. We can arbitrarily modify the combination of
modules to realize a DASR system with the desired properties, e.g., performing DASR of single or
multiple speakers, using single or multiple microphones, etc.

28



2.2.1 Speech separation and enhancement front-end

The purpose of the SSE front-end is to estimate clean speech signals free of acoustic interferences
from the observed microphone signals X. There are two factors to consider when designing an
SSE front-end: (1) the type of acoustic interference and (2) the availability of a microphone array.

When only one speaker is speaking, there are no interference speakers, and the signal model in
Eq. (2.1) can be rewritten as x = s + n ∈ RT . Thus, the problem reduces to noise reduction and
eventually dereverberation. In this paper, we do not consider the dereverberation problem as it has
been explained in a previous article(Yoshioka et al., 2012). The objective of SSE is to estimate the
clean speech as ŝ = GDenoising

γ (x), where GDenoising
γ represents the denoising function.

When multiple speakers are speaking, we need to perform speech separation to isolate the
voices of the different speakers. The output consists of the speech signals of all active speakers as
{ŝk}k=1,...,K = GSeparation

γ (x), where GSeparation
γ represents the separation function.

Another aspect to consider is whether the recordings are performed with a single microphone
(C = 1) or a microphone array (C ≥ 2). When using a microphone array, we can further lever-
age the benefit of the model-based approaches via multi-channel processing approaches such as
beamforming, which exploit spatial information, leading to improved enhancement performance
and fewer processing distortions.

Below, we provide representative examples for single- and multi-channel denoising and sep-
aration by categorizing them into three types: 1) model-based, 2) data-driven, and 3) mixed ap-
proaches. In general, distant microphone recordings may contain background noise and interfering
speakers. Consequently, we can create an SSE module by combining several sub-modules to han-
dle the desired recording conditions, e.g., GSSE = GSeparation ◦GDenoising.

Model-based approaches We define the model-based SSE approach as GSSE
γ where the function

GSSE is based on some physical model and the parameter γ is not learned on a training dataset in
an E2E manner (but can be adaptively estimated for each input sample). Most conventional signal
processing approaches belong to this category. Here, we only introduce several commonly-used
model-based approaches due to the space limitation.
• Single-channel denoising: In single-microphone conditions, spectral subtraction is one of

the first denoising methods in the literature. It operates in the frequency domain by converting
the input speech x into a complex-valued spectrum X ∈ CT×F via short-time Fourier transformer
(STFT). The core idea is to estimate the corresponding noise spectrum and subtract it from the
noisy speech spectrum to obtain the estimated clean spectrum. Popular noise estimation algorithms
involve utilizing the minimum statistics such as the improved minimal controlled recursive aver-
aging (IMCRA) algorithm (Cohen, 2003), which conducts rough voice activity detection (VAD)
followed by recursive update of the estimated noise spectrum.
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• Multichannel denoising: In multi-microphone conditions, the spatial information between
different microphones can be utilized to achieve SSE. Beamforming (Van Veen and Buckley,
1988), one of the mostly commonly used approaches, operates on the physical model, treating
multi-channel signals as time-delayed versions of the same source with attenuation. With known
direction-of-arrival (DOA) of the target speech and microphone array geometry, a relative trans-
fer function (RTF) vector is constructed, reflecting relative time delays at each microphone for a
desired directional response. Such a response can maximize the signal gain in the desired direc-
tion. The fixed beamforming filter can then be derived by approximating the desired directional
response. Note that the fixed beamforming filter always remains the same when processing differ-
ent signals. In contrast, adaptive beamforming approaches dynamically estimate the corresponding
filter for each input signal. The minimum variance distortionless response (MVDR) beamforming,
for example, designs its filter by solving a constrained optimization problem which minimizes the
energy of the filtered noise while keeping the desired signal intact. This leads to an adaptive filter
that is estimated based on the input signal. This adaptive beamforming approach offers benefits
such as low distortions in enhanced speech and compatibility with downstream tasks like ASR in
real-world applications.
• Multi-talker separation: In addition, many works have been focusing on tackling speech

separation in multi-speaker scenarios. When multiple microphones are available, blind source sep-
aration (BSS) techniques (Choi et al., 2005) have been developed to iteratively estimate the optimal
unmixing matrix that can separate signals from different speakers via linear filtering. With multi-
ple microphones, blind source separation (BSS) techniques (Choi et al., 2005) iteratively estimate
an optimal unmixing matrix through linear filtering to separate signals from different speakers.
BSS methods assume certain conditions, like the non-Gaussianity of source speech in independent
component analysis (ICA). Unlike BSS approaches, which prefer more microphones to achieve
high performance, computational auditory scene analysis (CASA) (Wang and Brown, 2006) takes
inspiration from the human auditory system to build monaural or binaural SSE models with well-
designed modules. Time-frequency masking is one of the most well-known CASA approaches that
groups time-frequency bins in the noisy speech spectrum according to certain cues (e.g., sound lo-
cation, pitch, spectral features, etc.). While model-based approaches are well-formulated on some
theoretical bases, they usually face limitations due to explicit assumptions that may not hold in re-
alistic conditions, leading to drastic performance degradation. Meanwhile, these approaches often
do not fully exploit the information in the collected data since the parameters are mostly derived
in a handcrafted manner (either as a closed-form solution or solved iteratively) based on the actual
observed data. Given the fact that a large amount of data can be collected or simulated to cover a
wide range of conditions, it is often favorable to take full advantage of these data to build capable
and robust SSE systems.
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Data-driven approaches With the rapid development of deep learning, data-driven approaches
have gained attention for their strong capability in learning from data. To keep consistency with
previous methods defined in Table 2.1, we define data-driven approaches as GSSE

γ where G is
designed fully based on deep neural networks (DNN) and the parameter γ is learnable from data.
As seen in Eq. (2.2), training or tuning an SSE module usually requires access to the microphone
signal X and the corresponding clean speech S. Recording simultaneous clean and noisy signals
is challenging, leading to the use of simulated data where mixtures are artificially generated from
isolated clean speech and noise signals, following the signal model in Eq. (2.1). In the past decade,
data-driven SSE approaches have advanced greatly, surpassing traditional model-based approaches
in most benchmarks.
• Model: Data-driven SSE approaches follow a common design paradigm with three main

components: an encoder, a predictor, and a decoder. The encoder transforms the input speech into
a feature H = Encoder(x). The predictor generates representations for each speaker k and falls
into two categories: mapping-based and masking-based. In mapping-based, the representation is
the enhanced feature Ĥk, while in masking-based, it’s a mask M̂k used for element-wise multipli-
cation to obtain the enhanced feature Ĥk = M̂k ⊙H. Note that this differs from the aforemen-
tioned CASA’s time-frequency masking in that the mask estimation is purely based on the neural
network instead of auditory cues. The enhanced feature is finally converted to the corresponding
waveform ŝk = Decoder(Ĥk). If the encoder and decoder are based on some frequency-domain
transform (e.g., STFT) and its inverse transform, it is called a frequency-domain approach (Wang
and Chen, 2018a). Otherwise, it is called a time-domain approach (Luo and Mesgarani, 2019a),
where the encoder and decoder are learnable neural networks. For frequency-domain approaches,
the loss function in Eq. (2.2) can be computed based on different output levels (mask, spectrum,
and waveform):

LSSE(·, ·) ⊆
{
Lmask(Mk, M̂k),Lspectrum(Xk, X̂k),Lwaveform(sk, ŝk)

}
. (2.5)

Note that the mask-based loss, Lmask, is only used in models with masking-based predictors. For
all losses, the L1 or L2 distance is usually used. For the waveform-based loss, Lwaveform, some
metric-based loss functions can be alternatively used, e.g., scale-invariant signal-to-noise ratio
(SNR) (Le Roux et al., 2019a). For time-domain approaches, the model is often only trained with
Lwaveform, and sometimes also with Lspectrum.
• Handling multi-talker situations: The previously mentioned approaches are applicable to

both single- and multi-speaker scenarios. However, in multi-speaker situations, there exists a per-
mutation problem, leading to K! possible ways to assign the order of the clean speech sk to the
corresponding separation output ŝk′ . This challenge has been addressed through two prominent
frameworks in speech separation: deep clustering (DC) (Hershey et al., 2016b) and Permutation
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Invariant Training (PIT) (Kolbæk et al., 2017). DC implicitly tackles the permutation problem by
formulating the training procedure as clustering of time-frequency representations from different
speakers. It involves projecting each time-frequency (T-F) bin into a high-dimensional embedding.
The training objective, denoted as LSSE := LDC, aims to bring T-F embeddings corresponding to
the same speaker cluster together while keeping them far apart otherwise. In contrast, PIT explic-
itly addresses the permutation problem by enumerating all possible permutations and consistently
selecting the optimal permutation π̂ for model training. PIT has gained popularity in the speech
separation community due to its flexibility in model design and its explicit consideration of the
permutation problem.

Note that all approaches above can be used for both single- and multi-channel processing by
simply configuring the encoder to take different channels as input.

Mixed approaches Mixed approaches combine model-based and data-driven techniques. The
SSE function, GSSE

γ , is designed using a physical model as discussed in the above discussion on
model-based SSE approaches but has parameters γ, which are optimized using a large amount of
data. The physical model constrains the solution, which can help obtain more robust solutions than
purely data-driven approaches. The use of a large amount of data allows improved SSE models
with optimized parameters γ, which are hard to be explored with purely model-based approaches.

Mixed approaches have been extensively investigated with microphone array processing, where
numerous relatively simple yet powerful and principled physical models exist. One example of
such a mixed approach is the mask-based beamformer for multi-channel noise reduction(Haeb-
Umbach et al., 2021). It exploits a neural network to compute time-frequency masks, as introduced
in the masking-based approaches. These masks are then used to estimate the spatial covariance ma-
trices of the speech and noise, which are necessary to compute the spatial filters of the beamformer.
The final enhancement is performed with linear spatial filtering. We can build on the strong the-
oretical foundation of beamforming theory to design enhancement systems with desired physical
properties, such as the distortionless constraint of MVDR. Moreover, we can exploit a large amount
of data to learn a powerful mask estimator neural network, which can provide reliable estimates of
the spatial covariance matrices.

Another line of research casts SSE as an analysis-resynthesis approach with the integration of
deep neural networks. For example, (Jiang and Yu, 2023) takes inspiration from the conventional
source-filter model in speech modeling and re-synthesizes the clean speech from the excitation and
vocal tract components estimated from the single-channel noisy speech via neural networks.

We provided examples of mixed approaches for single- and multi-channel noise reduction, but
similar ideas have also been applied to speech separation (Yoshioka et al., 2018a). Mixed ap-
proaches have been very successful and are often used in the development of SSE systems dealing
with challenging recordings (Watanabe et al., 2020).
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2.2.2 Feature extraction

FE plays a pivotal role in numerous signal processing and machine learning tasks, including ASR.
Directly utilizing raw audio waveforms in ASR models would necessitate learning intricate pat-
terns and representations from scratch, incurring computational expenses and potentially compro-
mising effectiveness. Through FE, we map speech signals, x, into a more suitable representation,
O, aligning it with the inherent structure of speech: O = GFE

β (x). This transformation enhances
the efficiency and accuracy of processing within ASR systems. Note that in this and the next
section about ASR, we omit the speaker index k for simplicity without loss of generality.

Similar to the SSE component detailed in Section 2.2.1, we can categorize FE methods into
model-based and data-driven classes based on the physical model and the parameter β.

Model-based approaches Model-based methods are traditionally dominant in FE, employing
well-established techniques like Mel-Frequency Cepstral Coefficients (MFCC), Filterbank (FBank),
and Perceptual Linear Prediction (PLP). These methods operate on the premise of predefined sig-
nal processing steps, emphasizing a structured approach to feature extraction. Historically, these
model-based approaches have provided robust representations for speech signals, contributing sig-
nificantly to the success of ASR systems. However, their effectiveness often relies on domain
expertise and assumptions about the underlying characteristics of the speech data. Usually, the
hyperparameters used in models are determined empirically by expert knowledge and tuned based
on performance on the target task.

Data-driven approaches While model-based approaches have been foundational in speech pro-
cessing, the surge of data-driven methods has gained prominence in the FE process, harnessing
the capabilities of deep learning and SSL techniques. Instead of depending on handcrafted fea-
tures, these methods directly learn feature representations from raw audio data through down-
stream or pretext tasks and optimized as shown in Eq. (2.3). In such cases, the parameter β of
the FE component corresponds to partial or whole parameters of the deep neural network. LFE is
the loss function, which also includes manipulating y to get the reference signal. Earlier studies
attempted to directly learn hidden representations for speech recognition, exemplified by bottle-
neck features(Hermansky et al., 2000). More recently, SSL approaches (Mohamed et al., 2022a),
including contrastive learning, autoencoders, and masked prediction, have showcased success in
extracting meaningful representations from speech signals. The features derived from data-driven
approaches can uncover patterns not readily apparent in handcrafted feature engineering. Addi-
tionally, they exhibit robustness to variations in real environments, such as changes in speaker or
acoustic conditions. Consequently, data-driven approaches often demonstrate superior generaliza-
tion capabilities.
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Substituting the straightforward model-based FE with data-driven approaches yields enhanced
performance. Nonetheless, these advantages are accompanied by the downside of employing sig-
nificantly larger models, incurring computational and memory expenses. This is made possible
due to the progress in computing resources and deep learning techniques, allowing the utilization
of extensive amounts of labeled or unlabeled data and intricate model architectures.

2.2.3 Automatic speech recognition

The final module is the ASR, mapping acoustic features of enhanced speech signals to transcrip-
tions, denoted as Ŷ = GASR

α (O), with the parameter α learned through Eq. (2.4). The foundations
of modern large vocabulary continuous speech recognition were laid by Dr. Jelinik and his col-
leagues at IBM about half a century ago. ASR can be recognized as a statistical process determined
by three models: 1) acoustic modeling (AM) to model the likelihood of input features: P (O|V ),
where V is the phoneme sequence; 2) lexicon modeling: P (V |Y); 3) language modeling for the
word sequence P (Y). The final prediction can be expressed as the following computation:

Ŷ = argmax
Y

P (Y|O) = argmax
Y

∑
V

P (O|V )P (V |Y)P (Y). (2.6)

Stemming from this, Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) and Deep
Neural Network (DNN)-Hidden Markov Model (HMM) (Hinton et al., 2012) were very success-
ful, except that multiple models are required. To simplify, recent years have seen the rise of E2E
models (Li et al., 2022), including Connectionist Temporal Classification (CTC), Recurrent Neu-
ral Network Transducer (RNN-T), and attention-based encoder-decoder. These methods fall into
two main categories: data-driven approaches and mixed approaches combining elements of both
model-based and data-driven techniques.

Mixed approaches GMM-HMM and DNN-HMM follow the same paradigm in Eq. (2.6).
They exemplify the mixed approach. Specifically, HMM is integrated into the AM to establish
sequence alignment, making them adept at capturing temporal dynamics in speech signals. When
training a DNN-HMM, obtaining a fixed pronunciation alignment between the input and target is
challenging. To address this, CTC was proposed, incorporating a temporal modeling component
to handle varying input and output sequences. This is achieved by considering all possible align-
ment sequences, a ∈ A, where each a is an expansion of the target sequence to match the length
of the input. It computes sequence probability as P (Y|O) =

∑
a∈A P (a|O). RNN-T, introduced

as an enhanced ASR framework compared to CTC, includes two additional sub-networks: a joiner
and a predictor. The joiner integrates encoded acoustic features and the predictor’s output to gen-
erate new tokens autoregressively. In these approaches, it is assumed that the output sequence is
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monotonically aligned with input.
All these methods in mixed approaches apply specific physical characteristics, such as statis-

tical or temporal modeling, with data-driven elements. This hybrid nature allows them to benefit
from the structured representations of traditional models while leveraging the expressive power of
neural networks.

Data-driven approaches Within the domain of data-driven approaches, a notable and exten-
sively explored avenue is represented by E2E-ASR models featuring attention-based encoder-
decoder. These models aim to streamline the ASR process by directly mapping input audio se-
quences to transcriptions. The architecture is conceptually divided into three core components: the
encoder, the decoder, and the attention module. The encoder captures high-level features from the
input audio sequences, transforming raw acoustic information into a meaningful representation.
The decoder generates textual output based on the encoded features, mapping it into a coherent
and accurate textual representation. The attention module models the alignment between encoder
outputs and decoder outputs, allowing dynamic focus on specific segments during decoding, effec-
tively adapting to varying temporal complexities.

This section provided an overview of the fundamental modules in DASR, including SSE, FE
and ASR, as depicted in Fig. 2.1. These modules represent essential stages in the DASR pipeline,
addressing tasks such as signal cleaning, feature extraction, and transcription. While additional
modules, such as speaker diarization, can be integrated into the pipeline, their detailed exploration
is deferred here due to space constraints. It is noteworthy that similar counterparts such as modular-
based systems can be identified in other fields like audio processing.

2.3 Data-driven based distant ASR - Non-modular models

While the modular-based system introduced in the previous section is successful in many applica-
tions, it requires expert knowledge to design and optimize each module. In comparison, another
line of research focuses on non-modular DASR approaches that are generally data-driven and only
require limited expert knowledge. As shown in the middle row of Table 2.1, a non-modular DASR
system can be formulated as a single function GDASR

θ such as a DNN. Such a system is usually
optimized in an E2E manner, i.e., the parameters θ are updated to minimize the total ASR loss on
all training data:

θ̂ = argmin
θ

∑
{Y,X}∈DASR

LDASR (Y,GDASR
θ (X)

)
, (2.7)

35



where θ̂ is the optimized parameter, LDASR is a loss function specifically designed for the non-
modular DASR system, and DASR defines the training data of the DASR system as in Table 2.1.
The core idea is to integrate the functions of different modules into a single DASR model so
that it can directly handle acoustic distortions captured at the microphone while performing speech
recognition. It is thus based on the design of conventional clean-speech ASR systems, but modifies
the training data, network structure or/and training loss to fit the DASR problem. We will discuss
some representative examples below.

Note that we have not regarded simple FE (e.g. FBank) as a separate module, following the
usual convention. FE is a widely used technique applied in various tasks across different domains,
including ASR. It is often assumed to be part of the standard processing pipeline. We only explic-
itly consider FE as a separate module when it involves non-pure model-based methods.

2.3.1 Representative example of non-modular DASR systems

First, we focus on the single-speaker DASR sub-task, assuming only one speaker per sample.
The non-modular DASR system in this scenario usually adopts the same architectures and loss
functions of standard ASR models, e.g., CTC, RNN-T, and attention-based encoder-decoder (Li
et al., 2022), as discussed in Section 2.2. Meanwhile, several training strategies enhance the noise
robustness.
•Multi-condition training or multi-style training: One of the most commonly-used strate-

gies is known as multi-condition training or multi-style training (Haeb-Umbach et al., 2021). This
method combines data from various conditions/styles to train the DASR system. Typically, a large
amount of clean and simulated noisy speech data are used together with a small amount of real-
recorded noisy data, i.e., DASR = {DASR

clean,DASR
simulated,DASR

real }. Clean data helps model convergence,
while real data enhances generalization in realistic conditions.
• Domain adaptation: Another popular line of research is called domain adaptation, aiming

to transfer a model trained on the source domain (e.g., simulated noisy speech DASR
simulated) to a target

domain (e.g., real-recorded speech DASR
real ) with a limited amount of labeled or unlabeled target

domain data. Domain adversarial training (DAT) (Shinohara, 2016a) is a typical example, which
introduces an additional classifier (named discriminator Gcls) in the DASR architecture. It shares
speech features from the original ASR model and is trained to classify whether the input speech
belongs to the source domain DASR

simulated or the target domain DASR
real . The DASR model is trained to

fool the discriminator, resulting in domain-invariant ASR features and improved noise robustness
across domains.
• Handling multi-talker situations: Similar to the multi-speaker SSE, addressing the chal-

lenge of multi-speaker DASR involves complexities in defining the optimal formulation. The
presentation format of transcriptions, {Y k}k=1,...,K and {Ŷk}k=1,...,K , lacks standardization, with
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no predefined alignment between predictions and ground truth, leading to intractable possibilities.
To tackle multi-speaker DASR challenges, various approaches have been proposed. One strategy
involves treating transcriptions for different speakers as separate entities, aligning individual pre-
diction sequences with corresponding ground truth sequences. Two common alignment methods
are: 1) using a single predefined order; 2) considering all possible orders following PIT, as intro-
duced in Section 2.2.1. Alternatively, an approach rearranges transcriptions into a meta-sequence
during model training based on heuristic clues. This can be achieved by concatenating all ut-
terances in a First In, First Out (FIFO) order based on onset time (Kanda et al., 2020b). These
approaches effectively transform the multi-speaker DASR problem from an ill-defined task into a
well-structured one.

Finally, it is worth noting that both single- and multi-channel DASR systems can be designed
easily by adapting the input convolutional encoder to take different channels as input or by com-
bining multi-channel features (e.g., inter-channel phase difference) into a single feature via feature
fusion.

2.3.2 Advantages and disadvantages

As can be seen in Section 2.3.1, data-driven non-modular DASR approaches enjoy a simple system
design, with only one model for optimization. The architecture design is also simple in the sense
that the only goal is to maximize the DASR performance. The system development is relatively
easy since limited expert knowledge is needed compared to modular systems. On the other hand,
such an E2E design results in a black-box model that lacks interpretability. It is thus difficult to
analyze the causes of performance degradation and partially optimize the system to alleviate such
issues. In addition, data collection for training such a system is also relatively costly since we
require accurate transcriptions of speech data. Finally, since the approaches are purely data-driven,
the generalizability largely depends on the data, and it is difficult to leverage expert knowledge to
mitigate overfitting.

2.4 From cascade to E2E joint-optimization in modular-based
systems

Described in Sec. 2.2, modular-based DASR systems involves the direct cascade integration of
SSE, FE, and ASR modules within a pipeline shown in Fig. 2.1. This method, chosen for simplic-
ity, allows swift DASR system deployment, especially in time-sensitive scenarios. The straightfor-
ward and expeditious integration facilitates the easy component replacement or updating, preserv-
ing modularity for quick system readiness. Yet, the straightforward integration of modules may
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exhibit drawbacks compared to non-modular models, as individual modules optimized for distinct
tasks may lack perfect alignment with the final target. In contrast, non-modular models undergo
optimization directly based on the final target, ASR. Moreover, each individual component could
be trained on the data with different characteristics from the output of its preceding module, leading
to even worse performance due to the domain mismatch.

To address the issues in modular-based DASR systems, a sophisticated strategy involving joint
optimization was developed. Key aspects of the joint optimization encompass training the entire
model by optimizing the final target using in-domain data, which minimizes discrepancies between
different modules. In-domain parallel data, DJoint : {X,Y}, are used in the process. DJoint may
also contains the clean speech signal S in some cases. The major optimization process is based on
the ASR loss, LASR:

θ̂ = argmin
θ={α,β,γ}

∑
{Y,X}∈DDASR

LASR(Y, (GASR
α ◦GFE

β ◦GSSE
γ )(X)). (2.8)

Gradients of all parameters, {α, β, γ}, are computed based on LASR. Note that the other losses,
LSSE and LFE, are occasionally employed to regularize the learning of the corresponding parame-
ters.

2.4.1 Building an E2E Modular System

Model selection: Ensuring the entire system is “differentiable” is crucial for establishing a back-
propagation path from LASR to all modules of the system. In the realm of purely data-driven
approaches, typically constructed with neural networks, each SSE, FE, and ASR module is in-
herently differentiable, rendering the entire cascaded system also differentiable. However, more
consideration is needed for model-based approaches. Model-based approaches can be classified
into three types: 1) knowledge-based deterministic operation, 2) optimization with closed-form
solutions, and 3) optimization with iterative optimization algorithms. Knowledge-based determin-
istic operations, like MFCC and Fbank, consist of sequences of vector/matrix operations akin to
neural networks, making the entire operation differentiable. In contrast, most model-based ap-
proaches formulate observations mathematically, involving optimization problems based on their
objectives. Approaches with closed-form solutions, such as mask-based beamformer mentioned in
Section 2.2.1, derive deterministic operations through vector/matrix operations, ensuring differen-
tiability. Others without closed-form solutions require iterative optimization algorithms, like the
majorization-minimization (MM) algorithm (Sun et al., 2016). While such approaches include op-
timization procedures in the inference stage, making them seemingly incompatible with the joint
training framework, the unfolding technique (Monga et al., 2021) considers iterative optimiza-
tion as a sequence of vector/matrix operations, rendering even these approaches differentiable. In
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summary, many data-driven and model-based approaches, including their mixed versions, can be
treated as sets of differentiable operations, making them applicable to the E2E modular frame-
work. It is essential to note that operations resulting in selections, such as median, argmax, and
max, render the entire system non-differentiable, making them unsuitable for gradient descent-
based approaches, specifically within the E2E modular framework.

Optimization: Assuming all modules are differentiable, optimizing the entire system can be
achieved via gradient descent. However, this process is not always straightforward, especially with
complex modules. For instance, signal processing modules, like mask-based beamforming, in-
troduce complex-valued matrix operations (e.g., matrix inversion and eigenvalue decomposition)
within the computational graph, leading to potential instability in training, including invalid gra-
dients or loss values and poor convergence. To address such challenges, various techniques, such
as diagonal loading, mask flooring, and optimized implementations, have been explored to signifi-
cantly enhance training stability (Zhang et al., 2022a).

Pre-training and fine-tuning: Successful trials have been conducted in training multi-channel
DASR systems from scratch in both single-/multi-speaker cases (Chang et al., 2019c). However,
with deeper and larger models, pretraining the module parameters proves to be more effective (Ma-
suyama et al., 2023b). Subsequent joint optimization refines these pre-trained parameters, tailoring
them to the specific task at hand for optimal integration. Fine-tuning enables the modular-based
model to adapt effectively to task-specific characteristics, ensuring robust performance in diverse
real-world scenarios, especially when labeled data for the target domain is limited. Leveraging pre-
trained parameters enhances fine-tuning efficiency, addressing challenges associated with sparse
labeled data. While training large and deep models can be unstable and resource-intensive, the
initialization and fine-tuning processes serve to alleviate these issues.

2.4.2 Developing difficulties and challenges

Joint optimization, essential for tailoring the model to task-specific nuances, may pose computa-
tional challenges, particularly with large and deep architectures. Training such models in cascaded
DASR systems introduces complexities, requiring careful consideration of stability, convergence,
and avoiding overfitting. In resource-limited environments, practical challenges may arise in joint
optimization, and mitigating these challenges requires efficient strategies such as model compres-
sion, transfer learning, or adaptation to smaller datasets.

Another critical issue is the availability and quality of training data. The success of joint op-
timization relies on in-domain parallel data, denoted as DJoint, which is a significant hurdle. The
adaptability and generalization capabilities of the jointly optimized model are significantly influ-
enced by the quality and diversity of this data. Addressing issues like data distribution shifts
between pre-training and fine-tuning stages is essential to prevent performance degradation. The
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looming risk of overfitting to specific training data, especially in scenarios with small or unrepre-
sentative labeled datasets, emphasizes the need for advanced regularization techniques and prudent
model complexity management.

Despite achieving good performance on the final target task, such as ASR, the output of inter-
mediate modules may not meet expectations. Misalignment in evaluation metrics between the final
task and early stages can lead to sub-optimal representations for intermediate modules during the
forward process. However, this issue may also stem from the optimization process.

2.5 Conclusion

This chapter overviews distant speech recognition as an important downstream application of
model-based and data-driven audio signal processing. It categorizes distant speech recognition sys-
tems into non-modular, modular, and E2E modular systems. The modular-based systems, explored
in detail, showcase sub-modules like SSE, FE, and ASR operating under diverse acoustic condi-
tions. Representative methods for each sub-module, categorized into model-based, data-driven,
and mixed approaches, are discussed. The advantages and disadvantages of different integration
methods are examined, with a focus on the robust performance of E2E modular systems. The
adaptability of these learning approaches is highlighted, indicating potential extensions to address
challenges in DASR problems involving multiple speakers.

There are several challenges faced in designing E2E modular models and their perspectives.
The most challenging issue is its complexity in the network architecture and optimization proce-
dure in real scenarios. For example, when we apply them to more natural conversations in meeting
and dinner party scenarios in CHiME-6 (Watanabe et al., 2020), we must extend our systems to fur-
ther deal with speaker diarization and long-form recording processing. Such an extension results in
increased computational demands and larger memory requirements due to increased model com-
plexity and longer input sequences. Further, the current state-of-the-art modular system in these
scenarios requires interactive processing in speaker diarization and SSE, further complicating the
network architecture.

Another important challenge is a streaming capability. The modular system is often realized
in an incremental processing manner where the following module has to wait for the preceding
modules (e.g., ASR processing has to wait for SSE processing). Thus, together with the above
iterative process, the modular system intrinsically has the latency issue from the incremental pro-
cessing, which weakens the streaming capability. However, the E2E modular model can employ
powerful optimization, leading to joint optimization of the entire system. This will bring tight in-
tegration across the modules and simplify the complicated interfaces between modules, including
eliminating the iterative process.
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The third challenge is the use of various types of data. For example, E2E models, both mod-
ular and non-modular, are typically data-hungry, demanding large amounts of matched pair data,
which is highly costly in multi-channel multi-speaker conversation scenarios. However, modular
models own effectiveness with various paired or unpaired data types. Different modules can be
pre-trained using speech-only data, clean and noisy speech pair data generated by simulation, and
single-channel speech and text pair data, respectively. Compared with the real multi-channel multi-
speaker data, these data are relatively easy to obtain. This direction would be further explored with
other data types, e.g., by integrating a large language model obtained with text-only data.

Finally, to achieve comprehensive machine listening capabilities by encompassing full auditory
scenes, we need to consider diverse non-speech events and modalities alongside distant speech pro-
cessing. This includes essential audio components such as sound and music events, each requiring
dedicated processing modules. A promising avenue for research involves expanding E2E modular
distant speech processing by integrating these sound and music event modules, which have been
actively studied in audio signal processing, along with modules from other modalities like video
and sensor data.

Having discussed the methodological foundations, we now turn our attention to the actual
models designed to tackle various sub-problems in ASR. We will begin with the most common
scenario: Single-Input Single-Output (SISO).

41



Part I

E2E-ASR for Single-channel-Input
Single-speaker-Output (SISO)
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Chapter 3

IRIS: monaural E2E ASR robust to noise

Summary

In this chapter, we delve into addressing the common challenges of Single-Input-Single-Output
(SISO) Automatic Speech Recognition (ASR) through novel approaches that harness the power of
self-supervised learning (SSL). SSL has emerged as a potent paradigm in various speech-related
tasks, exemplified by successful models like Wav2Vec 2.0 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021a), and WavLM (Chen et al., 2021b). Our goal is to integrate speech enhancement,
SSL, and ASR into a unified model to tackle environmental noise and room reverberations that de-
grade SISO-ASR performance. To achieve this, we propose innovative methods that leverage SSL
for feature extraction, significantly enhancing the robustness of ASR systems to adverse acous-
tic conditions. The resulting model belongs to the E2E modular-based category mentioned in
Sec. 2. By incorporating SSL within our system, we aim to extract discriminative speech represen-
tations from large-scale unlabeled speech corpora, leveraging the model’s ability to learn from raw
acoustic inputs without the need for explicit labels. Furthermore, our approach integrates speech
enhancement techniques within the SSL-based ASR framework, enabling joint optimization to en-
hance speech quality and intelligibility. This combined approach offers a holistic solution to the
challenges posed by environmental noise and reverberations, ultimately leading to substantial im-
provements in SISO-ASR performance. Through the exploration of these novel methodologies, we
demonstrate the feasibility and effectiveness of leveraging SSL for enhancing SISO-ASR systems,
showcasing advancements in speech recognition capabilities under adverse acoustic conditions.
Our work contributes to the growing body of research aimed at developing robust and adaptable
ASR systems capable of handling real-world speech scenarios with varying levels of acoustic com-
plexity.

Xuankai Chang, Takashi Maekaku, Yuya Fujita, Shinji Watanabe. InterSpeech 2022
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End-to-End Integration of Speech Recognition, Speech Enhancement, and Self-Supervised
Learning Representation.

3.1 Introduction

In the past decade, deep learning has significantly pushed the development of automatic speech
recognition (ASR) moving forward. Many interesting models and technologies have been pro-
posed. Deep neural network-hidden Markov model (DNN-HMM) based hybrid system (Hin-
ton et al., 2012) is one of the them. DNN-HMM hybrid ASR systems usually train a DNN
to predict frame-aligned states, e.g. context-dependent phonemes. Recently, end-to-end speech
recognition systems have become more and more popular. Several end-to-end ASR technologies
were proposed, including connectionist temporal classification (CTC) (Graves et al., 2006), Trans-
ducer (Graves et al., 2013) and attention-based encoder-decoder (Chan et al., 2016; Kim et al.,
2017b; Watanabe et al., 2018). A lot of existing speech recognition techniques exhibit strong
performance in clean conditions. However, applying speech recognition in noisy environments
is still challenging, especially in the monaural case. DNN-HMM hybrid ASR systems still out-
perform E2E ASR system on a well-known noisy speech corpus(Yang et al., 2022b), CHiME-4
corpus (Vincent et al., 2017b).

Usually, speech signals recorded in the real scenarios contain unpredicted noise. The noise
is from the environment or the device imperfections, which degrades the ASR performance. The
existing solutions to address the noisy speech recognition can be summarized as two categories.
One is to train the ASR model robust to noise (Hannun et al., 2014a; Shinohara, 2016b; Kim et al.,
2017a). The other is to use an dedicated model to improve the intelligibility of the noisy speech
before sending it to the ASR model. Such preprocessing is one of the important topics in speech
research, called speech enhancement (SE) or denoising (Loizou, 2007). The SE model and the
ASR model can be trained separately or jointly (Ochiai et al., 2017a; Narayanan and Wang, 2014;
Subramanian et al., 2019). However, it is well known that the monaural SE techniques produce
distortions which deteriorates the ASR performance (Iwamoto et al., 2022; Zhang et al., 2021c).

Recently, self-supervised learning representations (SSLR) have demonstrated great potential
in improving the speech recognition (Baevski et al., 2020; Zhang et al., 2020b; Hsu et al., 2021b;
Chang et al., 2021). One primary drawback of current SSLR models is that the pre-training cost
is too high for most of the research groups. As an alternative solution, some researchers fine-tune
the pre-trained SSLR models to get their customized version (Pasad et al., 2021). In our previous
study (Chang et al., 2021), we have shown that directly using the pre-trained Wav2Vec2.0 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021b) for feature extraction improves the ASR performance.
However, the improvement on mismatched conditions is usually limited. The result of CHiME-4
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Figure 3.1: Overview of the proposed end-to-end model.

corpus in (Chang et al., 2021) shows the word error rate (WER) reduction for the multi-channel
data with beamforming are much better than those for the isolated single channel. Because the
audio of the latter set is relatively noisier than the former one. We believe that it is due to the
mismatch between the pre-training and the target task. Wav2Vec2.0 and HuBERT models were
pre-trained on the LibriLight (Kahn et al., 2020) data, a clean read English speech corpus. Later,
WavLM (Chen et al., 2021b) was proposed to learn a representation model on simulated noisy
/ overlapped speech. In another recent work, Wang et al.(Wang et al., 2021b) proposed a noisy
robust SSLR model based on Wav2Vec2.0, which also shows promising results on CHiME-4. But
the model is not publicly available.

In this work, we propose a new model, called IRIS, for robust speech recognition, which in-
tegrates an SE module, an SSLR module and an ASR module into a single end-to-end model.
We extensively investigate the benefits of the SE module and the SSLR module for robust speech
recognition. Through experiments, we establish an efficient training scheme for the proposed E2E
IRIS model. Finally, we show that our proposed model achieves state-of-the-art performance on
the single-channel CHiME-4 ASR tasks.

3.2 E2E SISO ASR

We describe the proposed IRIS model in this section. The model includes a speech enhance-
ment module (SE) and an self-supervised learning representation (SSLR)-based ASR (SSLR-ASR)
module, shown in Figure 3.1. Each module can be trained separately. Then whole model can be
fine-tuned with the objectives of speech enhancement and recognition. For the convenience of the
following discussions, we denote the noisy speech input as x ∈ RT .

Speech Enhancement

Most of the data collected in real scenarios contains not only speech signal but also undesired noise
and reverberation. The target of speech enhancement is to keep the speech signal from data and to
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suppress the undesired signals. We denote the SE process as the following:

ŝ = SE(x; θse), (3.1)

where ŝ is the enhanced speech and θse represents the parameters of the SE model.
A lot of powerful speech enhancement techniques have been proposed. In this work, we choose

the Conv-TasNet proposed in (Luo and Mesgarani, 2019b) as the SE module. Conv-TasNet is
a very successful model for end-to-end time-domain speech enhancement. Besides this, many
other strong end-to-end time-domain speech enhancement models were proposed before (Luo and
Mesgarani, 2018; Pandey and Wang, 2019; Luo et al., 2020). The advantage of the time-domain
speech enhancement model is that we do not need to care about the phase when we generate
enhanced signals. This might be helpful to reduce the distortion generated by speech enhancement
models. Without loss of generality, any speech enhancement models can be used in our model.

SSLR-ASR

E2E-ASR

To recognize the speech, we use an E2E-ASR model. If we denote the input speech signal as ŝ, the
feature of the speech as O and the text as Y, we can write the ASR process as:

O = FeatureExtraction(ŝ), (3.2)

Y = ASR(O; θasr), (3.3)

where θasr represents the parameters of the ASR model. In this work, we use the joint CTC /
attention-based encoder-decoder framework proposed in (Kim et al., 2017b) to build our E2E-
ASR model. More details can be referred to (Kim et al., 2017b; Watanabe et al., 2018). It is worth
to note that the choice of ASR is not limited to a specific architecture.

SSLR

Conventional ASR models use energy-based features such as log Mel-Filterbanks (Fbank) and
mel-frequency cepstral coefficients (MFCC). In our previous work (Chang et al., 2021), we have
shown that replacing the energy-based features with SSLRs can improving the performance of
E2E-ASR. In this way, the Eq. 3.2 would be rewritten as:

O = SSLR(; θsslr), (3.4)

where θsslr represents the parameters of the SSLR model.
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SSLR models are learning-based speech representations. SSLR models are trained using large
amount of unlabelled data. In this study, we propose to use WavLM proposed in (Chen et al.,
2021b) to improve robust speech recognition. Similar to HuBERT (Hsu et al., 2021b), WavLM
is trained to predict pseudo-labels of masked segments. In this way, WavLM / HuBERT learns
the linguistic information from speech. The HuBERT model we used is trained on 60k hours
of Libri-Light (Kahn et al., 2020) speech data. Whereas the WavLM learns to handle the noise
from the speaker identification, separation, and diarization tasks by training on 60k hours of Libri-
Light (Kahn et al., 2020), 10k hours of GigaSpeech (Chen et al., 2021a), and 24k hours of Vox-
Populi (Wang et al., 2021a). This motivates us to use WavLM to extract features for noisy speech.

End-to-End IRIS Model

Although WavLM shows good performance on the noisy speech input in downstream tasks, such
as speaker identification, separation and diarization tasks (Chen et al., 2021b), it is still a question
whether it can handle various noises. We propose to use a speech enhancement model to help the
WavLM. Our end-to-end model can be written as:

Y = ASR ( SSLR ( SE(x; θse); θsslr ); θasr ) (3.5)

The proposed model adopts a modularized design, where the SE module enhances the input
noisy speech, SSLR module extracts the feature and the ASR mudule generates the transcription.
We directly use the pre-trained SSLR models from existing works, which are publicly available.
Usually, SSLR models are very large, which makes it difficult to train the whole model. To address
this issue, all three modules are initialized by pre-trained models with parameters θ̂se, θ̂sslr and θ̂asr,
respectively. Then the parameters of SE and ASR are fine-tuned to be get better performance.

3.3 Experiment

Dataset: CHiME-4 Challenge Corpus

We carried out all the experiments on the CHiME-4 corpus (Vincent et al., 2017b), which is previ-
ously mentioned in Sec. 1.4.1. The following is a review of the dataset details. The dataset contains
real and simulated six-channel noisy recordings of speech from Wall Street Journal (WSJ0) cor-
pus. The recordings cover four noisy scenarios including bus, cafe, pedestrian and street. There are
1,600 real and 7,138 simulated utterances for training, 1,640 real and 1,640 simulated utterances
for development, and 1,320 real and 1,320 simulated utterances for test.

All the channels of CHiME-4 simulated recordings are used to train the SE model. To train
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the ASR model, we exclude the second channel of the CHiME-4 training set. This brings slight
improvement because the second channel faces backward. Besides the noisy utterances in CHiME-
4, the clean Wall Street Journal (WSJ0 + WSJ1) utterances are also used to train the E2E ASR
model, based on the original ESPnet CHiME-4 recipe1. In fine-tuning, we use the same data as in
ASR training. During evaluation, the single-channel development and test sets are used.

Configurations

We use a relatively small Conv-TasNet enhancement model to save the computation. The encoder
consists of an 1-D convolution layer, with 256 output channel (N). The kernel and stride sizes
are 40 and 20 respectively. The decoder has a reverse 1-D convolution layer with corresponding
hyper-parameters of encoder. In the separation part, the temporal convolutional network (TCN), 4
convolutional blocks (X) are repeated twice (R). The number of channels (H) and the kernel size
(P) in convolutional blocks are 512 and 3, respectively. The bottleneck has 256 channels (B). More
detailed meaning of the hyper-parameters can be referred to (Luo and Mesgarani, 2019b). SI-
SNR(Luo and Mesgarani, 2018) is used to computed the enhancement loss between the reference
signal and the enhanced signal. The enhancement model is optimized by adam algorithm with
learning rate at 1× 10−3.

For the ASR model, we use Transformer block to build the encoder and the decoder. The ASR
model contains 12 encoder and 6 decoder Transformer layers. For each Transformer layer, the
number of attention heads is 4. The dimension of the linear projection is 2, 048. The encoder
uses two convolutional layers to downsample the input feature sequence and the total frame shift
is 40ms. The dropout is set to be 0.1. In addition to the log Mel-Filterbank (Fbank), we use two
SSLR models as feature extractor including the HuBERT-large and WavLM-large. When using the
SSLR as feature extractor, the feature dimension is reduced from 1, 024 to 128 with a linear layer
before input to the encoder. The ASR model is optimized by adam algorithm with peak learning
rate at 1 × 10−3 and 20k steps to warm up. Specaug (Park et al., 2019) is used for both Fbank
and SSLR feature during training. In decoding, we use a Transformer language model based on
character level, with weight 1.0 during beam search.

In the proposed IRIS model, each of the modules is initialized by pre-training. SE and ASR
parameters are from the pre-trained models described above. The IRIS model is fine-tuned with
10 epochs using both the enhancement and ASR losses. The same optimizer algorithm for ASR
model training is used, with learning rate at 5 × 10−4. During the training of both ASR and IRIS
models, the parameters of the SSLR models are not updated.

Unless otherwise mentioned, model averaging is performed over the 10 checkpoints with best
accuracy during decoding.

1https://github.com/espnet/espnet/tree/master/egs2/chime4/asr1

48



E2E-ASR Model with SSLRs

In this part, we show the evaluation results of ASR models on the monaural CHiME-4 corpus.
The word error rates (WERs) of both simulated and real speech recordings are computed on the
development and the test sets. The results are shown in Table 3.1. The results of systems 1-4 are
from existing research works. Among them, system 4 is based on E2E-ASR. The rest systems
are built by hybrid ASR systems. We can observe that the best performance is achieved by the
hybrid ASR method. We have trained systems 5-7. In system 5, we use the conventional Fbank
feature to train the E2E-ASR model, the performance of which is worse than system 3 by a large
gap. In system 6 and 7, we use the HuBERT and WavLM models, which are pre-trained on large
amount of unlabelled data, to extract feature. When using HuBERT to generate speech features,
there is no consistent or obvious improvement across all the evaluation data. We conjecture that
it is because the HuBERT is only pre-trained on the clean speech. This can be inferred from the
performance of system 4 and 7. In system 4, the Wav2Vec2.0-based model was trained with noisy
speech data, leading to similar performance as system 3. Likewise, system 7 using WavLM for
feature extraction also achieves comparable performance with system 3. The WERs of simulated
speech are 5.9% and 8.2% on dev and test sets, respectively, and those of real speech are 4.0% and
4.5%. Specially, in the test set, the WERs of real recordings is 28% better than the previous best
results. From this results, we find that it is important to use noisy data to train the robust speech
SSLR.

Table 3.1: Single-channel CHiME-4 ASR performance (%WER) of the E2E-ASR model and pre-
vious studies on monaural dev and test sets. In system 6 and 7, HuBERT and WavLM are pre-
trained models learned on different sets of external data.

ID System Model
Dev. Set Test Set

Simu. Real Simu. Real

1 Kaldi Baseline (Chen et al., 2018a) Hybrid 6.81 5.58 12.15 11.42
2 Du et al. (Du et al., 2016) Hybrid 6.61 4.55 11.81 9.15
3 Yang et al. (Yang et al., 2022b) Hybrid 4.99 3.35 8.61 6.25
4 Wav2Vec-Switch (Wang et al., 2021b) E2E - 3.5 - 6.6

5 E2E Transformer - Fbank E2E 11.32 9.43 19.67 17.99
6 E2E Transformer - HuBERT E2E 11.56 9.13 18.02 20.41
7 E2E Transformer - WavLM E2E 5.93 4.03 8.25 4.47
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Table 3.2: Monaural CHiME-4 ASR performance (%WER) of the IRIS model. Different combi-
nations of fine-tuning SE (FT. SE) and fine-tuning ASR (FT. ASR) are evaluted.

Enhancement Feature FT. SE FT. ASR
Dev. Set Test Set

Simu. Real Simu. Real

Conv-TasNet

Fbank ✗ ✗ 17.22 16.76 30.28 32.50
Fbank ✗ ✓ 11.42 9.92 21.16 21.82
Fbank ✓ ✗ 9.20 8.33 17.01 16.56
Fbank ✓ ✓ 9.52 7.94 17.42 15.24

WavLM ✗ ✗ 5.96 4.37 13.52 12.11
WavLM ✗ ✓ 5.45 4.04 12.68 11.57
WavLM ✓ ✗ 3.54 2.27 6.73 4.90
WavLM ✓ ✓ 3.43 1.98 6.21 3.64

Table 3.3: ASR performance (%WER) comparison between the proposed IRIS model and the best
existing single- and multi-channel systems.

System Track
Dev. Set Test Set

Simu. Real Simu. Real

IRIS (proposed) 1ch 3.43 1.98 6.21 3.64
Yang et al. (Yang et al., 2022b) 1ch 4.99 3.35 8.61 6.25

Du et al. (Du et al., 2016) 2ch 3.46 2.33 5.74 3.91
Wang et al. (Wang et al., 2020) 2ch 2.17 1.99 2.53 3.19

Kaldi Baseline (Chen et al., 2018a) 6ch 1.90 2.10 2.74 2.66
Wang et al. (Wang et al., 2020) 6ch 1.15 1.50 1.45 1.99

IRIS Model

Next, we evaluate our proposed IRIS models. From the results in Table 3.1, we already know that
WavLM is robust in the noisy condition. In this part, we further investigate if adding a speech
enhancement module is beneficial to the model. As a reference, we did the similar evaluation on
the E2E-ASR based on Fbank. Considering the computation cost when concatenated with the ASR
model, we choose Conv-TasNet as the enhancement model and reduce the number of parameters
by using a shallow architecture described in Sec. 3.3. The SI-SNRs of the pre-trained speech
enhancement model are 9.55 dB and 9.71 dB on the development and test sets, respectively.

First, we directly concatenate the speech enhancement model and E2E-ASR models to perform
the speech recognition. The results are shown in the Table 3.2. If the simple concatenation is
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used, both the performance of the Fbank-based system and that of the WavLM-based system are
degraded, compared with the results of system 5 and 7 in the previous table. This indicates that
speech enhancement models do not necessarily improve the ASR performance on noisy speech,
because the training objectives of speech enhancement and recognition are not very well aligned.
It is a well-known phonomenon in previous research (Zhang et al., 2021c).

Second, if we keep the enhancement model fixed and fine-tune the ASR model with ASR loss,
the performance of a WavLM-based system is slightly improved but not reaching the same level
as system 7 in the previous table. We believe the artifacts from the enhancement model is difficult
to handle by the WavLM. For the Fbank-based system, the performance degradation is mitigated.
However, in the other way around, if we keep the ASR model fixed and fine-tune the enhancement
model with both enhancement loss and the ASR loss, we find that the performance are signif-
icantly improved in WavLM-based model and Fbank-based model, especially on the simulation
sets. We assume that the major reason is because only the simulation data is used to fine-tune the
enhancement module.

As the last case, we fine-tune both enhancement and ASR models with the enhancement and
ASR losses. We observe further improvements on both Fbank-based and WavLM-based models.
For the WavLM system, the best performance is achieved. Compared to the system 7 in the previ-
ous table, WavLM without speech enhancement, WERs on all the evaluation sets are further im-
proved with a nonneglectable improvement. In Table 3.3, we list the best result of existing systems
from Table 3.1, the result of the 1st ranking system in CHiME-4 two- and six-channel track (Du
et al., 2016) and the result of our end-to-end IRIS system. Our system achieves a new state-of-the-
art performance on the monaural CHiME-4 ASR task2, outperforming the best monaural system.
More interestingly, the results are comparable to the CHiME-4 challenge best 2-channel results
from (Du et al., 2016).

The results indicate that the noise robust SSLR can still suffer from the degradation of noise.
We can greatly alleviate the problem by introducing a speech enhancement as pre-processing.
However, it is critical to fine-tune both models jointly to eliminate the mismatch. This rule can be
applied to Fbank-based E2E-ASR model as well.

Analysis

It is interesting to know how the fine-tuning improves the IRIS model. We show the ASR per-
formance with the checkpoints in the middle of fine-tuning the IRIS model in Figure. 3.2. It can
be observed that the fine-tuning converges very fast. After only one epoch, the WERs can reach
a very good level. With the model average over the first 10 epochs, the best performance can be
observed.
2The pre-trained SSLR has more parameters and uses more data.
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Figure 3.2: CHiME-4 ASR performance (WERs) of the IRIS model at different epochs during
fine-tuning. Both SE and ASR are fine-tuned.

One difficult point is that the current IRIS model needs pre-training, taking extra efforts to
prepare the individual enhancement and ASR models. In Figure 3.3, we show the training curves
of the following models:

Model Init. Param. Update Param.

SSLR-ASR θ̂sslr θasr

IRIS-random θ̂sslr θse, θasr

IRIS-init-FT_SE θ̂se, θ̂sslr, θ̂asr θse

IRIS-init-FT_ASR θ̂se, θ̂sslr, θ̂asr θasr

IRIS-init-FT_SE+ASR θ̂se, θ̂sslr, θ̂asr θse, θasr

We can see that training the IRIS model from random initialization could not converge to a
good point. We assume that the deep architecture of the SSLR models might disturb the gradient
back-propagation from ASR to the enhancement. More training tricks are required. However, if
we initialize the parameters of each module, the training reaches a good level after the 1st epoch.

Another significant challenge arises from the large model size during joint optimization. The
SSLR model we utilized, WavLM-Large, contains 316.62 million parameters, which constitute
the bulk of the total parameters in our system. Fine-tuning the entire model, including the SE,
SSLR, and ASR modules, is computationally demanding and makes it difficult to fit even a single
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Figure 3.3: Accuracies on the development set for training and fine-tuning different models.

utterance into GPU memory. This constraint is the primary reason we did not jointly update the
SSLR parameters. However, we believe that fine-tuning the SSLR parameters for feature extraction
could lead to further improvements.

One potential solution to this problem is the use of adapters. By incorporating adapters, we can
introduce a small number of trainable parameters while allowing the SSLR model to adapt to the
downstream task. This approach would enable us to leverage the benefits of fine-tuning without
overwhelming the computational resources.

3.4 Conclusions

We propose a new end-to-end model, IRIS, for robust speech recognition in this chapter. The
model contains three modules including an SE module, an SSLR module and an ASR module.
For the implementation, we use Conv-TasNet as SE module, WavLM as SSLR module and a joint
CTC/attention-based encoder-decoder as ASR module. In the evaluation on monaural CHiME-4
task, the IRIS model outperforms the current state-of-the-art system, which is based on the hybrid
ASR model. It should be noted that the pre-training of SSLR model uses more data and more
parameters.

Having established the effectiveness of the IRIS model for single-input single-output (SISO)
scenarios, we should turn our attention to more complex speech recognition challenges. The next
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chapter delves into the Multi-Input Single-Output (MISO) scenario, where we explore how lever-
aging multiple input channels can further improve ASR performance. With the spatial information
provided by the multi-channel input, we aim to address the limitations of single-channel systems
and enhance robustness in diverse and noisy environments.
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Part II

E2E-ASR for Multi-channel-Input
Single-speaker-Output (MISO)
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Chapter 4

Enhancing real-world conversational speech
recognition with speech foundation models

Summary

In the preceding section, we achieved significant advancements in noise-robust Automatic Speech
Recognition (ASR) by introducing End-to-End (E2E) models that integrate speech enhancement,
self-supervised learning (SSL) models, and speech recognition, yielding valuable insights and ex-
perience. To further push the boundaries of conversational speech recognition in real-world scenar-
ios, our focus now shifts to multi-channel input signals, particularly within the context of real-life
scenarios like the AMI meeting corpora (Carletta et al., 2005). Aligned with the prevailing trend in
the machine learning community, we address this real-world challenge by leveraging large foun-
dation models, notably Whisper (Radford et al., 2023). Originally designed for single-channel
speech input, we extend the capabilities of the Whisper model to handle multi-channel speech
signals, named MC-Whisper. Different from the IRIS model mentioned in Ch. 3, MC-Whisper
adopts a non-modular architecture design, as described in Sec. 2. Such a design eliminates the
need for explicit modular components and allowing for seamless integration of multi-channel in-
put processing within the foundation model. Through the development of MC-Whisper, we aim to
demonstrate the effectiveness of large foundation models in enhancing the robustness and adapt-
ability of ASR systems to complex real-life contexts characterized by multi-channel speech inputs.
By leveraging the scalability and representational power of foundation models like Whisper, our
approach offers a promising pathway to address the challenges posed by multi-channel speech
recognition, ultimately advancing the frontier of conversational speech recognition in diverse and
dynamic environments.

Chang, Xuankai, Guo, Pengcheng, Fujita, Yuya, Maekaku, Takashi, and Watanabe,
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Shinji. Submitted to Signal Processing Letter. MC-Whisper: Extending Speech Foun-
dation Models to Multichannel Distant Speech Recognition

4.1 Introduction

Significant advancements have been made in automatic speech recognition (ASR) (Hinton et al.,
2012; Qian et al., 2016; Graves et al., 2006; Graves, 2012; Chorowski et al., 2015; Prabhavalkar
et al., 2023) in recent decades, largely driven by deep learning techniques. These models, known
for their data-intensive nature, achieve superior performance when trained on extensive and diverse
datasets, showcasing robust generalization and knowledge transfer capabilities. Large-scale speech
foundation models have gained significant attention due to their promising performance across
various conditions, owing to their extensive model size and training data. These models fall into
two primary categories: self-supervised training (Baevski et al., 2020; Hsu et al., 2021b; Chen
et al., 2021b; Mohamed et al., 2022b) and supervised training (Radford et al., 2023; Zhang et al.,
2023; Peng et al., 2023), with the former relying solely on input data without external supervised
signals. Notably, most of the existing foundation models only take single-channel speech input,
collected by a single-microphone device. This is mainly due to the ease of collection and cleaning
of single-channel speech signals compared to multi-channel data. Recently, some studies have
shown to successfully transfer the capability of foundation models to more complicated tasks. For
example, Whisper (Radford et al., 2023), a representative foundation model, has been extended to
handle multi-speaker overlapping speech (Li et al., 2023), commonly encountered in real-world
scenarios. Nonetheless, these extensions still operate on single-channel input.

Within the domain of speech and audio processing, distant speech recognition (DASR) (Souden
et al., 2009; Kumatani et al., 2012; Narayanan and Wang, 2014; Barker et al., 2017; Kinoshita et al.,
2016; Heymann et al., 2017; Haeb-Umbach et al., 2021; Watanabe et al., 2020; Cornell et al., 2023)
emerges as a pivotal application scenario. In DASR, the speech signal is captured by a device
positioned at a considerable distance from the source, resulting in a signal infused with ambient
noise and reverberations. DASR systems favor the use of multi-channel speech signals acquired
through a multi-microphone device. This is because exploiting spatial information, embodied in
multi-channel signals, can mitigate the background noise and reverberation levels(Van Veen and
Buckley, 1988; Yoshioka and Nakatani, 2012; Barker et al., 2017; Kinoshita et al., 2016; Ochiai
et al., 2017a; Erdogan et al., 2016; Heymann et al., 2016; Lu et al., 2022b). With speech separation
and enhancement (SSE) techniques, the multi-channel input signal can be pre-processed before
being fed into downstream models. Previous studies have revealed that a joint system of a multi-
channel SSE and ASR can improve the DASR performance (Heymann et al., 2017; Wu et al., 2017;
Xu et al., 2019; Masuyama et al., 2023a; Iwamoto et al., 2023).
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Figure 4.1: Different types of DASR models: (top) pure single-channel ASR; (middle) cascaded
DASR with multi-channel speech enhancement module and single-channel ASR module; (bottom)
proposed DASR with parallel multi-channel speech enhancement branch.

Figure 4.2: Model architecture of the proposed MC-Whisper. The dashed block on the left is the
multi-channel sub-network. The encoded multi-channel embedding is injected into the encoder of
the original foundation model via the ADD adapter.
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Inspired by the joint model, we propose to extend the capabilities of the existing pre-trained
speech foundation model, Whisper (Radford et al., 2023), to accommodate multi-channel (MC)
conditions, thereby enhancing DASR performance. The incapacity of speech foundation models
to handle multi-channel signals poses a potential obstacle to their accurate recognition of speech
in real-world environments characterized by non-negligible noise and reverberation. However,
constructing a multi-channel foundation model from the ground up proves impractical due to con-
straints related to data scarcity and training costs. In this study, we propose an innovative ap-
proach to overcome this limitation, called MC-Whisper, which introduces a parallel multi-channel
processing sub-network into the original Whisper architecture. This sub-network processes multi-
channel speech input separately and connects its output to the original Whisper encoder through
specialized adapters (Huang et al., 2023). In contrast to previous joint models, which often rely
heavily on the performance of the SSE frontend, this design maximizes the utilization of the foun-
dation model’s capabilities to process the multi-channel input. To train the model, we also explored
the parameter-efficient fine-tuning based on the Low-Rank Adaptation (LoRA) (Hu et al., 2022),
leading to improved performance while mitigating computational costs. We carried out experi-
ments on the AMI meeting corpus (Carletta, 2006) distant-microphone recordings. Results show
that the proposed methods improve the Whisper’s ASR performance on AMI given the multiple
distant microphone (MDM) recordings compared to both the single distant microphone (SDM) or
BeamformIt (Anguera et al., 2007) processed counterparts that are conventionally used. To the
best of our knowledge, this is the first effort in extending the speech foundation model, Whisper,
to effectively operate under multi-channel conditions. Note that our proposed method is a general
framework and can be migrated to most of the foundation models, such as OWSM (Peng et al.,
2023) and HuBERT (Hsu et al., 2021b), similarly.

4.2 Proposed Model: MC-Whisper

In this section, we introduce the proposed model, MC-Whisper, as shown in Fig. 4.2. To provide
context, we begin with an overview of the original Whisper model. Subsequently, we delve into
the details of the multi-channel branch.

4.2.1 Background of Whisper

Whisper (Radford et al., 2023) has gained widespread recognition for its robust capabilities in
speech recognition, phrase-level timestamp prediction, and speech translation. The model converts
the single-channel speech input into the corresponding transcription, as illustrated in the upper
section of Fig. 4.1. When presented with single-channel input audio x1 ∈ R1×T , where T is the
signal length, the model segments or pads it into 30-second chunks and converts it into the log-Mel
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filterbank (FBank) feature . These features undergo processing through two convolutional layers
(ConvBlock) to reduce the input sequence length. Note that the superscript 1 is employed to signify
that the speech comprises a single channel.

Trained on an extensive dataset comprising 680 thousand hours of speech data1, Whisper is
an end-to-end model implemented with the Transformer-based encoder-decoder architecture. The
encoder maps the speech signal to hidden embeddings, and the decoder generates output in an
autoregressive manner conditioned on both the encoder output and the tokens. This process is
represented by the following equations:

E = ConvBlock
(
FBank(x1)

)
∈ RT ′×Din

, (4.1)

yt = EncoderDecoder (E;p,y1:t−1) , (4.2)

where E is the output from the convolutional layers with length T ′ and dimension Din. p comprises
a special token sequence containing task specifiers and tokens from the previous segment, while
y1:t−1 represents the predicted tokens up to the previous time step.

It is worth noting that the pre-trained Whisper model offers multiple versions corresponding to
different sizes. We focus on the medium and large versions, with 769M and 1550M parameters,
respectively.

4.2.2 Multi-channel extension of Whisper

As discussed in Section 4.2.1, the original Whisper model is explicitly tailored for the process-
ing of single-channel speech signals, as emphasized in Eq. (4.2). Nevertheless, in the context of
DASR, the incorporation of multi-channel input assumes significance due to the inclusion of spa-
tial information, leading to improving the performance of DASR (Ochiai et al., 2017a; Heymann
et al., 2019; Haeb-Umbach et al., 2019; Watanabe et al., 2020).

Rather than training a multi-channel DASR model from scratch, considerable computational
resources and effort can be conserved by leveraging a pre-trained ASR model, such as Whis-
per, known for its robust capabilities. To extend a pretrained single-channel ASR model to support
multi-channel input, a common approach involves concatenating a multi-channel Speech Enhance-
ment (SE) module and an ASR module into a unified system, forming a pipeline (Heymann et al.,
2017; Xu et al., 2019). The SE module transforms the noisy multi-channel speech signal into a de-
noised single-channel speech signal, as illustrated in the middle part of Fig. 4.1. In such a design,
the output of the SE module is vital to the ASR performance, overshadowing the contribution of
the large foundation model.

In contrast, our approach adopts a distinct design by introducing a parallel multi-channel input

11 million hours for the latest large version
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branch into the encoder, as depicted in the bottom of Fig. 4.1. We retain all components of the
original encoder, which accepts single-channel speech as input, potentially leveraging the robust-
ness of the original foundation model. A sub-network (MC-EnhanceNet) operates separately on
the C-channel input speech signals, X = (xc ∈ R1×T |1 ≤ c ≤ C). Finally, the output of the
MC-EnhanceNet can be seamlessly incorporated into the Whisper encoder through adapters, as
illustrated in Fig. 4.2. Theoretically, the input to the MC-EnhanceNet can be any type of input to
provide the spatial information.

MC-EnhanceNet: We propose two simple implementations of the MC-EnhanceNet which are
independent on the number of channels. Two designs are different in the input features, using
FBank and Complex spectrum, respectively. Consequently, the resulting models are denoted as
MC-Whisper-F and MC-Whisper-C. The information from multi-channel input can be aggregated
to enhance the DASR performance.

• MC-Whisper-F: For every channel of the input signal, X, FBank features are extracted and
stacked together along the channel axis. Subsequently, these features are transformed using a
2-layer convolutional block (Conv2D) and mapped to D-dimension embeddings. Conv2D also
downsamples the length by halve, aligning with the original Whisper encoder’s length. The
computation is expressed as follows:

U = Conv2D (FBank (X)) ∈ RT ′×D, (4.3)

where U denotes embeddings with T ′ frames and size D.

• MC-Whisper-C: In distant speech processing, a complex spectrum is often employed to retain
the phase information of the signal. We apply the Short Time Fourier Transform (STFT) on
every channel of X, and stack the real and imaginary components to form a new axis with size
2. Thus the stacked feature is denoted as FS ∈ RC×2×T ′′×D′ , with T ′′ and D′ being the number
of frames and the dimension, respectively. Similar to the above FBank approach, a Conv2D
module is used. Following this, multi-head attention (MHA) is applied along the channel axis
to extract common information. The output is aggregated across all channels and followed by a
LayerNorm (LN). The process is outlined as follows:

FS = STFT (X) ∈ RC×2×T ′′×D′
, (4.4)

I = MHA (Conv2D (FS) ) ∈ RC×L×D, (4.5)

U = LN

(
C∑
c=1

Ic

)
∈ RL×D, (4.6)

where I represents the output from the multi-head attention, and U signifies the output, similar
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to the output in Eq. (4.3).

Adapter: To inject the multi-channel input embedding to the original Whisper encoder, we use
the same ADD adapter in (Huang et al., 2023), and inject the information at the beginning of the
Transformer encoder. Two linear projection layers are used to transform the injected embedding
U and added to the original input of the encoder, E in Eq. (4.1). The computation can be denoted
as:

E′ = E+ ADD(U) ∈ RL×Din
, (4.7)

where E′ is fed into the encoder, replacing E in Eq. (4.2).

4.2.3 Efficient training

To train the proposed model, one can optimize all parameters simultaneously with the ASR loss.
However, given the relatively large size of the original Whisper model, we also investigate the
usage of efficient parameter-tuning approaches. In this study, we examined LoRA (Hu et al.,
2022). Note that other proper fine-tuning approaches can also be applied.

LoRA stands as a commonly utilized technique for efficiently adapting large foundation models
to new datasets and tasks. Its primary concept involves injecting trainable rank decomposition ma-
trices into each layer of the large Transformer model while keeping all pre-trained model weights
frozen. Specifically, given a pre-trained weight matrix W ∈ Rd×k, where d and k represent the
input and output dimensions, respectively, two new matrices Wb ∈ Rd×r and Wa ∈ Rr×k are
introduced, with r representing the rank and r ≪ min(d, k). The modified forward process can be
formulated as:

hout = Whin +WbWah
in, (4.8)

where Wb and Wa are updated during fine-tuning, while W remains frozen, resulting in a signifi-
cant reduction in memory footprint. hin and hout are input and output of the layer.

4.3 Experiments

4.3.1 Experimental Setup

All experiments were conducted using real-world English meeting recordings from the AMI meet-
ing corpus (Carletta, 2006), which is previously mentioned in Sec. 1.4.2. The following is a review
of the dataset details. The AMI corpus encompasses recordings obtained from both close-talking
and far-field microphones. Our focus is on the far-field scenario, where an 8-channel microphone
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array, commonly referred to as multiple distant microphones (MDM), was employed. Convention-
ally, the 1st channel of the MDM is selected to create an individual monaural condition known as a
single distant microphone (SDM).

The AMI corpus provides human-annotated transcriptions. The speech recordings are seg-
mented at the utterance-level to construct each individual training sample. Data pre-processing
steps are detailed in the ESPnet (Watanabe et al., 2018) recipe2. The corpus comprises approx-
imately 100 hours of meeting recordings. During training, speed perturbation augmentation is
applied to augment the training data twofold, resulting in a total of approximately 232.3 hours.
To conduct the single-channel experiments, we use the SDM condition of the AMI corpus. Ad-
ditionally, we preprocess the MDM data, consisting of 8 channels, into a single channel using
BeamformIt (MDM8+BFIt), the conventional data preprocessing method for MDM in the ESPnet
recipe.

For the implementation, we use the ESPnet tools. For fast development, the medium version
of Whisper trained on English data is employed, if not mentioned specifically. Details of the
MC-EnhanceNet can be found in Section. 4.2.2. We only train the models for 3 epochs. A warm-
up scheduler adjusts the learning rate, peaking at 1e− 6 with 25, 000 steps. During inference, the
greedy decoding is used. For LoRA fine-tuning, we added LoRA adapters to all the query, key,
and value projection layers, as well as the feed-forward layer, with rank r = 8.

4.3.2 Results of MC-Whisper Medium

The experimental outcomes utilizing the Whisper-medium model with distant microphone record-
ings from the AMI corpus are detailed in Table 4.1. Initially, we perform DASR on the two single-
channel conditions using the pretrained Whisper-medium without modification, corresponding to
A1 and A2. While employing BeamformIt to enhance the data undoubtedly leads to performance
improvement, the word error rate (WER) remains relatively high, hovering around 40%, making
them unsuitable for real-world applications.

Subsequently, we fine-tune all parameters of Whisper-medium for the AMI distant microphone
task, designated as B1-B4 in the table. Results of B1 and B2 demonstrate a notable performance
boost through fine-tuning. Fine-tuning all parameters of the Whisper model on the SDM condi-
tion reduces the dev/eval WER by 48% and 45%, respectively. Similarly, notable improvement
is observed in the MDM8+BFIt, achieving a 46% dev/eval WER reduction. We then explore the
proposed MC-Whisper model, as indicated in Table 4.1 at rows B3/B4. When utilizing FBank fea-
tures from multiple channels as input for the multi-channel sub-network, the model (B3) achieves
marginally better performance compared to the system with BeamformIt preprocessing (B2). How-

2https://github.com/espnet/espnet/blob/master/egs2/ami/asr1/local/data.sh
No additional text normalization was performed to align with the Whisper.

63



Table 4.1: DASR performance (WER%) on the AMI corpus distant microphone recordings. Whis-
per medium.en checkpoints is used for all models in this table. For evaluating the single-channel
based systems, the AMI-SDM and the AMI-MDM8 with BeamformIt (BFIt) is used. The Whisper
model is updated via full finetuning (Full) or LoRA methods. The ratio of trainable parameters
is included in the Fine-tuning column. For the proposed MC-Whisper systems, we denote the
FBank-based MC-Whisper as MC-Whisper-F, and the complex spectrum-based MC-Whisper as
MC-Whisper-C.

Model ID Method Fine-tuning (ratio) Audio device WER (dev/eval)

A1 Whisper - SDM 41.1 / 44.4
A2 Whisper - MDM8 + BFIt 37.5 / 41.0

B1 Whisper Full (100%) SDM 21.5 / 24.4
B2 Whisper Full (100%) MDM8 + BFIt 20.4 / 22.0
B3 MC-Whisper-F Full (100%) MDM8 20.4 / 21.8
B4 MC-Whisper-C Full (100%) MDM8 19.8 / 21.0

C1 Whisper LoRA (0.6%) SDM 22.4 / 26.2
C2 Whisper LoRA (0.6%) MDM8 + BFIt 20.8 / 23.5
C3 MC-Whisper-F LoRA (0.6%) MDM8 20.7 / 22.6
C4 MC-Whisper-C LoRA (0.7%) MDM8 20.4 / 22.1
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Table 4.2: DASR performance (WER%) on the AMI corpus distant microphone recordings. Differ-
ent pre-trained Whisper model are used: medium.en (M) and large (L). For evaluating the single-
channel based systems, the AMI-SDM and the AMI-MDM8 with BeamformIt (BFIt) are used.
The ratio of trainable parameters is included (adapter and MC-EnhanceNet). For the proposed
MC-Whisper systems, we denote the complex spectrum-based MC-Whisper as MC-Whisper-C.

Model ID Method Fine-tuning (ratio) Audio device WER (dev/eval)

A1 Whisper (M) - SDM 41.1 / 44.4
A2 Whisper (M) - MDM8 + BFIt 37.5 / 41.0
C2 Whisper (M) LoRA (0.6%) MDM8 + BFIt 20.8 / 23.5
C4 MC-Whisper-C (M) LoRA (0.7%) MDM8 20.4 / 22.1

L1 Whisper (L) - SDM 38.3 / 40.1
L2 Whisper (L) - MDM8 + BFIt 35.7 / 38.0
L3 Whisper (L) LoRA(0.5%) MDM8 + BFIt 20.3 / 21.1
L4 MC-Whisper-C (L) LoRA (0.5%) MDM8 19.4 / 20.5

ever, it is known that FBank features lose valuable spatial information, such as the phase. To ad-
dress this, we employ complex spectrum-based input, which includes rich phase information. The
proposed method (B4) yields the best performance, resulting in improvements of 3% and 5% on
the dev/eval sets compared to B2, respectively.

Optimizing the entire model is computationally expensive. Thus we adopt the LoRA parameter-
efficient fine-tuning method, as described in Section 4.2.3. Results at rows C1-C4 also demon-
strates significant performance improvement, albeit slightly less effective than fine-tuning all pa-
rameters. Notably, only around 0.6% of parameters are trainable, considerably reducing com-
putational costs. Similar to the trend observed in B1-B4, using BeamformIt leads to substantial
improvement, underscoring the significance of spatial information in far-field scenarios. The pro-
posed methods, especially the complex spectrum-based design, demonstrate further improvement.

4.3.3 Results of MC-Whisper Large

To demonstrate the generalization ability of the proposed method, we further conducted experi-
ments using Whisper-large and compared its performance with the medium version under similar
settings. The results are summarized in Table. 4.2.

As baselines, we evaluate performance under the single-channel scenario (L1-L3). The large
model consistently outperforms the medium one across all conditions. Furthermore, we observe
fine-tuning significantly enhances performance, even with a minimal fraction of learnable param-
eters. Given the substantial memory and computation requirements of the large model, we exclu-
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sively employed LoRA fine-tuning.
Finally, we integrate the complex spectrum-based multi-channel sub-network into the Whisper-

large. The model reduces the dev/eval WER by 4% and 7%, respectively, compared with L3. With
the inclusion of multi-channel input, performance sees improvement, suggesting that the original
capacity of Whisper-large can be augmented through the proposed extension.

4.4 Conclusion

In this section, we proposed a novel multi-channel extension for pre-trained large speech founda-
tion models, enhancing their ability to process far-field speech. Rather than concatenating ad-hoc
multi-channel pre-processing modules or altering the original model input, we introduced a parallel
multi-channel sub-network, which may help preserve the robustness of the original model. Exper-
imental results on the distant microphone AMI corpus demonstrate that our proposed method is
effective for large foundation models. Looking ahead, further exploration of sophisticated sub-
networks for other types of information and fusion methods holds promise for increasing down-
stream applications and improving performance in the future. In addition, exploring the long-form
audio speech recognition in the multi-channel scenario is an important direction.

We now have successfully built a system to handle multi-channel inputs, we will shift our focus
to another challenging aspect of speech recognition: multi-speaker overlapping speech. The next
chapter delves into the Single-Input Multi-Output (SIMO) scenario, where we tackle the complex-
ities of separating and transcribing speech from multiple speakers using a single-channel input.
This involves developing advanced techniques to manage overlapping speech and enhance the ro-
bustness of ASR systems in scenarios where multiple speakers are simultaneously active.
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Part III

E2E-ASR for Single-channel-Input
Multi-speaker-Output (SIMO)
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Chapter 5

E2E-PIT-ASR: monaural E2E ASR for
speech with overlaps

Summary

We start Part III of this thesis by delving into the Single-Input-Multiple-Output (SIMO) ASR task.
This challenging scenario involves recognizing and transcribing overlapping speech from multiple
speakers using a single-channel input, necessitating the separation and transcription of individual
speakers’ utterances from a mixture of voices without spatial cues. The overall pipeline can be
shown in Fig. 5.1.

Within this chapter, our primary focus is on transcribing overlapped speech from multiple
speakers using end-to-end (E2E) ASR models. These models are based on the non-modular archi-
tecture design, as described in Sec. 2. To simplify the problem, we introduce two key assumptions:
firstly, we posit that the overlap persists from the beginning until near the end of the speech seg-
ment; secondly, we presuppose a fixed number of overlapping speakers. These assumptions, while
helpful for model development and experimentation, represent idealized scenarios rarely encoun-
tered in real-world settings. The experiments conducted in this chapter are based on simulated data
to explore fundamental concepts and methodologies. Nonetheless, we acknowledge the necessity
of addressing and mitigating these assumptions to enhance the model’s applicability to real-world
scenarios. Subsequent chapters, specifically Chapter 6 and Chapter 7, are dedicated to addressing
these challenges by introducing novel approaches that accommodate variable speaker counts and
realistic speech overlap scenarios.

Through these endeavors, we aim to advance the understanding and capability of E2E ASR
models in handling overlapping speech, paving the way for more robust and versatile speech recog-
nition systems capable of addressing the complexities of real-world conversational environments.
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Figure 5.1: Overview of the end-to-end SIMO model.

Xuankai Chang, Yanmin Qian, Kai Yu, Shinji Watanabe. ICASSP 2019. End-to-end
monaural multi-speaker ASR system without pretraining.

5.1 Introduction

In the deep learning era, single-speaker automatic speech recognition systems have achieved a lot
of progress. Deep neural networks (DNN) and hidden markov model (HMM) based hybrid sys-
tems have attained surprisingly good performance (Hinton et al., 2012; Sainath et al., 2013; Xiong
et al., 2017). Recently, there has been a growing interest in developing end-to-end models for
speech recognition (Kim et al., 2017b; Watanabe et al., 2017, 2018; Chen et al., 2018b), in which
the various modules of the hybrid systems, such as the acoustic model (AM) and language model
(LM), are folded into a single neural network model. Two major approaches of end-to-end speech
recognition systems are connectionist temporal classification (Graves and Jaitly, 2014; Miao et al.,
2015) and attention-based encoder-decoder (Chorowski et al., 2014; Chan et al., 2016). The per-
formance of deep learning based conventional speech recognition systems has been reported to be
comparable with, or even surpassing, human performance (Xiong et al., 2017). However, it is still
extremely difficult to solve the cocktail party problem (Carletta et al., 2005; Cooke et al., 2010;
Barker et al., 2018; Qian et al., 2018b), which refers to the task of separating and recognizing the
speech from a specific speaker when it is interfered by noise and speech from other speakers.

To address the monaural multi-speaker speech separation and recognition problem, there has
been a lot of research in single-channel multi-speaker speech separation and recognition, which
aims to separate the overlapping speech and recognize the resulting separated speech individually,
given a single-channel multiple-speaker mixtured speech. In (Hershey et al., 2016a; Isik et al.,
2016), a method called deep clustering (DPCL) was proposed for speech separation. DPCL sepa-
rates the mixed speech by training a neural network to project each time-frequency (T-F) unit into
a high-dimensional embedding space, in which pairs of T-F units are close to each other if they
have the same dominating speaker and farther away otherwise. In addition to segmentation using
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k-means clustering, a permutation-free mask objective was proposed to refine the output (Isik et al.,
2016). In (Yu et al., 2017c; Kolbæk et al., 2017), a speech separation method called permutation
invariant training (PIT) was proposed to train a compact deep neural network with the objective
that minimizes the average minimum square error of the best output-target assignment at the ut-
terance level. PIT was later extended to train a speech recognition model for multi-speaker speech
mixture by directly optimizing with the ASR objective (Yu et al., 2017a; Chen et al., 2017; Chang
et al., 2018b; Qian et al., 2018a). In (Settle et al., 2018; Seki et al., 2018), a joint CTC/attention-
based encoder-decoder network for end-to-end speech recognition (Kim et al., 2017b; Watanabe
et al., 2017) was applied to multi-speaker speech recognition. First, an encoder separates the mixed
speech into hidden vector sequences for every speaker. Then an attention-based decoder is used to
generate the label sequence for each speaker. To avoid label permutation problem, a CTC objective
is used in permutation-free manner right after the encoder to determine the order of the label se-
quences. However, the model needs to first be pre-trained on single-speaker speech so that decent
performance can be achieved.

In this chapter, we explore several new methods to refine the end-to-end speech recognition
model for multi-speaker speech. Firstly, we revise the model in (Seki et al., 2018) so that pretrain-
ing on single-speaker speech is not required without loss of performance. Secondly, we propose
to use speaker parallel attention modules. In previous work, the separated speech streams were
treated equally in the decoder, regardless of the energy and speaker characteristics. We bring in
multiple attention modules (Vaswani et al., 2017) for each speaker to enhance the speaker tracing
ability and to alleviate the burden of the encoder similar to (Chang et al., 2018b). Another method
is to use scheduled sampling (Bengio et al., 2015) to randomly choose the token from either the
ground truth or the model prediction as the history information, which reduces the gap between
training and inference in the sequence prediction tasks. This would be extremely helpful in our
setup, since the separation is not always perfect and we often observe mixed label results. Schedule
sampling can help to recover such errors during inference.

5.2 E2E SIMO ASR with PIT

In this section, we first describe the end-to-end ASR system for multi-speaker speech that has been
used in (Seki et al., 2018). Then we introduce two techniques to improve the training process and
performance of the end-to-end ASR multi-speaker system, namely the speaker parallel attention
and scheduled sampling (Bengio et al., 2015).
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End-to-End Multi-speaker ASR

In (Kim et al., 2017b; Watanabe et al., 2017; Hori et al., 2017), an end-to-end speech recognition
model was proposed to take advantage of both the Connectionist Temporal Classification (CTC)
and attention-based encoder-decoder, in aim of using the CTC to enhance the alignment ability of
the model. An end-to-end model for multi-speaker speech recognition was brought up in (Seki
et al., 2018), extending the joint CTC/attention-based encoder-decoder network to be applied on
multi-speaker speech mixtures and to allow the permutation-free training in the objective function
to address the permutation problem. The model is shown in Fig.5.2, in which the modules Attention
1 and Attention 2 share parameters. The input speech mixture is first explicitly separated into
multiple sequences of vectors in the encoder, each representing a speaker source. These sequences
are fed into the decoder to compute the conditional probabilities.

The encoder of the model can be divided into three stages, namely the EncoderMix, EncoderSD

and EncoderRec. Let x denote an input speech mixture from K speakers. The first stage, EncoderMix,
is the mixture encoder, which encodes the input speech mixture x as an intermediate representation
H. Then, the representation H is processed by K speaker-different (SD) encoders, EncoderSD, with
the outputs being referred to as feature sequences Hk, k = 1, · · · , K. EncoderRec, the last stage,
transforms the features sequences to high-level representations Gk, k = 1, · · · , K. The encoder is
computed as

H = EncoderMix(x) (5.1)

Hk = EncoderkSD(H), k = 1, · · · , K (5.2)

Gk = EncoderRec(H
k), k = 1, · · · , K (5.3)

In the single-speaker joint CTC/attention-based encoder-decoder network, the CTC objec-
tive function is used to train the attention model encoder as an auxiliary task right after the en-
coder (Kim et al., 2017b; Watanabe et al., 2017; Hori et al., 2017). While in the multi-speaker
framework, the CTC objective function is also used to perform the permutition-free training as
in Eq.5.4, which is referred to as permutation invariant training in (Qian et al., 2018b; Yu et al.,
2017c,a; Chen et al., 2017; Chang et al., 2018b; Qian et al., 2018a; Chang et al., 2018a; Tan et al.,
2018).

π̂ = argmin
π∈P

∑
k

Lossctc(Ŷ
k,Yπ(k)), (5.4)

where Ŷk is the predicted sequence variable computed from the encoder output Gk, π(k) is the
k-th element in a permutation π of {1, · · · , K}, and Y is the reference labels for K speakers.
Later, the permutation π̂ with minimum CTC loss is used for the reference labels in the attention-
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based decoder in order to reduce the computational cost. Note that PIT can be computationally
expensive, as it involves traversing all possible permutations and calculating the loss function
for each one. To mitigate this issue and avoid combinatorial explosion, the efficient Hungarian
algorithm can be employed. This algorithm streamlines the process by optimizing the assignment
problem, significantly reducing the computational burden associated with PIT.

After obtaining the representations Gk, k = 1, · · · , K from the encoder, an attention-based
decoder network is used to decode these streams and output label sequence Ŷk for each represen-
tation stream according to the permutation determined by the CTC objective function. For each
pair of representation and reference label index (k, π̂(k)), the decoding process is described as the
following equations:

patt(Ŷ
k,π̂(k)|x) =

∏
n

patt(ŷ
k,π̂(k)
n |x, ŷk,π̂(k)1:n−1 ) (5.5)

ck,π̂(k)n = Attention(ak,π̂(k)
n−1 , e

k,π̂(k)
n−1 ,Gk) (5.6)

ek,π̂(k)n = Update(ek,π̂(k)n−1 , c
k,π̂(k)
n−1 , ŷ

π̂(k)
n−1) (5.7)

ŷk,π̂(k)n ∼ Decoder(ck,π̂(k)n , ŷ
π̂(k)
n−1) (5.8)

where c
k,π̂(k)
n denotes the context vector, ek,π̂(k)n is the hidden state of the decoder, and y

π̂(k)
n is the

n-th element in the reference label sequence. During training, the reference label yπ̂(k)n−1 from Y is
used as the history in the manner of teacher-forcing, instead of yπ̂(k)n−1 in Eq.5.7 and Eq.5.8. And,
Eq.5.5 means the probability of the target label sequence Ŷ = {y1, · · · , yN} that the attention-
based encoder-decoder predicted, in which the probability of ŷn at n-th time step is dependent on
the previous sequence ŷ1:n−1.

The final loss function is defined as

Lmtl = λLctc + (1− λ)Latt, (5.9)

Lctc =
∑
k

Lossctc(Ŷ
k,Yπ̂(k)), (5.10)

Latt =
∑
k

Lossatt(Ŷ
k,π̂(k),Yπ̂(k)), (5.11)

where λ is the interpolation factor, and 0 ≤ λ ≤ 1.

Speaker parallel attention modules

Due to the differences in the characteristics of speakers and energy, the encoder usually has to
compensate for those differences while separating the speech. The motivation of speaker paral-
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Figure 5.2: End-to-End Multi-speaker Speech Recognition Model in the 2-Speaker Case

lel attention module that we proposed is to alleviate the burden for the encoder and to make the
attention-decoder learn to filter the separated speech as well while keeping the model compact. In
light of (Chang et al., 2018b), we proposed to use independent attention modules called speaker
parallel attention. Fig.5.2 illustrates the architecture of the model, in which Attention 1 and Atten-
tion 2 are not sharing. The computation process in Eq.5.6 should be rewritten in a stream-specific
way, in particular for the k-th stream, as:

ck,π̂(k)n , ak,π̂(k)
n = Attentions(a

k,π̂(k)
n−1 , c

k,π̂(k)
n−1 ,Gk) (5.12)

Scheduled sampling

We generally trained the decoder network in a teacher-forcing fashion, which means the reference
label token rn, not the predicted token yn, is used to predict the next token in the sequence during
training. However, during inference, we are only accessible to the predicted token yn from the
model itself. This difference may lead to performance degradation, especially in the multi-speaker
speech recognition task susceptible to the label permutation problem. We alleviate this problem
by using the scheduled sampling technique (Bengio et al., 2015). During training, whether the
history information is chosen from the ground truth label or the prediction is done randomly with
a probability of p from the the prediction and (1 − p) from ground truth. Thus Eq.5.7 and Eq.5.8
should be changed as:

ek,π̂(k)n = Update(ek,π̂(k)n−1 , c
k,π̂(k)
n−1 , h), (5.13)

ŷk,π̂(k)n ∼ Decoder(ck,π̂(k)n , h), (5.14)
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where

b ∼ Bernoulli(p), (5.15)

h =

{
y
π̂(k)
n−1 , if b = 0

ŷ
π̂(k)
n−1 , if b = 1

(5.16)

5.3 Experiment

Experimental setup

To evaluate our method, we used the artificially generated single-channel two-speaker mixed sig-
nals, called WSJ-2Mix (Seki et al., 2018). As described in Sec. 1.4.3, WSJ-2Mix is derived from
the Wall Street Journal (WSJ) speech corpus, using the tool released by MERL1. We used the WSJ
SI284 to generate the training data, Dev93 for development and Eval92 for evaluation. The dura-
tions for the training, development and evaluation sets of the mixed data are 98.5 hr, 1.3 hr, and 0.8
hr respectively. In section 5.3, we also compared our model with previous works on the wsj0-2mix
dataset, which is a standard speech separation and recognition benchmark (Hershey et al., 2016a;
Isik et al., 2016; Settle et al., 2018).

The input feature is 80-dimensional log Mel filterbank coefficients with pitch features and
their delta and delta delta features extracted using the Kaldi (Povey et al., 2011). Zero mean and
unit variance are used to normalize the input features. All the joint CTC/attention-based encoder-
decoder networks for end-to-end speech recognition were built based on the ESPnet (Watanabe
et al., 2018) framework. The networks were initialized randomly from uniform distribution in the
range −0.1 to 0.1. We used the AdaDelta algorithm with ρ = 0.95 and ϵ = 1e − 8. During
training, we set the interpolation factor λ in Eq.5.9 to be 0.2. We revise the deep neural network,
replacing the original encoder layers with shallower but wider layers (Zeyer et al., 2018), so that
the performance can be good enough without pre-training on single-speaker speech.

To make the model comparable, we set all the neural network models to have the same depth
and similar size. We use the VGG-motivated CNN layers and bidirectional long-short term mem-
ory recurrent neural networks with projection (BLSTMP) as the encoder. The total depth of the
encoder is 5, namely two CNN blocks and three layer BLSTMP layers. For all models, the decoder
network has 1 layer of unidirectional long-short term memory network (LSTM) with 300 cells.

During decoding, we combined both the joint CTC/attention score and the pretrained word-
level recurrent neural network language model (RNNLM) score, which had 1-layer LSTM with
1000 cells and was trained on the transcriptions from WSJ SI284, in a shallow fusion manner. We

1http://www.merl.com/demos/deep-clustering/create-speaker-mixtures.zip
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set the beam width to be 30. The interpolation factor λ we used during decoding was 0.3, and the
weight for RNNLM was 1.0.

Performance of baseline systems

In this section, we describe the performance of the baseline E2E ASR systems on multi-speaker
mixed speech. The first baseline system is the joint CTC/attention-based encoder-decoder network
for single-speaker speech trained on WSJ corpus, whose performance is 0.9% in terms of CER
and 1.9% in terms of WER on the eval92_5k test set with the closed vocabulary. In the encoder,
there are 3 layers of BLSTMP following the CNN and each BLSTMP layer has 1024 memory cells
in each direction. The second baseline system is the joint CTC/attention-based encoder-decoder
network for multi-speaker speech. The 2-layer CNN is used as the EncoderMix. The depth of the
following BLSTMP layers is also 3 including 1 layer of BLSTMP as the EncoderSD and 2 layers of
BLSTMP as the EncoderRec. The attention-decoder in the multi-speaker system is shared among
representations Gs, which is of the same architecture with single-speaker system. The results are
shown in Table 5.1.

Model dev CER eval CER
single-speaker 79.13 76.52

multi-speaker (Seki et al., 2018) n/a 13.7
multi-speaker 15.14 12.20

Model dev WER eval WER
single-speaker 113.47 112.21
multi-speaker 24.90 20.43

Table 5.1: Performance (Avg. CER & WER) (%) on 2-speaker mixed WSJ corpus. Comparison
between End-to-End single-speaker and multi-speaker joint CTC/attention-based encoder-decoder
systems

In the case of single-speaker, the CER and WER is measured by comparing the output against
the reference labels of both speakers. From the table, we can see that the speech recognition system
designed for multi-speaker can improve the performance for the overlapped speech significantly,
leading to more than 80.0% relative reduction on both average CER and WER. As a comparison,
we also include the CER result from (Seki et al., 2018) in the table, and it shows that the newly
constructed end-to-end multi-speaker system without pretraining in this work can achieve better
performance.
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Performance of speaker parallel attention with scheduled sampling

In this section we report the results of the evaluation of our proposed methods. The first method is
the speaker parallel attention, introducing independent attention modules for each speaker source
instead of using a shared attention module. The rest of the network is kept the same as the baseline
multi-speaker model, containing a 2-layer CNN EncoderMix, 1-layer BLSTMP EncoderSD, a 2-
layer BLSTMP EncoderRec, and a shared 1-layer LSTM as the decoder network. The performance
is illustrated in the Table 5.2. The speaker parallel attention module reduces the average CER
by 9% and average WER by 8% relatively. From the results we can tell that the CER is high,
so the gap is large between the training and inference using the teacher-forcing fashion. Thus
we adopted the scheduled sampling method with probability p = 0.2 in Eq. 5.15, which lead to
a further improvement in performance. Finally, the system using both speaker parallel attention
and scheduled sampling can obtain relative ∼ 10.0% reduction on both CER and WER on the
evaluation set.

Model dev CER eval CER
multi-speaker (baseline) 15.14 12.20
+ speaker parallel attention 14.80 11.11
++ scheduled sampling 14.78 10.93

Model dev WER eval WER
multi-speaker (baseline) 24.90 20.43
+ speaker parallel attention 24.88 18.76
++ scheduled sampling 24.52 18.44

Table 5.2: Performance (Avg. CER & WER) (%) on 2-speaker mixed WSJ corpus. Comparison
between End-to-End multi-speaker joint CTC/attention-based encoder-decoder systems

We show the visualization of the attention weights sequences for two overlapped speakers, gen-
erated by the baseline single-attention multi-speaker end-to-end model and the proposed speaker-
parallel-attention multi-speaker end-to-end model individually. The horizontal axis represents the
output token sequence and the vertical axis represents the input sequence to the attention mod-
ule. The left parts of Figures.5.3 (a) and (b) show the attention weights for speaker 1 and speaker
2 generated by the previous single-attention model. The right parts show the attention weights
generated by the proposed speaker-parallel-attention model. We can observe that the right parts
are more smooth and clear, and the attention weights are more concentrated. This observation
conforms with the characteristics of alignments between output sequence and input sequence for
speech recognition, and further shows the superiority of the proposed speaker parallel attentions.
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(b) Attention weights for speaker 2

Figure 5.3: Visualization of the attention weights sequences for two overlapped speakers. The left
part is from the previous single-attention multi-speaker end-to-end model and the right part is from
the proposed speaker-parallel-attention multi-speaker end-to-end model.

Comparison with previous work

We then compared our work with other related work. We trained and tested our model on wsj0-
2mix dataset that was first used in (Hershey et al., 2016a). Table 5.3 shows the WER results
of hybrid systems including PIT-ASR (Qian et al., 2018a), DPCL-based speech separation with
Kaldi-based ASR (Isik et al., 2016), and the end-to-end systems constructed in (Seki et al., 2018)
and ours in this paper. These were evaluated under the same evaluation data and metric as in (Isik
et al., 2016) based on the wsj0-2mix. Noted that the model in (Seki et al., 2018) was trained on
a different, larger training dataset than that used in other experiments. From Table. 5.3, we can
observe that our new system constructed by the proposed methods in this paper is significantly
better than the others.
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Model Avg. WER
DPCL+ASR (Isik et al., 2016) 30.8
PIT-ASR (Qian et al., 2018a) 28.2

End-to-end ASR (Char/Word-LM) (Seki et al., 2018) 28.2
Proposed End-to-end ASR with SPA (Word LM) 25.4

Table 5.3: WER (%) on 2-speaker mixed WSJ0 corpus. The comparison is done between our
proposed end-to-end ASR with speaker parallel attention (SPA) and previous works including
DPCL+ASR, PIT-ASR and end-to-end ASR systems.

5.4 Conclusion

In this chapter, we have introduced an end-to-end multi-speaker speech recognition system under
the joint CTC/attentin-based encoder-decoder framework. More specifically, a new neural network
architecture enabled us to train the model from random initialization. And we adopted the speaker
parallel attention module and scheduled sampling to improve performance over the previous end-
to-end multi-speaker speech recognition system. The experiments on the 2-speaker mixed speech
recognition show that the proposed new strategy can obtain a relative ∼ 10.0% improvement on
CER and WER reduction.

However, we operated under two assumptions: 1) the number of speakers in the overlapping
speech is known, and 2) the speech segments are mostly overlapped. While these assumptions sim-
plify the task and allow us to focus on complex ASR challenges, they are artificial and uncommon
in real-world scenarios. To advance the robustness and applicability of our models, it is crucial to
explore methods that remove these constraints.

In the next chapter, we begin by discarding the first assumption. Our focus will be on develop-
ing techniques to handle overlapping speech without prior knowledge of the number of speakers
involved. This shift addresses a significant limitation of our current approach and moves us closer
to more practical and versatile ASR solutions.
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Chapter 6

Conditional-chain: monaural multi-speaker
E2E ASR for various number of speakers

Summary

In the previous chapter, we introduced an end-to-end (E2E) Automatic Speech Recognition (ASR)
model designed to transcribe speech signals with multiple overlapping speakers. However, it’s
essential to acknowledge that this model operated under specific constraints. Firstly, it assumed a
fixed number of speakers in the output, which may not accurately reflect the variability encoun-
tered in real-world scenarios. Secondly, the model assumed that speech overlap persists from the
beginning of the utterance, simplifying the problem but overlooking the complexities of varying
speech overlaps.

In this chapter, we present the conditional chain model, a novel approach tailored to address
scenarios with varying speaker counts. This model transcribes the speech of one speaker in each
iteration, dynamically adjusting to accommodate multiple speakers until all utterances are tran-
scribed. By leveraging previously estimated speaker features, the model maintains awareness of
generated transcriptions to prevent redundancy effectively. To enhance prediction efficiency and
support parallel inference, we adopt a non-autoregressive ASR approach based on connectionist
temporal classification (CTC) (Graves et al., 2006). This strategy allows for simultaneous process-
ing of multiple speaker utterances, significantly improving model performance and scalability in
handling overlapping speech scenarios. Through these advancements, we aim to broaden the ap-
plicability and robustness of E2E ASR models, enabling more effective transcription of complex,
real-world speech with varying speaker counts and overlapping segments. Similar to the previous
chapter, the conditional chain model is based on the non-modular architecture design, as described
in Sec. 2.
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• Jing Shi∗, Xuankai Chang∗, Pengcheng Guo∗, Shinji Watanabe, Yusuke Fujita,
Jiaming Xu, Bo Xu, Lei Xie. 2020 NeurIPS. Sequence to multi-sequence learn-
ing via conditional chain mapping for mixture signals.

• Pengcheng Guo, Xuankai Chang, Shinji Watanabe, Lei Xie. 2021 Interspeech.
Multi-speaker ASR combining non-autoregressive conformer CTC and condi-
tional speaker chain.

6.1 Introduction

End-to-end architectures have demonstrated their effectiveness and became the dominant models
across various sequence to sequence tasks, like neural machine translation (NMT) (Bahdanau et al.,
2015; Vaswani et al., 2017) and automatic speech recognition (ASR) (Chan et al., 2016; Dong
et al., 2018; Karita et al., 2019a; Gulati et al., 2020; Guo et al., 2021a). However, most of these
models follow an autoregressive (AR) strategy, which predicts a target token conditioned on both
previously generated tokens and the source input sequence. The incremental process makes it hard
to compute parallel and results in a large latency during the inference. In contrary to AR models,
non-autoregressive (NAR) models have drawn immense interest recently, aiming to get rid of the
temporal dependency and perform parallel inference.

NAR models were first proposed in NMT and have achieved competitive performance with
conventional AR models (Gu et al., 2018; Libovickỳ and Helcl, 2018; Lee et al., 2018; Stern et al.,
2019; Gu et al., 2019; Ghazvininejad et al., 2019, 2020; Saharia et al., 2020). The idea of NAR
models is to predict the whole target sequence within a constant number of iterations which is
not strict with the sequence length. In (Gu et al., 2018), Gu et al. introduced a fertility module
to predict the number of times each encoder output should be repeated and regraded the repeated
encoder outputs as decoder input to perform parallel inference. In (Lee et al., 2018), Lee et al.
proposed a deterministic NAR model by iteratively refine the outputs from corrupted predictions.
In addition, there were lots of studies based on the insert or edit sequence generation (Stern et al.,
2019; Gu et al., 2019), connectionist temporal classification (CTC) (Libovickỳ and Helcl, 2018),
and masked language model objective (Ghazvininejad et al., 2019, 2020; Saharia et al., 2020).

Inspired by the success of NAR models in NMT, several NAR methods were also proposed to
reach the performance of AR models on ASR (Chen et al., 2019; Higuchi et al., 2020; Chan et al.,
2020; Tian et al., 2020; Higuchi et al., 2021; Chi et al., 2021; Fan et al., 2020). Since CTC learns
a frame-wise latent alignment between the input speech and output tokens and predicts the target
sequence based on a strong conditional independence assumption (Graves et al., 2006), it can be
viewed as an early-stage realization of NAR ASR models. In (Chan et al., 2020), Imputer was
proposed to iteratively generate a new CTC alignment based on mask prediction. Besides, Mask-
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CTC (Higuchi et al., 2020, 2021) and Align-Refine (Chi et al., 2021) aimed to refine a token-level
CTC output or latent alignments with the mask prediction. In (Tian et al., 2020), Tian et al.
proposed to use the estimated CTC spikes to predict the length of target sequence and adopt the
encoder states as the input of decoder. However, most of aforementioned methods mainly focus on
sequence to sequence tasks, like NMT and single-speaker ASR, and it is hard to directly extended
to sequence to multi-sequence tasks, like multi-speaker ASR.

Multi-speaker ASR aims to predict the corresponding transcription for each speaker from
multiple speakers overlapping speech. Although lots of AR models were explored for multi-
speaker ASR, such as permutation invariant training (PIT) (Qian et al., 2018a) or deep clustering
(DPCL) (Menne et al., 2019) based hybrid system and recurrent neural network (RNN) or Trans-
former based end-to-end model models (Seki et al., 2018; Chang et al., 2019a, 2020; Kanda et al.,
2020a; von Neumann et al., 2020b), few attempts have been made to realize NAR training. In this
study, we revisit the proposed conditional chain based methods (von Neumann et al., 2019; Shi
et al., 2020b,a; Fujita et al., 2020) and extend it to NAR multi-speaker ASR. By doing this, the
output of each speaker is predicted one-by-one by making use of both the mixed input as well as
previously-estimated conditional speaker features. In each prediction step, a CTC-based NAR en-
coder network is used to perform parallel computation. Since the performance of CTC may suffer
a severe degradation due to the conditional independence assumption, we also explore adopting
an advanced Conformer encoder (Gulati et al., 2020) architecture to capture both local and global
acoustic dependencies and an additional intermediate loss (Lee and Watanabe, 2021) as a regu-
larization function. Finally, while the original conditional chain model takes the token-level CTC
alignments as the “hard" conditional speaker features, we propose to use “soft" conditions which
are latent feature representations extracted after the last encoder layer. We evaluate the effective-
ness of our model on two multi-speaker ASR benchmarks, WSJ0-Mix and LibriMix. Both results
outperform other NAR models with a minor increment of latency and even achieve comparable
results with the AR models.

6.2 E2E SIMO ASR with conditional chain

End-to-end models proposed in previous chapter 5 mainly focus on an AR strategy, which will
be cumbered with a complex computation and large latency problems. Although an encoder-only
CTC framework can be regarded as a NAR model, the system may be susceptible to performance
degradation due to the conditional independence assumption. In this study, we revisit our pro-
posed conditional speaker chain based method for NAR multi-speaker ASR. The improved model
consists of a conditional speaker chain module and Conformer CTC encoders. While the condi-
tional speaker chain explicitly models the relevance between outputs of different iterations, the
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Conformer CTC aims to conduct NAR computation in each single step. The total inference steps
are restricted to the number of mixed speakers. In addition, we also explore incorporating an
intermediate CTC loss as a regularization function to further improve the system performance.

Conformer Encoder

Conformer encoder (Gulati et al., 2020) is a stacked multi-block architecture, which includes a
multihead self-attention (MHSA) module, a convolution (CONV) module, and a pair of position-
wise feed-forward (FNN) module in the Macaron-Net style. While the MHSA learns the global
context, the CONV module efficiently captures the local correlations synchronously. Since the
Conformer encoder has shown consistent improvement over a wide range of end-to-end speech
processing applications (Guo et al., 2021a), we expect it to compensate for the modeling capacity
of CTC and improve the system performance.

Intermediate CTC Loss

In (Lee and Watanabe, 2021), researchers proposed a simple but efficient auxiliary loss function
for CTC based ASR models, named intermediate CTC loss. The main idea of intermediate CTC
loss is to choose an intermediate layer within the encoder network and induce a sub-network by
skipping all higher layers after the selected layer. By computing the additional CTC loss w.r.t the
output of intermediate layer, the sub-network relies more on the lower layers instead of the higher
layers, which can regularize the model training. Choosing the m-th layer from a L-layer encoder
network, its output can be defined as Hk

m. Thus, the final loss of our model becomes:

L =
K∑
k=1

(
(1− λ)LCTC(G

k,Yπ(k))+

λLInterCTC(H
k
m,Y

π(k))
)
,

(6.1)

where λ refers to the weight of intermediate loss and k ∈ [1, . . . , K] is the speaker index. π(k)

represents the corresponding value at position k of the permutation. In this work, we set λ equals
to 0.1 and choose a middle layer of the EncoderRec as the intermediate layer (m = L/2).

Conditional Chain Model

Fig. 6.1 shows an overview of our model. Different from the AR models described in chapter 5,
we replace the SD encoders with a conditional speaker chain module (CondChain) and predict the
output of each speaker one-by-one. With a hidden mixture representation H computed in Eq. (5.1),
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Figure 6.1: A overview of proposed conditional speaker chain based Conformer CTC model for
multi-speaker ASR. This figure shows a training procedure of a 3-speaker mixed waveform. The
parameters of blocks with the same name are shared.

the CondChain module extracts each speaker’s speech representation by taking advantage of both
the mixture representation H and the previously-estimated high-level embedding Gk−1:

Hk = CondChain(H,Embed(Gk−1)), k = 1, . . . , K, (6.2)

where Gk−1, obtaining from the EncoderRec output for previous speaker, can be viewed as the
speaker condition. The Embed module is a multi-layer fully connected layer aiming to project
the linguistic sequence Gk−1 into the acoustic sub-space. In the first step, an all-zero vector will
be initialized as the speaker condition. Besides, the long short-term memory (LSTM) layer also
helps to provide all historic speaker conditions by the flowing states. With this design, we can
successfully perform a NAR computation in each step and the total inference steps is a constant
number equaling to the number of mixed speakers. Moreover, compared with other multi-speaker
ASR methods, which have to fix the number of mixed speakers in the training data, our model can
handle variable mixed data and further improve the performance. Algorithm 1 outlines the training
procedure of our proposed model.
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Algorithm 1: Training procedure of our model
1 Initialize the model parameters θθθ and a all-zero condition G0 for the first step ;
2 Given hyper parameters: learning rate α, InterCTC loss weight λ ;
3 Loading pre-trained model or not ;
4 while Epoch < TotalEpoch do
5 Given the input mixture speech waveform x = {x1, . . . , xT} and the corresponding

transcriptions Y = {Y1, . . . ,YK} of K different speakers ;
6 Forward the Encodermix with x and obtain the mixture hidden representations of H

using Eq. (5.1);
7 for (k = 1; k < K; k++) do
8 Concatenate the H with previously-estimated condition Gk−1 and forward the

LSTM layer as in Eq. (6.2);
9 Forward the Encoderrec with the output of LSTM layer;

10 The output of Encoderrec is used to compute the LossCTC as well as determine the
best permutation of transcriptions as in Eq. (5.4);

11 The output of the intermediate layer in Encoderrec is used to compute the
LossInterCTC with above best transcription permutations;

12 Gi will also be regarded as the condition for the prediction of the next speaker;
13 end
14 Update the model using Eq. (6.1);
15 Epoch = Epoch + 1;
16 end
17 return θθθ

6.3 Experiments

Setup

The proposed models are evaluated on two commonly used simulated multi-speaker speech datasets
which have been described in Sec. 1.4.3.
WSJ0-Mix. The dataset can be divided into two categories, namely the 2-speaker scenario and
3-speaker scenario. In the 2-speaker scenario, we use the common benchmark called WSJ0-2mix
dataset introduced by (Hershey et al., 2016a) with a sampling rate of 16 KHz. The training and
validation sets are generated by randomly selecting two utterances from different speakers from
the WSJ0 si_tr_s partition, containing around 30 h and 10 h speech mixture, respectively. To mix
the utterances, various signal-to-noise ratios (SNRs) are uniformly chosen from [0, 10] dB. For the
test set, the mixture is similarly generated using utterances from the WSJ0 validation set si_dt_05
and evaluation set si_et_05, resulting in 5 h speech mixtures. For the 3-speaker experiments, simi-
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lar methods are adopted except the number of speakers is three.
LibriMix. Our methods are additionally tested on LibriMix, a recent open-source dataset for multi-
speaker speech processing. The LibriMix data is created by mixing the source utterances randomly
chosen from different speakers in LibriSpeech (Panayotov et al., 2015) and the noise samples from
WHAM! (Wichern et al., 2019). The SNRs of the mixtures are normally distributed with a mean
of 0 dB and a standard deviation of 4.1 dB. LibriMix is composed of 2-speaker or 3-speaker mix-
tures, with or without noise conditions. For fast evaluation, we conducted our experiments on the
train-100 subset from Libri2Mix, which contains around 100 h of 2-speaker mixture speech.

All the proposed models are implemented with ESPnet (Watanabe et al., 2018). We followed
the ESPnet recipe to set the hyper-parameters of the model. For all Transformer- and Conformer-
based models, EncoderMix is comprised of two CNN blocks and EncoderRec contains 8 Trans-
former or Conformer layers, depending on the model choices. For non-conditional chain models,
the EncoderSD is a 4-layer Transformer or Conformer network, while the CondChain is a 1-layer
LSTM network with 1024 hidden units. The common parameters of the Transformer and Con-
former layers are: dhead = 4, datt = 256, dff = 2048 for the number of heads, dimension of attention
module, and dimension of feed-forward layer, respectively.

Results on WSJ0-Mix

In this part, we present the performance on the WSJ0-Mix corpus, which is shown in Table 6.1.
To evaluate the effectiveness, we compare our conditional speaker chain based Conformer CTC
model with a variety of systems including the hybrid systems, PIT-based end-to-end AR and NAR
models, and conditional speaker chain based Transformer models. Since all PIT-based models
are unable to deal with variable numbers of speakers, only the results of 2-speaker scenario are
presented. To make a fair comparison with NAR methods, the end-to-end AR models are decoded
only with greedy search.

For the PIT-based AR models, PIT-Conformer (5) shows the best performance, achieving a
word error rate (WER) of 22.4% on the WSJ0-2mix test set. When comparing the NAR mod-
els, PIT-Transformer-CTC (6), which is only trained with CTC loss, suffers a dramatic perfor-
mance degradation (50.3%). There is no doubt that a pure CTC based encoder network can hardly
model different speaker’s speech simultaneously. When applying the conditional speaker chain
based method, both model (7) and model (8) are better than PIT model. By combining the single
and multi-speaker mixture speech, model (8) shows a significant improvement, whose WER is
29.5% on the WSJ0-2mix test set. For our conditional Conformer-CTC model (9), we explore two
types of conditional features, including the “hard" CTC alignments and “soft" latent features after
EncoderRec. Both approaches are better than above models with only a ∼0.07 seconds increase of
latency and applying the “soft" features achieves a WER of 24.4%. By incorporating the interme-
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Table 6.1: Word error rates (WERs) and real time factor (RTF) for multi-speaker speech recogni-
tion on WSJ0-Mix dataset. The RTF results are obtained by averaging the results of 5 decoding
processes on CPUs.

Models Training Data WER (%) RTFWSJ0-2mix WSJ0-3mix
Hybrid model (w/ beam search)

(1) PIT-DNN-HMM (Qian et al., 2018a) WSJ0-2mix 28.2 - -
(2) DPCL + DNN-HMM (Menne et al., 2019) WSJ0-2mix 16.5 - -
E2E Autoregressive Model (w/ greedy search)

(3) PIT-RNN (Chang et al., 2019a)† WSJ0-2mix 51.4 - 1.4293
(4) PIT-Transformer (Shi et al., 2020a)† WSJ0-2mix 37.0 - 1.4695
(5) PIT-Conformer WSJ0-2mix 22.4 - 1.3970
E2E Non-autoregressive Model (w/ greedy search)

(6) PIT-Transformer-CTC WSJ0-2mix 50.3 - 0.1091
(7) Conditional-Transformer-CTC (Shi et al., 2020a)† WSJ0-2mix 41.0 - 0.1293
(8) Conditional-Transformer-CTC (Shi et al., 2020a)† WSJ0-1&2&3mix 29.4 53.3 -
(9) Conditional-Conformer-CTC WSJ0-2mix 25.3 - 0.1824

+ hidden feature conditions WSJ0-2mix 24.4 - 0.1758
+ InterCTC loss WSJ0-2mix 22.3 - 0.1854

(10) Conditional-Conformer-CTC WSJ0-1&2&3mix 23.4 39.1 0.1771 / 0.2096
+ hidden feature conditions WSJ0-1&2&3mix 22.2 38.6 0.1741 / 0.2241
+ InterCTC loss WSJ0-1&2&3mix 19.9 34.3 0.1732 / 0.2088

†: The results are obtained by the same implementation in (Shi et al., 2020a) but w/o beam search and LM rescoring. When using both beam
search and LM rescoring, the results are 14.9% / 37.9% of model (8) and 12.4% / 26.6% of model (10).
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Table 6.2: Word error rates (WERs) for multi-speaker speech recognition on LibriMix dataset.

Models Dev Test
E2E Autoregressive Model (w/ greedy search)

(1) PIT-Transformer 34.8 36.0
E2E Non-autoregressive Model (w/ greedy search)

(2) PIT-Transformer-CTC 45.2 45.9
(3) Conditional-Transformer-CTC 32.7 33.3
(4) Conditional-Conformer-CTC + both 24.5 24.9

Table 6.3: Correlation between the hypothesis (Hyp.) generation order and the source signal (Src.)
length order on WSJ0-2mix.

Hyp.
Src.

long short

1st output 2749 251
2nd output 251 2749

diate loss, we can obtain a superior WER of 22.3%, reaching a strong AR PIT-Conformer model
(5). However, after combining latent feature conditions and the intermediate CTC loss, we don’t
get a further improvement. Finally, we also train our model on the data of variable numbers of
speakers and obtain the best WERs of 19.9% and 34.3%, which are even better than model (5)
with only 1/7 latency.

We further investigate the correlation between the hypothesis generation order and the source
signal length (from long to short), as shown in Table 6.3. We find that only 251/3000 utterances do
not follow the order on 2-speaker scenario and the average Spearman’s Coefficient is 0.833.

Results on LibriMix

The results on LibriMix are summarized in Table 6.2. From the table, we can see a quite similar
trend as the WSJ0-Mix results in the previous subsection. Our Conditional-Conformer-CTC with
both latent features conditions and intermediate CTC loss obtains the best WERs of 24.5% and
24.9% on dev and test sets, respectively, which yields up to 25% relative improvement compared
with the Conditional-Transformer-CTC model.
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6.4 Conclusions

In this chapter, we revisit our proposed conditional speaker chain based multi-speaker ASR by
enhancing the NAR ability. Our improved model mainly includes a conditional speaker chain
(CondChain) module and Conformer CTC based encoders. To boost the performance of a pure
Conformer CTC encoder, we also investigate two approaches, which are using the “soft" latent
features from the encoder output as speaker conditions and including an additional intermediate
CTC loss. We evaluate the effectiveness of our model on two multi-speaker benchmarks, WSJ0-
Mix and LibriMix. Our model shows consistent improvement over other models with only a slight
increment of RTF and even better than a strong AR model in some cases.

While the conditional chain model successfully removes the requirement of knowing the num-
ber of speakers in the overlapping speech, it still relies on the assumption that the input speech is
mostly overlapped, eliminating the need to detect when the overlap starts. In the next chapter, we
will address this limitation by investigating methods to handle scenarios where the overlap onset
is not predetermined, further enhancing the flexibility and applicability of our multi-speaker ASR
system.
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Chapter 7

GTCe: monaural multi-speaker E2E ASR
towards real speech overlaps

Summary

In the previous chapter (Ch. 5), we introduced an E2E ASR model tailored for recognizing speech
signals featuring multiple overlapping speakers. However, the model operated under specific con-
straints to simplify the task, which may not fully reflect the complexities of real-world scenarios.
Firstly, it assumed a fixed number of speakers in the output, limiting its flexibility in accommodat-
ing varying speaker counts. Secondly, it presumed that speech overlap begins from the beginning
of the utterance, which may not align with sparse speech overlapping patterns encountered in prac-
tice. In Ch. 6, we addressed the first constraint by introducing a more flexible model capable of
handling varying speaker counts in overlapping speech scenarios. However, sequentially generat-
ing transcriptions for each speaker proved computationally intensive and did not fully capture the
nuances of speech overlaps.

In this chapter, we present a novel non-modular approach designed to handle multi-speaker
overlapping speech with a single output sequence. Our model assumes that tokens (e.g., subwords)
from multiple speakers are sparsely distributed and ordered by activation time, reflecting real-world
speech overlap patterns. To achieve this, we propose employing an extended Graph-based Tempo-
ral Classification (GTC-e) loss, which enables us to train two distinct predictions—one for speakers
and one for ASR outputs—aligned at the frame level. This innovative approach represents a sig-
nificant step towards improving the flexibility and accuracy of E2E ASR models in transcribing
complex, multi-speaker speech with overlapping segments.
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Xuankai Chang, Niko Moritz, Takaaki Hori, Shinji Watanabe, Jonathan Le Roux.
ICASSP 2022. Extended Graph Temporal Classification for Multi-Speaker End-to-
End ASR.

7.1 Introduction

In recent years, dramatic progress has been achieved in automatic speech recognition (ASR), in
particular thanks to the exploration of neural network architectures that improve the robustness and
generalization ability of ASR models (Qian et al., 2016; Graves et al., 2013; Vaswani et al., 2017;
Gulati et al., 2020; Guo et al., 2021a). The rise of end-to-end ASR models has simplified ASR
architecture with a single neural network, with frameworks such as the connectionist temporal
classification (CTC) (Graves et al., 2006), attention-based encoder-decoder model (Chan et al.,
2016; Kim et al., 2017b; Watanabe et al., 2017), and the RNN-Transducer model (Graves, 2012).

Graph modeling has traditionally been used in ASR for decades. For example, in hidden
Markov model (HMM) based systems, a weighted finite-state transducer (WFST) is used to com-
bine several modules together including a pronunciation lexicon, context-dependencies, and a lan-
guage model (LM) (Mohri et al., 2002; Hori et al., 2007). Recently, researchers proposed to use
graph representations in the loss function for training deep neural networks (Hannun et al., 2020).
In (Moritz et al., 2021), a new loss function, called graph-based temporal classification (GTC),
was proposed as a generalization of CTC to handle sequence-to-sequence problems. GTC can take
graph-based supervisory information as an input to describe all possible alignments between an
input sequence and an output sequence, for learning the best possible alignment from the training
data. As an example of application, GTC was used to boost ASR performance via semi-supervised
training (Lamel et al., 2002; Huang et al., 2013) by using an N-best list of ASR hypotheses that
is converted into a graph representation to train an ASR model using unlabeled data. However,
in the original GTC, only posterior probabilities of the ASR labels are trained, and trainable la-
bel transitions are not considered. Extending GTC to handle label transitions would allow us to
model further information regarding the labels. For example, in a multi-speaker speech recognition
scenario, where some overlap between the speech signals of multiple speakers is considered, we
could use the transition weights to model speaker predictions that are aligned with the ASR label
predictions at frame level, such that when an ASR label is predicted we can also detect if it belongs
to a specific speaker. Such a graph is illustrated in Fig. 7.1.

In the last few years, several multi-speaker end-to-end ASR models have been proposed. In
(Seki et al., 2018; Chang et al., 2019a), permutation invariant training (PIT) (Hershey et al., 2016a;
Isik et al., 2016; Yu et al., 2017b) was used to compute the loss by choosing the hypothesis-
reference assignment with minimum loss. In (Kanda et al., 2020b), an attention-based encoder-
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Figure 7.1: Illustration of a GTC-e graph for multi-speaker ASR. In the graph, the nodes represent
the tokens (words) from the transcriptions. The edges indicate the speaker transitions.

decoder is trained to generate the hypothesis sequences of different speakers in a predefined order
based on heuristic information, a technique called serialized output training (SOT). In (Shi et al.,
2020a; Guo et al., 2021b), the model is trained to predict the hypothesis sequence of one speaker in
each iteration while utilizing information about the previous speakers’ hypotheses as additional in-
put. These existing multi-speaker end-to-end ASR models, which have showed promising results,
all share a common characteristic in the way that the predictions can be divided at the level of a
whole utterance for each speaker. For example, in the PIT-based methods, label sequences for dif-
ferent speakers are supposed to be output at different output heads, while in the SOT-/conditional-
based models, the prediction of the sequence for a speaker can only start when the sequence of the
previous speaker completes.

In contrast to previous works, in this chapter, the multi-speaker ASR problem is not implicitly
regarded as a source separation problem using separate output layers for each speaker or cascaded
processes to recognize each speaker one after another. Instead, the prediction of ASR labels of
multiple speakers is regarded as a sequence of acoustic events irrespective of the source shown as
in Fig. 7.1, and the belonging to a source is predicted separately to distinguish if an ASR label
was uttered by a given speaker. We propose to use an extended GTC (GTC-e) loss to accomplish
this, which allows us to train two separate predictions, one for the speakers and one for the ASR
outputs, that are aligned at the frame level. In order to exploit the speaker predictions efficiently
during decoding, we also modify an existing frame-synchronous beam search algorithm to adapt it
to GTC-e. The proposed model is evaluated on a multi-speaker end-to-end ASR task based on the
LibriMix data, including various degrees of overlap between speakers. This work proposes a novel
approach to address multi-speaker ASR by considering the ASR outputs of multiple speakers as a
sequence of intermingled events with a chronologically meaningful ordering.
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7.2 Extended GTC Algorithm

In this section, we describe the extended GTC loss function. For the convenience of understanding,
we mostly follow the notations in the previous GTC study (Moritz et al., 2021).

GTC was proposed as a loss function to address sequence-to-sequence problems. We assume
the input of the neural network is the mixture audio waveform x. We denote it as x = (x1, . . . , xT ),
where T stands for the length. The output is a sequence of length L, Ŷ = (ŷ1, . . . , ŷL), where ŷl

denotes the posterior probability distribution over an alphabet V , and the j-th class’s probability is
denoted by ŷlj . We use G to refer to a graph constructed from references. Then the GTC function
computes the posterior probability for graph G by summing over all alignment sequences in G:

p(G|x) =
∑

π∈S(G,L)

p(π|x), (7.1)

where S represents a search function that unfolds G to all possible node sequences of length L

(not counting non-emitting start and end nodes), π denotes a single sequence of nodes, and p(π|x)
is the posterior probability for π given the input x. The loss function is defined as the following
negative log likelihood:

L = − ln p(G|x). (7.2)

Following (Moritz et al., 2021), we index the nodes of graph G using g = 0, . . . , G+1, sorting
them in a breadth-first search manner from 0 (non-emitting start node) to G+ 1 (non-emitting end
node). We denote by v(g) ∈ V the output symbol observed at node g, and by W(g,g′) a deterministic
transition weight on edge (g, g′). In addition, we denote by πl:l′ = (πl, . . . , πl′) the node sub-
sequence of π from time index l to l′. Note that π0 and πL+1 correspond to the non-emitting start
and end nodes 0 and G+ 1, respectively.

We modify GTC such that the neural network can generate an additional posterior probability
distribution, ωl

I(g,g′), representing a transition weight on edge (g, g′) at time l, where I(g, g′) ∈ I
and I is the index set of all possible transitions. The posterior probabilities are obtained as the
output of a softmax. The forward probability, αl(g), represents the total probability at time l of the
sub-graph G0:g of G containing all paths from node 0 to node g. It can be computed for g = 1, . . . , G

using

αl(g) =
∑

π∈S(G,L):
π0:l∈S(G0:g ,l)

l∏
τ=1

Wπτ−1,πτω
τ
I(πτ−1,πτ )y

τ
v(πτ ). (7.3)
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Note that α0(g) equals 1 if g corresponds to the start node and it equals 0 otherwise. The backward
probability βl(g) is computed similarly, using

βl(g) =
∑

π∈S(G,L):
πl:L+1∈S(Gg:G+1,L−l+1)

[
yLv(πL)

L−1∏
τ=l

Wπτ ,πτ+1ω
τ+1
I(πτ ,πτ+1)

yτv(πτ )

]
, (7.4)

where Gg:G+1 denotes the sub-graph of G containing all paths from node g to node G+1. Similar to
GTC or CTC, the computation of α and β can be efficiently performed using the forward-backward
algorithm.

The network is optimized by gradient descent. The gradients of the loss with respect to the
label posteriors ylj and to the corresponding unnormalized network outputs ht

j before the softmax
is applied, for any symbol j ∈ V , can be obtained in the same way as in CTC and GTC, where
the key idea is to express the probability function p(G|x) at l using the forward and backward
variables:

p(G|x) =
∑
g∈G

αl(g)βl(g)

yle(g)
. (7.5)

The derivation of the gradient of the loss with respect to the network outputs for the transition
probabilities wl

i, for a transition i ∈ I, is similar but with some important differences. Here, the
key is to express p(G|x) at l as

p(G|x) =
∑

(g,g′)∈G

αl−1(g)Wg,g′ω
l
I(g,g′)βl(g

′). (7.6)

The derivative of p(G|x) with respect to the transition probabilities ωl
i can then be written as

∂p(G|x)
∂ωl

i

=
∑

(g,g′)∈Φ(G,i)

αl−1(g)Wg,g′βl(g
′), (7.7)

where Φ(G, i) = {(g, g′) ∈ G : I(g, g′) = i} denotes the set of edges in G that correspond
to transition i. To backpropagate the gradients through the softmax function of wl

i, we need the
derivative with respect to the unnormalized network outputs hl

i before the softmax is applied, which
is

−∂ ln p(G|x)
∂hl

i

= −
∑
i′∈I

∂ ln p(G|x)
∂ωl

i′

∂ωl
i′

∂hl
i

. (7.8)

The gradients for the transition weights are derived by substituting (7.7) and the derivative of the
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softmax function ∂ωl
i′/∂h

l
i = ωl

i′δii′ − ωl
i′ω

l
k into (7.8):

−∂ ln p(G|x)
∂hl

i

= ωl
i

ωl
i

p(G|x)
∑

(g,g′)∈Φ(G,i)

αl−1(g)Wg,g′βl(g
′). (7.9)

We used the fact that

−
∑
i′∈I

∂ ln p(G|x)
∂ωl

i′
ωl
i′δii′ = −

∂ ln p(G|x)
∂ωl

i

ωl
i,

= − ωl
i

p(G|x)
∑

(g,g′)∈Φ(G,i)

αl−1(g)Wg,g′βl(g
′), (7.10)

and that ∑
i′∈I

∂ ln p(G|x)
∂ωl

i′
ωl
i′ω

l
i

=
∑
i′∈I

ωl
i′ω

l
i

p(G|x)
∑

(g,g′)∈Φ(G,i′)

αl−1(g)Wg,g′βl(g
′),

=
ωl
i

p(G|x)
∑
i′∈I

∑
(g,g′)∈Φ(G,i′)

αl−1(g)Wg,g′ω
l
i′βl(g

′),

=
ωl
i

p(G|x)
∑

(g,g′)∈G

αl−1(g)Wg,g′ω
l
I(g,g′)βl(g

′),

=
ωl
i

p(G|x)p(G|x) = ωl
i. (7.11)

For efficiency reason, we implemented the GTC objective in CUDA as an extension for Py-
Torch.

7.3 E2E SIMO ASR with GTCe

We apply the extended GTC approach to multi-speaker ASR, which is considered as a challenging
task in the field of speech processing. One of the main difficulties of multi-speaker ASR stems
from the necessity to find a way to train a network that will be able to reliably group tokens from
the same speaker together. Most existing approaches attempt to handle this problem either by
splitting the speakers across multiple outputs (Yu et al., 2017b; Chang et al., 2019a) or by making
predictions sequentially speaker by speaker (Kanda et al., 2020b; Shi et al., 2020a; Guo et al.,
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2021b). The ambiguity in how to assign a given output to a given reference at training time is
typically broken either by using permutation invariant training or by using an arbitrary criterion
such as assigning an output to the speaker with highest energy or with the earliest onset. We
here take a completely different approach, motivated by our noticing that a graph can be a good
representation for overlapped speech, since it can represent the tokens at each node while the
speaker identity can also be labeled at each edge. More specifically, given the transcriptions of
all the speakers in an overlapped speech, we can convert them to a sequence of chronologically
ordered linguistic tokens where each token has a speaker identity. The temporal alignment of
tokens can be acquired by performing CTC alignment on each isolated clean speech, which is like
a sequence of sparse spikes, as shown in Fig. 7.2, and merging them based on their time occurrence.
Note here that this assumes that the activation period of linguistic tokens from different speakers
are not completely the same. In practice, this condition is often satisfied, although overlaps do
occur in some small percentage of frames. Based on this, we can construct a graph for multi-
speaker ASR for each overlapped speech mixture. We show a simple example graph in Fig. 7.1.
In this setup, the alphabet V for the node labels consists of all the ASR tokens, and the set of
transitions I consists of the speaker indices up to the maximum number of speakers.

As in GTC(Moritz et al., 2021), we can apply a beam search algorithm during decoding. Since
the output of GTC-e contains tokens from multiple speakers, we need to make modifications to
the existing time-synchronous prefix beam search algorithm (Hannun et al., 2014b; Moritz et al.,
2019). The modified beam search is shown in Algorithm 2. The main modifications are three
fold. First, we apply the speaker transition probability in the score computation. Second, when
expanding the prefixes, we need to consider all possible speakers. Third, when computing the LM
scores of a prefix, we need to consider the sub-sequences of different speakers separately.

7.4 Experiment

Setup

We mainly use the LibriMix (Cosentino et al., 2020) data to conduct experiments. LibriMix, as
described in Sec. 1.4.3, contains multi-speaker overlapped speech simulated by mixing utterances
randomly chosen from different speakers in the LibriSpeech corpus (Panayotov et al., 2015). For
fast adaption, we use the 2-speaker train_clean_100 subset of LibriMix. The original LibriMix
dataset generates fully overlapped speech by default, which means that one utterance is 100%
interfered by the other (assuming they have the same length). However, in realistic conditions,
the overlap ratio is usually small (Çetin and Shriberg, 2006; Chen et al., 2020). To simulate such
conditions, we use the same utterance selections and signal to noise ratio (SNR) as in LibriMix
with smaller overlapping ratios of 0% and 40% to generate additional training data subsets.
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Figure 7.2: An example of speaker transition posterior predicted by GTC. The input 2-speaker
utterance’s overlap ratio is about 40%. The figure shows the predicted (solid line) and ground truth
(dashed line) activations.

For labels, we use the linguistic token sequence of all the speakers in the mixture. First, we
generate the token alignments given each source utterance based on the Viterbi alignment of CTC,
which indicates the rough activation time of every token. Then we combine the alignments of two
speakers by ordering the tokens monotonically along the time axis. In order to reduce the concur-
rent activations of tokens from different speakers, we make use of byte pair encodings (BPE) as our
token units. In our experiments, we use the BPE model with 5000 tokens trained on LibriSpeech
data. The concurrent activations of tokens for two speakers are relatively rare, at the rate of 6%
and 2% on fully and 40% overlapping ratio training subsets respectively. When these concurrent
activations occur, we use a predefined order which makes the label from the speaker with highest
energy over the whole utterance come first (allowing multiple permutations in the label graph will
be considered in future work).

For ASR models, we simply reused the encoder architecture in PIT-based multi-speaker end-
to-end speech recognition models, for the details of which we shall refer the reader to (Chang et al.,
2019a). In the model, there are 2 CNN blocks to encode the input acoustic feature, followed by 2
sub-networks each of which has 4 Transformer layers to extract the token and speaker information,
respectively. Then 8 shared Transformer layers are used to convert each of the two sequences to
some representation. For the two output sequences, one is regarded as token hidden representation
and the other one is regarded as speaker prediction. We use a normal single-speaker ASR model
trained with CTC (single-speaker CTC) and the original end-to-end PIT-ASR model (Chang et al.,
2019a) trained with CTC loss only (PIT-CTC) as our baselines.

Greedy search results

In this section, we describe the ASR performance of the baselines and the proposed GTC-e model
using greedy search decoding. The word error rates (WERs) are shown in Table 7.1. From the ta-
ble, we can see that the proposed model is better than the normal ASR model. Our proposed model
also achieves a performance close to the PIT-CTC model, especially in the low-overlap ratio cases
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(0%, 20%, 40%). Note that although our model predicts the speaker indices, there exists speaker
prediction errors. We further check the oracle token error rates (TER) of PIT-CTC and GTC-e, by
only comparing the tokens from all output sequences against all reference sequences, regardless of
speaker assignment. As shown in Table 7.2, we obtain averaged test TERs for PIT-CTC and GTC-e
of 22.8% and 25.0% respectively, from which we can tell that the token recognition performance
is comparable. It indicates that we should consider how to improve the speaker prediction in the
next step.

We also show an example of CTC ground truth token alignment together with the speaker
transition posterior predictions by our model in Fig. 7.2. From the figure, we can see that our
GTC-e model can accurately predict the activations of most tokens.

Beam Search Results

We here present the ASR performance of beam search decoding, shown in Table 7.3. For the
language model, we use a 16-layer Transformer-based LM trained on full LibriSpeech data with
external text. The beam size of GTC-e is set to 40, while that of PIT-CTC is cut to half to keep the
average beam size of every speaker the same. With the beam search, the word error rates are greatly
improved. Our approach obtains promising results which are close to the PIT-CTC baseline, albeit
with a slightly worse WER. In addition to the average WERs, the WERs for each speaker are also
shown in Table 7.4, confirming that the model is not biased towards a particular speaker output.

7.5 Conclusion

In this chapter, we propose GTC-e, an extension of the graph-based temporal classification method
using neural networks to predict posterior probabilities for both labels and label transitions. This
extended GTC framework opens the way to a wider range of applications. As an example applica-
tion, we explored the use of GTC-e for multi-speaker end-to-end ASR, a notably challenging task,
leading to a multi-speaker ASR system that transcribes speech in a very similar way to single-
speaker ASR. We have performed preliminary experiments on the LibriMix 2-speaker dataset,
showing promising results demonstrating the feasibility of the approach.

The GTC-e method has proven effective in addressing partially overlapping speech. Due to
the sparse activation of tokens, it also shows potential for handling a flexible number of speakers
without requiring prior knowledge of the number of speakers, thus eliminating initial assumptions.
This concludes our investigation into the Single-Input Multi-Output (SIMO) scenario. In the next
part, we will delve into the ASR of Multi-Input Multi-Output (MIMO). MIMO can lead to better
speech recognition accuracy and thus wider applications in real scenraio.
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Algorithm 2: The modified time-synchronous prefix beam search for extended GTC.
We use Aprev to store every prefix l at every time step. We denote the alphabet by V
and number of speakers by K. We denote the symbol posterior by p(·) and the speaker
transition posterior by pω(·).
1 ℓ← ((⟨sos⟩ , 0) , );
2 pb(ℓ)← 1, pnb(ℓ)← 0;
3 Aprev ← {ℓ};
4 for t=1,. . . ,T do
5 Anext ← {};
6 for ℓ in Aprev do
7 for c in V do
8 if c = blank then
9 pb(ℓ)← p(blank;xt)p

ω(blank;xt)(pb(ℓ;x1:t−1) + pnb(ℓ;x1:t−1));
10 add ℓ to Anext;
11 else
12 for s = 1, . . . , K do ▷ *Loop over speaker index
13 ℓ+ ← append (c, s) to ℓ ;
14 if (c, s) = ℓend then
15 pnb(ℓ

+;x1:t)← p(c;xt)pb(ℓ;x1:t−1)p
ω(s;xt);

16 pnb(ℓ;x1:t)← p(c;xt)pnb(ℓ;x1:t−1)p
ω(s;xt);

17 else
18 pnb(ℓ

+;x1:t)← p(c;xt)(pb(ℓ;x1:t−1) + pnb(ℓ;x1:t−1))p
ω(s;xt);

19 end
20 if ℓ+not inAprev then
21 pb(ℓ

+;x1:t)←
p(blank;xt)(pb(ℓ

+;x1:t−1) + pnb(ℓ
+;x1:t−1))p

ω(blank;xt) ;
22 pnb(ℓ

+;x1:t)← p(c;xt)pnb(ℓ
+;x1:t−1) · pω(s;xt);

23 end
24 add ℓ+ to Anext

25 end
26 end
27 end
28 end
29 Aprev ← B most probable prefixes in Anext ▷ Track the LM scores of different speakers

separately.
30 end
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Table 7.1: WER(%) comparison between baselines and the GTC-e model using greedy search
decoding.

0% overlap 20% overlap 40% overlap Full overlap

Model dev test dev test dev test dev test

single-speaker CTC 34.6 34.1 37.4 37.0 45.9 45.3 76.3 75.9
PIT-CTC 18.8 19.2 19.9 22.3 22.9 23.5 32.9 33.8
GTC-e 20.5 21.1 22.6 23.3 26.3 27.3 44.6 45.8

Table 7.2: Oracle TER(%) comparison between PIT-CTC and GTC-e.

0% overlap 20% overlap 40% overlap Full overlap Average

Model dev test dev test dev test dev test dev test

PIT-CTC 18.5 18.4 19.4 19.5 22.0 22.4 30.1 30.9 22.5 22.8
GTC-e 19.8 20.1 21.1 21.4 24.1 24.6 33.4 33.9 24.6 25.0

Table 7.3: WER(%) comparison between PIT-CTC and GTC-e using beam search decoding.

0% overlap 20% overlap 40% overlap Full overlap

Model dev test dev test dev test dev test

PIT-CTC 11.7 12.4 12.6 13.4 16.3 18.1 24.0 26.3
GTC-e 14.8 15.5 16.5 17.2 19.5 20.4 32.7 33.7

Table 7.4: WER(%) for each speaker with GTC-e using beam search decoding.

0% overlap 20% overlap 40% overlap Full overlap

Speaker dev test dev test dev test dev test

spk1 15.0 15.1 17.0 17.3 20.6 21.1 33.0 33.7
spk2 14.7 15.7 15.9 17.1 18.4 19.7 32.3 33.7
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Part IV

E2E-ASR for Multi-channel-Input
Multi-speaker-Output (MIMO)
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Chapter 8

MIMO-Speech-RNN: Multi-channel
multi-speaker E2E ASR

Summary

In this part, we address the challenging problem of multi-channel multi-speaker speech recogni-
tion, which has not been explored in previous chapters. Our focus shifts to introducing a novel
end-to-end model called MIMO-Speech designed specifically for this task. The MIMO-Speech
model is tailored to process speech signals captured by a microphone array and generate corre-
sponding text sequences for each individual speaker present in the input. The overview of the
model is shown in Fig. 8.1. To effectively address the speech separation task inherent in multi-
channel multi-speaker scenarios, the model incorporates a neural beamformer as part of its front-
end. Notably, our proposed approach adopts the end-to-end modular-based design and enables
training without the need for an explicit signal reconstruction criterion.

The key advantage of the MIMO-Speech model lies in its differentiability, allowing optimiza-
tion through an ASR loss as the target objective. By leveraging the power of neural networks,
our model demonstrates promising capabilities in tackling the complex and challenging task of
multi-channel multi-speaker speech recognition.

Chang, Xuankai, Wangyou Zhang, Yanmin Qian, Jonathan Le Roux, and Shinji Watan-
abe. ASRU 2019. MIMO-Speech: End-to-end multi-channel multi-speaker speech
recognition.
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Figure 8.1: Overview of the end-to-end MIMO model.

8.1 Introduction

The cocktail party problem, where the speech of a target speaker is entangled with noise or speech
of interfering speakers, has been a challenging problem in speech processing for more than 60 years
(Cherry, 1953). In recent years, there have been many research efforts based on deep learning
addressing the multi-speaker speech separation and recognition problems. These works can be
categorized into two classes depending on the type of input signals, namely single-channel and
multi-channel.

In the single-channel multi-speaker speech separation and recognition tasks, several tech-
niques have been proposed, achieving significant progress. One such technique is deep clustering
(DPCL) (Hershey et al., 2016a; Isik et al., 2016; Menne et al., 2019). In DPCL, a neural net-
work is trained to map each time-frequency unit to an embedding vector, which is used to assign
each unit to a source by a clustering algorithm afterwards. DPCL was then integrated into a joint
training framework with end-to-end speech recognition in (Settle et al., 2018), showing promis-
ing performance. Another approach called permutation-free training (Hershey et al., 2016a; Isik
et al., 2016) or permutation-invariant training (PIT) (Yu et al., 2017c; Kolbæk et al., 2017) relies on
training a neural network to estimate a mask for every speaker with a permutation-free objective
function that minimizes the reconstruction loss. PIT was later applied to multi-speaker automatic
speech recognition (ASR) by directly optimizing a speech recognition loss (Yu et al., 2017a; Qian
et al., 2018a) within a DNN-HMM hybrid ASR framework. In recent years, end-to-end models
have drawn a lot of attention in single-speaker ASR systems and shown great success (Graves and
Jaitly, 2014; Chan et al., 2016; Kim et al., 2017b; Hori et al., 2017). These models have simplified
the ASR paradigm by unifying acoustic, language, and phonetic models into a single neural net-
work. In (Seki et al., 2018; Chang et al., 2019b), joint CTC/attention-based encoder-decoder (Kim
et al., 2017b) end-to-end models were developed to solve the single-channel multi-speaker speech
recognition problem, where the encoder separates the mixed speech features and the attention-
based decoder generates the output sequences. Although significant performance improvements
have been achieved in the monaural case, there is still a large performance gap compared with that
of single-speaker speech recognition systems, making such models not yet ready for widespread
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application in real scenarios.
The other important case is that of multi-channel multi-speaker speech separation and recogni-

tion, where the input signals are collected by microphone arrays. Acquiring multi-channel data is
not so limiting nowadays, where microphone arrays are widely deployed in many devices. When
multi-channel data is available, the spatial information can be exploited to determine the speaker
location and to separate the speech with higher accuracy. Yoshioka et al (Yoshioka et al., 2018c)
proposed a method for performing multi-channel speech separation under the PIT framework.
A mask-based beamformer called the unmixing transducer was used to separate the overlapped
speech. Another method proposed by Wang et al (Wang et al., 2018) leverages the inter-channel
differences as spatial features combined with the single-channel spectral features as the input, to
separate the multi-channel data using the DPCL technique.

Previous works based on multi-channel multi-speaker input mainly focus on separation. In this
work, we propose an end-to-end multi-channel multi-speaker speech recognition system. Such a
sequence-to-sequence model is trained to directly map multi-channel input (MI) speech signals
where multiple speakers speak simultaneously, to multiple output (MO) text sequences, one for
each speaker. We refer to this system as MIMO-Speech. The recent research on single-speaker far-
field speech recognition has shown that neural beamforming techniques for denoising (Heymann
et al., 2016; Erdogan et al., 2016) can achieve state-of-the art results in robust ASR tasks (Menne
et al., 2016; Heymann et al., 2017; Minhua et al., 2019). Several works have shown that it is
feasible to design a totally differentiable end-to-end model by integrating the neural beamforming
mechanism and the sequence-to-sequence speech recognition together (Ochiai et al., 2017a; Braun
et al., 2018; Wang et al., 2019; Shanmugam Subramanian et al., 2019). (Ochiai et al., 2017b) further
shows that the neural beamforming function in a multi-channel end-to-end system can enhance the
signals. In light of this success, we redesigned the neural-beamformer front-end to allow it to
attend to multiple beams at different directions. After getting the separated signals, the log filter
bank features are extracted inside the neural network. Finally, a joint CTC/attention-based encoder-
decoder recognizes each feature stream. With this framework, the outputs of the beamformer in
the middle of the model can also be used as speech separation signals. During the training, a
data scheduling strategy using curriculum learning is specially designed and leads to an additional
performance boost. To prove the basic concept of our method, we first evaluated our proposed
method in the anechoic scenario. From the results, we find that even without explicitly optimizing
for separation, the intermediate signals after the beamformer still show very good quality in terms
of audibility. Then we also tested the model on the reverberant case to give a preliminary result.
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8.2 E2E MIMO ASR

In this section, we first present the proposed end-to-end multi-channel multi-speaker speech recog-
nition model, which is shown in Fig. 8.2. We then describe the techniques applied in scheduling
the training data, which have an important role in improving the performance.
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Figure 8.2: End-to-End Multi-channel Multi-speaker Model

Model Architecture

By using the differences in the signals recorded at each sensor, distributed sensors can exploit
spatial information. They are thus particularly useful for separating sources that are spatially par-
titioned. In this work, we present a sequence-to-sequence architecture with multi-channel input
and multi-channel output to model the multi-channel multi-speaker speech recognition, shown in
Fig. 8.2 for the case of two speakers. The proposed end-to-end multi-channel multi-speaker ASR
model can be divided into three stages. The first stage is a single-channel masking network to
perform pre-separation by predicting multiple speaker and noise masks for each channel. Then
a multi-source neural beamformer is used to spatially separate multiple speaker sources. In the
last stage, an end-to-end ASR module with permutation-free training is used to perform the multi-
output speech recognition.

104



We used a similar architecture as in (Ochiai et al., 2017a), where the masking network and
the neural beamformer are integrated into an attention-based encoder-decoder neural network, and
the whole model is jointly optimized solely via a speech recognition objective. The input of the
model can consist of an arbitrary number of channels C, and its output is the text sequence for
each speaker directly. We denote by K the number of speakers in the mixed utterances, and for
simplicity of notation, we shall consider the noise component as the 0-th source.

Monaural Masking Network

The monaural masking network, shown at the bottom of Fig. 8.2, estimates the masks of each
channel for every speaker and an extra noise component. Let us denote by Xc = (xt,f,c)t,f ∈ CT×F

the complex STFT of the c-th channel of the observed multi-channel multi-speaker speech, where
1 ≤ t ≤ T, 1 ≤ f ≤ F, 1 ≤ c ≤ C denote time, frequency, and channel indices, respectively.
The mask estimation module produces time-frequency masks Mi

c = (mi
t,f,c)t,f ∈ [0, 1]T×F , with

i ∈ {1, . . . , K} for each of the K speakers, and i = 0 for the noise, using the complex STFT of
the c-th channel of the observed multi-channel multi-speaker speech as input. The computation is
performed independently on each of the input channels:

Mc = MaskNet(Xc), (8.1)

where Mc = (Mi
c)i ∈ [0, 1]T×F×K is the set of estimated masks for the c-th channel.

Multi-source Neural Beamformer

The multi-source neural beamformer is a key component in the proposed model, which produces
the separated speech of each speaker. The masks obtained on each channel for each speaker and
the noise are used in the computation of the power spectral density (PSD) matrices of each source
as follows (Yoshioka et al., 2015b; Heymann et al., 2016):

Φi(f) =
1∑T

t=1m
i
t,f

T∑
t=1

mi
t,fxt,fx

H
t,f ∈ CC×C , (8.2)

where i ∈ {0, . . . , K}, xt,f = {xt,f,c}Cc=1, mi
t,f = {mi

t,f,c}Cc=1, and H represents the conjugate
transpose.

After getting the PSD matrices of every speaker and the noise, we estimate the beamformer’s
time-invariant filter coefficients gi(f) at frequency f for each speaker i ∈ {1, · · · , K} via the
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MVDR formalization (Souden et al., 2009) as follows:

gi(f) =
(
∑

j ̸=i Φ
j(f))−1Φi(f)

Tr((
∑

j ̸=i Φ
j(f))−1Φi(f))

u ∈ CC , (8.3)

where u ∈ RC is a vector representing the reference microphone that is derived from an attention
mechanism (Ochiai et al., 2017a), and Tr(·) denotes the trace operation. Notice that in Eq. 8.3,
the formula to derive the filter coefficient is different from that in (Ochiai et al., 2017a) in the way
that the noise PSD is replaced by

∑
j ̸=iΦ

j(f). This is because both noise and other speakers are
considered as interference when focusing on a given speaker. This is akin to the speech-speech-
noise (SSN) model in (Yoshioka et al., 2018c). Such a method is employed to make more accurate
estimations of the PSD matrices, in which the traditional PSD matrix is expressed using the PSD
matrix of interfering speaker and that of the background noise.

Finally, the beamforming filters gi(f) obtained in Eq. 8.3 are used to separate and denoise
the input overlapped multi-channel signals xt,f ∈ CC to obtain a single-channel estimate of the
enhanced STFT ŝit,f for speaker i:

ŝit,f = (gi(f))Hxt,f ∈ C. (8.4)

Each separated speech signal waveform can be obtained by inverse STFT for listening, as iSTFT(Ŝi)

, i = 1, . . . , K.

End-to-End Speech Recognition

The outputs of the neural beamformer are estimates of the separated speech signals for each
speaker. Before feeding these streams to the end-to-end speech recognition submodule, we need
to convert the STFT features to normalized log filterbank features. A log mel filterbank transfor-
mation is first applied on the magnitude of the beamformed STFT signal Ŝi = (Ŝi

t,f )t,f for each
speaker i, and a global mean-variance normalization is then performed on the log-filterbank feature
to produce a proper input Oi for the speech recognition submodule:

FBanki = MelFilterBank(|Ŝi|), (8.5)

Oi = GlobalMVN(log(FBanki)). (8.6)

We briefly introduce the end-to-end speech recognition submodule used here, which is similar
to the joint CTC/attention-based encoder-decoder architecture (Kim et al., 2017b). The feature
vectors Oi are first transformed to a hidden representation Hi by an encoder network. A decoder
then generates the output token sequences based on the history information y and a weighted sum
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vector c obtained with an attention mechanism. The end-to-end speech recognition is computed as
follows:

Hi = Encoder(Oi) (8.7)

cin, α
i
n = Attention(αi

n−1, e
i
n−1,H

i) (8.8)

ein = Update(ein−1, c
i
n−1,y

i
n−1) (8.9)

yi
n ∼ Decoder(cin,y

i
n−1), (8.10)

where i denotes the index of the source stream and n an output label sequence index.
Typically, the history information y is replaced by the reference labels R = (r1, · · · , rN) in a

teacher-forcing fashion at training time. However, since there are multiple possible assignments
between the inputs and the references, it is necessary to used permutation invariant training (PIT)
in the end-to-end speech recognition (Seki et al., 2018; Chang et al., 2019b). The best permutation
of the input sequences and the references is determined by the connectionist temporal classification
(CTC) loss Lossctc:

π̂ = argmin
π∈P

∑
i

Lossctc(Z
i,Rπ(i)), i = 1, . . . , K, (8.11)

where Zi denotes the output sequence computed from the encoder output Hi for the CTC loss, P
is the set of all permutations on {1, . . . , K}, and π(i) is the i-th element for permutation π.

The final ASR loss of the model is obtained as:

L = λLctc + (1− λ)Latt, (8.12)

Lctc =
∑
i

Lossctc(Z
i,Rπ̂(i)), (8.13)

Latt =
∑
i

Lossatt(Y
i,Rπ̂(i)), (8.14)

where 0 ≤ λ ≤ 1 is an interpolation factor, and Lossatt is the cross-entropy loss to train the
attention-based encoder-decoder networks.

Data Scheduling and Curriculum Learning

From preliminary empirical results, we find that it is relatively difficult to perform straightforward
end-to-end training of such a multi-stage model, especially without an intermediate criterion to
guide the training. In our model, the speech recognition submodule has the same architecture as
the typical end-to-end speech recognition model, and the input is expected to be similar to the log
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filterbank of single-speaker speech. Thus, in order to train the model properly, we did not only
use the spatialized utterances of the multi-speaker corpus but also the single-speaker utterances
from the original WSJ training set. During training, every batch is randomly chosen either from
the multi-channel multi-speaker set or from the single-channel single-speaker set. For single-
speaker batches, the masking network and neural beamformer stages are bypassed, and the input is
directly fed to the recognition submodule. Furthermore, the loss is calculated without considering
permutations, as there is only a single speaker per input.

With this data scheduling scheme, the model can achieve a decent performance from random
initialization. For multi-channel multi-speaker data batches, the loss of the ASR objective function
is back-propagated down through the model to the masking network. For data batches consisting
of single-speaker utterances, only the speech recognition part is optimized, which leads to more
accurate loss computation in the future. The single-speaker data batches rectify the behavior of the
ASR model as it performs regularization during the training.

According to previous researches, starting from easier subtasks can lead the model to learn
better, an approach called curriculum learning (Bengio et al., 2009; Amodei et al., 2016). To
further exploit the data scheduling scheme, we introduce more constraints on the order of the
data batches of the training set. As was observed in prior research by (Qian et al., 2018a), the
signal-to-noise ratio (SNR, the energy ratio between the target speech and the interfering sources)
has a great influence on the final recognition performance. When the speech energy levels of the
target speaker and the interfering sources are obviously different, the recognition accuracy of the
interfering source speech is very poor. Thus, we sort the multi-speaker data in ascending order of
SNR between the loudest and quietest speaker, thus starting with mixtures where both speakers
are at similar levels. Furthermore, we sort the single-speaker data from short to long, as short
sequences tend to be easier to learn in seq2seq learning. The strategy is formally depicted in
Algorithm 3. We applied such a curriculum learning strategy in order to make the model learn step
by step and expect it to improve the training.

8.3 Experiment

To check the effectiveness of our proposed end-to-end model, we use the spatialized WSJ-2Mix
corpus introduced in the previous section Sec. 1.4.4. More specifically, we evaluated it on the
remixed WSJ data used in (Seki et al., 2018), which we here refer to as the wsj-2mix dataset. The
multi-speaker speech training set was generated by randomly selecting two utterances from the
WSJ SI284 corpus, resulting in a 98.5 h dataset. The signal-to-noise ratio (SNR) of one source
against the other was randomly chosen from a uniform distribution in the range of [−5, 5] dB. The
validation and evaluation sets were generated in a similar way by selecting source utterances from
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Algorithm 3: Curriculum learning strategy
1 Load the training dataset X;
2 Categorize the training data X into single-channel single-speaker data Xclean and

multi-channel multi-speaker data Xnoisy;
3 Sort the single-channel single-speaker training data in Xclean in ascending order of the

utterance lengths, leading to X′
clean;

4 Sort the multi-channel multi-speaker training data in Xnoisy in ascending order of the SNR
level, leading to X′

noisy ;
5 Divide X′

clean and X′
noisy into minibatch sets Bclean and Bnoisy;

6 Sort batches to alternate between batches from Bclean and Bnoisy;
7 while model is not converged do
8 for each b in all minibatches do
9 Feed minibatch b into the model, update the model;

10 end
11 end
12 while model is not converged do
13 Shuffle the training data in Xclean and Xnoisy randomly and divide them into minibatch

sets B′
clean and B′

noisy;
14 Select each minibatch randomly from B′

clean and B′
noisy and feed it into the model

iteratively to update the model;
15 end
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the WSJ Dev93 and Eval92 respectively, and the durations are 1.3 h and 0.8 h. We then create
a new spatialized version of the WSJ-2Mix dataset following the process applied to the wsj0-
2mix dataset in (Wang et al., 2018), using a room impulse response (RIR) generator1, where the
characteristics of each two-speaker mixture are randomly generated including room dimensions,
speaker locations, and microphone geometry2.

To train the model, we used the spatialized WSJ-2Mix data with K = 2 speakers as well as the
train_si284 training set from the WSJ1 dataset to regularize the training procedure. All input data
are raw waveform audio signals. The STFT was computed using 25 ms-width Hann window with
10 ms shift, with zero-padding resulting in a spectral dimension F = 257. In our experiments, we
only report results in the case of C = 2 channels, but our model is flexible and can be used with
an arbitrary number of channels. We first report recognition and separation results in the anechoic
scenario in Sections 8.3 and 8.3. Then we show preliminary results in the reverberant scenario in
Section 8.3.

Configurations

Our end-to-end multi-channel multi-speaker model is completely built based on the ESPnet frame-
work (Watanabe et al., 2018) with Pytorch backend. All the network parameters were initialized
randomly from uniform distribution in the range [−0.1, 0.1]. We used AdaDelta with ρ = 0.95 and
ϵ = 1e−8 as optimization method. The maximum number of epochs for training is set to 15 but the
training process is stopped early if performance does not increase for 3 consecutive epochs. For
decoding, a word-based language model (Hori et al., 2018) was trained on the transcripts of the
WSJ corpus.

Neural Beamformer

The mask estimation network is a 3-layer bidirectional long-short term memory with projection
(BLSTMP) network with 512 cells in each direction. The computation of the reference microphone
vector has the same parameters as in (Ochiai et al., 2017a) except the vector dimension which is
here set to 512. In the MVDR formula of Eq. 8.3, a small value ϵ is added to the PSD matrix to
guarantee that an inverse exists.

1Available online at https://github.com/ehabets/RIR-Generator
2The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/
spatialize_wsj0-mix.zip
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Encoder-Decoder Network

The encoder network consists of two VGG-motivated CNN blocks and three BLSTMP layers. The
CNN layers have a kernel size of 3 × 3 and the number of feature maps is 64 and 128 in the first
and second block, respectively. Every BLSTMP layer has 1024 memory cells in each direction
with projection size 1024. 80 dimensional log filterbank features are extracted for each separated
speech signals and global mean-variance normalization is applied, using the statistics of the single-
speaker WSJ1 training set. In the decoder network, there is only a single layer of unidirectional
long-short term memory network (LSTM) and the number of cells is 300. The interpolation factor
λ of the loss function in Eq. 8.12 is set to 0.2.

Performance of Multi-Speaker Speech Recognition

In this subsection, we describe the speech recognition performance on the spatialized anechoic
WSJ-2Mix data, which only modifies the signals via delays and decays due to the propagation.
Note that although beamforming algorithms can address the anechoic case without too much effort,
it is still necessary to show that our proposed end-to-end method can address the multi-channel
multi-speaker speech recognition problem and both the speech recognition submodule and the
neural beamforming separation submodule perform well as they are designed. We shall also note
that the whole system is trained solely through an ASR objective, and it is thus not trivial for the
system to learn how to properly separate the signals even in the anechoic case.

The multi-speaker speech recognition performance is shown in Table 8.1. There are three
single-channel end-to-end speech recognition baseline systems. The first one is a single-channel
multi-speaker ASR model trained on the first channel of the spatialized corpus, where the model
is the same as the one proposed in (Chang et al., 2019b). The second is a single-channel multi-
speaker ASR model trained with speech that is enhanced by BeamformIt (Anguera et al., 2007),
which is a well-known delay-and-sum beamformer. And the third one is to use BeamformIt to first
separate the speech by choosing its best and second-best output streams, and then to recognize
them with a normal single-speaker end-to-end ASR model. The spatialization of the corpus results
in a degradation of the performance: the multi-speaker ASR model trained with the 1st channel
has a word error rate (WER) of 29.43% on the evaluation set, compared to only 20.43% obtained
on the original unspatialized WSJ-2Mix data in (Chang et al., 2019b). Using the BeamformIt tool
to enhance the spatialized signal can improve the recognition accuracy of a multi-speaker model,
leading to a WER of 21.75% on the evaluation set. However, traditional beamforming algorithms
such as BeamformIt can not perfectly separate the overlapped speech signals, and the performance
of the single-speaker model in terms of WER is very poor, 98.00%.

The performance of our proposed end-to-end multi-channel multi-speaker model (MIMO-
Speech) is shown at the bottom of the table. The curriculum learning strategy described in Sec-
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tion 8.2 is used to further improve performance. From the table, it can be observed that MIMO-
Speech is significantly better than traditional methods, achieving 4.51% character error rate (CER)
and 8.62% word error rate (WER). Compared against the best baseline model, the relative improve-
ment is over 60% in terms of both CER and WER. When applying our data scheduling scheme by
sorting the multi-speaker speech in ascending order of SNRs, an additional performance boost can
be realized. The final CER and WER on the evaluation set are 3.75% and 7.55% respectively, with
over 12% relative improvement against MIMO-Speech without curriculum learning. Overall, our
proposed MIMO-Speech network can achieve good recognition performance on the spatialized
anechoic WSJ-2Mix corpus.

Table 8.1: Performance in terms of average CER and WER [%] on the spatialized anechoic WSJ-
2Mix corpus.

Model dev CER eval CER
2-spkr ASR (1st channel) 22.65 19.07
BeamformIt Enhancement (2-spkr ASR) 15.23 12.45
BeamformIt Separation (1-spkr ASR) 77.30 77.10
MIMO-Speech 7.29 4.51
+ Curriculum Learning (SNRs) 6.34 3.75

Model dev WER eval WER
2-spkr ASR (1st channel) 34.98 29.43
BeamformIt Enhancement (2-spkr ASR) 26.61 21.75
BeamformIt Separation (1-spkr ASR) 98.60 98.00
MIMO-Speech 13.54 8.62
+ Curriculum Learning (SNRs) 12.59 7.55

Performance of Multi-Speaker Speech Separation

One question regarding our model is whether the front-end of MIMO-Speech, the neural beam-
former, learns a proper beamforming behavior as other algorithms do since there is no explicit
speech separation criterion to optimize the network. To investigate the role of the neural beam-
former, we consider the masks mi that are used to compute the PSD matrices and the enhanced
separated STFT signals ŝi, i = 1, . . . , J obtained at the output of the beamformer. Example results
are shown in Fig. 8.3. Note that in our model, the masks are not constrained to sum to 1 at each
time-frequency unit, resulting in a scaling indeterminacy within each frequency. For better read-
ability in the figures, we here renormalize each mask using its median within each frequency. In
the figure, the difference between the masks from each speaker is clear. And from the spectrogram,
it is also observed that for each separated stream, the signals are less overlapped compared with
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the input multi-speaker speech signal. The mask and spectrogram examples suggest that MIMO-
Speech can separate the speech to some level.

To evaluate the separation quality, we reconstruct the separated waveforms for each speaker
from the outputs of the beamformer via inverse STFT, and compare them with the reference signals
in terms of PESQ and scale-invariant signal-to-distortion ratio (SI-SDR) (Le Roux et al., 2019b).
The results are shown in Table 8.2. As we can see, the separated audios have very good quality.
The separated signals from the MIMO-Speech model 3 have an average PESQ value of 3.6 and an
average SI-SDR of 23.1 dB. When using curriculum learning, PESQ and SI-SDR degrade slightly,
but the quality is still very high. This result suggests that our proposed MIMO-Speech model
is capable of learning to separate overlapped speech via beamforming, based solely on an ASR
objective.

Table 8.2: Performance in terms of average PESQ and SI-SDR [dB] on the spatialized anechoic
WSJ-2Mix corpus.

Model dev PESQ eval PESQ
MIMO-Speech 3.6 3.6
+ Curriculum Learning (SNRs) 3.7 3.6

Model dev SI-SDR eval SI-SDR
MIMO-Speech 22.1 23.1
+ Curriculum Learning (SNRs) 21.1 21.8

In order to further explore the neural beamformer’s effect, we show an example of estimated
beam pattern (Gannot et al., 2017) for the separated sources. Figure 8.4 shows the beam pattern of
two separated signals at frequencies {500 Hz, 1000 Hz, 2000 Hz, 4000 Hz}. The value of the beam
at different degrees quantifies the reduction of the speech signals received. As we can see from
the figures, the crests and troughs of the beams are different for the two speakers, which shows the
neural beamformer is trained properly and can tell the difference between the sources.

Table 8.3: Performance in terms of average CER and WER [%] of the baseline single-speaker end-
to-end speech recognition model trained on reverberant (R) single-speaker speech and evaluated
on reverberant (R) multi-speaker speech.

Model dev CER (R) eval CER (R)
End-to-End Model (R) 81.6 82.7
Model dev WER (R) eval WER (R)
End-to-End Model (R) 103.9 104.2

3Audio samples are available online at https://simpleoier.github.io/MIMO-Speech/index.html
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Evaluation on the spatialized reverberant data

To give a comprehensive analysis of the MIMO-Speech model, we investigated how the model
performs in a more realistic case, using the spatialized reverberant WSJ-2Mix data. As a compar-
ison, we first trained a normal single-speaker end-to-end speech recognition system. The model
is trained with the spatialized reverberant speech from each single speaker. The performance is
shown in Table 8.3. For the MIMO-Speech model, the spatialized reverberant WSJ-2Mix train-
ing dataset was added to the training set for the multi-conditioned training. The results on the
speech recognition task are shown in Table 8.4. The reverberant speech is difficult to recognize
as the performance shows severe degradation when we tried to infer the reverberant speech using
the anechoic multi-speaker model. The multi-conditioned training can release such degradation,
improving the WER by over 60%. The results suggest that the proposed MIMO-Speech also has
potential for application in complex scenarios. As a complementary experiment, we used Nara-
WPE (Drude et al., 2018) to perform speech dereverberation only for the development and evalu-
ation data. The speech recognition results are shown in Table.8.5 which suggests that the speech
dereverberation techniques only in the inference stage can lead to further improvement. Note that
the results here are just a preliminary study. The main drawback here is that we did not consider
any dereverberation techniques in designing our model.

Table 8.4: Performance in terms of average CER and WER [%] on the spatialized WSJ-2Mix
corpus of MIMO-Speech trained on either anechoic (A) or reverberant (R) and evaluated on either
the anechoic (A) or reverberant (R) evaluation set.

Model eval CER (A) eval CER (R)
MIMO-Speech (A) 4.51 62.32
MIMO-Speech (R) 4.08 18.15
Model eval WER (A) eval WER (R)
MIMO-Speech (A) 8.62 81.30
MIMO-Speech (R) 8.72 29.99

8.4 Conclusion

In this chapter, we present an end-to-end multi-channel multi-speaker speech recognition model
called MIMO-Speech. More specifically, the model takes multi-speaker speech recorded by a
microphone array as input and outputs text sequences for each speaker. Furthermore, the front-end
of the model, involving a neural beamformer, learns to perform speech separation even though no
explicit signal reconstruction criterion is used. The main advantage of the proposed approach is
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Table 8.5: Performance in terms of average CER and WER [%] on the spatialized WSJ-2Mix
corpus of MIMO-Speech trained on either anechoic (A) or reverberant (R) and evaluated on the
reverberant data after Nara-WPE dereverberation (D).

Model dev CER (D) eval CER (D)
MIMO-Speech (A) 51.00 52.02
MIMO-Speech (R) 20.09 15.04
Model dev WER (D) dev WER (D)
MIMO-Speech (A) 69.08 69.42
MIMO-Speech (R) 33.09 25.28

that the whole model is differentiable and can be optimized with an ASR loss as target. In order
to make the training easier, we utilized single-channel single-speaker speech as well. We also
designed an effective curriculum learning strategy to improve the performance. Experiments on
a spatialized version of the WSJ-2Mix corpus show that the proposed framework has fairly good
performance. However, performance on reverberant data still suffers from a large gap against the
anechoic case.

Building on these findings, the next chapter will explore further improvements to the MIMO-
Speech model by leveraging the Transformer architecture. The Transformer-based approach is
expected to address some of the limitations observed in the RNN-based model, particularly in
handling reverberant environments, and will integrate additional techniques to enhance robustness
and performance.
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(a) Mask for Speaker 1 (b) Mask for Speaker 2

(c) Separated Speech for Speaker 1 (d) Separated Speech for Speaker 2

(e) Overlapped Speech

Figure 8.3: Example of masks output by the masking network and separated speech log spectro-
grams output by the MVDR beamformer.
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(a)Speaker 1

(b) Speaker 2

Figure 8.4: Example of beam patterns of the separated speech.
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Chapter 9

MIMO-Speech-Transformer: improving
multi-channel multi-speaker E2E ASR with
Transformer

Summary

In the previous chapter (Ch. 8), we introduced the MIMO-Speech model tailored for multi-channel
multi-speaker speech recognition. This model adopted the E2E modular-based design and demon-
strated promising results in transcribing multi-speaker overlapping speech by leveraging spatial
information from multi-channel input data. The model’s neural beamforming-based speech sep-
aration successfully handled overlapping speech scenarios. However, the model was based on
recurrent neural networks (RNNs). Recognizing the significant advancements and benefits offered
by Transformer architectures in sequence-to-sequence tasks since their introduction by Vaswani
et al. (Vaswani et al., 2017), in this chapter, we enhance our MIMO-Speech model by adopting
the Transformer architecture. This transition to Transformer-based modeling aims to leverage the
Transformer’s capabilities in capturing long-range dependencies and improving performance in
complex speech recognition tasks. Similar to the previous chapter, the proposed model follows the
E2E modular-based design, as mentioned in Sec. 2.

Furthermore, to enhance the robustness of our model in reverberant environments, we incor-
porate an external dereverberation method known as Weighted Prediction Error (WPE) to prepro-
cess reverberated speech signals. This preprocessing step contributes to mitigating the detrimental
effects of reverberation, thereby improving the overall performance and accuracy of our MIMO-
Speech model in real-world settings.

Chang, Xuankai, Wangyou Zhang, Yanmin Qian, Jonathan Le Roux, and Shinji Watan-
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abe. ICASSP 2020. End-to-end multi-speaker speech recognition with transformer.

9.1 Introduction

Deep learning techniques have dramatically improved the performance of separation and auto-
matic speech recognition (ASR) tasks related to the cocktail party problem (Cherry, 1953), where
the speech from multiple speakers overlaps. Two main scenarios are typically considered, single-
channel and multi-channel. In single-channel speech separation, various methods have been pro-
posed, among which deep clustering (DPCL) based methods (Hershey et al., 2016a) and permu-
tation invariant training (PIT) based methods (Yu et al., 2017c) are the dominant ones. For ASR,
methods combining separation with single-speaker ASR as well as methods skipping the explicit
separation step and building directly a multi-speaker speech recognition system have been pro-
posed, using either the hybrid ASR framework (Yu et al., 2017a; Chang et al., 2018b; Menne
et al., 2019) or the end-to-end ASR framework (Settle et al., 2018; Seki et al., 2018; Chang et al.,
2019a). In the multi-channel condition, the spatial information derived from the inter-channel dif-
ferences can help distinguish between speech sources from different directions, which makes the
problem easier to solve. Several methods have been proposed for multi-channel speech separation,
including DPCL-based methods using integrated beamforming (Drude and Haeb-Umbach, 2017)
or inter-channel spatial features (Wang et al., 2018), and a PIT-based method using a multi-speaker
mask-based beamformer (Yoshioka et al., 2018c). For multi-channel multi-speaker speech recogni-
tion, an end-to-end system was proposed in (Chang et al., 2019c), called MIMO-Speech because of
the multi-channel input (MI) and multi-speaker output (MO). This system consists of a mask-based
neural beamformer frontend, which explicitly separates the multi-speaker speech via beamform-
ing, and an end-to-end speech recognition model backend based on the joint CTC/attention-based
encoder-decoder (Kim et al., 2017b) to recognize the separated speech streams. This end-to-end ar-
chitecture is optimized via only the connectionist temporal classification (CTC) and cross-entropy
(CE) losses in the backend ASR, but is nonetheless able to learn to develop relatively good sepa-
ration abilities.

Recently, Transformer models (Vaswani et al., 2017) have shown impressive performance in
many tasks, such as pretrained language models (Radford et al., 2018; Devlin et al., 2018), end-
to-end speech recognition (Karita et al., 2019b,a), and speaker diarization (Fujita et al., 2019),
surpassing the long short-term memory recurrent neural networks (LSTM-RNNs) based models.
One of the key components in the Transformer model is self-attention, which computes the con-
tribution information of the whole input sequence and maps the sequence into a vector at every
time step. Even though the Transformer model is powerful, it is usually not computationally prac-
tical when the sequence length is very long. It also needs adaptation for specific tasks, such as
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the subsampling operation in encoder-decoder based end-to-end speech recognition. However, for
signal-level processing tasks such as speech separation and enhancement, subsampling is usually
not a good option, because these tasks need to maintain the original time resolution.

In this work, we explore the use of Transformer models for end-to-end multi-speaker speech
recognition in multi-channel scenarios. First, we replace the LSTMs in the encoder-decoder net-
work of the speech recognition module with Transformers for both scenarios. Second, in order
to also apply Transformers in the masking network of the neural beamforming module in the
multi-channel case, we modify the self-attention layers to reduce their memory consumption in a
time-restricted (or local) manner, as used in (Luong et al., 2015; Povey et al., 2018; Chang et al.,
2018b). To the best of our knowledge, this work is the first attempt to use the Transformer model
for tasks such as speech enhancement/separation with such very long sequences. Another contri-
bution of this work is to improve the robustness of our model in reverberant environments. To
do so, we incorporate an external dereverberation method, the weighed prediction error (WPE)
(Yoshioka and Nakatani, 2012), to preprocess the reverberated speech. The experiments show that
this straightforward method can lead to a performance boost for reverberant speech.

9.2 Method

We follow the similar model architecture as MIMO-Speech in Chapter 8. In the previous model,
the masking network in the neural beamformer and the E2E-ASR are based on long-short-term
memory (LSTM) network. Motivated by the recent success in Transformer (Vaswani et al., 2017),
we replace the LSTM in the original MIMO-Speech model by Transformers. We will skip most
of the details about the Transformers. Please refer to the original paper (Vaswani et al., 2017) for
more details. However, we will talk about the self-attention part in this section.

Transformer with Time-restricted Self-Attention

In this part, we describe one of the key components in the Transformer architecture, the multi-head
self-attention (Vaswani et al., 2017), and the time-restricted modification (Povey et al., 2018) for
its application in the masking network of the frontend.

Transformers employ the dot-product self-attention for mapping a variable-length input se-
quence to another sequence of the same length, making them different from RNNs. The input
consists of queries Q, keys Ω, and values V of dimension datt. The weights of the self-attention
are obtained by computing the dot-product between the query and all keys and normalizing with
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softmax. A scaling factor
√
datt is used to smooth the distribution:

Attention(Q,Ω,V) = softmax
(QΩT

√
datt

)
V. (9.1)

To capture information from different representation subspaces, multi-head attention (MHA) is
used by multiplying the original queries, keys, and values by different weight matrices:

MHA(Q,Ω,V) = Concat([Hh]
dhead

h=1)W
head, (9.2)

where Hh = Attention(QW q
h ,ΩW k

h ,V
v
hW

v
h ), (9.3)

where dhead is the number of heads, and W head ∈ R(dheaddatt)×datt and W q
h ,W

k
h ,W

v
h ∈ Rdatt×datt are

learnable parameters.
In general, the speech sequence length can be considerably long, making self-attention com-

putationally difficult. For tasks like speech separation and enhancement, the technique of sub-
sampling is not practical as in speech recognition. Inspired by (Luong et al., 2015; Povey et al.,
2018), we adjust the self-attention of the Transformers in the masking network to be performed on
a local segment of the speech, because those frames have higher correlation. This time-restricted
self-attention for the query at time step t is formalized as:

Attention(Q,Ω′,V′) = softmax
(QΩ′T
√
datt

)
V′, (9.4)

where the corresponding keys and values are Ω′ = Ωt−l:t+r and V′ = Vt−l:t+r, respectively, with
l and r here denoting the left and right context window sizes.

9.3 Experiment

The proposed methods were evaluated on the dataset, spatialized WSJ-2Mix dataset, introduced
in Sec. 1.4.4. The number of speakers in mixture utterances is K = 2. The multi-channel speech
signals were generated1 from the monaural WSJ-2Mix speech used in (Seki et al., 2018; Chang
et al., 2019a). The room impulse responses (RIR) for the spatialization were randomly generated2,
characterizing the room dimensions, speaker locations, and microphone geometry. The final spa-
tialized dataset contains two different environment conditions, anechoic and reverberant. In the
anechoic condition, the room is assumed to be anechoic and only the delays and decays due to the

1The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/
spatialize_wsj0-mix.zip

2The RIR generator script is available online at https://github.com/ehabets/RIR-Generator
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propagation are considered when generating the signals. In the reverberant condition, reverbera-
tion is also considered, with randomly drawn T60s from [0.2, 0.6] s. In total, the spatialized corpus
under each condition contains 98.5 hr, 1.3 hr, and 0.8 hr in training, development, and evaluation
sets respectively.

To better illustrate the performance gain of using Transformer networks, we also conduct ex-
periments with monaural multi-speaker E2E ASR model described in Chapter 5. In the single-
channel multi-speaker speech recognition task, we used the 1st channel of the training, develop-
ment, and evaluation set to train, validate, and evaluate our model respectively. The input features
are 80-dimensional log mel-filterbank coefficients with pitch features and their delta and delta delta
features.

In the multi-channel multi-speaker speech recognition task, we also followed (Chang et al.,
2019c) in including the WSJ train_si284 in the training set to improve the performance. The
model takes the raw waveform audio signal as input and converts it to its STFT using a 25 ms-
long Hann window with stride 10 ms. The spectral feature dimension is F = 257 due to zero-
padding. After the frontend computation, 80-dimensional log filterbank features are extracted for
each separated speech signal and global mean-variance normalization is applied, using the statistics
of the single-speaker WSJ1 training set. All the multi-channel experiments were performed with
C = 2 channels. However, the model can be extended to an arbitrary number of input channels as
described in (Ochiai et al., 2017a).

Experimental Setup

All the proposed end-to-end multi-speaker speech recognition models are implemented with the
ESPnet framework (Watanabe et al., 2018) using the Pytorch backend. Some basic parts are the
same for all the models. The interpolation factor λ of the loss function in (8.12) is set to 0.2.
The word-level language model (Hori et al., 2018) used during decoding was trained with the
official text data included in the WSJ corpus. The configurations of the RNN-based models are the
same as in (Chang et al., 2019a) and (Chang et al., 2019c) for single-channel and multi-channel
experiments, respectively.

In the Transformer-based multi-speaker encoder-decoder ASR model, there is a total of 12
layers in the encoder and 6 layers in the decoder as in (Karita et al., 2019b). Before the Transformer
encoder, the log mel-filterbank features are encoded by two CNN blocks. The CNN layers have a
kernel size of 3 × 3 and the number of feature maps is 64 in the first block and 128 in the second
block. For the single-channel multi-speaker model inroduced in Chapter 5.2, EncoderMix is the
same as the CNN embedding layer, and EncoderSD and EncoderRec contain 4 and 8 Transformer
layers, respectively. For all the tasks, the configuration of each encoder-decoder layer is datt = 256,
dff = 2048, dhead = 4. The masking network in the frontend has 3 layers similar to the encoder-
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Table 9.1: Performance in terms of average WER [%] on the single-channel anechoic WSJ-2Mix
corpus.

Model dev eval

RNN-based 1-channel Model (Chang et al., 2019a) 24.90 20.43
Transformer-based 1-channel Model 17.11 12.08

decoder layer except dff = 768. The training stage of Transformer runs with the Adam optimizer
and Noam learning rate decay as in (Vaswani et al., 2017). Note that the backend ASR module
is currently initialized with a pretrained model from the ESPnet recipe of WSJ corpus and kept
frozen for the first 15 epochs, for training stability.

Performance in Anechoic Condition

We first provide in Table 9.1 the performance in anechoic condition of the single-channel multi-
speaker end-to-end ASR models trained and evaluated on the original single-channel WSJ-2Mix
corpus used in (Hori et al., 2018; Chang et al., 2019a). All the layers are randomly initialized. The
result shows that using the Transformer model leads to a 40.9% relative word error rate (WER)
improvement on the evaluation set, decreasing from 20.43% to 12.08% compared with the RNN-
based model in (Chang et al., 2019a).

The multi-channel multi-speaker speech recognition performance is shown in Table 9.2 using
the spatialized anechoic WSJ-2Mix dataset. The baseline multi-channel system is the RNN-based
model from our previous study (Chang et al., 2019c). Before we move to the fully Transformer-
based MIMO-Speech model, we first replace the RNNs with Transformers in the backend ASR
only. We see that using Transformers for the ASR backend can achieve 20.5% relative improve-
ment against the RNN-based model in anechoic conditions.

We then also apply Transformers in the masking network of the frontend. Considering the
feasibility of computing, in this preliminary study, the left and right context window sizes of the
self-attention are set to l = 14 and r = 15. The parameters of the frontend are randomly initialized.
Compared with using a Transformer-based model only for the backend, the fully Transformer-
based model leads to a further improvement, achieving a WER of 6.41%. Compared against
the whole sequence information available in the RNN-based model, such a small context win-
dow greatly limits the power of our model but shows its potential. Overall, the proposed fully
Transformer-based model achieves a 25.6% relative WER improvement against the RNN-based
model in the multi-channel case. We also see that the multi-channel system is better than the
single-channel system, thanks to the availability of spatial information.
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Table 9.2: Performance in terms of average WER [%] on the spatialized two-channel anechoic
WSJ-2Mix corpus.

Model dev eval

RNN-based MIMO-Speech (Chang et al., 2019c) 13.54 8.62

+ Transformer backend 10.73 6.85
++ Transformer frontend 11.75 6.41

Performance in Reverberant Condition

Even though our model can perform very well in anechoic condition, such ideal environments are
rarely encountered in practice. It is thus crucial to investigate whether the model can be applied
in more realistic environments. In this subsection, we describe preliminary efforts to process the
reverberated signal.

We first used a straightforward multi-conditioned training by adding reverberated utterances
into the training set. The results of multi-speaker speech recognition on the multi-channel rever-
berant datasets are shown in Table 9.3. It can be observed that only using the Transformers for
the backend is 6.6% better than the RNN-based model. In addition, the fully Transformer-based
model achieves 13.2% relative WER improvement on the evaluation set, which is consistent with
the anechoic case. However, comparing with the numbers for the anechoic condition in Table 9.2,
a large performance degradation can be observed.

To alleviate this, we turned to an existing external dereverberation method to preprocess the in-
put signals as a simple yet effective solution. Nara-WPE (Drude et al., 2018) is a widely used open
source software for blind dereverberation of acoustic signals. The dereverberation is performed
on the reverberated speech before it is added to the training dataset with anechoic data. Similarly,
the reverberant test set is also preprocessed. Speech recognition performance on the multi-channel
reverberant speech after Nara-WPE is shown in Table 9.4. In general, the WERs are dramatically
decreased with the dereverberation method. For the RNN-based model, the WER on the evaluation
set decreased by 41.1% relative, from 29.99% to 17.67%. Similar to the experiments under other
conditions, the model with backend Transformer only is better than the RNN-based baseline model
on the reverberant evaluation set by 13.8% relative WER. However, the Transformer-based fron-
tend slightly degraded the performance. This may be due the window size of the attention being
too small, as it only covers about 0.3 s of speech. Note that our systems are not trained through
Nara-WPE, which is left for future work.

At last, we show results in the single-channel task with the 1st channel of the reverberated
speech after Nara-WPE dereverberation in Table 9.5. Using the RNN-based model, the WER
of the evaluation set is high, at 28.21%, which is influenced greatly by the reverberation, even
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Table 9.3: Performance in terms of average WER [%] on the spatialized two-channel reverberant
WSJ-2Mix corpus.

Model dev eval

RNN-based MIMO-Speech (Chang et al., 2019c) 34.98 29.99

+ Transformer backend 32.95 28.01
++ Transformer frontend 31.93 26.02

Table 9.4: Performance in terms of average WER [%] on the spatialized two-channel reverberant
WSJ-2Mix corpus after Nara-WPE.

Model dev eval

RNN-based MIMO-Speech 24.45 17.67

+ Transformer backend 19.17 15.24
++ Transformer frontend 20.55 15.46

when preprocessing with the dereverberation technique. However, the Transformer-based model
can reach a final WER of 16.50%, a 41.5% relative reduction, proving that the Transformer-based
model is more robust than the RNN-based model.

9.4 Conclusion

In this work, we applied Transformer models for end-to-end multi-speaker ASR in both the single-
channel and multi-channel scenarios, and observed consistent improvements. The RNN-based
ASR module is replaced with the Transformers. To alleviate the fatal memory consumption is-
sue when applying Transformers in the frontend with considerably long sequences, we modified
the self-attention in the Transformers of the masking network by using a local context window.
Furthermore, by incorporating an external dereverberation method, we largely reduced the per-
formance gap between the reverberant condition and the anechoic condition, and hope to further

Table 9.5: Performance in terms of average WER [%] on the 1st channel of the spatialized rever-
berant WSJ-2Mix corpus after Nara-WPE.

Model dev eval

RNN-based 1-channel Model 31.21 28.21
Transformer-based 1-channel Model 20.44 16.50
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reduce it in the future thanks to tighter integration of the dereverberation within our model.
Building upon the advancements made with the Transformer-based MIMO-Speech model, the

next chapter introduces MIMO-IRIS, the ultimate model that combines elements from the pre-
viously proposed methods, including IRIS in Chapter 3 and MIMO-Speech. This integrated ap-
proach aims to leverage the strengths of each method to achieve superior performance in multi-
channel multi-speaker ASR.
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Chapter 10

MIMO-IRIS: Multi-Speaker E2E ASR with
multi-channel Input robust to noise and
reverberation

Summary

In Chapter 3 of this thesis, we explored the integration of self-supervised learning (SSL) models
into an end-to-end (E2E) ASR system alongside speech enhancement techniques, yielding remark-
able improvements in single-channel single-speaker ASR performance. This integrated approach
leveraged SSL models trained on large-scale datasets, such as HuBERT and WavLM, to efficiently
extract powerful contextual speech features. The inclusion of speech enhancement modules further
mitigated the impacts of environmental noise and reverberations on speech recognition. Build-
ing upon the success observed in single-channel scenarios, we extended this approach to multi-
channel input signals, where similar performance gains were observed (Masuyama et al., 2023a).
By incorporating Wave-Field-Plane-Divergence (WPD)-based multi-channel neural beamforming
techniques, the model demonstrated enhanced capabilities in handling reverberations and spatial
information effectively, resulting in improved ASR performance.

In the previous chapters (Ch. 8 and Ch. 9), we introduced the MIMO-Speech for multi-channel
input and multi-speaker output scenario. In this chapter, we combine these techniques and propose
our most powerful ASR model. In both the RNN-based and Transformer-based MIMO-Speech
models, the speech separation and enhancement frontend is based on neural beamformer without
explicit criterion for separation. In this chapter, we also explored other speech enhancement and
separation methodologies tailored for multi-channel input. These techniques can facilitate more
accurate and robust multi-speaker ASR, by extracting and separating individual speaker signals
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from overlapping speech in multi-channel scenarios. Similar to the previous MIMO models, the
proposed model follows the design E2E modular-based, as described in Sec. 2.

Our preliminary results in this direction showcase promising advancements in multi-speaker
speech recognition using multi-channel input signals. Moving forward, we aim to refine and op-
timize these methodologies to further enhance the performance and applicability of our proposed
approach in real-world multi-speaker environments.

Masuyama, Yoshiki∗, Chang, Xuankai∗, Zhang, Wangyou, Cornell, Samuele, Wang,
Zhong-Qiu, Ono, Nobutaka, Qian, Yanmin, and Watanabe, Shinji. IEEE WASPAA
2023. Exploring the Integration of Speech Separation and Recognition with Self-
Supervised Learning Representation.

10.1 Introduction

Speech separation and enhancement (SSE) is a crucial front-end for various applications such
as speaker diarization, automatic speech recognition (ASR), and spoken language understand-
ing (Ryant et al., 2021; Raj et al., 2021; Li et al., 2017; Lu et al., 2022a). The speech separation field
has been revolutionized recently by the invention of deep clustering (Hershey et al., 2016a) and per-
mutation invariant training (PIT) (Yu et al., 2017b), which allow us to train fully supervised speech
separation models based on deep neural networks (DNNs). Previous speech separation methods
based on time-frequency (T-F) masking (Hershey et al., 2016a; Wang et al., 2018; Yu et al., 2017b;
Wang and Chen, 2018b) used a DNN to estimate the T-F mask for each speaker from the short-time
Fourier transform (STFT) of the observed mixture. Meanwhile, time-domain methods (Luo and
Mesgarani, 2019b; Luo et al., 2020; Subakan et al., 2021) have demonstrated promising results
by directly processing time-domain signals in an end-to-end (E2E) manner. Very recently, fully
complex STFT-domain methods have been proven to be extremely effective (Williamson et al.,
2015; Yang et al., 2022a; Tan et al., 2022; Wang et al., 2022). In particular, TF-GridNet (Wang
et al., 2022) has achieved state-of-the-art (SotA) performance on several SSE benchmarks (Her-
shey et al., 2016a; Wang et al., 2018; Maciejewski et al., 2020; Guizzo et al., 2022), including both
monaural and multi-channel cases. Despite these impressive recent improvements in separation
performance, it is still unclear how and if these can also lead to better ASR performance.

Most conventional SSE models are trained to minimize signal-level differences between sep-
arated and target speech, especially with scale-invariant signal-to-distortion ratio (Luo and Mes-
garani, 2019b; Luo et al., 2020). This could lead to mismatches with respect to the subsequent
ASR task. To address this issue, several attempts (Seltzer et al., 2004; Li et al., 2016; Heymann
et al., 2017; Ochiai et al., 2017a; Minhua et al., 2019; Chang et al., 2019c; Zhang et al., 2021a;
von Neumann et al., 2020a) have been made by integrating SSE models with ASR models through
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Figure 10.1: Overview of our E2E integration. We pre-train speech separation, SSLR, and ASR
models separately, and fine-tune the speech separation and ASR models jointly while freezing
WavLM.

joint optimization methods. For robust ASR, a neural beamformer and a joint connectionist tempo-
ral classification (CTC)/attention-based encoder-decoder were integrated and optimized with the
ASR objectives (Ochiai et al., 2017a). Later, the integration was extended to multi-speaker set-
tings, such as MIMO-Speech (Chang et al., 2019c). This approach aims to directly enhance the
performance of multi-speaker ASR while being more explainable than a fully E2E black-box ap-
proach (Seki et al., 2018; Kanda et al., 2020b; Sklyar et al., 2021) as the front-end and back-end
remain separate. In fact, the separated speech from the neural beamformer achieves a good sep-
aration quality (Chang et al., 2019c), although the model was not explicitly optimized with any
signal-level criterion.

Self-supervised learning (SSL) models such as Wav2Vec 2.0 (Baevski et al., 2020), HuBERT
(Hsu et al., 2021a), and WavLM (Chen et al., 2021b) have shown considerable potential in a wide
range of speech processing tasks (Yang et al., 2021; Tsai et al., 2022). Recently, IRIS (Chang
et al., 2022) demonstrated impressive results with an E2E model that integrates monaural speech
enhancement, WavLM, and ASR models. MultiIRIS (Masuyama et al., 2023a) expanded IRIS
to include multi-channel speech enhancement and demonstrated that joint training with an ASR
objective could further improve ASR performance under noisy and reverberant conditions.

Building upon MultiIRIS, this work investigates MIMO-IRIS: an integration of speech separa-
tion, SSLR, and ASR for multi-channel multi-speaker overlapping scenarios. We explore the com-
bination of SSL-based ASR models (Chang et al., 2021) with TF-GridNet (Wang et al., 2022) as
well as well-established beamforming techniques as illustrated in Fig. 10.1. We perform an exten-
sive experimental validation on the spatialized WSJ0-2mix (Wang et al., 2018) and WHAMR! (Ma-
ciejewski et al., 2020) datasets, assessing both separation and ASR performance. This allows us
to investigate the correlation between the two. Interestingly, our experiments show that the corre-
lation between speech separation and ASR performance is not precisely positive. We find that the
separation performance after fine-tuning degrades while the word error rate (WER) decreases. This
is especially true for TF-GridNet-based complex spectral mapping, while mask-based beamform-
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ing (Heymann et al., 2016; Erdogan et al., 2016) results in less degradation. Despite this, our best
MIMO-IRIS model after joint training achieves SotA ASR performance on the WHAMR! dataset
with a WER of 2.6%, comparable to SotA results on clean single-speaker WSJ evaluation sets
(Chang et al., 2021). Audio examples of our system are available at u18081971.github.io/MIMO-
IRIS-demo.

10.2 Method

Given an L-sample, C-channel mixture signal X = (xc)
C
c=1 ∈ RC×L consisting of K speakers and

noises N = (nc)
C
c=1, we formulate the mixing process as follows:

xc =
K∑
k=1

sk,c + nc, (10.1)

where sk,c ∈ RL is the source image of speaker k at microphone c. For each speaker k, the
transcription sequence is denoted as Rk. This section describes each part of the proposed E2E
system, depicted in Fig. 10.1, including speech separation, SSLR Extraction, and E2E ASR.

Speech Separation

The goal of speech separation is to estimate each speaker’s signal ŝk,r at a reference microphone
r ∈ {1, . . . , C} from the mixture X, which can be written as:

{ŝ1, . . . , ŝK} = SS(X). (10.2)

Depending on the number of input microphones, the task can be divided into monaural and multi-
channel speech separation.

Monaural speech separation

While our main focus is on multi-channel speech separation, we briefly explain monaural speech
separation as TF-GridNet was originally proposed for the monaural case. In monaural speech
separation, masking and mapping are two popular approaches (Wang and Chen, 2018b). Both can
be performed in the complex T-F domain or in the time domain.

In masking-based approaches, a DNN is trained to estimate a mask for each speaker, and the
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mask is point-wisely applied to the encoded representation of the mixture X:

Z = SSEnc(X), (10.3)

{Ĝ1, . . . , ĜK} = MaskEstimationNet(Z), (10.4)

Ŝk = Ĝk ⊙ Z, (10.5)

ŝk = SSDec(Ŝk), (10.6)

where Ĝk denotes the estimated mask for speaker k, and ⊙ denotes the Hadamard product. In
T-F masking, SSEnc and SSDec can respectively be STFT and inverse STFT. Meanwhile, they
are usually trainable one-dimensional convolutional layers and deconvolutional layers in the time-
domain methods.

In mapping-based approaches, a DNN is trained to directly predict the encoded representation
of each speaker. In detail, Eq. 10.4 and Eq. 10.5 are replaced by

{Ŝ1, . . . , ŜK} = MappingNet(Z). (10.7)

Very recently, mapping-based approaches in the T-F domain, or complex spectral mapping, have
gained increasing attention due to the appearance of powerful DNN architecture called TF-GridNet (Wang
et al., 2022). In detail, TF-GridNet predicts the complex STFT coefficients of each speaker from
those of the observed mixture. TF-GridNet has outperformed the best time-domain masking-based
methods (Subakan et al., 2021). Furthermore, it has been successfully adapted to multi-channel
speech separation.

Multi-channel speech separation

Multi-channel speech separation takes advantage of spatial information afforded by multiple mi-
crophones and has been used in robust ASR (Li et al., 2017; Heymann et al., 2016; Erdogan et al.,
2016). For the purpose of robust ASR, two popular approaches have been developed multi-channel
separation: using DNN estimates to derive a conventional beamformer and using DNN to directly
estimate each speaker’s signal.

In the first approach, the minimum variance distortionless response (MVDR) beamformer has
been widely used due to its distortionless property and generalization capability (Gannot et al.,
2017; Heymann et al., 2016; Erdogan et al., 2016; Yoshioka et al., 2018b). It incurs few processing
artifacts by using the constrained time-invariant linear filters and is a preferable front-end of ASR
backends (Chang et al., 2019c; Zhang et al., 2021a). Neural mask-based beamforming estimates a
T-F mask for each speaker, denoted as Ĝk for speaker k, and computes a spatial covariance matrix
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for each speaker:

V̂k[f ] =
1∑

t Ĝk[t, f ]

T∑
t=1

Ĝk[t, f ]z[t, f ]z[t, f ]
H, (10.8)

where z[t, f ] = [Z1[t, f ], . . . , ZC [t, f ]]
T, Zc[t, f ] is the STFT coefficient of xc, (·)T denotes the

transpose, and (·)H denotes the Hermitian transpose. An MVDR beamformer ŵk[f ] is then com-
puted as follows:

ŵk[f ] =
V̂−1

\k [f ]V̂k[f ]

trace
(
V̂−1

\k [f ]V̂k[f ]
)u, (10.9)

where V̂\k[f ] denotes the sum of the spatial covariance matrices of the noises and all the speakers
except speaker k, and u ∈ RC is a one-hot vector with the element corresponding to the reference
microphone being one. The beamforming output is computed as:

Ŝk[t, f ] = ŵH
k [f ]z[t, f ], (10.10)

and converted to the time domain via inverse STFT as in Eq. 10.6.
In the second approach, a DNN directly estimates the encoded representation of each speaker

by replacing the input of Eq. 10.7 to the concatenation of the encoded representation of micro-
phone c. Compared to the output of linear beamformers, the output of the second approach tends
to have fewer non-target signals but more distortion on the target speech. Although earlier stud-
ies suggested that linear beamformers would be preferable for robust ASR (Chang et al., 2019c;
Zhang et al., 2021a), modern ASR back-ends and separation front-ends have become much more
powerful nowadays. Hence, we expect that modern back-ends could handle speech distortion in
separated signals, and modern speech separation models can produce much less distortion in sep-
arated signals. We will compare their performance in our experiments, where TF-GridNet (Wang
et al., 2022) and a strong back-end (Kim et al., 2017b) are used for speech separation and ASR,
respectively.

SSLR Extraction and E2E-ASR

We extract SSLR from each separated signal ŝk in Eq. 10.2 and pass it to E2E-ASR in the same
way as in previous studies (Chang et al., 2022; Masuyama et al., 2023a):

Ŷk = ASR(SSLR(ŝk; θssl); θasr), (10.11)
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where θssl and θasr represent the parameters of the SSLR extractor SSLR(·) and ASR model ASR(·),
respectively. Specifically, WavLM (Chen et al., 2021b) is used to extract robust SSLR by apply-
ing the weighted sum of all transformer encoder embeddings. The weights are optimized with
the following ASR model during training. E2E-ASR is based on the joint CTC/attention-based
encoder-decoder framework (Kim et al., 2017b).

MIMO-IRIS: Integration of Separation, SSLR and ASR

To recognize multi-speaker speech, one can directly send the outputs of the speech separation
model to a pre-trained ASR model. This solution is, however, not optimal because ASR models are
typically trained with single-speaker speech, while the separated speech usually contain residual
interference. Following IRIS (Chang et al., 2022) and MultiIRIS (Masuyama et al., 2023a), we
integrate the speech separation model, SSLR extractor, and E2E-ASR model into a single model
as shown in Fig. 10.1. The speech separation model can generate multiple streams, one for each
speaker, and the ASR model is shared among all separated streams along with the SSLR extractor.
During the training, to solve the permutation problem, PIT is applied to the CTC loss in the ASR
model to determine the optimal permutation. The following attention-based decoder uses this
permutation to select the corresponding reference transcript for each input stream in the teacher-
forcing training. Our E2E model can be extended from Eq. 10.11 as:

{Ŷ1, . . . , ŶK} = ASR(SSLR(SS(X; θss); θssl); θasr), (10.12)

where θss represents the parameters of the speech separation model, as discussed in Section 10.2.
The loss function of the ASR task is the same as in MIMO-Speech (Chang et al., 2019c). We omit
the details here.

The E2E model could be trained from scratch with multi-task learning, including speech sep-
aration and ASR objectives. However, such a model has a large footprint and requires intensive
computation. In addition, previous studies on the integration of speech enhancement, SSLR, and
E2E ASR reported that the integrated model resulted in sub-optimal performance when trained
from scratch (Chang et al., 2022; Masuyama et al., 2023a). We thus propose a two-stage approach.
First, the speech separation model is pre-trained on commonly-used speech separation datasets,
e.g., spatialized WSJ0-2mix (Hershey et al., 2016a; Wang and Chen, 2018b) and WHAMR! (Ma-
ciejewski et al., 2020). Second, the ASR model is pre-trained on monaural clean speech datasets,
e.g., the WSJ corpus. Finally, the entire integrated model is fine-tuned with the ASR objective,
as shown in Fig. 10.1. Following previous studies, we freeze the WavLM, which is pre-trained
on a large amount of external data. This strategy is efficient and requires only a few optimization
epochs to achieve excellent performance in speech enhancement (Chang et al., 2022; Masuyama
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et al., 2023a).

10.3 Experiment

We validate the effectiveness of our integration on two-speaker mixtures under anechoic/rever-
berant and clean/noisy conditions. Our experiments were conducted using the ESPnet-SE++
toolkit (Lu et al., 2022a).

Datasets

We evaluated our systems on the spatialized WSJ0-2mix (Wang et al., 2018) and WHAMR!(Maciejewski
et al., 2020) datasets, mentioned in Sec. 1.4.4. Both of the corpora support anechoic and reverber-
ant two-speaker mixture simulations. The training, validation, and test sets of both datasets contain
20,000, 5,000, and 3,000 mixtures, respectively. Room impulse responses were simulated and con-
volved with dry source signals from WSJ0-2mix (Hershey et al., 2016a). The signal-to-distortion
ratio (SDR) (Vincent et al., 2006) with respect to the input mixture is 0.07 dB in spatialized WSJ0-
2mix. WHAMR! (Maciejewski et al., 2020) is one of the most challenging datasets for speech
separation, as it contains two-channel real-recorded environmental noise. For WHAMR!, the SDR
with respect to the input mixture is -4.61 dB. To leverage the pre-trained WavLM (Chen et al.,
2021b), which was trained on 16 kHz, we used the 16 kHz version of both datasets in our experi-
ments. We combined both anechoic and reverberant conditions of the training and validation sets
to form the new training and validation sets, respectively.

Training Configurations

The ASR model (ASR(·) in Eq. 10.11 and Eq. 10.12) consists of a Conformer-based encoder of 12
layers and a Transformer-based decoder of 6 layers by following a previous study (Masuyama et al.,
2023a). The encoder and decoder have 2,048 hidden units and 4 attention heads. We reduced the
dimensions of the speaker-wise SSLR from 1,024 to 80 by a fully-connected layer before feeding
it to the ASR model. The ASR model and the learnable weight for the WavLM embeddings were
pre-trained on the clean WSJ corpus. We used the Adam optimizer with a warm-up and the peak
learning rate of 1.0 × 10−3. During inference, we also used a Transformer-based character-level
language model. On the clean single-speaker WSJ evaluation set, the ASR model achieved a WER
of 1.3%.

As the speech separation model (SS(·) in Eq. 10.2 and Eq. 10.12), our mask-based MVDR
beamformer employed a 3-layer bidirectional long short-term memory of 512 units with a projec-
tion layer to estimate the T-F masks as in (Chang et al., 2019c; Zhang et al., 2022b). STFT was
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implemented with the Hann window of 512 samples with a 128-sample shift. The mask estimation
network was optimized with the convolutive transfer function invariant signal-to-distortion ratio
(CI-SDR) loss (Boeddeker et al., 2021) on beamforming outputs. Meanwhile, TF-GridNet con-
sists of 6 blocks, where the TF-unit embedding dimension was 48. To reduce the computation, we
increased the window shift size to 256 samples in STFT. TF-GridNet was optimized with a sum
of the L1 loss on the waveform and on the STFT magnitude with a scaling factor1, following (Lu
et al., 2022a). Both mask estimation network and TF-GridNet were pre-trained with the Adam
optimizer. Then, the joint fine-tuning was performed using the stochastic gradient descent method
with a learning rate of 1.0 × 10−3 and momentum of 0.9. We used the max condition of the spa-
tialized WSJ0-2mix and WHAMR! datasets, mixtures of the non-trimmed utterances, in the joint
fine-tuning of the speech separation and ASR models.

Results on Clean Multi-channel Speech Separation

Table 10.1 presents the results on the spatialized WSJ0-2mix dataset. First, we show the results
of the monaural TF-GridNet and ASR performance in a cascaded manner, achieving an SDR of
19.4 dB and a WER of 4.8%. We then show the results in multi-channel cases, where the mask-
based MVDR beamformer and TF-GridNet-based complex spectral mapping were fine-tuned with
the ASR objective. The TF-GridNet model consistently outperformed the MVDR beamformer
not only in terms of separation performance but also in terms of WERs. This result demonstrates
that the unconstrained complex spectral mapping is advantageous as an ASR front-end when using
modern speech separation models. Furthermore, even the monaural TF-GridNet is more effective
than the MVDR beamformer without joint fine-tuning. That is, the monaural TF-GridNet can
avoid severe distortion of the target signals without any constraints. To clarify the effectiveness of
WavLM as a robust SSLR extractor, we evaluated the ASR model using filterbank features without
joint fine-tuning. According to the bottom row of Table 10.1, its WER was degraded to 28.2%

from 2.4% with the WavLM in the reverberant condition. This result confirms the importance of
the robust SSLR even with the powerful complex spectral mapping.

As an interesting finding, joint fine-tuning further reduced the WERs in both anechoic and
reverberant conditions while degrading the separation performance. This degradation was less se-
vere for the MVDR beamforming as the output is constrained to be distortion-less. Meanwhile,
TF-GridNet-based unconstrained complex spectral mapping faced severe performance degrada-
tion, despite the better WER. In the anechoic case, the multi-channel TF-GridNet can achieve an
SDR of 27.01 dB and a WER of 3.2% without fine-tuning. However, the separation performance
dropped to 16.09 dB after joint fine-tuning. Examples of spectrogram and audio are available at

1In our preliminary experiments, we also used the loss presented in (Lu et al., 2022a) to train the mask-based beam-
former. This resulted in worse WERs on the validation sets than using the CI-SDR loss (Boeddeker et al., 2021)
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Table 10.1: Separation and WER results on single-channel WSJ0-2mix and spatialized WSJ0-
2mix.

SDR [dB] PESQ STOI WER (%)

Monaural

TF-GridNet⋆ 19.40 3.41 0.976 4.8

Anechoic eight-channel

MVDR (proposed) 12.83 3.86 0.987 2.1
- w/o fine-tuning 14.53 3.90 0.989 7.8
TF-GridNet (proposed) 16.09 3.20 0.983 1.9
- w/o fine-tuning 27.01 4.10 0.995 3.2
- w/o WavLM 6.3

Reverberant eight-channel

MVDR (proposed) 4.56 2.76 0.859 3.6
- w/o fine-tuning 5.11 2.76 0.864 30.5
TF-GridNet (proposed) 12.96 3.22 0.959 1.9
- w/o fine-tuning 19.2 3.88 0.982 2.4
- w/o WavLM 28.2

⋆ The monaural TF-GridNet was not jointly fine-tuned.

u18081971.github.io/MIMO-IRIS-demo. Investigation of the degradation is included in our future
work.

Results on Noisy Multi-channel Speech Separation

In this section, we present our experimental results of the WHAMR! dataset, which are summa-
rized in Table10.2. In the top panel, we report the performance of monaural TF-GridNet on both
noisy anechoic and reverberant conditions. As with the results on the spatialized WSJ0-2mix, the
monaural TF-GridNet outperformed the mask-based MVDR beamformer integrated with weighted
prediction error dereverberation (Zhang et al., 2020a). The difference is even more significant due
to the limitation of the number of microphones and noisy/reverberant characteristics of the data.
The best model overall is again the multi-channel TF-GridNet, which reached the best signal-
level metrics before fine-tuning. After fine-tuning, the SDR decreased significantly, but the WER
improved by over 400% relative factor in noisy/reverberant conditions. The performance is out-
standing with WERs of 2.3% and 2.6% in anechoic and reverberant conditions, respectively, which
are close to the performance achieved on the clean WSJ dataset. We emphasize that the ASR per-
formance without fine-tuning still outperformed the previous MIMO-Speech (Zhang et al., 2020a)
and the cascade combination of the time-domain speech separation and ASR models (Zhang et al.,
2021b).
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Table 10.2: Separation and WER results on WHAMR!.

Noisy/Anechoic Noisy/Reverberant

SDR [dB] WER (%) SDR [dB] WER (%)

Monaural

TF-GridNet⋆ 9.27 14.5 9.07 18.3

Two-channel

MIMO-Speech (Zhang et al., 2022b) - - -2.27 28.9
Time-domain (Zhang et al., 2021b) - - - 20.9
MVDR (proposed) -1.42 42.2 -1.30 44.4
TF-GridNet (proposed) 9.29 2.3 7.96 2.6
- w/o fine-tuning 12.74 7.4 10.82 11.1

⋆ The monaural TF-GridNet was not jointly fine-tuned.

10.4 Conclusion

In this chapter, we investigated the integration of speech separation, SSLR, and ASR with well-
established beamforming techniques as well as the latest SotA techniques including TF-GridNet.
We performed our experiments under anechoic/reverberant and clean/noisy conditions using the
spatialized WSJ0-2mix and WHAMR! datasets. In detail, we explored how both separation per-
formance and WER are affected when joint fine-tuning is performed. Our experimental results
show that the purely DNN-based speech separation method, TF-GridNet-based complex spectral
mapping, can considerably outperform the mask-based MVDR beamforming preferred as an ASR
front-end. Joint fine-tuning degraded the separation performance while significantly improving
the WER, which is inconsistent with the tendency reported in a speech enhancement paper (Ma-
suyama et al., 2023a). Overall our best system, based on multi-channel TF-GridNet, WavLM, and
E2E ASR, was able to reach performance on par with the one achieved on clean, single-speaker
WSJ (Chang et al., 2021).

With the MIMO-IRIS model, we have achieved superior ASR performance for the Multi-Input
Multi-Output scenario, concluding our investigations on MIMO. Moving forward, we can further
explore combining approaches from previous chapters to tackle real conversational speech recog-
nition. This is just one possible direction for continued research. However, we may also need to
rely on more recent and innovative methods to achieve our targets.
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Chapter 11

Thesis Conclusion and Future Work

In this chapter, I will conclude my thesis and discuss the future directions of everyday conversa-
tional speech recognition systems based on End-to-End neural networks.

11.1 Thesis Conclusion

This thesis endeavors to confront the obstacles associated with recognizing everyday conversa-
tional speech by employing end-to-end neural network models. Various factors inherent in conver-
sational speech pose challenges to ASR performance, encompassing speech quality, overlapping
segments, and speaking styles, among others. Throughout this thesis, the primary emphasis has
been on mitigating the impacts of environmental noise, reverberations, and overlapping speech.

In the first section of the thesis, we focus on enhancing ASR performance in the presence
of environmental noise (SISO). To tackle this challenge, we integrated self-supervised learning,
trained on a very large scale dataset, into end-to-end ASR models, referred to as IRIS in Ch. 3.
Additionally, we introduced a speech enhancement module and integrated it into a joint-training
framework. Furthermore, we devised an efficient training algorithm to facilitate the stable training
of this integrated system. The resulting system elevated ASR performance on noisy speech to
unprecedented levels.

Moving forward, inspired by recent advancements in speech foundation models like Whis-
per (Radford et al., 2023), we extended our approach to accept multi-channel inputs in real-world
applications. Unlike the modular-based design used in the SISO case, our proposed model in Chap-
ter 4 leverages a data-driven approach, providing a compelling alternative for enhancing model
capabilities.

In the third part of the thesis, we introduced various model architectures aimed at addressing
single-channel overlapping speech (SIMO). Operating under the premise of known overlapping
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segments and speaker count, we enhanced the vanilla joint CTC/AED architecture through per-
mutation invariant training (PIT) in Ch. 5. This demonstrated that end-to-end neural networks can
achieve reasonable performance in recognizing overlapping speech. Subsequently, we advanced
to tackle the challenge of unknown speaker counts. Leveraging the conditional-chain model in
Ch. 6, we sequentially recognized utterances from different speakers, utilizing previously recog-
nized words as memory to prevent redundant efforts. Finally, we proposed a novel approach for
representing reference transcriptions and speaker identities in overlapping speech scenarios. This
representation eliminates the need for assumptions and provides supervision signals for model
training, alongside introducing a new training criterion termed extended graphical temporal clas-
sification (GTCe) in Ch. 7.

Lastly, we target at the multi-channel input multi-speaker speech (MIMO) with environmental
noise and reverberation. We designed a new end-to-end ASR framework, called MIMO-Speech in
Ch. 8, to perform multi-channel speech separation and recognition. Combining the techniques we
proposed for SISO and the MIMO-Speech, we achieved a powerful model called MIMO-IRIS in
Ch. 10. MIMO-IRIS reaches promising performance in multi-channel overlapping speech recog-
nition with noise and reverberation, very close to the ASR performance on the corresponding clean
speech counterpart.

In summary, this thesis represents a comprehensive exploration of advanced techniques and
methodologies to overcome the challenges of recognizing conversational speech. Our work paves
the way for robust and efficient ASR systems in real-world settings, demonstrating the potential
of end-to-end neural network models in handling complex acoustic and linguistic properties of
everyday speech. Through these advancements, we aim to contribute to the development of more
capable and adaptable ASR systems for diverse applications.

11.2 Future Work

As we conclude this thesis, several avenues emerge for further exploration and advancement in
the field of conversational speech recognition. These directions hold the potential to inspire future
research endeavors and foster innovation in the realm of ASR technology.

One promising avenue for future research involves leveraging and integrating knowledge from
diverse data sources to advance conversational speech recognition. Beyond speech-specific data,
incorporating general audio tasks, such as audio captioning (Drossos et al., 2017) or sound event
detection (Barchiesi et al., 2015), can provide valuable insights into environmental contexts and
interference signals, enriching the understanding of conversational dynamics. This expanded data
availability can support the exploration and training of large foundation models.

Furthermore, integrating visual input alongside auditory signals holds promise for deeper com-
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prehension of conversational interactions. Visual cues, such as speaker emotions, actions, lo-
cations, and environmental factors, offer valuable context that can enhance ASR accuracy and
contextual understanding.

Moreover, the emergence of large language models (LLMs) presents an exciting opportunity to
augment conversational speech recognition. Trained on extensive corpora of formal and informal
text data, LLMs offer rich knowledge that can address challenges such as transcription variability,
disfluencies, and context understanding. One notable limitation in this thesis is the lack of the ca-
pability for long-form continuous conversation ASR. The ability of LLMs to manage large context
windows is particularly beneficial for long-form speech recognition and transcription fusion. By
incorporating insights from LLMs, researchers can elevate ASR quality and develop more robust
and contextually aware systems. LLMs can support flexible natural language-based prompts that
allow for steering the target source or modifying transcriptions.

By synthesizing insights from these complementary data sources, researchers can unlock new
capabilities and drive advancements in ASR technology, ultimately enabling more accurate and
adaptive systems for diverse conversational contexts. This multidimensional approach to data in-
tegration holds great promise for pushing the boundaries of conversational speech recognition and
enhancing user experiences across various applications.
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